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Introduction

In this thesis, mainly we deal with compact, orientable 3-manifolds. By a knot we mean
an embedded circle K in a 3-manifold M which is realized as a finite union of straighten
segments. A disjoint union of finite number of knots is called a link. Several methods to rep-
resent 3-manifolds are known, triangulations, Heegaard diagrams, and surgery descriptions.
A Heegaard decomposition of a closed 3-manifold M is a decomposition of M = V; UV,
into two handlebodies V; and V5 such that V3 NV, = 0V = 0V, and it is known that any
closed 3-manifold admits a Heegaard decomposition. For a knot K in a closed 3-manifold
M, by removing the interior N (K) of a regular neighborhood of K, and gluing a solid torus
to (M — N(K)), we obtain a new closed 3-manifold M’. This construction M — M’ is
called a Dehn surgery along K. It is known that any closed 3-manifold is obtained from the
standard 3-dimensional sphere S3 by a finite number of Dehn surgery (see Lickorish [45]).

Here we consider which 3-manifolds are “generic”, in terms of decomposition along “es-
sential submanifolds”. A 3-manifold M is called an irreducible 3-manifold if each embedded
sphere in M bounds a 3-ball. According to Milnor [53] and Kneser [44], each closed 3-
manifold M has a unique prime decomposition in the following sense: if M is expressed as
a connected sum in two forms M = Mi# - - #M, = M{#---#M]/ , then it follows that
m = n and after reoerding suitably, M; is homeomorphic to M/. Thus in concerning general
3-manifolds, it is natural to begin with irreducible 3-manifolds.

A surface S properly embedded in M or contained in OM is said to be incompressible in
M if S is not simply connected and for any embedded disk D in M such that DNS = 9D, it
follows that 8D bounds a disk in S. A 3-manifold M is said to be 9-irreducible if OM is in-
compressible in M. Jaco and Shalen [30], and Johannson [33] showed independently that any
irreducible 3-manifold M has the unique torus decomposition, so called JSJ-decomposition,
that is, if an irreducible 3-manifold M contains essential tori, then it admits the unique
disjoint union of essential tori 7, up to isotopy, such that each component of M — N (7)
is a Seifert fibered space or a simple 3-manifold. In [70], Thurston introduced hyperbolic
structures to 3-manifolds and showed that an atoroidal and anannular Haken manifold, that
is, an irreducible and J-irreducible 3-manifold which contains incompressible surface but
does not contain essential tori nor annuli, admits a complete hyperbolic structure of finite
volume. By the Mostow rigidity, the volume turns out to be a topological invariant. By these



results, our interests is naturally directed to simple 3-manifolds and Seifert fibered spaces,
in terms of decomposing 3-manifolds into “generic 3-manifolds” along essential surfaces.

Definitions and notation described in Introduction will be restated in each chapter pre-
cisely. This article is organized as follows.

In Chapter 1, we give a summary on incompressible surfaces in Haken 3-manifolds, and
describe basic lemmas needed later to construct knots and 3-manifolds by cut-and-pasting
arguments, those are based on the author’s Master Thesis [80].

In Chapter 2, we describe a phenomenon on genus one hyperbolic knots that depends
only on the existence of closed essential surfaces in the ambient manifolds. A knot K
in M is said to be hyperbolic if the complement M — K admits a complete hyperbolic
structure of finite volume. By Thurston’s hyperbolization result ([70],[54]) it is equivalent
to E(K) = M — N(K) is simple. Any knot K in a homology sphere M bounds a Seifert
surface, that is, a connected, orientable surface S embedded in M such that SNK = 0SS = K.
The least genus of Seifert surfaces for K is called the genus of K and denoted by g(K). By
the very definition, if S is a minimal genus Seifert surface for K, then S is incompressible.
One can construct a genus one knot K which bounds a huge number of mutually disjoint,
non-parallel genus one Seifert surfaces, but K turns out to contain essential tori in E(K).
The essential problem is, how one can construct hyperbolic knot which bounds a large
number of mutually disjoint genus one Seifert surfaces. Our main result in Chapter 2 is
that any hyperbolic knot in a non-Haken manifold bounds at most seven mutually disjoint,
genus one Seifert surfaces. This result can be applied to a study of toroidal surgeries on
hyperbolic knots. Some examples of hyperbolic knots which admit toroidal surgeries that
produce 3-manifolds with non-trivial JSJT-decompositions.

In Chapter 3, we discuss Seifert surfaces for knots which contain accidental peripherals.
For a properly embedded surface S in a 3-manifold M with toroidal boundary, a closed curve
[ in S is called an accidental peripheral if | is freely homotopic to M but it is an essential
curve in S. Such a property is important in hyperbolic geometry. S. Fenley [7] observed that
any minimal genus Seifert surface for a knot in S® does not contain accidental peripherals,
using a result of Gabai [11] on good Reebless foliations of the knot complements in S3.
Then it turns out to be unknown that if there is a knot which bounds an incompressible
Seifert surface with accidental peripherals. We could answer this problem affirmatively. We
give several properties of incompressible Seifert surfaces with accidental peripherals, and a
method to construct knots which admit such Seifert surfaces. This work is partially based
on joint works ([25], [60]) with Makoto Ozawa.

Chapter 4 is devoted to results of some computer experiment. SnapPea (cf. [84]) is a
family of computer programs developed by J. Weeks, by which one can calculate several
hyperbolic invariants, volumes, isometry groups, ..., from ideal triangulations of cusped
hyperbolic 3-manifolds. It contains a routine that gives an ideal triangulation of a knot
complement from a Gauss chord diagram. Several interfaces to SnapPea are developed by



many people and available on the Web. The author also made a visual tool which has an
interface to SnapPea, calculate the Casson-knot invariant, and can output the knot-link
diagram in EPS format, in order to improve the rate of study. Most pictures of knots and
links with polygonal segments (Figure 3.1 for example) in this article are drawn with the
author’s tool. Several examples hyperbolic 3-manifolds small volumes in some classes are
demonstrated and a method to recognize a triangulation of a 3-manifold from a Heegaard
decomposition is considered.

In contrast to Chapter 4, we consider in Chapter 5 how to prove a given 3-manifold is
hyperbolic. In 1960’s early, W. Haken [16] constructed an algorithm to detect if a compact
irreducible 3-manifold with boundary is 0-irreducible or not. This algorithm is known as
Haken’s algorithm. Though it is effective and assured to stop after finite steps, but is not
adaptable for an execution by hand. There we give a sufficient condition for a certain 3-
manifold to have incompressible boundary. The class of 3-manifold dealt with consists of
the exteriors of spatial graphs in S®. By a spatial graph, we mean an embedded graph in
S3. This application to spatial graphs is based on a joint work with Makoto Ozawa [61].

In Chapter 6, we study some homological invariant of knots and homology spheres.
Especially, the following basic problems are concerned: (1) when two knots produce the
same surgery manifold, what happens to their Alexander-Conway polynomials and (2) how
to construct distinct knots with the same surgery manifold. To distinguish knots with the
same algebraic invariants, we can adapt a result on incompressible surfaces. It is remarked
that our construction is mainly based on knotting Seifert surfaces. Thus our interest is
naturally directed to invariants which are derived form Seifert surfaces. The Alexander-
Conway polynomial is an example of such polynomial invariants. In the chapter, we study
the behavior of Conway polynomial under “homological twists” on knots. Main part of this
chapter is based on a joint work with Harumi Yamada.
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Chapter 1

Essential surfaces in Haken

manifolds

1.1 Summary on essential surfaces

In this section, we summarize results on essential surfaces in 3-manifolds without proofs.
Without stated otherwise, all 3-manifolds are assumed to be compact and orientable, and
surfaces are orientable. Let S be a properly embedded surface in M or a submanifold in
OM. A compression disk D of S is an embedded disk in M such that DN S = 0D and 0D
does not bound a disk in S. We say a non-simply connected S embedded in M is said to
be incompressible if S has no compression disk. A 0-compression disk of S is an embedded
disk D in M such that 0D = a U 8 where «, 8 are connected arcs with D NS = « and
DNoOM = 3, and that « is an essential arc in S. A properly embedded surface is said to be
0-incompressible if it admits no O-compression disk. A surface properly embedded in M is
essential if it is incompressible and not parallel to M.

A 3-manifold M is said to be irreducible if M has no sphere E which does not bound a
3-ball in M, otherwise, M is reducible. We say a 3-manifold M with non-empty boundary is
0-irreducible if OM is incompressible in M. A 3-manifold without essential tori (annuli resp.)
is called an atoroidal (anannular resp.), and a 3-manifold which is irreducible, d-irreducible,
atoroidal and anannular is said to be simple. Haken manifold means a 3-manifold which is
irreducible and contains incompressible surfaces.

The following is known as Haken finiteness.

Theorem 1.1.1 (cf. [16]). Let M be an irreducible, 0-irreducible 3-manifold. There erixts
an integer h(M) such that if S1,..., Sy are mutually disjoint, non-parallel, incompressible,
0-incompressible surfaces in M, then n < h(M). O

By performing 0-surgery along a two-bridge knot with a “long continued fraction expan-



sion”, we obtain a Haken manifold of Heegaard genus two with large Haken number.

It is not so hard to construct a simple Haken 3-manifold which admits infinitely many
incompressible surfaces, up to isotopy. A method to construct such a 3-manifold is given in
Chapter 3. In fact, if M is a surface bundle over S! such that 82(M) > 1, then M admits
infinitely many fibrations over S*, up to isotopy [58].

We say a closed incompressible surface S embedded in a 3-manifold M is acylindrical if
the cutting result M — N (S) does not contain essential annuli. Under this condition, we get
a finiteness result stronger than Theorem 1.1.1. We know the following.

Theorem 1.1.2 ([17], [72], [73]). Let M be a Haken 3-manifold. There are only finitely
many acylindrical surfaces in M, up to isotopy. O

Furthermore, there is an algorithm to search all acylindrical surfaces in a Haken 3-
manifold from a given triangulation of M [72].

We described two types of incompressible surfaces, fibers of fibrations over S! and acylin-
drical surfaces. For simple Haken 3-manifolds, we can associate a non-negative integer k
and oo to each incompressible surface S in a suitable way as follows: £(S) = oo if and only
if S is a fiber of a fibration over S!, and S is acylindrical if and only if £(S) = 0 ([12],[79)]).

As an example of applications of acylindrical surfaces, we observe the following.

Lemma 1.1.3 ([78]). Let M be a simple 3-manifold with non-empty boundary. Let Fy
and Fy be homeomorphic components of OM, and f : Fy — Fy homeomorphism. For any
self-homeomorphism h : Fi — Fy of infinite order, {M; = M/(f o h%)} contains infinitely
many homeomorphs. O

1.2 Gluing lemmas

We show the following “gluing lemmas” needed later.

Lemma 1.2.1. Let M be an irreducible, 0-irreducible 3-manifold, and let F; and F» be
homeomorphic surfaces in OM such that OM — (0F, U OF») is incompressible in M. Then
the manifold M’ obtained by gluing Fy to F» is irreducible and d-irreducible.

Proof. Let F be the surface properly embedded in M’ obtained by gluing F; and F,. We
consider M as the cutting result M — N (F). It is easy to see that F is incompressible and
O-incompressible in M’, by the incompressibility of M and OM — (8F; U OF»).

Let E be a reducing sphere in M’. If ENF = (), then E is contained in M. Since
M is irreducible, E bounds a 3-ball in M. Thus, E also bounds a 3-ball in M and in this
case E is not a reducing sphere in M’. Hence we assume that ENF # () and |[EN F| is
minimal among all reducing spheres of M’. Let E’ be an innermost disk in E with respect
to EN F. Since F is incompressible, OE’ bounds a disk E” in F. By the irreducibility of



M, the sphere E’ U E” bounds a 3-ball on the side not containing F and dM’, thus E is
isotopic to a sphere E* with |[ENF| > |E*N F|. This contradicts the minimality of [E N F|.

Let D be a 0-reducing disk of M’. If DNF = (), then we can show that D is a compression
disk of M — (0F; U 0F3) and this is a contradiction. Thus we suppose D N F' # § and
assume |D N F'| is minimal among all d-reducing disks. By an innermost argument, we may
assume D N F consists of arcs. Let a be an outermost arc and D’ be the corresponding
outermost disk of D with respect to D N F. Since F is 0-incompressible, there is a disk
D” in F such that D” N D’ = a. Since OM — (0Fy U 0F3) is incompressible in M, for the
disk D; = D" U D', 8D; bounds a disk Dy in 9M’. By the irreducibility of M, the sphere
D; U D, bounds a 3-ball and D is isotopic to a disk D* with |[D N F| > |D* N F|, and this
is a contradiction to the minimality of |D N F|. Such an argument is called an “outermost
argument”. O

Lemma 1.2.2. Let M be an irreducible, d-irreducible, and atoroidal 3-manifold and Fy and
Fy be homeomorphic surfaces in OM without toral components and annular components such
that OM — (OF, U OF3) is incompressible in M. If there is no essential annulus A in M
such that a component of DA is contained in Fy and there is no essential annulus such that
whose boundary is contained in OM — (Fy U Fy), then the manifold M’ obtained by gluing
Fy to Fy is simple.

Proof. Let F be the surface properly embedded in M’ obtained by gluing F; and Fs. We
consider M as the cutting result M — N (F) and it is easy to see that F' is incompressible
and J-incompressible.

By Lemma 1.2.1, M’ is irreducible and 0-irreducible. Let T be an essential torus in
M'’. Since M is atoroidal and F' has no annular or toral component, T intersects F' so that
each component T’ of T — N (F) forms an essential annulus in M or an annulus parallel
to an annulus A’ in M. In the latter case, A’ is a union of three annuli, two of them are
some caller neighborhoods C; and Cy of 9F; and the other is the closure C3 of an annular
component of 9M —(F;UFy). By pushing 7" to C3, we obtain an essential annulus A properly
embedded in M’. It is easy to see that A is incompressible since T is incompressible. If A
is O-parallel, then T is §-parallel, or T bounds a solid torus. Thus, A is essential in M’ and
we will deal with essential annuli later. Hence we may assume 7" is an essential annulus
in M. However this contradicts the condition that there is no essential annulus with some
boundary component contained in F}.

Let A be an essential annulus in M’. By the same argument as above, we may assume
that ANF consists of essential arcs of A and |AN F| is minimal among such essential annuli.
Let D be a component of A — N(F). Since M is §-irreducible, D bounds a disk D’ in M.
By the incompressibility of F' in M’, D’ N F is a rectangular disk or two bi-gonal disks. If
E = D'NF is arectangular disk, then |[ANF| > 1 and A is isotopic to the annulus obtained
by replacing D by E, using the 3-ball B bounded by the sphere D U D’ derived from the



irrducibility of M’. If |AN F| > 1, then by a slight isotopy, we can reduce |A N F'| and this
contradicts the minimality of |ANF|. If E = D'N F is bi-gonal two disks, then components
of E becomes to a d-compression disk of A and A is inessential. If ANF = (), A is 0-parallel
in M and since F has no annular component, the parallel annulus in M does not contain
any component of F;. and thus A is also 0-parallel in M. O

The following lemmas are obtained by a standard cut-and-paste argument similar to
Lemmas 1.2.1, 1.2.2, [56, Lemma 3.1] and [56, Lemma 3.3].

Lemma 1.2.3. Let M be an irreducible 3-manifold. Let Fy and Fy be disjoint homeomorphic
surfaces in OM such that OM — (0F; U OF3) is incompressible and for each 0-reducing disk
D of M, |8D N (8F, U OFy)| > 2. Then the manifold obtained by identifying F1 and F3 is
irreducible and O0-irreducible. O

Lemma 1.2.4. Let M; be an irreducible, O-irreducible, atoroidal 3-manifold and let M,
be an irreducible, O-irreducible, atoroidal, and anannular 3-manifold. Let Fy and Fy be
homeomorphic components of 9M; and OM, respectively with negative Euler characteristics,
such that there is no essential annulus A in My with 0A C OM, — F1. Then the manifold
M obtained by identifying Fy and F» is simple. O

Lemma 1.2.5. Let M be a simple 3-manifold. Let Fy and F» be homeomorphic subsurfaces
in OM such that each component of F; is incompressible and has negative Euler character-
istic. Then the manifold obtained by identifying F1 and F» is simple. O

Lemma 1.2.6. Let M be an irreducible 3-manifold. Let Fy and Fy be disjoint homeomorphic
surfaces in OM such that OM — (0F1 U OF3) is incompressible and for each 0-reducing disk
D of M, |0D N (0F, U OFy)| > 2. Then the manifold obtained by identifying Fy and F» is
irreducible and J-irreducible. O

Lemma 1.2.7. Let M; be an irreducible, 0-irreducible, atoroidal 3-manifold and let M,
be an irreducible, O-irreducible, atoroidal, and anannular 3-manifold. Let Fy and Fy be
homeomorphic components of OM; and OM, respectively with negative Euler characteristics,
such that there is no essential annulus A in My with DA C OM; — Fy. Then the manifold
M obtained by identifying F1 and Fy is simple. O

Lemma 1.2.8. Let M be a simple 3-manifold. Let F1 and F; be homeomorphic subsurfaces
in OM such that each component of F; is incompressible and has negative Euler character-
istic. Then the manifold obtained by identifying F1 and Fy is simple. O

Later we call sufficient conditions in these lemmas “gluing conditions”.
The following is a consequence of Myers’ argument (57, Theorem 1.1] or Kawauchi’s
imitation technique [35, Theorem 1.1].



Lemma 1.2.9. Let M be a 3-manifold with non-empty boundary, without spherical boundary
component. From a given Heegaard decomposition of M, a properly embedded arc T with
simple exterior E(T) can be constructed. O
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Chapter 2

Universal finiteness results on

genus one hyperbolic knots

JSJT-decomposition (Jaco, Shalen, Johanson, and Thurston) is a unique decomposition of
Haken manifolds into Seifert fibered manifolds and hyperbolic manifolds, which are called
JSJT-pieces. As is known that all but finitely many Dehn surgeries on a hyperbolic knot
produce hyperbolic manifolds [70], Dehn surgery on hyperbolic knots yielding non-hyperbolic
manifolds is an interesting subject in knot theory. In this note, we describe some obstruction
to construct a hyperbolic knot producing a manifold with a large number of JSJT-pieces
by Dehn surgeries. It is not hard to construct a non-hyperbolic knot yielding a 3-manifold
with a large number of JSJT-pieces. The following question was raised by K. Motegi:

Question 2.0.10. Does there exist an upper bound on the number of JSJT-pieces of mani-
folds which are obtained by Dehn-surgery on hyperbolic knots in S3%

As an approach to this question, we describe a difficulty in producing a large number of
mutually disjoint incompressible tori by Dehn surgery on a knot. Our result is as follows.

Theorem 2.0.11. Let K be a genus one hyperbolic knot in S3. Then K bounds at most
seven mutually disjoint non-parallel genus one Seifert surfaces.

2.1 Preliminaries

2.1.1 Definitions

A knot K in a 3-manifold M is an embedded circle in M, and a Seifert surface S for K is an
orientable connected surface embedded in M such that SN K = 85 = K. It is well-known
that any knot in an integral homology sphere has a Seifert surface. The genus of K is the
least genus of Seifert surfaces for K.

11



For a subspace Y in M, we denote a regular neighborhood of Y in M by N(Y; M) (or
simply N(Y)), and the exterior M — N(Y) by E(Y).

It is known that a Haken 3-manifold is uniquely decomposed by a union of essential
tori into Seifert fibered spaces and simple manifolds (see [32, Chapter IX]), and the sim-
ple manifolds admit complete hyperbolic structures of finite volume ([70]). We call this
decomposition JSJT-decomposition.

