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Chapter 1

Introduction

In this thesis, we study the metrical theory of the non-archimedean diophantine

approximation. In Chapter 2 and Chapter 3, we discuss about the conditions

for having infinitely many solutions. In Chapter 4 and Chapter 5, we study the

convergent rate of some multi-dimensional continued fraction expansions which

give some simultaneous approximation sequences. We give a short sketch of the

metrical theory of diophantine approximations for real numbers as a historical

ground in this chapter and then state main results with some
basic deanitions

and notations.

1.1 Background

In the studies of the metric diophantine approximation, there are the following

two important questions.

(i)Whether ～- pit<
a has infinitely many solutions for a.e. I E [0,1)or not.q

(ii)Whether some solutions which give good convergences exist or not.

A.Khintchine is the first author who proved a theorem concerned (i).

The Khintchine Theorem (1925)

Let *(q) be a positive continuous function of
a positive integer q, and suppose

1
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P
Ct - -

q

<
*(q)

q

q*(q)
is non-increasing. Then

(1.1)

with p, q E 21+
has inBnitelymany solutions for a.e. cY E [0,1),provided that the

Sum

fw (i.2)
q=1

diverges. On the other hand, if(1.2)converges, (1.1)has only Bnitely many

solutions for almost every a.

After this theorem, some attempts were made by many people to weaken the

condition (1.2).In 1941, R.I.DufRn and A.C.Schaeffer showed (1.1)has infinitely

many solutions under a weaker condition [6].

The DufRn-Schaeffer Theorem (1941)

Let 4,(q),q E N, be an arbitrary sequence of non-negative real numbers
less than

i such that

f*(q)=w
q=1

and suppose there exists an inBniteset of positive
integers Q such that

E*(q) < clE*(q)i(nq),q
q5Q qSQ

where i(q) is the Euler function and cl is a positive constant. Then for a.e.

cYE[0,1)
P

a - -

q

<
*(q)

q

with (p,q)= 1, p, q E Z+ has inBnitelymany solutions.

Note that *(q)is the number ofq' such that (q,q')= 1 and q' < q.

At the same time, they also gave the following conjecture.

The DufBn-Schaeffer Conjecture (1941)
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Let *(q),q E N, be an arbitrary sequence of non-negative real numbers
less than

i

5.Then

P
a- -

q
<Mqq), (p,q)=l,

has inPnitelymany solutions for a.e. cr E [0,1) ifand only if

f*(q)Aid= a.n

q
q=1

(1.3)

This
conjecture

has not been proved yet, but in 1978, I.D.Vaaler showed that

(1.3)could be replaced with *(q)
=

o(i).
In the meantime, the multi-dimensional version of this problem has been done,

which we call the simultaneous approximation problem. A.Khintchine showed a

theorem concerned the simultaneous approximation in 1926.

The Khintchine Theorem (1926)

Let r e N and 4,(q)be a positive continuous function of a positive q such that

q4,r(q)converges monotonically
to 0 as q ) ～. Then for a.e. (a1,...,a,)E

[0,1)r,
P1Cti-
-

q
<Mqq), (pi,q)=1,pi,qEZ,

for 1 5 i 5 r has inBnitelymany solutions provided

for(q)
q=1

(1.4)

(1.5)

diverges. On the other hand, if(1.5)converges, (1A) has only at most Bnitely

many solutions.

Similarly, there is a multi-dimensional version of the DufBn-Schaeffer condition

which was given by Sprindhk [27].

Theorem (1979)

Let 4,(q),q E 2:, be any sequence ofnon-negative real numbers, which is
less than
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i,such that

for(q)=m
q=1

Suppose there are inPnitelymany sets ofQ E 2:+ such that

E.r(q)< c2E.r(q)("qq')r
qSQ q5;Q

Here, c2 is a positive constant and i is the Euler function. Then, for a.e.

(cY1,...,a,)E [0,1)r,

P I
CY I

q
<*(q) (pi,q)=1,pi,qEZ
q

for 1 5 i
_<

r has inBnitelymany solutions.

Also Sprindhk proposed a multi-dimensional version of the DufBn-Schaeffer

conjecture.

The r-dimensional DufBn-Schaeffer Conjecture (1979)

Let 4,(q),q E N be an arbitrary sequence of non-negative real numbers
less than

1

5.
Then

a

P
1
1

q
<*(q) (pi,q)=1,pi,qEZ
q

for 1 5 i 5; r has inBnitelymany solutions for almost every (a1,...CY,)E [0,1)r

ifand only if
a

E
q=1

･r(q)("qq))r= ～.

In 1990, A.D.Pollington and R.C.Vaughan proved that an r-dimensional version

of the DufRn-Schaeffer conjecture is
true for r > 1 (see[24]),however, the original

one-dimensional DufBn-Schaeffer
conjecture still remains open until

now.

Now we turn to the problem concerned (ii).In the one-dimensional case, it

is well-known that the continued fraction expansion gives a good convergent

sequence of rational numbers. Because continued fractions are related to the
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Euclidian algorithm (see[2]),it seemed to be natural to extend the notion of

continued fractions to the multi-dimensional case as the higher dimensional Eu-

clidean algorithm.

Then we get multi-dimensional maps which induce various multi-dimensional

continued fractions. The Jacobi-Perron algorithm is one of the most natural one

in the sense that it comes from the Euclidean algorithm. Rational vectors induced

from this algorithm have a good property as the simultaneous approximation.

Here we givethe definition of map T associated to the Jacobi-Perron algorithm.

･(a1,...,～)=(Z-[=],...,=-[=],a-[f])
for (cr1,...,CY,)E [0,i)r.From this map, we can get a simultaneous approxi-

mation sequence which converges to (ch,...
,a,).

F.Schweiger proved that the

existence of an absolutely continuous invariant measure and its ergodicity, and

showed that the convergent rate of the approximation sequence is exponential in

the two-dimensional case [26].

Theorem (2-dimensional case: 1996)

There e3:ists
a constant 6 > 0 such that for a.e. (cY1,Cr2)E [0,1)2there exists

no =

no(ck1,Ck2)Such
that for any n 2 no

lqn1
P n

Ct1--

q n ･i,
IqnI

rn

a2--

q n

1

<a,

where the integers pn, qn, rn are provided by the Jacobi-Perrm algorithm.

After F.Schweiger, this convergent exponent was studied by K. Nakaishi [19],

A.B. Alamichel and Y. Guivarc'h [3]etc.

An algorithm similar to the Jacobi-Perron algorithm, E.V.Podsypanin consid-

ered the following map S, which is called the modified Jacobi-Perron algorithm

[23].This expansion is associated with the following map:

s(a1,..-,ar,=(;-[;],...,i-[a...,;-[;])
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ifckj >ail for 1 5 i1 5j-1 andaj
_>ai,
forj+1 5i2

_<r.
F.Schweigeralso

proved that the existence of an absolutely continuous invariant measure and its

ergodicity and then the exponential convergent property of the modified Jacobi-

Perron algorithm was shown by S.Ito, M.Keane and M.Otsuki in 1993 for the

two-dimensional case [15]and T.Fujita and others in 1996 [9].

Theorem (2-dimensional case.. 1993 and 1996)

There exists a constant 6' > 0 such that for a.e. (P1,P2)E [0,1)2there exists

no =

no(P1,P2)Such
that for any n 2 no

IqLIp1-Pl
qL ･&,

lqLf

p2-2
1

< -

qI6n'

)

where the integers pin, q'n, rL
are provided by the modiBed

Jacobi-Perron algo-

rithrrL

Later, a simple proof of this theorem was given by R.Meester [17],however,

it seems to be very hard to get the exponential convergent estimate for higher

dimensional case.

In the sequel, we discuss the metric property of diophantine inequality (1.1)for

the formal Laurent power series and get a necessary and sufBcient condition or

a sufRcient condition for having infinitely many solutions in the one-dimensional

and higher dimensional cases. Then we also discuss the exponential convergent

property of the Jacobi-Perron algorithm and the modified Jacobi-Perron algo-

rithm for the formal Laurent power series. In the formal Laurent power series'

situation, the problem is simpler than that of the classical real number case. So,

we have the exponential convergent property for any dimensional Jacobi-Perron

algorithm and modified Jacobi-Perron algorithm in the formal Laurent power

series.
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1.2 Definitions

Throughout this thesis, we use the following definitions and notations.

Let Fq be a finite fields with q elements and we consider the
following:

Fq[X]=(anXn+an-1Xn-1+...+alX+ao,aiEFq,05i5n)

: the set of polynomials of Fq-coefBcients,

Fq(X)=(5: P,QEFq[X],QiO)
: the set of rational functions,

Fq((X-1))=(anxn+an-'xn-1+...
,aiEFq,i<_n,aniO,nE2:)

: the set of formal Laurent power series of Fq- coefBcients.

We regard Fq[X],Fq(X) and Fq((X-1))as the set of integers, of rational numbers

and of real numbers, respectively. We denote 0 a.nd 1 by the additive unity and

the multiplicative unity of D'q, respectively. Note that we identify aoXO E Fq[X]

with ao eFq.
For I =anXn+an_1Xn-1+... EFq((X-i)), we put

degf =

We define the valuation of I by

Also we put

In
if aniO,

-～ if f=0.

ill= qdegf

[f]= anXn+an_'Xn-i+...+alX+ao for fEFq((X-i)).

We define

L=(f=a-'X-1+...+a_iX-i+...,aiEFq fori5-1),
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which is a compact abelian group with the metric d(I,g)
= If
-9I.
We denote

by m the normalized Haar measure on L. Note that

m(f=c_1X-i+c_2X-2+...
:c_1=C'l,C_2=C'2,...

,C_,=C',)=

1

qI
(1.6)

for any c'l, C'2,... C'l E Fq. Then, we put mr be the normalized Haar measure on

L
r

When P and Q are coprime, which means P and Q have no non-trivial common

factor, we write (P,Q) = 1. We define @(Q) be the number of the polynomials

P such that

deep <degQ, (P,Q) = 1

1.3 Main results

In Chapter 2, we consider the problem whether

I-fQ
<
*(Q)

IQI
' (P,Q)=1, P,QEFq[X], (1.7)

has infinitely many solutions S or not for m-a.e. I E L. First, we assume * be

a function which depends only on the degree of Q E Fq[X]. In this case, we get

a necessary and sumcient condition for having infinitely ma.ny solutions by using

a continued
fraction algorithm [13].

Theorem 2.2.1 Let * be a non-negative function dePned on Fq[X] such that

4,(Q)depends only on the degree ofQ
E Fq[X]. For any set S ofpositive integers,

(1.7)with degQ E S has inPnitelymany solutions for m-a.e. I e L ifand only

if

I qn*(xn)
nES

～.

By this theorem, we would be able to say that we get the complete answer to (i)

in S2 when 4,(Q) depends only on the degree of Q for the non-archimedean case.
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Next, we generalize *, that is, we assume that * is a function which depends not

only on the degree of Q but also Q itself. Then we have the following theorem

[13].

Theorem 2.3.1 (Gallaghertype theorem)

For any *, (i.7)has inBnitelymany solutions 5 for a.e. i E L or (1.7)has at

most jinitelymany solutions 5 for a.e. I E L.

From this theorem, if we show the set of I such that (1.7)has infinitely many

solutions has a positive measure, then we see that it is a set of full measure.
In

this way, we
have the following theorem which is a non-archimedean version of

the Dunn-SchaeHer theorem [13].

Theorem 2.3.2 (DufRn-Schaeffertype theorem)

Let 4, be a (qln : n >_ 0) U (0)-valuedfunction which satisPes

i E*(Q)=m
n=1degQ=n

Q :TTIOnIC

Suppose there are inBnitelymany positive integers n such that

E 4,(Q)<C
desQ5n
Q : moTIIC

holds for a constant C. Then

I-f Q
<

E *(Q)
degQ5n
Q :mo.LIE

*(Q)

lQI
'

@(Q)

IQI

(P,Q) = 1,

has inBnitelymany solutions S for m-a.e. I E L.

In Chapter 3, we extend the DufBn-Schaeffer type theorem to the multi-dimensional

case, that is, the simultaneous approximation problems. As in the one-dimensional

case, we first show the Gallagher type theorem [11].

