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Chapter 1

Introduction

In this thesis, we study the metrical theory of the non-archimedean diophantine
approximation. In Chapter 2 and Chapter 3, we discuss about the conditions
for having infinitely many solutions. In Chapter 4 and Chapter 5, we study the
convergent rate of some multi-dimensional continued fraction expansions which
give some simultaneous approximation sequences. We give a short sketch of fhe
metrical theory of diophantine approximations for real numbers as a historical
ground in this chapter and then state main results with some basic definitions

and notations.

1.1 Background

In the studies of the metric diophantine approximation, there are the following
two important questions.
(i) Whether |z —£| < 30% has infinitely many solutions for a.e. z € [0,1) or not.
(i) Whether some solutions which give good convergences exist or not.
A Khintchine is the first author who proved a theorem concerned (i).
The Khintchine Theorem (1925)

Let 1(q) be a positive continuous function of a positive integer q, and suppose



q¥(q) is non-increasing. Then

< = (1.1)

with p, ¢ € Z, has infinitely many solutions for a.e. o € [0,1), provided that the

sum
> ¥(g) (1.2)

diverges. On the other hand, if (1.2) converges, (1.1) has only finitely many
solutions for almost every a.

After this theorem, some attempts were made by many people to weaken the
condition (1.2). In 1941, R.J.Duffin and A.C.Schaeffer showed (1.1) has infinitely
many solutions under a weaker condition [6].

The Duffin-Schaeffer Theorem (1941)

Let 9(q), ¢ € N, be an arbitrary sequence of non-negative real numbers less than

% such that

> ¥(q) = o0

and suppose there exists an infinite set of positive integers Q such that

Y@ <ay, w(q)ﬂ;’—),

<Q <Q

where ¢(q) is the Euler function and ¢, is a positive constant. Then for a.e.
a€(0,1)
o2
q q
with (p,q) =1, p, ¢ € Z, has infinitely many solutions.

Note that ¢(q) is the number of ¢’ such that (¢,¢') =1 and ¢' < q.
At the same time, they also gave the following conjecture.

The Duffin-Schaeffer Conjecture (1941)



Let ¥(q), ¢ € N, be an arbitrary sequence of non-negative real numbers less than

%. Then

(

L < —(Qv (pa Q) = 1»
q q

has infinitely many solutions for a.e. o € [0,1) if and only if

S p(@22 = o (13)

This conjecture has not been proved yet, but in 1978, J.D.Vaaler showed that
(1.3) could be replaced with ¥(g) = o(3).

In the meantime, the multi-dimensional version of this problem has been done,
which we call the simultaneous approximation problem. A.Khintchine showed a
theorem concerned the simultaneous approximation in 1926.

The Khintchine Theorem (1926)

Let r € N and (q) be a positive continuous function of a positive q such that

q¥"(q) converges monotonically to 0 as ¢ — oo. Then for a.e. (ay,...,a,) €
[0,1),
Di ¥(q)
i— — | < —%_a (plaq) =1, Di,q € Z’ (14)

for 1 < i < r has infinitely many solutions provided

> 47 (q) (1.5)

diverges. On the other hand, if (1.5) converges, (1.4) has only at most finitely
many solutions.

Similarly, there is a multi-dimensional version of the Duffin-Schaeffer condition
which was given by Sprindzuk [27].
Theorem (1979)

Let ¥(q), q € Z, be any sequence of non-negative real numbers, which is less than



%, such that

Suppose there are infinitely many sets of Q € Z, such that

Svw<aX v (L)
<Q 9<Q

Here, cy 1s a positive constant and ¢ is the FEuler function. Then, for a.e.

(CYl, . ,a,—) € [O, 1)1"

< (pin)zl,Pi,QEZ

for 1 <@ < r has infinitely many solutions.

Also Sprindzuk proposed a multi-dimensional version of the Duffin-Schaeffer
conjecture.

The r-dimensional Duffin-Schaeffer Conjecture (1979)

Let ¥(q), ¢ € N be an arbitrary sequence of non-negative real numbers less than

-21;. Then

¥(q)

Di
- = <T (Pi,q) =1,pi,q€Z

q

for 1 < i < r has infinitely many solutions for almost every (a,...qa,) € [0,1)"

if and only if

Q;

> v (42) -

In 1990, A.D.Pollington and R.C.Vaughan proved that an r-dimensional version
of the Duffin-Schaeffer conjecture is true for r > 1 (see [24]), however, the original
one-dimensional Duffin-Schaeffer conjecture still remains open until now.

Now we turn to the problem concerned (ii). In the one-dimensional case, it
is well-known that the continued fraction expansion gives a good convergent

sequence of rational numbers. Because continued fractions are related to the



Euclidian algorithm (see [2]), it seemed to be natural to extend the notion of
continued fractions to the multi-dimensional case as the higher dim.ensional Eu-
clidean algorithm.

Then we get multi-dimensional maps which induce various multi-dimensional
continued fractions. The Jacobi-Perron algorithm is one of the most natural one
in the sense that it comes from the Euclidean algorithm. Rational vectors induced
from this algorithm have a good property as the simultaneous approximation.

Here we give the definition of map T associated to the Jacobi-Perron algorithm.

Tl ay=(2_[2] o _[e] L |1
1y---,0p) = o o ,...,al o ,al o

for (ay,...,a,) € [0,1)". From this map, we can get a simultaneous approxi-
mation sequence which converges to (oq,...,a,). F.Schweiger proved that the
existence of an absolutely continuous invariant measure and its ergodicity, and
showed that the convergent rate of the approximation sequence is exponential in
the two-dimensional case [26].
Theorem (2-dimensional case: 1996)

There ezists a constant § > 0 such that for a.e. (a1, 2) € [0,1)? there ezists
ng = no(aq, ap) such that for any n > ny

Tn
Qg — —
q

n

|Qn|

Pn
o — —
q

n

< 1 g0 < 1
R dn I
g 4

where the integers p,, qn, T are provided by the Jacobi-Perron algorithm.

After F.Schweiger, this convergent exponent was studied by K. Nakaishi [19],
A.B. Alamichel and Y. Guivarc’h [3] etc.

An algorithm similar to the Jacobi-Perron algorithm, E.V.Podsypanin consid-
ered the following map S, which is called the modified Jacobi-Perron algorithm

[23]. This expansion is associated with the following map:

S(an,...,a) = (ﬂ_ [9_] R H L [."_D
071 a; Q; aj a]' Q;



if oj >y, for 1 <4, <j—1anda; >a for j +1 < i, <r. F.Schweiger also
proved that the existence of an absolutely continuous invariant measure and its
ergodicity and then the exponential convergent property of the modified Jacobi-
Perron algorithm was shown by S.Ito, M.Keane and M.Otsuki in 1993 for the
two-dimensional case [15] and T.Fujita and others in 1996 [9)].
Theorem (2-dimensional case: 1993 and 1996)

There exists a constant &' > 0 such that for a.e. (B1,52) € [0,1)? there exists

no = no(B1, B2) such that for any n > ng

r

!
1
'62—q_7 <

160

n

where the integers pl., ¢, . are provided by the modified Jacobi-Perron algo-
rithm.

Later, a simple proof of this theorem was given by R.Meester [17], however,
it seems to be very hard to get the exponential convergent estimate for higher
dimensional case.

In the sequel, we discuss the metric property of diophantine inequality (1.1) for
the formal Laurent power series and get a necessary and sufficient condition or
a sufficient condition for having infinitely many solutions in the one-dimensional
and higher dimensional cases. Then we also discuss the exponential convergent
property of the Jacobi-Perron algorithm and the modified Jacobi-Perron algo-
rithm for the formal Laurent power series. In the formal Laurent power series’
situation, the problem is simpler than that of the classical real number case. So,
we have the exponential convergent property for any dimensional Jacobi-Perron
algorithm and modified Jacobi-Perron algorithm in the formal Laurent power

series.



1.2 Definitions

Throughout this thesis, we use the following definitions and notations.

Let F, be a finite fields with q elements and we consider the following:

FX]={an X"+ a1 X" '+ +a1 X +a9,a; €F,, 0< i <n}

: the set of polynomials of F,-coefficients,

Fq(X) :{%3 PaQEFq[X]: Q #0}

: the set of rational functions,

F X)) ={an X"+ a1 X" '+, a;€F,1<n,a,#0,neZ}

: the set of formal Laurent power series of Fy- coefficients.

We regard F,[X], F,(X) and F,((X ")) as the set of integers, of rational numbers
and of real numbers, respectively. We denote 0 and 1 by the additive unity and
the multiplicative unity of F,, respectively. Note that we identify apX° € F,[X]
with ag € F,. For f = a, X"+ a1 X* 1 +--- € Fo((X™1)), we put

degfz{n Tf a, # 0,
-0 if f=0.

We define the valuation of f by
|| = g*&t.
Also we put

[f] = an X" +an X" 4+ -+ a1 X + ag for feF,((X).
We define

L={f=a,X"'+ - +a; X"+ ,a;€F, fori<-1},



which is a compact abelian group with the metric d( f,g) = |f — g|- We denote

by m the normalized Haar measure on .. Note that

_ - 1
m{f=c X '+c X 4+ ic=c,co=Ch...,cu=0}= - (1.6)
q
for any ¢}, ¢, ... ¢; € F;. Then, we put m” be the normalized Haar measure on
L.

When P and Q are coprime, which means P and @ have no non-trivial common
factor, we write (P,Q) = 1. We define ®(Q) be the number of the polynomials
P such that

degP < degQ, (P,Q) =1

1.3 Main results
In Chapter 2, we consider the problem whether

R i) _
l Qi< or  (RQ=1 PRQeFR[X] (17)

has infinitely many solutions % or not for m-a.e. f € L. First, we assume 7 be

a function which depends only on the degree of Q € F,[X]. In this case, we get
a necessary and sufficient condition for having infinitely many solutions by using
a continued fraction algorithm [13].