Here we state fundamental results on 3-dimensional topology needed later.

Lemma 2.1.1 ([21, Theorem 5.2]). Let M be an irreducible 3-manifold with a connected
non-empty boundary OM. If m1(M) is free, then M is a handlebody. O

Lemma 2.1.2. Let M be a 3-manifold and S be an orientable incompressible properly
embedded surface in M. For each component M' of the cutting result along S, the induced
homomorphism w1 (M') — 71 (M) is injective.

Proof. Suppose 71 (M’) — m1(M) is not injective. Then there is a non-contractible loop ! in
M’ which bounds a singular disk D in M. Since S is incompressible and two-sided in M, the
induced homomorphism m1(S) — m1(M) is injective ([21, Corollary 6.2]). We may assume
S and D are in general position and D NS consists of circles. Let Dy be an innermost disk
in D regarding DN S. Since S is mi-injective, 0Dy bounds a singular disk Dy in S. We can
replace D with D — Do U Dy and homotope it slightly so that D N S reduced. Repeating
this process, we can find a singular disk for [ in M’. This is a contradiction. a

Lemma 2.1.3. Let V be a handlebody and S be a properly embedded orientable surface in
V. If S is incompressible in V', then each component V' of the cutting result along S is a
handlebody.

Proof. If V' is reducible, then some 2-sphere E does not bound a 3-ball in V’. However E
bounds a 3-ball C in V since V is irreducible. This is impossible since V' has non-empty
boundary. Hence V" is irreducible. Now by Lemma 2.1.1, it is sufficient to show that w1 (V”)
is free. This follows by Lemma 2.1.2 and the well-known fact that any subgroup of a free
group is free. O

2.1.2 Lyon’s argument

Here we recall some argument given in [51] which inspires some interesting properties of
genus one Seifert surfaces for knots.

Lemma 2.1.4. Let F' be a closed surface of positive genus. Let M be a 3-manifold obtained
from a product F x I by attaching 1-handles I x D?’s on F x {0}. Then F x {1} is
incompressible in M.

12



Proof. Let D be a compression disk of F' x {1}. By an innermost argument, we may assume
D does not intersect any core {1/2} x D? of attached 1-handles. Thus D is contained in
F x I which is 9-irreducible. This is a contradiction. O

Lemma 2.1.5. Let M be an irreducible 3-manifold such that OM is a closed surface of genus
two. If OM is compressible, then M is a handlebody, or M contains an incompressible torus.

Proof. Let D be a compression disk of 9M and suppose M does not contain incompressible
tori.

Suppose D separates M. Let T} and T be toroidal components of N (OM U D). Notice
that N(OM U D) is obtained from (77 UT?) x I by attaching a 1-handle dual to D. By
Lemma 2.1.4, T} and 75 are incompressible in N(OMUD). Thus, by an innermost argument,
at least one, say Tj, is compressible in M — N (0M U D). Let D' be a compression disk
of Ty in M — N(8M U D). It is easy to see that D’ is isotopic in N(8M U D) to a non-
separating curve in M and since D’ does not separates T;, we may assume that M has
a compression disk which does not separate M.

Let D be a compression disk of M which is non-separating in M. Put M’ = N(0MUD).
Let T be the toroidal component of OM’. Notice T is incompressible in M’ by Lemma 2.1.4.
By the atoroidal assumption on M and an innermost argument, T is compressible in the
closure of M — M’. Let E be a sphere obtained by compressing T into M — M’. Since M is
irreducible and has a boundary, E bounds a 3-ball C on the side not containing 7. Hence
the closure of M — M is a solid torus. Thus, M = M’ U N(OM U D) is a handlebody. O

This argument was appeared in the proof of the following result [51, Theorem 3] which
was used in showing the existence of a closed incompressible surface in the knot complement

of some genus one simple knot in S3. Now the following is also available.

Theorem 2.1.6. Let K be a genus one knot in a 3-manifold M with E(K) simple. Let S
be a Seifert surface of genus one. If E(S) is not a handlebody, then OE(S) is incompressible
in M- K. O

See [51, Theorem 3] for more observations.

2.2 Universal bounds for genus one knots

Theorem 2.0.11 follows from the following theorem.

Theorem 2.2.1. Let M be a rational homology 3-sphere without genus two closed incom-
pressible surfaces. Any genus one hyperbolic knot K in M bounds at most seven mutually
disjoint, non-parallel, genus one Seifert surfaces.

We divide the argument into two stages.

13



First stage: We consider a bound on the number of Seifert surfaces for knots in the
boundary of a handlebody of genus two.

Lemma 2.2.2. Let V be a handlebody of genus two, and let J be an essential simple closed
curve which separates OV. Then, J bounds at most four mutually disjoint, non-parallel,

genus one incompressible surfaces in V.

This estimate is sharp. (See Figure 2.9 and §2.4) We will prove this in the second stage
later.

An essential simple closed curve in 9V is said to be of type ((p, q), (1, s)) if it is obtained
by a plumbing two solid torus with annuli of types (p, ¢) and (r, s) respectively. An example
of a ((2,3), (2, 3))-curve Js is illustrated in Figure 2.2.

Let T be a properly embedded genus one incompressible surface in V with 0T = J.
Simply we call it a once punctured torus in V. In this case, each component of OV — 0T
is incompressible in V since if not, it is compressed to a disk, and since V is a handlebody
and T is incompressible, it is noticed that T" is 0-compressible in V.

Lemma 2.2.3. Suppose T is not O-parallel. Let V' be the closure of the component of V—T
containing a O-compression disk for T in V. Then, V' is a handlebody of genus two and
J =0T is a curve of type ((1,0), (p,q)) for some (p,q) in V' where |p| > 1.

Proof. Let D be a 0-compression disk for 7. By Lemma 2.1.3, V' is a handlebody. Since
D is a 0-compression disk, the arc « = DN T is a properly embedded essential arc in 7.
Hence, a is non-separating in 7" since T is a once-punctured torus. Now it is observed that
the closure of V/ — D is a single solid torus. Thus the conclusion holds. If |p| = 1, then it is
easy to see that T is J-parallel. O

Lemma 2.2.4. Any properly embedded incompressible surface S in V' such that 0S is a
connected curve of type ((1,0), (p,q)),|p| > 1, is O-parallel.

Proof. Let D be an essential disk which is a meridian of V' intersecting 05 with two points
transversely. Such a disk exists since 95 is of type ((1,0), (p, ¢)). By an innermost argument
and the incompressibility of S, we may assume that 8 = SN D is a single arc. We claim
that both closures of D — 3 are 0-compression disks for S. If not, S can be isotoped so that
SN D = 0, in particular, S is contained in the solid torus V — N (D). Since a two-sided
incompressible surface in a solid torus is homeomorphic to an annulus, this cannot occur as
08§ is connected. Thus, the claim follows.

Let S’ be a surface obtained by a d-compression from S along the closure of a component
of D — 3. As we mentioned previously, S’ is an annulus. Furthermore, S’ is an annulus of
type (p,q) in V! =V — N (D). Hence, S’ is O-parallel in V’. Now the O-parallelism can be
extended to a J-parallelism of S in V. O
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Proof of Lemma 2.2.2. Suppose there are three mutually disjoint, non-parallel, genus one
incompressible surfaces 77, T» and T3 in V such that 75 is next to 73 and 73 and 017 =
0Ty = 0T = J. Since T is incompressible and V' is a handlebody, it is 0-compressible in V.
Let D be a 0-compression disk of T» in the side V' containing T. Since T3 is incompressible,
we may suppose D N T3 is a single arc. Thus D is a meridian disk of V/ and J is of type
((1,0),(p, q)) for some (p, q) with |p| > 1. By Lemma 2.2.4, T} is parallel to T or 0V. This
is a contradiction. O

Second stage: Using Lemma 2.2.2 and Lemma 2.1.5, we prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Suppose K bounds eight mutually disjoint non-parallel genus one
Seifert surfaces Sy, ..., Ss where S; is next to S;+; (see Figure 2.1 for a local picture around
K). Put F = S; U S5 and denote the closures of components of M — F by W and W'.
The surface F' is a closed surface of genus two in M. Since M does not contain any closed
incompressible surface of genus two, the surface F' is compressible in M. Hence, we may
assume OW in compressible in W.

Claim 2.2.5. The manifold W with the genus two boundary OW = S; U S, is irreducible

and atoroidal.

Proof. Because K is hyperbolic, the complement M — K is irreducible and atoroidal. Hence
any sphere in W bounds a 3-ball B in M — K, and because K is contained in OW = S; U S5,
it follows that B is contained in the interior of W. Thus, W is irreducible. Suppose that
W is toroidal and let T' be an incompressible torus in W. Since M — K is hyperbolic, T'
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is inessential in M — K. Hence (1): T bounds a solid torus H with core K or (2): T is
compressible in M — K. (1): Since T is contained in W, Seifert surfaces contained in W’
do not meet T. Thus, each S; C W’ is contained in H, and hence K is null-homologous in
H. But since K is a core of H, K is not null-homologous in H. This is a contradiction.
(2): Let D be a compression disk for T'in M — K. Since S; and Ss are incompressible in
M — K, we may choose D so that D N @W = (). Thus T is compressible in W. O

Now we can apply Lemma 2.1.5 for W. By the above claim, we can conclude W is a
handlebody. However, K C W bounds five mutually disjoint genus one Seifert surfaces in
W, two of them are S; and S5, and other three are in W, say Sa, S3, S4. This contradicts
Lemma 2.2.2. O

2.3 Constructions

2.3.1 Non-trivial JSJT-decompositions

Here we consider how to construct hyperbolic knots spanning a large numbers of mutually
disjoint non-parallel genus one Seifert surfaces.

Let V be a handlebody of genus two. Let J be an essential simple closed curve on 9V
which separates 0V such that both components of 0V —J are incompressible in V. Examples
of such J are illustrated in Figure 2.2.

The simple closed curve J; in the figure bounds only one genus one incompressible surface
because the sutured manifold (V,J;) is a product. Observe that J> bounds two mutually
disjoint non-parallel genus one incompressible surfaces both of which are components of
9V — Js, and the manifold V(J2) obtained by attaching a 2-handle D? x I along J, is
homeomorphic to the exterior of the Whitehead link.

Here we construct one more example Jy as follows. Let [ be a core of the right hand
side handle of the pair (V, J2). Perform a non-trivial Dehn surgery along [. The resultant
manifold is still a handlebody and we let J4 be the image of Jo. Observe that each J3 and Jy
bounds mutually disjoint three non-parallel genus one incompressible surfaces in V', two of
them are in the boundary 0V, the other is described as a union of a central disk of V' and two
bands. In fact, the manifold V' (J3) is decomposed into two Seifert manifolds each of which
has an annular base with one singularity and a regular fiber of one part intersects a regular
fiber of the other part in a single point transversely. The manifold V(Jys) is decomposed
into a hyperbolic link complement, actually Whitehead exterior, and a Seifert manifold as
above.

Now we can show the following:

Proposition 2.3.1. Let M be a closed 3-manifold. There exists a genus one hyperbolic knot
which bounds three mutually disjoint, non-parallel, genus one Seifert surfaces.
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Figure 2.3:

This proposition is improved in §2.4, but we first give a proof of this version.

Proof of Proposition 2.3.1. We embed the handlebody V equipped with a separating es-
sential curve J; as above in a closed 3-manifold M so that E(V) is irreducible, 0-irreducible,
atoroidal, and anannular, here we denote the image of (V, J;) by (V, K). Such an embedding
can be constructed by Myers’ argument [57, Theorem 1.1]. We push J; into 1% slightly and
denote the image by J. Put M; =V — N (J). By a cut and paste argument, we can show
that (My,0M; — ON(J)) satisfies the gluing condition of Lemma 1.2.4. By Lemma 1.2.4,
we obtain a simple knot K in M which bounds three mutually disjoint, non-parallel, genus
one Seifert surfaces. O

The knot K illustrated in Figure 2.3 is an example of hyperbolic knots obtained by
Proposition 2.3.1. The exterior of the handlebody V' is homeomorphic to the tangle space
of true lover’s tangle, which is simple [56, Proposition 4.1], and the curve J in 8V is of
type ((2,1),(2,1)). According to a computation using SnapPea [84], K produces a closed
3-manifold by 0-surgery which admits JSJT-decomposition with three pieces, two of them
are Seifert fibered and the other is hyperbolic.

2.3.2 Higher genus Seifert surfaces

For a universal bound on the number of mutually disjoint non-parallel incompressible Seifert
surfaces, the condition “genus one” is necessary. In practice, we have:



annulus

Figure 2.4:

Theorem 2.3.2. For any integer n, there is a genus one hyperbolic knot K in S which
bounds mutually disjoint incompressible Seifert surfaces S, F1, ..., F, where S is genus one
and F; is genus two.

Proof. The following is needed here.

Lemma 2.3.3. Let K be the knot as shown in Figure 2.4 in a genus two handlebody V.
Then V — N(K) is irreducible, O-irreducible, atoroidal and there is no essential annulus A
such that 0A C ON(K).

Proof. By cutting V — N (K) along the annulus indicated in the figure, it is noticed that
V — N(K) is obtained as follows: Let V; be a genus two handlebody and let Ko be the knot
in Vy as shown in Figure 2.5, which is obtained by pushing the suture of a product sutured
handlebody of genus two slightly in the interior of the handlebody. Let +; and 72 be two
simple closed curves as shown in Figure 2.5. Now it can be seen that the manifold obtained
by identifying two annuli A; = N(y1;0Vp) and Az = N(vz; 0V,) in 0V} is homeomorphic to
V — N(K).

Let Sp be a genus one surface with connected boundary. Since Vy — N (Kp) is obtained
from the product sutured handlebody as above, it is obtained from an S* x S! x I and a
product Sp x I by gluing 8Sg x I to an incompressible annulus in 8(S! x S! x I). By a cut
and paste argument, we can show that Vy — N (Kp) is irreducible, 0-irreducible, atoroidal
and there is no essential annulus having boundaries in dN(Kj). Furthermore, it follows
that A; and A, is incompressible, each ~; is not homotopic to a curve in ON(Kjp) and ~; is
not homotopic to 2. Thus there is no essential annulus in Vj — N (Ko) with boundaries in
ON(Ko)UA; U A,.

Let A be the essential annulus in V — N(K) which is the identified annulus of 4; and Ay
and we regard (V — N(K))— N(A) as Vo — N(Ky). By Lemma 1.2.3, V — N(K) is irreducible
and d-irreducible. Let T be an essential annulus in V — N(K) with 8T C dN(K) or an
essential torus in V — N (K). By a cut and paste argument, we may assume that TN A

consists of essential loops in T and each component of T — N (A) is an essential annulus
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Figure 2.6:

in Vo — N(Ko). However as we have mentioned above, Vo — N(Ky) does not contain an
essential annulus with boundaries in ON (Ko) U A; U A,. This completes the proof. O

We embed the pair (V, K) in S3 is a suitable way so that the image of K is a desired
hyperbolic knot as will be explained below.

Tangle (M;t) means a pair of 3-manifold M and a properly embedded 1-dimensional
manifold ¢ in M. We say (M;t) is simple if the tangle space M — N(t) is irreducible,
O-irreducible, atoroidal and anannular.

Let H = (S? x I;uy, ug,u3, us) be a simple 4-string (S? x I)-tangle and R = (B3;v;,v)
be a simple 2-string tangle, where each u; and v; is a connected arc. Let H* and R* denote
tangles having a parallel string to each string of H and R respectively. Let T and T™* be
tangles illustrated in Figure 2.6 respectively.

Using T*, n copies Hf,...,H} of H*, and R*, we construct a genus one knot as shown
in Figure 2.7 by connecting strings in a suitable way.

Here we remark that each examples of H, R and T is based on the Suzuki’s Brunnian
Om-graph, which is known to have hyperbolic exterior with totally geodesic boundary [81].

Lemma 2.3.4. The genus one knot K is simple.
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Figure 2.7:

Proof. It is observed that the ambient manifold S® is decomposed into V and W along a
closed surface of genus two, where V is a genus two handlebody containing K viewed as
Figure 2.4 and W is a 3-manifold obtained from the tangle spaces of T', n copies Hi, ..., Hy,
of H’s and R. By Lemma 1.2.5, W is simple. Thus, by Lemma 1.2.4, K is simple in S3. A
genus one Seifert surface S is obtained by peripheral tubing from an obvious disk with two
ribbon singularities. Since K is non-trivial, it is incompressible. O

Genus two Seifert surfaces F;’s are shown in Figure 2.8 schematically, each of which
is obtained from an obvious disk with two ribbon singularities by peripheral tubing and
swallowing H, ,,..., H} and R*. Now it is not hard to see S, F1, ..., F;,, can be put mutually
disjoint. Since the tangle space of H is simple, it is observed that each F; and F; are non-
parallel.

Hereafter we show ON (F;; S3) is incompressible in S® — K. The exterior E(F;) is decom-
posed along annuli in the tubes into 3-manifolds W; and W,, where W; is obtained from
tangle spaces of T and Hy, ..., H; and W5 is obtained from tangle spaces of H;11, ..., H, and
R. By Lemma 1.2.5, W; and W5 are simple. Clearly the decomposing annuli are essential
and by Lemma 1.2.3, E(F;) is irreducible and O-irreducible. Thus, F; is incompressible. O

2.4 More on Proposition 2.3.1

As an approach to Question 2.0.10, it is natural to ask:

Question 2.4.1. For any natural number n, does there exist a handlebody V and a simple
closed curve J in OV such that V(J) contains more than n mutually disjoint, non-parallel
essential tori ?
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Figure 2.8:

If this question is affirmative, then for any natural number n, we can construct a hyper-
bolic knot K in S3 that produces a toroidal 3-manifold with more than n mutually disjoint,
non-parallel essential tori by an integral surgery, by embedding (V, J) in S? suitably.

T. Kobayashi had pointed out that Proposition 2.3.1 is sharp using techniques developed
in [39] and [40]. Actually, the curve J in 0V illustrated in Figure 2.9 bounds four non-isotopic
genus one incompressible surfaces, two of them are in 9V, and the others are essential in V.
By embedding such (V, J) in a closed 3-manifold in a suitable way, we obtain the following.

Theorem 2.4.2. Let M be a closed 3-manifold. There exists a genus one hyperbolic knot
tn M with four mutually disjoint, non-parallel, genus one Seifert surfaces. O

We consider what will happen to hyperbolic knots with five genus one Seifert surfaces.

Proposition 2.4.3. Let M be a non-Haken 3-manifold. If a hyperbolic knot K bounds five
mutually disjoint, non-parallel, genus one Seifert surfaces, then the tunnel number of K is
less than seven, and the Heegaard genus of M is less than seven. O

Proposition 2.4.4. Let K be a hyperbolic knot in a non-Haken 3-manifold M. If K bounds
seven mutually disjoint, non-parallel genus one Seifert surfaces, then the 0-surgery manifold
is a graph manifold with the (x)-decomposition with each piece Seifert fibered over the annulus
with a single exceptional fiber. O

Techniques used in the proofs of these results enable us to show the following.
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Figure 2.9:

Theorem 2.4.5. Let M be a non-Haken 3-manifold. Any genus one small knot in M
bounds at most three mutually disjoint, non-parallel, genus one Seifert surfaces O

2.4.1 Examples of double-torus knots

Let V be a handlebody of genus two. A closed 1-dimensional manifold J in 0V is of type

T(a,b) if it is carried by the train track 7 illustrated in Figure 2.10 with the weight indicated
in the figure. We let J, 5 denote a curve of type T'(a,b).