Theorem 3.1.1 (Gallaghertype theorem)
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I1-a Q ･*l(Q5),...,
I

P,.

Q
<
*(Q)

lQl

For any *,

(P1,Q)= (P2,Q) =...= (P,,Q) = 1.

has inBniielymany solutions of (Q,P1,...,P,)for
mr-a.e. (f1,...,i,)E Lror

has
onlyBnitely many solutionsfor

mr-a.e. (f1,...
,I,)
E Lr.

By using Theorem 3.1.1, we also have the DufBn-Schaeffer type theorem in the

multi-dimensional case [11].

Theorem 3.1.2 (DufBn-Schaeffertype theorem)

Let 4, be a (q-n ln >_ 0) U (0)-valuedfunction which satisBes

i I *r(Q)=m
n=1degQ=n

Q

I
.

TTtOnIC

Suppose for a positive constant C, there are infinitelymany positive integers n

suchthat

I 4,r(Q)<C I *r(Q)
deg QSn
Q

I

:monIC

_a Q

degQ5n
Q :TnOnIC

<W,..., I
Pr

Q

@r(Q)

IQlr

< 4,(Q)
IQI

holds. Then

(P1,Q) = (P2,Q) =... = (P,,Q) = 1.

has inBnitelymany solutions (%,...,%)formr-a.e. (f1,...,fr)e Lr.
In Chapter 4 and Chapter 5, we consider a problem concerned (ii)in Sl for the

non-archimedean case. First, we consider the Jacobi-Perron algorithm for the

formal Laurent power series in Chapter 4. In this case, we can associate the

following map with the Jacobi-Perron algorithm..

･(f1,...,fr)=(i-[f],...,i-[f],i-[f])
for (f1,..., I,)E Lr. The study of this algorithm for formal Laurent power series

have been already done by R.Paysant-Leroux, E.Dubois [20],K.Fens and F.Wane
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[7].They showed the existence of its convergence and the ergodicity. Here we

consider the rate of its convergence. The following is an a priori estimate [12].

Theorem 4.2.1 For any I/ 2 1, there exists a positive constant C such that

lA8u)I fi
-

AAt;;;
C

<7 1<i<r

q
T'

for(f1,...,I,)eLr wherer(f1,...,I,) ELrforL,>_
1.

N.ie that 4il
ALv)

Chapter 4, S1).

is I,-th convergence by the Jacobi-Perron algorithm (referto

We discuss the stochastic property of the Jacobi-Perron algorithm digits and

then get on better estimate. In particular, the degree of the denominator of

convergent
fractions [12].

Theorem 4.2.2 For any i, 2 1, there exists a positive constant C' such that

TAtu)I fi
-

AAt;;;
formr-a.e. (f1,...,I,)ELr, where

qr2
7

<

qr2-1)

q

C

iAtv)If(i-e)

P
q-1

VE>0

Next, we consider the modified Jacobi-Peron algorithm. We can associate the

following map with the modified Jacobi-Perron algorithm:

s(f1,...,fr)=(i-[f],...,i-[f],...,i-[f])
ifdegfj >degfil for15i1

_<j-1
anddegfj 2degfi, forj+1 5i2_<r.

In

this case, some converges but not exponential rate because the associated map

depends on the degrees of f1,...,I,_iand I,. For example, if the degree of the

first component ofSv(f1,..., I,)
is always greater than the others for i, 2 1, then

the speed of convergence of the i-th component, 2 5 i 5 r, gets to be very slow.
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However, for a.e. (f1,...
,I,),

we see exponential rate of convergence [14].

Theorem 5.1.2

(i)IfSu(f1,...,I,)iOforanyL/2 1,

vlimu:tg;
= fi for lSi5r,

on the otherhand, ifSv-1(f1,...,I,)iO andSv(f1,...,i,)=0,
then

Sg')=fifor
1<i<r.

(ii)Fora given sequence of arrays (b5v): 1 5i 5 r+1,u>_ 1);

biv.)iED'q[X], degbiy.)i_>
1,

b5.v)=o for lSi<j(u), b1(V)EFq for i(u)5i_<r

with a sequencej(1),i(2),...(1
_<j(I,)

S r, i, 2 1),there exists (f1,...,I,)E Lr

such that a(I,)
=

i(i,).

Note that S is the map associated with the modified Jacobi-Perron algorithm.
I

For the map S, we can prove the ergodicity [14].

Theorem 5.2.2 (i)Forany Borelset B c Lr,

mr(s-1B)
=

mr(B),

that is, mr is an invariant probability measure for S.

b(I)

biv.)1

(ii) : I/>1 is an independent and identically distributed sequence

as a sequence of random variables.

Here, biv),..., biv.)1a,e the coefBcients of u-th modified Jacobi-Perron expansions

induced by the map S (referto Chapter 5, S1). From these theorems, we can

show the exponential convergent rate [14].
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Proposition 5.2.3 For
a.e.(f1,...,I,)

e Lr, there e3:ists a positive constant

C1 = C1(E) Such that

IBbv)I
Bt(v)

fi--

BLu)
<
C1

qua(1-e)
foranyE>0, 1<i<r.

In the Jacobi-Perron algorithm, we have a priori estimate of the convergent rate

for all (f1,...
,I,)
E Lr. But in the modified Jacobi-Perron algorithm, we have

the estimate only for almost all (f1,...
,i,)
E Lr.

Finally, we have the estimate associated to the degree of the denominator of

convergent fractions [14].

Theorem 5.2.3 For
a.e.(f1,...,I,)

E Lr, there exists a positive constant

C2 = C2(E) Such that

B1(U)
fi--

Bay)
<

C2

IBLy)I'';(1-e)

T

for any E>0, 1<i<r,

qr

qr-1

where

and a is a positive constant which is given in Chapter 5 S2.



Chapter 2

Diophantine approximation for

one-dimensional case

2.1 Continued fraction expansion

In this section, we see the continued fraction expansion for the formal Laurent

power series. We refer Berth6 and Nakada [1].

Let T be the map ofL onto itself defined by

Tf=r'-[r'], fen.

I
1

1

P1+
p2+

=.. [0.,p1,P2,...]

pn
= [(r-lf)-'].

Then we have

with

As in the classical case, we define

(Snn
pnPn_1+Pn_2, Po

=0,
P1 = 1,

pnQn_1+Qn_2, Qo= 1, Q1=P1,

14

(2.1)
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and have the following..

PnQn_1 - gnp,._1

P

6 n
1

i1,

1

P1+
P2+ 1

I.+
-

P n

[0;p1,...,Pn]

for n 2 1. We call a the n-th convergent fraction of i. Since

i

I-A Qn

it is easy to see that

Moreover, we have the following:

Pn +Tnf.Pn_I

Qn +Tnf.Qn_1
'

1
<

IQnI2
forn>1.

Lemma 2.1.1 If coprime two non-zero polynomials P and Q satisfy

I-f Q
<
1

W'

P Pn

6 6;

then

forsomen2 1.

We put

wn= (SEL:degQ=n,(P,Q)=1,P,QeFq[X])
for n 2 1. The following is essential in the next chapter. This lemma was shown

in [4]and we prove it here by using continued fractions.

Lemma 2.1.2

#wn =q2n-q2n-1 for n>_1.
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Proof. Ifn = 1, all elements in Wl are Ofthe form

P

Q X+b'
witha,bEFq, ago.

This implies the assertion. Now we suppose

#wi=q2i-q2i-i for1<i<n_

Fix 5 E Wn'l. Then we have its continued fraction expansion uniquely:

P

6

1

1

P1+
P2+ 1

I.+

P m

= [0;p1,P2,...,Pm].

soweget aunique element E E W,. forsomej, 1 5j 5 nby

PI

Q
I

1

1

p1+
P2+ 1

'.+

= [0;p1,P2,...,Pm-1]

unless m 1.

Pm-1

0n theotherhand, for any 5 E Wj,1 S'j 5 n, wehave

qn''-i(q-1)numbersof5
E Wn'' by (2.1).The numberof5withdegQ

=

n+i

an ddegP=Oisqn+i(q-1). Thuswesee

#wn.i = i qk(q- 1)(q2n-2k.2- q2n-2k.1). qn.i(q- 1).
k=1

Then we have

#wn+i =

q2n+2
-

q2n+i,

which is the assertion of this lemma.

D
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2.2 Khintchine type theorem

Now we prove Khintchine type theorem. Here, we put 4,(Q)is non-negative

function
which depends only on the degree of Q. In this case, it is easy to give

a necessary and sufBcient condition on 4,for having infinitely many solutions for

a.e. I EL. Wereferto [5]and [8].

Theorem 2.2.1 Let * be a non-negative function deBned on Fq[X] such that

4,(Q)depends only on the degree ofQ E Fq[X].
For any set S of positive integers,

the inequality

i-f Q
<
4,(Q)

IQI

with P, Q coprime anddegQ E S has inPnitelymany solutionsfor a.e. I e L if

and only if

Eqn4,(Xn)= m

n6S

Proof. In the sequel, we always assume that P and Q are non-zero coprime

polynomials whenever we denote by 5 a rational function and that Q is monic.

ForSwithdegQ
=

n,weput

En (S) (fen: I-f Q

En=(fen:jS,degQ=n,

and also put

･#)

I-f Q ･#).
Lemma2.2.1 ForaBxedintegern2 1, ifSi 5 withdegQ =degQ'

= n,

then

En(S)nEn(;)
=0.
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Proof. Since I.Iis ultrametric, we see that if the intersection were non-empty,

then

PIf-&
Q

PI

S-& >

1
<

65=.

1 1

IQliQ'l q2n'

m(En)
=

i-i
q

I

However,

which gives a contradiction.

Lemma 2.2.2 For anyn >_ 1

Proof Since m (fen: I-fl Q ･#)
_
1

-

q2n
fora fixed SwithdegQ = n

and the number of 5 is q2n
-

q2n-i from Lemma 2.1.2, we have the assertion.

Lemma2.2.3 Foranyn2 1 andk>_ 1, we have

m(EnnEn+A)
=

m(En)m(En+A)
=

Proof. Iff E EnnEn+A, Say

I-fQ
1

<

6i=, I-flQ'
<

(1-i)2

1

q2n+2k

D

withdegQ=n,degQ'=n+k,then I5-5l < i,sothatbyLemma2.1.1,5
is a convergence of the continued fraction of 5. conversely, when l6

-

SI< i

and If- 5I < ;&,
then I e EnnEn'k. Therefore

m(En
n En+i.) Z(n,n+k)

1

q2n+2k
) (2.2)
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where Z(n,n+k) is the number of pairs 5,5 with 5 a convergent to 5, and

degQ =n, degQ' =n+k. #Wn, the number ofchoicesfor 5,is q2n(1-i).
For

a given S,we will show the number of choices for 6. suppose that 5 satisfies

I-flQ'
<
1

q2n+2k
' degQ'=n+kforfEEn (S).

Weseethatthereexistn=jo <j1 <j2 <... <jl_1 <jl =n+k (uniquely)

suchthat

PI

Q

Pm+I

Q m+I

= [0;p1,P2,...,Pm,...,Pm+l]

degpm+i = ji-ji-1, 1<i<l-

#(pEFq[X] : degp=u) =

qu(q-1),

i(;
: degpm.i

=ji-ji-1,

l5i5l)
=

y'1-jo(q
-

1)q3'2-j1(q
-

1)...q3''-j'-1(q
-

1)

=qk(q-1)I

with

Since

we have

foreachfixed (j1,...,jl).Allchoicesforn < j1 <... < jI_1 < n+k are

(i-ll)and I runs 1 to k. Hence we have

i(;:

Consequently, we see

I-flQ'
<
1

q2n+2k

l=1

forsome I E En

i(i-;
(S))

i-ll)qk(q-1)I
q2k (1-i)

z(n,n+k) =q2n.2k(1-
i)2
q



20

D

and by (2.2),we get

m(EnnEn+A)
= (1-i)2= m(En)m(En+k).

By the Borel-Cantelli lemma, this implies the following:

Proposition 2.2.1 For any subsequence ofpositive
integers

n1 < n2 < ... < nk < ...

