
Q
V:;;～?

A Study on lmplementing User Requirements

Using Policies and Standards

- Applied on Network Management Systems -

2002

Tetsuo Otani

Abstract

As software supports a wider range of work, it has become more difficult to elicit requirements

and design functions rapidly and precisely. This trend is noticeable in the design of systems that

support business processes requiring a significant amount of expertise. In such domains,

designers sometimes have to understand users' expertise to read requirements for the functions

to be built. In addition, this kind of expertise differs from one industry to another and from one

organization to another. The requirements may change even after the functions are implemented.

Further studies are required for rapid and precise design of functions even though there are

many contributions to software engineering.

This thesis presents new methods for improving the situation. The key concepts of this

thesis are function design led by users, adaptive functions, and customization of existing

software with minimal influence. The function design led by users means that users play a

leading role in designing functions. Designers do not elicit requirement from users, but users

draw up specifications of functions they need for the sake of reflecting users' idea. The concept

of adaptive functions includes two aspects, adaptability to the change of requirements and of

conditions. These two aspects eliminate or reduce work for change design or implementation of

functions. In cases where functions have to be changed, reuse of existing software is important

for rapid development. The influence should be minimal for the reuse of existing software.

Minimal influence means low volume of work for modifying the existing software. It is more

significant if the existing software conforms to a standard. The updated version of the existing

software will be able to be used easily if the existing software is not changed.

We focus on the elicitation of requirement for and the design of functions in a network

management system (NMS) in this thesis. This domain is rich in standards for design and

implementations of functions. These standards will help rapid development of functions. In

addition, these functions are designed based on much expertise in the domain so this is one of

the domains in which designers have trouble in eliciting requirement and developing functions.

For the function design led by users, we have developed a technique in which users draw

up use cases detailed by policies. Use case method is a major annotation for object-oriented

analysis and design. It is represented as an ellipse with a simple instruction showing a provided

service. This simplicity allows users to use this annotation. The details of a use case are drawn

up with policies, which are rules of network management. We have olfered several types of

policies to represent various rules, and two types of formats to describe policies. We have

applied this technique to a case study in which network operators draw up specifications of

functions supporting scheduling of maintenance tasks.

For the adaptive functions, we have developed a mechanism for policy selection. This

mechanism has adopted a concept of an immune network that can accept changes of policies

and recognize changes of conditions in networks or services. The results of experiments in

which the mechanism was applied to the scheduling tasks show that network operators can add,

-I
-

change or remove policies without changing the core part of the mechanism for policy selection.

Furthermore, the results are validated by the operators that work for real business.

A policy selected by the mechanism, calls a function provided in a system. If existing

software has provided the function, a designer only connect the policy with the function. If not,

the designer has to develop a new function for the policy. This development is supported by the

concept of customization of exiting software with minimal innuence. We offer two techniques

for the customization, RevComponents and Partial Extension Package (PEP). RevComponents

are software components that add, change, or remove some features of a function provided by

an off-the-shelf component. They can also adapt an off-the-shelf component to a changed

interface of another component, and distribute information to others. RevComponents can

perform without change of source codes in the relevant off-the-shelf component. PEP supports

addition of new features to objectclasses with minimal
influence. It provides a scheme for

setting new processing, a new state for invoking the new processing, and additional data needed

by the new processing. These techniques have been validated through experiments in which the

behaviors of existing software were changed using these techniques.

Through the proposed techniques, design of functions in network management systems

becomes more rapid and more precise. These techniques would be suited to other domains that

have characteristics similar to the network management. For example, an operation of Electric

Power Systems would be the most promising domain. Each technique in this thesis can be used

individually. We believe that our techniques contribute to realize the world in which an expert

can design a function they need and share valuable software.

Key words

Use case, Policies, Artificial immune networks, Design patterns, Network management, Off-the-

shelf components, International standards

-ii-

Acknowledgement

I would like to thank all people who made this work possible by helping shape my research

vision, sharing insights, discussing ideas, reviewing papers, and encouraging me.

I am deeply grateful to my advisor, Professor Yoshikazu Yamamoto, for his invaluable

guidance, support and patience during my Ph. D. program. He was always open to discussions,

and gave me the freedom and means to mature my ideas. Especially, he introduced me to an

artificial immune network, which was a key concept in this thesis.

My gratitude also goes to Prof. Norihisa Doi, Prof. Ken-ichi Harada, and Prof. Masafumi

Hagiwara for serving on my dissertation committee. They invested the time to give me

feedbacks for earlier drafts of this dissertation through their careful readings.

I would like to express my sincere appreciation to Dr. Hiroshi Kaminosono and Yukio

Inoue, who gave me a change to study in the area of network management. The theme of my

dissertation comes from this study. I would also like to thank to Yoshiyuki Takeda and Dr.

Yoshizumi Serizawa who allowed me to go to the graduate school for PhD degree while I work

for CRIEPI.

It is not possible to enumerate everybody who gave me suggestions about the work in

network management. In particular, I would like to appreciate to Shigeru Miyazaki and Tadashi

Kobayashi, who have validated the results of my experiments in this thesis.

Dr. Jun-ichi Suzuki, Nozomu Matsui, Shogo Tsuji,Hiroaki Fukuda, Nobuyuki Matsushita,

gave me ideas and contributed to mature my ideas.

My parents have given me unrelenting support for longer than I remember. I cannot thank

to them enough for their kindness. My wife, Miki, has supported my work anytime anywhere.

My daughters, Yuina and Ayane, have always encouraged me for the busy days. I love my

family.

-Ill
-

-lV-

Table of Contents

PREFACE...i

1. INTRODUCTION..1

1.1

1.2

1.3

1.4

REQUIREMENTEuCITATION AND DESCRIPTION...2

PoLICY SELECTION..3

CusTOMIZATIONS..4

UsAGE OFTHE PROPOSEDTECHNIQUES...5

2. NETWORK MANAGEMENT SYSTEMS...9

2.1 0vERVIEW...9

2.1.1 Management areas..10

2.I.2 LJlyer model...I2

2.1.3 Businessprocesses...13

2.1.4 Network operators...18

2.1.5 NMS..18

2.2 CHARACTERISTICS OFFUNCTIONS INAN NMS..19

2.2. 1 Shared and original functions...19

2.2.2 Adaptation to various states..20

2.2.3 Expertise contained in functions...21

2.2.4 Dljficultyof making a sequence of processing...21

2.2.5 Appearance
of requirements after

NMS building...22

2.3 DESIGN OF FUNCTIONS..22

2.3. 1 Elicitation of user requirements..23

2.3.2 Implementations offunctions..24

2.3.3 Standardproducts..25

2.3.4 0jf-the-shelfcomponents..26

3. FUNCTION DESIGN LED BY USERS..27

3.1 CoNCEFrS OFFDLU...27

3.1.1 User friendliness..27

3. 1.2 PracticalityjTorsystem constructions..28

3. 1.3 Characteristics for users to design functions...29

3.2 TRADmONALAPPROACIIES TO REQUIREMENTANALYSIS AND DESCRIPTION..............29

3.2. 1 Requirement acquisition..30

3.2.2 NotationsjTor requirements..32

3.3 REQUIREMENT DESCRIPTION BY USERS EMPLOYING USE CASES DETAILED BY

POLICIES...35

3.3. I Description
of requirements: use case detailed bypolicies...................................35

- V -

3.3.2 Policies..37

3.3.3 Treatment of use cases...47

3.3.4 Roles
of system developers..50

3.4 CASE STUDY..51

3.4.1 Overview of the case study..51

3.4.2 Feedbackfnom network operators..52

3.4.3 Feedbackfnom system developers..53

3.5 SuMMARY OFFDLU...54

4. POLICY SELECTION..57

4.1 CHARACTERISTICS OF POLICY SELECTION ON NETWORK MANAGEMENT....................57

4.2 RELATEDWORKS...58

4.2.1 WorksjTorpolicy selection...58

4.2.2 A concept and applications of immune networks...59

4.3 PoucY SELECTION USING ARTIFICIAL IMMUNE NETWORKS...61

4.3. 1 Attachment
ofpolicies to

immune networks...61

4.3.2 Selection
of multiple policies without conjlicts..65

4.3.3 Rule for setting parameters...66

4.4 ExpERIMENTS..68

4.4.1 Evaluation
ofpnoposed method..68

4.4.2 Consideration
of application to the real operations..

78

4.5 SuMMARY OFTHE POLICY SELECTION...79

5. REVISING COMPONENTS..81

5.1 RELATEDWORKS...82

5.2 PROPOSEDTECHNIQUE..83

5.2. 1 Requirements for designing RevComponents...83

5.2.2 Roles at run-time...84

5.2.3 Configuration and templates...86

5.2.4

5.3

5.3. 1

5.3.2

5.3.3

5.4

5.4. 1

5.4.2

5.4.3

5.5

Code generator..89

EvALUATIONS USING APROTOTYPE SYSTEM..91

PerjTormance..92

Volume
of
Development...94

Plugging-in and Removal ofRevComponents..94

CoNSIDERATIONS..95

Compatibility between adaptability and reusability..96

Workloadfor development..97

Performance..97

SuMMARYOFREVCoMPONENTS...97

-V1
-

6. PARTIAL EXTENSION PACKAGE...99

6.1

6.2

6.3

6.3. 1

6.3.2

6.3.3

6.4

6.4. 1

6.4.2

6.5

6.5. 1

6.5.2

6.6

7

RELATEDWORKS...99

FLEXIBILITY IN FUNCTION CIIANGE..100

PARTIALExTENSION PACKAGE...102

Requirements for thepackage..102

StructuI.e
Ofthepackage...

103

Attachment
of the package to an injTormationmodel...

106

PACKAGEAPPuCATIONS..106

Scheduling maintenance...IO7

Setting threshold values for QoS..108

EvALUATION OF PEP USING SOFTWARE METRICS..110

Software metrics..110

Measwement of the model for maintenance scheduling......................................Ill

SuMMARY OFTHE PACKAGE...117

CONCLUSIONS...119

8. FUTURE WORKS..123

8.1

8.2

8.3

8.4

8.5

8.6

AppLICATIONTO OTHER DOMAINS..123

ONTOLOGY FOR POLICIESAND FUNCTION CALLS...124

ATOOLSUPPORTING FDLU...125

VAuDATION AND VERIFICATION OF POLICIES...126

INSTALLMENT AND REMOVAL OF REVCoMPONENTS WITHOUT SYSTEM

INTERRUPTION..127

INTEGRATED CASE TOOL FOR PEP AND REVCoMPONENTS..................................... 127

BIBLIOGRAPHY...129

-vii-

List of Figures

Figure 1: Two gaps in the function design..2

Figure 2: Overview of our proposal..3

Figure 3: Usage of the proposed techniques on stages of a development process............................5

Figure 4: Bridges of the gaps using the proposed techniques..6

Figure 5: Staff, NMS, and telecommunication networks...10

Figure 6..Management layer model...12

Figure 7: Telecom Operations Map, business process framework...14

Figure 8: Performance management flows...16

Figure 9: Sub processes in Service Quality Management..17

Figure 10: Interactions between an operator and system designer in traditional design.................23

Figure 1 1: An overview of requirement engineering..30

Figure 12..Ause case and actors..33

Figure 13: Relationship among a use case, a set ofpolicies, and functions....................................36

Figure 14: Kinds of policies..37

Figure 15: Two types of compromise policies..39

Figure 16: Transform from illegal elements to atomic elements..40

Figure 17: Affirmative policies represented in the graphical style...41

Figure 18: Rejective policies represented in the graphical style..42

Figure 19: Compromise policies represented in the graphical style..43

Figure 20: Other policies represented in the graphical style..44

Figure 21: Standard associations between use cases..48

Figure 22: An arrangement of a policy in multiple use cases with include relationship.................49

Figure 23: A relation of policies across the boundary of use cases with extend relationship.........50

Figure 24: Policies developed in the case study...52

Figure 25: An Overview of Two Types of lmmune Networks...59

Figure 26: Relationships between policies and elements in artificial immune networks part I......62

Figure 27: Relationships between policies and elements in artificial immune networks part II.....63

Figure 28: Relationships of an auxiliary policy to a condition and a suppressing policy...............64

Figure 29: Parameter setting rules in cases where multiple policies affect a policy........................67

Figure 30: Policies for the evaluations of the proposed policy selection..................,......................69

Figure 31: Transition of concentrations..71

Figure 32: Transition of concentrations..71

Figure 33: Transition of concentrations..72

Figure 34: Transition of concentrations..72

Figure 35: Transition of concentrations..74

Figure 36.. Transition of concentrations...,................74

Figure 37: Transition of concentrations.."................75

-1X-

Figure 38: Procedure to add a new policy to existing ones..77

Figure 39: The number of policies and processing time..79

Figure 40: Precedent RevComponent for preprocessing..85

Figure 41: Precedent RevComponent for alternative processing...85

Figure 42: Subsequence RevComponent for interface changing...87

Figure 43: Subsequence RevComponent for information distribution..87

Figure 44.. Configuration in a RevComponent...88

Figure 45: Code generator for RevComponents on C++ and CORBA...90

Figure 46: An evaluation system for RevComponent..92

Figure 47: Performance by preprocessing types and performing components................................93

Figure 48: Volume of source codes in components for the preprocessing type I,II, and III..........95

Figure 49: Aclass diagram of the Partial Extension Package..104

Figure 50: Information model for maintenance scheduling using the PEP...................................108

Figure 51: Information model for setting threshold values for QoS..109

Figure 52: The number of requirements and RFC in maintenance scheduling.............................1 1 1

Figure 53.. The number of requirements and OMMEC in maintenance scheduling.....................1 12

Figure 54: OMMEC of object groups
for information processing in maintenance scheduling.... 1 14

Figure 55: The number of requirements and RFC in QoS threshold setting.................................115

Figure 56: The number of requirements and OMMEC in QoS threshold setting.........................1 15

Figure 57: OMMEC of objectgroups
for information processing in QoS threshold setting........1 16

-X
-

List of Tables

Table 1 : The extended tabular notation to represent dynamic behavior...34

Table 2: Affirmative policies represented in the table style..45

Table 3: Compromise, priority, and rejectivepolicies represented
in the table style......................45

Table 4: Multi-influence policy represented in the table style...46

Table 5: Subsequence policy represented in the table style..46

Table 6: Policy Selections after no. 9 is added..77

Table 7: Comparison ofRevComponents and two other types for customization..........................96

-X1-

Chapter l

Introduction

In this thesis, we will be on the subjectof
function design. The term "function design" and

"design of function" in this thesis mean to define structure and behavior of software that

provides the function. A function in this thesis is information processing of software to produce

a meaningful output or to carry out a meaningful action. The design of functions of a computer

system that fulfill user requirements has not yet become a light task, although we see many

contributions to software engineering. One of the reasons causing this problem comes from that

computer systems have been larger and more complex. These shifts make it difficult for system

developers to understand user requirements precisely and in detail.

This trend is noticeable in the design of systems that support business processes requiring

a significant amount of expertise. This kind of expertise differs from one industry to another and

from one organization to another. For example, communication networks are managed with

expertise in communications techniques, network configurations and so forth. Electric power

systems, as another example, are kept going by using knowledge of dynamos, transmission lines

and the like. Functions provided by a system supporting these kinds of business processes are

designed based on expertise relating to an industry and/or an organization.

People working for such organizations are experts in a specific domain, however few of

them have taken part in a project
in which a large-scale system is constructed. Therefore, they

are not good at presenting their requirements for a system to be built. On the other hand, system

developers do not usually have the individual expertise or know the contexts of the user

business before they contact users. Moreover, this kind of expertise is difficult for system

developers to learn. Accordingly, they usually take a long time until the design stage, and may

misunderstand user requirements for the functions to be designed.

In such domains, products defined as standard and commercial software components are

offered. These products provide functions for common use in a domain. The cost of building a

system would be reduced and the period would be shortened, if such products were used. Indeed,

some of these functions fulfill user's requirements without change of the software. However,

other functions provided in such products are required to be modifled to satisfy the

requirements.

We acknowledge two gaps in the design of function, as illustrated in Figure 1. One is the

knowledge gap between a user and a system designer. The other is the functional gap between a

-1-

A
user

required
function

knowledge gap

functional gap

i
System

designer

function for

COmmOn use

Figure 1: Two gaps in the function design

function required by a user and a function provided by a product for common use. The goal of

our research is to bridge these gaps.

We propose methodology that improves the difficulty of function design caused by the

problems as we mentioned above, and assists with fitting a function to a requirement in a short

time. Figure 2 illustrates an overview of our proposal in this thesis. This proposal is composed

of the three major parts, written in a bold type in Figure 2, described as follows.

1)

2)

3)

A technique for requirement elicitation and description

A mechanism for selecting a subset of policies that meet a situation

Techniques for customizations of off-the-shelf components and the standard object

classes.

1.1 Requirement elicitation and description

In our technique, a user takes the initiative in describing their requirements for functions to be

designed. The puIPOSe Of this technique is to improve the problem of requirement elicitation. In

other words, this bridges the knowledge gap between a user and a system designer. This

technique does not replace traditional techniques in RE, but complements them. We refer to this

technique as Function Design Led by Users (FDLU).

In FDLU, a user draw up a use case diagram [1,2] that shows the functions to be designed.

In the next place, a user details a use case using policies. A policy in this thesis declares a pair of

a condition and an operation, or a relation between policies that are the first type. A condition

and an operation are described at an actual task level. A condition stands for a state that invokes

the operation described in the same policy. An operation in this thesis means a function provided

-2-

Requirement Elicitation & Description

Use caseA Use case B

Analysis & specify /,SpeclP.cations
i.

/

A/
user

Use

I
I

L_

I
l

policies
I

I

I

I

I

I

I

I

T

>

>

Policy selection

mechanism

picks out a function

i

System

Analysis, specify

ttt& refer to
～

1

i
System
designer

Customizations

Figure 2: Overview of our proposal

Fruits from the standards

Component A

Component B

OBlthe-shelfcomponents

class B class C

class A

class A-1 class A-2

Standard object classes

by a system, a task carried out by a human user or a combination of them. FDLU provides two

types of formats in which policies are declared, and defines rules how a policy is attached to a

uSeCaSe.

1.2 Policy selection

A policy selection mechanism picks out a subset of policies appropriate to the conditions in the

networks or services to be managed [3]eThe system including this mechanism performs based

on the selected policies,.

-3-

This mechanism adopts a concept of immune networks, in order to make an NMS adaptive

to a change of user requirements and the situations in the network or services. In addition, the

concept of immune networks contributes to shortening the processing time enough to be feasible

to an actual business.

This mechanism eliminates or simplifies drawing up a sequence diagram related to a use

case in the stage of requirement elicitation and description. It enables the system to which this

method is applied to decide its behavior in each case. In this sense, this method has a good

effect on the stage of requirement and analysis.

1.3 Customizations

We set out two techniques for the customization of functions. The first technique provides a

method at the level of software components. The second one does a method at the objectclasses.

In both cases, we make full use of products that are defined as a standard or are sold in

commercial. This is for short period and low cost of building a system.

System designers make software programs providing a function that performs as defined

in a policy. They can set an off-the-shelf component into a system if the component has already

provided the function. An off-the-shelf component is a software part that can be used as it is. If

not, they would develop a new program. In this case, the designers may change an existing off-

the-shelf component, or create a new program from scratch using the standard classes. The first

technique for the customizations allows designers to use an off-the-shelf component without

change, and add new features. This technique oHers four types of components for customization.

We have named these components "RevComponent" [4].

In the case where designers create a new program from scratch using the standard classes,

they can make use of the second technique that we offer. This technique sets a package in which

classes can have connections to the standard ones with minimal influence. We refer to this

technique as the Partial Extension Package (PEP) [5].

These two techniques enable the use of products from the standards if they are updated.

They have good effects on the design stage, because they provide simple way to customize a

function with minimal side effects on existing products. They bridge the gap between a function

provided in a product for common use and an operation declared in a policy.

-4-

1.4 Usage of the proposed techniques

Figure 3 shows how to use the proposed techniques on the stages of a development process.

This figure uses Rational Unified Process (RUP) [6] as the development process. RUP is

currently one of the major processes
based on the concept of object-orientedtechnology.

In our

methodology, a user takes part in the stages of requirement definition and analysis. He/she

specifies functions using use cases defiled by policies. A system designer refers to this use cases

and design functions. The designer may picks up a product for common use such as a standard

objectclass
or an off-the-shelf component, if a function specified by the user is fulfilled by it. If

not, the designer customizes a function provided by a product for common use. Our

methodology does not cover implementation or test of an object class.
Issues about non-

functional requirements, e.g. performance, are not covered in this thesis, either.

These techniques bridge the gaps mentioned above. Figure 4 shows conceptually bridges

of the gaps and support of the policy selection. Use cases detailed by policies fills the

knowledge gap between a user and a system designer. This technique assists users to get closer

to the function design without additional knowledge for them. Tlle POlicy selection enables

policies to be used to draw up requirements for functions. It determines the sequence of

processing when a system using this selection works. This policy selection makes a function to

be adaptive, so a function to be design may be simple or the need to modify a function may be

omitted. Two techniques for customization bridge the functional gap. They provide simple ways

to modify functions as well as keeping products for common use reusable.

the area covered in this thesis

I
I

I

I

work flow in RUP

requ lrement

definition
I

analysis

design

I
/

I

I

/

/

I

I

//
I

implementation

test

I

A
user

iSystem
designer

- specifies functions using use cases

detailed by policies.

-

refers to use cases detailed by policies
to design a function.

-

customizes software for common use

to fit user's requirements,

using the proposed methods.

Figure 3: Usage of the proposed techniques on stages of a development process

-5-

A
user

policy selection

I

I

I

I

I

makes :
adaptive I

I

I

I

I

T

required
function

knowledge gap

bridges I
I

enables usage of policies

to detail a use case
- --- - - - - -I

->

use Case

f. f...,then..

i
refers_to_ -

- Syess:egTer
I

I
I

Use cases detailed by policies

RevComponents & Partial Extension Package+

I

facilitates customizations of
I

a function for common use

T
functional

Figun 4: Bridges of the gaps using the proposed techniques

I

I

I

I

I

I

I

I

l

l

.1

uses

function for

COmmOn use

We will focus on the design of functions for network management since domains would be too

various to cover. The reason why we have selected network management is that rich standards

for this domain have already developed as compared with other industries. This enables us to

make use of standard objectclasses and off-the-shelf components
for system development.

The organization of this thesis is as follows. Chapter 2 shows an overview of network

management and supporting systems, characteristics of function design, and traditional

approaches to design functions. In Chapter 3, we will describe a method that enables users to

describe user requirements. This method makes use of Use Case Diagrams detailed by policies,

which are rules and/or directions to perform business processes in network management.

Chapter 4 reveals a mechanism that picks out a subset of policies from a set, and decides the

behavior of a system. This mechanism is adaptive to change of policies using artificial immune

networks. Chapter 5 and Chapter 6 address techniques for the design of functions based on off-

the-shelf software components and/or object classes set as
international standards. These

techniques have no or little impact on the objectclasses
or the off-the-shelf components. This

feature allows consecutive usage of the classes and components to consist with design of

-6-

functions specific to individual users. Future work is described in Chapter 8 and we will

conclude this thesis in Chapter 7.

-7-

Chapter 2

Network management systems

The aim of this chapter is to clarify what network management is and to address the motivations

that drive us to set up a new framework for function design. First, we give an overview of

business processes and supporting systems in network management. Hereafter, we refer to these

supporting systems as an NMS (Network Management System). Second, we address the

characteristics of design process for functions in an NMS. We also review traditional

approaches for the design of this kind of functions, and outline their problems.

2. 1 Overview

Figure 5 gives a bird's eye view of the entire system that consists of several components and

the staffs in network management. Telecommunication networks are composed of lines such as

optical fibers or cupper lines, and nodes such as routers or transmitters. These provide end users

with various kinds of communication services. This figure shows a Web server and its client as

an example ofa service.

Network management is a set of tasks whose aims are accurate and quick fulfillment,

assurance and billing of services provided to users [7].Network operators are responsible for

achieving these tasks. They monitor and control networks, and issue instructions to the

maintenance staffs in order to perform their duties. Networks are, however, usually too large

and complex for the operators to monitor and control them without an NMS. An NMS collects

information from network nodes and controls them by commands from network operators. It

also stores the data for the management, for example, network configuration data or service

lists.

In the following subsections, we will describe the details of management areas, business

processes, network operators and an NMS.

-9-

Management information

(alarm, configuration, etc.)

-
Configuration DB

I
Log

-
Service list

-
End user list

pJltI

&
FL-

I_

i

0

Network Operator

Commands

Directions etc.

Reports etc.

Network Configurations

Work data

Monitored /

/

-～y

jiJ-Jy

i
A

tA

Supporting System (NMS)

Monitored

information
Control

information

Control

/

Maintenance Staff

/

/

,/Manipulate

i

rA

7%/i

_:i
i(A

4 4
～

End User

Communication

line

Network Elements

(e.g.router, transmittor)

/

Network Elements

(e.g. router, transmittor)

Figure 5: Statr, NMS, and telecommunication networks

2.1.1 Management areas

Tasks in network management are categorized into the following five areas [8]:

1)

2)

3)

4)

5)

Fault management

Accounting management

Configuration management

Performance management

Security management

I
tBW

Web Server

Fault management is to detect, isolate and correct a fault in networks. Faults cause

networks to fail to meet their operational objectives and they may be persistent or transient.

-10-

Faults manifest themselves as particular events (e.g.errors) in the operation of a network node

or line. Error detection provides a capability to recognize faults. Fault management includes the

following functions.

a) Maintain and examine error logs.

b)

c)

d)

e)

Accept and act upon error detection notifications.

Trace and identify faults.

Carry out diagnostic test sequences.

Correct faults.

The accounting management enables charges to be established for the use of resources in

networks, and for costs to be identified for the use of those resources. The accounting

management includes the following functions.

a) Inform users of costs incurred or resources consumed.

b) Enable accounting limits to be set and tariff schedules to be associated with the use

of resources.

c) Enable costs to be combined where multiple resources are invoked to achieve a given

communication objective.

Configuration management includes identifying, exercising control over, collecting data

from and providing data to networks. They are for initializing, starting, providing for the

continuous operation of, and terminating services. Configuration management includes the

following functions.

a)

b)

c)

d)

e)

f)

Set the parameters that control the routine operation of networks.

Associate names with elements to be managed

Initialize and close down elements to be managed.

Collect information on demand about the current condition of networks.

Obtain announcements of significant changes in the condition of networks.

Change the configuration of networks.

In performance management, the behavior of resources in networks and the effectiveness

of communication activities are evaluated. This includes the following functions.

a)
Gather statistical information.

b)

c)

d)

Maintain and examine logs of system state histories.

Determine system performance under natural and artificial conditions.

Alter system modes of operation for conducting performance management activities.

-ll-

The purpose of security management is to support the application of security policies by

means of the following functions.

a) Create, delete and control security services and mechanisms.

b) Distribute security-relevant information.

c) Report security-relevant events.

2.1.2 Layer model

A layered model has been proposed in order to categorize business processes relevant to the

management areas [9]. This architecture is composed of five layers, usually arranged in a

triangle or pyramid as illustrated in Figure 6. Each layer interacts with neighboring layers in

order to exchange information.

Tasks in the business management layer have responsibility for the total enterprise. They

normally set goals rather than to achieve a goal, but can become the focal point for action in

cases where executive action is called for. This layer is a part of the overall management of the

enterprise and interacts frequently with other systems. The following tasks are examples in this

layer.

1) Decision-making for the optimal investment and use of new telecommunications

resources

2) Management of the budget related to OA&M (Operations, Administration and

Maintenance)

3)

4)

Supply and demand of OA&M-related manpower

Aggregation of data about the total enterprise

The service management is concerned with, and responsible for, the contractual aspects of

services that are being provided to customers or available to potential new customers. Some of

A usiness management layer

Service management layer

Network management layer

Element management layer

Network element layer

Figure 6: Management layer model

-12-

the main tasks of this layer are service order handling, complaint handling and invoicing. This

layer has the following four principal roles.

1)

2)

3)

4)

Customer facing and interfacing with ()ther operational organizations

Interaction with service providers

Maintenance of statistical data (e.g.Quality of Service)

Interaction between services

The network management layer has the following five principal roles.

1) The control and coordination of the network view of all network elements within its

scope or domain

2) The provision, cessation or modification of network capabilities for the support of

service to customers

3) The maintenance of network capabilities

4) The maintenance of statistical, historical and other data about the network

5) Interaction with the service management layer on performance, usage, availability etc.

independent of technology

Thus, the network management layer provides the functionality to manage a network by

coordinating activity across the network. Then it supports the "network" demands made by the

service management layer. Fulfillment of tasks in this layer needs knowledge about what

resources are available in the network, how these are interrelated and geographically allocated,

and how the resources can be controlled. It requires an overview of the network. Furthermore,

this layer is responsible for the technical performance of the actual network. In addition, it

controls the capabilities and capacity of the network in order to give the appropriate

accessibility and quality of service.