=)

Figure 2.10:

The number of components of J, » coincides with ged(a, b). In the case when ged(a, b)
1, J is separating in 0V if a is even, otherwise J is non-separating

Proposition 2.4.6. Let a,b be co-prime integers. V(J,p) is homeomorphic to the exterior
of two-bridge knot/link of type (a,b).

O
Remark 2.4.7. In the case when b =1, V(J, ) is the exterior of (2, a)-torus knot/link

Examples of K((8,3),p1,p2) are obtained from the link illustrated in Figures 2.11. We
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Figure 2.11:

embed (V, J, ) in S® “standardly” and perform p;-full twists along each handles of V, here
we denote the image of V' by the same symbol V. Denote the image of J,, 5 by K ((a,b), p1,p2).

Proposition 2.4.8. Ifa > 2 is even and p1,p2 # 0, then K((a,b),p1,p2) is hyperbolic. O

Remark 2.4.9. K((2,1),1,1) is the trefoil knot, and K((2,1),—1,1) is the figure-eight knot.
K((3,1),—1,1) is not hyperbolic.

By A(n), we mean a Seifert fibered manifold of annular base with n singular fibers. For
a 3-manifold M with the torus decomposition M = E; U---UE, UM; U ---U M,, where
E,,..., E, are knot/link exteriors and M, ..., M,, are Seifert fibered manifolds, such that:

e if E;NE; # 0, then the meridian loop of E; is identified with the meridian loop of E;
on each component of E; N Ej,

e if E; N M; # 0, then the meridian loop of E; is identified with the regular fiber of M;
on each component of E; N M,

o if M; N M; # 0, then the regular fiber of M; intersects the regular fiber of M; in a
single point transversely on each component of M; N M;,

the torus decomposition is called (*)-decomposition.
Now we can see the followings.

Proposition 2.4.10. If a is even, |p1| > 1 and |p2| >, then K is a hyperbolic knot and
bounds four genus one Seifert surfaces which are mutually disjoint, and K(0) admits the
(*)-torus decomposition as shown in Figure 2.12-(A). O

Proposition 2.4.11. If a is odd, |p1| > 1 and |p2| > 1, then K(p; — (—1)°p2) admits the
(x)-torus decomposition as shown in Figure 2.12-(B). O

For example, K((4,1), 2, 2) illustrated in Figure 2.9 is a hyperbolic double-torus knot such
that the O-surgery manifold is a graph manifold which admits the (x)-torus decomposition
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of four A(1)-pieces. For odd number a, and suitably chosen numbers py, p2, K((a,b),p1,p2)
is a double torus hyperbolic knot such that the (p; — (—1)°ps)-surgery manifold M has the
(*)-torus decomposition as shown in Figure 2.12-(B), and M admits infinitely many isotopy
classes of essential tori.
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Chapter 3

Accidental essential surfaces

and excellent Seifert surfaces

3.1 Review of accidental surfaces

This section is devoted to a survey on accidental surfaces based on [25].

3.1.1 Definitions

Let K be a knot in the 3-sphere S3, and F a properly embedded surface in the exterior
E(K) of K in S§3. A non-trivial loop [ in F is called an accidental peripheral if it is freely
homotopic into OE(K) in E(K) but not in F. Here, an annulus A connecting ! and a loop
" in OE(K) is called an accidental annulus for . We define an accidental surface as such
surface F' with an accidental peripheral. The existence of an accidental peripheral causes
that i, (71 (F')) contains an element which is conjugate to some element of the peripheral sub-
group 71(OM). Thus, in the case that M is hyperbolic, p(i«(m1(F'))) contains an accidental
parabolic element, where p : 71 (M) — PSLy(C) is a faithful discrete representation.

3.1.2 Accidental closed surfaces

In this section, we treat with accidental closed surfaces. Let S be an accidental closed
surface in E(K'). According to Ichihara-Ozawa [22], all accidental annuli A determine the
unique slope A N OE(K). Moreover, if those slopes are non-meridional, then all accidental
annuli are mutually isotopic rel.S U OE(K). Thus, we can define the accidental slope of S
as a loop AN AE(K) for an accidental annulus A. Furthermore, it is known that there is
a meridionaly compression disk for S or K is isotopic onto S, according to the accidental
slope is meridional or integral.
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A properly embedded surface in E(K) with non-empty boundary is said to be strongly
essential if F is essential and at least one component of E(K)— N (F; E(K)) is 8-irreducible.
A Seifert surface is said to be totally knotted if it is strongly essential. A knot is called a

totally knotted knot if it bounds a totally knotted Seifert surface.

Theorem 3.1.1 ([22]). The following are equivalent.
1. There exists an accidental closed surface with a separating accidental peripheral.
2. K is totally knotted.

Theorem 3.1.2 ([22]). Mutually disjoint accidental closed surfaces have the same acciden-
tal slope.

But, there exists a knot which has two accidental closed surfaces with accidental slopes
0 and oo.

Conjecture 3.1.3 ([22]). All integral accidental slopes of accidental closed surfaces in a
knot complement are coincident. (The knot illustrated in Figure 3.1 is a counterexample to
this conjecture.)

It is known that for toroidally alternating knots (this class includes all alternating knots
and almost alternating knots), 3-braid knots and Montesinos knots, all closed incompressible
surfaces in their complements are meridionally compressible. Hence, these knots satisfy
Conjecture 3.1.3.

In [24], the following estimate was obtained.

Theorem 3.1.4 ([24]). Let S1 and Sz be accidental closed surfaces with accidental slopes
v1 and 2. Then

A(v1,72) < min{—x(S1), —x(52)}-

When we were studying boundary slopes of non-orientable totally knotted Seifert surfaces
[75], we constructed a counterexample to Conjecture 3.1.3. The knot illustrated in Figure 3.1
bounds two totally knotted non-orientable Seifert surfaces F; and Fp with |y(F1) —vy(F2)| =
2, x(F1) = —2 and x(F2) = —3. Thus, it admits two closed accidental surfaces S; and Sy
with integral accidental slopes 1 and 2 respectively, such that |y — v2| = 2, x(S1) = —4,
and x(S2) = —6. One can modify it so that it also admits an accidental surfaces of 1/0-
accidental slope. However, the best possibility of Theorem 3.1.4 is still unknown.

3.1.3 Accidental surfaces with boundary
In this section, we treat with accidental surfaces with non-empty boundary.

Theorem 3.1.5 ([60]). If E(K) contains accidental essential surface with boundary slope
v, then E(K) contains an accidental incompressible closed surface with accidental slope .
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Figure 3.1:

3.1.4 Accidental Seifert surfaces

In [7], S. Fenley showed the following.

Theorem 3.1.6 ([7]). Any accidental Seifert surface is non-minimal. d
On the other hand, we know:

Theorem 3.1.7 ([60]). Any accidental incompressible Seifert surface is totally knotted. [J
Then the following question is raised.

Problem 3.1.8. Does there exist a knot which bounds an accidental incompressible Seifert
surface?

We obtain an affirmative answer to Problem 3.1.8.

Theorem 3.1.9 ([76]). In any closed 3-manifold, there exists genus one non-fibered hy-
perbolic knot which bounds an accidental incompressible Seifert surface of arbitrarily high
genus.

The knot illustrated in Figure 3.2 is a genus one hyperbolic in $% with an accidental
Seifert surface of arbitrarily high genus, constructed in [76].

A knot K is said to be small if E(K) contains no essential closed surface, and large if
it is not small. It is known that many knots are large and that torus knots, 2-bridge knots
and Montesinos knots with length three are small.

Obviously, knots whose complements contain an accidental closed surface are large. How-
ever, does the converse hold?

Problem 3.1.10. Does a large knot always contain an accidental closed surface?
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Figure 3.2:

3.2 Properties of accidental Seifert surfaces

We show that if there exists an essential accidental surface in the knot exterior, then a
closed accidental surface also exists. As its corollary, we know boundary slopes of accidental
essential surfaces are integral or meridional. It is shown that an accidental incompressible
Seifert surface in knot exteriors in S3 is totally knotted. Examples of satellite knot with
arbitrarily high genus Seifert surfaces with accidental peripherals are given, and a Haken 3-
manifold which contains a hyperbolic knot with an accidental incompressible Seifert surface
of genus one, is also given.

For a properly embedded surface S in a 3-manifold M, a non-trivial loop [ in S is called
accidental peripheral if [ is freely homotopic into OM in M but not in S, and S having an
accidental peripheral is said to be accidental. An annulus A such that ANS =04ANS =1
and 0A =l U’ where I is an essential loop in M, is called an accidental annulus.

Let K be a knot in the 3-sphere S3. We denote the knot exterior S — N(K) by E(K).
If S is a Seifert surface bounded by K, we denote SN E(K) by the same symbol S and if it
is accidental, we say the Seifert surface S is accidental.

Fenley ([7]) proved that there exists no accidental Seifert surface of minimal genus by
using the existence of a good Reebless foliation with that surface as compact leaf ([11]).
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As its corollary, he showed that for any non-fibered hyperbolic knot, any lift of a minimal
Seifert surface to the universal cover is a quasi-disk and its limit set is a quasi-circle in the
sphere at infinity, by using Thurston’s result ([70]). Thus, if a non-fibered hyperbolic knot
K bounds an incompressible Seifert surface S which does not have embedded accidental
peripherals, then S corresponds to a quasi-Fuchsian subgroup ([70]).

Question 3.2.1. Does there exist a knot which bounds an accidental incompressible Seifert
surface?

Remark 3.2.2. The condition “incompressible” is necessary. In fact, any knot bound an
accidental compressible Seifert surface. Indeed, one can construct an accidental Seifert
surface by tubing any Seifert surface and a narrow torus parallel to the knot.

Here we prove that a large class of knots denies Question 3.2.1 and that some satellite
knots bound accidental incompressible Seifert surfaces (Theorem 3.2.5).

Here, we remark that an existence of an accidental peripheral implies an existence of
an embedded accidental annulus. In fact, if S has an accidental peripheral, then Annulus
theorem ([32]) gives an accidental peripheral with an embedded accidental annulus (Lemma
3.2.6).

For a non-peripheral closed incompressible surface F' embedded in F(K) with an acci-
dental annulus A, the slope of ANJE(K) is called an accidental slope. 1t is known ([5])
that an accidental slope of a closed incompressible surface is an integer or 1/0, and it was
shown that F’ has a unique accidental slope. Furthermore if the accidental slope is integral,
its accidental annulus is unique up to isotopy ([22]).

Theorem 3.2.3 (Existence of closed accidental surface). Let K be a knot in S®. If
E(K) contains an accidental essential surface with boundary slope v, then E(K) contains a
closed accidental incompressible surface with accidental slope .

By Theorem 3.2.3 and [5, Lemma 2.5.3], the following theorem holds.

Theorem 3.2.4 (Integral or meridional). The boundary slope of an accidental essential
surface is an integer or 1/0. O

In [22], it is conjectured that the integral accidental slope is unique for all accidental
incompressible closed surfaces in E(K). By Theorem 3.2.3, if this conjecture is true, we can
conclude that the integral accidental boundary slope is unique.

A Seifert surface S is said to be totally knotted if the exterior S3 — N(S;$3) is 8-
irreducible. We say that K is totally knotted if K bounds a totally knotted Seifert surface.
Notice that there exists a knot which does not bound a totally knotted Seifert surface.
For example, if K is a fibered knot, then for an incompressible Seifert F, the exterior
$3 — N(F; S®) is a handlebody which is a product F x I, so it is not totally knotted.
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As will be shown later, an accidental incompressible Seifert surface is totally knotted,
hence the remaining case for Question 3.2.1 is of non-minimal, totally knotted Seifert sur-
faces. We can also show that totally knotted Seifert surfaces with some conditions are not
accidental. However, there exists a satellite knot with totally knotted, non-minimal genus

accidental Seifert surfaces.

Theorem 3.2.5 (Accidental incompressible Seifert surfaces). There ezist infinitely
many genus one satellite knots, each of which bounds an accidental incompressible Seifert
surface of arbitrarily high genus.

This theorem gives a positive answer for Question 3.2.1. If the knot exterior F(K) =
S3-N (K) contains no essential torus, the Thurston’s geometrization theorem assures that
E(K) is a Seifert manifold or S® — K admits a complete hyperbolic structure of finite volume.
It is known that for a Seifert manifold with non-empty boundary, closed incompressible
surface is isotopic to a torus which is a union of fibers ([32]). Hence, if E(K) is a Seifert
manifold, K does not bound a totally knotted Seifert surface.

In section 3.3.1, we will construct a closed hyperbolic Haken 3-manifold which contains
a hyperbolic knot with an accidental incompressible Seifert surface of genus one. Indeed
our examples of Theorem 3.2.5 are satellite, namely, contain essential tori in exteriors, we
could construct hyperbolic examples in arbitrary 3-manifolds and confirmed by J. Weeks’
computer program ‘SnapPea’.

3.2.1 Boundary slopes of essential accidental surfaces

In this section, we consider the existence of embedded accidental annulus and prove Theorem
3.2.3. Hereafter, all 3-manifolds are assumed to be orientable. For a surface S properly
embedded in a 3-manifold M, we denote the regular neighborhood of S in M by N(S; M),
or simply N(S). We denote the frontier of N(S; M) by ON(S; M), and let intN(S; M)
denote the topological interior of N(S; M) in M.

Lemma 3.2.6 (Embedded accidental annulus). Let S be a two-sided surface properly
embedded in a compact, irreducible, 0-irreducible 8-manifold M with OM a union of some
tori. If S is incompressible and O-incompressible in M and has an accidental peripheral,
then there exists an embedded accidental annulus for S.

Proof. Since S is accidental, there exists a map f : S x [0,1] — M generic to S such
that f(S! x {0}) is an accidental peripheral | and f(S' x {1}) C M. By the hypothesis
that S is two-sided incompressible and 8-incompressible, we have N (S) is incompressible
and O-incompressible in M —int/N(.S). Using the product structure of N(S) and the incom-
pressibility and the d-incompressibility of ON(S), we can modify f so that f~1(S) contains
only essential embedded loops in S! x [0,1] and we may assume that |f~!(S)| is minimal
among all accidental peripherals and such maps. Let A be the closure of a component of
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St x [0,1] — f71(S) such that S* x {1} C 9A. If f(BA — S x {1}) is not an accidental
peripheral, then it is freely homotopic into M in S. So, by cutting N(4;S! x [0,1]) and
pasting a parallel copy of the free homotopy in S, we obtain a map f’ : S! x [0,1] — M
with |f/~1(S)| < |f~1(S)|, a contradiction to the minimality of | f~1(S)|.

Let M’ be the cutting result M —intN(S), and let ST be the component of N (S) with
St N f(A) # 0. Since each component of OM is a torus and S is essential, M’ forms a
sutured manifold. Set T/ = N(Im(f) NOM’; 8M’) where N(Im(f)NOM’; dM’) is the union
of N(Im(f) N dM’;0M’) and the disks bounded by ON(Im(f) N OM’;0M’) in OM’. Then
T’ is incompressible in M’, so the pair (M’,T”) forms a Haken-manifold pair.

For f(S! x {1}) is in a suture, the component of N (Im(f) N dM’; ®M’) which contains
f(S* x {1}) is an annulus. By applying the Annulus theorem ([32, VIIL10]) to (M’,T")
we get a well-embedded Seifert pair (X, ®) C (M’,T”). If the component (¥, ®’) C (%, P)
which contains Im(f) is an I-pair, then it has to be ((S!) x I) x I and either get an embedded
accidental peripheral or actual peripheral in S. Hence we assume that (¥, ®') is an S'-pair.
If each component of %’ is parallel to St in ST, the loop [ is also parallel to ST in S™.
So, some component of FrY’ is an embedded accidental annulus for S*. Since S is parallel
to ST in M, the embedded accidental annulus can be modified to an embedded accidental
annulus for S. O

A surface F' properly embedded in a 3-manifold M is 7;-essential if ON(F) is incom-
pressible and d-incompressible in M — N (F). We will deal with one-sided surfaces, so we
prove the following lemma needed later.

Lemma 3.2.7. Let K be a non-trivial knot in S3, and S be a properly embedded, con-
nected, one-sided surface in E(K). The surface S is mi-essential if and only if ON(S) is
incompressible in E(K).

Proof. Suppose ON(S) is incompressible in E(K). We first claim that if AN(S) is -
compressible in E(K'), then ON(S) is d-parallel into 8E(K) by the irreducibility of E(K)
and the incompressibility of ON(S). To see this, let D denote a &-compression disk of
ON(S) in E(K) and let A be the annular component of 8E(K) — N(S) which meets D.
Let Dy, D_ be components of N (D; E(K)—cl(N(S))) which are parallel copies of D, and
let D, be the “rectangular” component of A — (D4 U D_) which does not meet dD. Put
D' = D,UD, UD_. Observe that the surface D’ is a disk with 8D’ C dN(S) and by the
incompressibility, 0D’ bounds a disk in D" in @N(S). Hence the component of ON(S) hav-
ing the J-compression disk D is an annulus consisting of D” and N(8D N AN(S); ON(S)).
Since the knot exterior E(K) is irreducible, the sphere D” U D’ bounds a 3-ball B in E(K).
Thus, the manifold B U N(D) forms a solid torus with meridian disk D, so this gives a
O-parallelism.

Notice that the 0-compression disk is in cl(E(K) — N(S)) since for a twisted I-bundle
over surface, the corresponding dI-bundle is d-incompressible in the twisted I-bundle. So,
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ON(S) is an annulus parallel into OF(K). Thus the one-sided surface S is homeomorphic
to a Mdbius band and 71 (E(K)) = m1(S) = Z. This means that K is trivial. a

Proof of Theorem 3.2.3. Let Sy be a connected -essential surface with boundary slope 7,
and let Ay be an accidental annulus for Sy. By Lemma 3.2.6, we may assume the accidental
annulus Ag is embedded. We construct (possibly non-orientable) m;-essential surfaces {S;}
inductively as follows. We are given a 7j-essential surface S; and an accidental annulus A;
for S;. Let B; be the closure of the component of 0E(K) — 0S; which contains 0A;. We
isotope the surface S; U B; slightly into E(K ) and we set the resulting surface S;1;. We
put A;;; the closure of the component of A; — S;1 which meets FE(K) and we set A} the
closure of the other component. We put E(S;+1) = cl(E(K) — N(S;+1)). Here we denote
Ait1 N E(Si+1) and A, N E(S;+1) by the same symbols A;1; and A} respectively.

Proposition 3.2.8. The surface S;+1 is m1-essential in E(K) and A;+1 is an accidental
annulus for Siy1.

Proof of Proposition 3.2.8. Suppose there exists a compression disk D for ON(S;4+1) in
E(Si+1). Set A= A;U A;+1. We may assume that D intersects A transversely, and assume
that the number |D N A| is minimal among all compression disks for ON(S;+1) in E(Si+1)-
If DN A] =0, then we have 8D C ON(S;), but this contradicts the m;-essentiality of S;.

We note that A} and A, are incompressible in E(S;4+1). Otherwise, K is trivial and Sy
must be a disk. This contradicts the accidentality of Sy. Hence, there is no loop in D N A
by the minimality of |D N A|.