Theorem 2.2.1  Let ¢ be a non-negative function defined on F,[X] such that
¥(Q) depends only on the degree of Q € F,[X]. For any set S of positive integers,
(1.7) with deg @ € S has infinitely many solutions for m-a.e. f € L if and only
if

> " P(X") = oo

nes

By this theorem, we would be able to say that we get the complete answer to (i)

in §2 when % (Q) depends only on the degree of @ for the non-archimedean case.



Next, we generalize v, that is, we assume that v is a function which depends not
only on the degree of @ but also @ itself. Then we have the following theorem
(13].

Theorem 2.3.1 (Gallagher type theorem)

For any v, (1.7) has infinitely many solutions g for a.e. f €L or(1.7) has at
most finitely many solutions g for a.e. f L.

From this theorem, if we show the set of f such that (1.7) has infinitely many
solutions has a positive measure, then we see that it is a set of full measure. In
this way, we have the following theorem which is a non-archimedean version of
the Duffin-Schaeffer theorem [13].

Theorem 2.3.2 (Duffin-Schaeffer type theorem)
Let ¢ be a {g7™ : n > 0} U {0}-valued function which satisfies

f}ZZWQ:

n=1 deg Q=n
thonxc

Suppose there are infinitely many positive integers n such that

Y B <C ), Y@ |Q|

deg Q<n degQ<n
Q imonic Q imonic

holds for a constant C. Then

-2 <t (P.Q) =1,

IQI

has infinitely many solutions % for m-a.e. f € L.

In Chapter 3, we extend the Duffin-Schaeffer type theorem to the multi-dimensional
case, that is, the simultaneous approximation problems. As in the one-dimensional
case, we first show the Gallagher type theorem [11].

Theorem 3.1.1 (Gallagher type theorem)



For any 9,
_ P ¥(Q)
lf1 Q|< Qe

(P,Q) = (P,Q) = =(P,Q) =1L
has infinitely many solutions of (Q,P,...,P,) for m™-a.e. (f1,...,fr) € L7or

has only finitely many solutions for m"-a.e. (f1,..., fr) €L".

By using Theorem 3.1.1, we also have the Duffin-Schaeffer type theorem in the
multi-dimensional case [11].
Theorem 3.1.2 (Duffin-Schaeffer type theorem)

Let v be a {¢g"™|n >0} U {0}-valued function which satisfies

> ¥(Q) =0

n=1 deg Q=n

imonic

Suppose for a positive constant C, there are infinitely many positive integers n

such that
@7‘
S v@<c Y v@ Iéﬁ)
deg Q<n deg Q<n
Q:mam'c Q:mom’c
holds. Then (
P P(Q) P, $(Q)
'f1'"@“<w,---, =3 <Tar
(P,Q) = (P,Q) = - = (F,Q) = 1

has infinitely many solutions (%, R %) form™-a.e. (f1,...,fr) €L".

In Chapter 4 and Chapter 5, we consider a problem concerned (ii) in §1 for the
non-archimedean case. First, we consider the Jacobi-Perron algorithm for the
formal Laurent power series in Chapter 4. In this case, we can associate the

following map with the Jacobi-Perron algorithm:

T = (2= (2] 2= [E] - [H])

for (f1,..., fr) € L". The study of this algorithm for formal Laurent power series
have been already done by R.Paysant-Leroux, E.Dubois [20], K.Feng and F.Wang

10



[7]. They showed the existence of its convergence and the ergodicity. Here we
consider the rate of its convergence. The following is an a priori estimate [12].

Theorem 4.2.1 For any v > 1, there exists a positive constant C such that

C

v
r

AY
fi— =%
A

0

for (fi,..., f-) € L" where T (f1,...,fr) €L" forv > 1.

Ay

1<:<r

Note that % is v-th convergence by the Jacobi-Perron algorithm (refer to
Chapter 4, §1).

We discuss the stochastic property of the Jacobi-Perron algorithm digits and
then get on better estimate. In particular, the degree of the denominator of
convergent fractions [12].

Theorem 4.2.2 For any v > 1, there exists a positive constant C’ such that

) ) ¢
|45"| | f: < AT Ve >0

Ay

for m™-a.e. (f1,...,f;) €L, where

Next, we consider the modified Jacobi-Peron algorithm. We can associate the

following map with the modified Jacobi-Perron algorithm:

(AR L[] £k
S(fl"”’fr)_<fj [fj]’m’fj [fj]’m’fi [ajD

if deg f; > deg fi, for 1 <43 < j—1anddegf; >degfi, forj+1<i,<r. In
this case, some converges but not exponential rate because the associated map
depends on the degrees of f,..., f._; and f,. For example, if the degree of the
first component of S¥(fi, ..., f,) is always greater than the others for » > 1, then

the speed of convergence of the i-th component, 2 < i < r, gets to be very slow.

11
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However, for a.e. (fi,..., f.), we see exponential rate of convergence [14].
Theorem 5.1.2
() IF S* (fi,..-, fr) #0 for any v > 1,

B

UIEEO B(()U) = fi fOT 1 S [ S T,

on the other hand, if S*7Y (f1,...,f,) Z0 and S (f1,..., f.) =0, then

BY
’(V):f,- for 1<i<r.
By

(ii) For a given sequence of arrays {bg") 1<i<r+1,v>1};
(v) (v)
bryy € Fo[X], degb.,, > 1,

=0 for 1<i<j(v), b”eF, for jlw)<i<r

with a sequence j(1),7(2),... (1 < j(v) <r, v >1), there exists (f1,...,fr) €L"

such that k(v) = j(v).
B

Note that —;
BO

is the map associated with the modified Jacobi-Perron algorithm.
For the map S, we can prove the ergodicity [14].

Theorem 5.2.2 (i) For any Borel set B CL’,
m"(S7'B) = m"(B),
that is, m™ is an invariant probability measure for S.

b(")
1
(it) : : v 2>1 is an independent and identically distributed sequence
b,
as a sequence of random variables.

Here, bg"), ceey bf'ﬂl are the coefficients of v-th modified Jacobi-Perron expansions
induced by the map S (refer to Chapter 5, §1). From these theorems, we can

show the exponential convergent rate [14].



Proposition 5.2.3 For a.e.(f1,..., f,) € L", there ezists a positive constant

C, = Cy(g) such that

BY
By

Ch

(v)
IBO i < qua(l—e)

fi-

foranye >0, 1<i<r.

In the Jacobi-Perron algorithm, we have a priori estimate of the convergent rate
for all (f1,...,fr) € L”. But in the modified Jacobi-Perron algorithm, we have
the estimate only for almost all (fi,..., f,) € L .

Finally, we have the estimate associated to the degree of the denominator of
convergent fractions [14].

Theorem 5.2.3  For ae.(f1,...,f,) € L7, there exists a positive constant

Cy = Cy(e) such that

BY

1

BY

1

for any >0, 1<:<r

where

Y=

and o s a positive constant which is given in Chapter 5 §2.

13



Chapter 2

Diophantine approximation for

one-dimensional case

2.1 Continued fraction expansion

In this section, we see the continued fraction expansion for the formal Laurent

power series. We refer Berthé and Nakada [1].

Let T be the map of L onto itself defined by

Tf=f"-1[f1, felL.

Then we have

f=———7F= [O§P1,P2, -

with
pn = [(TH )71,
As in the classical case, we define

{ Pn = pnPn.—l + Pn—'Z; PO = 0’
Q@n PnQn-1 + Qn_2, Qo =1

ll

14

]
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and have the following:
PnQn—I - QnPn——l = =+1,
P, 1

— = =:[0; p1, .-, Pn
T [
Qn 1+

P2+ 1
=
DPn

for n > 1. We call g—" the n-th convergent fraction of f. Since

f_Pn+Tnf'Pn—1
Qn +Tnf : Qn—l ’
it is easy to see that
P, 1
f—-=1< forn > 1.
l Q@n |Qnl?

Moreover, we have the following:
Lemma 2.1.1 If coprime two non-zero polynomials P and Q satisfy
p 1
-5l < @
- dl <@

then

Ll

i
Q

for some n > 1.

We put

W, = {gE]L:degQ:n, (P,Q) = 1,P,Q€Fq[X}}

for n > 1. The following is essential in the next chapter. This lemma was shown

in [4] and we prove it here by using continued fractions.

Lemma 2.1.2

#W, = ¢ — ¢! for n>1



Proof. Ifn =1, all elements in W, are of the form

P a )
éz X5 with a, b € Fy, a #0.

This implies the assertion. Now we suppose
#W;, = ¢* — ¢*' for1<i<n.

Fix g € W,41. Then we have its continued fraction expansion uniquely:

6: 1 :[0;p1)p21--~)Pm]-

So we get a unique element % € W; for some j, 1 < j < nby

P 1
a = 1 = [0?P17P2,--~,Pm—1]
P+

D2+ 1

-+
Pm-1

unless m = 1. On the other hand, for any -g—: € W;,;1 <'j < n, we have
q"*177(g—1) numbers of—g— € Wp41 by (2.1). The number of% with deg Q@ = n+1
and deg P =0 is ¢"*!(q¢ — 1). Thus we see

#Wn+l — Z qk(q _ 1)(q2n—2k+2 _ q2n—2k+1) + qn+1(q_ 1)’
k=1

Then we have

#Wn+l — q2n+2 _ q2'n+1

which is the assertion of this lemma.



2.2 Khintchine type theorem

Now we prove Khintchine type theorem. Here, we put ¥(Q) is non-negative
function which depends only on the degree of Q. In this case, it is easy to give

a necessary and sufficient condition on % for having infinitely many solutions for

a.e. f € L. We refer to [5] and [8].

Theorem 2.2.1 Let ¢ be a non-negative function defined on F,[X] such that
¥(Q) depends only on the degree of Q € F,[X]. For any set S of positive integers,

the inequality
gl <

|Q|
with P, Q coprime and deg @Q € S has infinitely many solutions for a.e. f € L of
and only if
Z "P(X") = oo.
nes

Proof. In the sequel, we always assume that P and Q are non-zero coprime
polynomials whenever we denote by g a rational function and that @ is monic.