Tasks in the element management layer are performed to manage each network element

such as a router. Information that this layer presents to the network management layer should be

vendor-independent. Tasks in this layer have the following principal roles.

1) Control and coordination ofa subset of network elements

2) Maintenance of statistical, log and other data about elements within its scope of

control

2.1.3 Business processes

Tasks in the service and network management layers draw the attention of network operators.

These tasks have a tendency to be specific to each organization while they contain functions that

-13l

can be shared between organizations. This is because they provide unique services to their

customers using the same communication technologies. In addition, the aims of their tasks are

similar, that is, they supply high quality service at low costs. On the other hand, tasks in the

element management layer hinge mainly on the kind of and/or technology used in network

elements. Tasks in the business management layer are influenced by factors other than ones of

network management.

A business process model is set as a standard because tasks in the service and network

management layer contain functions that can be shared between different organizations, and

they have to interconnect their networks. Figure 7 shows a framework of business processes in

Customer

Customer Interface Management Processes

Sales Order Handling
Problem

Handling

Customer QoS
Management

Customer Care Processes

Invoicing &

Collections

Service

Planning &

Development

Service

Configuration

Service

Problem

Management

Service Quality
Management

Service Development and Operations Processes

Rating &

Discounting

Network

Planning &

Development

Network

Provisioning

Network

Inventory

Management

Network

Maintenance &

Restoration

Network and Systems Management Processes

Network Element Management Processes

Physical Network &

Information Technology

Network Data

Management

Figure 7: Telecom Operations Map, business process framework [7]

-14-

U5

q>
C^

V)

q)
U
O
i

Fh
-

C

q)

E
q)
bD

cd

=

cC

=

E
a)
-

U3

A

m

C

O
I-
-

cC

E:
L

tJiO
C
-

these two layers, which is defined by TeleManagement Forum (TMF) [7]. There are ten

processes in the service management layer, and five processes in the network management layer.

The service management layer is divided into two parts: "Customer Care Processes," and

"Service Development and Operations Processes." In the simplest sense, the division reflects

differences between processes triggered by individual customer needs and those applied to a

group of customers subscribed to a single service or service family. These processes are service

dependent and technology independent. On the other hand, "Network and Systems Management

Processes" belong to Network Management Layer. They are technology dependent and vender

independent. This framework is used for understanding the relationships among individual

process flows.

Each process interacts with others. For example, Figure 8 shows data flows between

processes for service quality management [10].In some cases, a process gets some management

information from another by sending a request. In other cases, a process gives notice to another

periodically or due to an event. As other example, we can see other data flows for peer-to-peer

service configuration [11],and order handling [12].

A business process is composed of several sub processes. In the case of the service quality

management, there are eleven sub processes as illustrated in Figure 9. Functions in each sub

process are performed by network operators, an NMS, or their corporations. Therefore,

management data is passed via interfaces between human and machine, between software

components, or between human beings. We can see the breaking down of other processes.

Many companies, including service providers and vendors, have complied with these

business processes. They can enjoy the
benefits of standard software based on these business

processes if they accept the model. Network operators do not have any problem adopting the

standard processes that are not used for their original services. They, however, need to develop

some functions in business processes that are used for their original services. They need the

original services in order to make themselves competitive in the telecom industry. Functions or

tasks in the network management layer can be shared more easily than in the service

management layer. This is because the service management layer has strong connections to their

original services.

-15-

Customer

Performance Complaints

Trouble

Reports
Status Reports

Resolution Notification

r-
Register

SLA Terms

Order

Handling

Problem

Handling

SIJA Violations/

Outage Notifications

Rating &

Discounting

Service

Affecting

Problem

Customer Interface Management

Trouble

Notification
Performance scheduled

Complaints Reports

Required Reports 1

QoS & SLATerms. +
Profiles

SLA Violationt<

Customer QoS
Management

QoS
Violations

Problem Reports

Trou ble

Notification

Service Problem

Resolution

Network

Maintenance &

Restoration

Network

Planning &

Development

Problem Data/

Planned Maintenance

Service

Planning &

Development

Service Problem Data/

Planned Maintenance

Usage Information

Planned Outages

Service Class

Quality Data

Quality

Objectives

Service Quality
Management

Performance Degradation

Network

Provisioning

Start/Modi fy

Monitoring

Network

Change

Performance Goals

Capacity Requests

Performance/Usage

Trend Requests &

Information

Network

Data Management

Network

Performance

Data

Network

Performance

Data Request

(proposed)

Usage & Performance

Data

Network Element Management

Figun 8: Performance management flows [10]

-16-

Network Topology

Network Related Performance and

Usage Trend

Non-Network Performance Data

Service Problem Data and Reports

Problem Trend1<

Speial Equipment Information

Thlrd Party Network Data

Service Data

Filter/Firewal1

Data Collection

Data Storate & Maintenance

Available Capacity

Forecast Sales)

Non-Network Related

Quality Objectives

Network Related

Quality Objectives

CQoS Report Request

Map Data and Service

Monitor Capacity

Monitor

Service

Problem

Analyse Quality
Obectives

Service Quality
Analysis

SQM Local
Reporting

Function

CQoS Reporting
Function

Monitor

Performanc e/Usage

Performance/Usage

Requests

Service Capacity &

Usage Analysis

Constraints Capacity

Additional Capacity

Requests

Note:

sub process data

Figure 9: Sub processes in Service Quality Management [10]

-17-

Reports

Service Modification

Recommendations

Service Class

Quality Data

QoS Violations

2.1.4 Network operators

Network operators are usually experts in the management of networks and services that are own

and provided by the organizations for which they work. They are familiar with how to read

management information about their services and networks, and how to solve a problem

occurring in the services and networks. Their knowledge and skills are gained from experience

for a long period.

Network operators fill the jobs in one or several processes described in the previous

subsection, through their knowledge and skills. They monitor the status of the service and

networks. They may control elements of the networks or services if they find some malfunctions.

They also have contact with customers for provisioning of and/or receiving complaints about

the provided services. They direct staff in maintenance or sales sections to maintain service

quality.

Network operators are also users of an NMS that monitor and control networks and

services. They, however, are rarely experts in computer systems or software. Therefore, they do

not know how to design functions in an NMS, or even how to represent their requirements to

the systems. Nevertheless, they sometimes take part in a project
in which the next generation

support system is designed and developed. Such a projectcalls
for their expertise in network

management to design functions. This is one of the reasons why it takes a long time to construct

anNMS.

2.1.5 NMS

An NMS executes functions supporting a part or whole of a business process or a sub process. It

automatically processes management information based on strategies set by network operators,

in the cases where a function supports the whole of a process or a sub process. It shows

information to and receive inputs from network operators, in the cases where a function

supports a part of a process or sub process. In both of these cases, an NMS interacts with

network operators because itis required to provide human-machine interfaces.

Monitoring is the most basic function in an NMS. What kinds of data are collected

depends on the service provided and/or network technologies. An NMS collects data about

delays, delay fluctuations, loss rates and others of packets in IP networks. For telephone

networks, an NMS gathers data about call loss rates and/or average duration of calls.

Monitoring is started by a timer or request by network operators. The collected data is processed

and used for representation to network operators or control of network elements.

An NMS may control network elements if these elements set parameters or start some

activity due to messages from a remote machine. For example, an NMS may control the

bandwidth of a logical path in ATM (Asynchronous Transfer Mode) networks. It may set routing

tables in X.25 packet networks. Control is triggered by a result of analysis of monitored data, or

-18-

a request of network operators.

For the monitoring and control, an NMS has connections to network elements in order to

gather and/or distribute data. Therefore, an NMS is usually distributed systems. There are

several kinds of protocols between a network element and an NMS. On/off signals are the

simplest way of communication between an NMS and network element. Proprietary protocols,

such as CAPNET [13] and TL-1 [14], have been developed by several companies. In recent

years, telecom companies have carried on the deployment of standard protocols such as SNMP

(Simple Network Management Protocol) [15] or CORBA (Common Object Request Broker

Architecture) [16].

An NMS stores a large amount of data as well as monitoring and controls. This data

contains network configurations, service lists, customer lists, and so forth. In addition, an NMS

saves monitored data such as error logs or historical data about traffic. These kinds of data are

used for the analysis of performance, provisioning of new services, and/or accounting.

An NMS has recently been constructed based on several machines in order to disperse

load caused by manipulation of the data. The machines may be located in a LAN, or on different

sites. The protocols between these machines are the same as those mentioned above.

2.2 Characteristics of functions in an NMS

In this section, we address the characteristics of functions provided in an NMS. We can

summarize the major
features of these functions as follows.

1) Some functions can be shared between different network operators while others are

specific to each operator.

2) Functions must be adaptive to conditions in networks or services.

3) Functions require expertise in orderto be adaptive.

4) It is difficult to describe a sequence ofaprocessing.

5) Requirements for a function may not appearat the time the NMS is built.

We will detail each characteristic in the following subsections.

2.2.1 Shared and originalfunctions

Most functions that can be shared between different network operators are to provide primitive

monitoring or controls. The primitive monitoring is to gather row data, such as delay time of

packets, from network elements. The primitive controls are to set parameters or invoke an

-19-

activity on network elements. For example, routing parameters or bandwidth is set by this kind

of control. Most of the primitive monitoring and controls relate to the network management

layer or the lower layer. These functions are usually designed based on a certain communication

technology such as ATM or IP. In addition, network operators need to change or replace these

functions for original services.

Functions are inclined to be more distinctive as the management layer becomes higher.

Most functions in the service management layer directly support one or several original services.

Even functions in the network management layer may have unique feature for an original

service. A service provider tries to be attractive to customers in its
originalservices

so that not

all functions can be shared.

No one can decide which function can be shared or not. The decision is dependent on what

kind of data, analysis and/or control is needed in the provided services. In addition, it is

influenced by design policy. More shared functions can be used if network operators manually

deal with processing that are not supported by the shared functions. More unique functions must

be designed as an NMS provide more functions supporting original services.

2.2.2 Adaptation to various states

Each function in an NMS must be adaptive to a variety of conditions that occur in networks or

services. One of the reasons why the conditions diverge is the number of customers. Using

functions in an NMS, a network operator deals with many customers per service. He/she must

respond carefully to customers' demands and/or complaints although the demands and

complaints may be different from each other. This is because this response affects the credit of

the service. The supporting functions should take account of the preference of each customer.

Various kinds of services also require functions in an NMS to be adaptive to a variety of

states. Network operators may deal with different schemes for discount or compensation. In

such case, functions in an NMS have to behave in light of the scheme to be applied. Network

operators may have to ensure continued services that are provided to crucial business. Financial

compensation for a halt of the services may have no effect in this case. Therefore, functions for

the services may have to set and maintain redundant configurations of networks.

Functions in an NMS monitor and control a variety of network elements such as routers or

transmitters. Monitored data is different due to the kind of technology or vendor. Control menus

also differ from each other. Functions specific to an individual element do not need to take

account of these differences. Functions relevant to several kinds of elements, however, may

have to recognize the differences. If network configurations are changed dynamically using

MPLS [17] or DiffServ [18],the functions may have to be more adaptive than ones for statically

con figured networks.

-20-

2.2.3 Expertise contained in functions

Functions in an NMS can be adaptive due to expertise that well-informed network operators

have. Their expertise stems from carrying on actual operations for a long time. The operators

have encountered states of affairs that had not been able to be predicted. They dealt with such

states based on their skills and imaginations. Functions become more adaptive as they make

better use of the expertise.

If functions are not designed based on expertise, they may have a red tape mind. If so,

network operators would not make use of such functions. Functions that are not adaptive may

not put up data that operators need. They may not control network elements to fulfill an

operator's demands. Network operators would not rely on the functions that perform

inappropriately even at low rates. Expertise is important for functions in this aspect.

Others, such as system designers or green operators do not have such expertise. Of course,

the first reason is that they do not have rich experience in network operations. In addition, even

well informed network operators cannot put down precisely on paper the expertise they have.

This problem is caused by the complicated contexts in which the expertise was gained. Even if

expertise is described precisely, others may not understand it. They do not have the rich

experience to call upon in order to imagine the contexts in which the described expertise was

gained.

Knowledge gained in a different environment cannot always be diverted because the

contexts are different. However, it may help to understand or imagine the expertise specific to

a network operator.

2.2.4 Dimculty of making a sequence of processing

The other feature in the design of functions in an NMS is the difficulty in defining a sequence of

operations. Network operators can only draw a sequence of operations in a large sense. Such

sequence is not elaborate enough to design functions. Operators must consider a large number

of conditions used to determine which function is executed, if they detail the sequence. These

conditions include one that rarely appears in the daily work of network operations. They have to

concern themselves with a combination of the conditions.

In addition, a sequence of operations continually changes, even though users can specify

the sequence. Operators have to address new customers, services or network elements. They

have impacts on an order of operations and/or processing in an operation. Therefore, it may not

be effective for the function design to detail a sequence of operations.

-21-

2.2.5 Appearance of requirements after NMS building

Network operators are users of an NMS providing functions that are designed based on their

expertise. Therefore, they own the requirements to the functions to be designed. However, these

requirements may change, or new requirements may appear after the NMS is built.

The first cause comes from new services. A service provider continues to develop new

services in order to acquire new customers. Furthermore, services are being introduced more

rapidly and with a shorter life span [19]. Every service is supported by functions in an NMS,

and new services usually have some features different from existing ones. Therefore, functions

must be changed to fulfill new requirements for new services.

New customers and technologiesalso result in new requirements for functions in an NMS.

In particular, it is difficult for network operators to foresee what new customers will demand.

Nevertheless, a service provider may not acquire new customers with their demands that new or

modifled functions will support, if response of the provider is not quick. Therefore, an NMS is

required to provide new or changed functions quickly.

Network operator expertise is another type of cause that results in changing requirements

for functions. As mentioned above, it is not easy to describe expertise precisely. Therefore,

requirements to functions are incomplete at the stage of design. In many cases, network

operators note that a function does not perform exactly as intended. Requirements to the

function are fixed after it starts to be used.

The features we mentioned indicate that functions in an NMS should be changeable with

little labor.

2.3 Designoffunctions

This section mentions the design of functions in an NMS. First, it surveys adopted approaches

so far. This survey focuses on the elicitation of user requirements and the implementation of

functions, which are important for NMSs. It describes standard techniques and off-the-shelf

software components that can be used to construct an NMS. This sharing of design is a trend of

the times for cost reductions and short periods of NMS constructions.

Through these surveys, we make it clear that there are three shortcomings of function

design as follows.

1) Network operators cannot easily tell what functions they need. On the other hand, it

is also difficult for system designers to understand the operators' requests.

2) We cannot make functions easily adaptive in an environment in which user

requirements are changeable.

-22-

3) Few techniques are put forward to design individual functions based on shared

software.

2.3.1 Elicitation of user requirements

Figure 10 shows the traditional exchange of information for function design. Network operators

usually tell system designers of their images of functions to be made
in a natural language. The

system designers create formal specifications based on the image. If they have some questions

about the image, they ask the network operators in the natural language, and clear up the

questions. They suppose designed functions in the natural languages when formal specifications

take shape. The network operators check and review the designed functions. They demand a

change of the design if the design does not satisfy their requirements. Based on the requested

change, the system designers modify the specification described formally. This cycle is

continued until the network operators accept the design.

In these tasks, the system designers play the role of a translator of the natural language

into the formal specifications, and vice versa. nlis is caused by the fact that few network

operators are familiar with formal specifications. This type of interaction, however, raises a

problem for the design of functions. In many cases, system designers are not familiar with

business processes as the context of functions to be designed when they start the design. In

addition,
it is difficult for them to learn the processes and/or expertise, as we mentioned in

Section 2.2.3. System designers, therefore, take a lot of work to elicitprecise requirements for

functions.

This problem is recognized in the Requirement Engineering (RE). Many tools and

techniques have already been proposed to make a well-defined specification [20]. Moreover, it

is recognized that RE contributes to success in a software project[21].
Getting

requirements,

however, is still a difficult part of a software project.
It was reported that RE was deficient in

check &

review

2
network

OPeratOr

requests or explanations

questions or proposal

specifications

i
Sy Stem

create &

modify

aJevsi-g-i-er f?r_T,a]
specifications

Figurt! 10..Interactions between an operator and system designer in traditional design

-23-

more than 75% of all enterprises [22]. One of the reasons why RE is insufficient in practice is

the knowledge gap between users and system designers, as well as in the case ofNMSs.

2.3.2 Implementations of functions

Several techniques make software adaptive to change. Typical cases are software agents and

knowledge-based systems (KBS). We deal with these two techniques separately in this thesis,

although these two techniques are not mutually exclusive.

With regard to agents, the key concepts are that agents can act autonomously to some

degree, and they are part of a community in which mutual influence occurs [23]. Software

agents have already been applied to a number of fields [24].We can see examples of NMSs that

adopt software agents [25, 26, 27, 28]. TTleSe Systems Provide functions that can be shared

among different operators. They have demonstrated that they are adaptive to assumable

changes.

Few systems based on software agents, however, exist for the service management layer.

As we mentioned in Section 2.2.5, functions in the layer are needed to fulfill the requirements of

individual network operators, and whose changes are not predictable. It is difficult for such

requirements to be fulfilled by current software agents. The difficulty of the applications arises

from the nature of or issues in software agents. The adaptability of a software agent is usually

generated by a logic that is coded in their programs. This logic is designed by a human designer.

If this designer does not predict all situations to which the software agent should be adaptive,

the agent may not deal with a situation that has not been considered. Even if the agent can

evolve, no one can know whether the outputs of the evolved agent are corrected. Therefore, the

current agent technique may not be applied to the function design on which we focus in this

thesis.

Knowledge-based systems (KBS) have also been applied to many areas in which they

assist human activities. KBS is composed of two main parts, a knowledge base and an inference

engine. A knowledge base stores and extracts data that represents knowledge properly. An

inference engine solves a problem using data from outside of the system that contains the engine,

and that stored in a knowledge base. KBS can change or enhance its behavior by modifying

knowledge, so that it is adaptive.

Rule-based representations have become popular for the storage and manipulation of

domain knowledge in KBS. Two important reasons for this popularity are as follows [29, 30].

1)

2)

The modularity of the rule-based framework

Tlle ability to use knowledge stored as rules in a nonprocedural manner

Rule-based representations have been used in the area of network management. In this

area, this technique is referred to as policy-based management or policy driven management

-24-

[31]. We call it policy-based management in this thesis. In this approach, policies on how to

operate and manage networks are knowledge to be represented as data in a system. Expression

of policies and a searching mechanism have the key to make

environment in which user requirements are changeable, as well.

2.3.3 Standard products

There are many standards with regard to the following areas.

1) System architecture

2)

3)

4l

3)

4)

5)

Business processes

Management parameters

Information models

Protocols.

system adaptive to an

We have already described some of these in this thesis. The standards of system

architecture give three aspects, functional, informationa1, and physical [9].All aspects conform

to the layer model described in Section 2.1.2. Business processes and their interactions for

network management have been defined as mentioned in Section 2.1.3.

As for management parameters, they keep the heat on set standard parameters with regard

to contracts [32, 33].The items below are examples of parameters set by TMF.

a) Timetorestore service

b) Timetorepair

c) No service provider liability interval

The purpose of the information models is to give structure to information conveyed

externally by protocols. In addition, it is to model management aspects of the related resources

[34].The information models are based on
object-orientedanalysis and

design. Object classes

are abstractions of data processing, or communication resources (e.g.connections and routers)
for the purpose of management. There are technology-independent classes such as "System",

"Log" [35], "Network", "Trail" [36], and "Basic Layer Network Domain" [37]. In addition,

ITU-T (InternationalTelecommunications Union
-
Telecom Standardization) provides many

classes dependent on individual technologies, such as for SDH (Synchronous Digital Hierarchy)

[38], ATM (Asynchronous Transfer Mode) [39]. TMF also provides object classes for wide

areas, such as work in network management [40] and world ordering [41].

These
objectclasses

are usually dependent on specific protocols. Several protocols are

currently recognized as the standards for network management. The
major protocols are

CORBjVIIOP (Internet Inter-ORB Protocol) [16] and SNMP [15]. We can see many NMSs

-25-

based on these two protocols [42, 43, 44, 45]. JavaTM RMI [46] is getting affinity to

COBRA/IIOP [47] so that we can make use of it instead of CORBjVIIOP. HTTP [48] is also

expanding their applied areas [49, 50].

System designers should conform to some or all of these standards for cost reduction,

short period for constructions, and/or interoperability of NMSs. On the other hand, they have to

pay attention to user requirements that need original functions. Documents of these standards,

however, make little mention of ways to add a new feature to, or modify items set in the

standards, such as information mcdels. Scant literature has given an account of this problem,

either. Therefore, system designers have to consider by themselves how to bring unique

functions into harmony with the standards.

2.3.4 Off-the-shelf components

In line with the progress of the standards for network management, vendors have been

developing off-the-shelf components [51]. They usually provide functions that can be shared

among different network operators. They keep interoperability between components from

different vendors, by means of conforming to the standards and approval before use [52].

The use of these components lightens the workload of system designers. It may eliminate

building an NMS from scratch. System designers may make use of off-the-shelf components as

apart of an NMS to be built.

Almost all system designers, however, encounter the same problem as in the case of the

use of the standard objectclasses.
Off-the-shelf components may not provide proper methods to

make functions specific to a network operator. If designers make use of off-the-shelf

components in NMS construction, they have to use the components as black boxes, because few

vendors open source codes in their components. Little literature has dealt with this point.

-26-

Chapter 3

Function design red by users

In this chapter, we will first describe concepts of the function design led by users (FDLU)

that network operators take the initiative in eliciting and describing requirement. A survey of

traditional techniques in RE follows and clarifies issues for use of FDLU. We will describe

our technique in which use cases detailed by policies specify functions to be built. In the last

of this chapter, we will show a case study to validate our technique.

3.1 ConceptsofFDLU

FDLU must be user-friendly and practical for system construction. This section surveys user

friendliness and practicality via studies published so far, and defines the concept of FDLU in

thisthesis.

3.1.1 User friendliness

The IEEE standard dictionary defines the terms
"user friendly". The meaning of this term is

"Pertaining to a computer system, device, program, or document designed with ease of use

as a primary objective"[53].
User-friendly tools and techniques provide means that are easy

to use for expressions and/or executions. If the tools and techniques involve user's

viewpoints, users can easily understand them. Consideration of user's viewpoints embeds

lines of users thought into the tools or techniques, and eliminates extra learning to get

specific knowledge for use.

User-friendly tools are considered in the field of human-machine interface. For

example, users can more effectively make programs for a sequence controller using a visual

programming method with icons [54]. In modeling and analyzing networks, a tool hides all

the mathematical details of models used for calculations of network performance [55]. Users

of this tool do not need to set various parameters when they use this tool. Therefore, they do

not have to know the complicated model itself.

-27-

Inclusion of user's viewpoints has been considered in order to develop a tool friendly to

users. In the field of software quality, it has been recognized that user's viewpoints are

different from ones for developers [56]. Software engineers traditionally relate software

quality to the number of defects in the code. On the other hand, a user is interested in

knowing how frequently the software fails during its execution and how severe the effects of

such failures are.

In the field of CSCW (Computer Supported Cooperative Work), it is recognized as a

problem that participants usually have different backgrounds and standpoints. The mutual

understanding among the participants is hindered due to these differences. A framework

furthers the mutual understanding by picking up and showing differences in their intentions

in collaborative design [57]. This framework considers both the user's and the designer's

viewpoints to detect and indicate the differences.

We can summarize that user friendliness requires hiding the knowledge outside the user

domain, the employment of symbols familiar to users, and a consideration of user's

viewpoints.

3.1.2 Practicality n)r system constructions

User friendliness does not always have a positive effect on tools and techniques. It

sometimes makes the tools and techniques unsuitable for specialists like system designers,

because details useful to them are hidden.

From evaluation items in literature, we can see which conditions must be fulfilled to

make a technique practical. Of course, conditions to be fulfilled depend on the context of an

application. We focus on system design in this thesis, and clarify conditions to make a

technique practical by surveying the literature published so far.

As a result, the following three points are important for a practical technique to design

software:

1) Reduction of ambiguity

2) Detailtuning

3) Iterative design.

Formal methods can reduce the ambiguity in specifications and provide a basis for

verification later on [58]. They are used in the development of some applications, for

example, computer communication networks [59] and E-commerce [60].

Detail tuning as used in this thesis means that a specialist is able to set variables and/or

expression in a specification or software design. Formal methods mentioned above usually

provide the means to manipulate details in a specification or software design. As another

example, we can use a method in which object-oriented analysis combines with extended

-28-

Petri-Nets for distributed software design [61]. Unified Modeling Language (UML) [2] also

provides powerful diagrams that show the static structure and dynamic behavior of software.

UML is used to build various applications. However, detail tuning is not always consistent

with user friendliness because it often needs expertise and skills relating to software.

The iterative design of software is recognized aS an effective way to fulfill user

requirements. It is adopted in many methodologies, for example, Rational Unifled Process

[6] and the spiral model [62].On the other hand, the water flow model [63] does not provide

a framework for iterative design and many problems of this approach have been pointed out.

3.1.3 Characteristics for users to design functions

The following points are summaries of the nature for FDLU in order to be friendly to users

and practical in building a software system. These become design goals of FDLU.

1)

2)

3)

4)

5)

3.2

It should hide details relating to function design.

It should employ expressions familiar to users.

It should include user's viewpoints.

It should not permit ambiguous expressions.

It should be able to be used in iterative processes for development.

Traditional approaches

analysis and description

to requirement

Requirement Engineering (RE) is composed of three major processes
to elicit, describe, and

confirm requirements [20]. Figure ll shows an overview of these processes and relations

between them.

Elicitation of user requirements provides knowledge of the subject
domain in which a

system to be built will be used. This knowledge is used to describe specifications of software

to be programmed. The importance of this phase cannot be overemphasized. A software

system could not provide proper functions if system developers do not have the right

knowledge about the subject.
A description of requirements produces models that will be used for design in the

following phases. A model explains user requirements in terms of functionality in the system

to be built. An aspect of non-functionality, e.g. security or performance, is described in

another model.

-29-

user requlrementS

user

elicitation

knowledge

specifications

feedbac k

domain knowledge

requlre
knowledge

description

requlrement

models

models
to be confirmed

results of

confirmation

confirmation

domain

domain knowledge

Figure ll : An overview of requirement engineering

In the process of confirmation, users come to an agreement with system developers in

terms of requirements. For this agreement, users and system developers verify models made

at the description stage. This gives feedback to the description process if the models are

inconsistent, inaccurate, and/or ambiguous.

The way in which requirements are acquired and expressed is important for these

processes. Many methods and tools have been proposed for the acquisition or modeling of

requirements. We will review major methods and tools
for requirement acquisition and

modeling with regard to whether they have the user friendliness.

3.2.1 Requirement acquisition

This subsection describes several traditional approaches to acquire user requirements.

3.2.1.1 Approaches based on an interview

Interviewing users is an intuitive approach to acquire requirements to a system to be built.

An open interview is regarded as the simplest interactions between an analyst and a user [64].

An analyst lets a user talk about hisnler jobs in a free and relaxed style. The analyst attains a

comprehensive knowledge of subject
domain. We can say that this method includes the

user's viewpoint since the user can talk about hisnler jobs using familiar terms. However, it

has some problems that the analyst cannot elicit detailed requirements and/or specify user

jobsin detail.

A structured interview [65] is one of orderly approaches that overcome the

-30-

shortcomings of an open interview. An analyst directs the user's attention to a specific

subject,and elicits the requirements that the analyst wants to know. The analyst poses

questions based on viewpoints of analysts or system developers. Therefore, a structured

interview does not always helps users to represent correctly their needs to functions.

3.2.1.2 Goal-oriented approaches

Goal-oriented RE is one of the distinct trends for eliciting requirements for an analysis of the

wider context in which the system will operate. The rationale of developing a system is to be

found from the environment in which the system works [66].This RE is therefore concerned

with the elicitation of high-level goals to be achieved by the envisaged system [66, 67, 68].

These goals are refined into specifications of services and constraints [67, 69, 70].

Practical experience shows that this approach has the following problems.

1) Itisdifficultforanalyzers tofindoutgoals [68, 71].

2) Breaking down a goal into composite goals cannot be carried out in a

straightforward way, but is iterative [72].

3) It contains wasteful work in which uninteresting and spurious goals must be

eliminated. This work, however, is difficult for analyzers [73].

These problems may be due to the lack of user's viewpoints, since almost all tools and

techniques based on the goal-oriented approach stem from the viewpoints of analyzers. If

user's viewpoints are included in a tool or technique, they might assist users to pinpoint their

goals properly.