I-f Q

we have

1
<

IQI2,
degQ=ni,

has inPnitelymany solutions for m-a.e. i e L.

According to this proposition, we can assume that *(Q) < i for any n 2 1.

Then we rewrite Theorem 2.2.1 to the following.

Theorem 2.2.2 For any subsequence of positive integers

n1 < n2 < ... < nk < ...,

and a sequence ofpositive integers

l1,l2,...,lk,...,

I-f
Q
<
1

q2n.+I.
) degQ =ni,

we have

has inPnitelymany solutions for m-a.e. i E L ifand only if

～

E
i=1

q-li =m
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Proof. Put

Fi=(fen:jS,
i-f
Q

Given 5,the measure off E L with

5 in Wni is (q2ni
-

q2nt-i),
therefore

<

i-f
Q

m(Fi)
=

1

q2ni+li
) degQ=ni ).
1 1

<
w
is
6W.

Thenumberof

q-ll

q qlt'
(2.3)

Now the assertion of Theorem 2.2.2 follows from the next lemma together with

(2.3)by Theorem 3 in [22].

Lemma 2.2.4

(a)FinFi+j=O if ni+li >_ni+i.

(b)m(FinFi+,.) =m(Fi)m(Fi+i) if ni+li
< ni+i.

Proof Iff E FinFi+i, Say

i-f Q
<
1

q2ni+I.
)

with degQ = ni, degQ' = ni+,., then

PIf-&
Q

PIf-i
Q

>

and on the other hand

I-flQ'

1
<

q2ni+Ii
'

<

1 1

1

q2ni+i
+li+3'

lQIIQ'I qni+n.I,

(2A)

When ni+li 2 ni+i these inequalities contradict each other, so that FinFi+,. = 0.

Suppose, then, that ni + li < ni'j. It follows from (2.4)that S is a convergent

to 5. write again

P

6 =[0;p1,...,Pm],
PI

Q
= [0.,p1,...,Pm,Pm+I,...,Pm+l],
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and then by a well-known formula,

Plf-&
Q

1 1

lQI2Ipm+ll q2nt+degpm.l'

we see degpm+i > li. In analogue to (2.2)we obtain

m(Fi
n Fi+i) Z(ni,ni+,., li)

1

q2n.+,
+I.., (2.5)

where Z(ni,ni+i,li)is the number of pairs 5,5 as above with degpm+1 > li.

Now, the number of choices forpm+i... , Pm+I is

qdegpm+1(q
-

1)qdegpm+2(q-1)...qdegpm+I(q-1)
=

qni'j-n.(q
-

1)I.

Z(ni,ni+i, li)

･q2nt-

q2n.-i)nt''i:-'i(ni.i-lni;
li -

1)qni.il=1

(q2ni
-

q2ni-i)qni',-ni(q
-

1)qn.',I-ni-I.-1

q2ni.,-,i (1- i)2,

i-n.(q-1)I

Then,

which yields the lemma with (2.5).

D

On this type theorem in the case of real numbers, we get only a sufBcient condi-

tion. But in the case of formal Laurent power series, we can get a necessary and

sufBcient condition where 4,(Q)depends only on the degree of Q. In this sense,

we can get a better results than in the case of real numbers.

Example Put

*(Q)
= (i

ifdeg Q is prime,

otherwise.

Then we see that there are infinitely many solutions of

I-S
<
1

IQI2'
degQ is prime

fora.e. fen.
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2.3 DufBn-Schaeffer type theorem

In the previous section, we see the diophantine approximation where *(Q) de-

pends on the degree ofQ.
However, in this case, there is a gap on the hypothesis

comparing with the case of real numbers. Then in this section, we put *(Q)

depends on Q itself and prove the Dufhn-Schaeffer type theorem.

For a given polynomial

h=c'X'+c'_1X'-1+...+clX+ c., ciEFq, 0<_i5l,c'iO,

we denote by (h)the cylinder set defined by

(fen : [X'+1.f]=h).

Lemma 2.3.1 Let hk, k 2 1, be a sequence ofpolynomials with

1im deghk = ～

kin

and Ek be a sequence of measurable sets oil for which
Ek C (hk).Suppose that

m(Ek)
>_ 6m((hk))forsome 6> 0. Then

～ ～

m(,_1kU=,Ek)
=

m(,ak%(hk)).
Proof. Let

H :=

,akG=,(hk),
E,' =

k%Ek,
H,' := HtE,'.

We show that m(Hl')
= 0 for any I 2 1, which implies the assertion of this lemma.

Suppose that
m(Hk')

> 0. For almost all fo E HI', there are infinitely many k such

thatfo e (hk).Forf
= I.<.aiXi EL, weputL(I) ==i<.aiqi

E (0,1].The

map i is a measure isomorphism of (L,m)
to [0,1]with the Lebesgue measure.

By this isomorphism, cylinder sets (hk)are napped to q-adic rational intervals.

So we can apply Lebesgue's density theorem and get

m(Hk'n(hk)) I ,
6

> 1--

m((hk))
2



24

Hk'nE; =0.

for some k. On the other hand,

So we see

m((hk))
>_
m(Ek) +m(Hk'n(hk)) 2 6m((hk))

+
m(Hk'n(hk)),

which says

This is impossible.

m(Hk'n(hk)) 5; (1-6)m((hk)).

0

Lemma 2.3.2 For any polynomialh E Fq[X] andy E L, the map T ofL onto

itselfdeBned by

Tf=hf+g-[hf+g] for fen

is er90dic.

Proof. Itiseasytoseethatbothf)h.fandf)I + gforfELarem-

preserving. Then it turns out that ui(I)
= [h.Ti-1],1 S i < ～ is an independent

and identically distributed sequence of random variables defined on (L,m).
This

implies the assertion of the lemma.

D

Let 4, be a (q-n : n >_ 0) u (0)-valuedfunction defined on the set ofmonic

polynomials, that is, of the form

X'+a'-lX'-1+...+alX+a.,aiEFq, 05i5l-1.

Here *(Q) depends on Q itself, and we put

EQ=[fEL:
I-f
Q
<
4,(Q)
IQl

, degP<degQ,

･p,Q,=11
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for a monic polynomial Q. The following theorem is a formal power series version

of[10].

Theorem 2.3.1 (Gallaghertype theorem)

For any *, either m(nnu=l
UdegQ2n EQ) = 0 or 1 holds.

Proof. If

1im sup
*(Q)

degQ+～ qdegQ

----- ～

vtr >0,

then we can find a sequence ofmonic polynomials Q1, Q2, Q3,... and a positive

integerl such that # > q-I for any k >_ 1. In this case, for any I E Land a

sufBciently large k, we can and P(deep < degQk) Such that

I-a ･f(<
4,(Qk)

qdeg
Qk )

and P and Qk are COPrime. Otherwise, Qk has more than qdegQk-I factors, which

is impossible. This implies

m(,elk%EQk)
= 1.

Now we show the assertion of the theorem when

*(Q)

degQ+n qdegQ

-----

vMr
lim sup

= 0.

This means we can apply Lemma 2.3.1 for the proof. We put

E =

neldegUQ2nEQ.
Let R be an irreducible polynomial and consider

i-S
<
*(Q)tRIn-I

IQI
(P,Q)=l (2.6)

forn21. Weput

Eo(n:R)= (
I E L : (2.6)hasinfinitely many solutions of

P,QwithR JQ )
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E1(n:R)= (

and

Then we see

and

I E L : (2.6)hasinfinitely many solutions of
P, Q such thatR

Ei(1:R)cEi(2..R)cEi(3:R)c...

Ei(1:R)cE

for i =0, 1. From Lemma 2.3.1, we find that

m(Ei(n:R))
=

m(Ei(1..R))

m(nMi(n..R))
=

m(Ei(1..R)).

T1(I)
=

R.I-[R.f]

forn> 1. Thus

Let

forfEL. Then

･1(nMo(n
:

R))
From Lemma 2.3.2, we have

= u Eo(n:R)).
n>2

m(nMo(n:R))
= Oor1.

Next we let

･2(I)=R.I.i-[R.I.L]
for I E L. Suppose (2.6)holds, we have

(R.I.i)-
and see that

R.P+i
Q

<
4,(Q)IRln

lQl

･2(nMl(n
:

R))

Q )

(R.P.S,Q)=1,

=

uE1(n:R).
n>2
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Thus we have, again by Lemma 2.3.2,

m(nM1(n:R))
= Oor1.

Thus, if either m(Eo(1
: R)) > Oorm(E1(1 : R)) > 0 for some irreducible

polynomial R, then we have m(E)
1. Assume that

m(Eo(1
: R))

=

m(E1(1
:

R))
= 0 for any irreducible polynomial R. We put F(R) is the set off E

L such

that

I-S
<
4,(Q)

IQI
' (P,Q)=1,

has infinitely many solutions where R2 iQ. If I E F(R), then

(I.Z)-
p+%
Q

<
*(Q)

IQI
' (p.QRU,Q)= 1

for any polynomial U with 0 i deg U < deg R. This means that I E F( R)

impliesf+fEF(R).IfweputS(U;R)
= (fen : [Rf] =U),then

U

U:05degU<_degR s(u;R)U(fELIdegf< -degR)
= L

and each measure is equal to
Fk.
since F(R) is (.+ i)-invariant,

m(F(R)nS(U;R))
=

m(F(R)
n S(U; R))

m(F(R))
qdegR

This implies

m(S(U.,R))

By the density theorem, we have m(E)

=

m(F(R)).

m(F(R))

for some irreducible polynomial R, otherwise, m(E)

1
wheneverm(F(R))

> 0

0, since E

Eo(1,R) u E1(1,R). This concludes the assertion of the theorem.

Theorem 2.3.2 (DufBn-Schaeffertype theorem)

Let * be a (q-n : n 2 0) U (0)-valuedfunction which satisBes

fEMQ)=m
n=1 degQ=n

Q .
TTIOTIIC

F(R) u

D
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Suppose there are inBnitelymany positive integers n such thai

E 4,(Q)<C
degQ5n
Q :moTIIC

holds for a constant C. Then

I-f Q
<

E *(Q)
deg Q<_rI

Q:monIC

4,(Q)

IQl
'

@(Q)

tQI

(P,Q)=1,

has inPnitelymany solutions 5 for m-a.e. I E L.

(2.7)

Proof. In the sequel, we always assume that Q,Q1,Q' and OIL are mOnic. By

the definition of EQ, We See

m(EQ) =*(Q)
@(Q)

IQt
(2.8)

Now consider the measure of the intersection of Eel and EQ (degQ1 5 degQ).

We put N(QhQ) is the number of pairs of polynomials P and P1. For these

polynomials, the conditions

f-6 PI

Q
< +
4,(Q). *(Q1)

IQl
I

IQII'

(P,Q)=(P1,Q1)=1, degP<degQ, degP1<degQ1,

hold for given Q and Q1. Then we can show the measure as follows

m(EQl nEQ) 5
< min (
4,(Q1) *(Q)

loll
'

IQl

PQ1-PIQ=R

)N(Q1, Q).

(2.9)

(2.10)

If the equality

holds for some polynomial R, then D

Doll,Q = DQ',R= DR', we have

(Q1,Q) divides R. Setting Q1

PQ'l - PIQ' = R', (gil,Q')= 1. (2.ll)
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If P' and Pl' also satisfy (2.10),

P'Q'1 -

P;Q'
= R'.

From (2.l1)and (2.12),

P= P'+KQ' K : a polynomia1.

1P-P'I=lKIIQ'I < IQI=1DIIQ1,

From (2.13),we see

(2.12)

(2.13)

which implies IKI < 1DI must hold. The number of possible polynomials P

satisfying (2.10)for a given R is no greater than qdegD. (2.9)implies

OiIRI < IQII*(Q)+lQI*(Q1)

and we must only take polynomials R divisible by D, we find that

N(Q1,Q) 5
IQIMQ) + IQt*(Q1)

lDI

IQll4,(Q)+ IQI*(Q1).

m(EQl
n EQ) 5 24,(Q1)*(Q).