For 5 with deg @ = n, we put
(P P 1
a(g) = {rerelr-gl < &
Z{fEIL:Hg,degQ:n, f———l ——;;}

Lemma 2.2.1 For a fized integer n > 1, zf + £ T - with deg Q = deg Q' = n,

& (5)na(5) -s

and also put

then

17
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Proof. Since |- | is ultrametric, we see that if the intersection were non-empty,
then
P P’I 1
Q QI q2n
However,
P P’l I
Q Qe ¢

which gives a contradiction.

Lemma 2.2.2 Foranyn >1

1

Proof Since m {f el :

— gl < ;21;} = Eé;foraﬁxedgwithdengn

and the number of —S— is ¢*™ — ¢! from Lemma 2.1.2, we have the assertion.

O
Lemma 2.2.3 For anyn > 1 and k > 1, we have
1\ 2
m(En, N Enyk) = m(E)m(Enik) = (1 - 5) .
Proof. If f € E,, N E 4, say
P 1 P 1
lf— 5I <& lf— o| < g
with degQ = n, deg @ = n +k, then |£ — gl < q%,,, so that by Lemma 2.1.1, —g—
is a convergence of the continued fraction of %. Conversely, when |£; — %! < qun
and |f — %I < qz—,}m, then f € E,, N E, . Therefore
1
m(E,NEpik) =Z(n,n+k)——> (2.2)

q2n+2k !



where Z (n,n + k) is the number of pairs g—, % with g a convergent to %, and

degQ =n, deg Q' = n+ k. #W,, the number of choices for g, is ¢*(1 - é) For

a given g, we will show the number of choices for %. Suppose that % satisfies

P’ 1 , P
lf - a; < W, deg Q :n+kforf€En<5>.
We see that there exist n = jp < j1 < jo < -+ < -1 < ji = n + k (uniquely)
such that
P Pm+l
_Q_,' = Q N = [O;pl)p27 -+« Pm, "'1pm+l]
with
degpmii = Ji — Ji-1, 1<:1<1L
Since
#{p € Fy[X] : degp=u} = ¢*(¢~ 1),
we have
P/
# {@ : degpmyi = Ji — Ji-1, 1 <1 < l}
— qh—jo(q — 1)qu—j1(q — 1) .. ,qjl—jx—x(q - 1)
=q"(¢-1)'
for each fixed (j1, ..., ji)- All choices for n < j; < -+ < 5i-; < n+ k are
( llc:ll ) and [ runs 1 to k. Hence we have

P’ ! P
#{a : lf— %t < ?anzI forsomeféE,,(ZQ—)}

Consequently, we see

19



and by (2.2), we get

1 (B Buik) = (1 - 3) = m (B m (Bus).

By the Borel-Cantelli lemma, this implies the following:
Proposition 2.2.1 For any subsequence of positive integers
n <ng < -+ < N < -+

we have

deg@ = n;,

P 1
f*a|<r@?’

has infinitely many solutions for m-a.e. f € L.

According to this proposition, we can assume that %(Q) < qi,, for any n > 1.

Then we rewrite Theorem 2.2.1 to the following.
Theorem 2.2.2 For any subsequence of positive integers
Mm<n<---<ng<--,

and a sequence of positive integers

Lo lay ooy by o

we have

1
< W, degQ = n,,

I3

has infinitely many solutions for m-a.e. f € L if and only if

, P




Proof. Put

P P
F;, = {fGILEQ-, ‘f—él < ﬁ, dengn,}

Given g, the measure of f € L with lf - %’ < q2"f+,{ is q2n£+l,-- The number of
g in W,. is (¢*™ — ¢*™~1), therefore

m(F) = 1L (23)
Now the assertion of Theorem 2.2.2 follows from the next lemma together with

(2.3) by Theorem 3 in [22].

Lemma 2.2.4
(a) Eﬂﬂ+j = @ 'Lf n; +li 2 Miyj-
(b) m (FiN Figj) = m(Fy) m(Fiy;) of ni+ 1 < ngyj

Proof If f € F;N Fi4j, say

P 1 P 1
f- 6 < q2m+l.-’ f- @ < q2n,-+,-+l,-+,-
with deg Q = n;, deg Q" = n,;;, then
P P 1
aal <@ Y
and on the other hand

P P l S I 1

Q Q|| gutm
When n;+1[; > n;;; these inequalities contradict each other, so that F;NF;; = 0.
Suppose, then, that n; +[; < n;y;. It follows from (2.4) that g is a convergent

to %. Write again

P P
0" 0;p1,---,Pml], o= [0;P1,- - PmyPmt1y - - - » Pt

21



22

and then by a well-known formula,
p P 1 - .
Q Q’ !Q[2|pm+1l q2n,'+degpm+l ’

we see deg pm+1 > l;. In analogue to (2.2) we obtain

1
g2nits Tt

m(F; N Fiyj) = Z(ni, nagy, i) (2.5)

P P

where Z(n;,n;j,1;) is the number of pairs o o s above with degpn+1 > Ui

Now, the number of choices for ppt1 .., Pmas 1S
qdes Pm+1 (q _ 1)qdespm+2(q _ 1) ... qdespm+l(q _ 1) — qni-{r-j‘"-i(q _ 1)1'
Then,

Z(Tli, Nt li)

, '—n‘--—l,-
2n; 2n;~-1 E Niyj — Ty — li -1 Ny —N; l
= (@ - > o ¢ Mg~ 1)

=1
— (q2n‘- . q2ni—1)qng+]'—n,' (q _ 1)qn,-+j——n,-—l‘~—1

2
q2n1’+]'—l,' (1 — l) ,
q

which yields the lemma with (2.5).

d

On this type theorem in the case of real numbers, we get only a sufficient condi-

tion. But in the case of formal Laurent power series, we can get a necessary and

sufficient condition where 9(Q) depends only on the degree of Q. In this sense,
we can get a better results than in the case of real numbers.

Example Put
ﬁ if deg Q is prime,
0

otherwise.

w@ - {

Then we see that there are infinitely many solutions of
P

deg @ is prime
0 g p

-

< L
Q%
for a.e. feL.
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2.3 Duffin-Schaeffer type theorem

In the previous section, we see the diophantine approximation where ¥(Q) de-
pends on the degree of Q. However, in this case, there is a gap on the hypothesis
comparing with the case of real numbers. Then in this section, we put ¥(Q)
depends on Q itself and prove the Duffin-Schaeffer type theorem.

For a given polynomial
h=caX' '+ X+ +aX+ c,ca€F, 0<i<I, ¢ #0,
we denote by (h) the cylinder set defined by
{fel: X" fl=h}.
Lemma 2.3.1 Let hy, k > 1, be a sequence of polynomials with
kllr& deghr = o

and E be a sequence of measurable sets of L for which Ex C (hi). Suppose that
m(Ex) > dm((hk)) for some 6 > 0. Then

m(zg1 k=l k) = m(zQ1 ijl (i)
Proof. Let
H = 121 kL=Jz<hk>’ Ef = kLleEk, H! := H\ E}.

We show that m(H;) = 0 for any [ > 1, which implies the assertion of this lemma.
Suppose that m(H;) > 0. For almost all fo € H}, there are infinitely many k such
that fo € (hi). For f = 3, a: X' € L, we put ¢(f) = 3, pai¢" € (0,1]. The
map ¢ is a measure isomorphism of (L, m) to [0, 1] with the Lebesgue measure.
By this isomorphism, cylinder sets (hx) are mapped to g-adic rational intervals.
So we can apply Lebesgue’s density theorem and get

m(H{N (b)) _ . 6
m(they) 2
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for some k. On the other hand,

H; n E;

il
=

So we see

m((he)) 2 m(Ei) + m(H; N(he)) = dm((he)) + m(H N (i),

which says
m(Hj; N(h)) < (1= 8)m((hx)).
This is impossible.

a

Lemma 2.3.2 For any polynomial h € F,[X] and g € L, the map T of L onto
itself defined by

Tf=hf+g—I[hf+ g for feL
is ergodic.

Proof. It is easy to see that both f - h- fand f — f + g for f € L are m-

preserving. Then it turns out that w;(f) = [h-T*"!], 1 < i < oo is an independent

and identically distributed sequence of random variables defined on (L, m). This
implies the assertion of the lemma.

d

Let ¥ be a {¢g7™ : n > 0} U {0}-valued function defined on the set of monic

polynomials, that is, of the form
X' +a X'+ +aX +a,a€F, 0<i<l—1.

Here ¥(Q) depends on Q itself, and we put

S

, deg P < degQ, (P,Q) = 1}



for a monic polynomial Q. The following theorem is a formal power series version

of [10].

Theorem 2.3.1 (Gallagher type theorem)

For any v, either m(NSL, Ugego>n Eg) =0 or 1 holds.

Proof. If
lim sup Tl/d(Q) > 0,
degQ—c0 ¢ g Q
then we can find a sequence of monic polynomials Q;, Q,, @3, ... and a positive

integer [ such that gﬁ%g > ¢! for any k > 1. In this case, for any f € L and a

sufficiently large k, we can find P (deg P < deg Q) such that
P
-

1 Y(Qx)
Qx <? << qdegsk)

and P and Qy are coprime. Otherwise, Q; has more than g% ?*~! factors, which

is impossible. This implies

AU = 1.
m(z:1 kL:Jz EQ") 1

Now we show the assertion of the theorem when

(@) _

degQ

lim sup
degQ—c0 ¢

This means we can apply Lemma 2.3.1 for the proof. We put

o
E=nNn U Eg
n=1degQ>n

Let R be an irreducible polynomial and consider

Pl y(@)IR™! _

for n > 1. We put

v J f€L: (2.6)has infinitely many solutions of
Eo(n: R) = { P,Q with R /Q

25



and

Ei(n:R) = f € L: (2.6)has infinitely many solutions of
A P,Q such thatR || Q [~

Then we see
E(1:R)CE(2:R)CE;(3:R)C ---
and
E,'(l : R) C E

for 2 =0, 1. From Lemma 2.3.1, we find that
m(E;(n: R)) = m(E;(1: R))

for n > 1. Thus
Let

for f € L. Then
Tl(nL>JlE0(n:R)> = U Ey(n:R)).

n>2

From Lemma 2.3.2, we have

m(u E’o(n:R)) = 0or 1.

n>1

Next we let

R
for f € L. Suppose (2.6) holds, we have

R-P+% n
(ros e g) - BEEE| CUDEL (5.p1 8 o)

T2(f)=R-f+i—[R-f+i}

and see that

26



Thus we have, again by Lemma 2.3.2,
m(anJlEl(n : R)) = 0or 1.