3.2.1.3 Scenario-based approaches

A scenario-based approach is also principal in RE and distinct from the goal-oriented one. In

general, a scenario is a story that tells how a system satisfies user requirements. Scenarios

have proved useful in requirement elicitation. They allow users and developers to envisage

situations in which a software system to be built works, and assist in eliciting requirements

from users [74, 75]. They also help to discover exceptional cases [71, 74, 76], or to derive

conceptual models [77].Some studies benefit from advantages of the goal-oriented approach

and scenarios by combining them [72, 78].

One of the key points in this approach is how to produce a scenario. Most approaches

have been designed for system developers. Therefore, the developers have to leans business,

environment and/or context in which a system to be built works. It cannot be a solution to

close the knowledge gap, since it sometimes takes a long time to learn. The specification

-31-

drawn up by users, however, might not be suitable for software development because few

approaches included user's viewpoints.

As a rare case, Dano et a1. adopted the "domain expert-oriented" approach [77], in

which the domain experts can actively participate during the requirements acquisition

activity by identifying and describing the use case. In this proposed method, tables with

functions, conditions and assumptions are used to describe a use case, as shown in Section

3.2.2.1. If a method includes use viewpoints, users could actively take part in making a

scenario.

3.2.1.4 Approaches with attention to multiple viewpoints

Viewpoints have been widely used in RE for a number of different reasons [79]. Primarily,

its motivation has been the observation that different stakeholders will have different views

and perceptions of the target domain. In addition, viewpoints have been used to characterize

different classes of users [80],to distinguish between stakeholders terminologies [81],and to

partition the requirement processes into loosely coupled pieces for work [82].They have also

been used to tolerate inconsistencies between development artifacts [83].

These approaches adopt multiple viewpoints, including users ones, to a system to be

built. However, FDLU needs user's viewpoints for requirement acquisitions. Literature

makes little mention of this point.

3.2.2 Notations for requirements

This part shows modeling languages in which user requirements are expressed. In general,

requirements are composed of two parts, a functional part and a non-functional part. A

functional requirement describes actions to be performed by a system. Physical constraints

are not considered in this requirement. A non-functional requirement designates system

properties that include constraints of environment or implementation, performance,

maintainability, reliability, and/or scalability. We focus on the functional requirements that

describe functions provided by a software system to be built.

We can see many proposals in which specification languages are defined. They are

classified roughly into two categories. The first approach focuses on a static feature and

describes that data is processed in software, e.g. Entity-Relationship (E-R) model [84].The

other focuses on system behavior and describes what happens when software executes (e.g.

State Transition Diagram).

Object-orientedmodeling has been incorporating these two approaches for a decade.

Unified Modeling Language (UML) is the most widespread. It is set as a standard by Object

Management Group (OMG) [2].We review how applicable to FDLU this language is.

-32-

Languages for declaring policies are also reviewed in this part. Much literature has

dealt with the languages in the area of the policy-based management.

3.2.2.1 UML

UML defines the following graphical diagrams.

1)

2)

3)

Use case diagram

Class diagram

Behavior diagrams: state chart diagram, activity diagram, and interaction

diagrams (sequence diagram and collaboration diagram)

4) Implementation diagrams (component diagram and deployment diagram)

A use case diagram is frequently used for a description of user requirements. Rational

Unified Process (RUP) adopts a use case driven approach in which all diagrams are derived

from a use case diagram, directly or indirectly [6].

A use case diagram is composed of actors and use cases, as shown in Figure 12. An

actor inputs some data into and receives one or more results from a use case. Both a human

use or computer system can be an actor. A use case diagram is easy to read and draw so that

uses can make use of it.

As we mentioned above, other diagrams are derived from a use case. This derivation

needs supplementary documents to present the specifies of a use case, because use case

shows only a short comment. The specifies are usually written in a natural language such as

English, so that they have a tendency to be vague. Some literature has proposed the use of

another notation with formal syntax and semantics for the specifies.

Regnell et al. used Message Sequence Charts (MSCs) [85] to make formal

actor
use Case

Schedule tasks

actor

9
network designer

Figure 12: A use case and actors

-33-

specifications with use cases [86, 87, 88].MSCs are frequently used to state the requirement

for telecommunications software. Interactions between an actor and a use case are sequential

in this proposed method. An MSC-based approach has advantages over the grammar-based

approach, because it can be scalable and understandable.

Dano et a1. adopted an approach in which domain experts can take part in requirements

acquisitions [77], as written in Section 3.2.1.3. A domain expert uses an extended tabular

notation to represent dynamic behavior of a system at the first setout, as described in Table 1.

Secondly, an analyst produces Petri nets that show the behavior from the tabular notation.

Even novices at designing software can write tables and show their requirements.

Constraints-based Modular Petri Nets (CMPNs) has been proposed to describe use

cases formally [89]. CMPNs cover the shortcomings of existing Petri nets, such as

place/transition nets (P/T nets) [90] and colored Petri nets (CP-Nets) [91],
for formalizing

use cases. The process in this approach starts with filling out an action-condition table for

each use case. Therefore, users might actively take part in the process, though this approach

does not have a great deal of interest in the participation of users. CMPNs itself, however,

might be difficult for users to understand.

These methods mentioned above are promising for FDLU if users can draw up their

usage of a system sequentially.

Table 1: The extended tabular notation to represent dynamic behavior [77]

FUNCTION FUNCTION STATE OF OBJECT TYPES CONDIT10 ASSUMPTlO

Ntvr PUMP NnE TANK PUMP
M()TOR TRANSACTION

DISPLAY

fl
,hcgin

initiate the execution

of the ''take gas from

a given pump" use case

tD UD UD UD UD UD

f1.1

the customer removes idle

idle

in

in

not empty

UK

displaying On

off

UD

UD

the pump the pump

the nozzle
an amount

displaying

an amount

is enabled

the pump

is disabled

is enabled

fl.2 the customer pulls

the trigger

initialisin released notem t initialisin On UD

ready to

deliver

released not empty displaying

an amount

On

UD

fl.3

the customer releases

the tri.cger

g

gas

pulled not empty g

amount

On

UD

fl,4

fl,cnd

the customer replaces

the nozzle

ready to

deliver

re lea+sed not empty displaying

an amount

On

UD

terminate the execution

of the "take gas from

a given pump'' u.se case

idle in UK displaying

an amount

On being

cnnted

idle in UK displaying

an amount

off creah=d

-34-

3.2.2.2 Description of Policies

We can see many languages in which policies are described. Examples of the languages are

written as follows.

1)

2)

3)

4)

Language for Netmon, which are a monitoring system [92].

Language for management of distributed systems [93].

Apolicy set for an access control [94].

Description for an access control [95].

For example, the language for Netmon consists of two parts, a policy rule and policy

defined event. A policy rule offers a form
"event causes action if condition," and a policy

defined event does it "event triggers policy defined event if condition." Other languages

offer similar forms.

3.3 Requirement description by users employing

use cases detailed by policies

In this section, we set out our proposal about function design led by users for network

management systems. The motivation of our proposal arises from the following two points.

First, few traditional techniques can support FDLU. Second, we cannot adopt methods that

postulate to define a sequence of a function, which are described in Section 3.2.2.1, as a

method used in FDLU. This is caused by the difficulty of making a sequence of processing

offunctions, as mentioned in Section 2.2.4.

First, we describe our method in which the specifies of a use case are expressed using a

set of policies. We also state kinds of policies and representations in which policies are

written. Then, we illustrate how to make a use case and map policies onto it. We also

describe the role of system developers.

3.3.1 Description of requirements: use case detailed by policies

We adopt a use case and policies as tools for users to draw up specifications to software to be

made. The use case model is easy for users to understand, due to its simple expressions. It

states what outputs the software provides for users, so that users can embed their viewpoints

into a model. This user fhendliness is underlined in the literature in Section 3.2.2.

-35-

A policy is a business rule for operators, and can be derived from their business goals.

Policies in this thesis are classified into two categories. A policy in the first category shows a

function and a condition
by which the function is invoked. This type is referred to as a

directive policy. A policy in the second category expresses the relationship between policies

that are the first type. For example, a policy in the second category shows priority between

two other policies. This type is referred to as a correlation policy. Section 3.3.2 will deschbe

the details of each category and kind of policies.

Figure 13 depicts relationships between a use case and a set of policies, and ones

between a policy and a function provided by a software component. Details of a use case are

described by a set of policies. The number of policies and their relation are not limited so

that users can decide a set of policies freely. A policy in the first category indicates one or

more functions. When an NMS executes, conditions shown in policies are referred and

policies whose condition are fulfilled are selected. The NMS performs a function indicated

by a selected policy. The order of selected policies becomes a sequence of operations as a

result. Therefore, a sequence of processing is decided dynamically and adaptive to state in a

network or a service. This allows users to omit specifying a sequence of processing in a

function.

I
I

I

Poliices explain

this use case.

use Case

Ause case

I

"i___
l

I
I

I
I

I
I

I
I

I
I

I
I

I

Policy A

if... then call function A

C ispriortoA

B ispriortoA

Policy B

if...then call function B

C ispriorto B

Policy C

if... then call function C

D ispriortoC

Policy D

if...then call function D

A set of policies

-i-I

i-m-

l

I
.1---..

_i
I

I

Function A

Function B

Function C

Function D

Functions provided by

software components

Figure 13: Relationship among a use case, a set of policies, and functions

-36-

This method combines features of the goal-oriented approach and the scenario-based

approach. Policies are derived by manual analysis of an overall goal. In addition, the policy

selection mechanism determines a scenario adaptive to a situation from a set of policies.

3.3.2 Policies

In this subsection, we define the kinds of policies and their relationships, and two types of

representations in which policies are described. In addition, we describe how to add or delete

apolicy.

3.3.2.1 Kinds of policies and their relationships

It is important to offer proper kinds of policies, in order to specify user requirements. We

have mentioned that there are two categories of policies for the FDLU. This method provides

some kinds of policies in each category, as described in Figure 14. Using these six types of

policies, users describe specifications that show activities of a system to be built.

A directive policy expresses an operation for setting parameters in an NMS, or

monitors/controls networks to be managed. In addition, it states a condition in which the

operation is performed. A directive policy is defined as either of the following two kinds of

policies.

1) Afrlrmative policy: This policy expresses an operation to work actively and a

condition in which the operation works. Therefore, the operation written in this

directive policy

correlation policy

policy

I
-

affirmative policy

- compromise policy

-

rejectivepolicy
-

priority policy

-

multi-innuence policy

-

subsequence policy

Figurt! 14: Kinds of policies

-37-

policy must be performed without any hesitation when the policy including it is

selected.

2) Compromise policy: This policy expresses an operation that activates an

affirmative policy that is suppressed by others. The affirmative policy is

combined to another one by a rejective
or a priority policy. If the compromise

policy does not exist or it is not activated, the affirmative policy would not be

selected. This policy contains expressions for specifying the affirmative policy to

be supported. We offer two types of compromise policies in terms of activation of

affirmative policies. Policy A is prior to policy B in the case illustrated in Figure

15. Policy A is activated and policy B is inactive when the conditions of both the

policies are satisfied. The first type of compromise policy strikes a balance

between mutually exclusive affirmative policies. When this type is introduced and

adopted, it activates policy B in addition to policy A, as shown on the left side of

Figure 15. The other type of compromise policy activates policy B that was

inactive. Simultaneously, it inactivates policy A that was activated, as illustrated

on the right side ofFigure 15.

-38-

atrlrmative policy A affirmative policy
B

The affirmative policy A is prior to the policy B.

l1

I

I

I

introducing a compromise policy

striking a balance between
A
and
B

affirmative policy A afrlrmative policy
B

compromise policy

striking a balance

introducing an exclusive

compromise policy

:affirmative policy A
I

I I - I A
I

I

I

I

I
afrlrmative policy

B

exclusive compromise policy

Note activated policy

I
- I I I - I I I A - - - - I - -

I

:inactive policy :I
I

I _ _ _ I - - - I I + I - A I - -

Figure 15: Two types of compromise policies

A correlation policy declares a relation between two or more directive policies, or

between a condition and policies. We provide four kinds of policies described as follows.

1) Rejectivepolicy.. This policy declares a condition under which an operation must

not work. In addition, it expresses the operation. This operation and condition

must be written in an affirmative policy in advance6 In addition, the condition

declared in this policy must not be included in an affirmative one that specifies

the operation declared in this policy.

2) Priority policy: This policy shows the priority between two operations. It

declares these two operations as well. These two operations must be expressed in

two different affirmative policies in advance. These policies can contain the same

condition under which the operations work.

-39-

3) Multi-influence policy: This policy declares a condition that affects one or more

affirmative policies. This condition must not be specified in the policies that are

influenced by this policy. The effect of this policy is usually negative so that

policies affected by this policy will be inactivated. The effect can
be positive,

however, ithas the same meaning as an affirmative policy.

4) Subsequence policy: This policy shows an operation that follows another

operation constantly. The expressed operations must be included in different

affirmative policies in advance. This policy is not needed if the expressed

operations are included in the same policy.

Note that each policy is composed atomic or composite elements, which mean an

operation or condition. Figure 16 illustrates concepts of an atomic element and a composite

one in this thesis. "Atomic" means that an element must not be a part of others as a whole or

part. "Composite" means that an element is composed of atomic elements. A composite

element cannot add new features to an atomic one. If users would like to make such an

element, they have to define all atomic elements making up a composite one.

element B

element A

not permitted

element B

element A

tran sform

tran sform

element C

element D element E

elementD=A+C

element
A element C

not permitted

Figure 16: Transform from illegal elements to atomic elements

-40-

3.3.2.2 Representations of policies

It is important for FDLU to provide representations in which network operators can describe

policies easily. We offer two types of representations, a graphical type and a table type.

Network operators can use either of them depending on their preference. The graphical

representation can be translated into the table representation, and vice versa, since both

representations make use of the same meaning of policies.

Figure 17 shows affirmative policies represented in the graphical style. A rectangle with

broken line shows a condition, and one with full line indicates an operation. An arrow means

that a condition bound to the tail of the arrow activates an operation bound to the head of the

arrow if a condition is fulfilled. There are five types of the affirmative policies. The simplest

type is illustrated in Figure 17 (a). It means that condition A activates operation A if

condition A is fulfilled. This representation provides a manner for describing logically AND

using a notation shown in Figure 17 (b).A network operator can arbitrahly add a condition to

rcTTnaTo LT
I_____I

(a) single relation

condition A

condition B

condition A

I

(c) OR relation

operation A

operation A

operation A

operation B

rlOr

condition A

rcTTnaTo Lg
A__._-_l

(b)AND relation

I-cTTnaFoLT
I_._._I

operation A

operation A

operation B

(d) multiple relation

disconnection of

La_control cable
.i

Shut down a

protection system

using the control

cable.

(e) multiple relation with priority Example

Figure l7: Afrlrmative policies represented in the graphical style

-41-

the AND symbol. On the other hand, logical OR can be written using single relations as

illustrated in Figure 17 (c).Figure 17 (d) shows the case where operation A and B will be

activated if condition A is fulfilled. If operation A is prior to operation B, a network operator

has to set a prior relation shown in Figure 17 (e).These types can be combined to describe

affirmative policies.

Figure 18 shows the graphical style representation for describing rejectivepolicies.

Rectangles have the same meaning as the case of the representation for affirmative policies.

A line marked with an X binds an operation to a condition that has been defined in an

affirmative policy. This line means the inactivation of the bound operation. Logical AND/OR

are written in the same manner as for affirmative policies. The single relation of a rejective

policy shown in Figure 18 (a) means that operation A cannot be executed if condition A is

fulfilled.

I-cTTnaFoLil
A_l_._I

condition A

operation A

(a)single relation

(c) OR relation

rcTnaFoLg
I_.___I

operation A

rcTnaTo LE

rcTTnaTo Lil
I_._._I

rcTTnaFo LT
I_+_-_I

operation A

(b)AND relation

operation A

operation B

(d) multiple relation

Figure 18: Rejective policies represented in the graphical style

-42-

Figure 19 illustrates the graphical representation for describing compromise policies.

An operation used in a compromise policy is put on the line that shows a
rejectivepolicy.

This operation for the compromise policy has one or two arrows that indicate affirmative

policies. In the case of an "exclusive type to a rejectivepolicy"
in Figure 19, the operation

has only one arrow. Affirmative policy A pointed by the arrow will be adopted and

affirmative policy B will not, if conditions A and B are fulfilled. In the case of the "balance

type to a
rejectivepolicy"

in Figure 19, affirmative policy A and B will be adopted under the

same conditions. Figure 19 (c) shows a compromise policy related to a priority policy. This

means that operation A is selected if the compromise policy is activated, and operation B is

selected if not. A dotted arrow would be added to the graph if operation A and B are activated

simultaneously.

affirmative policy A

rcTnaFoL1
A_____I

operation A

operation C

operation B

affirmative policy B

(a)exclusive type to a rejectivepolicy

affirmative policy A

-cT=aF.Lil

affirmative policy A

rcTTnaToL1
I___._t

operation A

operation C
I

I

T

operation B

affirmative policy B

(b) balance type to a rejectivepolicy

operation A

operation B

operation D

Pr10r

(c)exclusive type to a priority policy

Figurt! 19: Compromise policies represented in the graphical style

l43-

Figure 20 shows the graphical type representation for describing other kinds of policies.

For a priority policy, the keyword "prior" is set to an operation that should be prioritized. A

multi-influence policy is written in manner similar to that for describing a
rejectpolicy.

In

this case, condition A has a keyword referred to as "exceptional", because this condition is

not belonged to any affirmative policy. A subsequence policy is illustrated as an arrow that

starts from an operation to a condition.

Network operators can also make use of table representations for the description of

policies. Table 2 shows affirmative policies that are corresponding to ones described in

Figure 17. Network operators can specify "AND" and "OR" in the column to indicate logical

operators. This representation does not allow logical operators to be nested in order to keep

table structure simple. If a condition activates some policies, the table can indicate a priority

policy. The bottom row in Table 2 shows the operation A is prior to the operation B.

operation A
Pr10r
operation B

(a)A priority policy

rcTTndToLT
I_._._I

exceptional

operation A

operation B

operation C

(b)A multi-innuence policy

operation A rcTTnaToil
I_l___I

(c)A subsequence policy

Figure 20: Other policies represented in the graphical style

-44-

Table 2: Affirmative policies represented in the table style

policy No. Logical operator

for conditions

Conditions Logical operator

for operations

Operations Priority

1
condition

A
operation

A

2 jm condition A

condition B

operation A

3 OR
condition

A

condition
B

operation A

4
condition

A
jm operation A

operation B

5 condition A OR operation A

operation B

prior

Table 3 is used to define rejective,priority, and compromise policies. Policy No.1, 2,

and 3 in Table 3 reveal rejectivepolicies that have been drawn in Figure l8. Policy No. 4

shows a priority policy, which is illustrated in Figure 20. If users set a compromise policy,

they write it as policy No. 5, 6, or 7. These policies correspond to ones illustrated in Figure

19. Users have to define the compromise type in these cases.

Multi-influence policies and subsequence ones are simply written in other table

representations. Table 4 depicts a table representation of the multi-influence policy that is

shown in Figure 20 (b). The second column indicates a condition, and the last one does

operations influenced by the condition. Users do not need to define whether the influence is

positive or negative, because the condition written in the table always inactivates the

operations.

Table 3: ComprT)mise, priority, and rejective policies represented in the table style

policy Restrained Logical Rejective Prior Operation for Compromise Corresponding

No. operation operator conditions operation compromise type DOlicv

1 operation A condition A (a)inFig. 18

2 operation A AND condition A

condition B

(b) inFig. 18

3 operation A OR condition A

condition B

(c)inFig. l8

4 operation A

operation B

condition A (d)inFig. 18

5 operation A operation B (a) in Fig. 20

6 operation A condition B operation C exclusive (a) inFig. 19

7 operation A condition B operation C striking

a balance

(b)inFig. l9

8 operation A operation B operation D exclusive (c)inFig. 19

-45-

Table 5 shows a table representation of the subsequence policy illustrated in Figure 20

(c).The first column indicates an operation, and the second column states a condition that

will be subsequent to the operation.

3.3.2.3 Addition or deletion of a policy

This section explains notandums for adding or deleting a policy.

When network operators add any kind of new policy using the graphical representation,

they do not need to take a survey of the whole policy graph. They define a new policy and

connect it to existing policies with which the new policy has a direct relationship. In addition,

they confirm all relationships between the existing policies and the new policy, and change

some of the relationships if needed. In the same manner, an existing policy in a set of

policies may be changed or deleted.

When network operators add a new affirmative policy using the table representation,

they can simply make a new row. When changing or deleting an affirmative policy, users

need to confirm rejective,priority, and compromise policies that have direct relationships to

the affirmative policy. The policies may be deleted if necessary. Users can also add, change

or delete a multi-influence policy in this manner.

Table 4: Multi-influence policy represented in the table style

Policy No. Condition influenced

operations

1
condition

A operation A

operation B

operation C

Table 5: Subsequence policy represented in the table style

Policy No. Operation Subsequcen

conditions

1 operation A condition A

-46-

When network operators add a new rejective,priority, compromise,
or subsequence

policy, they have to confirm the existence of affirmative policies that have relationship with

the new policy. This is because a table defining the affirmative policies is different from that

in which the new policy will be written. Other tasks to add a new policy are followed along

with the pattern of the graphical representation. The change and deletion of these kinds of

policy do not ask users to confirm the existence of an affirmative policy. Therefore, these

procedures are same as that for the graphical representation.

3.3.3 Treatment of use cases

Use cases have to be treated in consideration of the notation using policies. Several

techniques to create well formed use case models have already been proposed in literature.

For example, these existing techniques have suggested that designers should limit the

number of use cases [96, 97], and that they should create hierarchical use case diagrams

optionally [98]. Our method reinforces the existing techniques in order to detail a use case

with policies.

We have two concerns about the treatment of use cases detailed with policies. The first

is whether a policy can appear in several use cases simultaneously, and the other is whether

two policies have a relationship between use cases. To clarify these two concerns, we first

illustrate associations between use cases that have been standards. Then we propose our

strategies to treat use cases for detailed expressions with policies.

3.3.3.I Standard associations between use cases

It is a good approach for drawing up a proper diagram to show a basic use case first, and

then to expand it [96]. A basic use case is expanded by additional use cases, or by

complementing the basic use case. There are two standard associations between use cases for

the expansion [2].

1) Extend: An extend relationship from use case A to use case B indicates that an

instance of use case B may be augmented (subjectto particular conditions

specified in the extension) by the behavior specified by A.

2) Include: An include relationship from use case C to use case D indicates that an

instance of the use case C will also contain the behavior as specified by D. The

behavior is included at the location defined in C

Figure 21 shows a use case diagram employing these two associations. "Schedule

maintenance tasks" is a basic use case in this diagram. This use case is expanded by another

-47-

schedule maintenance

tasks

<<include>>
--------+

<<extend>>

service level agreement

gives an account of shutting
down an application system

schedule shutdown of
an application system

confirm service
level agreement

I

I

l <<include>>

set up a temporary path

to avoid a fault

Figure 21: Standard associations between use cases

one named "Schedule shutdown of an application system," which works if a maintenance

task requires halting an application system. The basic use case includes services defined in

use case "Confirm service level agreement." Service level agreement is a contract in terms of

services that a provider offers an end-user. This agreement is the principle for network

management so that other use cases utilize this one.

3.3.3.2 Strategiesto treat use cases

As mentioned above, we have concerns about the attachment of a policy to a use case, and

the relationship between policies that are attached to different use cases.

Our strategy about the attachment does not allow that a policy belongs to multiple use

cases. If a policy belongs to multiple use cases that have no relationship between them, a

new use case should be derived from the existing use cases. The existing use cases have

"include" associations to the new one to which the policy belongs, and remove the policy

from the existing use cases.

If a policy belongs to multiple use cases that have an "include" relationship between

them, it is necessary to see whether other use cases, so-called third-party use cases, have

"include" relationships to the included use case. Only one of the positions remains in

accordance with whether all the third-party use cases included it or not. Figure 22 illustrates

a situation in which an affirmative policy belongs to use case A and B. In this case, use case

C has an "include" association to use case B. The policy details use case A if use case C does

not include the policy. On the other hand, itdetails use case B if use case C includes it.

If a policy belongs to use cases that have an "extend" association between them, it is

not needed to confirm third-party use cases. We can imagine this situation if "extend"

association between use case Aand B is set in place of the "include" association in Figure 22.

-48-

use case A
Remove this policy

from use case A,

if use case C includes it

rI-
I
fa task stops communication lines

:

for an application,

-

--Tr -i

Then shut down the application
on the day.

-
-

-

～
～

Remove this policy from use case B,

if use case C does not include it

policies

～

schedule maintenance

tasks

I

I

I

I

Y

<<include>>

use case B

confirm service
level agreement

<<include>>

use case C

set up a temporary path

to avoid a fault

use Cases

Figure 22: An arrangement of a policy in multiple use cases with include relationship

Only one of the positions can be selected due to the semantics of the use cases. In the case

mentioned above, a user can decide that the policy details use case A or B, in accordance

with only the meaning of the use case and the policy.

On the other hand, a relation between policies can cut across the boundaries of use

cases in our strategy. Such a relation expresses a facet of an association of the use cases.

Figure 23 shows a relation cutting across boundaries of use cases. There are two affirmative

policies and a compromise one that has connections to the affirmative policyc The affirmative

policy shown on the upper side in the figure details the use case that describes a function

expressed as "schedule maintenance tasks." The use case on the lower side extends the use

case on the upper side. It is detailed by an affirmative policy and a compromise one. This

compromise policy must belong to the use case on the lower side, because one of the

affirmative policy to which it connects details the use case. However, users should reduce the

number of relations across boundaries for the sake of simplicity.

-49-

rI-[Tt;
sTs-toTFs
-cTm-mTni
cT=i
-.a-na

I
_fla_nip_Pta_tiln,_

_ _ _ _ _ _ J

Then shutdown the application on the day.

Gain approval from

the user of application

Ll_l_.i
-iTs-LT

--

Then reschedule the maintenance task.

policies

schedule maintenance
tasks

+
I

I

A

I

I

l

I

I

I

I

<<extend>>

service level agreement

gives an account of

shutting down

an application system

schedule shutdown of
an application system

use Cases

Figure 23: A relation of policies across the boundary of use cases with extend relationship

3.3.4 Roles of system developers

System developers coordinate an operation described in a policy and one or more functions

provided by software components. Our method allows developers to make an arbitrary

coordination between the operation and the functions in order not to constrain their activity.

Therefore, developers may make small software components that provide each operation

respectively. On the other hand, they may build a large component whose functions are

identified by parameters in the function call. For NMS constructions, we recommend usage

of the standard techniques and its expansions using our methods described in Chapter 5 and

Chapter6.

System developers may still have to analyze an operation written in a policy. This

depends on maturity of description with policies. Developers make use of existing

techniques, described in Section 3.2.

-50-

3.4 Casestudy

We applied our method to a design of NMS functions, in order to confirm its effect on

requirements analysis and system design. In this section, we mention the overview of the

case study and summarize feedback from users in terms of the ease of drawing up

requirements. We also judge how easy it is to understand user requirements, and how useful

for development it ism

3.4.1 Overview of the case study

Functions are to schedule tasks such as maintenance of network equipment in this case study.

These tasks are scheduled in order to keep service level agreement and/or to comply with

rules within a company. The network operators work for a company that provides

communication services for power supply. Task planners in different branches set arbitrarily

the date and time of a task. Service may be stopped or degraded by tasks because

communication paths go through many sites. The network operators, therefore, gather

information on tasks and schedule them so as not to inhibit services. The designed functions

support the work of the network operators.

There are hundreds of rules for this scheduling, since provided services are various and

many paths are shared between them. The network operators currently schedule tasks with a

basic function that detects the need to shutdown an application. System developers have not

ever been able to make advanced functions for the scheduling because the network operators

could not explain the complex rules correctly and precisely. Of course, the developers must

have needed to understand not only this scheduling but also the services and mission of the

company. The volume of rules and context to be understood was also a factor in the reason

that advanced functions have not appeared. This shows the limitation of the existing

approaches described in Section 3.2.

We let the network operators design use cases detailed by policies in this case study.

Figure 24 depicts one of the policy sets in the case study according to the graphical

representation. This graph focuses on ensuring the performance of applications that monitor

and control systems for power supply.

-51-

ifec-onff.:st5ns-sf15r-bT=ku1L._-

Then a circuit breaker has to work

rI-[&-=k-nB= ;=e-c7=LTs-teT=IonT T1 - -I ll - T 1

an ultra-High Voltlage
transm;ssioh-liTh-eI

.___I

Then lock a system with the same ID

on the transmission line for backup

+
I

I

A

I

I

I

V

4

I

I

4

I

I

I

I

I

I

I

Ifelectric current in a line exceeds
threshold for SSC I

.I-_._-.J

Then a couple of protection systems
for the line must work

-ITSi-s=s;=b I-eTc-.T=r-.7Ta-bq
-_-_-_I

Then the protection system

must be shut down

Reduce electric current in the line

protected by the system

I

I

Then lock the protection system

using the circuit breaker

Shut down the transmission line protected by the systems

I-
- - . - - - -

--.-.i

If a couple of protection systems

are shut down
- I - I - I - -

Then reschedule the date and time

of the task affecting the systems

note: Application systems
-

protection system
- SSC (System Stabilizing Controller)

r;f-

__L_If a circuit breaker E3!Z;a

electric current in a substitute line

exceeds threshold for SSC
I - I

The line cannot undertake

some volume of current

Figure 24: Policies developed in the case study

3.4.2 Feedback from network operators

_J

Some operators preferred the graphical representation and others the table representation.