LDI

Then

Since EdegQ5n 4,(Q)diverges,

I *(Q)5
deg Q5n (IdegQ5n

holds for sufBciently large n. Therefore we have

E m(EQlnEQ) 5
deg Q1,deg Q_<n

･Q,l2
2 I *(Q')4,(Q)+E *(Q)
degQi,fe8?

i ～ degQ5n

･ 3 (deE5n"Q,l2
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for all sunciently large degQ. From (2.7)and (2.8),we have

I m(EQlnEQ)<3C2
degQ1,degQ5n (Ideg Q<_rt m(EQ,l2

for infinitelymany Q. Then weget m (E) > (3C2)-iby Lemma 5
of[27](p17-18).

Finally, applying Theorem 2.3.1, we have the assertion of the theorem.

D

By putting 4,(Q)depends on Q itself, we generalize the theorem and get the

similar results as in the case of real numbers.

Example Put

4,(Q) = (i
Then we have

n

E I
n=1 Q..degQ=n

and it is easy to see that

if Q is irreducible

otherwise

･Q,,ff.;
i.i.qk=u

i

qk

I *(Q)SC I *(Q)
degQ5n degQSrI

@(Q)

lQl

holds. Thus we see there are infinitely many solutions S of

I-f Q

1
<

IQI2,
Q is irreducible

fora.e. fen.



Chapter 3

Multi-dimensional diophantine

approximation

In Chapter 2, we see the diophantine approximation for the one-dimensional

version. In this chapter, we extend to the multi-dimensional version.

3.1 DufBn-Schaeffer type theorem

For given hi E Fq[X] such that

hi =

ailiXli +ail.-1Xli-i +... + ailX + aiO'

ai,.EFq, 1<_i5r, 0<_j<_li,ail.iO,

we define the cylinder set (h1,... , h,)as follows:

(h1,...,h,):=((f1,...,I,)ELF : [X''+1.f1]=h1,...,[X'r''.I,]=h,).

Then we see the following,

mr((h1,... ,h,))=

1 1

gil+i qlr+1'

Lemma 3.1.1 Let ((hlk,h2k,...,h,k) : k >_ 1) be a sequence ofcylindersets

dePned as above with

lim deghik = ～

A)～

31
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and (Eklk >_ 1) be a sequence of measurable sets ofLr for which Ek C (hlk,

..., h,k). Suppose there exists6 > 0 such thatmr(Ek) 2 6mr((hlk,...,h,i.))

foranyk2 1. Then

mr (,elks_,Ek)
= mr (,akyhlk,...,hrh)).

Proof. Let

H :=

,elkG=,(hlk,...,hrh),
E,' =

kg,Ek,
H,' := HW''.

We show that mr(Hl')
= 0 for any i 2 1, which implies the assertion of this

lemma. Suppose there exists a ko e Z+ such that mr(Hk')
> 0 for k 2 ko. There

is a natural correspondence between cylinder sets defined for L as in (1.6)and

q-adic rational intervals, and so (L,m) is isomorphic to [0,1]with the Lebesgue

measure. Similarly, (Lr,mr) is isomorphic to [0,1]rwith the Lebesgue measure.

Sobyusingcylindersets (h1,...,h,)c Lr insteadofIIX...XIs c [0,1]r,wecan

apply Lebesgue density theorem. Then we get, since (Hl'Ii 2 1) is an increasing

sequence of sets,

mr(Hk'n(hlk,...,h,A)) i .
6

> 1--
2

mr((hlk,...,h,A))
for some k. On the other hand,

Hk' nEk' = 0.

From the assumption of this lemma,

mr((hlk,...,h,A))

2
mr(Ek)+mr(Hk'n(hlk,...,h,k))

>_ 6mr((hlk,...,h,A))+ mr(Hk'n(hlk,...,h,A)).

(1-6)mr((hlk,...,h,A))2mr(Hk'n(hlk,...,h,A)),

That is

(3.1)
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0

which contradicts (3.1).

Lemma 3.1.2 Forany polynomialhi E Fq[X](hii 0) andgi E L, 1 <_ i i r,

the map T ofLr onto itselfdeBned by

T(f1,...,I,)
= (hlf1+g1-[hlf1+g1],..., h,I,+g,-[h,i,+g,])

for(f1,...,I,)ELr is ergodic.

Proof. It is easy to see that each map

Ti(fi)
= hifi +gi-[hifi +gil, 1<i<r

is a Bernoulli transformation of L. In other words, if we put

Wk(fi) = [hi.Tik-'fi+ gi],
for fi EL,

then (Wk Ik 2 1) gives a sequence of independent and identically distributed

random variables. In particular, Ti is weak mixing. Since the rfold product

of weak mixing transformations is ergodic (see[18]Prop. 4.2.),this yields the

assertion of the lemma.

I

Theorem 3.1.1 (Gallaghertype theorem)

For any *,

f1-a
Q ･#,...,

I
Pr

Q
<
4,(Q)
IQI

(P1,Q) = (P2,Q) =... = (P,,Q) = 1,

has inPnitelymany solutions of (Q,P1,...,P,)for mr-a.e. (f1,...,I,)E Lror

has
onlyBnitely many solutionsfor

mr-a.e. (f1,...
,I,)
E Lr.

Proof. Here, we put

EQ= I(f1,...,I,)ELr :
fi -

%I< 5(Q?), forsomePi
deg Pi < deg Q,(Pi,Q)

S

1,1< ;tJ
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CX)

E =

neldegUQ2nEQ.

4,(Q)

deg-a-=uqdegQ
lim >0,

and

If

then we can find a sequence ofpolynomials Q1, Q2, Q3,... and a positive integer

lsuchthat # , q-I
foranyk 2 1. Inthiscase, foranyfi E Landa

sufBciently large k, we can find Pi (degPi < degQk) Such that

fi- jl
Qk ･f(<

4,(Qk)
qdeg
Qk ) 15iSr,

and Pi and Qk have no non-trivial common factor. Indeed, the number of poly-

nomials i such that
A

fi-IQk
1

<i

is qdegQh-I. If all such polynomials i are not relatively prime to Qk, then Qk

has more than qdegQk-I factors, which is impossible if degQk is sunciently large.

This implies

E=Lr.

Now we show the assertion of the theorem when

4,(Q)

deg-a-=nqdeg
Q

lim = 0. (3.2)

For fixed Q, P1,...,P,_1 and P,, there exist polynomials h1,...,h, such that

((f1,...,fr)Ifi-A Q i 5'Qn
= (h1,...,hr).Then (3.2)implies deghi ) ～

1 5 i
_<
r as degQ tends to m Thus we can apply Lemma 3.1.1 when (3.2)

holds. Then we evaluate the measure ofnT=1 UdegQ2n EQ. Let R be an irreducible

polynomial and consider

I
P,

i

Q
<
*(Q)IRIn-i

IQI
(Pi,Q)=1 (3.3)
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forn>1and1<i<r.

We put

Eo(n:R)=

E1(n:R)=

and

Then we see

and

(

(

(f1,...,I,)ELr:

(f1,...,I,)ELr:

(3.3)has infinitely many solutions

Pi,QwithR/Q for1<i<r

(3.3)has infinitely many solutions

Pi,QwithRllQ for1<i<r

E).(1:R)cEj(2:R)cE,.(3:R)c...

E,.(1..R)cE

forj =0, 1. From Lemma 3.1.1, we find that

mr(Ej(n..R))
=

mr(Ej(1..R))
=

mr(nM,.(n..R)).
Let

T,.(f1,...,I,)

I(R.f1-[R.f1],...,R.i,-[R.i,])(R.f'+i-[R.f'+B],...,R.i,+i-[R.i,+B])

for (f1,...,I,)E Lr. Suppose (3.3),we have

R.fi-
R.Pi

Q
<
*(Q)iRln

IQ1

(R.Pi,Q)=1.

(R.fi.i)-R.Pi+iQ <
4,(Q)IRln
1QI

and see

Also, we have

)

)

j=0,

j=1
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Here,

(R.Pi.g,Q)=1.
These imply

･j(nMj(n:R))
=

nyj(n

: R))

for j = 0,1. Hence from Lemma 3.1.2, we have

mr(nM,.(n:R))
= Oof 1.

forj = 0,1. Thus, ifeithermr(Eo(1 : R)) or mr(E1(1
: R)) > 0 for some

irreducible polynomial R, then we have mr(E)
= 1.

Now we assume that mr(Eo(i..R))
=

mr(E1(i
: R))

= 0 for any irreducible

polynomial R. We put

F(R) = ((f1,...,i,)ELr
where (3A) refers to:

fi-B Q

Suppose (3.4),we have

<
*(Q)

lQI
'

(fi.Z)
-

(3A)has infinitely many solutions
Pi, Qsuchthat R2 I Q

(Pi,Q)=1, 1<i<r.

pi+%
Q

<
*(Q)

IQI
'

(3A)

),

for any polynomial U
with 0 5 deg U < deg R. Here, we see

(pi.%,Q)
= 1,

whichimpliesthat (f'+i,...,I,+i)EF(R) if(f',..., I,)E F(R). Alsowe

put

S(U;R) = ((f1,...,I,)ELr : [Rf1]=U,...,[Rf,]
=

U),

then its measure is

U
U:05degU<degR

1

qrdegR
and

s(u;R)U((f',...,I,)ELF: degfi < -degR)
= Lr.
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SinceF(R) is (.+ ;)-invariant,S(U;R), 0 5 degU < degR, and ((f',...,I,)E

Lr : degfi <
-degR)

have the same measure. Hence we have

mr(F(R)nS(U;R))
=

mr(F(R)
n S(U;R))

mr(S(U.,R))

mr(F(R))
qrdegR

=

mr(F(R)).

which implies

Suppose
mr(E)

> 0, since E F(R) u Eo(1,R) u E1(1,R), we see that

mr(F(R))
> 0 for any irreducible R. By the density theorem, we have

mr(E)
=

mr(F(R))
1 where R is chosen so that degR is sufBciently large. Otherwise,

mr(E)
= 0.

D

From now, we generalize the theorem. That is, we prove the DufBn-Schaeffer

theorem for the multi-dimensional version.

Theorem 3.1.2 (DufBn-Schaeffertype theorem)

Let * be a (q-n ln 2 0) U (0)-valuedfunction which satisPes

i I *r(Q)=m
n=1 degQ=n

Q :TrIOnIC

Suppose for a positive constant C, there are inBnitelymany positive integers n

suchthat

E *r(Q)<C E 4,r(Q)
deg Q<_,I

Q

I

I
.

TnOnIC

i-a Q

degQ5n
Q :TTIOTIIC

<#,..., I
P,.

Q

@r(Q)

IQlr

<W IQt

(3.5)

holds. Then

(P1,Q) = (P2,Q) =... = (P,,Q) = 1.

has inBnitelymany so'utions (%,...,%)formr-a.e. (f1,...,fr)E Lr.
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Proof. In the sequel, we always assume that Q,Q1
,Q'
and Qi are monic. From

(3.2),if # is sufhciently small, then we have

mr(EQ)
=

4,r(Q)
@r(Q)

IQIr
(3.6)

Now consider the measure of EQ n EQ, With degQ' 5 degQ.We let N(Q,Q') be

the number of pairs of polynomials P and P' which satisfy

PI
f-&
Q

< +
*(Q) , *(Q')

Iet
I

IQ'I

(P,Q)=(P',Q')=1, degP<degQ, degP'<degQ'

for given Q and Q'. Then we show that the measure is bounded as follows,

mr(EQ
n EQ,) 5; (min(

4,(Q) *(Q')

IQI
'

loll).N(Q,Q,))r

(3.7)

PQ' -PIG
= R (3.8)

Suppose

holds for some polynomial R and D
= (Q,Q').If D divides R, we may write

Q=DQ', Q'=DQ'', R=DR',

PQ''-P'Q' =H, (Q',Q'')= 1.

and have

If P' and P'' also satisfy (3.8),then

rQ''-P''Q' =H.

From (3.9),(3.10),we get

P=r+KQ', K : apolynomia1.