Thus, if either m(Ey(1 : R)) > Oorm(Ey(1 : R)) > 0 for some irreducible
polynomial R, then we have m(E) = 1. Assume that m(Ey(1 : R)) = m(E(1:
R)) = 0 for any irreducible polynomial R. We put F'(R) is the set of f € L such
that

Pl ¥(Q)
— cv— —_— P =
has infinitely many solutions where R?| Q. If f € F(R), then

G+ -5 <52 (R -

for any polynomial U with 0 < deg U < deg R. This means that f € F( R)
implies f + £ € F(R). If we put S(U;R) = {f €L : [Rf] = U}, then

S(U;R) | J{f € L|degf < —degR} = L

U
U:0<degU<degR

and each measure is equal to 33375. Since F(R) is (- + ¥)-invariant,

m(F(R)N S(U; R)) = %'
This implies
m(F(R) N SWiR) _ popyy

m(S(U; R))

By the density theorem, we have m(E) = m(F(R)) = 1 whenever m(F(R)) > 0
for some irreducible polynomial R, otherwise, m(E) = 0, since E = F(R)U
Eo(1, R) U E;(1, R). This concludes the assertion of the theorem.

O

Theorem 2.3.2 (Duffin-Schaeffer type theorem)
Let ¢ be a {g™" : n >0} U {0}-valued function which satisfies

Y 9@ =

n=1 deg Q=n
imonic
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Suppose there are infinitely many positive integers n such that

2(Q)

Q) 27)

Y wQ)<C D> $(Q)

deg Q<n deg Q<n
Q'.movnc Q:monnc

holds for a constant C. Then

¥(Q)
QI

has infinitely many solutions % for m-a.e. f€L.

f—f < (P,Q) =1,
Q

Proof. In the sequel, we always assume that Q,Q;,Q’ and @] are monic. By

the definition of Eg, we see

*(@)
QI

Now consider the measure of the intersection of Eg, and Eg (deg Q1 < deg Q).

m(Eq) = 4(Q) (2.8)

We put N(Q1,Q) is the number of pairs of polynomials P and P;. For these

polynomials, the conditions

(P,Q) = (P, Q) =1, degP <degQ, degP; <degQy,
hold for given @ and @Q;. Then we can show the measure as follows
m (Eq, N Eq) < min <¢|(QQJ)’ %)) N@wL Q)
If the equality
PQi—PQ=R (2.10)

holds for some polynomial R, then D = (Q,Q) divides R. Setting @, =
DQ},Q =DQ',R= DR, we have

PQI-PQ =R, (Q,Q)=1 (2.11)
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If P" and P also satisfy (2.10),
PQ - PQ =R. (2.12)
From (2.11) and (2.12),
P=P +KQ K : a polynomial. (2.13)
From (2.13), we see
[P - P'| = |K|lQ'] < |Ql =|Dl|l,

which implies |K| < |D| must hold. The number of possible polynomials P

satisfying (2.10) for a given R is no greater than ¢%°¢”. (2.9) implies

0# R < [@]¥(Q) + |Ql¥(Q1)

and we must only take polynomials R divisible by D, we find that

NOLQ) < 2@ +Iow@y
ves D]

= |@:1[¥(Q) + |Q[¥(Q1).

DI

Then
m (E’Q1 N EQ) < Qw(Q1)¢(Q)

Since 3 4ep 0<n Y(Q) diverges,

>, w(@s( > ¢(Q))2

deg Q<n deg Q<n

holds for sufficiently large n. Therefore we have

Yo m(EqnEy) < 2 > p(@¥Q+ Y. ¥(Q)

deg Q1,deg Q<n degQi1,degQ < n deg Q<n
Q#Q

3 ( > w(@))2

deg Q<n

N
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for all sufficiently large deg Q. From (2.7) and (2.8), we have

> m(EQlﬂEQ)<302< > m(EQ)>

deg Q1,deg Q<n deg Q<n
for infinitely many Q. Then we get m (E) > (3C?*)~! by Lemma 5 of [27](p17-18).
Finally, applying Theorem 2.3.1, we have the assertion of the theorem.
a
By putting ¥(Q) depends on Q itself, we generalize the theorem and get the
similar results as in the case of real numbers.

Example Put
L if Q is irreducible

— 1Ql
v(@Q) { 0 otherwise
Then we have
1 1
Z Z ¢ Tog =00
n=1 Q:deg Q k=1 q

and it is easy to see that

dv@)<C Y $(Q)

degQ<n degQ<n

holds. Thus we see there are infinitely many solutions % of

/-3

Iz, Q is irreducible

IQ
for a.e. f €L.
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Chapter 3

Multi-dimensional diophantine
approximation

In Chapter 2, we see the diophantine approximation for the one-dimensional

version. In this chapter, we extend to the multi-dimensional version.

3.1 Duffin-Schaeffer type theorem
For given h; € F,[X] such that
hi = ai, X" + ai 1 X5+ -+ aaX + i,
a;j €Fy, 1<i<r, 0< 5 <1, a4, #0,
we define the cylinder set (h;, ..., h,) as follows:
(hy, ... by ={(fr,..., f)eL - [X"T . fil=hy, ..., (X" f] =h}

Then we see the following,

1 1

1 +1 L+1°
q1+ q +

m ((hy, ..., he)) =

Lemma 3.1.1 Let {(h1x,h2k,..., hrx) : kK > 1} be a sequence of cylinder sets
defined as above with

klim deg hix = o©
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and { Ex | k > 1} be a sequence of measurable sets of L™ for which Ex C (hyk,
.., hek ). Suppose there exists § > 0 such that m"( Ex) > om"((h1k,..., hrk))
for any k > 1. Then

m’ (E U Ek) = m’(orci) U (hlk,...,h,k>>.

1 k=l =1 k=l
Proof. Let
H = [Q]_ kL=J1<h1k, ey h,-k>, EI = et Ek; Hl = H \ El'

We show that m"(H;) = 0 for any [ > 1, which implies the assertion of this
lemma. Suppose there exists a kg € Zy such that m"(H}) > 0 for k > ko. There
is a natural correspondence between cylinder sets defined for L as in (1.6) and
g-adic rational intervals, and so (I, m) is isomorphic to [0, 1] with the Lebesgue
measure. Similarly, (L™, m") is isomorphic to [0, 1]” with the Lebesgue measure.
So by using cylinder sets (hy, ..., h,) C L" instead of [; x --- x I, C [0, 1]", we can
apply Lebesgue density theorem. Then we get, since {H; |l > 1} is an increasing
sequence of sets,
m (Hg N (hi,,--- hek)) ]

m"((Rik, ..., hrk)) > 1—5 (3.1)

for some k. On the other hand,

H; n E; = 0.
From the assumption of this lemma,

m’ ((hlka . ,h,.k>)

m’(E'k) + mr(H,: ﬂ(hl ky---» hrk))

I\

> 5mr(<hlk7'-‘7hrk>) + mr(H; m(hlk,...,hrk)),

That is
(1 - 5) m'((hlk, .. ;hrk>) Z an(H; N (hlk; .- -,hrk>),



which contradicts (3.1).

O

Lemma 3.1.2 For any polynomial h; € Fy[X](h; # 0) and g; € L, 1 <i <'r,
the map T of L™ onto itself defined by

T(fi,.., fr) = (it —[mfi+al,..., hefr+ g — [P fr + 9:])
for (fi,..., fr) € L" is ergodic.
Proof. It is easy to see that each map
T:(fi) = hifi + g —[hifi + 9], 1<:<r
is a Bernoulli transformation of L. In other words, if we put
Wi (f) = [hi T57 fi + g, for fi € L,

then {Wj |k > 1} gives a sequence of independent and identically distributed
random variables. In particular, T; is weak mixing. Since the rfold product
of weak mixing transformations is ergodic (see [18] Prop. 4.2.), this yields the

assertion of the lemma.

Theorem 3.1.1 (Gallagher type theorem)

For any 1,

_ b ¥Q)
|f1 _Ql|< Qr

(Pva) = (P21Q) = = (Per) - 1)
has infinitely many solutions of (Q, P,...,P.) for m"-a.e. (fi,...,f.) € L7or

has only finitely many solutions for m™-a.e. (f1,...,f,) € L .

Proof. Here, we put

Ql

B ¥Q ,
Eq=q(fh,... . f)el: i Ql< , for some P; s.-t. .
deg P, < deg Q,(P,Q)=1,1<i<r
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and
oo
E=n u Eg,
n=1deg Q>n
If
lim ¢d(Q) > 0,
degQ—o0 q egQ
then we can find a sequence of polynomials @, @2, @3, ... and a positive integer

[ such that ;;%(—?5—1 > q7! for any k > 1. In this case, for any f; € L and a

sufficiently large k, we can find P; (deg P; < deg Q) such that

<1 <<¢(Q’°)) 1<i<r

ql qdeg Qr

P

f-g

and P; and @ have no non-trivial common factor. Indeed, the number of poly-

nomials P such that

1
~7

fi

_P
Qs

is gdee@—! If all such polynomials P are not relatively prime to Q, then Qx
has more than g% @+~ factors, which is impossible if deg Q; is sufficiently large.
This implies

E=L1"
Now we show the assertion of the theorem when

)

degQ—o0 qdeg Q

= 0. (3.2)

For fixed @, P,,...,P._; and P,, there exist polynomials h,,...,h, such that

(AL
1 < i < r as degQ tends to co. Thus we can apply Lemma 3.1.1 when (3.2)

< i,‘QQ—"} = (hu,...,h,). Then (3.2) implies degh; — oo,

holds. Then we evaluate the measure of N5, Ugeg 0>n Eg. Let R be an irreducible
polynomial and consider

_ VIR

Q (P, Q) =1 (3.3)

fi - 4
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forn>1land 1 <i<r.