This means that providing the two types of representations achieves a successful outcome.

However, our method was inconvenient for operators who wished to use both of them. These

two representations were not converted automatically since we had not supplied a CASE tool

for the input of policies.

-52-

The proposed graphical representation has a low barrier for operators to describe their

requirements. This style is familiar to the concept of their manuals, so that they did not deed

to learn a large amount to draw a graph. We saw an advantage for the table representation as

well, since they have used tables in their manual books. Allowing a natural language to be

used also contributed to the usability of our method for the operators.

The operators spoke favorably about the semantics of policies. In particular,

compromise policies were useful to draw up their requirements because they could not set

priority statically. They did not require additional semantics of policies.

Use cases were understandable and useful for the operators to draw up. However, their

products were not necessarily good, for example, the number of use cases was too high, or

relationships between them were sometimes invalid. They should have learned the technique

to overcome the pitfalls of use cases. The effort required to learn this technique seems to be

the same as or less than leaming other approaches for the network operators.

3.4.3 Feedback from system developers

Each policy described an operation and a condition in a natural language, so that the quality

of description depended on the skills of the network operators to draw up requirements. If

they conformed to the techniques to reduce the pitfalls of use cases and the strategies

described in Section 3.3.3.2, policies assisted developers to make programs. If not,

developers were puzzled as to how they should understand an operation, which was the

common problem in RE.

Even if policies are not expressed appropriately, developers were endowed with the

domain in which they work, because there were many standard and off-the-shelf components

that could be used. They understood some operations written in policies using examples

from these assets. Policies were useful in this scene since the operation was drawn up simply.

In terms of other operations, developers sometimes worked hard to make software

components even though policies drew up operations simply. We saw some cases where

more the two different operations written in different policies should have been provided by

on component, even though network operators conformed to the strategies. Our method

could not assist developers to solve the problem. It needed the traditional approach of RE

and software engineering.

-53-

3.5 SummaryofFDLU

Our contribution described in this chapter oHers a new approach in which users lead the

drawing up of function design. Such an approach has not ever appeared prior to this, since

almost all techniques have focused on usefulness to system developers. Our method does not

supersede traditional techniques in software engineering, but reinforces them.

Our method provides three techniques to facilitate function design led by users. These

techniques enable users to draw up their requirements
for functions by themselves. The

techniques are,

1)

2)

3)

Use cases detailed by policies

Policies suitable for network operations

Two representations for describing policies

We applied our method to a case study in which functions for scheduling tasks were

developed. The result shows that our contribution confers benefits on requirement analysis,

as mentioned below.

1) User-friendly notations: Users can draw up requirements for functions to be

designed. This has not been provided in the existing approaches. This user-

friendliness is supported by two techniques, described as follows.

a) Use case detailed by policies: In the first stage, users make use case

diagrams that show services provided by the functions to be constructed. A

use case has a simple description so that it is friendly to users, even though

the users are novices in function design. Second, users declare policies that

detail a use case. A policy cannot be attached to multiple use cases. Our

technique provides a solution to the case where a policy belongs to multiple

use cases in the course of drawing up requirements. In this solution, users

take account of the relation between the use cases to which a policy in

question is attached. This is the same task to consider their own business so

that the solution does not require users to understand a new approach.

b) Policies suitable for network operations: A policy comes from a rule in

network operations, so that it is friendly to network operators. In addition, we

provide several kinds of policies that are more suitable for describing a rule in

the operation. A compromise policy is most significant for network operations.

This policy shows an operation that enables a prohibited operation to work.

Of course, the operation mentioned in this policy is performed as little as

-54-

possible. This kind of policy has not been considered in the policy-based

management, although itis omen used in the real operations of networks.

2) Facilitation of communications between users and designers: Network

operators can draw up their requirements that have not ever been passed to

developers correctly. A policy declares an operation that shows one or more

functions provided in an NMS. The notation of such an operation is simpler than

that in a specification written in a natural language. In addition, the requirements

are specified in a graphical or table representation. System designers can

understand user requirements for functions more easily and correctly than before.

3) High compatibility with
object-oriented

design: Our method is based on use

case diagrams. In addition, it does not modify techniques for system designers.

Therefore, it is compatible with object-oriented
design, especially RUP. System

designers can adopt an iterative approach to design and implement the function

that is specified based on our method. This feature is important for our method to

enjoy wide acceptance.

-55-

Chapter 4

Policy selection

FDLU needs a mechanism to select a subset of policies from the total set defined by network

operators. ln this chapter, we describe a mechanism that is well-suited to the case of network

management. We have adopted a concept of immune networks to the policy selection, in order

to make the mechanism suitable for the domain.

First, we clarify the characteristics of policy selection on network management. Then, we

review the related works and consider if they are suitable for the selection. In addition, we show

a concept of immune networks applied to our mechanism. In the next section, we set out our

proposal about the policy selection. We show the experiments of our mechanism and evaluate it

after the proposal.

4.1 Characteristics of policy selection on network

management

We have to take account of the following issues when building an NMS executing based on

policies in accordance with the way mentioned in Chapter 3. Such NMS is referred to as a

policy-based NMS hereafter. These issues come from the characteristics of network

management as we mentioned in Chapter 2.

1) Claims to an NMS are different per network operator. Policies appear between

dozens and thousands in a claim.

2)

3)

A policy states an operation that is invoked under a condition.

A subset of policies may be selected from the total set, because an NMS manages a

number of networks and services.

4) Network operators can specify policies that conflict with each other. The conflict in

this chapter means the case in which a policy forbids another one to be selected. A

policy-selecting mechanism, however, must select policies that do not conflict with

each other.

-57-

5) A temporary policy may be specified, or an existing policy may be changed for a

certain period. In addition, networks or services that are managed vary in terms of

their configurations or contents. A policy-based NMS, therefore, must treat policies

or conditions that have not been assumed.

6) A policy-based NMS has to select a second best policy if the best one cannot be

selected.

4.2 Related works

4.2.1 Works tbr policy selection

We can see the policy selection as a constraint satisfaction problem (CSP). CSPs have three

components: variables, values, and constraints. The goal is to find all assignments of values to

variables such that all constraints are satisfied. The classic N-queens problem is a typical

instance of a CSP.

CSPs are NP complete so that no general algorithm for these problems exists. Algorithms

for CSP are classified into two groups, exact ones and approximate ones [99]. Exact algorithms

test all combinations of variables and values using backtracking, if needed. They guarantee the

integrity, i.e. that solutions are found certainly if they exist, and the absence of solutions is

confirmed. Exact algorithms have a problem with processing time although they find the

optimal solution. A large number of policies are defined for network management. In addition,

network operators need an output within a reasonable length of time. Exact algorithms,

therefore, are ill-fitted to pick out policies in network management.

Approximate algorithms pursue to find a solution while they sacrifice the integrity. As for

approximate algorithms, neural networks (NN) or genetic algorithms (GA) have been applied to

various fields, and have shown their effects [100, 101]. The common feature of applied fields is

that conditions for optimization do not vary, or elements to be processed such as a neuron in NN

or a gene in GA are not added, deleted or changed. This feature is convenient for NN or GA,

because of their characteristics as described in the following. In any type of NN, re-learning is

required by a change of a unit or a relationship between units. In GA, a change in the domain

causes a re-definition of the formula for fitness, and reconfigurations of crossover and/or

mutation.

Recent literature has proposed re-learning in NN [102, 103] and flexible calculation of

fitness in GA [104, 105]. A breakthrough in NN or GA was achieved by these contributions.

Nevertheless, NN or GA can scarcely meet the requirements of the function design in network

management. This is caused by an event in which a network operator defines new policies after

NMS building.

-58-

4.2.2 A concept and applications of immune networks

A concept of immune networks has been applied to systems for information processing. nlis

approach can also be classified to an approximate algorithm for CSP. Immune networks can

well adapt to altering conditions, as well as being able to process various information [106, 107].

This concept, therefore, looks fit for the policy selection that deals with changes of network or

service conditions, altering requirements, and processing of policies.

Two types of immune networks have been considered, as illustrated in Figure 25. TTleSe

networks are composed of interactions in which an element such as a cell or molecular

stimulates or suppresses another element. In both of these networks, stimulated elements come

into force, and suppressed elements lose effect.

Tlle first network is based on interactions in which T cells stimulate or suppress B cells. T

cells and B cells are lymphocytes. B cells stimulated by T calls transform themselves into

plasma cells that produce antibodies. Lymphocytes called helper T cell stimulate B cells when

APCs (Antigen Presenting Cell) represent antigens to the T cell.

I

APCs take up

antigens.

63
Antigen

(e.g.Virus)

Stimulates

I
I

I
I

I
t

I
I

I

Binds

(Suppresses)
------->

～
Antibody 1

Presents an antigen

APC (Antigen Processing Cell)

TAPCs
take up

antibodies precipitated.

h Stimulates

Antibody precipitated

Produces

a
Helper T-cell

stimu'ateslSuppresses

Suppressor T-cell

i
t～t

i
_

_Stimulates
i

Binds

i

(Suppresses)

i
.i

Antibody 2

B stem cell

/
Differen tiates

/

Plasma cell 1

Di fferenti ates

Plasma cell 2

Figure 25: An Overview of
Two Types of Immune Networks

-59-

Di ffere ntiate s

I

Memory cell

The second network is based on stimulation and suppression between an antibody and an

antigen, and between antibodies. This type of networks is referred to as idiotypic networks [108].

An antigen has an epitope that is a single antigenic determinant. Functionally, it is the portion of

an antigen combining with an antibody paratope. An antibody consists of its main part, a

paratope, and an idiotope. A paratope makes contact with an antigenic determinant. An idiotope

is a single antigenic determinant in the variable domains of an antibody.

The idiotypic networks have been applied to a number of areas, for example, an

autonomous mobile robot [109, 110], operations of a WW server [111], and an agent

supporting negotiation [112]. On the other hand, little literature has applied the first type of

immune networks to engineering systems.

These systems based on the idiotypic networks find out a solution that is best suited to

conditions, from options defined in advance. For example, the autonomous mobile robot grasps

the positions of convenient objects(e.g.foods) and
inconvenient ones (e.g.dangerous animals).

Then, it decides its route based on the positions. The WW server decides an action (e.g.

providing a thread for each request) depending on conditions (e.g. size of a file to be

transmitted).These adopt the formula (1) and (2).

dA,.(t)

dt (ffmji.aj(t,-#ik.ak(t,.m,..b-diti(t,...(l,
a'.(t+1)=

a'(t)

b

miI :

mI' :

d
+

I .

M

N

A'(t) :

l

1+exp(0.5-Ai(t))
･..(2)

Concentration of antibody i at time t

Concentration of an antigen

Affinity of antibodyj
to antibody i (20)

Affinity of an antigen to antibody i (20)
Disappearance rate of antibody i (20)
The number of antibodies suppressing antibody i

The number of antibodies stimulating antibody i

The value for calculating a'(t+ 1)

It does not have any meaning in the immune networks

-60-

Formula (1) reduces the effect of an antibody with high affinity and concentration if other

antibodies have low affinities and concentrations. This nature has an effect on determining the

relative merits of antibodies that are stimulated by antigens. This formula, therefore, is useful to

select one policy from the total set. Besides, parameters in this formula have to be set for each

application.

In the case of network management, policies that are well suited to conditions and

compatible with each other must be selected from the total set in which policies have mutual

relationships. It is impossible to make a solution, which is a set of policies, from policies that

are selected one by one using the formula (I). This arises from the feature of the formula (1)

that does not consider conflicts between policies stimulated by antigens.

4.3 Policy selection using artiTICial

networks

immune

This section set out our proposal about a mechanism to select policies. In this mechanism, we

have applied the concept of the idiotypic networks to pick out policies well suited to conditions.

The purpose of our proposal is to select a set of policies without conflicts, which have not been

dealt with in literature so far.

First, we describe how each policy type described in Section 3.3.2 is attached to elements

such as an antibody or an idiotope in immune networks. Secondly, we show how to select a set

ofpolicies.

4.3.1 Attachment of policies to immune networks

We have attached policies to elements in immune networks in accordance with features of

policies, as illustrated in Figure 26 and Figure 27. The immune networks contain the concepts of

the idiotypic networks and T-cells.

A condition written in a policy is napped onto an antigen, as illustrated in Figure 26 (a).It

is assumed that an antigen appears if the corresponding condition is fulfilled. The concentration

of this antigen is valued as 1.0 in this case. The value of concentration is 0.0 when an antigen

does not appear. Status of a service, network, or network element is reflected to an antigen in

order to determine the value of concentration.

-61-

Service ---"

Condition

Condition Network "---

(a) conditions

A-sti= 1.0

Condition

Affirmative policy

(b) affirmative policy and relevant condition

Affirmative policy

A-sup 5; 1.0 A-sti < 0.1

Affirmative policy

Rejective/ Priority policy

(c) rejective
/ priority policy

A-sti 5; 0.1

Affirmative policy

Legend

Subsequence policy

(d) subsequence policy

Affirmative policy

Suppress Stimulate Suppress

Stimulate

___F_e_T_e_c_t">
Antigen Antibody

A-sup: Affinity for suppression A-sti: Affinity for stimulation

Figure 26: Relationships between policies and elements in artificial immune networks part I

Each directive policy is napped onto an antibody. The main part of an antibody represents

an operation, and a paratope shows a condition due to which the operation is invoked, as well as

the WW server using an artificial immune network [11 1].

A correlation policy other than a multi-influence one is mapped onto an idiotope in an

antibody. A rejectivepolicy
is represented as an idiotope that has bi-directional effects as shown

in (b) of Figure 26. A priority policy is also done in the same manner. Note that the affinity for

stimulation of these policies is determined upon rule #1 described in Section 4.3.2. As well, the

affinity for suppression of these policies is determined upon rule #2 mentioned in Section 4.3.2.

Figure 26 (c) shows that a subsequence policy is modeled as an idiotope only with stimulation,

as mentioned in Section 4.3.2. This kind of idiotope relates an affirmative policy to another.

Note that the affinity for stimulation of this policy is determined upon rule #1 written in Section

4.3.2.

-62-

We have set two types of relationships between affirmative policies and a compromise one.

These depend on whether the compromise policy is exclusive or not. The relationships shown in

Figure 27 (a) have to be established for the case where a compromise policy is the exclusive

Affirmative policy A

Auxiliary policy

A-sti= 1.0

Affirmative policy B

A-sup = 1.0

A-sti = 0.1

Compromise policy

(a) compromise policy (exclusive type)

Affirmative policy A

A-sti= I.0

A-sti = 1.0

Affirmative policy
B

Compromise policy

A-sup 2 2.0

L_

Affirmative policy C

(b) compromise policy (balance type)

Condition

policy
I

I-

A-sup 5; 1.0

A-sups 1.0

Affirmative policy

Affirmative policy

(c)A multi-innuence policy as a suppressor T cell

Legend

Suppress Stimulate Suppress

Stimulate
==Lj
Antigen Antibody Tcell

A-sup: Affinity for suppression A-sti: Affinity for stimulation

Figure 27: Relationships between policies and elements in artificial immune networks part II

-63-

type. In the case where both conditions for affirmative policy A and B are fulfilled, only

affirmative policy B is selected if the compromise one is inactivated. In the same case, only

affirmative policy A is selected if the compromise policy is activated. An auxiliary policy

supports this selection in this case. It can be derived from the definitions of policies described in

Section 3.3.2. It has the 'if clause' equal to that in the affirmative policy that would be selected

if the compromise policy is activated. In Figure 27 (a),the auxiliary policy has the 'if clause'

equal to the affirmative policy A. Therefore, it is stimulated by the condition that stimulates the

affirmative policy A, as illustrated in Figure 28. It has an idiotope that stimulates the relevant

compromise policy. If the affirmative policy A has an association in which another policy

suppresses it, the auxiliary policy also has the same association to the suppressing policy, as

illustrated in Figure 28. An auxiliary policy is not selected even if its concentration is over the

threshold. This mechanism enables the compromise policy to be selected when the affirmative

policy A and B are stimulated by the relevant conditions.

On the other hand, Figure 27 (b) shows the case where both affirmative policy A and B are

selected, that is, the compromise policy is not exclusive. These polices are bound with idiotopes

that have either a stimulating effect or a suppressing one. Another affirmative policy like the

policy C in Figure 27 (b) can be set in order to suppress the compromise policy. Affinity for this

suppression is set upon rule #3 that will be mentioned in Section 4.3.2.

A multi-influence policy is napped onto a suppressor T cell as shown in Figure 27 (c).

This is an application of the behavior of suppressor T cells to B cells. It can reinforce the

concept of the idiotypic networks.

Condition

Affirmative policy C Affirmative policy A

Auxiliary policy

Affirmative policy B

Compromise policy

Figure 28: Relationships of an auxiliary policy to a condition and a suppressing policy

-64-

4.3.2 Selection of multiple policies without conflicts

We have introduced the following items into the artificial immune networks in order to select a

set of policies without conflicts.

1) Introduction of asymmetric idiotope

2) Modification of the formula that calculates the concentration of antibodies

3) Introduction of rules for setting parameters

An idiotope used in conventional applications has applied the same value to affinity in

terms of stimulation and suppression. We propose that the value of affinity for stimulation can

be different from that for suppression in an asymmetric idiotope. It would not appear that the

asymmetric idiotope is inconsistent to the concept of natural immune networks. It is not

restricted to the influence increasing the concentration of antibodies stimulated being equal to

one decreasing the concentration of the antibodies suppressed.

Antibodies are bound each other using the asymmetric idiotope only. An asymmetric

idiotope sets the value of affinity for stimulation to 0 if it only suppresses an antibody with it. It

sets the value of affinity for suppression to 0 if it only stimulates a relevant affinity. Idiotopes

for subsequence policies and that are related to a compromise policy are set as mentioned

above.

Conventional approaches have adopted the formula that makes use of the average of

simulations or suppressions from antibodies, as mentioned in Section 4.2.2. Influences of

antibodies are less than the influence of a relevant antigen using this formula. This feature is ill-

suited to selection of multiple policies without conflicts. Only the existence of a relevant antigen

has a key to whether a policy is selected. The formula does not consider influence from an

antibody that causes a conflict.

The formula in our proposal makes use of the sum of influences from antibodies in order

to remedy shortcomings for the selection of multiple policies. This amendment achieves a result

in which innuences from antibodies may exceed stimulation from an antigen.

-65-

Formula (3) calculates the gradient of concentration for each antibody in light of the sum

of influences and effects from T cells. The formula (2) is used to calculate the concentration of

each antibody based on the gradient.

dA,(t)

dt

=(
imji.
aj(t)-ip,k.ak(,).m,.b.En,,.c,j=1

a'(t)

b

mji :

P I.'I :

m[:

d
I

I .

Nl :

N2 :

N3 :

k=1 l=l

-

d,l
a,(t) ...(3)

Concentration of antibody i at time t

Concentration of an antigen

Affinity for stimulation of antibodyj to antibody i (20)
Affinity for suppression of antibody i to antibodyj (20)
Affinity of an antigen to antibody i (20)
Disappearance rate of antibody i (20)
The number of antibodies stimulating antibody i

The number of antibodies suppressing antibody i

The number ofT
-

cells relevant to antibody i

We have defined rules for setting parameters such as affinity or disappearance rates, in

consideration of the above scheme. Setting parameters has serious impacts on outputs from the

artificial immune networks, which are a set of selected policies. We have set two guidelines

described as follows.

1)

2)

An antibody is not selected unless itis stimulated by an antigen.

It is simplified to set values of affinity in antibodies that have not been adopted in the

conventional approaches, such as a compromise policy.

Figure 26 and Figure 27 contain values to be set for each affinity.

4.3.3 Rule n)r setting parameters

Three rules for setting the values of affinity are illustrated in Figure 29. Rule #1 defines

how to set the value of affinities in the case where an antibody is stimulated by others. The total

value of affinity for stimulations is greater than 0.1, if stimulations from other policies to policy

A increase the concentration of policy A without an antigen stimulating it. Besides, each value

of affinity for stimulation is less than 0.I, if the concentration of policy A is not increased by

only stimulation from policy B or C.

-66-

Policy B Policy C

Policy A

Rule #1

Affinity 5; 0.1

Policy B

Affinity 2 2.0

Policy C

Policy A

(compromise policy)

Policy B Policy C

Affinity i 1.0

Policy A

Rule #2

Rule #3

Legend

Condition

Stimulation Suppression

Figure 29: Parameter setting rules in cases where multiple policies affect a policy.

Rule #2 defines how to set the value of affinities in the case where an antibody is

suppressed by others. The total value of affinities for suppression is not less than 1.0, if

suppressions from policy B and C decrease the concentration of policy A. Besides, each value of

affinity for suppression is less than 1.0, if the concentration of policy A is not decreased by

suppression from only B or C. If stimulation from only policy B or C decreases the

concentration of policy A, the value of the stimulation is not less than 1.0. If only one policy

suppresses another policy, the affinity has to be set to 1.0.

Rule #3 regulates the value of suppression related to a compromise policy. Affinity for

suppression from policy B is greater than the total value of affinities for stimulations to policy A.

It is usually set over 2.0.

Besides, the disappearance rate of an antibody that means an affirmative policy is set to

0.1. The disappearance rate of an antibody that shows a compromise policy is set to 1.5.

The mechanisms have the features described above to calculate concentrations of

antibodies, and pick out policies whose concentration is over a threshold. In addition, we have

limited the range ofA(t) in
formula (2) from -5 to

5, in order to follow a change of conditions.

-67-

4.4 Experiments

We will explain experiments in which our method is evaluated. In addition, we will discuss

applicability of our method to real operations.

4.4.1 Evaluation of proposed method

In order to evaluate the performance of the policy selection, we have made use of it in network

operations for the quality of services. The networks to which the policy selection is applied

provide communications to protect, supervise and control power systems. The service provider

has contracts with users in terms of the quality of services. The contracts contain demands that

are different from ones for public communications. A large number of conditions must be

considered for the operations that fulfill the demands. The network operator, therefore, has to

outfit them with functions that support these operations in light of various conditions. This

feature seems to be well suited for the evaluation of the policy selection.

Figure 30 shows a typical model for these evaluations. We explain the results of these

evaluations along with this model. This model shows policies that maintain a quality of services

for CR (career relay) systems and SSC (system stabilizing controller),which are used
for the

protection or control of power systems. For example, policy no. 3 in Figure 30 means that an

NMS has to keep the all-relevant CR systems working if a current on a line is over the threshold

for SSC. Policies in this model are used in the real operations of a power company.

The policy and relationship with the dotted line in Figure 30 were used in an experiment in

terms of the addition or deletion of a policy. Other policies and relationships were used in the all

experiments.

A policy was written in a natural language. We used these letters as an ID of a policy

without any language processing.

First, we show the validations of the asymmetric idiotopes and the proposed formula

calculating the gradient of an antibody's concentration. Second, we explain that a reasonable set

of policies was selected using our method with compromise policies. We also show that it is

easy to add or delete a policy and the outputs at that time were reasonable for network

operators.

-68-

No.8

if current on a substitute line is over the threshold
for SSC

then do not select the line as an alternative.

No. C2

reduce current on the line.

ithen stop the relevant bus.

lNo.9 I

:ifconfirmation of shutdown ofa line, :

No.4

if all relevant CR systems must work.

then change the schedule of work.

-i-
I

I

I

I

I

No.2

if the condition for CBF is not satisfied,

then CB must not be opened.

No.3

if current is over the threshold for SSC,

then keep all relevant CR systems working.

No. 6

if a control cable
is disconnected,

then shut down the relevant CR system.

No.1

if maintaining a CR system
for a 500kV transmission line,

then lock CR systems belonging to the
same group.

No.CI

shut down the transmission line

Legend

No.5

if CB is shut down.

then lock the relevant CR system.

No.7

if both CR systems for the
same line are shut down ,

then change the schedule of work.

Policy id

if condition,

then operation.

Affirmative policy

A policy

to be suppressed

Policy id

operati on

Compromise policy

(written with C in id)

Relation between policies
A policy
to be prior

Note I: Apolicy and a relation
with dotted lines

are optional for the experiments.

Note 2.. This diagram does not show

auxiliary policies.

Acronyms

CB: Circuit Breaker

CBF: Circuit Breaker Fault

CR: Career Relay

SSC: System Stabilizing Controller

Figurt! 30: Policies for the evaluations of the proposed policy selection

4.4.1.1 Evaluations of Formula Calculating Concentrations

We compare the effects of the proposed formula (3) with ones from the conventional formula

(1). In these experiments, policies were selected using each formula that made use of

conventional idiotopes ()r asymmetric ones. We set all the values of affinity in the conventional

idiotopes to 0.1. On the other hand, we set the values of affinity in the asymmetric idiotopes

-69-

according to the rules in Figure 29. All disappearance rates were also set according to the rules

in Figure 29.

The formula (2) was used in every experiment, in order to calculate the concentration of

each antibody. We set the threshold for policy selection to 0.7.

In the first experiment, it was assumed that the conditions described as follows appeared at

the same time. We refer to this set of conditions as condition pattern I.

1) There wouldbe work fora500kVCR system.

2) Conditions for CBF would not be satisfied.

We have gained concentrations of antibodies in several cases under the condition pattern I.

Figure 31 shows the results of the policy model using the conventional idiotopes, in the case

where the conventional formula is used to figure out concentrations. Figure 32 shows the results

of the model using the asymmetric idiotopes, with the same formula. Figure 33 shows the

results of the model using the conventional idiotopes, with the proposed formula. Figure 34

shows the results of the model using the asymmetric idiotopes, with the proposed formula.

It took 2.71 seconds at an average rate of 1,000 steps on HP workstation K250. These

processing times were independent of the formulas or idiotopes. In addition, it took almost same

time for the processing in the case of experiments that will be described below.

These experiments indicate that a set of policies selected were not reasonable for the

network operations in the case where the conventional formula was used. Concentrations of

some antibodies shown in Figure 31 varied cyclically so that we could not pick out a set of

policies. This defect is caused by the introduction of a compromise policy. A compromise policy

forms a loop in the relationship antibodies. The conventional formula does not support such a

loop structure in immune networks. In the experiment shown in Figure 32, policy no. 1 and 2

were selected. This pair, however, is against the correlation policy that the network operator has

set between the policy no. 1 and 2. This defect is caused by a feature of the conventional

formula. The formula takes the average of influences from antibodies, so that a policy

stimulated by an antigen can be selected.

On the other hand, the experiments using the proposed formula exhibit that selected

policies were suitable regardless of the types of idiotope (Figure 33 and Figure 34). mis result

means that the formula is fit to select multiple policies without connicts.

-70-

Area in which
a policy is selected

Con

l

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

?_?_TTf_.??I"1_-_MT____w__"___
___T___P_TJ?__:__?_______

_r__
_To.

3
,
"o. 7

-----i-,"--"-"M--------I
i3I

I

---AI

--""--"
i
I

I

----------iI

---iIII
I

--I--
-P-1

I

I

--uh----i

I

I

No.1

No.5, 6, C1 , C2-----------LW--I---No.4,8 -A-"----------

0 200 400 600 800 1000

Calculation steps

Figure 31 : Transition of concentrations

(Conventional formula, conventional idiotopes, and condition pattern I)

Concentration

1 r"--
I

I

I

0.9L^
I
I

o.8 L--～

o.7 LjI
0.6 L

I
I

I

o.5 L

0.4 L_

0.3 r

0.2

0.1

0

0

#

No.2

No.1

Area in which a policy

is selected

No.C1, C2

No.5, 6

No.3,7 No.4,8

20 40 60 80 100

Calculation steps

Figure 32: Transition of concentrations

(Conventional formula, asymmetric idiotopes, and condition pattern I)

-71-

Concentration

I

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.I

0

No.4, No.8

0

Area in which a policy

is selected

No.3, No.7

No.1,5,6,C1,C2

100 200 300

Calculation steps

Figure 33: Transition of concentrations

(Proposed formula, conventional idiotopes, and condition pattern I)

Concentration

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1

I

L
I{

No.2

Area in which a policy
is selected

No.5, 6 No.C1

No.C2

20 40

No.1,7

No.3 No.4, 8

60 80 1 00

Calculation steps

Figure 34: Transition of concentrations

(Proposed formula, asymmetric idiotopes, and condition pattern I)

-72-

4.4.1.2 Evaluations of the asymmetric idiotopes

We assumed condition pattern II in which the following two conditions appeared.

1) Therewouldbe workfora500kVCRsystem.