IP-rl=lKIIQ'I<IQl=IDIIQ'I,

From (3.ll),we see

(3.9)

(3.10)

(3-ll)
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IKI<lDl

which implies that

must hold. Thus the possible number of polynomials P satisfying (3.8)for a

given R is no more than qdegD. since (3.7)implies

Oi IRI< IQ'I*(Q)+IQl*(Q')

and R is divisible by D, we find that

N(Q,Q') 5

Then

IQ'I*(Q)+ 1Ql*(Q')

IDI
LDI IQ'i4,(Q)+ lQI*(Q').

mr(EQnEQ,) 5 [min(
*(Q) *(Q')

tQI
'

Ioll).(IQ,I"Q).IQIM))]r
=

2r4,r(Q)4,r(Q')-

Because we assume =degQ<_n*,(Q) = cxh =degQ<_n*r(Q) i (=degQ<_n*r(Q))2
holds for sufRciently large n. Therefore we have

E mr(EQnEQ,)_<2r I *r(Q)*r(Q')+ E 4,r(Q)
deg Q,deg QISn deg Q'QSideQg,Q 5

～ deg Q<-n

i 2r (deE5n.r(Q,l2
for sufBciently large degQ. From (3.5)and (3.6),we have

(deE5nmr(EQ)l2(3.12)E mr(EQnEQ,)<2rC2(I
degQ,deg QI5n

for infinitely many n. Then
mr(E)

> (2rC2)-l by (3.12)and Lemma 5 of

[27](p17-18).Finally using Theorem 3.1.1, we complete the proof of this the-

Orem.
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D

*(Q)
= I

1

w
ifQ is irreducible,

0 otherwise.

Example Put

Then, from Theorem 2.2 of [25],we have

i *r(Q),CfdegQ5n k=1

and it is easy to see that

(i)r.i.qk=cqc:constant

E *r(Q)5C E *r(Q)
degQ5n degQ_<n

@r(Q)

lQI'

holds. Thus we see that there are infinitely many solutions

irreducible Q's of

fi-BQ

fora.e. (f1,...,I,)ELr.

<
1

IQIT'
for 1<i<r

(%,...,%)with

Remark It is natural to ask whether we can get a necessary and sufRcient con-

dition instead of (3.5)in Theorem 3.1.2. In this sense, we give the r-dimensional

DufBn-Schaeffer type conjecture in the
following.

Conjecture : (3A) hasinfinitelymanysolutions (%,...%) formr-a.e. (f1,...,I,)
E

Lr if and only if
Cn

I *r(Q)
degQ=1

Q : mOnlC

@r(Q)

IQIr

diverges.

In the classical case, the r-dimensional DufBn-Schaeffer conjecture was proved

A.D.Pollington and a.C.Vaughan [24]for r
_>
2. We may also prove this conjec-

ture for the r-dimensional formal power series, r 2 2, if we estimate the lower

bound of @(Q).



Chapter 4

On the exponential convergence

of the Jacobi-Perron algorithm

In this chapter, we discuss about the (ii)in page 1. In particular, we study the

convergent rate of Jacobi-Perron algorithm which gives a simultaneous approxi-

mation sequence.

4.1 Definitions and basic properties

Fast, we define a map T which is arisen from the Jacobi-Perron algorithm (IPA).

For(f1,... , I,)ELr,wedefine

[%]

[f]

1<i<r-1

i = r.

ai=ai(f1,...,I,)
=

By the definition, it is easy to see that

ai E Fq[X] for1<i<r

dega,>degai for 1<i<r-1.

41

(4.1)

and
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Nowwedefinethemap T: Lr)Lr by

･(f1,...,fr)= (i-[f],...,i-[f],i-[f])
for(f1,...

,I,)ELrwithfliOand

T(0,f2,...,I,)=(0,0,...,0).

For we are going to discuss metrical theory of the JPA, we always assume that

f1(V)iOforu20,thatis,r(f1,...,I,) EL,. Weput

(f1(V),...,I,(v))=r(f1,...,I,) for u>1

a5v)=ai(f1(y-1),...,I,(u-1))
for 1<i<r.

and

We define a (r+1) x (r+1) matrix J = (mili2)aSSOCiatedwith (f1,...,I,)E L'

by the following way;

(i)1<_i15r+1, 1<_i25r

nil i2

nil i2

I:

= I:i1_1

J=J(f1,...,I,)=

(ii)i2=r+1

that is,

We put

i1=i2+1,

otherwise,

i1=1,

2_<i1_<r+1,

0

1

0

J(0) = I,+1

0
1

a1

ar_1

1 a,
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J(u)=J(f1(V-1),...
,I,(v-1))

foru21,

and

where I,+1 denotes the (r+1) x (r+1) unit matrix. Since we consider the columns

of the matrix J(1)... J(u), we denote

J(1)...J(v) =

J(0) =

Aiu-1-r)
I

Aiu-1-r)

Atu-i-r)

Aiu-r)

Aiu-r)

Atu-r)

I + I

+
I I

Ai-r)
I

+

Ai-r)

At-')

Aiv-1)
I

Aiv-1)

Atv-1)

and

Evidently,

J(1)...J(v)

Aiv-r)
I

I

+

Aiu-r)

Atu-r)

Aiv)
+

･..

Aiu)
I..

Atv)

･..

Ai-1)

･..

Ai-1)
･..

At-1)

0

1

0

Aio)
I

I

Aio)

AtO)

0
1

aiv)

aiu_)1
1
aiv)

Aiv-1,Aiv-1-r,.tat,Aiu-1-r.k,
k=1

Aiu-1, Aiu-1-r,.tat,Aiu-1-r.A)
k=1

Atu-1,Atu-1-r,.tat,Atv-1-r.A,
k=1

(4.2)

since det(J(1)...J(v))= (-1)ru,Atu),...,Aiu_)1and Aiu)are c.prime denoting

by (Ao,A1,...,A,) 1. By a simple calculation, for (f1(V-1),...,I,(v-1))E Lr ,
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degA5u)=degafu)+degA1(U-1)for O<i<r.

we see that

Now we put

J(1)...J(v)

and have

I

f1(V)

I

I

I,(u)
1

Aiu-r)f1(V)+... + Aiv-1)I,(v)+ Aiv)
I

Aiv-r)f1(U)+... + Aiu-1)I,(u)+ Aiv)

A8v-r)f1(V)+... + ALv-1)I,(v)+ Atv),

AI(V-r)f1(V)+... + At(u-1)I,(u)+ A.(u)

Aty-r)f1(V)+... + Aty-1)I,(u)+ Atu)
'

for any (f1,...,I,)E Lr. Here we call
A(v)I

Atv)

1<i<r (4.3)

the i,-th convergence of the JPA and

J(1),...
,
J(v) the expansions by this algorithm. We see the following in [20]

(i)ForanyL,2 1,

ulimu:I;uu;
= fi for 15i_<r,

ontheotherhand, ifr-1(f1,...,I,)gO andy(f1,...,I,) =-0,then

AAg;=fi
for 1<i<r.

(ii)For agivensequence of arrays (at(v): 1 5 i 5r,u 2 1);

a1(U)EFq[X],
for 1<i<r

degaiu)>dega1(V) for 1_<i<r-1,

there exists (f1,...,I,)E Lr such that ai =

ai(f1(V-1),...,I,(v-1))
for 1 5 i 5

randL/>1.
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4.2 The rate of convergence

At first, we show the following an a priori estimate.

Theorem 4.2.1 For any i, 2 1, there exists a positive constant C such that

IAtv)I A5u)fi--

Atu)<e,
15i5,,

q
r

for(f1,...,I,)ELr wherer(f1,...,I,) ELrforu2
1.

Proof. From (4.3),we see

IAtv)I
A.(u)

fi--

ALv)
IAtv)I

IAtv)I

<

<

r

I
k=1

r

I
k=1

At(y-r)f1(V)+... + At(v-1)I,(u)+ At(u)

Atv-r)f1(V)+... + Atv-1)I,(u)+ Atv)

At(v)

Abv)

i(A5v-r-1.A,Abu,-

A."Aty-r-1.k))f{,
k=1

(Atv-r)f1(U)+... + Aty-1)I,(v)+ Atv))Atu)

Atv-r-1+A)

Atu-r-1'k)

max

u-T.<l<u-1
lAt')I

Now, we prove the following lemma.

(
At(v-r-''k)

A8v-r-
1+A)

A

A

(I)
1

Uf-
o

Ail+1)

AU'')

AAt;yv;i
A1(l'1)

AU'1)i

Lemma 4.2.1 For any u >_ 1, there exists a positive consiani C such thai

lAtv)I
A5u+1) A1(V)

Atu'1) Atu)<f
1<i<,.

q r

(4A)
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Proof. From (4.2),we see

rAtv)I

<

<

A5v'1) At(u)

Atu+1) Atu)

lAtv)I

IAtv)I

A1(V-r,. i aY.1,At(u-r.A,
k=1

Atu-,,.i aY.1,Atu-r.A)
k=1

IAtv'1)I
1

biv+1)I

1

Iaiu+1)I

Abu-r)

max I
(
At(u-r)

Atv-r)

IAtv-r)I
-$lAt(u-r)
Atu-r)

...

, Iaiu_+1l)IIAtv-1)I

max I.<T<a,x_1IAty-r)I

max

1<l<r-1

0<l,<r-I-1

A1(V)

Atv)

r-1

+ E aY+1)Atu-r+k)
k=1

At(v)

Atu)

(
, laiu'1)IIAtv-r'1)t

A5v-1) At(v)

Atv-1) Atu)I
At(v-r'k) At(v-r'k+1)

Atv-r+k)Atv-r'k'1)

Ia,(v'1)IlAbu-r'')I

From (4.1),it is easy to see that

lALo)l

IAtu)I

and

A1(V-r'k)

Atv-''h)-$lA1(U-r'') At(v)

Atv-r'1)Atv)

A1(U-r''''') A!.v-r''''''')

Atu-r''''')Atu-r+I+''+1)

At(1) At(0)

Ail) AtO)

A1(V'') A1(V)

Atv'')Atu)
<
1

-q2

<1

q

for 1<L/<r.

Then by induction together with (4.1)and (4.5),we have

IAbu)I
A1(U+I) At(v)

Atu+i) Atv)

1
<
-

qu+1

for (u-1)r+lil/_<ur

for u E N. This shows the assertion of the lemma.

(4.5)

D
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From (4.4)and this lemma, it is easy to see that

IAtv)I
At(v)

fi--

Atv)
<

C

qV

.

r

D

Next, we shall give an estimate of the error of the convergence by using IAtv)I
fora.e. (f1,...,I,)ELF.

Theorem 4.2.2 For any l/ 2 1, there exists a positive constant C' = C'(E)Such

that

IAbv)I IAI(V)
Atv)

formr-a.e. (f1,...,I,)ELr, where

qr2
7

<

qr2-1)

q

CI

IAtu)If(i-E)

P

q-1

proof. From (4.4)it is enough
to estimate IAtu)I

weget

IAtv)I

<

At(v'1)

Abv+1)

max

u-r<l<u-1

A1(U)

Atu)
1

tail+1)II
max

1<k2<r-1

max

O5k15r-1

05k;5r-k2-1

lA8'-r)1 A5'-r'k')
Ail-r'k')

IaT1)IIAU-r+k2)I

VE>0

A1(U+i)

Atv+1)

A(v)
1

Abv)

A5'-r'k1+1)
AU-r'k1+1)

Then by (4.5),

A1(I-r'k2'k;) A1(I-r'k2+A;+1)

At'-r'k2'k;)Ail-r'k2+A;+1)
Nowwesupposeur+1 5L,5 (u+1)r forsome UEN. Then wehave

IAtv)I

<

At(u'1) A1(U)

Atu'') Abv)

max

(t}-1)r+15v'
_<tw

1 <i<r-1

max

1<i<r-1
(Ia1(V')I,1)

Iar)I
max

(tl-1)r+15v'_<ur lAtu')i
At(u') At(u'+1)

Atu') A8v'+1)
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So we can get an estimate of the errorterm
forthe index u E (ur+1, (u+ 1)r]

bythosein ((u-1)r.1,ur] and A, 1 5i 5r-1. Thenweconsiderthe

stochastic behavior of
a(v)I

air)

maximum degree.f a
iaiv)l

,15i5

,15i

r - 1. We first see the distribution of the

<_r-1, fora fixed u. Wedefine

deg'

a5u)
=

max(dega5u)
, 1)

fora5v)eFq[X],15i5r-1. Weput

k,. = degat'')
-

For a fixed i, ifk,. i degatj)= n,

max
1<i<r-1

mr(((f1,...,I,)
ELr : degaij)-

rf(r;1)(i)r-1-I(
r(q k}.
1

1)
r-1

(q-1)(qr-1 -1)
qn+(r-1)k]

and if k,.
=

degaij),

deg'

a5j).

max

1<i<r-1

q

(i)r-1l

qk,.