Next, we will show that there exists no arc of D N A which is inessential in A. For a
contradiction, suppose that there is an arc of D N A which is inessential in A. Let « be an
arc of DN A which is outermost in A, and § the corresponding outermost disk in A. Cutting
D along o and pasting two copies of § to them, we get two disks D; and D, properly
embedded in E(S;;1). It follows from the essentiality of 0D in OE(S;+1) that at least one
of D; and D, is a compression disk for 0F(S;41) in F(S;+1) again. We exchange D for the
new compression disk. However, |D N A| strictly decreases, this contradicts the minimality
of |DN A

Therefore, all arcs of D N A are essential in A. Let o be an arc of D N A which is
outermost in D, and § the corresponding outermost disk in D. Since one component of
0A;41 is contained in OE(K), |6 N Aijy1] = 0. Now § gives a d-compression disk for A} in
E(Si+1). When we recover S; from S;41 by an annulus compression along A;41, 6 can be
converted to a d-compression disk for A; in E(S;), since 6 N (E(S;+1) N A}) consists of one
point. This contradicts the assumption that A; is an accidental annulus for S;, and proves
that ON(S;+1) is incompressible in E(K).

If S;t1 is one-sided, then it is mj-essential by Lemma 3.2.7. If S;;; is two-sided and
ON(Si41) is O-compressible in E(K), then S;4; is #-parallel annulus. By the construction
of Si11, we have x(S;+1) = x(S;) where x denoted the Euler number. It follows that S;
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is also an annulus, but S; cannot be accidental since all non-trivial loop is 0-parallel. This
proves that ON(S;41) is O-incompressible in E(K).

Now let us show that A, is an accidental annulus. It is noticed that S; is connected. If
A;r1 NSy is parallel to 8S;41 is Si+1, then S; cannot be connected by the existence of the
parallelism annulus in S;1;. Hence, A;y1 is an accidental annulus for S;y1. This completes
the proof of Proposition 3.2.8. O

Since |0Si+1| = |0S;| — 2, we have |0S,| = 0 or 1 for some integer n. If |8S,| = 0, we
are done. If |85, | = 1, the surface S, = IN(S, UN(K)) is m-essential and accidental by
the same argument as Proposition 3.2.8 since N (S,; E(K)) is m1-essential and accidental.
This proves Theorem 3.2.3. O

If Sy is an accidental incompressible Seifert surface for K, by the argument in the proof
of Theorem 3.2.3, S; = 8(S® — N(So; $%)) is incompressible. Hence S is totally knotted.
Thus, we have:

Proposition 3.2.9. An accidental incompressible Seifert surface S is totally knotted and
the knot complement contains a closed incompressible surface of genus 2g(S). O

3.2.2 On general 3-manifolds

The accidental Seifert surface constructed above is actually non-minimal genus, as the result
of Fenley [7]. Here we remark that a minimal genus Seifert surface for a knot in some 3-
manifold can be accidental.

Proposition 3.2.10. There exists a closed hyperbolic Haken 3-manifold M such that M
contains a hyperbolic knot K with an accidental Seifert surface of genus one.

Proof. Let T be a genus one, orientable surface with a connected boundary. Let [ be an
essential simple closed curve in T. Put My =T x I, H, =0T xI,and H_ = N(;T) x {1}.
By identifying two annuli H; and H_ with some homeomorphism, we obtain an orientable
3-manifold M; with 0M; connected, closed, genus two. Using the product structure of Mp,
it can be shown that each component of OMy — (0H U OH_) is incompressible, there is no
properly embedded disk D in My such that each of 8D N Hy and 8D N (8My — Hy U H_)
is a single arc, and that there is no essential annulus with boundaries in H, U H_. Thus,
M is irreducible, d-irreducible, and atoroidal.

Put K = 8T x {1/2}. Notice that the knot K bounds a genus one Seifert surface, still
denoted by T, with an accidental annulus [ x [1/2,1] in M;. Let V be an irreducible, 0-
irreducible, atoroidal, and anannular 3-manifold such that 9V is a genus two closed surface.

We glue M; and V with their boundaries, and get a closed manifold M which is irre-
ducible, atoroidal, and contains an incompressible surface, say the gluing surface. Thus, this
manifold is hyperbolic by Thurston’s geometrization theorem (cf. [70]).
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To see the knot K is hyperbolic, we show that E(K) is irreducible, 0-irreducible,
atoroidal, anannular. Using the product structure again, we can show that E(K; M) =
M; — N(K;M,) is irreducible, 8-irreducible, and atoroidal. Since V is irreducible, &-
irreducible, atoroidal, and anannular, the exterior E(K; M) = V Usv=on, E(K;M;) is

irreducible, d-irreducible, atoroidal and anannular. O

3.3 Satellite knots with accidental Seifert surfaces

3.3.1 Construction

In this section, we prove Theorem 3.2.5 by constructing infinitely many knots in S% of
distinct types with accidental incompressible Seifert surfaces. Also we construct a closed
hyperbolic Haken 3-manifold which contains a hyperbolic knot which bounds an accidental
incompressible Seifert surface.

Proof of Theorem 3.2.5. Let V be a solid torus and K’ be the knot in V' as shown in Figure
3.3, and Sy be the genus one Seifert surface spanned by K’ in V.

Let Ko be a composite knot in S3, and for any integer n > 0, let Ag, Ay,---, A, be
mutually parallel essential annuli in E(Kp) coming from the decomposing sphere of the
composite knot K. There exists an annulus A in V such that 9A =1lgUl; and ANSy =g
where [y is a non-separating curve in Sy and [; is the boundary of a meridian disk of V. Let
N be a regular neighbourhood of 8(V — N(Sq)) — 8V in V — N(S,) which is homeomorphic
to a product S* x I where S* is a closed surface with x(S*) = 2x(So) and S* x {1} c V.
Set S; = §* x {i/n} for 1 < i < n. After “O-annulus-compressions” along A (see Figure

4 -+, 8y from the surface Sy, Sp—1,- -, S0. We remark K’ is

3.4), we get surfaces S;,, S/, _,-

a non-trivial knot, and each S} is not homeomorphic to an annulus.

Proposition 3.3.1. Each S] is m1-essential in V — K'.
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Proof. First, we claim that it suffices to show S; is incompressible in V — K’. If D is a
compressing disk for S{, then D can be modified to a compressing disk for .S;. Hence, if
S; is incompressible, then S; is also incompressible. Suppose D is a 0-compressing disk for
S such that 8D = a U B,a C 9V,3 C S]. By the construction, 0S; separates 0V into
a union of two annuli By, B1, so « is an essential arc in, say, By. We identify a regular
neighbourhood N’ of D in the closure of V — S} with D x I. Put D; = D x i for ¢ =0, 1.
Then (By — N’)U DU D, forms a disk D’ such that 9D’ C S;. If S] is incompressible, then
0D’ bounds a disk E in S] on the side not containing 0D and the sphere D’ U E bounds a
3-ball C on the side not containing D. The solid torus C' U N’ is a d-parallelism for S’, this
is a contradiction and this proves our first claim.

Next, we show that S; is incompressible. Since Sy is a genus one Seifert surface and
K’ is non-trivial, it is incompressible. Put Fy = ON(Sp; V). Since Fy is incompressible in
N(So; V) — K, it suffices to show that Fy is incompressible in V — N(Sp; V). Let D’ be a
meridian disk of V' which contains A such that 8D’ = l; and D’ — N(S:); V) is a union of
annuli B, B’ (B’ C A). Let D be a compressing disk for Fy. We assume |D N (B U B’)| is
minimal among all compressing disks. We claim that if D intersects B U B’, then D N B is
a union of essential arcs in B, and D N B’ = (). If some component is an inessential loop or
arc, we can reduce the number |[D N (BU B’)|. If A be an innermost disk of D with respect
to DN(BUB’), then QA is a core of B or B’. But there exists a loop [ in N(Sp; V') such that
! intersects the sphere D” U A with non-zero algebraic intersection number, where D” is a
disk in D’ bounded by AA. This means that D" UA does not bound a 3-ball, a contradiction
to the irreducibility of V. If A’ is an outermost disk in D with A’ = o’ U f'(a/ C B),
then by the above claim, o’ is an essential arc in B. If F = Fy — N(D'; V), then FN g
is a connected arc in F since §/ N (B U B’) = §. But it is impossible because two points
0(f’ N F) lie in distinct component of F. So, DN (B U B’) = (). Now, it is easy to see that
0D bounds a disk in F. This completes the proof. O

We embed V in S® so that V = N(Kj) and 04 Ag = 0-5),0+A; = 0:5/_;(1 <i <
n),0_An = 0485},,0-A; = 0_5;.;,(n—12>14>0). (see Figure 3.4). We let K be the image
of K'.

The surface S = Uy A; U S; is an orientable Seifert surface for K of genus n + 1, and
has an accidental peripheral (Figure 3.5).

Since Ky is composite, each annulus A; is m-essential in E(Kjp), and by Proposition
3.3.1, each S is m-essential. Hence we can show that the Seifert surface S is incompressible
in E(K).

It is not hard to see, because S is incompressible, that the wrapping number wy (K') = 2
where the wrapping number wy (K’) is defined to be the geometric intersection number of
K’ with a meridian disk in V. So, by twisting the knot K’ along the loop {; in the solid
torus V, one can produce infinitely many knots of distinct types, by [43, Theorem 2.1]. This
completes the proof. O
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Remark 3.3.2. In [49] and [15], genus one knots with arbitrarily high genus Seifert surface
are given. In particular, the knot Gustafson([15]) constructed is simple.

3.4 Hyperbolic knots with accidental Seifert surfaces

We give a method to construct a hyperbolic knot which bounds an incompressible Seifert
surface of arbitrarily high genus with accidental peripherals.

Let M be a 3-manifold and let S be a surface properly embedded in M. An essential
loop in S is called an accidental peripheral in M if it is freely homotopic into OM in M.
A Seifert surface F' bounded by a knot K is said to have accidental peripherals if F' N
E(K) has accidental peripherals in E(K) where E(K) denotes the exterior of K. If a
Seifert surface has an accidental peripheral, then we say it is accidental. If a hyperbolic
knot bounds an accidental incompressible Seifert surface, by a result of Thurston [70] and
Bonahon (3], it corresponds to a geometrically finite but not quasi-Fuchsian subgroup of
Im(p : m (E(K)) — Isom™(H?)).

Accidental surfaces have interesting properties in both knot theory and hyperbolic ge-
ometry. In [60, Theorem 1.3], we showed if K bounds an accidental incompressible Seifert
surface F', then E(K') contains a closed essential surface, indeed E(F') is O-irreducible, and it
is known that the boundary slope of a properly embedded surface with accidental peripherals
in the exterior of a knot in S? is integral or oo [60, Theorem 1.4]. Ichihara-Ozawa ([22] and
[24]) gave several properties of accidental closed essential surfaces embedded in knot com-
plements in S3 and showed in [22] a large class of knots deny the Menasco-Reid conjecture
[52], the conjecture that hyperbolic knot complements in S do not contain closed totally
geodesic embedded surfaces. In [24], several applications to Dehn surgery on hyperbolic
knots were given.
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In [7], Fenley showed that any minimal genus Seifert surface spanned by a knot in S3
contains no accidental peripheral using Gabai’s results on taut finite depth foliations [11].
It is known that some hyperbolic 3-manifold contains a hyperbolic knot which bounds a
genus one, so it is minimal genus, incompressible accidental Seifert surface [60]. In [60],
we studied some property of properly embedded surfaces in knot exteriors with accidental
peripherals and constructed satellite knots with infinitely many accidental incompressible
Seifert surfaces.

Here we remark that not all hyperbolic knots does not bound accidental incompressible
Seifert surfaces. In fact, small knots, fibered knots, not totally knotted knots have no
accidental incompressible Seifert surfaces [60, Theorem 1.3]. In this section, we give a method
to construct hyperbolic knots in a closed 3-manifold each of which bounds arbitrarily high
genus incompressible Seifert surfaces with accidental peripherals. We have:

Theorem 3.4.1. Any orientable closed 3-manifold contains a genus one hyperbolic knot
which bounds an incompressible Seifert surface of arbitrarily high genus, with non-separating

accidental peripherals.

The knot illustrated in Figure 3.2 is an example of hyperbolic knot which is constructed
by our algorithm.

There are several results on constructing knots with arbitrarily high genus incompressible
Seifert surfaces. In [49], Lyon constructed a satellite knot, and in [15], Gustafson gave a
simple knot. In [41], Kobayashi constructed free essential Seifert surfaces of arbitrarily high
genus for a certain pretzel link to obtain Haken 3-manifolds each of which admits infinitely
many non-equivalent strongly irreducible Heegaard splittings.

3.4.1 Preliminaries

Let M be a 3-manifold and S be a surface in M properly embedded or contained in M. A
compression disk of S is an embedded disk D in M such that DNS = 8D and 8D does not
bound a disk in S. If S does not admit compression disks and S is not simply connected,
then we say S is incompressible in M and call S an incompressible surface. We say S is
essential if it is incompressible and not d-parallel. We say M is irreducible if each sphere in
M bounds a 3-ball in M, and M is 0-irreducible if 9M is incompressible in M. A 3-manifold
which is irreducible and 0-irreducible is said to be atoroidal (anannular resp.) if it does not
contain essential torus (annulus resp.). We say M is simple if it is irreducible, d-irreducible,
atoroidal and anannular.

3.4.2 Proof of Theorem 3.4.1

Proof of Theorem 3.4.1. Let H = (M; Hy, H2) be a Heegaard decomposition of any closed 3-
manifold M and let g7 denote the genus of the Heegaard splitting. We construct a properly
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Figure 3.6:

Figure 3.7:

embedded 1-dimensional complexes in H; and H as follows. Let I'; be a 2-component graph
such that one component is an arc and the other is a half-handcuff graph, that is, a connected
graph consisting of a loop and a free edge. Let I's be a copy of I';. By Myers’ excellent
submanifold theory [57, Theorem 1.1], or Kawauchi’s imitation theory [35, Theorem 1.1],
or using Brunnian spatial graphs with hyperbolic exterior with totally geodesic boundary,
for example, Suzuki’s 8,-curve [67] which is known to have these properties (see Ushijima’s
work [81] for hyperbolic structures of E(6,)) —basic ideas of these three are similar—
we can properly embed I'; in H; so that H; — J\O/(I‘i) is simple (i = 1,2). We can choose a
gluing map f : 9H; — 0Hj recovering M such that f(0T'y) = 0I'2 and I' = T’y Uy T’y forms
a connected handcuff graph embedded in M. Since E(I') = M — N(T') is obtained from
Hy — N(Ty) and Hy — ](’/(1“2) by gluing them along E(I') N 9H; = E(T') N 0Hy, by Lemma
1.2.8, it follows that M — N(T") is simple.
In [74, Lemma 5.6], we showed the following.

Lemma 3.4.2. Let K be the knot illustrated in Figure 3.6 in the handlebody V of genus
two. ThenV—N (K) is irreducible, 0-irreducible, atoroidal and there is no essential annulus
whose boundaries contained in ON(K). O

We embed (V, K) in M along N(T') so that V N &H; forms four simple closed curves
parallel to the curve indicated in Figure 3.7 in 8V, to obtain a genus one knot K* in M.
Later we use the same symbol V for the image of V' of the embedding and regard N(T') = V.
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Proposition 3.4.3. K* is a genus one hyperbolic knot in M.

Proof. The exterior E(K) = M — N(K) is obtained from E(T') and V — N(K) by gluing
OE(T) to dV. Hence by Lemma 1.2.7, K* is a simple knot in M. By Thurston’s hy-
perbolization result, K* is hyperbolic. Clearly K* bounds a genus one Seifert surface in
VCcM. O

Let F} be the genus one Seifert surface bounded by K as shown in Figure 3.7.

To complete the proof, we show K bounds incompressible accidental Seifert surfaces of
arbitrarily high genus.

Fix a natural number n > 2 arbitrarily.

Let Fy,...,F, be mutually disjoint n — 1 parallel surfaces in V, such that each F; is
parallel to ON(F1) in V. Let A be the annulus indicated in Figure 3.7 such that one of
whose boundary components is contained in F; and the other is in 0V. We may assume
that A and FoU---U F, are in general position and A N F; consists of a single circle. Thus
we may suppose AN (FyU---UF,) is a disjoint union of essential loops in A. Performing an
“annulus compression” along A to each F; in V to 0V, we obtain mutually disjoint surfaces
F}’s as shown in Figure 3.8.

Let Si,...,Sp be mutually parallel properly embedded surface in E(I") such that each S;
is parallel to E(I") N (Hy N Hy). Without loss of generality, we may assume S; is nearest to
H;. It is noticed that each S; has three boundary components. Let ¢; denote a component
of 8S; which bounds a genus one surface U; in 0V with S; N U; = ¢;. Though there are two
choice of ¢; for each S;, we choose c¢; for S; on the side of Hy, and ¢s,...,c, for Ss,...,S,
on the side Hy. Put S, = S; UU;. By pushing S!’s slightly into E(I"), we put them mutually
disjoint as shown in Figure 3.9. It is remarked that 95} consists of two components and
S, 16S) = 2n.

Sewing |J;_, S; and J_, F} in M, we obtain a surface S} with 85} = K*.
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Proposition 3.4.4. S} is orientable and connected.

Proof. It is noticed that each S} has two boundary components. It is observed that Sj joins
F] to F._,, S} joins F)_, to F,, S| joins F,_, to F,_. , for i =2,...,[n/2], thus we can
see that S;; is orientable and connected successively. |

Proposition 3.4.5. S} is a Seifert surface for K* of genus gy + 2n.

Proof. By the construction of S}, we have x(S!) = —2g# — 2. On the other hand, it follows
that x(F]) = —1 and x(F}) = =2 (j > 1). Thus we have x(S;;) = (—2g9%—2)n—1-2(n—1) =
—2gnun —4n + 1 and g(S}) = gx + 2n. O

Now our goal is to show S} is incompressible. To show this, it is sufficient to show E(S};)
is O-irreducible.

It is observed that in E(S}), there are seven annuli decomposing E(S;;) into five compo-
nents My, My, B, P and C (cf. Figure 3.10 for n = 5, the circle drawn with dashed curve
corresponds to dV.), where M; is homeomorphic to H; — N (T';), B is a solid torus, P is an
I-bundle over a surface with seven boundary components and C' is a 3-manifold obtained as
follows. Let 77 and T3 be two genus one surfaces such that each of them has a connected
boundary. Let A; and Az be annuli in T3 and T3 with T; — A; connected for ¢ = 1,2. Then
C is obtained from two product handlebodies T; x I and T» x I by gluing A; x {0} and
Az x {0} together, and it follows that PNC = 9Ty x IUJT» x I. This can be see as follows:
It is noticed that C' comes from the region between S7 and S5 in Figure 3.9. Let X be the
3-manifold illustrated in Figure 3.11 and let A, and Ay be essential annuli in X as shown
in the figure. By the construction of S}, C' is homeomorphic to X — N(Aqg). Furthermore,
X’ = X — N(Ay) is a product and X" = X’ — N(A,) is homeomorphic to (T3 UT}) x I.
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Figure 3.10:

Figure 3.11:
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We put Cy = Ty x I UT, x I. Notice that Cy is homeomorphic to X”. Gluing My,
M, B, P and Cj along the corresponding 14 annuli, we obtain a manifold My. To adapt
Lemma 1.2.6 for them to show My is 8-irreducible, we will check the gluing condition for
each M;, My, B, P and Cy. It is clear that each of them is irreducible. Since M; is simple,
it is O-irreducible and since the core of the annulus M; N P is non-separating in 0M;, M; NP
is incompressible in M; and OM; — (M; N P) is also incompressible. The condition for B is
clearly satisfied since it is a solid torus and since B N P consists of three longitudal annuli.
Because P is an I-bundle and the corresponding 0I-bundle is incompressible in P, and
because OP is separated by the remainder annuli P N (M; U M U B U C), each 0-reducing
disk has intersection with the boundary of the 8I-bundle in more than or equal to four
points. Similarly, the condition for Cj is valid since each component of Cp is an I-bundle.
Now by Lemma 1.2.6, My is irreducible and J-irreducible.