2) Both CR systems forthe same line are shutdown.

In these experiments, formulas (2) and (3) were used to figure out the concentrations of

antibodies.

Figure 35 shows the results of an experiment in which conventional idiotopes were used.

The values of all affinity were set to 0.1. On the other hand, Figure 36 shows the results of an

experiment in which the asymmetric idiotopes were used.

Policy no. 2 and 7 were selected in the results shown in Figure 35. They, however, are not

consistent the conditions that were assumed to appear. This defect comes from the existence of

an auxiliary policy. The auxiliary policy created for the compromise policy no. Cl stimulated

policy no.2 and 7, so that the concentrations of these policies increased.

In the experiment shown in Figure 36, policy no. 1 did not increase its concentration in the

opening steps of calculations, by suppression from policy no.7. The policy no. C1, however,

achieved its effect on policy no. 1 in a matter of time. As a result, policy no. 1 was selected. This

result is reasonable to the network operations.

From these results, we can conclude that the proposed mechanism can select a set of

policies suitable for the operator's intention in the case where the total set contains compromise

policies.

-73-

Concentration

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

No.7

No.4, 8

No.2

Area in which a policy is selected

No.1

No.Cl

100

No.3, 5, 6,C2

gg*

200 300

Calculation steps

Figure 35: Transition of concentrations

(Proposed formula, conventional idiotopes, and condition pattern II)

Concentration

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

No.C1

No.1 Areainwhichapolicy

No.7

!k

a:;

[a

I

1:@L
'1.

is selected

No.5, 6, C2

No.2

No.3

No.4, 8

--Tm

I/T

I-"
fh!7
,lJ>L.I

,

0 50 100 150 200

Calculation steps

Figure 36: Transition of concentrations

(Proposed formula, asymmetric idiotopes, and condition pattem II)

-74-

4.4.1.3 Evaluation of Compromise Policies

We have shown the feasibility of our proposed method for selecting a set of policies without

conflicts, as illustrated in Figure 36. We have carried out an experiment in another case. In this

case, an affirmative policy suppresses another that is stimulated by a compromise policyB The

compromise policy must not be selected because the affirmative policy it stimulates is not

selected.

The following items are assumed conditions. Hereafter, we refer to this as condition

pattern III.

1) There wouldbeworkfora500kVCRsystem.

2) BothCRsystems forthe same lineare shutdown.

3) Thecondition for CBFis not satisfied.

Figure 37 shows the results of the experiment under the condition pattern III. Policies no.

2 and 7 were selected in this experiment. Policy no. 1 was not selected because the

concentration of policy no. 2 suppressing policy no. 1 was high. Due to this situation, it was not

necessary to select policy no. C1. Our method recognized this situation and reduced the

Concentration

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

No.C1

I
I

I

ii

-

No.2 Areainwhichapolicy

is selected

No.7

No.4,8 No.3

No.1,5,6,C2

:
)f-i-{=,

i
-..i,Jj%..I

,-.
;-i-,t1

.-
i_h",:_i

i
"

k_,-=1.:i.:.T-:_k-i,tL:,>&1,-i_=J]_t3"".J..,jfi-i"i./17BW}WWiWt.,tm=.vblltS-&%;i;iji&,I=ir*:;1-i.;.i-,

i
.0 i00 200 300 400 500

Calculation steps

Figure 37: Transition of concentrations

(Proposed formula, asymmetric idiotopes, and condition pattern III)

-75-

concentration of policy no. C1. As a result, policy no. 7 increased its concentration enough to be

selected.

These results show that a compromise policy is selected if it is needed and allowed. In

addition, the existence of a compromise policy does not require a change of affirmative policies.

4.4.1.4 Evaluations of addition and deletion of policies

The addition of a new policy requires only definition of the new policy and reconfiguration of

policies that have direct relationships to the new one. It does not need change of the formulas or

rules for setting parameters. Figure 38 illustrates the procedure to add policy no. 9 in the

experiments. The new policy was defined in the first step. We looked over policies that seemed

to have relationships to the new policy, and set up idiotopes in the second step. At this time, we

reconfigured parameters according to the proposed rules. In the third step, we created an

auxiliary policy because policy no. 9 had a relationship to a compromise policy no. C2.

Our method for selecting policies was carried out after the addition of policy no. 9. In the

case of each condition pattern, it selected the same policies as shown in the previous experiment

corresponding to the same case. We have carried out other experiments in which policy no. 9

was stimulated by an antigen. These results are given in Table 6. The network operator that has

defined the policies has deemed these results appropriate.

Neither did deletion of an existing policy need changes of the formulas or rules for setting

parameters. It required only the tasks described as follows.

1)

2)

3)

Identification of a policy to be deleted.

Dissolution of relationships that the policy has.

Reconfiguration of parameters according to the rules.

These results reveal that our method can add a new policy or delete an existing one

without changing any part of the artificial immune network (e.g.formulas or rules for setting

parameters). We can therefore conclude that our method is more suitable for the network

operations than neural networks in which re-learning is needed for a change, or genetic

algorithms in which formula and/or crossover must be reconfigured for a change.

-76-

No.3

if current is over the threshold for SSC,

then keep all relevant CR systems working.

- - - - - - - - -
l1

lNo.9 I

:iEecnonsftTtaht!Orne.Oefv;hnTtbduosTn
of a 1ine,

-
.

I

Step 1

No.3

if current is over the threshold for SSC,

then keep all relevant CR systems working.

A
I

I

INo.9

I--i
I then stop the relevant bus.

-
ll

I

if confirmation of shutdown of a
line, :I I 1 1d

Step 2

No.3

if current is over the threshold for SSC,

then keep all relevant CR systems working.

A
I

l

INo.9

- -
II

I

No. C2

reduce current on the line.

No. C2

reduce current on the line.

No. C2

reduce current on the line.

r
- -

I
-

-

i iEecnonsft';mtaht?me.Oefvzhn?tbduosTn
of a line, i+ " - :[oTxdli?gapnod'igy2:

llU. /

I I_________

Step3

Figure 38: Procedure to add a new policy to existing ones

Table 6: Policy Selections after no. 9 is added

condition pattern OCCurllenCe selected policies

pattern IV confirmation of shutdown of a
line No. 9

pattern V confirmation of shutdown of a
line No. 9

current is over the threshold for SSC No. C2

pattern VI confirmation of shutdown of a line No. 3

current is over the threshold for SSC No. 8

current on a substitute line is

over the threshold for SSC

-77-

4.4.2 Consideration of application to the real operations

We will validate the results of the experiments in terms of application to the real operations. In

addition, we will discuss its processing time and convergence of concentrations.

4.4.2.1 Validation of the policy selection

The policies in Section 4.4.1 are frequently used in operations of networks that provide services

for power systems. All the outputs from our method are consistent with the judgment of the

network operator. This reveals that our method is feasible for real operations.

However, outputs from our method are not always consistent with the operator's judgment,

if a condition that is not written in the policies is considered. In addition, outputs from our

method would not be feasible if policies do not renect user requirements. We will mention this

issue in Chapter 8 because an approach to solve this defect is relative to FDLU.

4.4.2.2 Processing time

The graph in Figure 39 shows a change in processing time until 1,000 steps of the calculation,

for the number of policies. Tlle Order of calculations for the policy selection is relative to the

square of the number of policies. This comes from the fact that the current program for our

method deals with a full-meshed graph. This program considers all pairs of policies even if they

do not have influence on each other.

There are from dozens to thousands of policies on each real operation. The latest

workstations or PC servers perform at least twice the HP K250 that was used for the

experiments. The concentrations of policies converge in 200 steps in almost all cases. In

addition, the current program can be tuned up. These indications are that a set of policies can be

selected in a couple of minutes, even if there are 1,000 policies. This performance is sufficient

for the network operations such as task scheduling because these operations currently need a

couple of hours.

4.4.2.3 Convergence of concentrations

We have gained the outputs in which all concentrations converged in the experiments. This

comes from the following two factors. The first one is that the concentration of an antibody is

apt to decrease because the affinity for suppression is stronger than the one for stimulation. The

second factor is that conditions do not change during the calculations. The schedule to read

conditions, therefore, is important for our method to be applied to real operations. However, we

have not given theoretical proof of the convergence of concentrations. This is our future work.

-78-

Processing time [seconds]

2000

Formula of approximated curve

y
= 0.0034x2 + 0.0554x + 0.2647

1500

1000

500

0

0 200 400 600 800

The number of policies

Figure 39: The number of policies and processing time

4.5 Summary of the policy selection

This chapter described the policy selection that makes an NMS adaptive to a change of policies.

The method for policy selection makes use of the concept of artificial immune networks. We

attached policies offered in the previous chapter to an element of the artificial immune networks.

We changed the formula to calculate the concentrations of policies, and idiotopes that have

different values for stimulation and suppression. The selection of multiple policies without

conflicts has been achieved by these changes.

We have evaluated our method by application to network management to maintain the

quality of various services. The results show that our contribution confers benefits on selecting

policies, as mentioned below.

1) Correct outputs: The program based on our method selected one or some policies in

the case study. These selected policies are validated to an actual operation of a

-79-

network. It is important that this program does not select a policy that must not be

performed under a set of conditions. Many systems have not been accepted by real

business because they produced outputs that were redundant or incorrect for a certain

condition. Therefore, this feature makes the policy selection more applicable to real

operations of networks.

2) Practical calculation speed: The program used in the case study finishes the

selection in dozens of minutes, where it picks up policies from hundreds of policies.

This means that our method helps jobs,e.g. task scheduling, that are not necessary to

complete in a few minutes. There are a number of such jobs in actual operations.

Therefore, our contribution improves the efficiency of such jobs.On the other hand,

our method is insufficient for jobs in which a decision has to be made quickly.

Instruction about a fault is one such job. System designers have to take account of

jobscharacteristics when this policy selection is applied.

3) Simple parameter setting: Outputs of the selection are influenced by parameters

that are set relations between policies. If parameters are inefficient, an output may be

meaningless for an actual operation even though the content of the policies is correct.

Our contribution sets default values for each parameter, and rules to calculate values

when multiple associations exist on a policy. This makes it simple to set each

parameter and contributes to correct outputs.

4) Adaptability to change of policies: In our contribution, no formula needs to change

when a policy is added, deleted, or changed. Parameters can be set simply according

to the rules. These features make the policy selection accept changes of policies. A

programmer or user has to define new formulas or make a system relearn the new

policy set in other approaches such as neural networks or genetic algorithms. Policies

are added, deleted, or changed many times in network operations so our contribution

has an advantage to this field.

-80-

Chapter 5

Revising components

A function is invoked in accordance with a selected policy. If the designated function has been

provided by an off-the-shelf software component, system designers can make use of it without

change. If not, they have to customize functions provided in an off-the-shelf component or make

a new component. This chapter proposes a method to change a function in an off-the-shelf

component. This method offers four types of components for customizations. We have referred

to them as "RevComponent".

"Without modifications of an off-the-shelf component" is the key of our proposal. Two

types of risks arise from direct modifications of off-the-shelf components. The first risk is that a

change may be costly, because source codes in most off-the-shelf components are usually closed

to users or third parties. If users demand the supplier of the component to open the source codes,

they may have to pay a large amount of royalty. The second risk is that users may not use

upgraded version of an off-the-shelf component if it is modifled directly. In this case, the

modified off-the-shelf component provides the original function that is needed for user

requirements. Its upgraded version, however, might not provide the original function. Users,

therefore, cannot use the upgraded version without change.

These risks indicate that RevComponent must customize a function provided in an off-the-

shelf component without change of the source codes of the component. In addition,

RevComponent should provide several ways to customize a function, such as addition or

deletion. Of course, system performance should not be degraded by introduction of

RevComponent.

This chapter is structured as follows: first, related work comes to clarify existing

approaches to customize functions. In the following section, we mention the details of

RevComponents and the results of experiments with applications of RevComponents to an

NMS. The next section puts forward the case for RevComponents characteristics, such as

comparative performance. We summarize the proposal of RevComponent in the last section.

-81-

5.1 Related works

In this section, we show works related to the customization of functions. We review the work in

terms of the customization after software is completed, or the adaptation of software.

Some recent systems are based on delegation. In these systems, a subsystem delegates

tasks to other systems, by sending a script that describes procedures [113, 114]. These systems

are able to fulfill individual requirements that arise on run-time, because the script is written at a

stage distinct from analysis or design of the system. A script, however, has a tendency to be

complicated due to scripting function as a whole. Suzuki et a1. have simplified scripts using a

system that sends a script describing only function flow, and delegated systems that build

functions based on the received script [115]. Off-the-shelf components must have the

mechanism that receives and executes a script if delegation is used in a component-based

system. Users, however, cannot expect that all off-the-shelf components be built based on the

delegation.

Mobile agents [116] can also modify apparently a function on hardware at run-time, since

they carry executable codes. This technology seems to be promising for the redevelopment of

systems. It has been applied to an NMS in several studies [117, 118]. However, its design and

maintenance are still difficult when it is used with off-the-shelf components. In addition, off-

the-shelf components are usually designed for common use to a number of network operators,

so that mobile agents would not be adopted unless it has good features in terms of performance

ordesign.

Components themselves have become more adaptive in recent researches. JavaTM

Management Extensions (JMX) [119] define a framework for dynamic MBeans that are

components for system management in a Java community. The dynamic MBeans can change

their exposed methods and behaviors after design of components. A system obtains information

about the methods via an interface that is defined in JMX. In this framework, a change in an off-

the-shelf component may require another component to change, too. Studies on Adaptive Plug-

and Play Components (APPC) [120], and Active Q Adaptor [121], also proposed components

that can change their functions. These studies, however, do not show a methodology that

changes functions without a change in off-the-shelf components.

Wegdam et a1. [122] proposed a system that makes use of interceptors as well as

RevComponents. It focuses on management of the CORBA platform, while RevComponent is

used for management functions. Therefore, it does not take into account how to change a

function provided by an off-the-shelf component.

RevComponent, which is proposed in this section, has a role as a software wrapper.

Software wrappers have been applied for various domains, e.g. security [123, 124, 125],

integrating API (Application Programming Interface)[126],or manipulation of XML [127, 128].

Some of them add new processing for their purposes and some of them have offered code

-82-

generators to facilitate building wrappers. However, they take no account of how to modify

processing under the environment based on distributed components. Therefore, it is not clarified

that a software wrapper can modify a function provided by another software with its

maintainability and lightweight processing.

5.2 Proposed technique

We set out our proposal for RevComponents in this section. First, we mention the requirements

for RevComponents to change functions to fulfill user requirements, with no change of off-the-

shelf components. Following to the requirements, we draw the positions and roles of

RevComponents in a run-time environment. We also show the configuration of RevComponent

and its templates to simplify its construction.

5.2.1 Requirements n)r designing RevComponents

In this subsection, we clarify six requirements for RevComponents.

1) Ability to modify functions: Various changes of functions may occur, for technical

or non-technical reasons. It is hard to predict details of possible changes before the

requirement actually arises, as mentioned in Section 2.2.5. Accordingly, it must be

possible to modify or remove a function provided by a component that has been used.

In addition, it must be possible to add a new function not provided by the component,

and to cope with sending messages to a new interface not employed so far.

2) Simple customization: Off-the-shelf components should be used to construct an

NMS, and are distributed to a number of machines. This type of construction needs

knowledge about distributed systems. The same knowledge is required to construct a

RevComponent because it behaves in the same way as other components in an NMS.

However, a designer of RevComponents may not be expected to have complete

knowledge, as they might be third part vendors that have not constructed such an

NMS before. Therefore, it is useful to provide a framework to help make

RevComponents without full, detailed knowledge about distributed systems.

3) Preventing the slowing-down of processing: An NMS performs some functions that

are time-sensitive, such as alarrn diagnosis. The processing of these functions should

not be delayed by the introduction of RevComponents. RevComponents should

perform processing for function change, in the same or less time than other

methodologies. Accordingly, RevComponents should include mechanisms that

-83-

prevent processing time from being prolonged.

4) Maintaining small size: A function may be modified repetitively after an operator

starts to use an NMS. A new service, or business process reengineering, can cause a

change of functions. RevComponents should keep small volume of memory for its

execution, even though it is used several times for the modifications. This supports

maintenance, keeps its processing time short, and/or prevents the using up of

processing resources.

5) Easy plug-in/removal: It is desirable to be able to modify a function partly, because

various workers make use of an NMS for their own operations. If RevComponents

can be plugged in and removed from the NMS, it can quickly fulfill an individua1's

requirements.

6) Appropriate testing: One important condition is to confirm how a RevComponent

performs. Tests of RevComponents must show if it fulfills requirements. Tests must

also reveal any side effects on other components. These tests should be executed in a

practical environment, although they must not have an effect on operations and

processes. Therefore, a sensible and effective means of testing RevComponents is

required.

5.2.2 Roles at run-time

A RevComponent is placed before or after the component whose function is to be modified. The

component that the RevComponent is related with is referred to the target component in this

section. When placed before a target component, a RevComponent intercepts requests sent to

the target. When placed after a target component, a RevComponent receives requests sent by the

target. In this thesis, we refer to a RevComponent before a target component as Precedent

RevComponent, and one after a target as Subsequent RevComponent.

5.2.2.1 Role of precedent RevComponent

Precedent RevComponent takes a specified request in advance of its target in order to modify a

function. It has the same interface definitions as those of the target. It processes data and/or

sends other requests based on the received request in order to satisfy an individual requirement

as illustrated in Figure 40. The RevComponent forwards the same request to the target

component in cases where functions provided by the target are used.

A Precedent RevComponent can be designed not to forward the request to the target

component as shown in Figure 41. In this case, the functions performed by the target component

are left out, since the target does not receive the request. We have called the first type

preprocessing, and the second type alternative processing.

-84-

Precedent RevComponent
I

preprocessing the only

Function F1

～

I
I

～

～
～

～
～

component SC 1

component SC I

Function F1

-

processing data D2

I
I
I

invocation of F1

II

I

invocation of F1

As a whole, Fl manipulates

data Dl and D2.
I

I

I

I
I

I

I

I
I

I

target component

invocations of other functions

Notes:

Function Fl

-

processing data D1

Function F2

Function F3

Off-the-shelf component

RevC omponent

Figurt! 40: Precedent RevComponent for preprocessing

Precedent RevComponent

Function F1

-

processing data D2

- invocation of F21

invocation of F1

invocation of F21

invocations
of other functions

component SC2

Function F21

I
l invocation ofF21
before RevComponent

is setup

target component

Function Fl

-

processing data D1

- invocation of F21

Function F2

Function F3

Figun 41: Precedent RevComponent for alternative processing

-85-

New data and/or procedures can be added to a function provided by a target component,

using preprocessing. A new calculation of statistics, for example, can be added for a new service

deployment.

Alternative processing skips the function invoked by the request that the Precedent

RevComponent receives in advance of the target. This provides the means to deactivate an old

function, and activate a new one, in order to fulfill an individual requirement. Other functions,

except for the deactivated ones, are provided by the target component as before.

5.2.2.2 Role of Subsequent RevComponent

A Subsequent RevComponent picks up requests sent by its target component and carries out

functions based on these requests. Each Subsequence RevComponent defines the same

interfaces as those of the components to which the target sends the requests. These functions can

be categorized into two types.

The first type transforms interface syntax and semantics when a new component with new

interfaces is introduced into an NMS as illustrated in Figure 42. We refer to this function as

interface changing in this section. It allows components that have been used to cope with a

change of environment.

In the second type of function, information picked up by a RevComponent is distributed to

other components as shown in Figure 43. We refer to the second type as information distribution.

The target component is not concerned with the number of components that receive the request.

In addition, routes along with the request is transmitted can be selected and altered by this

function after operators start to use the NMS including the target. The target component can be

adapted to the modirled organizations and/or business processes to be supported using this

function.

5.2.3 Configuration and templates

We have designed configuration in RevComponents on a CORBA platform. We selected C++ as

a programming language for RevComponents. We have designed some templates to facilitate

the construction of a RevComponent.

Any kind of RevComponent is composed of some or all of the following four parts that are

shown in Figure 44. Each part is composed of several objects.

1)

2)

3)

4)

Request transmission part

Processing scenario part

Internal data processing part

Request preparation part.

-86-

Subsequent RevComponent

Function F1

- invocation of F1'

target component

component SC3

invocation of Fl
invocation of FIT

Function F1
'

inv.ca.i.n.fFl

rep.aCementOfSC2withSC3).before SC3 was introduced

-------------------------------+

component SC2

Function F1

Figure 42: Subsequence RevComponent for interface
changing

Subsequent RevComponent

Function F2 1

- invocation ofF21 on SC2

- invocation ofF31 on SC3

target component

invocation of F21 invocation of F3 1

invocation of F21

invocation of other functions

component SC3

Function F3 1

component SC2

Function F21

Function F22

Function F23

Function F24

Figure 43: Subsequence RevComponent for information distribution

-87-

internal data processing part

data processing

4a

internal data

structure

(atomic)

data processing

4a

internal data

structure

(complicated)

3a

I

I

A

I ld I A A A

PrOCeSSlng SCenanO

3a

IAI

- invocationofinternaldata I 3b

I-1n=oclt'inlf =qiesielablisLmln!I T II I I II I I I I II1

2

request transmlSS10n

1 5

5

RevComponent

request PreParatlOn Part

IIIIII+IIIII

I parameterelement

values I

in the parameter I
r
_settlng

uP COnCrete

I
I I I I I I I I I

4b

request establishment

-

creation of parameter elements

- indicattion of setting up

parameter elements
-

creation of requests
- indication of sending requests

ORB : Object Request Broker

legends

a Element provided by a template

ll -I
Element to be developed based on a template

I _ I

D Element to be developed without a template

Figure 44: Configuration in a RevComponent

The request transmission part sets up, and has a connection to Object Request Broker

(ORB), which conveys requests between components. The template for this part provides the

creation of an objectthat
implements the interface, initial value loading, and start of a routine

for receiving messages.

The processing scenario part invokes methods in the internal data processing part and/or

the request preparation part. A framework is provided in the template for these invocations. The

-88-

template is derived from the interface definitions of its target component or components that

receive messages from this RevComponent. It is necessary to decide that methods are called in

this framework, in order to realize a function for an individual requirement. The processing

scenario part forwards the same request picked up by the RevComponent to the components that

are original receivers of the request. This request forwarding is used in the case of the

preprocessing and the information distribution. The request is forwarded by source codes

written in the template for this part.

Data used in the RevComponent is manipulated in the internal data processing part for a

new function. Although templates are provided for atomic data structures such as strings or

integers, the means of setting the values must be designed individually. No template is prepared

for complicated data composed of several data. This is because the data structure is designed

according to each requirement. However, programmers can use libraries in which many data

types are defined as C++ classes.

The request preparation part makes a request that the RevComponent sends for its own

functions. This part is used in RevComponents for the following three types: the alternative

processing, the interface changing, and the information distribution. This part makes use of

interfaces defined for components other than the target. A template provides the client stub of

procedure, since it can be derived from the interface definition of the request to be made. Each

element in a parameter of the request is implemented based on a template that provides

procedures for setting up the values. Specific procedures for setting up the values need to be

developed.

Typical procedure of a RevComponent is described as follows. The numbers are

corresponding to them in Figure 44.

1)

2)

3)

4)

5)

Receipt of a request

Invocation of the processing scenario

Delegation of tasks to the internal data processing part and/or the request preparation

Part

Process of internal data and/or indication of parameter set and response

Transition of a request

5.2.4 Code generator

We have oHered a code generator that produces source code and header files to be compiled to a

RevComponent. Figure 45 illustrates input and output files that the code generator reads and

writes in the case where a RevComponent compiled from C++ runs on CORBA. CORBA is the

most popular middleware of distributed objectenvironment
for NMSs. C++ is the most popular

programming language for CORBA as well as JavaTM. The code generator per se is written in

Per1.

-89-

Template files provided in our proposal

Codes for sending a message

Codes for data structure

/

Main Routine

Code Generator

N

code

fi.el
H

source code

file
for

editingl

developed
in our study

Source
eader file

I

I

I

Edited by programmers

Legends

file

Conforming to the standards

I

I

I

Interface Definitions of
an off-the-shelf component

OffTered

Commercially
/

IDL Compiler

N

skeleton code

fi.el

Files to be compiled to a RevComponent

executable program

Figure 45: Code generator for RevComponents on C++ and CORBA

The
code generator read

four files that have been provided in advance. The file "codes for

data structure" contains templates for internal data structure (atomic) mentioned in the previous

section. Tlle file "codes for sending a message" contains templates in the request preparation

part in Figure 44. The main routine file includes the template of the request transmission and

codes for initializing a RevComponent. In addition, it has the template of the processing

scenario so that its codes send the picked up message to the target component. The file

"Interface Definitions of an off-the-shelf Component" contains interface definitions of the target

-90-

or another component that will receive messages from the RevComponent. These components

are off-the-shelf so that the definitions are provided as a standard.

There are two executable programs to produce files to be compiled. One is an IDL

compiler that is usually provided commercially. Some of them can be used without charges. It

reads interface definitions of an off-the-shelf component and produces skeleton files. The

skeleton files provide a RevComponent with mechanisms of a client stub or server skeleton in

CORBA.

The other is the code generator. It produces three types of files to be compiled to a

RevComponent; source code files, header files, and a source code file for editing. These files are

composed of templates and codes generated from the interface definitions. Methods that have to

be customized for each RevComponent are stored in the source code file for editing. Other files

are not needed to change for each RevComponent.

5.3 Evaluations using a prototype system

We have built a system to evaluate processing time and customization with RevComponents.

This system is composed of four types of components equivalent to off-the-shelf ones, and a

Precedent RevComponent, as illustrated in Figure 46. A SQM (Service Quality Management)

component, which is regarded to be off-the-shelf, is a target in this system. The SQM

component and a RevComponent are installed onto the same workstation so that the messages

between them do not pass through a network. Other components send a message to on another

via LAN. There are fore EM (Element Management) components. They emit messages to the

NDM (Network Data Management) component at 5 seconds intervals.

Each message in this system needs its own response from a server component, which

receives the message. Accordingly, a client component, which sends the message, has to wait for

the response and cannot do anything in a thread until the response comes.

This RevComponent performs some or all of three types of preprocessing when it receives

a "Network Usage/Performance Trends" message from the NDM component. The types of

preprocessing are as follows:

Type I: Increasing a counter by one

Type II: Creating an instance of a standard object
for togging and saving the data on a file

Type III: Calculating difference between inbound and outbound communications

In the type III process, the RevComponent sends a message to the NDM component in

order to gain information about delay inbound/outbound communications. In other types, it does

not send any messages to another component.

-91-

Service Quality
Management Component

Function :

- NW usage/performance trends

processes the types I, II & IIf

Precedent

Function:

- Performance/usage data request

(This is sent in the TYPE III)

Network Data

Management Component

Function :

- Usage performance data

- Alarm Information

Notes :

Function :

- Usage performance data request

Network Element

Management Component

Off-the-shelf component

RevComponent

Figurt! 46: An evaluation system for RevComponent

5.3.1 Performance

We measured system performance and show its results in Figure 47. Each processing time

shows the average value of 100 executions of each type. For each type, we measured the system

performance in three cases. A modified SQM component performed the specified types of

preprocessing in the first case. The modified SQM is corresponding to an off-the-shelf

component that is modified for fulfilling user requirements. The results of this case are shown

-92-

rT

S o.1
-

U

E
t-
-

at)

G
4-

Z o.o8
U

O
L<

D<

0.06

0.04

0.02

0
I I 4

R Rmt:S R Rmt:S R Rmt:S R Rmt:

I I
I

s R Rmt: S R Rmt: S R Rmt:
I I I

I I I

I I I

A I I

TypeI : TypeII : TypellI :

I l l

I I I

I + I

i Typelll i TypeI&II i TypeI&III i TypeII&III

Notes S: Modified SQM component perfbrms specified types.

R: Single threaded RevComponent performs specified types.

Rmt: Multi-threaded RevComponent performs specified types

S R Rmt

Type I. II & III

Figure 47: Performance by preprocessing types and performing components

with an "S" in Figure 47. A single-threaded RevComponent performed the specified types in the

second case. It sends a message to the SQM component in the evaluation system after

processing the specified types. The results of this case are shown with an "R" in Figure 47. A

multi-threaded RevComponent performed the specified types in the last case. It sends a message

to the SQM component and processes the specified types of preprocessing in parallel. The

results of this case depicted with "Rmt" in Figure 47.

The processing time of the single-threaded RevComponent is at most about 30 mille-

seconds longer than that of the modified SQM. The difference in performance does not depend

on the type of preprocessing.

On the other hand, the processing time of the multi-threaded RevComponent is shorter

than that of the single-threaded RevComponent. In addition, it is equivalent to the processing

time of the modified SQM when preprocessing of the multi-threaded RevComponent does not

include the type III. Even if the type III is included, its processing time is at most about 20

mille-seconds longer than that of the modified SQM.