1

)
q-1

q
n

i

mr(((f1,...,I,)
ELr : k]
=degai3')))

Then, from (4.6)and (4.7),

deg'
at(3')

= k,.,degai3')
=

n))

l

mr(((f1,...,I,)
ELr : degaij)-

q-1

q(k3-1)r+1

q 1

q(k]-1)r+1

qr-1

qr
k3

+in=k]+1
+

(4.6)

q-1

q
n

(
1

qk3'-i

q 1

)
r-1

q(kj-1)r+1

I

max
1<i<r-1

(q-1)(qr-1
-1)

deg'

a5j)

qn+(r-1)k3.

(q-1)(qr-1-1) q

q(r-1)k, qk,+1(q
-

1)

(4.7)

q-1

qk3-

k,.))
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Next, we see the distribution for any u. We put k
=

mr(((f1,...,I,)ELr.

r

I
t=1

r

E
t=1

qr2

(;)rs=f.1
qr

mln

v-r+15j5v-1

mln

u-r+153'5u-1

qrs

(;)[H-i[
-1

1

lr-i[
qr-1

qrk ]t

qr

kj=k))

qrk

1

]
i

k,.
,

qr2k

I

Let Xv =

degaiv)
-

max1<i<,_1deg'at(v) and
Ys =

min1<s<,X,.s.v. Then the

expectation of Ys is as follows.

E(Ys)

CX3

I
k=1

(qr2- 1)k
qr2k

qr2

qr2-1

Because
aiu)

ai
U

.. i/>1

quence, see [21],we have

1
lim -

r+cx) r

is an independent and identically distributed se-

E
t=1

y:
qr2

qr2-1

a.e.

by the strong law of large numbers.
Then, for E1 > 0, there exists a positive

constant C and i/1 Such that for i/ 2 u1

IAtv)I fi
-

:1;Uu')
<
C

q[f](7-E)

a.e.

On the other hand, by the strong law oflarge numbers, we have

1
1im -

u+cn U I
t=1

deg
ail)

q

q-1

a.e.

(4.8)

(see[21]).That is, for a.e. (f1,...,I,)E Lr, forE2 > 0, there exists I,2 Such that

forL/2L/2

degAtv) q
q-1

<E2,
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q

q 1 u-E2U<degALu)
<
q

q-1

i/

q(p-E2)V < IAtv)I< q(p'e2)V,

IAbv)
1

(p+E2 v<q.

+E2 U.

(4.9)

and so

We have

then

From (4.9),(4.8)is as follows:

IAtv)I
AltV)

fi--

ALv)
<

C

IAtv)
1

v(p+E2)
[f](T-E')

a.e.

That is, for any E > 0, there exists a positive constant C' and i/o Such that for

I/2uo

lAtv)1
A1(V)

fi--

Atv)
<

C

IAtv)If(i-E)
a.e.

This is the assertion of the theorem.

D

Remark For any E > 0, it is easy to see from the Borel-Cantelli lemma, there

exists a positive constant C such that

IQl fi-BQ
<

C

IQIf'E'
15i<_r,

has at most finitely many (%,...,%)
for a.e. (fl,...,I,)E Lr. In Theorem

4.2.2, it is evident that i < 1. Now the question is whether there exists a

positive constant C' such that

lQ(v)ifi
-

Si:<
CI

IQ(u)If-E'
15i5r,

has infinitely many solutions a.e. for any E > 0 or not.



Chapter 5

On the exponential convergence

of the modified Jacobi-Perron

algorithm

In this chapter, we consider some problems similar to Chapter 4, we study the

convergent rate of the modified Jacobi-Perron algorithm.

5.1 Definitions and basic properties

In this section, we define a map S which is arisen from the modified Jacobi-

Perron algorithm (MJPA).

Now,for15j5r,weput

L3T = (
then

(f1,...,I,): degf3.>degfi for15i<j,

degf3.2degfi forj<i5r

Lr=L;u...uL;.

)

Note that (0,...
,0)
E L;. We denote by mr the normalized Haar measure on Lr.

51
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[f]

[f]

15i5r,

i=r+1.

For(f1,... , I,)EL,I,wedefine

bi=bi(f1,...,I,) =

if(f1,...,I,)i(0,...,0)and

bi=0, 1<i<r

if(f1,...,I,)
= (0,...,0).Fromtheabove, wesee

b
1

-

0 15i5j-1

biEFq j5i5r

biEFq[X],degbi21 i=r+1.

Nowwedefinethemap S: Lr )L' by

S(f1,...,I,)

(
fl fj-1 1

f'''''f]'f- [f],I,i1
- [f,i'],...,i-[f])

(i,...,I,;;,i-br.1,f3;;1-b3..1,...,i-br)
for(f1,...,I,)EL,T,(f',...,I,)i(0,0,...,0)and

S(0,...,0)=(0,...,0).

(f1(V),...
,i,(v))

= Sv(f1,...
,I,)

for i/>1

b1(U)
=bi(f1(U-1),...,I,(v-1))

for 1<i<r+1,

We put

and

that is,

(5.1)
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Sv(f1,...,I,)

s(f1(U-1),...
,I,(v-1))

(

(

ft= 41
I,(u-1))''') I,(u-1))

zt= I,(:;
1 )

I,(u-1)'''''P'

1

f}(u-1)

1

I,(u-1)

[
1

I,(v-1)],PIP] d1_
?'''1I}(u-1)

-

b!v.'1,# -

bi.v.'1,..., i,,:;;;;
-

biu')
for (f1(V-1),... , I,(v-1))E L,I. Also we put a(U) :=j such

that

degf](u-1)>degfi(U-1) for 15i<j,

degf3(U-1)2degfi(U-i) for j<i5r.

[
(v-1)
r

y-1) ])

We define a (d+1) x (d+1) matrix M = (mili2),mili2 E Fq[X],associated to

(f1,...,I,)eL,T, (f1,...,I,)i (0,...,0)in thefollowingway;

(i)15i25r, i2ij

(ii)i2=j

mili, = 6ili2 15i15r+1,

mill =

(iii)i2=d+1,15i15r+1

that is,

M=M(f1,...,I,)

I:
i1=r+1

15i15r,

mili, = bil,

(5.2)

(5.3)
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1 0

I

+

0 1
0

0

0 ... ... 0 1

'1 0b3.+1

I
I

I

I

I

0 1b,

1 0 b,+1

(5.4)

For (f1,...,I,)= (0,...,0),wedefineMthe (r+1) x (r+1) unitmatrixI,+1.

Weput

M(0) = Ir+1

and

M(y)
=M(f1(U-1),...

, I,(y-1))foru>_1,

where (f1(0),...
,I,(0))

= (f1,...
,I,).
Since we consider the columns of the matrix

M(1)...M(v), we denote

pf
u1)

pf
v,)
Bfu)

M(1)...M(u) =

M(0)

and

p!7i)1

p5
u1)

pi
u1)

I I
+

I I I

p!7i),
B,(.v)

p5u,)

piu,)
Bfu)

B5u)

B

B

B

i-r)... Bf-i)Bfo)

(-r)
r

(-r)
0

B5-1) B5o)

BL-1)Bbo)

By the definiti.n.fBiu,,it is easy t. see that degBiu,
= i degbflllWhich we use
i=1

often. Bbu)will be the denominator of the u-th convergence and Biv),
1 5 i

_<

r,

will be the numerator. Evidently,
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M(1)...M(v)

pfv1-1)
...

I

I

p!7v-)ll)...
I

+

+

p5v1-1)
...

piv1-1)
...

p!v1-
1)

p i7v-)ll)

piv1-
1 )

pLT1)

p!v,-i)Bfu-1)
I

t

+

p!7v-)1,)B!7u-)1)
I

I I

+

p5v,-1)B5u-1)

p5u,-1)B5u-1)

1 0

+

I

0 1
0

0

0 ... ... 0 1

:1
0bt%).1

+
I

I I

I I

o 1 biy)
1 0 biv.)1

p!v.7:))_1Biy-1) pfv.7v1)).1

pt7=)'l(y)_1Bt7v-)1)pL7v-)'l(vw

p!v.7p'))_1Biv-1) pip_7:)).1

pLv_7:))_1BLv-1) pLv.7:)).1

pip/1) pivn7:))+

(5.5)

T

I biv)piv{1)+biy+)1B!P-1)
k=K(A,)+1

pL7v-)'lpt7=)ll(v)
+

pivr1) pip.7:))+

pLv/1) pLvn7v1))+

T

I biv)pL7=)1l+biy.)1Bi7v-)1)
h=A(y)+1

T

I
k=A(V)+1

T

I
h=K(V)+1

bY)piv{')+ biv+)1Biv-1)

biv)pLv{1)+ biv+)1BLv-1)

sincedet(M(1)...M(v)) = j=1, whichfollowsfrom (5.4),weseethat Bbv),...,B5v_)1
and B5u)have no non-trivial common factor. By a simple calculation, for (f1(V-1),...,

fr(u-1))E LrK(U) , We See that

(i)i2iK(I,),r+1

(ii)i2= IC(i,)

pt(1U1)
2 pilUt;

1 )
15i15r, (5.6)

p1(1Ut)2= B3(1U-1) o5i1 5r, (5.7)

(iii)i2=r+1

r

p2(1U1)2= Bt(1U)
=pilUK-('U))+= bY)pllUk-1)+biu.)1B1(1U-1)

o 5 i1 5 r. (5.8)
k=K(i,)+1
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The above (i)and (ii)mean

P

P.

P

(u')
1i

I

(v')
rI

I(u')Oi

is one of

B!:I)
I

I

B5:I)
BiT')

I

I

(v'
r1

(u'
Oi

From (5.5),we find that Bt(v)increases as u increases and

deg B1(1V), deg P.(1Ut(v), deg P.(1V2,

ifi2iK(I,),d+1 forO5;i1 5r. Weput

f1(V)
I

I

I

M(1)...M(v) I

I

I

I,(v)

1

and see the following theorem.

,-r<u'<l/-1.

pfu1)f1(V)+... + pfv,)I,(v)+ Bfv)
I

I

I

I

I

p5v1)f1(V)+... + p5v,)I,(v)+ B5v)
pLu1)f1(V)+... + pbv,)I,(v)+ Biv)

Theorem 5.1.1 For any (f1,...,I,)ELr, we have

fi
p1(;)f1(V)+... + p1(:)I,(u)+ B1(V)

paul)f{)+... + PLu,)I,(u)+ BLv)
for 1<i5r,

wheneverSv'(f1,...,I,)i (0,...0)foranyO5
u' <u.

Proof. From the definition, for (f1,...
,I,)
E L,I,

S(f1,...,I,) (f1(1),..., I,(1))

(i,...,I,;i,i-bi']1,f3;;1-bii'1,...,i-bi1')
1. fi(1)

1. I,(1)+ bi']1
1

15i<j

I
1. I,(1)+ bi']1
1. fi(1)+bt(1)

1. I,(1)+bil]1

i=j

j<i5r.

(5.9)

Then
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1. fi(1)

On the other hand, for (f',...,I,)E L,T,

pt(ll)f1(1)+... + p.(:)I,(1)+ Bt(1)

pill)f1(1)+... + Oil,)I,(1)+ BL1)

1. I,(1)+ bi']1
1

1. I,(1)+ bi1]1
1. I.(1)+b1(1)

1. I,(1)+ bi1]1

1<_i<j

i=j

j<i<_r.