Since A; is non-separating in T; and since M is O-irreducible, A; is incompressible in M
and My — (A1 U A2) is incompressible. Notice that F(S}) is obtained from My by gluing
Az and A together, E(S}) is 0-irreducible by Lemma 1.2.6. O

The knot illustrated in Figure 3.2 is a hyperbolic knot constructed by our algorithm.
The embedding of the handcuff graph is based on the true lover’s tangle which is known to
have simple exterior [56, Proposition 4.1]. The corresponding genus zero Heegaard surface
of S2 is viewed from a horizontal line intersecting with the knot in six points.

3.5 Excellent Seifert surfaces and applications to acci-

dental surfaces

Let S be a Seifert surface for a knot in a 3-manifold. We say S is excellent if the exterior
E(S) is irreducible, d-irreducible, atoroidal and anannular. In this section, we give some
properties of knots with excellent Seifert surfaces and a method to construct a simple knot
which bounds excellent non-orientable Seifert surfaces with distinct boundary slopes.

Let X be a 3-manifold with X a union of some tori. An isotopy class of a simple
closed curve 7 in 90X is called a boundary slope if there exists an incompressible and -
incompressible surface S properly embedded in X such that + is isotopic to a component of
OF in 0X. If X is a knot exterior in some 3-manifold and the knot bounds an orientable
Seifert surface, then isotopy classes of simple closed curves in 80X is represented by a rational
number and oo, where 0 represents the boundary slope of orientable Seifert surfaces and oo
means the meridional slope.

In [18], Hatcher showed that for each component T of 8X, the number of slopes of
incompressible and 0-incompressible surfaces such that all boundary components are con-
tained in T is finite, using branched surface theory developed by Floyd and Oertel [8]. As
a consequence, it can be shown that all but finitely many Dehn surgery along a small knot,
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that is, a knot without closed incompressible non-9-parallel surfaces in the exterior, produce
non-Haken 3-manifolds.

In [19], Hatcher and Oertel showed that each rational number is realized as a boundary
slope for some Montesinos knot, and gave an algorithm to calculate boundary slopes of
Montesinos knots.

In [22], Ichihara and Ozawa studied strongly essential surfaces in knot exteriors in S3.
Here a properly embedded surface S in the knot exterior E(K) is said to be strongly essential
if it is incompressible, d-incompressible, and some component E(K)— N(S) is d-irreducible.
In [22], it was shown that the number of components of strongly essential surfaces is at
most two, the boundary slope of a strongly essential surface is integral or co, and some
applications to Dehn surgery was given.

Here we give a method to construct a knot admitting strongly essential surfaces, in fact,
excellent Seifert surfaces. For a knot K in a 3-manifold X, we call a connected surface S,
possibly non-orientable, embedded in X such that 9S = SN K = K with boundary slope
integral Seifert surface for K. For a homological reason, it is noticed that the boundary
slope of any Seifert surface is even. A subset ¥ C X is totally knotted if the exterior
E(X) = X — N(2) is irreducible and d-irreducible. We denote the boundary slope of a
properly embedded surface S by v(S5). A Seifert surface S for a knot K in X is said to
be totally knotted (excellent resp.) if E(S) = E(K) — N(S) is irreducible and d-irreducible
(irreducible, d-irreducible, atoroidal, and anannular resp.). Here we remark that some fixed
knot can bound infinitely many totally knotted Seifert surfaces [60, Theorem 1.5], up to
isotopy, but it can be shown by [73, Theorem 1.1] the number of isotopy classes of excellent
Seifert surfaces for a fixed knot is finite. Furthermore, it is remarked that only hyperbolic
knots bound excellent Seifert surfaces (Lemma 3.5.3), and if K bounds an excellent Seifert
surface, then any finite fold regular branched covering space along K is hyperbolic Haken
(Lemma 3.5.4).

Our aim in this section is to show the following.

Theorem 3.5.1. For any finite set of even integers {ai,...,an}, there exists a simple knot
in any closed 3-manifold which bounds excellent non-orientable Seifert surfaces Fi,...,F,
such that v(F;) = a;.

In fact, strongly essential surfaces produces essential closed surfaces in the knot comple-
ment with accidental peripherals (see [22] and § 3.5.3). As an application of Theorem 3.5.1,
we construct a counterexample to a conjecture on the uniqueness of integral accidental slopes
of closed essential surfaces in knot complements [22, Conjecture 3.2], which was inspired by
(22, Theorem 3.1} and was expected to be unique in [22].

Theorem 3.5.2. For any finite set of even integers {ai,...,an}, there exists a simple knot
in any closed 3-manifold such that each a; is an accidental slope of some closed essential
accidental surface in the complement.
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The knot illustrated in Figure 3.1 is a knot constructed by a method similar to our
construction given in §3.5.2 but slight differ— which produces smaller genus Seifert surfaces
than the original construction in §3.5.2) but does not assure the knot is simple— which
bounds non-orientable Seifert surfaces F; and F; both of them are totally knotted such that
|7(F1) — v(F2)| = 2, x(F1) = =3, x(F2) = —2 and the complement contains two accidental
surfaces S; and So with integral accidental slopes differed by two such that x(S1) = —6 and
x(82) = —4.

3.5.1 Excellent Seifert surfaces
Lemma 3.5.3. Let K be a knot with an excellent Seifert surface S. Then K is simple.

Proof. By splitting along ON(S), the knot exterior E(K) is decomposed into two 3-manifolds
such that one of them is E(F) and the other is N(F) — N(K). Since F is excellent, E(F)
is simple. Considering the characteristic Seifert pair of (N(F) — N(K),d(N(F) — N(K)))
which consists of an S! x S! x I and an I-bundle over a surface with connected boundary, it
can be shown that N (F)— N(K) is irreducible, 8-irreducible, atoroidal, and for any essential
annulus A in N(F) — N(K), A is not contained in N (K). Thus, we can apply Lemma
1.2.2 to show that E(K) is simple. O

Lemma 3.5.4. Let K be a knot with an excellent Seifert surface S in a 3-manifold M.
Then any finite fold branched covering space of M along K such that each degree of upstairs
branching sets is greater that one is simple Haken.

Proof. Let p: M’ — M be such a finite fold branched covering along K. By the Torus-
Annulus Theorem ([28]), it can be seen that each component of p~1(E(S)) is simple. By the
condition on the branched covering, each component H of p~}(N(S) — N(K)) forms a book
of I-bundles (see [73, §4] for definition) with each sheet negative Euler characteristic. By
(73, Lemma 4.1], H is irreducible, d-irreducible and atoroidal. Thus by Lemma 1.2.2, M’
is simple. Now it clear that each component of p~!(8N(S)) is incompressible in M’. Thus,
M’ is simple Haken. O

We say a Seifert surface S for a knot K is free is E(S) is a handlebody.

Lemma 3.5.5. Any non-trivial knot with a free Seifert surface of genus one does not bound
excellent Seifert surfaces.

Proof. Suppose there exists a non-trivial knot K in a 3-manifold M which bounds a genus
one free Seifert surface F' and an excellent Seifert surface S. Let p : M’ — M be a 2-
fold covering space along K. Clearly M’ is obtained from two copies of E(F'), which is a
genus two handlebody, by gluing their boundaries together and M’ is a closed 3-manifold of
Heegaard genus at most two. On the other hand, M’ is obtained from two copies of E(S),
thus M’ contains a closed separating acylindrical surface, that is, an incompressible surface
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Figure 3.12:

without essential annuli in the cutting result. However it is known that a closed 3-manifold
of Heegaard genus at most two does not contain separating acylindrical surface [72, Theorem
1.10]. This completes the proof. O

It is known that some knot does not bound free incompressible Seifert surfaces [50],
and some knot does not bound totally knotted Seifert surfaces, fibered knots for example.
On the other hand, Lyon [51] constructed a simple knot K, in S® which bounds a genus
one free Seifert surface F7, and a genus one totally knotted Seifert surface S;. By Lemma
3.5.5, Sy, is not excellent. Though it seems that there exists a simple knot which bounds
a free incompressible Seifert surfaces and an excellent Seifert surface. Using J. Week’s
computer program SNAPPEA, the author have confirmed that a knot obtained from the
link illustrated in Figure 3.12 by twisting along six trivial components suitably bounds a
free incompressible Seifert surface of arbitrarily high genus and an excellent Seifert surface
of genus two.

3.5.2 Construction

Proof of Theorem 8.5.1. Put m = max{(max{a1,...,a,} —min{a1,...,an})/2,1}.

Let (B, T =t; Uty Uts) be a simple 3-string tangle. We can construct such a tangle by
Lemma 1.2.9. Let D; U D2 U D3 be disjoint union of disks in 0B such that dt; C D;, and let
P1Up2 be two points in 0B — (D1 UDyU D3). We call the 4-tuple (B, 7, D1 UD2U D3, p; Ups)
a node.

We embed m copies B, ..., B(™) (B®) = (B® 1) Dgi) UDS) UDéi),pgi) Upgi))) of the
node in the ambient manifold M mutually disjoint, and connect 8m points [ J 87 U pgi) Upgi)
with 7m arcs ¢ = s1 U --- U s7,, in the outside of nodes so that Ur(i) U o is connected
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Figure 3.14: ¥/ — %" (removing-splitting)

and it forms a graph with pg.i) free vertex for each i,j and such that each point of 07
is a vertex of valence 3. By Lemma 1.2.9, we can choose ¢ so that for the 2-complex
Y =Ur®DuUoBY us, E(X) is simple.

We let ¥/ denote the polyhedron obtained from ¥ by tubing along some components 7r
of 7(¥’s inside the node and splitting strings as shown in Figure 3.13. We let D7 be the union
of disks of |J D® each of which contains the boundaries of 7 and put Dg = UD(i) — Dr
and put P = Dg — Jo. Let " be a polyhedron obtain from ¥’ by removing P and splitting
strings in the node as shown in Figure 3.14. We call components of Dgr and D1 removing
disks and tubing disks respectively. Later, N (") will match a regular neighborhood of a
desired excellent Seifert surface.

Lemma 3.5.6. E(X') is simple.

Proof. 1t is noticed that F(X') is obtained from E(X) by gluing certain pants P’ in dE(X)
together. To adapt Lemma 1.2.2, we show that OF(X) — 0P’ satisfy the condition in Lemma
1.2.2. By the construction of ¥, each component of P’ is non-separating in dE(X) thus
it is not contractible in 0E(X). Suppose JE(X) — 0P’ is compressible and let R be a
compression disk. Since E(X¥) is simple, OR bounds a disk R’ in JF(X) containing some
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Figure 3.15:

component of P’. However, in this case the innermost one is contractible in E(X). This
is a contradiction. Now since E(X) is simple, we can apply Lemma 1.2.2 to show E(X’) is
simple. O

Lemma 3.5.7. E(X") is simple.

Proof. Let T be the polyhedron obtained from ¥ by performing the tubing-splitting op-
eration as shown in Figure 3.13 along all components of | JD®. By Lemma 3.5.6, E(X7T)
is simple. It is noticed that E(X”) is obtained from E(XT) by gluing 0E(X7T) along once-
punctured tori T corresponding to P. To apply Lemma 1.2.2, it is sufficient to show that
OE(XT) — 8T is incompressible since E(X7T) is simple. Suppose there exists a compression
disk R of OE(XT) — 8T. Since E(XT) is simple, R bounds a disk R’ in E(XT). By
the construction of $7, it is easy to see that each component of 8T is not contractible in
OE(XT). Thus, R does not contain any component of 9T and this implies that dE(XT) - 0T
is incompressible in E(XT). Now by Lemma 1.2.2, E(X") is simple. O

Now it is noticed that N(X") is homeomorphic to a handlebody.
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Figure 3.16: Dr = D1 U Dy

Figure 3.17: Dr = D3

By embedding an oriented simple closed curve in N (X)), we construct a knot K such that
each of KN N(7®) and K N N(c(®) forms an incoherently oriented bands and K is viewed
in each node as illustrated in Figure 3.15. There are two forms for surfaces in each node
(see Figures 3.16 and 3.17, six bands are not drawn in those pictures, and corresponding
removing disks are indicated), one of them is a Mobius band with a single and six bands,
the other is a disk with two knotted handles and six bands, with boundary slopes differed
by two. Thus K bounds 2™ non-orientable Seifert surfaces, and the difference of boundary
slopes is contributed by the crossing indicated by the dotted circle. In each node, we choose
the crossing indicated by the dotted circle in Figure 3.15 so that the number of all positive
crossings coincide max{a;,0}. Thus, by twisting a band coming from o suitably, we can
construct a non-orientable Seifert surface of boundary slope arbitrary even number v with
max{a;} <~ < min{a;} for a fixed knot K.

It is noticed that for each Seifert surface F' bounded by K as above, E(F) is homeomor-
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phic to E(X") for some removing disks. Thus by Lemma 3.5.7, F is excellent. Hence by
Lemma 3.5.3, K is simple. This completes the proof. O

3.5.3 Accidental surfaces

Let K be a knot in S3. An essential closed surface S in E(K) is said to be accidental if
there is an embedded annulus A with 84 =" Ul such that ANS =" and ANOE(K) = 1.
It is known that the slope determined by [ is independent of the choice of A [22, Theorems
1.2]. Hence such a slope is called an accidental slope for S. Furthermore it is known that
any accidental slope is integral or oo [22, Lemma 2.5.3] and an example of a knot admitting
accidental surfaces of accidental slopes 0 and oo is given in [22, Figure 1].

On the other hand, mutually disjoint accidental surfaces have the same accidental slopes
[22, Theorem 3.1]. In [24], Ichihara and Ozawa estimated an upper bound on the difference
of integral accidental slopes as follows:

Theorem 3.5.8 (cf. [24, Theorem 3.2]). Let S1 and Sz be accidental surfaces with
integral accidental slopes s1 and sy in E(K). Then |s; — s2| < min{—x(S1),—x(S2)}. O

The knot illustrated in Figure 3.1 is a knot constructed by a similar method to one
explained in §3.5.2 but slight differ, concerning only J-irreducibilities of each objects, which
contains two accidental surfaces S; and Sy such that |s; — s2| = 2, x(S1) = —6 and x(S2) =
—4, thus it is a counterexample to [22, Conjecture 3.2]. The best-possibility of Theorem
3.5.8 seems to be open yet.

Proof of Theorem 3.5.2. Let K be a simple knot in a 3-manifold M obtained in Theorem
3.5.1 for given {a;}. Since each Seifert surface F; for K is excellent, the closed surface
S; = ON(F;) is incompressible in M — K and has an accidental annulus disjoint from Fj.
Thus the accidental slope of S; coincides v(F;) = a;. O
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Chapter 4

Experiments

In this chapter, we give experimental results on computer. Most calculations are done with
“SNAPPEA Kernel” (linked from [84]), and we are very grateful to J. Weeks, the author of
SNAPPEA, for making this possible.

4.1 Digging against hyperbolic 3-manifolds of small vol-

umes in several situations

It is known that the set of volumes of hyperbolic 3-manifolds forms a well-ordered set [70].
In this chapter, we give an experimental result in searching hyperbolic 3-manifolds of small
volumes in the following classes: (A) hyperbolic knots with closed essential surfaces in their
complements, (B) hyperbolic knots with closed acylindrical surfaces in their complements,
(C) hyperbolic knots in a handlebody. Known results and conjectures in some other classes
are indicated in Figure 4.1, where “TGB” means “with totally geodesic boundary”.

The exterior of the graph I' illustrated in Figure 4.4(A) is known to be one of the
smallest hyperbolic 3-manifolds with totally geodesic boundary [42]. Actually they are

(0) closed 0.9427...

(1) 1-cusped 2.0298... [4]

(2) 2-cusped 3.6638... see [88] for some approaches
(3) 3-cusped 5.3334... Figure 4.2

(4) TGB 6.4519... Figure 4.3 [42]

(5) 1-cusped, TGB 7.7976... Figure 4.7

Figure 4.1:
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(A)
Figure 4.2:
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homeomorphic, and the double is obtained by 0-surgery on both components of the link
illustrated in Figure 4.4(C). It can be seen that F(T") is homeomorphic to the exterior of the
graph illustrated in Figure 4.3(B).

The knot illustrated in Figure 4.5(B) is a hyperbolic knot with a closed incompressible
surface of genus two in its complement, which was found by Eudave-Muiioz [6].

The knot illustrated in Figure 4.6(A) is a hyperbolic knot found by Adams-Reid [1] as the
first explicit example of a knot with acylindrical surface in its complement. It admits a closed
acylindrical surface of genus two. The knot illustrated in Figure 4.6(B) which was found
here also admits a closed acylindrical surface of genus two. The volume is approximately
20.3455....

N —
[/FJ_

Sl

(A) (B) (©)

Figure 4.4:
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Figure 4.5:

According to Thurston [70], the followings hold.

Lemma 4.1.1. Let M be a cusped hyperbolic 3-manifold. If M’ is a hyperbolic 3-manifold
obtained from M by filling a cusp of M, then vol(M) > vol(M’). O

Lemma 4.1.2. Let M be a 3-manifold such that the interior admits a complete hyperbolic
structure of finite volume. For a toral component of M, there are only finitely many slopes
giving a non-hyperbolic manifold by Dehn-filling. O

Let K be a knot in a handlebody V. If K is hyperbolic, then we have vol(V — K) >
6.4519... by Lemmas 4.1.1, 4.1.2 and [42]. The knot in 4.7(B) is an example of hyperbolic
knots in a handlebody of genus two. Its volume is approximately 7.7976....

From the link in S® as shown in Figure 4.7(A), we obtain a link L in M = S2x S1#5%2x S?
by performing 0-surgery on two vertical components, which is the double of the complement
of K in the handlebody of genus two. We can calculate the volume of V — K from vol(M — L)
by dividing by2.
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vol = 12.0460... vol = 21 2191.. def < 2.7211...
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vol = 12.0460... vol = 20.3455... def < 1.8484...
Figure 4.6:

Figure 4.7:
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Chapter 5

Applications of the Handle
Addition Lemma

5.1 A sufficient condition for spatial graphs to be totally
knotted

A 3-manifold M is said to be 9-irreducible if M is incompressible in M, namely, for any
disk D properly embedded in M, 8D bounds a disk in M. Otherwise M is J-reducible. See
[28] for basic terminologies in the 3-dimensional topology which are not stated here. In [16],
Haken constructed an algorithm to detect if an irreducible 3-manifold is d-irreducible or not.
See also Jaco-Oretel [29] for a survey. The algorithm is valid for all irreducible 3-manifolds
with a handle decomposition, but it is not adapted for an execution by hand. Here, we
give a sufficient condition for a certain 3-manifold with non-empty connected boundary to
be d-irreducible, and consider some properties of minimally knotted spatial graphs in S3.
Indeed our sufficient condition is adaptable for not all irreducible 3-manifolds, but is much
easier to check than Haken’s algorithm.

In §5.1.1, we introduce some concept for curves in the boundary of a 3-manifold to state
a sufficient condition to be J-irreducible as follows (see §5.1.1 for definitions and notation).

Theorem 5.1.1. Let M be a 3-manifold. If there exists a disjoint union of simple closed
curves in OM such that (M, J) is almost trivial, then M is O-irreducible.