-93-

These indicate that the difference between the performance of the RevComponents and

that of the modified SQM comes from sending a message to the SQM component. The

RevComponents, that is, receive a message from the NDM and send the same message to the

SQM, although the modirled SQM does not send a message to execute the original processes.

The difference does not depend on the type of preprocessing.

5.3.2 Volume of Development

We measured source codes for the preprocessing in the RevComponents and the modified SQM

component that perform all type of preprocessing. We put the codes of the RevComponents into

two categories to find out the volume of development.

The first category contains source codes produced automatically based on the templates.

We made a code generator to support simple programming of RevComponents. This generator

assembles C++ codes into a template and replaces some tokens in the template based on IDL

definitions of the SQM component. Programmers do not need to make these codes because they

are generated automatically.

Source codes of a programmer's own making are put into the second category. To put it

concretely, they are for calculating data, and emitting messages in each type of preprocessing.

mis volume of codes actually shows the workload of a programmer.

Figure 48 shows a LOC (Lines of Codes) of the RevComponents, and that of the modified

SQM component. This indicates that workload for building RevComponents is almost the same

as that for modifying the SQM component. In addition, the multi-threaded RevComponent can

be built without codes in addition to those of the single-threaded one. This is because the

generator produces codes to make a RevComponent multi-threaded.

5.3.3 Plugging-in and Removal of RevComponents

The RevComponents can be plugged in and removed from the evaluation system by setting

object
implementation names for the RevComponents and its target component. These do not

affect source codes of other off-the-shelf components in the system. No difference apart from

the names is seen from the viewpoint of other off-the-shelf components. The difference in

names does not matter because object implementation names can usually be set as a parameter

in off-the-shelf components.

-94-

U 600
0
J
L-

500

400

300

200

100

0

I I I A I - I

Codes automatically

I.I_

.
.
.
.
.
.
.

.
.
.
.
.
-
.
.
.
.
.
.
.
.
.

-
.
.
.
.
-
.
.
.

[

i
1

i
codesmadeby

PrOgramq.erS...._
h

I
Tt.

I

I

I

I

I

I

I

I

I
tt

I I

-
tt

I

I

.
.
.
.
_

Modified Single-threaded Multi-threaded

SQM RevComponent RevComponent

Figure 48: Volume of source codes in components
for the preprocessing type I, II, and III

5.4 Considerations

In this section, we discuss the characteristics of RevComponents through comparison with other

methods of customization. We classify these methods into two types for ease of comparison

with RevComponents. The first includes changing the behavior of a component via its

parameters. The second is when a component is replaced with another providing customized

functions. The modified SQM component in the evaluation system is put into this type. In this

section, we refer to the first type as the parameter type, and the second as the substitute

COmPOnent type.

Table 7 shows comparisons between these two types and RevComponents. In the

following subsections, we consider RevComponents based on these comparisons.

-95-

Table 7: Comparison of RevComponents and two other types for customization

Parameter type RevComponent
Substitute component

type

Ability
re stricted

(Existing component

provides

the parameters)

gd g ood

implementing (Able to implement (Able to implement

functions a new function) a new function)

Processing time

fast
slower than others

(Both the existing

component and

RevComponent run)

fast

(Only existing (Only substitute

component runs) component runs)

Volume to be

developed

small
medium

(Design and
implementation

of RevComponent)

Iarge

(Design and
(Only setting implementation

parameters) of the substitute

component)

Diversion of

existing

COmPOnentS

many many
less than others

(Abandon existing

components)

(Diversion of existing (Diversion of

components existing components

without redesign) without redesign)

Adaptability to easy
easy

(Plug-in/remove
new version)

more difficult

component (Setting up (Cannot use the

upgrades for corresponding new version

general purposes to new version) without modifications)

5.4.1 Compatibility between adaptability and reusability

The parameter type may not be adequate under the circumstances to modify functions, because

it is restricted to a range predicted at the design stage of the component. The substitute

component type can provide new functions and data that satisfy individual needs. In addition, it

can change its interfaces that are exposed to other components. However, it may not utilize the

merits of an off-the-shelf component that has many functions able to be used without

modirlCation. On the other hand, customization with a RevComponent is superior to the other

two types. It can provide a new function while reusing some functions provided by off-the-shelf

components that are adequate for requirements.

-96-

5.4.2 Workload for development

The generator based on the templates produces the codes needed for a RevComponent described

in Section 5.3. This reduces the amount of RevComponent development work to almost the

same as that for new functions in a substitute component. However, we cannot use the generator

if interface definitions have to be changed in order to fulfill a requirement. In such cases,

programmers may have to develop more codes for a RevComponent than for a substitute

component. Accordingly, the key point for development of RevComponents is whether interface

definitions are changed or not.

The workload to develop RevComponents is also reduced by easy its scheme of the

plugging-in and removal. Off-the-shelf components are preserved in their original state when a

RevComponent is installed into the NMS. This avoids unnecessary work due to component

damage. It also makes it unnecessary to understand the contents of off-the-shelf components, as

components can be reused as a black box in this framework. These are strong arguments against

using the substitute component type.

Workload for the parameter type is less than that for RevComponents, since it is not

necessary to develop new source codes. It is unadvisable to use a RevComponent in cases where

a component can adapt to a requirement by setting parameters.

5.4.3 Performance

The experiment described above indicates that a RevComponent may not cause delays in

processing in the case of minor changes. However, a RevComponent is inferior to the other twp

types in terms of performance. This is because the target component performance follows a

RevComponent, or vice versa. If a function is sensitive to time, it may be better to customize the

function using the substitute component type.

5.5 Summary ofRevComponents

We are proposing the use of components known as RevComponents. These components

eliminate the need to replace an off-the-shelf component with new one that provides new

functions. They are located before/after a target component. They modify or remove an existing

function, or add a new one. The roles of RevComponents are as follows.. preprocessing for

additional functions and/or data, alternative processing for the deactivation of existing functions,

interface changing, and information distribution.

We have described an evaluation system for RevComponents applied to service quality

-97-

management. The results of these experiments show that RevComponents confer benefits on a

change of functions and black-box reuse of off-the-shelf components, as mentioned below.

1) Various customizations.. A system designer is able to add, delete or change a

function using only RevComponents. In addition, RevComponents do not have any

impact on the standard scheme. This helps an NMS to be composed of off-the-shelf

components and components specific to a network operator.

2) Simple construction: Our contribution provides templates to facilitate the building

of RevComponents. Some of these templates are derived from the interface

definitions of a target or related component. They allow developers to concentrate on

the development of new functions, since they encapsulate the details of data structure

and message forwarding to the target component. The volume of coding for a

RevComponent is the same as that for modifying an existing component. The codes

for a RevComponent are separated from the codes to implement functions

conforming to the standards for network operations. Using our contribution, an added

or modified function can be maintained simply in the field of network management.

3) Simple installation and removal: RevComponents can be plugged in and removed

without complicated configurations. This feature enables a function provided by a

RevComponent to be tested. This is important for an NMS because a combination of

a RevComponent and an off-the-shelf component cannot be verified except for tests

on the NMS. This also facilitates the maintenance of a function that is added or

changed.

4) Lightweight processing: Processing time did not get much longer when a multi-

threaded RevComponent was used in a case study. In particular, the processing was

not delayed in the case where a RevComponent did not interact with a component

except for the target. This shows that a RevComponent can work well in an actual

operation of networks.

Based on these results, we compared the characteristics of RevComponents with other

methods. We can conclude that a RevComponent is suitable for cases where a requirement

cannot be satisfied by tuning parameters in a component, and the modification does not affect

interface definitions.

-98-

Chapter 6

Partial Extension Package

Functions must be developed from design level in the area that RevComponents cannot perform

well. In this case, it is better to build a function based on the standard objects
than from scratch.

The standard objects are solid so that the usage of them can contribute to shortening of
function

developments.

We focus on the extension of a function in this section because functions offered by the

objects can
be reduced easily. We propose a partial extension package for the design of object

classes that provide a custom function. This package is attached to the standard objects
to add

new information processing. It is composed of several design patterns [129] to eliminate the

influence on the standard objectsand
to maintain reusability of the classes.

This chapter is structured as follows. Section 6.1 summarizes work that make software

reusable in cases where a function is customized at design level. Section 6.2 defines flexibility

with respect to the partial extension package. In Section 6.3, we set out our proposal for the

partial extension package, and describe its applications to network operating processes in

Section 6.4. In Section 6.5, we measure the applications in terms of the nexibility. Section 6.6

concludes the chapter.

6.1 Related works

Object-orientedtechnology is most popular and powerful to analyze, design and implement a

computer system. Key concept of this technology includes inheritance, encapsulation,

delegation, and so on. These features allow designers or programmers to make and maintain

easily their artifacts. Many methods have been proposed to elicit advantages of the technology

[130].Recently, RUP [6] is a dominant method because it integrates Booch Method [131],OMT

[132],and OOSE [1],which were major methods
before RUP. These methods bring up making

classes from scratch in terms of design.

Design patterns are also an important technology for class design [129]. It offers a number

of patterns to make class configuration flexible and reusable. Each pattern is composed of a few

or several classes. It has its own purposes and conditions that are suitable to use it. For example,

-99-

strategy pattern defines a set of algorithms, and encapsulates each one in a class. These classes

can be exchanged independent of a client class. This pattern fits to conditions that only behavior

of relevant classes is different and other features are same. When they are used, designers

combine them to built a system. It depends on designer's skill to select which pattern is used. A

research has revealed that the design patterns are beneficial by empirical evidence [133].

A framework is a set of classes that make up a reusable design product for a certain

application. For example, a framework is provided for the specification of distributed systems

[134].Another example is a framework that assists to build a financial system [135]. System

architecture is defined in a framework. It sets how to assign responsibility to objects,
how an

object
interacts with others, etc. Main programs in a framework are reused when a designer

builds a system. Frameworks are different from design patterns although they have several

similar features. The major points are as
follows.

1)

2)

3)

Design patterns are more abstract. Frameworks are more concrete.

Design patterns are smaller elements. Frameworks are larger elements.

Design patterns are more general. Frameworks are more specific to certain domains.

These technologies seem to be tough to extend standard objects
in regard to functions,

while the objects
are kept reusable. There are too many options for designers to extend the

objects in case where the object-orientedtechnology
is used without design patterns or

frameworks. Design patterns are general and small elements so that a little larger grain of

elements is useful to the extension. Frameworks can be applied to whole architecture of an

NMS. Designers, however, cannot change or extend class structure or interactions so that it is

difficult to extend the functions using them. Therefore, we need a fine-grained package to

extend the standard objects.

6.2 Flexibility in function change

In this section, we define "flexibility" in terms of changing the behavior of a function in an

information model composed of objects.
This clarifies how the PEP is attached to the standard

objects
in a nexible manner.

An information model should have one or both of the following characteristics for

changing the behavior of a function in a flexible manner. First, an information model can

provide suitable functions with no modifications in the case of a change in requirements. We

refer to this type as an adaptable information model. Second, a new
object

for a new function

can be added with no, or only small, modifications of other parts in the information model. We

refer to this type as a re-configurable information model.

-100-

Setting a parameter
in the adaptable information model can change the behavior of a

function. This does not require modification of the model. It is not sufficient in cases where a

function has to be modified on a certain scale, although it does provide an easy way to change

behavior.

The re-configurable information model provides flexible mechanisms that create and

modify objectclasses
to change functions on a large scale. However, it is difficult to design such

models, because the characteristics of a model depend on an application, or the context to which

the model applies. A designer of objectclasses sometimes comes up against the question of

which physical or logical unit should be modeled as an objectclass.

nle necessity to change a function depends on the policies of individual operators.

Policies are affected by external primary factors e.g. technological progress or new services.

TTleSe factors make it impossible to forecast that requirements might arise in the future, as

mentioned in Section 2.2.5. Accordingly, we focus on the re-configurable information model

that can realize a large-scale change in a function.

In particular, the model should have the following two properties in order to change

behavior in a flexible manner.

1) Reusability of objectclasses: Object classes that
have already been used in the case

of function changes should be reusable with little or no modifications. These objects
are referred to as existing objects.

2) Localization of modification: Object classes in a model should not be affected by

classes that are added to the model for new processing and/or data. This additional

object
is
referred to as a custom object.

Any custom objectclass
can be easily added to, or removed from, existing objects,

by the first

property. Work to design custom objectclasses
is reduced by the second property.

Both the reusability and localization in a model are relevant to a concept called 'coupling'

between
objectclasses.

Stevens et al. first introduced the coupling concept in the context of

structured development. They defined coupling as "the measure of the strength of association

established by a connection from one module to another" [136].This concept has been migrated

to
object-oriented

design by Coad and Yourdon [137]. It has been reported that weak coupling

makes it easy to reuse objects[138], and
localizes the influence of modification of an object

class [139]. Accordingly, it is most important to weaken coupling between an existing object

and a custom object
or between custom objectsthemselves.

-101-

6.3 Partial Extension Package

In this section, we set out our proposal for a partial extension package that changes behavior in

a function in a flexible manner. TTlis package is composed of custom objects,and
is attached to

existing objects
to make them part of an information model for constructing an NMS. TTle

proposed package will be described after the requirements for the package.

6.3.1 Requirements tbr the package

The PEP needs the two properties described in the previous section. The package must have the

following requisites to achieve the above.

In the first place, information processing needs to be added, modified, and/or deleted in

most function changes. TTleSe Changes in information processing are realized in a custom object.
This
object

invokes methods provided by other objects,and/or calculates values
on its attributes.

Coupling between a custom objectclass and others, especially existing objectclasses, must
be

kept weak in an information model using the package. The package should have features for the

weak coupling to maintain the flexibility.

In the second place, states invoking information processing may by required in the

function changes. Therefore, developers may need to design new states that have not been

defined in existing objects.
In contract, most substances related to the states (e.g. network

elements or services) have been defined as standard objects
by international organizations. TTle

package needs to provide a facility that weakens coupling a custom objectshowing
a new state

and an existing object
describing a substance.

In the third place, developers cannot really foresee which method, and/or data, will be

required by future information processing. This makes it impossible to provide all the methods,

and/or data, in an objectmanipulated
by a custom object

in advance. If an existing object
were

modified directly, it would force other object
in the information model to change. Therefore, the

package should provide a way to add new methods, and/or data, with no modification of

existing objects.
To sum up, the package should provide features with the following characteristics, for

changing a function in a flexible manner.

1)

2)

3)

Ease of extension/modification/deletion of information processing in a custom object

Ease of setting a state invoking information processing

Avoidance of direct modification of existing objects
for new information processing

-102-

6.3.2 Structure of the package

Figure 49 shows the structure of the PEP. This figure is a class diagram in UML, and is used to

describe
objectclasses with attributes, methods, and relations.

A gray boxes in this figure stands

for an
object class

for general-purpose use (an existing object).
A white box in the figure

indicates a custom object
for changing a function in a flexible manner.

The PEP is composed of three objectgroups,
as follows.

1)

2)

3)

An
objectgroup showing

a state invoking processing

An
objectgroup processing

information

An
objectgroup providing additional

data

The requirements described in the previous section, are fulfilled by these objectgroups.

Each
objectgroup makes

use of several design patterns to be reusable and weaken the coupling.

The structure and characteristics of each objectgroup will
be described in the following

subsections.

6.3.2.1 Object group for states

This
object group

includes a state aggregation class and several state classes. Concrete state

classes are derived from a state class.

A state aggregation class is related to a context objectclass, which
is an existing object

for

general-purpose use. An instance of this class is created corresponding to an instance of the

related context class. It also has an association to state objects,and
forms a bridge between

these two types of objects.
This class provides three methods for state transition and invocation

of information processing. One type of method related to state transition, e.g. method1() in

Figure 49, is invoked in a context class. Another method related to state transition is

changeState() in Figure 49. TTlis method
is called by a concrete state class for changing the

relationship between the state aggregation class and concrete states. This invocation makes the

state aggregation class move from the current state to the next. The method related to invocation

of information processing is called
by a context class. It contains some pointers to objects

that

are manipulated by the called information processing. It invokes methods provided by a related

concrete state class, and sends the pointers to the class.

A state class describes an individual state relating to the context class. For example, a state

class is designed in accordance with the operational state of a network element.
A state class

provides method interfaces for state transitions and/or invocations of processing. These methods

do not include concrete behavior and an instance of this class is not created.

-103-

Co ntex I

method I()

method2 ()

method3 ()

method4()

State B

method3()

meth od4 ()

in voke Strategy()

tram sit

State

changes tate()
invokeS trategy()

method I ()

method2 ()

method3 ()

method4 ()

hold

Concrete State B I

method3()

method4()

invokes trategy()

Strategy B

a lgo rithmln te la c e()

subMethod1 ()
s u bMeth od2 ()

Concrete Strategy B I

algorithmlnterface()

subMethod I ()

subMethod2()

manipulate

&ansmit

E
1
a

I
i

i
i

5

i

i
f
I

i

i
i

i
tth

Concrete State B2

method3 ()

method4()
invokes trategy()

invoke

hold

Objectgroup fTorstates

State A

method1 ()

method2 ()

in vokeStra tegy()

transit

Concrete State A 1

method I()

method2()

invokes trategy()

Object group for

information processing

Concrete Strategy B2

algorithminterface()

subMethod 1()

subMethod2()

Element B

me thod()

Proxy B Decorator B

method() me th od()

Concrete Decorator B 1

component

Concrete Decorator B2

additionalAttribute 1 additionalAttribute 2

method()

addionalMethod I()
method()

additi onalMethod2()

Concrete State A2

method 1()

method2()

invoke Strategy()

Strategy A

invoke

algorithmlntelace()
subMethod1 ()

subMethod2 ()

Concrete Strategy A I

algori thminterface()

subMethod I()

subMethod2()

trad smit

Target B

method()

ta

Concrete Strategy A2

algori thminterface()

subMethod I()

subMethod2()

Element A

me thod()

Proxy A Decorator A

method() me thod()

Concrete Decorator A I

manipu late

dec orate

Concrete Decorator A2

additionalAttribute 1 additionalAttribute 2

method()

addionalMethod 1()
method()

addition alMethod2 ()

Target A

method()

FigurtA9: A class diagram of the Partial Extension Package

-104-

i

A concrete state class provides only the behavior of methods defined in the state class

from which it is derived. This behavior calls information processing and state transition. A

concrete state class has relations to other concrete state classes for state transition. It also has a

relation to a strategy class that provides appropriate processing. An instance of this class may be

created by only one in a system and shared by instances of the state aggregation class.

This
group eliminates the

influence on a context class, as to definitions and transitions of

states. The state aggregation class deals with all relationships between a context class and state

classes, reducing modiflCations of a context class. The state transition by concrete state classes

does not require modifications of a context class.

6.3.2.2 Object group for information processing

This
objectgroup

includes a strategy class and concrete strategy classes. A strategy class does

not define behavior for each interface although it defines interfaces for executing information

processing, such as algorithmlnterface() in Figure 49. Exceptionally, a method in this class

might be defined to invoke sub-methods provided by the same class, in cases where the method

is large and complicated. This is useful as it makes it easy to define behavior of information

processing. The behavior for each interface is defined in a concrete strategy class derived from

the strategy class. Other behavior for the same interface can be defined in another concrete

strategy class.

This group has a relationship with concrete state classes that invoke information

processing in a concrete strategy class. A concrete state class delegates tasks to the concrete

strategy class with which it is related. All information is transmitted from the concrete state

class to the concrete strategy class. This eliminates it from the concrete state class to define

additional interfaces that are used by the concrete strategy class to get information.

This
object group

is defined for each information processing, e.g. in Figure 49, class

"Strategy A" is defined for class "Concrete State A2", and class "Strategy B" is defined for class

"Concrete State B2." An instance of each concrete strategy class is created by one, and shared

by several instances of state classes. A concrete state class can select appropriate behavior by

changing the relationship to a concrete strategy class. This change can be done dynamically

with no modification of a concrete state class. If a concrete state class does not have a pointer to

a concrete strategy class, no information processing is executed.

6.3.2.3 Object group for additional data

This
objectgroup provides

a way to add new data needed
for information processing, but not

implemented in existing classes. This object group is composed of an element class, a decorator

class, concrete decorator classes, and a proxy class. The 'target class' in Figure 49 means an

-105-

existing class for general-purpose use.

An element class implements the interfaces that are defined in the target class. It does not

define behavior.

A decorator class is derived from an element class and is related to the element class. This

connects sequentially an instance derived from the element class with another
instance derived

from the element class. A concrete strategy class is not aware of the difference between a target

class and a concrete decorator class by this sequential relationship.

Additional data and/or methods are defined in a concrete decorator class derived from a

decorator class.

A proxy class is derived from an element class instead of a target class to which it is

related. It invokes methods provided by the target class. The target class is not required to

change using this mechanism.

6.3.3 Attachment of the package to an information model

One package will be attached to an information model for each requirement that needs to

change a function. Therefore, the number of packages increases in proportion to the number of

such requirements.

A requirement for which the package is created is obtained from dividing the whole of the

requirement. This division is performed based on states that invoke, or do not invoke,

information processing. The state-based division makes clear which object class an instance of

the PEP should be attached to.

A target class is identified based on the contents of information processing defined in a

concrete strategy class. Therefore, a full account of the information processing for a requirement

that makes use of the package is needed.

6.4 Package applications

We designed models for two management functions that make use of the PEP. One makes

schedules of maintenance tasks, and the other sets threshold values concerned with quality of

service (QoS). Requirements of some operators in a power company are shown by these models.

The operators provide electric power systems with communications services that have unique

QoS. The two applications provide management functions that are different to those for genera1-

PurPOSe use.

-106-

6.4.1 Scheduling maintenance

Working dates are determined in making schedules of maintenance tasks, meeting the

constraints of each system, or the order of the tasks.
This function may differ from one operator

to another, as it reflects requirements intrinsic to the operator.

The requirements related to this scheduling are categorized as follows.

1)

2)

3)

Conditions determining if a task can be executed

Criteria selecting tasks to be changed

Criteria selecting an alternative date

The PEP was used in this application for defining behavior based on the constraints. We

considered the following two constraints to illustrate how the package is used.

1) A constraint prohibiting suspension of an electric power system (EPS) composed of

two communication routs

2) Aconstraint maintaining task order

Figure 50 depicts an information model that makes use of two packages implementing

each constraint. In this section, we explain the application of the package to a constraint related

to communication routes.

An EPS class is usually composed of two routes for communication, in order to ensure a

high degree of reliability. As suspension of both routes interrupts the EPS, the situation requires

that the task schedule be coordinated. This is modeled as the state aggregation class and state of

two routes' classes. Each class derived from "State of two routes" decides the next state, and

provides methods for the transition. The "Both suspension" class that shows a state requiring

schedule change is related to the "Coordination for a route constraint" class.

Two concrete strategy classes derived from "Coordination for a route constraint" were

designed in this example. One coordinates a schedule based on how many times a task schedule

is changed. The other changes a schedule according to task priority. Both of these provide

methods that have the same signature, but use different procedures.

"Change history" and "Task priority" were designed, since each coordination class

requires its own additional data for the task classes. These classes provide methods for the

coordination classes, and the "Task proxy" class is related to the "Task" class for general-

PurPOSe use.

-107-

Task element

..-I..It

I
I

I

Network element

affec I()

CR-MUX ATM SW

64k trail SDH l55Mbps trail

/....-..-..-..～.

State
of
interval

-
nan

ov erlap()

makelnlen,a I()

coond'M {e()

setCcK)rdlnatlOn ()

SufrlCierlt

interval

Insufficient

in terval

Task

-
restore tlnk

-
registration number

-
decision number

changeSched ule()

compareSchedule()

affect()

State Aggregation

chaJlge State()

cwrdi mate()
c hangeSchedule()

Coordination I-or

an interval constraint

-
name

The packag? applied
lCl a COrLStraint

related to a task order cctnstraint

cwrdinate()

selectDale()

selecITtLfkf()

One day interval

selectDate()

seleetTasks()

I.

I

i

l

I

I

1

I

Over two days

in terv al

selec tDate()

selectTasks()

Electric Power System

changeSch edule()

compareSchedule()

tlBecI()

Task proxy

c hangeSchedule()

compweSched ule()

affect()

Task decorator

changeSchedule()

compalleSchedult,()

a#ec[()

Change history

-
the number of time

changeSchedule()
obtainTi mes()

Task
priority

-
priority

changeSchedule()
co mparePriori ty()

CNrdinatlOn tTor

a route constraint

-
narrK

cwrdinate()

selec[Da[a()

selecITasks()

Coordination

based on

change history

selectData()

selectTasks()

Cwrdination

based on

task prionty

selectData()
selec tTasks()

The package applied to a constraint related to a routes constraint

State Aggregation State
of
two routes

-
type

-ID

Automatic

Freque nc y
Con troller

Canter Relay System

Stabllizing

Contro Iler

c hangeState()

coordinate()

routeASuspend()

routeBSuspend()
routeAResu me()

routeB Resume()

-
name

coondina{e()

rou[eASuspend()

mu{eBSwpen a()

rouleAResume()

rouleBResume()

setCoordination()

Both working

routeASuspend()
routeB Suspen d()

RouteA working

routeB Suspend()

routeB Resume()

RouteB working

routeASuspend ()

routeAResume()

Both suspending

routeAResume()

routeBResume()

Figure 50..Information model for maintenance scheduling using the PEP

6.4.2 Setting threshold values for QoS

We designed another application in order to evaluate the performance of the package, as

illustrated in Figure 51. This application sets threshold values for QoS in telecommunications

networks for an electric power company. Threshold values in this application are set according

to the state of an electric power system, or a power transmission system supported by it.

-108-

hold

hold

COmPOSlte

Circuit

contaln

Application

Scanner

Current data

contaln

History data

contaln

Threshold data

counterThresholdList

gaugeThresholdLi st

getCounterThreshold()
replaceCounterThreshold()
getGaugeThreshold()
replaceGaugeThreshold()

tram smit

State aggregation

State of power

transmission networks

Stable

delegate

Strong current

delegate

State of circuits

With redundancy

Strategy for threshold

With single

determine()

Normal strategy

determi ne()

Threshold data element

manipulate

Urgent strategy

determ ine()

getCounte rThreshold()
rep la ce Co unte rTh fleshold()
getGa uge Threshold()
replaceGa uge Th reshold()

Threshold data proxy

getCounterThreshold()
replaceCounterThreshold()
getGaugeThreshold()
replaceGaugeThreshold()

Threshold decorator

getCounternreshold()
replace CounterThneshold()
getGa uge Threshold()
replaceGa uge Threshold()

Concrete decorator

COmPOnent

compositeThresholdList

getCounterThreshold()
replaceCounterThreshold()
getGaugeThreshold()
replaceGaugeThreshold()

getCompositeThreshold()
replaceCompositeThreshold()

Figure 51: Information model for setting threshold values for QoS

-109-

A partial extension package in the model has a state objectgroup
that represents status to

be considered with regard to thresholds. Calculations of threshold value were provided
in

classes derived from a strategy class. An objectgroup for additional data
in this model includes

a composite threshold listthat is composed of primitive counters and gauges.

6.5 Evaluation of PEP using software metrics

We made use of software metrics to evaluation the defined flexibility of the applications. In this

section, we explain adopted software metrics, and show results of the evaluations.

6.5.1 Software metrics

Many metrics have been proposed for object-orientedsoftware.
Most of them measure an aspect

of software quality, but do not evaluate software from all angles. Frameworks about such

metrics [140, 141] have been proposed that categorize metrics and support selection of metrics

in order to improve this situation. In this thesis, we adopted a framework proposed by Briand et

al. [139].This framework defines and classified metrics focused on coupling between objects.
Based on this framework, the following metrics were used to measure the performance of

the packages in terms of their flexibility. RFC (Response for Class) is defined as follows [142].

Let Ro(c) be the set of methods of class c, and Ri.1(C)be the set of methods invoked in

the polymoIPhic manner by methods in Ri(C),then

RFCa(c) = C)R,.(c)
i=0

fora=1,2,3,...

TTlis means how dependent the measured class is on other classes. In other words, it shows

the reusability of the measured objectclass.
Parameter ds set as 1 in this thesis.

OMMEC (Other Method-Method interaction for Export Coupling) [143] indicates how

many times methods provided by a class to be measured are called by other classes. This shows

the localization of modification in terms of the measured class. In the case of these metrics, the

smaller the value is, the more flexible the PEP is.

nlis measurement of flexibility has several good points, as follows. We can estimate the

relative performance of two information models, based on measurement values. The values can

be measured at the design stage of classes. In addition, definitions of the measurement are easy

to understand. Therefore, these values are suitable for assessing experiences of the package.

-110-

6.5.2 Measurement of the model A)r maintenance scheduling

We measured the metric values of the objects
for maintenance scheduling. For this measurement,

new state, strategy, or additional data objects
are added to existing object

one by one. Some of

the added objects
were not shown in Figure 50.