We put

oy - (3.3) has infinitely many solutions
Eo(n'R)_{(fl""’f’)EL ' P,QwithR fQ forl1<i<r

and

oy - (3.3) has infinitely many solutions
Ey(n: R) = {(fl"“’f’) el P,Qwith R||Q for1<i<r

Then we see

Ej(lIR)CE]‘(QZR)CEj(?);R)C

and

for 7 =0, 1. From Lemma 3.1.1, we find that

m’(Ej(n:R)) = m"(E;j(1:R)) = m' (ngl Ej(n : R))

Let
,I‘j(flr"'rfr)
(R'fl_[R'fl]v"')R'fr—[R'frD ]:0)
for (f1,..., fr) € L". Suppose (3.3), we have
R-P| _ (Q)IR]"
R-fi— ——* AR/
’ = T T
and see
(R-P,-,Q>:1.
Also, we have
1\ R-P+2 Q)R]
R-fi+ =) — R )
(Rfi+ 5) - =5 < 554
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Here,

These imply
Tj(nL>J1Ej(n:R)) = U E,(n:R))

n>2

for j = 0,1. Hence from Lemma 3.1.2, we have
m’( LglEj(n : R)) = Oor 1.

for 7 = 0,1. Thus, if either m"(Ey(1 : R)) or m"(Ey(1 : R)) > 0 for some
irreducible polynomial R, then we have m"(E) = 1.
Now we assume that m"(Ep(l : R)) = m"(E1(1 : R)) = 0 for any irreducible

polynomial R. We put

F(R) = {(fl,...,m 3%

(3.4) has infinitely many solutions
P;, Q such that R | Q [~

where (3.4) refers to:

Suppose (3.4), we have
LUy R+¥E 9@
7)) - < o

for any polynomial U with 0 < deg U < deg R. Here, we see
QU _
(R+g@) =1

which implies that (fy +&,..., f, + £) € F(R) if (fi, ..., f-) € F(R). Also we
put

S{U;R) = {(f1, ..., f) L™ : [Rfi] =U,..., [Rf,] = U},

then its measure is —-—% and
q g

S(U;R) | J{(fr,--- fr) €L7 : deg fi < —degR} = L".

U:0<degU<degR



Since F(R) is (- + ¥)-invariant, S(U; R), 0 < degU < deg R, and {(f1,..., f:) €

L™ : deg f; < —deg R} have the same measure. Hence we have

m (F(R)0 S R) = Tl
which implies
m (F(R)NS(U;R)) _ m”(F(R)).

m (S(U; )
Suppose m"(E) > 0, since E = F(R) U Ey(1,R) U Ei(1,R), we see that
m”(F(R)) > 0 for any irreducible R. By the density theorem, we have m™(E) =
m’(F(R)) = 1 where R is chosen so that deg R is sufficiently large. Otherwise,
m"(E) = 0.

|
From now, we generalize the theorem. That is, we prove the Duffin-Schaeffer

theorem for the multi-dimensional version.

Theorem 3.1.2 (Duffin-Schaeffer type theorem)
Let ¥ be a {g7™|n > 0} U {0}-valued function which satisfies

D) Q) =oo.

n=1 degQ=n
leanic

Suppose for a positive constant C, there are infinitely many positive integers n

such that
@1‘
Yov@<C Y vQ@ 1651?) (3.5)
deg Q<n degQ<n
Q:monic Q:monic
holds. Then
-] <3 |- B <28
(P,Q) = (P,Q) = --- = (P,Q) = 1.

has infinitely many solutions (%, ce

o

) form™-a.e. (f1,...,f,) €L".
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Proof. In the sequel, we always assume that Q,Q;, Q' and Q) are monic. From

(3.2), if 9 is sufficiently small, then we have

il
7(Q)
QI

Now consider the measure of Eg N Egp with deg Q' < deg Q.We let N(Q, Q') be

m’(Eq) = ¥"(Q) (3.6)

the number of pairs of polynomials P and P’ which satisfy

P_P|_9Q)  $(Q)

Q Q] Q'
(P,Q)=(P,Q")=1, degP <degQ, degP' < deg@’

P P

(3.7)

for given @Q and @’. Then we show that the measure is bounded as follows,

' (Bqn Be) < {min (Y2, X)) o0}
Suppose
PQ -PQ=R (3.8)

holds for some polynomial R and D = (Q,Q’). If D divides R, we may write
Q=DQ', Q=DQ", R=DR,

and have
PQI* _ PIQ* — R*, (Q*,Ql*) — 1 (3‘9)

If P* and P'* also satisfy (3.8), then
P*Q™* - P*Q* = R". (3.10)
From (3.9), (3.10), we get
P=P +KQ, K : a polynomial. (3.11)
From (3.11), we see

[P - P = |K||Q"| <|Q| = [D]|Q"],
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which implies that
|K| < |D

must hold. Thus the possible number of polynomials P satisfying (3.8) for a

given R is no more than ¢*82. Since (3.7) implies

0# R < |Q¥(Q) +1QI¥(Q")

and R is divisible by D, we find that

V@) < BHOLERE). 1) - jgiui@) + 10w(@).

Then

¥Q) ¥(Q)
QI 1@

=27y (Q)¥"(Q).

(o Bg) < [min )-1Q1w@ + Q@)

2
Because we assume Zdegan wr(Q) = 00, Zdeg Q<n wr(Q) < (Zdeg Q<n wr(Q))

holds for sufficiently large n. Therefore we have

>, m(EqnEg) <2 Y FQv@)+ Y ¥(Q
deg Q,deg Q'<n deg QIQS:CQS’Q <n deg Q<n

<2’< > w’(@)

degQ<n

for sufficiently large deg Q. From (3.5) and (3.6), we have

> m'(EqnEg) <2fc2< > mf(EQ)> (3.12)

deg Q,deg Q'<n deg Q<n

for infinitely many n. Then m"(E) > (2°C?)~! by (3.12) and Lemma 5 of
[27](p17-18). Finally using Theorem 3.1.1, we complete the proof of this the-

orem.
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O
Example Put
1 . . . .
—+ if Q is irreducible,
P(Q) = ¢ 1 .
0 otherwise.
Then, from Theorem 2.2 of [25], we have
[o ¢} r 1
Z YP(Q >CZ( > .~ .¢* =00,C : constant
H k
degQ<n =1
and it is easy to see that
> v Y v
degQ<n degQ<n
holds. Thus we see that there are infinitely many solutions (%, ey %) with
irreducible @Q’s of
P; 1
fi — = _ for 1<i<r
Q :

forae. (fi,..., fr) €L".

Remark It is natural to ask whether we can get a necessary and sufficient con-
dition instead of (3.5) in Theorem 3.1.2. In this sense, we give the r-dimensional

Duffin-Schaeffer type conjecture in the following.

Conjecture : (3.4) has infinitely many solutions (

L™ if and only if

%, %) form™ae. (f1,...,fr) €

Z w212

vl Q"

Q : monic

diverges.
In the classical case, the r-dimensional Duffin-Schaeffer conjecture was proved
A.D.Pollington and R.C.Vaughan [24] for » > 2. We may also prove this conjec-

ture for the r-dimensional formal power series, r > 2, if we estimate the lower

bound of &(Q).



Chapter 4

On the exponential convergence

of the Jacobi-Perron algorithm

In this chapter, we discuss about the (ii) in page 1. In particular, we study the

convergent rate of Jacobi-Perron algorithm which gives a simultaneous approxi-

mation sequence.

4.1 Definitions and basic properties

Fast, we define a map T which is arisen from the Jacobi-Perron algorithm (JPA).

For (fi, ..., fr) € L7, we define

ai=a;(fr,. ..., fr) =

By the definition, it is easy to see that
a; € ]Fq [X]

and

dega, > dega;

[ fina
| fi

for

—1—} 1=
L1 o

for1<:i<r

1< <r—-1.
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Now we define the map 7 : L™ — L" by

_ (£ [R)] £ £] L[
T(fl,...,fr)-(f1 [fl}""’fl {fl}’fl [hD

for (fi,..., fr) € L" with f; # 0 and

T (0, fa ..., fr) = (0,0,...,0).

For we are going to discuss metrical theory of the JPA, we always

fl") # 0 for v > 0, that is, % (f1,..., fr) € L". We put

(flu)a"'7fr(u))ZTV(f11'--7fr) for VZ].

and

a,(") = a;( 1(""1), ., F) for 1<i<T

We define a (r+1) x (r+ 1) matrix J = (m,,;,) associated with (fi,

by the following way;

1< <r+1,1<4<r

1 il == ig + 1,
My i, = .
e 0 otherwise,

1 7:1 - 1,
My iy = .
ai,-1 2<1 <r+1,
that is,
0 1
1 0 a;
J=J(fr, .-, fr)= :
ar_1
O 1 a,
We put

JO — 1

assume that

. fr)elr



and

JO = gV ey for v > 1,

where I,,; denotes the (r+1) x (r+1) unit matrix. Since we consider the columns

of the matrix J®) --. J®) we denote

(v—r (v
A4
... gw = : :
J J A’(.V—T) . A£u)
v—r (v
AL Al
and
A(l—f) . Ag“‘l) ASU)
oo | S
A’(_"') . A£-~1) AS-O)
Ag—r) . A(()_l) AEJO)
Evidently,
... )
0 1
(v—1-r) . (v-1)
A Ay 1 0 o
T Al gl W
P S I S
0 0 O 1 ¥
Agu—r) . Agu—l) Agu—l—r) + Z aiV)Agu—l—rﬂ—k)
k=1
| i = o 4.2
AT AT AP S gl gtk (4.2)
kfl
Ag/—r) . A(()u-—l) A(()u—l—r) + Z aiu)Agv—l—r%-k)
k=1

Since det(J®---JM) = (=1)7, AY ..., AY and A" are coprime denoting

by (Ao, Ay, ...,A,) = 1. By a simple calculation, for (f* ", ..., [ V) eLr,
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we see that

deg A" = degal + deg AP for 0<i<r.