In fact, Theorem 5.1.1 has various applications to spatial graphs as will be described in
§5.1.2. A spatial graph means an embedded 1-dimensional graph in S3. A graph G is said
to be good if the degree of each vertex of G is greater than 1. In this article, we deal with
good planar graphs, and our result obtained here can be generalized for more general good
graphs. Without stated otherwise, all graphs are assumed to be good. Let I" be a spatial

56



graph of a planar graph G embedded in S3. We say I' is minimally knotted if any proper
subgraph I is contained in a sphere in S3, and T itself is not. A spatial graph I is said
to be totally knotted if the exterior E(I') is irreducible and J-irreducible. By using some
tangles with the Brunnian property, it can be shown that every planar graph has a spatial
embedding which is minimally knotted and totally knotted. Inaba and Soma [26, Theorem
2], Kawauchi [35, Theorem 2.1] and Wu [86] showed that every planar graph has minimally
knotted spatial embeddings with some additional conditions. On the other hand, it is easy
to construct totally knotted spatial embeddings of every graph which are not minimally
knotted by Myers’ technique [57] or Kawauchi’s [35, Theorem 1.1]. Together with a result of
Scharlemann and Thompson [65, Theorem 7.5], the following is obtained by our result and
the total knottedness is available under some weaker condition, as will considered in §5.1.2.

Theorem 5.1.2. Minimally knotted connected planar spatial graphs are totally knotted.

Scharlemann and Thompson [65, Theorem 7.5] showed similar results, and gave an algo-
rithm to detect the triviality of embedded planar graphs, via the extended Haken’s algorithm
[29], and Wu [87] reproved it and gave a necessary and sufficient condition for a planar graph
in general 3-manifold to be minimally knotted in terms of “cycle-triviality”.

It is noticed that Theorem 5.1.2 gives a convenient, sufficient condition for a spatial graph
T to be totally knotted, namely E(T") is irreducible and 0-irreducible. Now it is natural to
ask the following.

Question 5.1.3. Give a sufficient condition for spatial graphs to be acylindrical.

Here we say a 3-manifold with non-empty boundary is acylindrical if it is irreducible,
0O-irreducible and does not contain essential tori nor annuli. By Thurston’s hyperbolization
result ([54], [70]), such a 3-manifold admits a complete hyperbolic structure with totally
geodesic boundary. For example, see [31] and [72] for algorithms decomposing 3-manifolds
into acylindrical 3-manifolds which are based on normal surface theory. In §5.1.2, several
examples of minimally knotted spatial graphs are given. The spatial graphs illustrated in
Figure 5.2 (A) and (C) are acylindrical ([70] and [56, Proposition 4.4] resp.), but the exterior
of the graph shown in Figure 5.3 (A) contains essential annuli.

5.1.1 A sufficient condition

Let M be a compact, orientable 3-manifold. For a disjoint union J of simple closed curves in
the boundary M, the manifold obtained by attaching 2-handles D? x I’s along J is denoted
by M(J). Let J = Jy U---U J, be a disjoint union of simple closed curves, possibly empty
(i.e. n=0), in OM.

We say (M, J) is trivial (otherwise it is non-trivial) if:

(T.1) There are mutually disjoint essential disks Dy,..., D, in M transverse to
J such that |0D; N J;| = d%, and
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(T.2) M(J) is a 3-ball.
For our convenience, we say (M, J) is n-quasi-trivial provided that:

(Q.1) For some i, there is an essential disk D; in M transverse to J with |0D; N
Jj| = &%,

(Q.2) The pair (M(J;),J — J;) is (n — 1)-quasi-trivial for ¢ in (Q.1), and

(Q.3) If n =0, then M is a 3-ball.

It is noticed that if (M, J) is trivial, then it is |J|-quasi-trivial and the genus of OM
coincides the number of the components |J|. If (M, J) is n-quasi-trivial, then n = |J| and
we say (M, J) is quasi-trivial simply.

We say (M, J) is almost trivial if:

(A.1) For any J; C J, (M(J;),J — J;) is trivial,

(A.2) (M,J) is not trivial. (By Lemma 5.1.6, we can replace this with that (M, J)
is not quasi-trivial.)

We will prove Theorem 5.1.1 by applying Jaco’s Handle Addition Lemma [32]. For a
union J = J;U- - -UJ, of mutually disjoint simple closed curves in @M, we put J®& = J— J;
and M@ = M(J;). The following result is known as the Handle Addition Lemma.

Theorem 5.1.4 ([32]). Let M be an irreducible 3-manifold with compressible boundary and
J be a simple closed curve in OM. If OM — J is incompressible, then OM(J) is incompress-
ible. O

Theorem 5.1.4 was generalized in several ways (see [46], [62]). The following is needed
later.

Lemma 5.1.5 ([46, Lemma 1.6], [62, Lemma 2.3]). Suppose OM — (J1 U ---U J,) is
incompressible in M and OM — J® is compressible in M, then for the manifold M® =
M(J;), it follows that OM® — JO) 4s incompressible in M(J;). O

In order to prove Theorem 5.1.1, we describe some properties of quasi-trivial pairs.
Lemma 5.1.6. Let (M, J) be quasi-trivial. Then (M, J) is trivial and M is a handlebody.

Proof. We prove this by induction on |J| = g(OM). In the case n = 0, we are done by
condition (Q.3). Suppose n > 0. We assume that an (n — 1)-quasi-trivial pair (M’,J’) is
trivial and it is a handlebody. By condition (Q.2) and by the assumption of the induction,
M(J;) is a handlebody for some i. It is noticed that M is viewed as the exterior of a
properly embedded arc 7 in a handlebody V and by condition (Q.1), there is a disk D
properly embedded in V — N () such that D N AN(7) is a single arc and DN J' = @, where
J’ is a union of loops in OV corresponding to J — J;. Let D’ be the union of mutually
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disjoint properly embedded disks in V corresponding to disks of condition (T.1) for (V,J’).
We may assume D’ and 7 are in general position and N(7) N D’ consists of meridian disks
of N(7). By an innermost argument, we can isotope D so that D N D’ consists of arcs.
Let A be an outermost disk of D regarding D N D’ and put « = AN 3D and put
B =cl(A — ). Notice that there are three possibilities for A as follows: (A) o C ON(7),
(B) « consists of two connected arcs aNIN(7) and NIV, and (C) a C V. In the case of
(A), by sliding 7 along A, 7 is isotoped so that DN D’ is reduced, and this isotopy preserves
OV. In the case of (B), 7 is also isotoped so that D N D’ is reduced by sliding along A.
Though this isotopy does not preserve 97, by condition (T.1), & N 9V does not meet J'.
In the case (C), we can replace D’ as follows. Let D; and D; be components of D" — 3,
where D” is the component of D’ containing 3. By condition (T.1), we may assume that
D; does not meet J'. By removing D; from D”, pasting A and push slightly, we obtain
the new disks D* satisfying condition (T.1) and |D* N D| < |D’ N D|. Thus we may assume
D’'N D =0. Now D’ U D satisfies condition (T.1), and V — N () is a handlebody. O

Lemma 5.1.7. Let (M,J) be almost trivial. For each handlebody M (J;), it follows that
OM(J;) — J@ is compressible in M(J;), or M(J;) is a solid torus.

Proof. By condition (Q.1) for M (J;), there is a disk D C M (J;) such that DNJ =DnNJ;
is a transverse point for some j. If M(J;) is not a solid torus, the frontier ON(D U J;) is
actually a compression disk of M (J;) — J@. 0O

Lemma 5.1.8. For an almost trivial pair (M,J), M is irreducible and if M is not a
handlebody, then OM — J is incompressible in M.

Proof. By condition (Q.3), it follows that M is connected and M can be embedded in S3.
Thus, M is irreducible.

Suppose OM —J is compressible in M. Since M is almost trivial, the manifold V = M (J)
is a 3-ball by Lemma 5.1.6. Now M is viewed as the exterior of properly embedded arcs
Ti,...,Tn in V, such that each meridian of 7; corresponds to J;. Thus, any compression disk
D for OM — J is isotoped so that 0D C dV. Hence, D separates V into two 3-balls V; and
V5. Let M; denote the manifold corresponding to V;.

Without loss of generality, we may assume 7,...,7, (m < n) is contained in V;, and
the rest in V3, after reordering if necessary. By condition (A.2), M(J1) is (n — 1)-quasi-
trivial. Thus by Lemma 5.1.6, M (J;) is a handlebody. Since M, is a component of the
cutting result of the handlebody M(J;) along D, M, is a handlebody. Similarly, M; is a
handlebody. Thus M = M; Up M> is a handlebody. Hence if M is not a handlebody, then
OM — J is incompressible. O

Lemma 5.1.9. An almost trivial 3-manifold is irreducible and O-irreducible, or it is a
handlebody.
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Proof. Let (M,J) = (M,JyU---UJ,) be an almost trivial pair. First, we prove in the case
where g(OM) > 2.

Suppose that M is d-reducible. Let h be the number such that OM — (J —Jy U---U Jy)
is compressible and OM — (J — J; U---U Jp_1) is incompressible in M. By the assumption
that OM is compressible in M and by Lemma 5.1.8, such an h exists (2 < h < n) if M is not
a handlebody. Thus, OM(Jp,) —(J —J1U---UJ}p) is incompressible by Lemma 5.1.5. On the
other hand, M (Jp) — (J — Jp,) is compressible in M (Jy) by Lemma 5.1.7, since M (Jp,) is
not a solid torus for g(0M) > 2. Since it follows that OM (Jp) — (J — Jr) C OM (Jp) — (J —
J1U---UJy), the compression of IM (Jp,) — (J — Jp,) effects to IM (Jp) — (J —J1U---U Jp)
in M(Jy). This is a contradiction. Hence such an h does not exist. This shows that OM is
incompressible in M.

Suppose g(OM) = 2 and J = J; U Jy. Since (M, J) is almost trivial, and g(OM (J;)) =1,
the manifold M(J;) is a solid torus. By Lemma 5.1.8, 0M — J is incompressible in M.
Suppose OM — J; is incompressible in M. By Theorem 5.1.4, it follows that M (Jy) is
incompressible in M(Jy). This contradicts that M (J7) is a solid torus. Hence OM — J;
is compressible, namely a compression disk D of &M can be chosen so that 8D N J; = 0.
Similarly, 9M — J is compressible and we let E be a compression disk of OM — Ja, possibly
ENnJ; # 0. Now M is viewed as the exterior of an arc 7, properly embedded in a solid
torus V and J; is considered to be a longitude of V. Thus, D is isotoped so that 9D C 9V
since 8D N J; = (. If D separates V, then V is separated into a 3-ball V7 and a solid torus
V5 such that V; contains 71, and a meridian disk of V5 is a compression disk of M — J;.
Hence we may assume D is non-separating, and it is a meridian disk of V. If M — N (D) is
a solid torus, then M is a handlebody and we are done.

By the reason same as above, E can be assumed to be non-separating in M, and to
have the algebraic intersection number OF - J; = 1 with J;. Let us consider the intersection
DN E. By an innermost argument, all circles of DN E are removed. Let A be an outermost
disk in D. Now E is -compressed by A to two disks E; and FEs, possibly 0E; N Jo # 0.
Without loss of generality, we may assume 9F; - Jp is odd since OFE; - J; +0FE2-J; = 0E - J;
is odd. Repeating such a d-compression, finally we get a properly embedded disk E’ in
M’ = 8M — N(D) with 8E’ - J; odd. This means that the disk E’ is a non-separating
compression disk of OM’ in M’. Since M is irreducible, M’ is also irreducible. Thus,
the sphere obtained by compressing M’ along E’ bounds a 3-ball in M’ in the side not
containing E’, it follows that M’ is a solid torus. Hence, M = M’ U N(D) is a handlebody
of genus two and the conclusion follows in the case g(OM) = 2.

In the case where g(OM) = 1, it is easy to see that if M is not a solid torus, then it is a
non-trivial knot exterior in S and it is d-irreducible. O

Lemma 5.1.10. Let (M,J) be almost trivial. If M is a handlebody, then OM — J is
compressible in M.
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Proof. If g(0M) = 1, then the pair (M, J) cannot be almost trivial since M is a non-trivial
knot exterior or a trivial solid torus. Thus, we assume that g(OM) > 2. The proof is similar
to that of Lemma 5.1.9. Suppose M — J is incompressible in M. Let h be the number such
that OM — (Jp+1U---UJy,) is compressible and dM — (J,U---UJy,) is incompressible in M.
Since M is a handlebody, M is compressible in M. Thus, such an h exists. By Lemma 5.1.5,
OM (Jp) — (Jr41U---UJy) is incompressible in M (Jp,). This contradicts Lemma 5.1.7, since
(M(Jp),J — Jn) is (n — 1)-quasi-trivial by condition (A.1) and since the compression of
OM(Jp) — (J — Jp) in M is also a compression of OM (Jp) — (Jp41 U -+ U Jp). O

Proof of Theorem 5.1.1. By Lemma 5.1.9, the remainder case is where M is a handlebody.
Assuming that M is a handlebody, we show (M, J) is a trivial pair.

In the case where n = 1, the conclusion follows since in this case M is a solid torus and
J = Ji is a longitude, hence it is a trivial pair.

Since M(J) is a 3-ball, M is viewed as the exterior of properly embedded arcs 11,...,7,
in a 3-ball V. By Lemma 5.1.10, M — J is compressible in M. The compression disk
D is isotoped so that 9D C 9V since 8D N J = @ and D cuts (M, J) into (M’,J’) and
(M",J"). We assume that D is chosen so that the number |J”| is maximal among all such
a compression disk. Since M =V — N (r1 U---UTy) is a handlebody, both parts M’ and
M" of M — N(D) are handlebodies. It is noticed that there exists a properly embedded
disk D’ in M such that for some, say J; C J’, |[D'NJ| = |D’' N Ji| = 1 since by condition
(A1), M"(J") is a 3-ball and J'N M"” = Q. If J' = Jp, then it can be shown that (M, J)
is quasi-trivial since (M”, J”) is quasi-trivial. If |J’| > 1, then we can choose D so that J”

contains more components than above. This is a contradiction. O

Now the following is available. (cf. [13, Theorem 1])

Theorem 5.1.11. Let (M, J) be such that for any J; C J, (M(J;),J — J;) is trivial. Then
either

o If M is O-reducible, then M is a handlebody and (M, J) is trivial, or

e M is O-irreducible.

5.1.2 Spatial graphs

Let T be a spatial graph in S® of a connected graph G. For edges £ = {e1,...,e,} of T, we
denote the simple closed curve in 0E(I") corresponding to a meridian of e; by e}, and put
&* ={e],...,e;}. Then by the notion of 2-handle addition, we have E(I' — £) = E(T')(&*).
We use the same letters for the edges of I' corresponding to edges of G. (cf. Figure 5.1)

A set of edges £ of G is called a base edge system of G if G — £ is connected and simply
connected, and a set of edges £ of G is called a base edge system I if I — £ is connected and

simply connected, equivalently E(I' — £) = E(I")(£*) is a 3-ball.
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Figure 5.1:

Lemma 5.1.12. Let ' be a spatial graph in a sphere F in S®. For any base edge system
E={e1,...,en} of T, the pair (E(T'),E*) is trivial.

Proof. By Lemma 5.1.6, it is sufficient to (E(T"),£*) is quasi-trivial.

Let I'; be the subgraph of the dual graph of I' in F' whose vertices are dual of all faces
of F —T and edges consist of the dual of £. Since £ is a base edge system, I' — £ is simply
connected.

First we claim that I'* contains a vertex of valence 1. Put v = |B(I')|,e = |€T)|, f =
|F —T|, and put vz = |B(T'%)],ef = |€('%)|. Since I is embedded in the sphere F, we have
v—e+ f =2. Put g = 14+e—v. Notice that g is equal to the genus of the handlebody N (T").
Hence, we have e} = g, v = f and v} = e} + 1. If we assume that all valences are greater
than or equal to 2, then we have 2vf/2 = v} < e. This is a contradiction. Since E(T" — &)
is homeomorphic to a 3-ball, the subgraph I' — £ does not contain any cycles. Hence, each
face of F' —T" meets £. Thus, each vertex of I'f has non-zero valence.

Thus, the exterior E(I') contains a non-separating disk D coming from a face of F — T’
corresponding to a vertex with valence 1 of I'; such that 9D N € = 1. Now it is easy to
check that (E(T),£*) is quasi-trivial by induction on |£|. a

Now we are in a position to show the following.

Lemma 5.1.13. IfT' is a minimally knotted planar spatial graph, then for any base edge
system £ = {e1,...,en} of T, the pair (E(T),E*) is almost trivial.

Proof. Since T is minimally knotted, I' — e; is in a sphere in S%. By Lemma 5.1.12 and
condition (A.1), we have (E(I" —e;),€ — ;) is trivial. By [65, Theorem 7.5], if the exterior
E(T') is a handlebody (m1(E(T")) is free), then T is trivial since w1 (E(T — e)) is free for each
non-separating edge e by the minimal knottedness. Thus, E(T') is not a handlebody. Hence
(E(T), €) is non-trivial by Lemma 5.1.6. Thus, it is an almost trivial pair. d

The converse is true in the following sense.
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Figure 5.2:

Proposition 5.1.14. For any almost trivial pair (M, J), there ezists a spatial graph T’ such
that (E(I"),&E*) = (M, J) for some base edge system € of I'. In fact, I' can be chosen to be

a bouquet with n loops.

Proof. Since M (J) is a 3-ball, M is the exterior of some properly embedded arcs 7,...,7,
in a 3-ball B. Embedding (B, ) in S? and shrinking B into a point, we obtain a bouquet
I' embedded in S3 such that E(I') = M. This completes the proof. O

Theorem 5.1.15. Let I' be a spatial graph. If T has a base edge system £ such that
(E(T),&*) is almost trivial, then T is totally knotted.

Proof. By Theorem 5.1.1, E(T) is irreducible and 8-irreducible. Thus I is totally knotted.
O

Proof of Theorem 5.1.2. This follows directly from Lemma 5.1.13 and Theorem 5.1.15. O

Here we give some examples of spatial graphs which are totally knotted. The 6-curve
T'; illustrated in Figure 5.2 (A) is known to be non-trivial ([37]), but is minimally knotted.
The handcuff graph I'; embedded as shown Figure 5.2 (B) is not minimally knotted for the
two loops ey, e have linking number one. However it is not hard to see that the exterior M
contains an incompressible torus, thus M is not a handlebody. On the other hand, taking
meridians of ey, ep as J, it is clear that (M, J) is almost trivial. Hence by Theorem 5.1.15,
T, is totally knotted. The graph I's illustrated in Figure 5.2 (C) is not minimally knotted,
in fact, each subgraph is a trefoil knot and we cannot adapt Theorem 5.1.15, but it is totally
knotted since F(I") is homeomorphic to the tangle space of the “true lover’s tangle”, which
was proved by Myers [56, Proposition 4.1] to be atoroidal.

In [68], Taniyama gave a quick method to confirm the non-triviality of certain spatial
graphs, and the graph illustrated in Figure 5.3 (C) is shown to be irreducible (see [68] for
definition), thus it is non-trivial. Now it is easy to see that it is minimally knotted. Hence
by Theorem 5.1.2, it is totally knotted. It is remarked that the exterior is homeomorphic to
the tangle space illustrated in Figure 5.3 (D), and the tangle is non-trivial.
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Figure 5.3:

5.2 Handle additions that produce products

Let F be a compact surface with non-empty boundary. It is easy to see that the product
V = FxI is a handlebody and V(9F x {1/2}) is a product F’x I, where F’ is a closed surface
obtained from F by capping off with a disk. In this section, we show that the contrary is
true in the following sense for d-reducible manifolds. See §5.2.1 for precise definitions.

Theorem 5.2.1. Let M be a 3-manifold with connected boundary, and J = J;U---U J, a
disjoint union of simple closed curves J;’s in OM. Let £ be a simple closed curve in OM — J
such that (M, J U ¥{) forms a sutured manifold. Suppose for some surface F, there exists a
homeomorphism f : F x I — M(£) with f(OF xI) = N(J;0M), then (M, JUZ{) is a product
sutured handlebody, or OM — J is incompressible in M and (M, J) contains no monogon.