We also measured the metric values of information models using three other

customizations of functions. A class of an existing object
is defined again to meet a requirement

in the first customization. This is referred to as class redefinition in this thesis. A new class is

derived from a class of an existing object to fit a requirement in the second customization. It is

referred to as class derivation in this thesis. A new class is defined for delegated tasks from an

existing object
in the third customization. This is referred to as delegation in this thesis. These

are
major methodologies

to extend the functions of an object.
For comparison between these methodologies, we show graphs concerned with RFC or

OMMEC. The values in the graphs indicate differences from the values of each class before

modifications.

6.5.2.1 Reusability of classes for general-purpose use

Figure 52 (a) shows the RFC values of an EPS class in Figure 50, in respect to the reusability of

classes related to states when states related to the EPS class are added one by one. An EPS class

U
A

E<
30

20

10

0

__../

redefinition ..I

-.+

*

//

//
I
*
I

I

delegation
I

I

+

I

I

+

I
*

jAe,iv
JP
4'.

I

I

I

PEP
I

I

tion

I
.
.

I
I

I

I
I

__-I"i..

I

I

.+-.I.-

0 I 2 3

No. of states

(a) Object group for states

U
A

E<4

3

2

1

0

redefinitio i /I
../

_/.'

.//
delegation

I

./

I

I

I

I

4

I

I

PEP i
I

IIIIIII

V3iI-I.

./I
derivation

'.J.FT}.

nL.I& , :i.,.

0 1 2 3

No. of additional data

(b) Object group for additional data

Figurt! 52: The number of requirements and RFC in maintenance scheduling

-111-

is
measured

in each methodology because it is designed for general-purpose use. The result

shows that the first addition of a state to an EPS using the package increases its RFC value by

one. The following additions do not increase the value because no method is needed to add a

new state in this case. This means that the reusability of an EPS class is less affected using the

package than other methodologies.

Figure 52 (b) shows RFC values of a task class in Figure 50, in respect to the reusability of

existing objectsrelating
to additional data, when data are added one by one. A measured class in

each methodology is a task class as an object
for general-purpose use. The result indicates that

coupling between a task class and the package stays weak, even if the amount of additional data

increases. The package is able to maintain the reusability of the task class.

6.5.2.2 Localization of the influence of modification

In regard to classes related to states, Figure 53 (a) shows OMMEC values of classes

implementing attributes and methods related to states when states related to the EPS are added

one by one. Modifications, and a measured class in each methodology, are as follows.

1) Class redefinition: We measured the EPS class to which new attributes and methods

for states were added.

U
u

i20
0

15

10

5

0

redefin iti.n

_..#'
dele gation.

*1t

#r
derivation

A -

#-
+

PEP

I

+*

～

0 l 2 3

No. of states

(a) Object group for states

U
u

i12
0

10

8

6

4

2

0

.J～derivatio
nf

I

delegation

.F3r.
+7r
f

F
*v

+
*

*

:..
F

redefinition

.I/I.-

..i+4-
_I./,I

PEP

0 1 2 3

No. of additional data

(b) Object group for additional data

Figure 53: The number of requirements and OMMEC
in maintenance scheduling

-112-

2) Class derivation: Attributes and methods were added to the class derived from the

EPS class. This was measured because an instance of this class will be created.

3) Delegation: We measured a class to which the EPS class delegates tasks.

4) PEP: An objectgroup
for states in the PEP provides attributes and methods for states.

A state aggregation class in the package was measured.

TTle result shows that the package increases OMMEC value at the first addition of a state. It

does not however increase the value after that. nlis arose from that no additional methods were

implemented in the state aggregation class.

In regard to classes related to additional data, Figure 53 (b) shows OMMEC values of the

classes when data are added one by one. The following describes how a class was modified, and

which class was measured in each methodology.

1) Class redefinition: We measured a redefined task class that implemented attributes

and methods
for additional data.

2) Class derivation: A class derived from a task class implemented attributes and

methods for additional data. We measured the derived task class, because an instance

of this class will be created.

3) Delegation: Attributes and methods for additional data were implemented in a class

delegated from an EPS
object.

We measured the delegated class.

4) PEP: The object group
for additional data provided attributes and methods. We

measured a concrete decorator class.

The result shows that the concrete decorator class increases its OMMEC value by only one. In

addition, this does not influence objects
for general-purpose use. TTlerefore, it is not possible for

a class to have a major
influence on other classes.

Figure 54 shows OMMEC values of classes implementing information processing, against

the number of requirements or the kinds of processing. Measured classes in each methodology

are as follows.

1) Class redefinition: We measured an EPS
object

that defines new attributes and

methods for information processing.

2) Class derivation: A class derived from an EPS class had new attributes and methods.

We measured the derived class because an instance of this class will be created.

3) Delegation: We measured a new class to which an EPS
object

delegates tasks. This

new class defined attributes and methods for information processing.

4) PEP.. We measured the object group
for information processing that defines new

attributes and methods.

-113-

+

#*
#

U
u

Z20
0

15

10

5

0

+

I*
il iB

*&

E

deri vation

}#F

i
j*

redefinition--
*
*

～-～-
+-

delegation PEP

j?

iI 4 I I I A iI I a A iI I ir 6 iI

0 1 2 3

No. of additional requirements

U
u

i20
0

15

10

5

0

+

redefinition

I

F
*

I

1I
iB
iB

Iii

i

idg
vatlOn
i * j- A

delegation PEP
il iP i5 ii dB I di 4 iii ii A I il dI

0 1 2 3

No. of additional procedures

Figure 54: OMMEC of object groups
for information processing in maintlmanCe scheduling

The result shows that the modifying influence of the package can be localized in the both cases.

6.5.2.3 Measurement of the model for QoS threshold

We measured object
in the same manner as in maintenance scheduling.

Figure 55 depicts RFC values with regard to classes representing states or additional data

in the model for QoS threshold setting. The result shows a similar trend to the model for

maintenance scheduling.

Figure 56 shows OMMEC values with regard to classes representing states or additional

data in the model. The main differences between this model and the model for maintenance

scheduling are OMMEC values of an objectgroup
for states in the package. In this model, the

addition of each state needs new events invoking methods in the state aggregation class. On the

other hand, the addition of states in the model for maintenance scheduling does not need the

invocation of new methods.

-114-

U

E210

8

6

4

2

0

U
u

i'5
0

10

5

0

I
class redefinition /+'

/

././'

+

･**

+*

+*
JA

/
r+.

･*+

delegation

+i

++
PEP

../ class deriv ation

A _A .A
i

A. I
0 1 2 3

No. of states

(a) Object group for states

U

E25

4

3

2

1

0

I
class redefiniti.n

;/
//

_I../
I/.' class
derivation

delegation
I

I

I

I

/
+
+

I

I

I

I

PEP i
I

II PI II

T-Ir

+lI ++ rI II

.InI5-IE

II Il rI I

Tmgt

0 1 2 3

No. of additional data

(b) Object group for additional data

Figurt! 55: The number of requirements and RFC in QoS threshold setting

A

･&

F
delegation

I

ItyyPEP
+I

II

*I
I

_-.
+
+

+
+

+

...[y}-

I

-
r

･p4P'～
derivation

redefinition

0 1 2 3

No. of states

(a)Object group for states

u 8
u]

=
=
C)6

4

2

0

derivation

at'on..t'
jd

･i+
%+

j{.
･*u

dele
･{'T/..v.

/..

redefinition

J4'
.hJh

P

Jii～
/..
+

,/'
+

PEP

A/

･J4y.

'

++

0 1 2 3

No. of additional data

(b) Object group for additional data

Figure 56: The number of requirements and OMMEC in QoS threshold setting

-115-

Figure 57 depicts OMMEC values of classes that defined information processing. Most

values in both of these graphs varied in a way similar to those in the maintenance scheduling

application. The values of the package where requirements are added one
by one are different

from the model for the maintenance scheduling. This was caused by sharing an instance of the

same concrete strategy class. All instances of concrete state classes, e.g. "With redundancy"

class in Figure 51, invoked a method provided by a concrete strategy class, e.g. "Normal

strategy" class in Figure 51. OMMEC values corresponded to the number of instances of state

classes. However, these concrete strategy classes had an influence only on concrete state classes

as custom objects.

6.5.2.4 Summary of the evaluation

These results indicate that the first addition of data or processing has an influence on existing

objects
in terms of the reusability. However, the reusability is maintained in the subsequent

additions with no side effects. Although the localization of modification may deteriorate

depending on the change of a function, the influence of the package is the smallest of the

methodologies.

In
addition, the package

keeps the reusability of existing objects
as well as the localization.

One of them is sacrificed in other methodologies.

U
u

=10
=
0

8

6

4

2

0

J&

derivati ..#Bdn

～i;..r

.A

PEP

A#Pefinition
__aP

～#'
'

delegation
A

.ja#'TW
0 1 2 3

No. of additional requirements

U
N

=10
=
0

8

6

4

2

0

deleg ation....'

J+

**
A

･. 'L..,i
edefinition

-rI-I

I. .ilf.-
I+

/T derivation_PEP

I.y'J
･*

0 1 2 3

No. of additional procedures

Figure 57: OMMEC of object groups for information processing
in QoS threshold setting

-116-

6.6 Summaryofthepackage

In this chapter, we
have proposed a partial extension package (PEP) that adds or changes the

behavior of a function. This package is composed of three objectgroups
for states, information

processing and additional data.

We developed two applications based on the package; one schedules maintenance tasks,

and the other sets values of QoS. They are estimated in terms of the flexibility of using software

metrics. The results show that our contribution confers benefits on the design of objects
for

customizing function, as mentioned below.

1) Flexible customization making two contrary points compatible: There are two

aspects of flexibility in customizing functions. One is to keep classes for general-

purpose use reusable. The other is to localize the impacts of a modification. In

general, it is not easy to make them compatible, however, our contribution achieves

this compatibility.

a)
Maintenance of reusability: PEP has two connection points to existing classes.

The state aggregation class has one of the connections, and the proxy class has

the other one. PEP requires an existing class to contain codes to call methods

provided by the state aggregation class. It does not require that other classes

include any codes. Therefore, most existing classes can keep their reusability.

b) Localization of the impacts of modirICations: Methods provided in the object

group for information processing are called only by the objectgroup
for states.

In addition, the number of method calling is minimal. Two other objectgroups

provide minimal methods to respective classes outside of the groups. This

localization contributes to the simple maintenance of classes for general-purpose

use and the easy addition of a function.

2) Simple use: PEP can be used easily because of its granularity and structure. The

following explains these two points.

a) Proper granularity: PEP is larger than any design pattern, and smaller than a

framework. A part on this scale has not appeared in object-oriented
design. It

facilitates the addition of new
functions and data to existing classes. In addition,

its scale is not so large to understand.

b) Structure with the essence of object-oriented design: PEP contains the essence

of object-oriented
design, and a programmer can make use of this with only

knowledge of the role of each class. It eliminates leaming the object-oriented

-117-

technique. A programmer can
enjoy the benefit of the object-orientedtechnique

even though he/she is not skilful. It is important for a third-party to add a

function to an NMS.

-118-

Chapter 7

Conclusions

In this thesis, we are concerned with how to support rapid and precise function design. We have

focused on the domain of network management, because of the rich standards we can use and

the variety of functions to be designed.

Functions
provided

by an NMS have the following features:

1) Some functions can be shared between different network operators, while others are

2)

3)

4)

5)

specific to each operator.

Functions must be adaptive to conditions in networks or services.

Functions require expertise in order to be adaptive.

It is difficult to describe a sequence to process a function.

Requirements for a function may not appear at the time the NMS is built.

We have clarified the shortcomings of current methods in cases where functions for

network management are designed. TTle Shortcomings are as follows:

1) Network operators cannot easily tell what functions they need, using current methods

for requirement engineering. On the other hand, it is also difficult for system

designers to understand the operators' requests.

2) Functions may not be adaptive in an environment in which user requirements are

chan geable.

3) Few techniques are put forward to design individual functions based on shared

software.

To address these issues, we proposed three techniques described as follows:

1)

2)

3)

A technique for requirement elicitation and description

A mechanism selecting a subset of policies that meet a condition

Techniques for customization of off-the-shelf components and the standard object

classes

-119-

In our technique for requirement elicitation and description, users draw up their

requirement. We have adopted use cases detailed by policies in order to allow users to draw up

their requirements. Several types of policies have been set up to represent network operations.

Two formats for describing policies are also provided by our technique. This technique confers

the three benefits mentioned
below on requirement analysis and description.

1) User-friendly notations: This is brought by use case detailed by policies that are

suitable for network operations. A use case is so simple that an operator can

understand and specify it even though he/she is a novice in the design. In addition, a

policy is useful for a network operator to give details of a use case. TTlis is because

an operator is familiar with a policy because it comes from a rule in hisher business.

2) Facilitation of communication between users and designers:
The notations are

semi-formal so that ambiguity will slip into a specification less often. Besides, a

system designer understands each function declared in a policy. The volume of

description for each function is simple enough to be understood easily. It also

contributes facilitating communications between a user and a system designer,

because the work of the designer to elicit requirements from the user is eliminated.

3) High compatibility with object-oriented
design: This technique is based on use

case diagrams. In addition, it reinforces existing approaches for system designers.

Therefore, it is compatible with object-oriented
design methods. This feature is

important for our technique to enjoy wide acceptance.

We have developed a mechanism selecting policies in order to combine a function

provided by an
NMS and a policy specified as a requirement. This mechanism selects policies

that fit into a condition, and invokes functions specified by selected policies. Artificial immune

networks are applied to the mechanism for selecting policies. TTle rules for setting parameters

are also provided by this technique. This technique confers the following benefits on function

design or network operations.

1) Proper outputs: nle Selected policies are suitable for actual operations of networks.

The mechanism permits the existence of a compromise policy and can select a

suitable set in accordance with conditions in networks or services. This allows the

users to skip drawing up a processing sequence in NMS. Besides, the calculations for

selecting policies finish in a short time that is sufficient to be used in actual

operations. Of course, the proper outputs assist the job of network operators.

2) Adaptability to change of policies: This policy selection allows a new policy to be

added to an existing set of policies, a policy to be removed from the set or to be

changed, without a large amount of labor. This is because the formulas for selection

do not need to be changed when a policy is added, changed or deleted. The rules for

-120-

setting parameters are also provided in our technique. They also contribute the

adaptability to a change of policies. These features come from the concept of

artificial immune networks.

We have developed RevComponents and PEP (PartialExtension Package) for techniques

to add new features to existing software. A RevComponent is a software component. It adds,

removes and changes a function provided by an existing component. PEP can add a new feature

to existing objectclasses with minimal
influence. Existing software can change its features in a

flexible and simple manner using these techniques. These two techniques confer the benefits

described as follows on the customization of functions.

1) Keeping maintainability of existing software: RevComponents make use of

interface definitions for an off-the-shelf component, and customize a function

provided by the off-the-shelf component. They do not require change of source codes

in the off-the-shelf component,
because they intercept a message fronJto the

component to provide customized functions. On the other hand, PEP limits the

number that an existing class calls methods provided by a class in PEP. In addition, it

adds new data and procedures without a change in an existing class. As a result, PEP

keeps weak coupling to the existing classes. These features contribute to the

maintainability of existing software. This enables the construction of an NMS using

off-the-shelf components as well as providing functions specific to an operator.

2) Rapid customization: Our technique provides a code generator for RevComponents.

This eliminates labor in making a program for the interface of an off-the-shelf

component, or message forwarding. nle WOrkload involved in creating a

RevComponent is the same amount or less than modifying the off-the-shelf

component. On the other hand, PEP also provides rapid customization. It has three

object groups
so that a designer can embed programs for states, procedure and

additional data in each objectgroup.
It has a structure that enable a state, a procedure

or additional data to be changed without impacts on other classes in PEP. A

function can be customized rapidly using these two techniques.

Our contributions cover the range from requirement engineering to
object-oriented

design.

The whole of our approach enables a function needed by a user to be created rapidly and cost-

effectively using the standard technologies. The case studies on an NMS show that our

techniques can be used in terms of output correctness, processing speed, and/or maintainability.

Our contribution reduces costs and the period necessary to build an NMS.

Our contributions have three important key points.,function design led by users, adaptive

functions and the customization of shared software with minimal influence. We believe these

points to be effective in other domains, and have suggested the domains in which our

-121-

contributions may be effective. In addition, we
know of issues to be addressed

for our

techniques to be used more effectively. Through the development of techniques with the three

key points, we would like to create a new area in which users can take part in designing

functions. Existing software as valuable artifacts can be shared easily
in this area.

-122-

Chapter 8

Future works

In this chapter, we discuss future work about techniques that have been proposed in this thesis.

We have a number of hurdles that have to be solved in order to enhance their effects. We focus

on the following six issues that should be addressed in the next stage.

1)

2)

3)

4)

5)

6)

Application of the techniques to other systems

Ontology for policies and function calls

A tool supporting FDLU

Validation and verification of designed policies

Adoption of mobile agents for dynamic change of behavior

Integrated CASE tool for PEP and RevComponent

We will mention the details of each issue in the following sections.

8.1 Application to other domains

We have described our techniques for rapid and precise function design for network

management systems. These techniques are not limited to the domain, but may be applied to

others if they fulfill several conditions. In this section, we discuss the possibility of application

of the techniques to other domain.

FDLU makes use of use cases detailed by policies so that it fits to domains in which

functions supporting tasks can be defined as rules. Our mechanism of policy selection also

depends on the same conditions.

The RevComponents and PEP assume rich information model that are defined as standard,

and off-the-shelf components compliant to the model.
They can be used to modify existing

objects that
do not comply with some standards, but use object-and component-oriented

construction.

These conditions indicate that the operation of power systems is a domain in which our

techniques perform effectively. Tasks in the operations are performed in conformance to rules.

-123-

The domain has the same characteristic as network operations in which functions provided by

systems are designed based on a large amount of expertise. In addition, standard information

models are being developed
for this domain. Some of the models are based on object-oriented

technology. For example, standard models have been developed for switchgear, transformers,

substation and field devices [144].

Building industry may also be a domain in which our technique may show promise. IFC

(Industry Foundation Classes) has been developed as information models for CAD (Computer

Aided Design) tools and other systems in the industry [145]. The models aim to assist that

systems from different vendors can inter-operate without any barriers. It may be difficult to set

policies for design or maintenance of buildings. Basic policies, however, might support tasks in

the design or maintenance of buildings. If so, all techniques proposed in this thesis could be

applied to systems in this industry. These could be powerful for the design of functions in the

systems because production to order represents a large percentage in this industry.

We believe that our techniques are effective in domains besides the network operations.

Especially, the viewpoint of user-oriented design will assist the rapid and precise design of

functions in a system. To validate the power, we will have to concretely apply these techniques

to the domains.

8.2 Ontology for policies and function calls

In FDLU, we have not yet defined ontology relating to the network operations. Users can use

arbitrary terms to write conditions and functions in policies. However, this may become a

barrier for a system designer to understand policies. If so, associations between a policy and a

function may be incorrect.

Fortunately, we can make use of a large number of terms defined as standards for

description of policies. Terms in transmission methods such as IP [146] or ATM [147] have

accurate meanings. As well, network operators can make use of terminology for cables [148],

and for digital transmission and multiplexing [149]. For example, "digital channel" is defined as

"The means of unidirectional digital transmission of digital signals between two points" [149].

Network operators can describe policies relating to monitor or control of network elements

using these terms. System designers can share the definitions of such terms relating to network

elements.

Terms and definitions of traffic engineering [150] and that related to quality of service and

network performance [151] are also defined as standards. For example, "network performance"

is defined as "the ability of a network or network portion to provide the functions related to

communications between users" [151]. These terms and definitions help a network operator to

describe policies relating to hisnler operations and/or services.

-124-

We
will
have to investigate if the standard terms are useful for associating a policy and a

function. The system designers had few troubles to understand terminology in our case study.

However, the number of samples is too short to validate the usefulness of the standard terms.

In addition, we may have to develop a method in which a network operator defines a new

term describing hisnler Original service. Network operators are developing their original

services day by day as well as trying to make their tasks more efficient. These may require new

terms that are not defined as the standards. They currently define a new term with no assist of

computer systems. This task should be improved in order to offer a new service quickly.

8.3 Atool supportingFDLU

We have not yet developed a tool that supports function design led by users (FDLU). Such a

tool should provide the supporting functions that are mentioned below.

1)

2)

3)

Derivation of policies from global purposes of a business

Attachment of policies to a use case

Conversion of representations for specifying policies

Each policy declared in the process of FDLU is derived from one or more purposes of a

user's business. This thesis does not propose any new approach to the derivation. This tool may

be able to make use of one or some approaches described in Section 3.2.1.2. These approaches,

however, have several problems mentioned in the section so that a new technique may be

needed to support the goal-oriented requirement analysis of FDLU. In the new technique, it will

be the key to integrate analysis using use cases and the traditional goal-oriented approach.

Attachment of policies to a use case may be associated with the technique of supporting

effective derivation of policies. In this thesis, we do not suggest what should be specified in a

use case or as a policy. We will have to clarify more strictly the role of a use case and a policy in

FDLU, in order to develop the supporting tool.

It is also important to convert the graphical representation for describing policies to the

table representation, and vice versa. The lack of an automatic conversion of the representations

inconvenienced the network operators to specify their policies, as mentioned in Section 0. This

tool can enable users
to draw up their requirements by themselves. Two types of such

conversion tools can be considered: batch on-demand conversion and synchronized one. The

on-demand conversion brings contents in a representation to another one when an event such as

an explicit user command occurs. This type may enable users to manipulate the tool quickly.

However, it cannot maintain consistent displays of the two representations. On the other hand,

the synchronized conversion brings contents in a representation to another one each time a

-125-

policy is added, deleted,
or modified. This conversion can display some contents in the different

representations. However, itis estimated that the tool works slowly.

We have to pay attentions to these issues when developing such a tool.

8.4 Validation and veriTICation of policies

To validate and verify policies that are set by network operators is an important issue to be

considered. We have not set a method for validation and verification of policies in this thesis. If

policies that are invalid or not verified are used for network operations, the NMS using the

policies performs incorrectly and may have negative effects on the operations. This issue has

been recognized widely [152].

Many techniques have been proposed for validation and verification of knowledge.

Graphical techniques have been found to provide a good framework for the detection of errors

that may appear in a rule base [153, 154, 155, 156, 157]. Topological properties of graphical

structures are used to deduce dependencies across propositions. These graphical representations

allow the veriflCation problem to be reformulated as one of reachability of specific states in the

graph.

Another important approach is testing of knowledge bases for the validation of rule-based

systems. The testing complements the graph-based methods that are out of verifying and

validating of knowledge specific to a certain domain. Normally, a reduced number of test cases

are selected in the testing because the patterns of testing are too many to consider. Selection of

test suites, therefore, is the key to validating and verifying knowledge. Much literature has

mentioned how to select test suites [158, 159]. These test suites are usually applied to static or

off-line tests. If the tests were performed on a real system, the system would be down or process

data incorrectly.

Nevertheless, we believe that simulations on real systems are powerful for validation and

verification. The field of software certification has noted the importance of dynamic testing of

knowledge [160]. Dynamic testing may cover a test suite that is not experienced or forecasted

so far. However, it is even more COmPlicated because there is lack of simulators or drivers to

generate realistic data input for a desired test suite. Therefore, we hope to develop a simulation

scheme that runs on but does not interfere with a real NMS. We need to note user's viewpoints

at the development of the simulation scheme.

-126-

8.5 Installment and removal of RevComponents

without system interruption

RevComponents proposed in Chapter 5 can be plugged in or removed from an NMS that is built

based on components conforming to the standards. However, they need to unbind and rebind

connections to the target component when RevComponents are plugged in or removed. This

interrupts execution of the NMS.

Mobile agents are one of the techniques that solve this problem. As mentioned above, a

mobile agent holds data and procedures, and moves between computers [116]. This technique

may allow RevComponents not to unbind and rebind the connections to the target component.

We have held back adopting this technique because of its performance and difficult design. To

make use of mobile agents, we have to overcome these shortcomings. In addition, we have to

note the compatibility between mobile agents and off-the-shelf components.

There is only a very limited amount of literature available on the tuning performance of

mobile agents. Foster has proposed a way in which the performance of mobile agents can be

improved [161].In terms of maintenance of mobile agents, we have more literature, for example,

ADK (AgentBeans Development Kit) [162] and a Petri-net based framework [163].

A proxy component may also be a promising option. A proxy component intercepts all

messages sent to the target component even if there is no RevComponent. This technique

eliminates unbinding and rebinding a connection to the target component because the proxy is

always set. However, it must delay the processing time in an NMS. Before the proxy is installed,

we must test its performance.

8.6 Integrated CASE tool for PEP and

RevC omponents

We have proposed two techniques for implementing desired functions, RevComponents and

PEP. However, we have not developed a CASE (Computer Aided Software Engineering) tool

using these techniques. A CASE tool is necessary in order
to make the techniques more

convenient. In this section, we review what kinds of CASE tools have been developed so far,

and clarify any potential issues that need to be addressed.

A POD (Pattern-Oriented Design) tool supports visual composition of design patterns

[164]. Patterns can be integrated easily by means of this tool. Developers can use it to trace

-127-

patterns through various abstraction levels. The benefits of this tool have been reported as

follows.

1)

2)

3)

It supports hierarchical design.

It provides a mechanism to trace a pattern to an application class, and vice versa.

It provides designers with a pattern composition view that is a higher level of design

documentation than class diagrams.

On the other hand, it has also been reported that the tool does not address the problem of how

constructional patterns can be combined with parts of a design that are not expressed as patterns.

The Fragmentation technique [165] and the PSiGene CASE tool [166] also help to bind one

design pattern with another.

FACE (Framework Adaptive Composition Environment) sustains an incremental

development style without abandoning the higher-level design pattern abstraction [167]. It

guides instantiating patterns and bridges a gap between design and implementation. Patterns

Wizards is another example of such a tool [168]. This tool adopts a concept of meta-

programming to support the specification of design patterns and their realization in a given

Program.

A CASE tool for our techniques requires new features adding to that provided by tools in

the literature. First, the tool should take account of standard objects.
It might be effective for the

tool to provide a library of the standards. Second, it should offer criteria for creative use of the

two techniques. We will have to consider integration of the techniques for these criteria to be

achieved. Third, the tool should hold user's viewpoint described in Section 2.3, and help

collaborations between users and developers. If so, it may help to design functions more quickly

and precisely.

-128-

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley, Boston, 1 994.

Object Management Group, OMG UnlPed Modeling Language Specification,Version 1.4.

September 2W1.

T. Otani and Y. Yamamoto, "A Policy Selection for Network Management based on An

Artificial Immune Network," to appear in IPSJ Journal, (in Japanese).

T. Otani and Y. Yamamoto, "A Customization Method for Network Management

Functions without Modification of Off-the-shelf Components," Proceedings of
IEEE

ICSM 2001, pp. 460-469, Florence, Italy, November 2W1.

T. Otani and Y. Yamamoto, "Partial Extension Package for the Flexible Customization of

a Network Management Information Model," IEICE Transactions on Communications,

Vo1. E84-B, No. 7, pp. 1897-1906, July 2001.

I. Jacobson, G. Booch, and J. Rumbaugh, The Unljied Software Development Process.

Addison-Wesley, New York, January 1999.

TeleManagement Forum, Telecom Operations Map, GB910 Approved Version 2.1. March

2WO.

ITU-T, Management Framework jTor Open Systems lntenconnection (OSI) jTor CCnT

Applications, Recommendation X. 700. September 1992.

ITU-T, Principles for a Telecommunications Management Network, Recommendation

M.3010. February 2WO.

TeleManagement Forum, Sen,ice Quality Management Business Agreement, TMF506

Public Evaluation Version 1.5. February 2001.

TeleManagement Forum, Peer-to-Peer Service Configuration Business Agreement,

NMF502 Issue 1.0. April 1997.

TeleManagement Forum, SMART Ordering SP to SP Intelace Business Agreement,

NMF504 Issue 1.00. September 1997.

NTT (eds.), Control and Access Plant Networks (CAPNET). NTT Technical

Requirements, The Telecommunications Association, Tokyo, Japan (in Japanese).

Telcordia, Operations application message: language for operations application

messages, Telcondia GR-831-CORE, Issue 1. November 1996.

W. Stallings, SNMP SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley, Boston,

MA, USA, January 1999.

-129l

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Object Management Group, The Common Object Request BIlOker: Architecture and

Speclfication,Revision 2.6. December 2001.

L. Pete (eds.) Big Book of MPLS (Multipnotocol Label Switching) RFCs.
Morgan

Kaufmann Ptlblishers, December 2000.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An Architecture for

Differentiated Services," IETF RFC2475, December 1 998.

TeleManagement Forum, TeleManagement Forum Strategic Plan Period 2002
-
2004,

GB912, Version 4.6. July 2001.

P. Loucopoulos and V. Karakostas, System Requirements Engineering. McGraw-Hill,

New York, June 1995.

H. F. Hofmann and F. Lehner, "Requirement Engineering as a Success Factor in Software

Projects,"IEEE Software, Vol. 18, No. 4, pp. 58-66, July/August 2001.

