THE SUMMARY OF Ph. D. DISSERTATION

Major		SURNAME, Firstname
Mathematics		TSUTSUMI, Yukihiro
Title		

Algorithmic Methods for Three-Dimensional Topology

Abstract

A knot is a simple closed curve K embedded in a 3 -manifold M. From the exterior $E(K)=M-\operatorname{int} N(K)$ and the solid torus $D^{2} \times S^{1}$, by identifying their boundaries with a homeomorphism $f: \partial\left(D^{2} \times S^{1}\right) \rightarrow \partial N(K)$ we obtain another 3-manifold $\chi(M ; K)$ and the operation $M \rightarrow \chi(K ; M)$ is called Dehn surgery. A Seifert surface for K is an embedded surface $S \subset M$ which is compact, connected, and orientable with $S \cap K=\partial S=K$.

It is well-known that any orientable closed 3 -manifold is obtained from S^{3} by a finite sequence of Dehn surgeries. In this thesis, we study typical properties of 3 -manifolds which are obtained from S^{3} by a single Dehn surgery and give several properties of knots in S^{3} which distinguish them from those in general 3 -manifolds. Here we divide the summary of our main results into geometric part and algebraic part.

Basic tools in studying 3-manifolds from a geometric view point are essential submanifolds. We say a properly embedded surface that is not ∂-parallel is essential if the homomorphism between fundamental groups induced form the inclusion is injective. Haken number of 3 -manifold M is the number $h(M)$ which is the upper bound on the number of mutually disjoint, non-parallel essential surfaces in

M. It is known as Haken's finiteness result that $h(M)$ is finite for compact 3manifolds M. Thus the number of mutually disjoint, non-parallel incompressible Seifert surfaces for a fixed knot has an upper bound. We have obtained the result that a genus one hyperbolic in S^{3} bounds at most SEVEN mutually disjoint, non-parallel, genus one Seifert surfaces. At this writing we know an example of hyperbolic knots in S^{3} with four such Seifert surfaces. Such a phenomenon can be considered as a difficulty in producing a toroidal 3 -manifold with a large number of essential tori from a hyperbolic knot in S^{3} and one of typical properties of hyperbolic knots in S^{3}, even one can generalize this result to general 3-manifolds via Haken numbers.

The Conway polynomial $\nabla_{K}(z)$ is one of algebraic invariants of knots which is derived from Seifert surfaces. Some restriction to Conway polynomials $\nabla_{K_{1}}(z)$ and $\nabla_{K_{2}}(z)$ are known as Casson's formula, where K_{1} and K_{2} are knots in a homology sphere H_{1} such that they yield the same homology sphere H_{2}. In this thesis, we have studied the case that two knots with distinct Conway polynomials yield the same homology sphere, by giving concrete constructions of such knots.