In the case when J = (), we get the following consequence.

Corollary 5.2.2. Let (M,£) be a sutured manifold with £ connected. If M (£) is an I-bundle,
then either (M, ¥) is a product sutured handlebody, or M is O-irreducible. O

It is not difficult to construct a sutured manifold (M, J) such that J is connected and M
is O-irreducible so that M(J) is a product. For example, one can construct such a sutured
manifold by removing a “knotted arc” from a product. Furthermore, one can construct a
hyperbolic one which yields a product, by removing an excellent arc [57, Theorem 1.1] from
a product, or removing a hyperbolic imitation [35, Theorem 1.1] of, say, a vertical arc. It
is remarked that Theorem 5.2.1 assures that if one obtains a product from a d-reducible
manifold M by a single handle addition, then M is a handlebody.

Applications of Theorem 5.2.1 to Dehn surgery are observed as follows.

Corollary 5.2.3. Let K be a knot in a closed 3-manifold M which bounds non-parallel
incompressible Seifert surfaces S1 and Se with S; NSy = 8S1 = 0Se = K. If each cutting
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region of M along S1USs is O-reducible, then S1 and Sy are incompressible and non-parallel
in x(M, (K, 0)).

Here x(M(K,0)) denotes the O-framed surgery manifold and S; is the surface cupping
S; off with a meridian disk of the attached solid torus.

Corollary 5.2.4. Let K be a knot in a homology sphere H. If the 0-framed surgery manifold
x(H, (K,0)) fibers over S1, then either K is a fibered knot, or K does not bound free incom-
pressible Seifert surfaces. In fact, each incompressible Seifert surface for such a non-fibered
knot K is totally knotted.

These are not immediate consequences of Corollary 5.2.2, and we give short proofs in
§ 5.2.3 using Jaco’s Handle Addition Lemma [32]. Gabai ([11, Corollary 8.19]) showed that
a knot K in S? is fibered if and only if the 0-framed surgery manifold fibers over S*. It can
be shown that some homology sphere contains a non-fibered knot which produces a surface
bundle over S! by 0-surgery. We say a Seifert surface S is totally knotted if the exterior
E(S) is O-irreducible. By Corollary 5.2.4, each incompressible Seifert surface for such a
non-fibered knot has a 0-irreducible exterior.

This section is organized as follows. In § 5.2.1 and § 5.2.2, we prepare some lemmas which
are needed to prove Theorem 5.2.1, and in § 5.2.3, we prove Theorem 5.2.1 and corollaries.

5.2.1 Gluing lemma

Through this section, all 3-manifolds are assumed to be compact and orientable, and all
surfaces are compact and orientable. By a sutured manifold, we mean a pair (M, J) where
M is a 3-manifold and J is a disjoint union of simple closed curves in M such that J
separated M into two parts so that OM = 0. M U9,M UO_M, 0,M = N(J;0M) and
each component of 9, M faces both a component of ;M and a component of 0_M. A
sutured manifold (M, J) is called a product if there is a homeomorphism f : FF'x [ — M
with f(OF x I) = N(J;0M) for some surface F.

We say a 3-manifold M is irreducible if every embedded sphere in M bounds a 3-ball in M.
Let S be a surface properly embedded in M or contained in OM. We say S is incompressible
in M if each component of S is not simply-connected and if D is a disk embedded in M
with DN .S = 0D, then 8D bounds a disk in S. We say S is 0-incompressible if there is no
embedded disk A in M with ANS =« and ANIM = 8 such that A = U [ and « is
an essential arc in S.

For a disk D properly embedded in a 3-manifold M equipped with a disjoint union
J of simple closed curves, we say D is a monogon of (M, J) if D intersects J in a single
transverse point. For a monogon D of (M, J), we always assume that DNN(J; M) consists
of a single essential arc in N(J;0M).

The following is a basic lemma concerning on the existence of d-reducing disk and mono-
gons.
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Lemma 5.2.5. Let M be an irreducible 3-manifold. Let J be a disjoint union of simple
closed curves in OM. If (M, J) contains a monogon and OM — J is incompressible, then M

is a solid torus and J is a connected longitudal curve.

Proof. Let D be a monogon of (M, J), and J’ the component of J which meets D. If
OM — J is incompressible, then for the frontier D’ of N(D U J’; M), 8D’ bounds a disk F
in OM — J on the side not containing dD. By the irreducibility of M, the sphere D' U E
bounds a 3-ball C. Thus M = C U N(D U J; M) turns out to be a solid torus and J is a
longitude of M. a

We show the following lemma, so called a “gluing lemma”, which is needed later.

Lemma 5.2.6. Let M be an irreducible 3-manifold which is not homeomorphic to a 3-ball,
and J a disjoint union of simple closed curves in OM such that OM — J is incompressible and
(M, J) has no monogon. Then for any two components J, and Jo of J, for the manifold M’
obtained from M by gluing N(J1;0M) to N(J2;0M), OM’ — (J — J1 — J2) is incompressible
in M and (M',J — J1 — J2) has no monogon.

Proof. Put J' = J — J; — Jo. First we show the incompressibility of 9M’ — J'. Let A be the
properly embedded annulus in M’ that is the gluing result of N(J1;0M) and N(J2;0M).
Since M — J is incompressible, we can see that A is incompressible as follows. If A is
compressible, we may assume that J; bounds a disk in M. By the incompressibility of
M — J, J1 bounds disks in both side of 8M — J;. In this case (M, J) forms a D% x I and
this is a contradiction. Since (M, J) has no monogon, A is d-incompressible in M’. Let D
be a compression disk of M’ — J'. If DN A = §, then it is not hard to see that D is a
compression disk of 9M — J in M. So, we assume D N A is non-empty and minimal among
compression disks of M’ — J’. Since A is incompressible, any circle component of DN A
is eliminated by innermost arguments. Let A be an outermost disk in D with respect to
DN A. Since A is essential, AN A is an inessential arc in A. Thus we can J-compress D
and obtain disks D; and Ds. If none of D; and Ds is a compression disk of 9M’ — J’, then
OD bounds a disk in dM’ — J’ and this is a contradiction. Thus D; is a compression disk
with |D; N A| < |D N A|. This contradicts the minimality of |D N A.

Next, we deal with monogons. Let D be a monogon of (M’,J’). Let us consider the
intersection D N A. Since (M, J) has no monogon, DN A # () and we assume |D N A] is
minimal among all monogons of (M’, J’). Let A be an outermost disk in D with respect
to DN A. We can take A so that it does not meet J'. If AN A is an essential arc in A,
then A is modified to a monogon of (M, J). If AN A is an inessential arc in A, then by a
O-compression of D, we can find a new monogon D’ with |D’ N A| smaller than D N A and
this contradicts the minimality. O
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5.2.2 Sweeping out lemma

Let F be a compact surface, possibly 9F # 0. Put W = F x I and O;W = F x {i} for
1=0,1, and put O,W = 9F x I, O, W = §yW U1 W. For a properly embedded circle or arc
o in F, the surface o0 x I C W is called a vertical surface. A vertical surface P is essential
if it is incompressible and not d-parallel, or equivalently, the circle or arc o corresponding
to P is essential in F. Let 7 be a properly embedded arc in W such that 07 N ;W # @ for
i=0,1, and put E(r) = W — N(7).

Lemma 5.2.7. Let F, W, and T be as above. Let P be an incompressible vertical surface
in W. If OE(1) — 0,W 1is compressible in E(T) then T is isotoped so that TN P = {.

Proof. We may assume that N(7) N P consists of meridian disks of N(7). If N(7) N P = {,
we are done. Thus assuming that N(7)NP # ), we shall show that N(7)N P can be reduced
by an isotopy 7.

For each component B of O0E(7) — P, we may assume that B N D consists of essential
arcs in B since if there is an inessential component, we can reduce |D N N(7)| by an isotopy
on E(7).

Let D be a compression disk of dE(7) — 9,W. We may assume that D and P are in
general position and |D N P| is minimal among the choices of D, hence later we assume that
c(r,P,D) = (|[D N N(7)|,|N(7) N P|,|P N DJ) is lexicographically minimal with respect to
P and D for a fixed 7, up to isotopy.

Let D’ be an innermost disk in D with respect to DN P. Since P is incompressible in W,
0D’ bounds a disk E in P and since W is irreducible, the sphere EU D’ bounds a 3-ball. By
an isotopy on W which moves D’ to E, we can reduce DN P, without increasing |[N(7) N P|
since DN N(7) = 0.

Hereafter we assume D N P consists of arcs.

Let A be an outermost disk in D regarding DNP. We put o = JANID and § =cl(0A —
a). Notice that by the assumption that N(7) N P # @, we have that N N () # § and there
are following four possibilities: (1) S connects distinct components of N(7) N P, (2) 83 is
contained in a component of N(7) N P, (3) 8 connects a component of N(7) N P and &P,
and (4) 08 C OP.

(1): By an isotopy along A, 7 is isotoped so that the two components of N(7) N P are
removed.

(2): First we remark that each component 3 of type (2) is essential in P — N(r). There-
fore, D is 9-compressed to two disks in E(7) one of which is 9-reducing and has the smaller
complexity than D. Now, a consists of three parts 0DN(OE(1)— N (7)) and two components
of DN N(7). Let A be a component of the frontier 8N (1) NOE(7) on N(7) which meets a.
Removing the meridian disk F of N(7) containing o from P and pasting A, we obtain a
properly embedded surface P’ in W. Then A becomes a O-compression disk of P’.

If P is a vertical disk, then S is inessential in P — E. If P is a vertical annulus, then 3 is
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inessential in P — F or essential. First we consider the inessential case. Since (3 is inessential
in P — E, the arc f/ = fU (a N N(7)) is also inessential in P’ and put the bi-gonal disk
A’ in P’. Since W is a product, 8Wy is incompressible. Hence 8(A U A’) bounds a disk
A" in OpW which does not contain dp7. In this case there is an inessential component of
DNOE(r) — ON(t) in OE(r) — ON(7) and this is a contradiction. Next we consider the
case P is an annulus and 8 is essential in P — E. In this case, the 0-compression of P’ along
A gives two annuli, and one @ of them connects W and 9;W and the other Q' is such
that 9Q" C GoW. It is noticed that @ is isotopic to P since W is an I-bundle. Hence, 7 is
isotoped so that N(7) N P reduced as |[N(7) N P| > |N(7) N Q)|.

(3): By an isotopy along A, N(7) N P is reduced.

(4): Notice that 08 lies in a component of P N O,W and [ is inessential in P. Let
A’ be the bi-gonal disk in P. By the irreducibility of W and by the incompressibility of
OW — N(7), (A U A’) bounds a disk in OW — N(7). If A’N7 = 0, then D is isotoped so
that D N P is reduced. If A’ N7 # (, then 7 is isotoped so that N(7) N P is reduced.

In either case, isotopies reducing each intersections reduce the complexity c(r, P, D)
lexicographically. This completes the proof. a

5.2.3 Proof of Theorem 5.2.1

Let (M, J), £ and F be as in Theorem 5.2.1. Then M is considered as the exterior of a
properly embedded arc 7 in the product F x I. We put o7 = 7N F x {0} and 017 =
TNF x {1}.

Lemma 5.2.8. M is irreducible and M — (J U £) is incompressible.

Proof. Since M ({) is a product, it is irreducible. Actually M is obtained from M (¢) by
removing a connected properly embedded arc. Hence M is also irreducible.

Let D be a compression disk of 0M — (JU£). Without loss of generality, we may assume
that D is contained in F x {0}. Since M(¢) is a product, 0D bounds a disk E in M (¢)
such that F contains dy7. Since F' x [ is irreducible, the sphere E U D bounds a 3-ball and
D separates 9y and 0;7. This can not occur since 7N D = {. O

Proof of Theorem 5.2.1. By Lemma 5.2.8, it is sufficient to prove Theorem 5.2.1 under the
assumption that M is irreducible and M — (J U £) is incompressible. For a connected
surface, we use the lexicographical complexity ¢(F) = (9(F), |0F|) and we prove Theorem
5.2.1 by induction on ¢(F').

In the case when ¢(F) = (0,1), F is a disk and M (¢) is a 3-ball. If 9M — J is compressible
in M, then M is a solid torus and J is a longitude of M. Since ¢ is disjoint form J, £ is
parallel to J and M — J U/ forms a product sutured handlebody and the conclusion follows.

Suppose ¢(F) > (0,1). We regard M as the exterior of a properly embedded arc 7
in a product W = F x I. Since (M,J U{) forms a sutured manifold, it follows that ¢
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separates OM — J. Thus 7 joins F x {0} to F x {1}. By the assumption that ¢(F') > (0,1),
we can take a non-separating essential vertical disk or annulus P in W. Assuming that
OM — J is compressible in M or there is a monogon of (M, J), we show that (M, JU/) is
a product sutured handlebody. If there is such a monogon, then by Lemma 5.2.5, M — J
is compressible or M is a solid torus. However by the assumption ¢(F') > (0,1), M cannot
be a solid torus. Hence we may assume that M — J is compressible. By Lemma 5.2.7, we
can isotope 7 so that 7 and P are disjoint. Let M’ be the cutting result of M along P and
put J’ be the disjoint union of simple closed curves in M’ which is naturally obtained from
J which contains a new component corresponding to the cutting vertical surface P. Since
TN P =0, we have that M'(¢) = F’ x I where F”’ is the cutting result of F along the arc or
circle o in F which corresponds to P.

Since P is essential, o is essential in F. Thus we have ¢(F) > ¢(F’). Now by the
hypothesis on the induction, (M’, J'Uf) is a sutured handlebody or &M’ —J is incompressible
in M’ and (M’,J’) has no monogon. In the former case, we can naturally extend the
product structure of (M’, J'U¥) to (M, JU£) and the conclusion follows. In the latter case,
Lemma 5.2.6 is adapted to show the incompressibility of M — J and there is no monogon
for (M, J). This is a contradiction and completes the proof. O

Proof of Corollary 5.2.3. The incompressibilities of 3; and S, are assured by Handle Addi-
tion Lemma [32]. If S; is parallel to S, then by Corollary 5.2.2, one of the cutting regions of
M — 51U S, forms a product sutured manifold. This contradicts the non-parallel condition

for S; and S,. O

Proof of Corollary 5.2.4. Suppose that K bounds a non-totally knotted incompressible
Seifert surface S. By Handle Addition Lemma [32], § is incompressible in M. Since M
is a homology handle and fibers over S!, by an argument of [10, Lemma 3.4], each con-
nected non-separating surface in M is isotopic to a fiber surface of the fibration over S?.
Thus, § is a fiber surface. Since S is not totally knotted, E(S) is d-reducible. Thus by
Corollary 5.2.2, the sutured manifold (E(S),0S) is productive and this means that K is a
fibered knot. This completes the proof. O
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Chapter 6

Surgery descriptions of

homology spheres

Let H be an integral homology 3-sphere. A framed knot (colored knot, resp.) in H is a
pair K = (K, ) such that K is a knot in H and 7 is an integer (a rational v = ¢/p or oo,
resp.) which is called the framing for K (coloring for K, resp.). A framed link (colored link,
resp.) is a link L = K; U--- U K,, with an n-tuple £ = (K,...,K,) where K; = (K;,7;) a
framed knot (a colored knot) in H. We let E(L) denote the exterior H — N (L) of alink L
in H. For a framed (colored, resp.) link £ in H, a simple closed curve [; in each component
of OE(L) corresponding ON(K;) is determined uniquely by the framing ~; for K; so that
lk(l;, K;) = ~v; in H ([l;] represents the element (p;, ¢;) € Hi(ON(K;)) where (1,0) represents
the homology class of the preferred longitude and (0, 1) the meridian of K;.) By attaching
a solid torus V; to each component of 0E(L) so that the boundary of a meridian disk of V;
is glued to l;, we obtain a closed 3-manifold x(H; L) = E(L) U, Vi, so called a surgery
manifold, and the construction H — x(H; L) is called surgery along £. It is known that
any closed orientable 3-manifold is a surgery manifold of some framed link in S, and if
two framed links determine the same surgery manifolds, then they are related by a finite
sequence of Kirby moves [38].

Let K1 = (K1,71) and Ko = (K2, 2) be framed knots yielding the same surgery manifold.
Now it is natural to ask how the Conway polynomials Vg, (z) and Vg, (z) relate to each
other.

Here we shall specify each framing to +1 and 0 to simplify arguments. The Alexander-
Conway polynomial is a typical example of classical polynomial invariants for knots and
links in homology spheres. See § 6.0.4 for precise and a review. We denote the coefficient of
2" of the Conway polynomial Vg (z) by an(K).

In the case when v; = v = 0, the surgery manifold M is a homology handle, that is,
a 3-manifold with the infinite cyclic homology group H;(M) = Z, and it is well-known
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that the Conway polynomials of K7 and K> coincide and the polynomial is called the as-
sociated Conway polynomial of M. There are several works concerning about constructing
non-equivalent knots which yield the same homology handle by 0-framed surgery. In [69],
Teragaito gave finite sequences of pairwise distinct such satellite knots of arbitrarily large
numbers, and in [36], Kawauchi constructed mutative hyperbolic knots such that they yield
the same homology handle and non-isometric but mutative 1-surgery hyperbolic homology
spheres. In (78], the we gave a method to construct an infinite sequence of mutually non-
equivalent hyperbolic knots producing the same homology handle, and the “infinite part”
was based on a finiteness result on incompressible surfaces in 3-manifolds ([72], [73]) and the
rigidity of hyperbolic 3-manifolds. Such a phenomenon was first discovered by J. Osoinach
in his Thesis.

In the case when ; = ¢; and v, = €2 where ¢; € {—1, 1}, the surgery manifold M is
an integral homology sphere. In 1985, A. Casson introduced an integer valued invariant for
integral homology spheres, which is called the Casson invariant and denoted by A(M), and
which has good relation ships and aspects between linking theory, Dehn surgery and SU(2)-
representations of the fundamental groups. See [2] and [64] for a review and see [82], [48] for
more general surgery formula and extension of Casson invariant for general 3-manifolds. By
Casson’s surgery formula ([2], [64]) we have £1a2(K1) = €2a2(K32) and the value coincides
with the difference A(M) — A(H) of the Casson invariants.

In this section, we show that there is no restriction to coefficient of higher degree of
Conway polynomials under (£1)-surgery in the sense as follows:

Theorem 6.0.9. Let H be an integral homology sphere. Let fi(z) = > i ,ciz? and fa(z) =
Yo, diz? be two polynomials in z2. For any 1,62 € {—1,1} and for any integer a € Z,
there exist framed knots K1 = (K1,e1) and Ko = (Ka,€2) in H such that Vi, (2) = 1+
£2a22 + f1(2), Vi, (2) = 1 + 1022 + fao(2), they define the same surgery homology sphere

x(H;K;) = H' and e1e0a = A(H') — M(H).

For example, let K; be the knot 859 in the Rolfsen table [63] and K2 be the knot as
shown in Figure 6.1. Then x(S3; (K1, —1)) = x(S%; (K3, —1)) and since they have distinct
Conway polynomials, x(S%;(K1,0)) is not homeomorphic to x(S%; (K2,0)). In fact, it is
observed that K is a fibered knot of genus two and thus x(S3; (K1,0)) is a closed surface
bundle over S1. On the other hand, since the leading coefficient of the Conway polynomial
Vk,(2) is equal to 2 (# £1), K> is non-fibered and thus by a result of Gabai [11, Corollary
8.19], x(S3; (K3,0)) is not a surface bundle over S*.

