THE SUMMARY OF Ph. D. DISSERTATION

Major SURNAME, Firstname
Computer Sciences Takimoto, Munehiro
Title

Integrated Framework of Code Optimization based on

Transforming Dependence Graphs

Abstract

Code optimizations based on code motion have been researched for last decade.
For example, partial redundancy elimination (PRE) and partial dead code elim-
ination (PDE) are powerful code optimization techniques based on code motion.
PRE not only removes common subexpressions but also eliminates partially re-
dundant expressions, which become redundant on execution of specific program
paths. PDE not only removes dead assignments but also eliminate partially dead
assignments, which become dead on execution of specific program paths. In ad-
dition, they also enable to achieve invariant code motion from loop bodies.

However, code motion techniques have trade-off between precision and effi-
ciency. code motion algorithms using dataflow analysis provide optimal results,
which require applying the analysis repeatedly. They are costly. For while,
code motion algorithms using dependence graph is more efficient than one us-
ing dataflow analysis, because def-use relations are exposed. But they cannot get
optimal results.

This paper proposes an efficient and effective algorithm for code motion tech-
niques. Our approach introduce new idea of transforming dependence graph.
Since traditional dependence graph only represents dependence structure based on
original location of each expression, it cannot provide sufficient precision. Trans-
forming dependence graph corresponding to code motion exposes dependence

structures at all program points, which provide def-use information to dataflow




analysis. That enables to achieve the optimal result without repeating application
of analysis.

This paper also proposes new dependence graph, Extended Value Graph (EVG)
which represents transformed dependence graphs integrally. Since EVG keeps
equivalent relation among transformed dependence graphs, their dependence in-
formation is combined with dataflow slots.

Transforming dependence graph also extends traditional optimizations effec-
tively. Since this effect can also be captured during building EVG, it can be
included into our code motion technique based on EVG.