Now we put

7 AR 4 AT A
JO ... g® S . :
fsu) A(V—")f(") . A(V 1) f A(V
1 Ag/ r) 1(u) “+A0V—1)f£u)+A0
and have
A(u—-r) (u . A(V_l) 7.1/) A(u)
fi= h A S A 1<i<r (4.3)

A(V r fu) _+Agu—1)frv)+Aéy)’

o)
for any (fi,..., fr) € L". Here we call %S,,—) the v-th convergence of the JPA and

JW, ..., J® the expansions by this algorithm. We see the following in [20]

(i) For any v > 1,
(v)

JLI{.IOF—) f,’ for 1<:<r,

on the other hand, if 77! (f1,..., f;) Z0 and 7% (f1,..., f-) = 0, then

(ii) For a given sequence of arrays {a\”) : 1<i<r,v> 1};
af-") e F,[X], for 1<i<r

(v)

degal > dega for 1<i<r-—1,

there exists (fi,..., f,) € L” such that a; = a; (f; (v=1) ..,f,f"_l)) for1<i<

rand v > 1.
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4.2 The rate of convergence
At first, we show the following an a priori estimate.

Theorem 4.2.1 For any v > 1, there ezists a positive constant C such that

AY
fi - Z’(U—)
0

1AW . 1<i<r,

for (f1,...,fr) € L" where T* (f1,...,fr) €EL™ forv > 1.

Proof. From (4.3), we see

(») (v=r) £(v) (v=1) £(v) () ()

|A(V)l f,__Ai _ lA(V)‘ A Hh +-+ A+ A __Ai
0 PoAW - 0 AP=T) ) (v=1) £(v) () (»)

0 0 fl ++A0 fr +A0 AO

r

Z(Agu—r-l-#k)Agu) _ AS-V)A(()V_T_I-HC)) ’gu)

= 1A71| =
(Agu—r)flu) 4. +A§)u—1)f1§u) +Aéu))A§)u)

r (v—r—1+k) (v)
(v—r—1+k) A; _ A;
< ZAO (Agv—r—l+k) Af)")>

k=1
T v—1 l 1+1
_ ZA(u—r—l-Hc) Z (éf_) _ Az(- M )>l
- 0 0 (1+1)
k=1 l=v—r—1+k AO AO

A0 404

1 1

Ag) Agl-H)

< max \Ag)l
v—r<i<y-1

. (4.4)

Now, we prove the following lemma.

Lemma 4.2.1 For any v > 1, there ezists a positive constant C such that

A(-V+1) A(u)

1 1

C
Aéu-*»l) Aéu) z

Qr

1A

1< <.

<




Proof. From (4.2), we see

|A(V)| A(V+1) — ﬁ
A(u+l) Ag/)
AEV——T) + ascu-b-l)Al(u—-r-}-k)
- IAé”’I Z A
V r v v—r A(V)
N Z Q) gmreR Ao
IAé | (v—r) Agu-—r) A,Eu) r—1 (v41) s (v—rtk) Agu—r+k) Aiv)
= G Ao - L) +Zak Ao —rtk) 40
|[Ag ] Ay Ay k=1 Ay A
1 - A(V—") A(V) . - A(V r+1) A(v)
< —my max § AP | - 5| let 148 T 1k
[a£u+1)| A((]V—T) Aéu) A(u r+1) Agu)
(v-1) (v)
Lla (V+1)||A(V 1)| A, _ A }
(v-1 v
A0 T 4P
y 1 . |A(”")I Agu—r-f—k) Agv—r+k+1)
- ‘a£V+1) [ OSkST—l 0 Aél/—r'f'k) AéV—T+k+1) ’
v—r+l+l') (v—r+1+1'+1)
(v+1) (v—r+1) A1 Ai
a A - 4.5
1§Iln§3‘(-—l Ial || 0 [ Ag, T4 AE)V_T+1+I/+1) ( )

0<V<r—-1-1

From (4.1), it is easy to see that

A‘” AP | T q
and :
, A(v+1) A(u 1
A8 o gw|Sg  fr 1swvsr
0 AO q

Then by induction together with (4.1) and (4.5), we have

, A(V+1) A(u) 1
IA(() )l EV-H) - zu) = “url for (u-1)r+1<v<ur
Ap A q

for v € N. This shows the assertion of the lemma.
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From (4.4) and this lemma, it is easy to see that

y A
A4S | £ - A0 <

O
Next, we shall give an estimate of the error of the convergence by using |A§)”’|

for a.e. (f1,...,fr) €L".

Theorem 4.2.2 For any v > 1, there exists a positive constant C' = C'(e) such

that o
) - Aiu Cl
|Ag”| | f: 20 < A Ve >0
form™-a.e. (fi,...,f,) € L", where
S S I
¢ -1 g—1

AEv+1) AEu)

Proof. From (4.4) it is enough to estimate |A}] . Then by (4.5),

A(()y+1) - Aéu)
we get
Az('V-H) ASV)

A | oeg - =
Ay Ay

A(_l—r+k1) A(l—r+k1+1)

I

1 (1-r)
< vty 1 | {Osr,ffgf_lh‘lo | AT —Ag-r+k1+1)

/4Q‘T+*2+*§) /40—r+k2+k§+l)
1 1

1+1 l—r+k
max a1 AY )|

1<ks<r-1
0<kh<r—ky—1

Aél—r+k2+k’2) - Agz—r+k2+k'2+1)

Now we suppose u7 + 1 < v < (u+ 1) 7 for some u € N. Then we have

(v+1) (v)
VIl e
(v+1) (v)
Ap Ay
) , ,
(fmax (la;" ], 1) oy |49 40
< max - max Ay — — |
(u—1)r+1<v <ur la£V )| (u=1)r+1<p/ <ur Agu ) Aéu +1)

1<i<r—1
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So we can get an estimate of the error term for the index v € (ur + 1, (u+ 1) 7]

by those in ((u — 1)7 + 1, ur] and e - :, 1 < i <r—1. Then we consider the

stochastic behavior of (V)}, 1 <i<r—1. We first see the distribution of the

(v )
maximum degree of I—J(v—):, 1<i:<r-—1,for afixed v. We define

deg” ") = max(dega!”’ , 1)

for ) € F,[X],1<i<r—1 We put

= (4 _ )
k; = dega, 1<1ng 1deg a;

For a fixed ¢, if k; # deg o) =

m ({(fi,..., fr) €L : dega® — max deg*al) = k;, dega® = n})

1<i<r—-1

- B E T
- @) )

= (q_quzz-((r—l)kj ) (4.6)

and if k; = deg aﬁj),

W ({(Jur- . ) €L : by = degal}) = ( ! ) a1

qkj—l qkj
_ _g-1
= e (4.7)

Then, from (4.6) and (4.7),

mr({(fl)"wfr) S ]Lr . degagj) — max deg* (J) _ k]})

g-1 i (q—l)(q fl)

(kj—1)r+1 n+(r—1)
q n=k;+1 q
. g-1 +(q—1)(<1’1 1) q
- q(kj——l)r+1 q(r—l)kj k “(q _ 1)
¢ -1
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Next, we see the distribution for any v. We put k = min k;,
v—r+1<5<v-1

m ({(f1,...,fr) €L : min ki =k})

- 20 L;‘“] =]
()

#I]

q
Let X, = deg a,(f') — maXj<i<r—1 deg’ af”) and Y, = min;j<s<, X;s4». Then the

Il
M

expectation of Y; is as follows.

EY,) = Z ,zk
=1
CI

g’ -1
(v)
1
Because : : v>1 7 is an independent and identically distributed se-
o
quence, see [21], we have
2
rlingo , 2 Y; T a.e.

by the strong law of large numbers. Then, for €; > 0, there exists a positive

constant C and v; such that for v > 1y

AW C
1AV — S| < — a.e. (4.8)
AP | glEla-e

On the other hand, by the strong law of large numbers, we have
1 q
lim ~ E degal) = —— a.e.
v—00 I £ &ar g—1

(see [21]). That is, for a.e. (f1,...,fr) €L7, for €5 > 0, there exists v, such that

for v > vy
deg A" g
v g—1

< €9,
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and so
9 V—¢€ar < degAf]") <3 v+eyu.

g—1 g—1

We have
q(p—ez)u < |Aév)l < q(p+ez)u’
then
A |7 < . (4.9)

From (4.9), (4.8) is as follows:

, AY C

A \f: - ) — a.e.
Ay |A((JV)|,,—(;W§[;](’Y—61)

That is, for any € > 0, there exists a positive constant C' and vy such that for

v 2>y
A c'
1AV 5 - Bl < a.e
’ AP T A G

This is the assertion of the theorem.
O
Remark For any € > 0, it is easy to see from the Borel-Cantelli lemma, there

exists a positive constant C such that

P; C
Q fi - —= < ) St S T,
‘ ' Q |Q %+e
has at most finitely many (%,...,%) for a.e. (fi,...,fr) € L". In Theorem

4.2.2, it is evident that % < 1. Now the question is whether there exists a

positive constant C’ such that

P-(V) CI
W) | _ L1 '
TN~ Gw Sjgmpie 1SR

has infinitely many solutions a.e. for any € > 0 or not.
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Chapter 5

On the exponential convergence
of the modified Jacobi-Perron
algorithm

In this chapter, we consider some problems similar to Chapter 4, we study the

convergent rate of the modified Jacobi-Perron algorithm.

5.1 Definitions and basic properties

In this section, we define a map S which is arisen from the modified Jacobi-
Perron algorithm (MJPA).

Now, for 1 < 7 < r, we put

Lr — (fi, ..y fr): degfj >degf; forl<i<yj,
i deg f; >degf; forj<i<r |’

then
L"=LTu.--UlL.