C. Jones, Applied Software Measurement: Assuring Productivity and Quality.

McGraw-Hill, New York, June 1996.

C. C. Hayes, "Agents in a Nutshell - A Very Brief Introduction," IEEE Transactions on

Knowledge andData
Engineering, Vo1. 1 1, No. 1, pp. 127-132, JanuaryMebruary 1999.

V. R. Lesser, "Cooperative Multiagent Systems: A Personal VleW Of the State of the Art,"

IEEE Transactions on Knowledge and Data Engineering, Vo1. ll, No. 1, pp. 133-142,

JanuaryMebruary 1 999.

0. Akashi, T. Sugawara, K. Murakami, M. Maruyama, and N. Takahashi, "Multiagent-

based Cooperative Inter-AS Diagnosis in ENCORE," Proceedings of IEEE(TFIP NOMS

2000, pp. 521-534, Hawaii, April 2000.

C. S. Hood and C. Ji, "Intelligent Agents for Proactive Fault Detection," IEEE Intemet

Computing, Vo1. 2, No. 2, pp. 65-72, May/June 1998.

M. Cheikhrouhou, P. Conti, and J. Labetoulle, "Automatic Configuration of PVCs in

ATM Networks with Software Agents," Proceedings of
IEEE(IFIP NOMS 2000, pp.

535-548, Hawaii, April 2000.

C. Melchiors and L. M. R. Tarouco, "Troubleshooting Network Faults Using Past

Experience," Proceedings
ofIEEE/IFIP

NOMS 2000, pp. 549-548, Hawaii, April 2000.

F. Hayes-Roth, "Rule Based Systems," Communications of the ACM,
Vol. 28, No. 9, pp.

921-932, September 1985.

J. P. Ignizio, IntllOduction to Expert SystemsI The Development and Implementation of

Rule-Based Systems. McGraw-Hill, New York, January 1 991.

M. Sloman, "Policy Driven Management for Distributed Systems," Journal of Network

and
Systems Management, Vol. 2, No. 4, pp. 333-360, Kluwer Academic, New York,

December 1994.

TeleManagement Forum, Pelomance Reporting Concepts & Definitions, TMF701,

Public Version 2.0. November 2001.

-130-

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

TeleManagement Forum, SLA Management Handbook, GB917, Public Evaluation /

Version 1.5. June 2001.

ITU-T, Structure of
Management Information: Management Information Model,

Recommendation X. 720. January 1992.

ITU-T, Structure
of
Management Information: Definition of

Management InjTormation,

Recommendation X. 721. February 1992.

ITU-T, Generic Network InjTormationModel, Recommendation M.3100. July 1995.

ITU-T, GDMO engineering viewpoint for the generic network level model,

Recommendation G.855. 1. March 1 999.

ITU-T, Synchronous Digital Hierarchy (SDH)
-
Management Information Model for the

Network Element Vl'eW, Recommendation G. 774. February 200 1.

ITU-T, Asynchnonous Transfer Mode Management of the Network Element Vl'eW,

Recommendation I.751. March 1 996.

TeleManagement Forum, "System Integration Map: Version 2," Current UML Models by

Name,

http://www.tmfcentra1.conmc/repository/warehouse/Components/sim2/SimCatalog.htm1.

TeleManagement Forum, "World Ordering: Version 3," Current UML Models by Name,

http://www.tmfcentral.comkc/repository/warehouse/Components/wot3/index.html.

K. Kim, D. Lee, E. Ha, J. Park, J. Kim, and S. Kim, "Provision of Global Number

Portability Using CORBA," Proceedings of
IEEE/IFIP NOMS 2000, pp. 17-30, Hawaii,

April2000.

K. Nishiki, K. Yoshida, M. Oota, and M. Ooba, "Integrated Management Architecture

based on CORBA," Proceedings of IEEE/TFIP NOMS 2000, pp. 3-16, Hawaii, April

2000.

D. R. Seligman, "Managing Modems by Periodic Polling," Proceedings
of
IEEE/IFIP

IM '99, pp. 531-544, Boston, MA, May 1999.

W. Ng, A. D. Jun, H. K. Chow, R. Boutaba, and A. Leon-Garcia, "MIBlets.. A Pravtical

Approach to Virtual Network Management," Proceedings of IEEEyTFIP IM '99, pp.

201-215, Boston, MA, May 1999.

E. Pitt, K. McNiff, and K. McNiff, Java.rmi.. The Remote Method Invocation Guide.

Addison-Wesley, Boston, MA, July 2001.

ObjectManagement Group, Java'M language to IDL. Mapping, ptc/00-01-06, June 1999.

B. hshnamurthy and J. Rex ford, Web Protocols and
Practice: http/1.1, Networking

Protocols, Caching,
and TrajPc Measwement. Addison-Wesley, Boston, MA, May 2u)1.

H. Ku, J. Forslow, and J. Park, "Web-Based Configuration Management Architecture for

Backbone Router Networks," Proceedings of
IEEE(TFIP NOMS 2000, Hawaii, pp.

173-186, April 2000.

R. Rong, D. Brooks, G. Fu, and E. Eichen, "Web-Based Expert System for Automated

-131-

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

DSL Loop Qualification," Proceedings of
IEEEHFIP NOMS 2000, Hawaii, pp. 201-214,

April 2000.

http://www.tmfcentral.comA)row se.asp?CatID=5 80

http: //www.tmforum.orghrowse.asp?catID=3 37

C. Booth eds. The New IEEE Standard Dictionaq of Electric and Electrmics Tens..

Fl#h Edition. IEEE, 1993.

Y. Shin and A. Ohnishi, "A Visual Programming Method for Developing Sequence

Controller Programs," Proceedings of Sixth Asia Paclfic Software Engineering

Conference,Takamatsu, Japan, pp. 1 1 8-125, December 1999.

L. V. Zul, D. Mitton, and S. Crosby, "A Tool for Graphical Network Modeling and

Analysis," IEEE Software, Vol. 9, No. 1, pp. 47-54, January 1992.

V. Shen, "Quality from Both Developer and User Viewpoints," IEEE Software,Vol. 6, No.

5, page 84 and 100, September 1989.

T. Yamaoka, K. Tsujino,T. Yoshida, and S. Nishida, "Supporting Mutual Understanding

in Collaborative Design Project,"Proceedings of Third
Asian Paclfic Computer & Human

Interaction, Kanazawa, Japan, pp. 1 32-1 38, July 1998.

L. G. Williams, "Assessment of Safety-Critical Specifications," IEEE Software,Vol. ll,

No. 1, pp. 51-60, January 1994.

K. Go and N. Shiratori, "A decomposition of a Formal Specification: An Improved

Constraint-Oriented Method," IEEE Transactions on Software Engineering, Vol. 25, No.

2, pp. 258-273, February 1999.

S. A. Ehikioya and K. Barker, "A Formal Specification Strategy for Electronic

Commerce," Proceedings of
IDEAS 97, Montreal, Canada, pp. 201-210, August 1997.

H. Giese, J. Graf, and G. Wirtz, "Modeling Distributed Software Systems with Object

Coordination Nets," Proceedings ofPDSE '98, Kyoto, Japan, pp. 39-50, April 1998.

B. W. Boehm, "A Spiral Model of Software Development and Enhancement," IEEE

Computer, Vo1. 21, No. 5, pp. 61-72, May 1988.

W. W. Royce, "Managing the Development of Large Software Systems.I Concepts and

Techniques." Proceedings of IEEE ICSE '87, Monterey, CA, USA, pp.328-338,

March/April 1987, originally published in Proceedings of WESCON, 1970.

I. Graham and P. L. Jones, Expert Systems: Knowledge, Uncertainty and
Decision.

Chapman & Hall, London, UK, April 1988.

Y. Lincoln and E. Guba, Naturalistic Inquiq. Sage, Thousand Oaks, CA, USA, May

1985.

J. Bubenko, C. Rolland, P. Loucopoulos, and V. De Antonellis, "Facilitating 'Fuzzy to

Formal' Requirements Modeling," Proceedings ofIEEE ICRE '94, Colorado Springs, CO,

USA, pp. 154-158,April 1994.

A. Dardenne, A. V. Lamsweerde, and S. Fickas, "Goal-directed Requirements

-132-

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Acquisition," Science
of Computer

Programming, Vol. 20, No. 1-2, pp. 3-50, April 1993.

A. I. Anton, "Goal-Based Requirements Analysis," Proceedings of ICRE '96, Colorado

Springs, CO, USA, pp. 136-144, April 1996.

R. Darimont, A. V. Lamsweerde, "Formal Refinement Patterns for Goal-Driven

Requirements Elaboration," Proceedings of Fourth ACM SIGSOFT Symposium on the

Founhtions
of Software

Engineering, Sam Francisco, CA, USA, pp. 179-190, October

1996.

A. V. Lamsweerde and E. Letier," handling Obstacles in Goal-Oriented Requirements

Engineering," IEEE Transactions on Software Engineering, Vo1. 26, No. 10, pp.

978-1005, October 2000.

C. Rolland, C. Souveyrt, and C. B. Achour, "Guiding Goal Modeling Using Scenarios,"

IEEE Transactions on Software Engineering, Vol. 24, No. 12, pp. 1055-1071, December

1998.

C. Rolland, G. Grosz, and R. Kla, "Experience with Goal-Scenario Coupling in

Requirement Engineering," Proceedings of IEEE
RE '99, Limerick, Ireland, pp. 74-83,

June1999.

C. Potts, "Fitness for Use: The System Quality That Matters Most," Proceedings of the

Third Intemational Workshop on Requirements Engineering: Foundbtion of Software

Quality REFSQ '97, Barcelona, Spain, pp. 15-28, June 1997.

C. Potts, K. Takahashi, and A. I. Anton, "Inquiry-based Requirement Analysis," IEEE

Software, Vol. ll, No. 2, pp. 21-32, March 1994.

P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen, "Formal Approach to

ScenarioAnalysis," IEEE Software, Vol. ll, No. 2, pp. 33A1, March 1994.

A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manue1, "Supporting Scenario-

Based Requirements Engineering," IEEE Transactions on Software Engineering, Vol. 24,

No. 12, pp. 1074-1088, December l998.

B. Dano, H. Briand, and F. Barbier, "An Approach Based on the Concept of Use Case to

Produce Dynamic Object-Oriented Specifications," Proceedings
of
IEEE RE '97,

Annapolis, MD, USA, pp.54-64, January 1997.

E. Kavakli, P. Loucopoulos, and D. Filippidou, "Using Scenarios to Systematically

Support Goal-Directed Elaboration for Information System Requirements," Proceedings

ofIEEE
ECBS '96, Friedrichshafen Germany, pp. 308-3 14, March 1996.

T. Menzies, B. Nuseibeh, and S. Waugh, "An Empirical Investigation of Multiple

Viewpoint Reasoning in Requirements Engineering," Proceedings of IEEE RE '99,

Limerick Ireland, pp. 100-1 10, June 1999.

D. T. Ross, "Applications and Extensions to SADT," IEEE Computer, Vol. 18, No. 4, pp.

18-34, April 1985.

R. K. Stamper, "Social Norms in Requirements Analysis: an Outline of MEASUR," M.

-133-

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Jirotka and J. Goguen eds. Requirements Engineering: technical and Social
Issues,

Academic Press, Sam Diego, CA, USA, pp. 107-139, 1994.

B. Nuseibeh, J. Kramer, and A. C. W. Finkelstein, "A Framework for Expressing the

Relationships between Multiple Views in Requirements Specification," IEEE

Transactions on Software Engineering, Vol. 20, No. 10, pp. 760-773, October 1994.

M. Goedicke, T. Meyer, and G. Taentzer, "Viewpoint-oriented Software Development by

Distributed Graph Transformation: Towards a Basis for Living with Inconsistencies,"

Proceedings ofIEEE
RE '99, Limerick, Ireland, pp. 92-99, June 1999.

P. P. Chen, "The Entity-Relationship Model - Toward a Unified View of Data," ACM

Transactions on Database Systems, Vol. 1, No. 1, pp. 9-36, March 1976.

ITV-T, ForMl description techniques (FDT) Message Sequence Chart

Recommendation Z.210. November 1999.

B. Regnell, K. Kimbler, and A. Wesslen, "Improving the Use Case Driven Approach to

Requirements Engineering," Proceedings of
IEEE RE '95, York, UK, pp. 40A7, March

1995.

B. Regnel1, M. Anderson, and J. Bergstrand, "A Hierarchical Use Case Model with

Graphical Representation," Proceedings of
IEEE ECBS '96, Friedrichshafen, Germany,

pp. 270-277, March 1996.

B. Regnel1, P. Runeson, and C. Wohlin, "Towards Integration of Use Case Modelling and

Usage-based Testing," The Joumal of Systems and Software, Vo1. 50, No.
2, Elsevier

Science, New York, NY, USA, pp. 117-130, February 2000.

W. J. Lee, S. D. Cha, and Y. R. Kwon, "Integration and Analysis of Use Cases Using

Modular Petri Nets in Requirements Engineering," IEEE Transactions on Software

Engineering, Vol. 24, No. 12, pp. 1115-1130, December 1998.

W. Reisig and G. Rozenberg, "lectures on Petri Nets I: basic Models," Lecture Notes in

Computer Science 1491, Springer-Verlag, Heidelberg, Germany, 1 998.

K. Jensen, "Coloured Petri Nets
-
Basic Concepts, Analysis Methods and Practical Use,

Vol. 1: Basic Concepts," EATCS Monographs on Theoretical Computer Science,

Springer-Verlag, Heidelberg, 1 992.

A. Virmani, J. Lobo, and M Kohli, "Netmon: Network Management for the SARAS

softswitch," Proceedings ofIEEEWFIP NOMS 2000, Hawaii, pp. 803-8 16, April 2000.

T. Koch, C. Krel1, and B. Kramer, "Policy Definition Language for Automated

Management of Distributed Systems," Proceedings of
IEEE SMW '96, Toronto, Canada,

pp. 55-64, June 1996.

D. Trcek, "Security Policy Management for Networked Information Systems,"

Proceedings ofIEEE/TFIP NOMS 2000, Hawaii, pp. 8 17-831 ,
April 2000.

E. Lupu and M. Sloman, "Conflicts in Policy-Based Distributed Systems Management,"

IEEE Transactions on Software Engineering, Vo1. 25, No. 6, pp. 852-869, June 1999.

-134-

[96] I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage: Business Process

Reengineering
with Object Technology. Addison-Wesley, Boston, MA, USA, June 1995.

[97] S. Lilly, "Use Case Pitfalls: Top 10 Problems from Real ProjectsUsing Use Cases,"

Proceedings ofTOOLS USA '99, Santa Barbara, CA, USA, pp. 174-183, August 1999

[98] D. G. Firesmith, "Use Case Modeling Guidelines," Proceedings of
TOOLS USA '99,

Santa Barbara, CA, USA, pp. 184-193, August 1999.

[99] S. Nishihara, "Fundamentals and Perspectives of Constraint Satisfaction Problems,"

Journal
ofJSAI,

Vo1. 12, No.3, pp. 3-10, May 1997 (inJapanese).

[100] S. Haykin, Neural Networks.. A Comprehensive Foundbtion. Prentice Hall, Upper Saddle

River, NJ. USA, July 1998.

[101] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming: An

Introduction: On the Automatic Evolution of Computer
Programs and Its Applications.

Morgan Kaufmann, January 1998.

[102] Y. Tohma and M. Abe, "Improvement of MTTF of Feed forward Neural Networks by

Applying Re-Leaming," IEICE Transactions on InjTormationand Systems, Vol. J82-D-I,

No. 12, pp. 1379-1386, December 1999 (in Japanese).

[103] S. Shimada and Y. Anzai, "Improving Adaptability of Reinforcement Leaming Systems to

Dynamic Environment by Decomposing and Reusing Macro-Operations," IEICE

Transactions on Information and Systems, Vo1. J84-D-I, No. 7, pp. 1076-1088, July 2001

(inJapanese).

[104] T. Obata and M. Hagiwara, "A Color Poster Creating Support System to Reflect Kansei,"

IPSJ Journal, Vol. 41, No. 3, March 2000 (inJapanese).

[105] M. Munetomo, Y. Takai, and Y. Sato, "A Dynamic Load Balancing Scheme Using a

Genetic Algorithm with Stochastic Leaming," IPSJ Journal, Vol. 36, No. 4, April 1995.

[106] T. Tada, Men-eki no iminon. Seidosha, Tokyo, Japan, April 1993 (in Japanese).

[107] K. Nishiyama, Era of Immune Networks. Japan Broadcasting Publishing, Tokyo, Japan,

May 1995 (in Japanese).

[108] N. K. Jerne, "Idiotypic Networks and Other Preconceived Ideas," Immunological Review,

Vol. 79, pp. 5-24, 1984.

[109] A. Ishiguro, Y. Watanabe, T. Kondo, and Y. Uchikawa, "Construction of a Decentralized

Consensus-Making Network Based on the Immune System Application to an Action

Arbitration for an Autonomous Mobile Robot," SICE Journal, Vo1. 33, No. 6, pp.

524-532, June 1997 (inJapanese).

[110] A. Ishiguro, T. Kondo, Y. Watanabe, Y. Shirai, and Y. Uchikawa, "An Evolutionary

Construction of Immune Network-Based Behavior Arbitration Mechanism for

Autonomous Mobile Robot," Transactions on IEEJ, Vol. 117-C, No. 7, pp. 865-873, July

1997 (inJapanese).

[111] J. Suzuki and Y. Yamamoto, "Biologically-Inspired Autonomous Adaptability in a

-135-

Communication Endsystem: An Approach Using an Artificial Immune Network," IEICE

Transactions on Information & Systems, Vol. E84-D, No. 12, pp. 1782-1789, December

2001.

[112] K. Matsumura, "Negotiation Support Agent Based on Immune Algorithm," Transactions

on IEEJ, Vol. 119-C, No. 10, October 1999 (inJapanese).

[113] G. Glodszmilt and Y. Yemini, "Delegated Agents for Network Management," IEEE

Communications Magazine, pp. 66-70, March 1998.

[114] A. Vassila, G. Pavlou, and G. Knight, "Active Objects in TMN," Proceedings of

IEEEIFIP IM '97, Sam Diego, CA, USA, pp. 139-150, May 1997.

[115] M. Suzuki, Y. Kiriha, and S. Nakai, "Delegation Agents.. Design and Implementation,"

Proceedings ofIEEE/IFIP
IM '97, Sam Diego, CA, USA, pp. 742-751, May 1997.

[116] V. A. Pham and A. Karmouch, "Mobile Software Agents: An Overview," IEEE

Communications Magazine, Vo1. 36, No. 6, pp. 26-37, July 1998.

[117] M. Feridun, W. Kasteleijn,and J. Krause, "Distributed Management with Mobile

Components," Proceedings of IEEE/IFIP IM '99, pp. 857-870, Boston, MA, USA, May

1999.

[118] A. Liotta, G. might, and G Pavlou, "Modelling Network and System Monitoring over

the Internet with Mobile Agents," Proceedings of IEEE/TFIP NOMS '98, New Orleans,

LA, USA, pp. 302-312, February 1998.

[119] Sun Microsystems Inc., JavaTM Management Extensions Instrumentation and Agent

Specification,v1.0. July 2000.

[120] M. Mezini and K. Lieberherr, "Adaptive Plug-and-Play Components for Evolutionary

Software Development," Proceedings of OOPSLA '98, Vancouver, Canada, pp. 71-116,

October 1 998.

[121] M. Suzuki, H. Maeomichi, N. Shiraishi, and Y. Kiriha, "Active Q Adaptor for

Programmable End-to-End Network Management Systems," IEICE Transactions on

Communications, Vo1. E82-B, No. 1 1, pp. 1761-1769, November 1999.

[122] M. Wegdam and A. van Halteren, "Experiences with CORBA interceptors," Proceedings

ofIFIP/ACM RM 2000, New York, USA, April 2000.

[123] T. Fraser, L. Badger, and M. Feldman, "Hardening COTS Software with Generic

Software Wrappers," Proceedings of
IEEE S&P '99, Oakland, CA, USA, pp.2-16, May

1999.

[124] P. Sewell and J. Vitek, "Secure Composition of Untrusted Code: Wrappers and Causality

Types," Proceedings
ofIEEE

CSFW'00, Cambridge, England, pp. 269-284, July 2000.

[125] J. Epstein, L. Thomas, and E. Monteith, "Using Operating System Wrappers to Increase

the Resiliency of Commercial Firewalls," Proceedings ofIEEE ACSAC loo, New Orleans,

Louisiana, pp.236-245, December 2000.

[126] A. V. Hense, "Wrappers Semantics of an Object-OrientedProgramming lzmguage with

-136-

State," Proceedings of Theoretical
Aspects of Computer Software, pp. 548-568,

September 1991.

[127] A. H. F. Laender, A. S. da Silva, P. B. Golgher, B. Ribeiro-Neto, I. M. R. Evangelista-

Filha, and K. V. Magalhaes, "The Debye Environment for Web Data Management," IEEE

Internet Computing, pp. 60-69, July/August 2002.

[128] L. Liu, C. Pu, and W. Ham, "XWRAP: An XML-Enabled Wrapper Construction System

for Web Information Source," Proceedings of 16th IEEE ICDE '00, Sam Diego, CA, pp.

611J21
,
March 2000.

[129] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattems, Elements of Reusable

Object-Oriented Software. Addison-Wesley, New York, NY, USA, January 1 995.

[130] A. Hutt (eds.),Object Analysis and Design -
Comparison of Methods. John Wiley & Sons

Inc. New York, NY, USA, June 1994.

[131] R. Martin, Designing Object Oriented C++ Applications Using The Booch Method.

Prentice Hall, Englewood Cliffs, NJ, USA, February 1995.

[132] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson, Object-Oriented

Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, USA, January 1991.

[133] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta, "A Controlled Experiment

in Maintenance Comparing Design Patterns to Simpler Solutions," IEEE Transactions on

Software Engineering, Vo1. 27, No. 12, pp. 1 134-1 144, December 2001.

[134] D. Buchs and N. Guelfi, "A Formal Specification Framework for Object-Oriented

Distributed Systems," IEEE Transactions on Software Engineering, Vol. 26, No. 7, pp.

635J52, July 2000.

[135] A. Birrer and T. Eggenschwiler, "Frameworks in the Financial Engineering Domain: An

Experiment Report," Proceedings of
ECOOP '93, Kaiserslautern, Germany, pp. 21-35,

July1993.

[136] W. Stevens, G. Myers, and L. Constantine, "Structured design," IBM System Journal, pp.

115-139, 1974.

[137] P. Coad and E. Yourdon, Object-Oriented Design. Prentice Hall, Upper Saddle River, NJ.

USA, January 1991.

[138] S. Chidamber and C. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE

Transactions on Software Engineering, Vo1. 20, No. 6, pp. 476A93, June 1994.

[139] L. BriaJld, J. Daly, and J. Wust, "A Unified Framework for Coupling Measurement in

Object-0ritntedSystems," IEEE Transactions on Software Engineering, Vol. 25, No. 1,

pp. 91-121, JanuaryHebruary 1999.

[140] J. Eder, G. Kappel, and M. Schrefl, "Coupling and Cohesion in Object-Oriented

Systems," 7Technical Report, University
of Klagenbrt,

1994. Also available

ftp://ftp.ifs.uni-linz.ac.at/pub/publications/1 993/0293.ps.gz

[141] M. Hitz and B. Montazeri, "Measuring Coupling and Cohesion in Object-Oriented

-137-

Systems:' Proceedings ofISACC
'95, Monterrey, Mexico, pp. 10-21 , October 1995.

[142] N. Churcher and M. Shepperd, "Towards a Conceptual Framework for Object Oriented

Software Metrics," ACM SIGSOFT Software Engineering Notes, Vol. 20, No. 2, pp.

69-76, March 1995.

[143] L. Briand, P. Devanbu, and W. Melo, "An Investigation into Coupling Measures for

C++," Proceedings ofICSE '97,
Boston, MA, USA, pp. 412A21, May 1997.

[144] T. L. Saxton, "Reference Architecture for TC 57.. Draft Revision 4," IEC TC57,

November 2000.

[145] International Alliance for Interoperability, IFC 2x: Model Implementation Guide Version

1.0. June 2001.

[146] G. Malkin (eds.),"Internet Users' Glossary," IETF RFC 1983, August 1996.

[147] ITU-T, Vocabulaq of TehlSfo, B,oadband Aspects of ISDN, Recommendation I.113.

June1997.

[148] ITU-T, Teminologyfor cables, Recommendation G.601. November 1 988.

[149] ITU-T, Vocabulaq of
Digital Transmission

and Multiplexing, and Pulse Code

Modulation (PCM) Tens, Recommendation G. 701. March 1 993.

[150] ITU-T, Tenns and Definitions of TrajPc Engineering, Recommendation E.600. March

1993.

[151] ITU-T, Tens and Definitions Related to Quality of
Service

and
Network Pelomance

Including Dependability, Recommendation E. 800. August 1 994.

[152] W. Tsai, R. Vishnuvajjala,and D. Zhang, "Verification and Validation of howledge-

Based Systems," IEEE Transactions on Knowledge and Data Engineering, Vol. ll, No. 1,

pp. 202-212, JanuaryMebruary 1 999

[153] D. L. Nazareth, "Investigating the Applicability of Petri Nets for Rule-Based System

Verification," IEEE Transactions on Knowledge and Data Engineering, Vol. 4, No. 3, pp.

402A15, June 1993

[154] G. Valiente, "Verification of Knowledge Base Redundancy and Subsumption using Graph

Transformations," Intemational Journal on Expert Systems, Vol. 6, No. 3, pp. 341-355,

1993.

[155] R. Agarwal and M. Tanniru, "A Petri Net Based Approach for Verifying the Integrity of

Production Systems," International Journal
of Man-Machine Studies, Vol. 36, No. 3, pp.

447A68, May 1993.

[156] T. A. Nguyen, "Verifying Consistency of Production Systems," Proceedings of the Third

IEEE CAIA, Kissimmee, FL, pp. 4-8, February 1987.

[157] M. Ramaswamy, S. Sarkar, and Y. Chen, "Using Directed Hypergraphs to Verify Rule-

Based Expert Systems," IEEE Transactions on Knowledge and Data Engineering, Vol. 9,

No. 2, pp. 221-237, March/April, 1997.

[158] G. W. Rosenwald and C. Liu, "Rule-Based System validation through Automatic

-138-

Identification of Equivalence Classes," IEEE Transactions on Knowledge and Data

Engineering, Vo1. 9, No. 1, pp. 24-31, JanuaryMebruary 1997.

[159] T. Menzies and B. Cukic, "On the Sufficiency of Limited Testing for Knowledge Based

Systems," Proceedings of
IEEE ICTAI '99, Chicago, IL, USA, pp. 431A40, November

1999.

[160] A. I. Vermesan, "Software Certification for Industry - Verification and Validation Issues

in Expert Systems," Proceedings of
IEEE DERn '98, Vienna, Austria, pp. 3-14, August

1998.

[161] S. S. Foster, B. A. Nebesh, D. Moore, and M. J. Flester, "Performance Tuning Mobile

Agent Work flow Applications," Proceedings ofTOOLS '99, Santa Barbara, CA, USA, pp.

8J7, August 1999.

[162] T. Gschwind, M. Feridun, and S. Pleisch, "ADK
- Building Mobile Agents for Network

and Systems Management from Reusable Components," Proceedings of ASA/MA
'99,

Palm Springs, CA, USA, pp. 13-21, October 1999.

[163] 0. F. Rana, "A Design and Management Framework for Mobile Agent Systems,"

Proceedings of IEEE MASCOTS, College Park, Maryland, USA, pp. 314-321, October

1999.

[164] S. M. Yacoub, H. Xue, and H. H. Ammar, "Automating the Development of Pattern-

Oriented Designs for Application Specific Software Systems," Proceedings of IEEE

ASSET '00, Richardson, TX, USA, pp. 163-170, March 2000.

[165] G. Florijn,M. Meijers,and P. van Winsen, "Tool Support for Object-OrientedPatterns,"

Proceedings ofECOOP
'97, Finland, pp. 472lA95, June 1997.

[166] M. Schutze, J. P. Riegel, and G. Zimmermann, "PsiGene - A Pattern-Based Component

Generator for Building Simulation," Journal Theoq and
Practice

of Object
Systems

(7;APOS), Vol. 5, No. 2, pp. 83-95,April 1999.

[167] T. D. Meijler,S. Demeyer, and R. Engel, "Making Design Patterns Explicit in FACE,"

Proceedings ofESEC/FSE '97, Zurich, Switzerland, pp. 94-1 1 0, September 1997.

[168] A. H. Eden, A. Yehudai, and J. Gil, "Precise Specification and Automatic Application of

Design Patterns," Proceedings of
IEEE ASE '97, Lake Tahoe, LA, USA, pp. 143-152,

November 1997.

-139-