From (5.9)and (5.10),the assertion of the theorem holds for u

(5.10)

1. Nowwe

assume that the assertion of the theorem holds by l/, and we will show that the

assertion holds for u+1. Note that a(U+1)
is chosen by (f1(V),..., fr(u))E L'K(V.1).

a.(v1+1)f1(V+1)+... + p,(v,+1)f5v+I)+ B.(v+1)

pLr1)I1(V'1)+... + pLv,+1)I,(v'1)
+
BLv'1)

A(V+1)-1

I p.(vh'l)
k=1

f{)

fi7L.1)
+ p.(vJu'i1)(

1

fi7Z.1)

-

biv.ll,).h=il,.1P.,vk.1,
(I{)fill) bY.1,)

+ B,(v+1)

a(v+1)-1

I pLv{1)
k=1

a(v+1)-1

I p.(vk)
h=1

f{)

fi7l.1)

f{)

fi7l.1)

+
pLvLli1)

+ B1(V)(
1

(
1

fi7L.1)

fi7l.1)

-

biy.71,).h=il,.1PLph.1,
(

-

biu.T,).h=i1,.1P.(vk)
(f{)fi7L.1)

f{)

fi7l.1)

bY.1,)
bY.1,)
+ B.(v+1)

+ BLy+1)

a(V+1)-1

I pivk)
k=1

f{)

fi7L.1)

From (5.8),

p1(;'')f1(U'1)+

+ BLv)(
1

fi7L.1)

-

biv.71,).k=i1,.1Pivk)
(

+ pt(:+1)I,(u+1)+ B.(u+1)

pbu1'1)f1(U+1)+... + pLu,'l)I,(v'')+ BLu+1)

KVa-1a(V) f{)I p1(Vk) + Biu)
1

t: rlkfiL1)
I ul

firl.1)
+

f{)

fi?i.1)

r

E pivk)
k=K(V+1)+1

f{)

fill)

biu.1,)
+ BLv+1)

+ pt(vK)(U+1)

a(VF-1a(U) f{)E piuk) + BLu)
1

tl rukfi7Z.1)
I
uU

fill)
pt(;)f1(V)+... + plTf,(u)+ Bt(u)

piv1)f1(U)+... + piu,)I,(u)+ Bbu)

r

+ E pLuk)
k=K(V+1)+1

= fi.

f{)

fi7l.1)

Thus the assertion holds for I/ + 1 and the proof is complete.

+ piuK)(U.1)

D
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Now we call S the u-th convergent of the MJPA and M''',...,M(u) the ex-

pansion by this algorithm when Su(f1,...,I,)i (0,...,0)for u 2 0. Moreover

the expansion by the MJPA is said to be finite or infinite ifSv(f1,...,I,)
= 0

for some i, 2 0 or Su(f1,...,I,)i 0 for any i, 2 0, respectively. In the sequel,

we show some lemmas about the expansion.

Lemma 5.1.1 For(f1,... , I,)ELr wilhfi EFq(X), 1 5i5r, the expansion

by the MJPA is Bnite.

Proof. As fi E Fq(X), 1 5 i 5 r" we can write (f1,...,I,) (%,...,%)
where P1,...,P, and Q are in Fq[X] and have no non-trivial common factor.

Then it is clear that

s(f1,...,fr)= (f,...,i) (5.ll)

for some Pl,...,P: E Fq[X] if (f1,...,I,)E L,I. If we put Su(f',...,i,)

(A,...,A),p1'V',...,pr'U'
(5.ll)implies

and Q(u) have no non-trivial common factor, then

degQ(u)<degQ(u-1) for
I/>1.

consequently, for some u. 2 1, P1(Uo) =... = p,(Vo) = o since degPi(V) < degQ(u)

and Q(v) is a polynomial for any i, 2 1.

D

Lemma5.1.2 For(f1,...
,I,)
ELr, iffi gFq(X)forsomei, 1_<i5r" the

expansion by the MJPA is inBnite.

Proof. If the expansion of fi is finite, which means Sv(f1,...,I,)
= (0,.-.,0)

for some u

_>
0, then from Theorem 5.1.1, we see

fi = S2;;;

r

p1(UK(V1))+ I bY)pt(:-1)+ biu.)1B1(u-1)
k=K(U)+1

r

pivKTv'))+ E bY)pivk-1)+ biu.)1Bbu-1)
k=K(U)+1
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But this shows that fiis a rational function, which contradicts with the assertion

fi i Fq(X).

D

Lemma 5.1.3 For any sequence M(1),...,M(u+1),... oftheform (5.5),

lBbv)I
Bt(u'1) B1(V)

BLu'') BLu)
<1

q

holds for any i, 2 1.

proof. Note that
a(U)

=

1<T<i,n.1(i
:

m!u,).1i 0) where m5vr'.1
is the (i,r' 1)

component ofM(v). Then if 1 5; a(1)
<
a(2),

B.(2) BI(1)

BL2) B5')

b52)

bill1 bi2]1
1<i<r.

since degbiv.)12 1 and degbiv.)1> degb1(U),1 5 i 5
r, for u 2 1, we have

IBL1)I

We also
see if
rc(1)

=

rc(2),

B1!2) Bt(1)

BL2) Bb1)

andifK(2) <K(1) 5r,

Bt!2) B1!')

BL2) BL')

Then similarly, we have

B.(2) B1(1)

BL2) BL1)

b1(2)

<1

q

(1+ bi']1bi2.)1)bi']1

bit.)1bt(2)
- b1(1)

(1+ bi1]1bi2.)1)bi']l

b1(2)

bE2()1)+ bi1]1bi2]1
bit.)1bt(2)

-

b51)
-

b51)bt2()1)

(bk2()1)+ bi']1bi2]1)bi']l

IBb1)I
B1(2) Bt(1)

BL2) Bit)
<
1

q

15i5K(1)

fC(1)<i5r

15i<_a(1)

a(1)<i5r.

(5.12)
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Now we suppose the assertion of Lemma 5.1.3 holds by i, - 1. For u 2 2,

Bt!v+i) B.!u)

BLv'') Bbu)
r

p1(VK)(U.1)+ I bY'1)piuk)+biv.+ll)B1(V)
k=K(V+1)+1

a

pivK)(U.1)+ E bY+1)piuk)+biv.I')BLu)
k=K(U+1)+1

Bt(u)

BLv)

r

pivn)(v.1)Bbv)
-

p5uK)(V.1)B1(V)+ E bY'')(p1(Uk)BLv)
-

pLvk)B,(u))
h=K(V+1)+1

piuK'(V.1,.

k=Kf1,.1
bY'1'pLvh'.biv.Ill)BLv')Biv)

a

E bY'1)(p1(Vk)Bbv)
-

piuk)Biv))
k=K(V+1)

biv.T)Bbv)2

1

Ibiv.'1')Bbv)1

k=f.1,PLvk'
(Pps;;kk;BBt;;))l

here we use the facts that degbY+1)pLuk)< degbiv.)1Bbv)for the third equality.
By

(5.6)and (5.7),wecan replacePI!Vk)
by Bt('k)forsomelk, -r 5 lk 5 u-1" but

B1('k)=oforiiOandlk<0,

IB5u)I
B1(U+1) Bt(u)

Bbv+1) BLu)

1

Ibiu.+ll)I

1

Ibiu.i1)I

1

Ibiu.i')I

,k=1 BBt;uu',i
lk=1

max max
1<k<L/-1 k<l<u-1

Then, from the assumption of the induction,

IBLu)I
Bt!v'') Blv)
Bbu'') Bbv)

lBbk)I

1 1
< - < -

-q2-q

Bt(''1)

BA''1)
B1(I
)

Bb')

i
B1(Ill
)

Bb''1)
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D

Theorem 5.1.2 (i)IfSv(f1,...,I,)iOforanyu2 1,

vlimnSg',
= fi for 15i5r,

on the otherhand, ifSv-1(f1,...,i,)iO andSu(f1,...,I,)=0,
then

BBg;=fifor
1<i<r.

(ii)For a given sequence of arrays (bI(V)
: 1 5 i

_<
r+1,u 2 1),.

bfv.)1EFq[X], degbiv.)121,
(5.13)

b!y)=O for 15i<3.(U), b5y)EFq for 3.(U)5i5r

with asequence3'(1),i(2),...,
1 5j(i,)5 r andy >_ 1, there exists (f1,...,I,)E

Lr such that a(U)
= i(i/).

Proof.

(i)We see

fi - :I;;;
plTf1(U)+... +pt(:)I,(u)+B1(V) BIN)

paul)f1(U)+...
+pLu,)I,(u)+BLv) Bbv)

i(pi:,BLu,-

pivk,B1")f{,
k=1

(piv1)f1(V)+... + pLv,)I,(v)+ Bbv))Bbu)

;(St;uukk;I
k=1

(paul)fl(V)+. -. + pbu,)I,(u)+ Bbu))

Foreachk, 1 5 k 5r, thereexistssomelk, -r Elk < I/, SuChthat

pt(uk)= B1('k)
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Then, we have

St;;')l
r

E
k=1

Bilk
)

i IBA,A)I
k=1

<_ max
1<l<v-1

1
< _

q

(S
(BBf::;
IBL')I

S.;;;)
B1('k'1)

BL'k+1)
Bt(
I)

BL')

B.(''')

BL''1)

i+...+ (
BI(U-

Bbu-

1

1)

-$l
sinceBt('h)=oforiilk, -r5;lk <0

since degB5v,
= tdegbik.,12 u f.r any E ' 0, the,e exists u. ,_ 1 such that

h=1

Biu)fi--

B5v)

1
< -

q

1

Bbv)
<E for Vl/2l/o.

This implies

ulimnSg;=fi
1<i<r.

(ii)Now we suppose that such a sequence of arrays (b5v))satisfying (5.13)is

given. Since

B1(V) Bt(u'')

Bbv) Bby'')
5 max

u<k<u+I-1

it is easy to see, from Lemma 5.1.3, that

B1(k)

Bbk)

(S)
r. Then we have the existence of the limit of

B1(k'1)

Bbk+1)

is a Cauchy sequence for 1 <_ i <_

(S)

5.2 The rate of convergence

,
because L is complete.

D

In this section, we shall givea stronger estimate of the convergence than that of

Lemma 5.1.3 under an assumption on (a(I/),I, 2 1).
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Theorem 5.2.1 Suppose (b5u): 1 <_ a(U) 5 i 5 r, u >_ 1) is the expansion of

(f1,...,I,)ELr. If#(i, : a(i,)=i)=cx),

limIB.(v)-fiBLu)I=Oforanyi, 1<i<r.v)cx3

Here the condition #(u : a(i,)
=

i)
=
～ holds for a.e. We prove it later.

Before we prove Theorem 5.2.3, we give a definition and some lemmas which are

necessary for the proof.

Definition 5.2.1 For any (f1(U-1),...,I,(u-1))E LrK(y), We Put

u(u)
:=

1Tki<n,(lk
: P1(Vk)= B1(lh),for any 0 5 i 5 r).

Also weput, for s >_ 2,

fors>_2,15i5rand

withT1
= 0.

ns,i:=(U:
mln

T,-15u
a(I,)

=

i)

Ts.'= maXns,i+1
1<i<r

Lemma 5.2.1 Suppose #(i, : a(I,)=i)
=

cnforanyi, 1 5<i<r.
Then

Ts_1 5 u(u)
<Ts for 7-s <_ i,<7-s+1.

Proof. From the definition of Ts,

0=T1
<u(U)

foru2T2.

Note that
u(l/)
is non-increasing. If i, = 7-3 - 1, then

u(i,)
< T2 also by the

definition of Ts. So

7-1 5 u(I/)
< T2
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holds for T2 5 l/ < T3. In general, the assumption of the lemma implies Ts < CD

for any s 2 2 and wehaveTs 5 u(u)
for i, 2.Ts+1. Also we have u(u)

= Ts if

i/=Ts+1-1.

D

Lemma 5.2.2 For any sequence M(1),...,M(v+1),... oftheform (5.1)we
have

IBLv)I
B1(V+1) Bt(u)

BLu+1) BLv)
Proof. From (5.12),it is clear that

IBLo)I
Bt(1) Bio)

Bb') BLo)

<
1

-qs

Bit)

BL1)

for u>_Ts.