Note that (0,...,0) € LT. We denote by m” the normalized Haar measure on L".
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For (fi, ..., f;) € L}, we define
ﬁ 1< <,
LS5 ]
bi:bi(fl7"'7fr) =
EARw +1
—| i1=7+1
LS
if (f1,...,fr) #(0,...,0) and
b,':o, ISZST‘
if (f1,---,fr) =(0,...,0). From the above, we see
0 1<i<j—1
b; = b,’G]Fq 71<i<r

b; € Fo[X], degb; >1 i=r+1.

Now we define the map S: L™ — L" by

S(f17~--afr)

(b Gl (2] G _fha] ke
7R 7R PR I 73 R 7 i 7 LS
<%7"'$L}—._1;%_br+la%_bj+17"' L—br)

’fJ
for (fi, ..., fr) €L%, (fr, ..., fr) #(0,0,...,0) and

We put

GO ) =8 (f, ., f) for w21
and

(w) _ g (plv=1) (v—1) .

b, = b (f; R ) for 1<i<r+1,

that is,
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S"(fry-os £r)

v—1 v—1
S, Y

v— w-1) w-1) (v=1) Y Y
_ (Y fi-1 1T |1 fimi ™ | fin A B A
f}v—l) bl bl f;v——l)’ f;u—l) f;u——l) ) f:’(u~1) f;v—l) bl bl f;u-—l) f,v_l)

2

v— (v—1) (v=1)

O A S W O N /E S )

- f(v—l) Yyt f(u—l) ) f(u—l) r+13 W G410 -
J J J J

for (F* 7V, ..., e L7. Also we put x(v) := j such that

deg f}"”l) > deg f,-("_l) for 1<i<j,
deg f}"“l) > deg f 7 for j<i<r.
We define a (d + 1) x (d + 1) matrix M = (my,;,), m;, ., € Fo[X], associated to
(fi,--, fr) €LE, (fr,--, ) # (0,...,0) in the following way;

N1<ip<r, irs#]

Miyi; = Oiyi, 1 <4 <r+1, (5.2)
(i) 2 = j
1 59=r+1
M, ; ' (5.3)
0 1< (3] S T,

(i)ig=d+1,1<4 <r+1

that is,

M:M(fl>"~af1')
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1 0

0 1 O
0 --- --- 0 1 (5.4)
0 1 b
1 0 byin

For (f1,...,fr) =(0,...,0), we define M the (r + 1) x (r + 1) unit matrix I,4;.

We put
MO — i
and
M®) = M(fl("_l), o )Y for v > 1,
where ( 1(0), cey fr(o)) = (f1,---, fr)- Since we consider the columns of the matrix
MO ... M®) we denote
G . g W
) v pw
M(l) L. M(V) — ﬂl{(y) 1 ... P ﬂn(u)r BJ
5(."1) cee 5£’;> Bi”)
v (v v
(()1) 1601') B(g)
and
B%—’) . Bg"l) B§0)
MO — 5 E :
Bﬁ—’") ... Bﬁ'l) BT(O)
B(()—r) o B(()—l) B(()O)

By the definition of B{", it is easy to see that deg B{") = Z degb{’) | which we use
i=1

often. B{") will be the denominator of the v-th convergence and BY 1<i<r,

will be the numerator. Evidently,
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1 0 \
(v—1) (v—-1) (v-1) .
( b1 T ir B . 0
: : : 0 1
,B(V—l) . ,B(V—l) B(V—l) o --- --- 0 1
— k(v)1 Kk(v)r k(v) (5 5)
) ) ) | o ™ :
: : : K(v)+1
(v-1) (v-1) (v-1) 0 : . :
,8,1 e rr Br : . :
(v=1) (v—1) (v-1) (v)
\ ﬁ01 or Bo 0 1 (’)
v
\ 1 0 br+1 )
V-1 -1 -1 -1 v - - V) alv— v -1
‘9; 1 b ﬂi‘;(y;—x Bgy ) ﬂi".c(.,;ﬂ ﬂgr‘ Y ﬂﬁux(ig + X bi )5§Vh D +b$~+)15§v )
k=n(o)+1
(v=1) (»=1) (v=1) (v=-1) (v—1) (v-1) - (v) p(v—1) (v) gv-1)
Bewyr 7 Pr(uyc()-1  Br(v) By w41 " Peyr  Pr(ywny T e (2)“ b Betyi Torr1Be)
v—1 -1 -1 -1 v—1 - s v—- v -
pTY il L BETY gl e BT B Y el B
k=n()+1
-1 -1 -1 -1 -1 - = - (v—1
BTV ﬂ(()un(v;—l B{*~Y ﬁ((lvrc(v))+l g ﬁéun(:)) + N (Z) b:,")ﬂ(()v,, Doy b(,';)l B{»~1
=x(rv)+1

Since det(M® - - M®) = +1, which follows from (5.4), we see that B, ..., B,

and B! have no non-trivial common factor. By a simple calculation, for ( 1("—1), ey
0y e Ly, , we see that
(i)iz # k(v), r+1
v v—1 .
BN =Y 1<i <, (5.6)
(i) 32 = k(v)
g, =BY o< < (5.7)

(i)ip =7 +1

v v v—1 v v—1 v v—1 .
51(1 32 = Bzgl) = ﬁfl n(u)) + Z bfc )ﬂi(lk i bi+)1Bf1 "0 <ip<r. (5.8)
k=r(v)+1




(") (v")
li By
The above (i) and (ii) mean (: y | 1s one of ( n | T < vV <v-1
i B
(") (v")
0i By,

From (5.5), we find that Bf") increases as v increases and
deg Bf;') > deg Bfl",)c(y) > deg ﬁ,(f 32

if iy # k(v),d+ 1 for 0 < 4; <r. We put

flv) ,3£'/1)fl(v) 4ot ,Bgl:.) ’SV) + BYI)
M(l) N M(”) = :

7 B 4o+ B4 + B

V) NG e s B

and see the following theorem.

Theorem 5.1.1 For any (fi,...,f;) € L7, we have

PR 4 05 4 B
S+ 88 5 + By

for 1<i1<r,

whenever S” (f1,..., fr) #(0,...0) for any 0 < V' < v.

Proof. From the definition, for (fi,..., f,) € L],

S(fry-oos fr) = (K, 1)

(ﬁ = SN N 22 RO N ﬁ—bm).
fj, 9 f] ,fJ r+1» f] J+17 af] r

Then
( (1)
1-f
1 1 —
v ol
=T o ° (5.9)
b f;( ))+ b$(+))1
1 1
1-f774+0b; L
le) b(ln j<usr.
\ L fj + r+1
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On the other hand, for (fi,..., fr) € L7,

( <1)
1- f (1)
M p1) W) ) | pO) bria
Bi1 fr + B, fr + B; i= 4
(M) 7(1) 1) o - (1 pV) J (5.10)
01J1 +,60,. ‘+"B f + r+1
1. f,-”+b” o
—u‘)_(ﬁ J<isT
\1’fj br+1

From (5.9) and (5.10), the assertion of the theorem holds for v = 1. Now we
assume that the assertion of the theorem holds by v, and we will show that the

assertion holds for v+1. Note that x(v+1) is chosen by (f,..., f*)) € LY+
ﬁ(u+1)f(v+l) 4o b B S | gt
BUFD D ﬁ(v+1)f'(u+1)+5(()v+1)

r(v+1)—1

o7

r ()
(v+1) fk (v+1) 1 (v+1) (v+1 fr (v+1) (v+1)
Z B oy Pkt (,f(") =bri1 ) + Y B ) ("'——f(,,) = by + B;

_ :c(v+1) x(r+1) k=r(v+1)+1 r(vr+1)
s +1) f (v1) 1 (v+1 - oy [ (v+1) (v+1)
Z B s — 4By (o e X e e ) + By
n(v+1) 'fn(u-i-l) k=r(r+1)+1 w(v+1)
"(V{Z) lﬁ ) fk" B 1 e i 5 £ ) | 4 gD
ik (,,) 1 (v) r+1 ik (v) k i
— n(v+1) x(v+1) k=r(r+1)+1 r(v+1)
k(v+1)—1 r (v) )
SR R ( o) $ A (A )
k=1 w(v+1) fx.(v-}—l) k=r(v+1)+1 w(v+1)
From (5.8),
5(V+1)f(y+1) . ,B(V+1)f(y+1 + Bl(”'f’l)
,B(V-H)f(V_H +,6(V+1 f£v+l) + B(()u+1)
k(r+1)-1 (v) r
() fk w__1 v S
Z ’3 f + Bi (v) + Z ’B f(v) + ﬁz k(v+1)
. k=1 K.(V+1 k(v+1) k=x(r+1)+1 Kk(v+1)
- r(v+1)—
w1 w_ S
Z ﬂok o S
(v) (v) 0x(r+1)
K.(V+1) k(v+1) k=k(v+1)+1 K(v+1)
_ ﬁ(")f(") ,B(V)f + B (v)
B £+ -+ 65 1

Thus the assertion holds for v + 1 and the proof is complete.



Now we call i—é:); the v-th convergent of the MJPA and MW, ... M®) the ex-
pansion by this algorithm when S” (fy,..., f;) # (0,...,0) for v > 0. Moreover
the expansion by the MJPA is said to be finite or infinite if S¥ (f1,...,f,) =0
for some v > 0 or S” (f1,..., fr) # 0 for any v > 0, respectively. In the sequel,

we show some lemmas about the expansion.

Lemma 5.1.1 For (f1, ..., f;) € L" with f; € Fo(X), 1 <1 < r, the ezpansion
by the MJPA is finite.

Proof. As f; € Fy(X),1 <1 < 7, we can write (f1,...,f,) = ( ,...,%)
where Py,..., P, and Q are in F,[X] and have no non-trivial common factor.

Then it is clear that

P! P
S(fi,--h fr) = (-1——) (5.11)
P; FP;
for some Pj,..., P € F [X]if (f1,...,f,) € L. If we put S*(f1,..., f;) =
(v) v
(%ﬁ, ey Z&) P(V) ,Pr(") and Q™ have no non-trivial common factor, then

(5.11) implies
deg Q™) < deg QY for v>1.
Consequently, for some vy > 1, Pl("") = ... = P" =0 since deg P,-(") < deg Q™)
and Q™ is a polynomial for any v > 1.
O

Lemma 5.1.2 For (f1, ..., f,) € L7, if fi € Fo(X) for some i,1 < i <r,, the
ezpansion by the MJPA is infinite.