This section is organized as follows. In § 6.0.4, we give a short review of Alexander-
Conway polynomials and show some basic lemmas. In § 6.0.5, we give a method to construct
knots realizing a given Conway polynomial via Seifert matrices. Proof of Theorem 6.0.9 and
its application to a surgery description of homology spheres regarding Alexander polynomials
are given in § 6.0.6, and some general arguments and problems concerning on more than
three polynomials and (1/n)-surgeries are given in § 6.0.7.
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K1 =82
Vi, (2) =1-222 + 24 Vik,(z) =1 - 222

They define the same (—1)-surgery manifold, but 0-surgery manifolds are not
homeomorphic. In fact, x(S%; (K1,0)) fibers over S! and x(S3;(K>2,0)) does

not.

Figure 6.1:

6.0.4 Preliminaries

All coefficients of homology groups are assumed to be integers Z and a homology sphere
means an integral homology sphere.

Let H be an integral homology sphere. It is known that any knot or link L bounds a
Seifert surface S, that is, a compact connected orientable 2-manifold S embedded in H with
SNL =08 = L. Furthermore if L is oriented, there is an oriented Seifert surface for L
which induces the orientation of L. Such an oriented Seifert surface is called an oriented
Seifert surface for L. Later we assume any Seifert surface for an oriented link is oriented.
A family v = (Jy,...,Jn) of oriented simple closed curves J;’s in S is called a basis of S (or
H,(S)) if the homology classes [Ji],. .., [Jn] generates H1(S) and n = rank(H;(S)). For a
simple closed curve J in S, we denote J* a simple closed curve in H which is obtained from
J by a pushing forward to the positive side of S.

Let L be an oriented link and S be a Seifert surface for L. Let ¢ = (v1,...,v,) be a
basis of H;(S). We denote the matrix (lk(vi,'uf)) by Vs,z, or simply by Vs and call it the
associated Seifert matriz of S. The polynomial det(v/tVs —1/v/tVZ) is called the Alezander
polynomial of L associated with S. It is known that the associated Alexander polynomials are
independent of the choice of S and ¥, and the polynomial is called the Alerxander polynomial
of L and it is denoted by Ay (t). (See [64, Lecture 7], [48, Appendix] for details.)

For a link L in H and a colored knot K in H which is disjoint from L, we let x(L; K)
denote the link in x(H;K) which is obtained from L by surgery along K. In particular, it is
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Figure 6.2:

noticed that if £ = (K,1/n) and K is a trivial knot, then the x(H; K) is homeomorphic to
H and L’ = x(L;K) is obtained from L by (—n)-full twists along K.

In the rest of this section, we show some basic lemmas which are needed later.

Lemma 6.0.10. Let K and K2 be two disjoint knots in H. Let (J,€) be a 1/n-colored knot
in H disjoint from the link K1 U Ko. Then in the surgery manifold H' = x(H; (J,1/n)), it
follows that:

tka (x(K1; (J,1/n)), x(Ka2; (J,1/n)))
= lkH(Kl, Kz) —-n- lkH(Kl, J) . lkH(KZ, J)

Proof. This follows by a homological argument. (cf. Figure 6.2. Crossings encircled con-
tribute —lk(K1, J)Ik(K2,J).) O

It is known that the Conway polynomial V,(z) and the Alexander polynomial Ay (¢) has
the Skein relation as shown in Figure 6.3 [64, Theorem 7.6, they are related to each other
via z = —(v/ — 1/v%) and JA7 (1) is equal to the coefficient az(L) of 2 in V1 (z).

Lemma 6.0.11. Let L be an oriented link in H. Let ¢ be an oriented trivial knot in H such
that for a disk D bounded by c in H, L intersects D in two transversal points with algebraic
intersection number 0. Let L’ be the oriented link obtained from L by performing a single
~+-full twist along c. Then it follows that

Viue(2) = (Vi (z) = ViL(2)).

Proof. This follows directly from the Skein relation as shown in Figure 6.4. O
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Figure 6.5:

6.0.5 Semi standard forms of Seifert matrices and realizing Conway
polynomials

Let L be a link in a homology sphere H. An embedded disk b in H is called a band for L
if b0 L C 0b, bN L consists of two arcs and 9b — L consists of two open arcs. For a band b
for L, we put 0pb =bN L and 0zb =cl(0b — Jr.b) and we call the link Ly, = L —drbU b
a band-modification of L along b. We say a band b for an oriented link L is coherent if
the orientation of L induces an orientation of b via b N L. If b is coherent, then we give
the orientation induced from L to Ly,. By a homological reason, a coherent band b for an
oriented link L is contained in an oriented Seifert surface S for L so that S — b is connected.

Let L = L; U Ly be an oriented split link and let @ be the splitting sphere. An oriented
link Ly is obtained from L by an X, -composition if there are coherent bands by for L and by
for Lo with b; 1@ = 0 such that there is a coherent band b for L satisfying that [bN Q| = 1,
by U bU by is connected and drb C Or,b1 U Or,be, and further Lx is obtained from L.y
by surgery along the three component trivial link as shown in Figure 6.5 or equivalently
obtained from Ly, by performing full n-twists and —n-twists along the three circles in
Figure 6.5 in correspondence. In this case, we call Lx an X,-composition of L; and Lo
along (by,ba,b). It is remarked that in the case n = 0 and L consists of two components, an
Xo-composition is the connected sum.

We see the Alexander-Conway polynomials behave under X,,-compositions as follows.

Lemma 6.0.12. Let Lx be an X, -composition of L1 and Ly along (b1, ba,b). Then we have
Vix(2) = V5, (2)Vi,(2) = 0222V, ,, (2)Vi,,,, (2).

Proof. Since b; is contained in a Seifert surface S; for L; so that the closure S, of S; — b; is
connected, we can choose a basis Z; for H;(S;) such that for some element of Z; is a dual of
the core of b;. Hence for some Seifert matrices Vg, and Vs; for L; and Li, respectively, it
follows that Vsé is the corresponding submatrix of Vg,. Thus Lx has the Seifert form Vs as
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T1 Y1 T2

VKe(cryomen)(2) =1 —€ Z?:l ci(—2z2)¢

Figure 6.6:
follows:
O
Vs, n
Vs =
n
0 Vs,

Thus, we have

Ar,(t) = det(vVtVs —1/vtVE)
= det(VtVs, — 1/VtVE) det(VtVs, — 1/VEVE)
—n?(VE — 1/Vt)? det(ViVs; — 1/VEVg,) det(ViVs, — 1/VEVg)
= AL, ()AL () —n*(VE—1/VE)?AL,,, ()AL,,, (1)

Hence, we can conclude Vi, (z) = Vi, (2)Vi,(2) — n2z2VL1#b1 (2)V L 4o, (2)- a

Here we give two kind of examples of unknotting number one knots, one is obtained by
a suitable X,-compositions from a trivial knot and the other is useful to study C,-moves,
each of which matches an arbitrarily given Conway polynomial and has a suitable Seifert
surface to prove Theorem 6.0.9.

Several results are observed on constructing knots K with the polynomial invariant
coincides with an arbitrarily given polynomial. In [9], Fujii showed for a given Alexander
polynomial A(t) of some knot, there exist infinitely many 3-bridge, tunnel number one, and
unknotting number one knots K such that Ag (t) = A(t), by constructing concrete examples.
See [9] for more references.

Let K&(cq,- - .,Cn) be the knot illustrated in Figure 6.6, where represents the m-full-
twists of two arcs and let L¢(cy,...,c,) be the link illustrated in Figure 6.7.

Proposition 6.0.13. Ve, ... (2) =1—ed i ci(—2%)"

Proof. Let A(m) be an m-twisted oriented trivial annulus. Then Vg 4(m)(2) = —mz.
We show Proposition 6.0.13 by induction on n. If n = 1, then K¢(c;) has the Seifert
form Vi = ((e,1),(0,c1)) and thus Ve (c,)(2) = det(Vp) = 1 4 ec12°.
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Figure 6.7:

Suppose n > 1. It is not hard to see that Kg(ci,...,c,) is obtained from
K¢ _i(c1,...,cn—1) and a trivial knot K?(cy,) by an X_j-composition. The dual band is
indicated in Figure 6.6. Hence by Lemma 6.0.12, if n = 2, then we have

Vis(enen)(2) = Viee)(2) Vi) (2) = 2° - (—ez) - (—c22)

= 1+ 66122 - 60224

and the conclusion follows.
If n > 2, then we have

val(cl,...,cn)(z) = VK;_I(cl,...,cn_l) (Z)VK?(cn) (Z)
_szLZ_z(cb...,cn;z-{-l) (z)VBA(cn)(Z)'

By the hypothesis on the induction and by Lemma 6.0.11, we have

Vit Lermenot1)(2) = 2(VEe (errena+2)(2) = Ve (c1,nenat1)(2))

2(—e(=22)""%) = —ez - (—2%)" 72

Hence it satisfies that

Vs ternen(z) = 1—e3 ai(=22)i =22 (—ez- (=22)"%) - (—en)2

-
= l—eZci(—zz) —ecp(—22 —l—eZc,
i=1
This completes the proof. O
Now we have:
Proposition 6.0.14. Ve, . c.(2) = (=1)"Tlez?+1, O
Let Kp(c1,...,cn) denote the knot as shown in Figure 6.8. This kind of knot was arose

in a study of variations of the coeflicients of Conway polynomials in terms of C,-moves.
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Proposition 6.0.15. Vi, (c,,...c.)(2) = Vki(ey,emy(2) = 14+ 21y (—1) ez

Proof. By spanning a Seifert surface S for K,(ci,...,¢,) and taking a basis of H1(S5) as
shown in Figure 6.9, it is noticed that the Seifert form Vs and that of K}(c, ..., cy,) coincide.
Now by Proposition 6.0.13, the conclusion follows. O

Remark 6.0.16. Each of K;—”l(cl, ...,cn) and Ky(c1,...,cp) is of unknotting number one.

For one’s convenience, we state the following:

Proposition 6.0.17. Let V be the following 2n x 2n-matriz:

e 1 0 0 O 0 0 O
0 cgc 1 0 O 0 O
01 0 1 O 0 0 O
0 0 0 c2 1 0 0 O

v=|0 0 0 1 O 0 0 O
0 0 0 0 O -+ cpo1 1
0o o0 0 0 .- 1 0 1
o o0 0 0 - 0 0 cn

Then det(v/tV — 1/\/EVT)|z=—\/Z+1/\/Z =1-—ed (=22 O

6.0.6 Proof of Theorem 6.0.9 and its application

Proof of Theorem 6.0.9. Let L = C;UC, be the two-component link as shown in Figure 6.10
where ¢} and d are integers such that ¢} + d} = —a, ¢, = (—1)%2c; and di = (—1)%e1d;
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for i > 1. We span a Seifert surface to C; in a way similar to as shown in Figure 6.9, and
perform a peripheral tubing on the side indicated in Figure 6.10. We let S; denote the
Seifert surface for C; which is disjoint from Cs obtained in this manner. We take a basis
T = (21,Y1,%2,Y2, - .., Tn,Yn) of H1(S1) so that x2, ¥y, ..., Tm,Ym are same as in Figure 6.9
and 7 is a meridian of the tube and y; is a longitude of the tube such that (k(y;1,C1) = 0.
Now we have the Seifert form for # same as that of K2(a,c,...,c,).

After performing surgery on the framed knot (C2,¢e2), we obtain a framed knot (K7,&1)
from (C1,¢e1) with Seifert form same as that of K ¢2(a,c,...,c,). Here we remark that
the ambient manifold is unchanged since C5 is a trivial knot. Now it follows that Vi, (z) =
1+ eg(az? + 30 (1) 1cf2%) = 1 + e2a2% + 31, ¢;2%* by Proposition 6.0.15. By the
same argument, we get a framed link (K5, e2) from (Cs,e2) by surgery along (Ci,&1) such
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that Vi, (2) =14+ e1(az® + Y mo(—1)7 d]z%) = 1+ e1a2% + Y10, di2*
It is noticed that H' = x(H;(K1,€1)) = x(H; (K2,€2)) = x(H; (C1,€1) U (Ca,€2)) and
- A

by Casson’s surgery formula, we have A(H') — A(H) = 1€2a. This completes the proof. O

It is well known that each homology sphere is obtained from S3 by a finite number
of (+1)-surgeries on knots ([2], [64]). In [47], Lescop showed that two integral homology
spheres have the same Casson invariant if and only if they are related by a finite sequence
of (£1)-surgery on knots each of which has the Alexander polynomials which is equal to
1. In [27], Ishiwata generalized this result showing that, using [47, Theorem 1.1}, any two
homology spheres are related to each other by a finite sequence of (+1)-surgery on knots
with some fixed Alexander polynomial. (see [27] for precise.) As an application of our
argument, together with Lescop’s result [47, Theorem 1.1], we can generalize Ishiwata’s
result [27, Theorem 1.2] in the following sense.

Theorem 6.0.18. Let H and H' be two integral homology spheres, k an integer, and A(t)
be Alezander polynomial with $A”(1) = k. Then the Casson invariants A(H) and \(H')
coincide modulo k if and only if Hy is obtained from Hy by surgery on a framed boundary
link such that each framing is 1 or —1 and the Alexander polynomial of each component is
A(t) in H.

Proof. We can obtain a homology sphere H” with A(H”) = A(H') from H by a finite
sequence of (+1)-surgery on knots K with Ag(t) = A(t) since A(H) = A(H’) mod k. By
[47, Theorem 1.1], H' is obtained from H” by a finite number of surgery along knots K with
Ag(t) = 1. Hence it is sufficient to generalize [27, Lemma 2.1] in the following.

Lemma 6.0.19. Let H and H' be integral homology spheres. Suppose that H' is obtained
from H by surgery on a framed knot (K,e) with Ak (t) = 1. Then for any integer k and

any Alezander polynomial A(t) such that $A”(1) = k, there is a surgery sequence H Kuo)

H "259 1Y such that Ag,cn(t) = Axyenn (t) = Alt).

Proof. Put f(z) = A(t)|,—_yz41/vz- Then we have f(z) = 1+ S ciz? for some
(c1,-+- ,cn) such that ¢; = k. Let L = C; U Cy be the link in a 3-ball By illustrated
in Figure 6.10, where m = n, d; = ¢, = (=1)*"¢; for i > 1 and ¢} — d} = k. We perform
surgery on (Cz,€) and obtain a framed knot (K3,¢) from (Ci,¢€). Let (C5, —¢) be the dual
framed knot to (Cq,¢) and we put L' = C;, U Cj.

Let B be a 3-ball in H such that BN K consists of a trivial properly embedded connected
arc in B. We can embed L’ in H locally so that L’ is contained in B and B N K is still
trivial in B — L’. Then we can perform a connected sum C} = K#C; on K and C; in B
by the same argument in the proof of [27, Lemma 2.1]. Now we have Ac;cn(t) = A(t) and
Acscx(H;(Cte))(t) = A(t). It is not hard to see that the homology sphere x(H; (C3, —¢)) is
homeomorphic to H since C3 is a trivial knot in H and in x(H; (C5, —¢)), CT is viewed as
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a framed knot equivalent to K in H. Thus, we have x(H; (Ct,e) U (C§,—¢)) = H' and the
(€18

(Cs,—¢€
sequence H —" H” 2:5°)

H' is a desired one. O

This completes the proof of Theorem 6.0.18. O

6.0.7 More on Theorem 6.0.9

More generally, one can also construct knots which satisfy the condition in Theorem 6.0.9
from two unknotting number one knots by the help of the following proposition which is
proved by an argument similar to the proof of Theorem 6.0.9. (This is not used here and a
proof will be given elsewhere.)

Proposition 6.0.20. Let K1 and Ky be unknotting number one knots such that each K;
is obtained from a trivial knot K by a single 0-linking full twist of two strings. Let K} be
the knot obtained from KEi) by performing € ;)-surgery along Kzi). (¢f. Figure 6.11) Then
Vik»(z) = Vi, (2) + €yaz(K)) 2%, where (1) =2 and (2) = 1.

Now for our interest, we ask the following.

Question 6.0.21. Let n > 2 be a natural number. Let fi, ..., fi(z) = Y[ ci2%,...,
fn be n polynomials in 22. For any a € Z, do there exist (+1)-framed knots K1,...,K; =
(K1,1),...,(Kn,1) in a homology sphere H such that Vi, (z) = 1+ az? + fi(z) and they

define the same surgery homology sphere x(H; K;) = H'?
Proposition 6.0.13 and Proposition 6.0.23 below may expect the following.

Question 6.0.22. Let Ky = (K1,1/n1), Ko = (K2,1/n2) be two colored knots in a homology
sphere H. Suppose they define the same surgery homology sphere x(H; K1) = x(H;K2).
Then does it follow that niag; (K1) — neag;(K2) =0 mod ning for any i > 07

A counterexample to this question is constructed as follows: Let K be the figure-eight
knot, and K’ its (2,1)-cable. It can be seen that x(S3,(K,1/4)) = x(S%,(K’,1)) ([55,
Proposition 1.1]). However we have Vi (2) =1 — 22, Vg (2) = 1 — 422 — 24
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z

Vk(z)=1-22 Vi(z) =1—42% - 24,

Figure 6.12:

When i = 1, we have nja2(K;)—n2a2(K2) = 0 by Casson’s surgery formula. On the other
hand, one can construct two knots K; and K> from a link illustrated in Figure 6.10 by per-
forming (1/n;)-surgery on each component such that x(S%; (K1,1/n1)) = x(S3; (K2,1/n2))
and nyag; (K1) # neagi(Ks), but az;(K1)|ne and ag;(K2)|n; for ¢ > 1. More generally, in con-
structing two knots K7 and K yielding the homeomorphic homology spheres, one may begin
with a two-component Brunnian link C; U Cy with linking number 0 and twisting n;-times
along C; (na-times along Cs resp.), K is obtained form C; as the result x(Cs; (K1,1/n1)).
(K7, C1 and x(Cy;(K2,1/n2)) resp.) However their Conway polynomials have restricted
forms in the sense of Question 6.0.22 by the following proposition.

Proposition 6.0.23. Let K be a knot in a homology sphere H. Let C be a knot in H disjoint
from K such that lk(K,C) = 0. Put H = x(H;(C,-1/n)) and K' = x(K;(C,—1/n)).

Then it follows that Vi (z) — Vi (z) = nz2f(z) for some polynomial f(z) in 22.

Proof. It is observed that K bounds a Seifert surface S disjoint from C such that for some
basis ¥ = (U1, ., Uk, Uk+1,---,Um) for S, lk(v;,C) =1 fori=1,...,k and lk(v;,C) =0

for j = k+1,...,m. Now S remains in H' as a Seifert surface S’ for K’ and we put
v = (vi,...,v},) which is the basis for S corresponding to ¢. By Lemma 6.0.10, we have
N O
Voo =t (o O>

where N is the & x k-matrix with all elements equal to n. Thus we can see that

det ((\/ZVS,,7 —1VAVT) + ((\/Z —1/VH)N 0))

Ag(t
ot VON 0

= Ag(t) +n(vVt—1/VH)F(t).

where F'(t) is a Laurent polynomial in t. Since K’ is a knot, F(t) factors vt —1/v/t and we
can write F(t) = (vt—1/v/t)Fo(t). Thus by the translation z = —v/t+1/+/t, the conclusion
follows. O
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Related to Theorem 6.0.9, it is natural to ask the following.

Question 6.0.24. Suppose a homology sphere H contains a knot K such that x(H; (K,1/n))
is homeomorphic to H orientation preservely for some n # 0. Then does it follow that
Vik(z)=17?

In the case when H = S3, Gordon-Luecke theorem [14] implies that K is a trivial knot
and thus Vg (z) = 1.
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