1

q
(5.14)

IBiu)I

Fort/2 1,

BI(V'l) Bt!y)

BLu'') B5v)

1

Ibiu.'1')I
i pLvk,
k=K(U) (A

-

s.;uv;l
we can replace P1(:)tO BI('k)for some lk, -r 5 lk 5 u- 1, but Bt('k)= o for

iilk,-r5i<0,then

IBLu)i
Bt(u+1) Bt(v)

B5u'1) Bbv)

1

Ib!u.T)I

1

Ibiu.T)I

1
<

Ibiv.T)I

By (5.14)and Lemma 5.1.3, for u 2 T2,

IBLv)I Biu'1)
Biu'')

By the induction, for I, 2 Ts, We have

IBiu)I
B1(U'')

Bbu'')

k=K(V, BBg;l
y-1

i Bb,A,E
k=K(U) l=lh

u(uE,a5Xu_1
IBb')1

BIN)
Bbu)

1
< -

-q2'

Biu)
Bbu)

1
< -

-qs

(st;:),
B1(I)

Bi')

B1(''1)

Bi'+1)

Bit+1)

B5''1)

)
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D

D

ProofofTheorem 5.2.3. For some lk(15 k
_< r),

we have

[Bt(v)
-

fiBAv)I IBLv)I

BLv)

5

Bt(u)
fi--

BLu)
1

BLv)E(A

< max max

15k5r lk5t_<v-1

By Lemma 5.2.5, for i 2 Ts,

IBLt)I

Then,

St;;;i

IBLt)I

Bl!t) Bt(t'1)

Bbt) B5t'1)
<

fiv)p5uk)

Bit) B.(t'1)

Bit) BLt'1)

1

qs

vlimJB.(v)

-

fiBiu)I
= 0.

We show that S is Haar measure preserving.

For a fixed I/ >_ 1, we denote by (b(1),...,b(u))the cylinder set induced from

(b(1),...,b(u)),that is, we put

bi1)

bill1

b
(1V)

biv.)1

(b(1),...,b(u))= (f1,...,I,): = b(1)

Theorem 5.2.2 (i)Forany Borel set B c Lr,

mr(S-'B)
=

mr(B),

)
I ' I

)
= b(u)
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that is, mr, the normalized Haar measure on Lr, is an invariant probability mea-

sure for S.

b(1V)

biu.)1
(ii) : i/>1 is an independent and identically distributed sequence

of random variables with respect
to m'.

Proof. (i)Itis enough
to show that

mr(s-1(b(1),...,b(y)))
=

mr((b(1),...,b(v)))

for every cylinder set (b(I),...
,b(v)).

Let

bb1
I

I

b,+1

b 1 -

0

1

bi E D'q

bi EFq[X], degbi 2 1

15i<j

i=j

j<i5r

i=r+1,

(5.15)

with

Then we see that1

s-1(b(1),...,b(u))
=U(b,b(1),...,b(v)),b

where b takes all such vectors with 1 5 i 5 r. If we fix b, then SI(b,b(i),__.,b'v))is

1-1 and onto (b(1),...,b(v)).For any I E L ofdegf
=
-n, we consider

Sf(9)
=

9

7- [f]for 9EL.
The composition m o Sf Of the normalized Haar measure on L and Sf is defined

by

(moSI)(A) =m(SfA)
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for a Borel subset A ofL. Then it is easy to see that

dmoSf

dm
(g)=qn

V(I)
=

dmoV

dm

1

7- [f]

a.e.

(I)=q2n (a.e.).

holds. Also we consider

and have

This means that the Radon-Nikodym derivatives of Sf and V are constants (a.e.)

ifdegf = -n. This shows

dmroS

dmr
(f1,...,I,)=q2n.qn(r-i) (a.e.)

on (b,b(1),...,b(v)).Hence we have

q2nqn(r-1)mr((b,b(1),...,b(v)))
=

mr((b(1),...,b(v)))

when degb,+1
= n >_ 1. Moreover, the number orb with (5.7)is qr-3qn(q

-

1).

Therefore,

mr(s-1(b(1),...,b(v)))
mr (u(b,b(1,,...,b(1l
Emr((b,b(1),...,b(v)))
b

tf(q- 1)qnqr-i
3'=1 n=1

tf
3'=1 n=1

q 1

q(n-1)r+i

mr((b(1),...,b(v)))
q2nqn(r-1)

mr((b(1),...,b(u)))

mr((b(1),...,b(u))).

(ii)A similar calculation shows that

m'((b(1),...,b(u)))
=

mr((b(1)))...mr((b(u))).
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This means that the coefBcients of the MJPA induce an independent and identi-

cally distributed sequence of (r+ 1)-dimensionalD'q[X]-valuedrandom variables.

D

From Theorem 5.2.4, we have the following.

Proposition 5.2.1 Fora.e.(f1,...,I,)E Lr,

(i)

lim
V)～

1im
u)CX3

(ii)

(iii)

#(r7: 15n5u,rc(n)=3') (q-1)qr-3

lim
Vlu

qr-1

#(n: 15n5u,degbi7.)1=n)

#(n:15n5u,a(q)=j,degbt7]1=n)

15i5r,

qr-1

q
rn

q 1

q(n-1)r+3'

I

Proof. It is easy to see that

m((I: degf=-n))
q-1

q
n

m((I: degf<-n))=

m((I: degf5-n)=

1

q

1

n

qn-1

I

mr(((f',.-.,I,)
: (f1,...,I,)EL,I, degf,. = -n))

q-1

q
n (i)i-1(qn1-1)r-i

q-1

q(n-1)r+3'

I (5.16)

and

So,
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Then the strong law oflarge numbers shows (iii).Also (i)and (ii)are easily shown

by

～
_

CX3

q-1

E
n=1
q(n-1)r+,I

r

I
j=1

q-1

q(n-1)r+i

q-1

q3
E
n=1
(i)n-1

(q- 1)qr-3

qr-1

q 1

q(n-1)r

qr-1

q
rn

r

Ef

D

and

Proposition 5.2.2 Fora.e.(f1,...,I,)E Lr,

jlimu;i deg biv.)1
u=1

qr

qr-1

Proof. We consider the sequence of random variables (Xu) on the probability

space (Lr,mr) by Xv (f1,...
,I,)

=

degbiu.)1.From (5.8),we have

E (Xu) tf
j=1 n=1

qr

1 q-1
=n

q3'
'vq(n-1)r

qr-1

By the strong law of large numbers, we have the conclusion.

Now we put

7
qr

qr-1

D
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w(i,)
:= maXS,

TB<V

Lemma 5.2.3 Let

then there exists ck > 0 such that

lim
U)CX3

Proof. Fora fix s2 1, weput

w(u) = Ct a.e.

Al:=((f1,...,I,)ELr: 7-s+1-7-s=l),
forl2r,

and (Ys)isthesequence of random variables on (Lr,mr)
defined by Ys(f1,..., I,)=

Ts+1
-

Ts. Then, we have

E(Ys)

mr(Yu
>

Here we have

and have

fl.mr(A,)
l=r

,'fmr(Ys
,i).

l=r

I,<f(1

E(Ys,<r.fE(1-

(q
-

1)qr-All
)qr-1

(q- 1)qr-All
)qr-1
=r+cYo <CX).

It is easy to see that (Ys)s51is an independent and identically distributed se-

quence. The law of large numbers implies

slimn
;i
s=1

Ts+1
=

Ys=r+ao a.e.

S S

=E(Ts.1-Ts) =EYss=1 s=1

Tw(u) < I/ < Tw(u)+1,

Since

and

(5.17)
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D

<

S

/w(u)
S

<

we have

S u

-

S-1

EYs EYs
s=1 s=1

when w(u)
= S. From (5.17),we have the assertion of the Lemma with

1

r+cko

Cr
=

Proposition 5.2.3 For a.e. (f1,...,I,)E Lr, there exists a positive constant

C1 = C1(E) Such that

LBLv)I fi
-

BB.;vv;
<
C1

qua(1-E)
foranyE>0, 1<i<r.

Proof. WefixE > 0. Fora.e. (f1,...,I,)ELr, from Lemma5.2.6,

Cr-E<

for sufBciently large i,, equivalently,

Then,

for sufBciently large u.

w(i,)<a+E

i,Cr- i,E <
W(I/)

< I/Ct+UE.

IBAu)I
Bt(v)

fi--

Bbv)
<
1 1
<

qw(u)
--

qv(a-E)

D

Theorem 5.2.3 For a.e. (f1,...,i,)E Lr, there exists a positive constant C2 =

C2(E) Such that

fi -

BBg',
<

C2

IBbu)r;(ll)
for any E>0, 1<i<r.
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Proof. We fix E > 0. From Proposition 3,

IBLu)I
Bt(u)

fi--

BAN)
<

C1

qua(1-i)

I

degBLu,
= tdegbtl1,
i=1

Since

from Proposition 2, we have

qvQ(1-i) qvT;(1-i)

2 (IBbu'I'1-")W'
IB5v)I;(1-i)2

for sufRciently large u. Then there exists a positive constant C2 Such that

IBLy)I fi
-

:I;Vv')

fi- Sg),
<

<

<

C2

IB5v,I;(1-i)2
C2

IBbv)IS(1-e)
'

C2

IBLu)r;(1-E)
I

D

which means

5.3 Rational functions

･nthissection, westudythenumberof (A,...,A)with Bi E Fq[X], degBi <

degBo=n21,15i5r.

Definition 5.3.1 For (Bo,B',...,B,)E Fq[X]r+1 with

(Bo,B1,...,B,)=1 and degBi<degBo for 1_<i5r,
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L=L(Bo,B1,...,B,)

we denote by

the length of the e3:PanSion
by the MJPA.

Definition 5.3.2 We put

Ev(n) =

#[
and

E(n,=#[

(Bo,B1,...,B,)EFq[X]r+1
.

(Bo,B1,...,B,)=1,L=L/,
max
1<i<r

degBi <degBo =n

(Bo,B',...,B,)EFq[X]r+1 : (Bo,B',...,B,)=1
max
1<i<r

degBi < degBo

Theorem 5.3.1 We have

Ev(n) = (::ll)qn(qr-1)v
and

E(n) = (qr
-

1)q(r+1)n-r

n I

i

Proof. For (Bo,B1,...,B,) E Fq[X]r+1,if L = u, then Bo is determined by v

polynomials bi']1,...,biv.)1.
Recall that degBiv)

= n = =tY=1degbill1.Then, the

number of choices
ofdegbill1,

1 5 i 5 u, is equal to (:=i).put ni =

degb!Illfor

1 5 i <_ u, then the number of possible choices of(bitl1)
is (q-1)qni.So when we

fix positive integers n1,... ,nu With EIT=1ni = n, the number of possible choices

of (bill1: 1 5 i 5 r) is (q- 1)uqn.Consequently the number ofall choices of

polynomials bi1]1,..., biv.)1is equal to

(::ll)(q-1)uqn.
since the number ofpossible choices of (b5.i): 1 5 i _< r)

is qd-A(i), the one of

(b5.i): 15j5r,1<_a(i)<_r)is
r

I
a(i)=1

qd-a(i)
qr-1

q-1
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D

Ev(n)

Therefore

(:::)(q- 1,uqnLElqd-"i'
(::ll)

From the definition, it is clear that

E(n)

Definition 5.3.3 We put

A(n)=#[

qn(q'
-

1)v.

i Ev(n)
v=1

i(::;)qn(qr-1,u
(qr

-

1)qnqr(n-l)

(qr
-

1)q(r+1)n-r.

(Bo,Bl,...,B,)EFq[X]r+1 (Bo,B1,...,B,)=1,
max
1<i<r

A(n) = (qr- 1)q(r'1)n

Theorem 5.3.2 We have

Proof. For (Bo,B1,...
,B,)
E Fq[X]r+1satisfying

and

degBi 5degBo=n

degBi<degBo=n for 1<i<r

(Bo,B1,...,B,)=1,

i
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there are q polynomials Bi Of the form

A.=cBo+Bi CEFq.

(B.,Bi)=1 and degBi=n

It is clear that

unless c
= 0. Hence for each (Bo,B',...,B,) E Fq[X]r+1,we get q' vectors

(B1,...
,A,)
which satisfies

(B.,B1,...,A,)=1 and degBi5n for O<i<r.

i(n) qr E(n)

qr(qr
-

1)q(r+1)n-r

(qr
-

1)q(r+1)n.

I

Then
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