Proof. If the expansion of f; is finite, which means S¥(f1,...,f,) = (0,...,0)

for some v > 0, then from Theorem 5.1.1, we see

(v) 1) (v—1)
’LK, u) + Z b ﬁty +br+1

k=x(v)+1

(v-1) (v) plv-1) (v) plv-1)
’BON(V) + Z bk /BOk +br+1B0
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But this shows that f; is a rational function, which contradicts with the assertion

fi & Fo(X).

Lemma 5.1.3 For any sequence MY, ... MF+Y

B | B _BY
Béu-}»l) B
holds for any v > 1.
Proof. Note that k(v) = min {: :
1<i<r+1

component of M. Then if 1 < (1) < (2),

B,-(2) Bi(l) bgz)
2) ~ SM L0 L2
B |

m®)., # 0} where m

. of the form (5.5),

@) | is the (3,7 + 1)

1<1<r.

Since deg bﬁ';)l > 1 and deg by;)l > deg bg"), 1<i<r, forv>1, wehave

(2 (1)
o |B~ B 1
Bl om0 | S g
B, B, q
We also see if k(1) = (2),
( b2
1) 1(2) (1
B® W (1+ b£-21b£-21)b£-21
2) RO
By B’ b b _ p
r+1"2 1
1) 1(2) \p(1
(1 + b0
and if k(2) < k(1) <,
b
(2) 1) (2
Bi(Z) - Bgl) = bK(H)_F(Z;HbTB (2)
Béz) B(()l) by 167 —b; bn(l)
2 1) 1(2) \.(
(bi()n + 6,6 )bl
Then similarly, we have
o |BY  BY| 1
1Bl 2@ ~ 5w | S g
B, B, q

(5.12)
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Now we suppose the assertion of Lemma 5.1.3 holds by v — 1. For v > 2,

B(u+1) B§y)
(v+1 (u)
BO ) BO

(») (v+1) /(v v+1)
B ww+1) T Z by 8% + b BY (
_ k=k(v+1)+1 Biy)
B T ¢
v+ v v+ v
’BOK-(V+1) Z bk ﬂOk + br+1 BO
k=r(r+1)+1
(V) (v) (v) (v+1) ( p(v) pv) _ o) p)
ﬁzn(u-{-l) ﬁOK(V—G—l)Bi + Z b (/B B OkBi )
_ k=r(v+1)+1
v+1) (v (v+1) p(v v
'B()n(v+l Z bgc : Ok)+br+1 B ) B(())
k=x(v+1)+1
d
v+1 v v v v
> B - s
k=x(v+1)

2
by By

V) (v)

1 B}

= —/— T ﬂ(y) - :
|b(v+1)B(()u)‘ Z (u) B(()V)

r+1 k=k(v+1) 0k

here we use the facts that deg b;:'H) ﬁ(() < degb, +1B(") for the third equality. By
(5.6) and (5.7), we can replace Bz-(l,:) by B"™ for some l;, —r <l <v—1, but
B™ =0 fori+0andl; <0,

(v+1) (v) B (v)
50 | B BY| 1 ZBO'* ( B% B )
v+1 v v+1 U v
B B0 T s BT B
M (1+1)
— 1 (1) B, B,
- ]b(u+1 Z B, Z (1) l+1)
T+1 Ik 1 0
1 (k)| Bi(l) B(l+1)

= max max |B,
13 ':;1)1 1<k<v—1k<I<y—1 |Bo
T

B[() B(1+1)
Then, from the assumption of the induction,

B(V-H) B(u)

B(()V+1) B[()v)

1
¢

|By”| <

1
q



Theorem 5.1.2 (i) If S* (f1,.-.,fr) Z0 for anyv > 1,

B(")
lim —— = f; for 1 <1<,
v—00 B(")
on the other hand, if S*" ' (f1,...,f;) 20 and S* (f1,..., f;) =0, then
B
+)=fi for 1<i<r.

(it) For a given sequence of arrays {bﬁ”’ 1<i<r+1,v>1}

b, € F [X]),  degb®, >1,
bf") =0 for 1<i<jv), bﬁ”) el, for j(v)<i<r
with a sequence j(1),7(2),...,1 < j(v) <r and v > 1, there ezists (fi, ...
L such that k(v) = j(v).
Proof.
(i) We see
f' B Bi(y) _ ﬂ(V)flV) /31(':)]((") B(V Bi(")
B(()ll) 01 flV) +ﬂ f.,.y + B V) B(()V)
> (BB - BB 1Y
_ k=1
(867 £+ -+ 057 £ + By) B
r ,61-(’/) B(V)
> (8 - 22) s
_ k=1 \Pox  Bo
TP+ A7+ B

For each k, 1 < k < r, there exists some Iy, —7 < I} < v, such that

1
ﬁik = (k)

(5.13)

7f1') €
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Then, we have

(V) B(")
Zﬁ (v) B(")

0k
) (B BY
ZBO )~ HW)

By* B

k=1

~ B(lk szk) B§1k+1) | Bfu—l) BEV)
- Z I (lk - B(lk"‘l) Tt B(V—l) N B v)
By 0 0 0
g g+
<  max IB(()I)| — — —q|»  since Bi(l") =0fori#l, - 1<l <0
1<i<v—1 B(()) B((,+ )
1
< -
g

Since deg BY) = de pk) > v for any € > 0, there exists vy > 1 such that
0 80,41

BM| 1 1
fi— 1(,,) < - o < for Vv > 1.
By 7By
This implies o)
B v
— = f; 1<:<r.
v—00 B

(i) Now we suppose that such a sequence of arrays {b{"’} satisfying (5.13) is

given. Since

B(u) B+
v +!

B() BSV )

gk glk+1)

1

B(()k) B(()k+1) ?

< max

v<k<v+l-1
()

it is easy to see, from Lemma 5.1.3, that (i(u)>1s a Cauchy sequence for 1 <1 <

o)
r. Then we have the existence of the limit of (%-3)’ because L is complete.

0

a

5.2 The rate of convergence

In this section, we shall give a stronger estimate of the convergence than that of

Lemma 5.1.3 under an assumption on {k(v), v > 1}.

62



63

Theorem 5.2.1 Suppose {b,(") :1 < k(v) <i<r,v > 1} is the expansion of

(fi,---, fr) €L If #{v : k(v) =1} = o0,
lim |BY - f;B"| =0  foranyi, 1<i<r.
V—00

Here the condition #{v : k(v) = i} = oo holds for a.e. We prove it later.
Before we prove Theorem 5.2.3, we give a definition and some lemmas which are

necessary for the proof.

Definition 5.2.1 For any (f*°V,..., F 0y eLr | we put

x(v)’

u(v) = 121;32{1" : ,31.(:) = Bf”‘), forany 0<i<r}.

Also we put, for s > 2,

fors>2,1<i1<r and

with 71 = 0.
Lemma 5.2.1 Suppose #{v : k(v) =i} = oo foranyi, 1 <i<r. Then
To—1 < u(v) < 7s for T, <v < Te41.
Proof. From the definition of 7,
0=mn <uv) for v > 1.

Note that u(v) is non-increasing. If v = 73 — 1, then u(rv) < 7 also by the
definition of 7,. So

7 <uv) <



holds for 7, < v < 73. In general, the assumption of the lemma implies 7, < oo
for any s > 2 and we have 7, < u(v) for v > 7,4;. Also we have u(v) = 7, if

V= "Tg4; — L.
O

Lemma 5.2.2 For any sequence MM, ..., MW+ of the form (5.1) we have

, B§V+1) B(V) 1
lB(())|"m—IT) <—=  for v2>r,
By By’ g
Proof. From (5.12), it is clear that
(1) (0) (1
l 0 | 1 0 1 ( . )
B B{ B( T
Forv > 1,
(v+1) (v) ) (v)
), | Bi B; B;
|Bg | [b(v+1 Z ﬂ ( W) )) ’

v+1 - v v
B(() ) B((J ) r+1 k=k(v) 0k BO

We can replace ﬁz-(',:) to Bfl") for some I, —r < I} < v —1, but Bfl") = 0 for

i # Iy, —r < i< 0, then

B§u+1) B(V)

,, ! B B
IBS )‘ (v+1) (v) (V+1) z B(()lk) ( l(lk) - z(v)
r v—1 ) (1+1
_ ! S B B’ B, ))
u+1) (1 1+1
lb7‘+1 I k=k(v) 1=l BO ) B(() )
1) (1+1)

————  max
|b('ﬁ1)’ u(v)<I<v—1
r

By (5.14) and Lemma 5.1.3, for v > 7,

|B(V)l Bz'(u+l) Bi(u) < 1
0 1| S+ )| = 2°
BC  BY| S 7
By the induction, for v > 7,, we have
) Bi(y+1) Bl(l/) 1
IBO I (v+1) - (v) < s
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4
Proof of Theorem 5.2.3. For some [} (1 < k < r), we have
. . y B
By
r (v) (v)
vy 1 Bix _ B () 5(»)
1B —; Z( 5 - U)fkﬁo,c
B i \85% B
B BM\ ) w
S lr_é_ll?gxr (B(()lk) - B(()V) fk 'BOk
B g+
t 3 ()
< mex, max 1Bl | ~ —m |-
SESTIRSISVE B, By
By Lemma 5.2.5, for t > 7,
“ BB g+ 1
I l — | < —.
0 B(()t) B(()t-{—l) ¢
Then,
lim |[B® — £;BY| = 0.
V—00
g

We show that S is Haar measure preserving.

For a fixed v > 1, we denote by (b() ... b®) the cylinder set induced from
(b®), ..., b™), that is, we put

bgl) bgy)

b by = (f, L ) : =bW ... : |=b"
1 v
b b

Theorem 5.2.2 (i) For any Borel set B C L7,

m’(S7'B) = m’(B),
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that s, m", the normalized Haar measure on L", is an invariant probability mea-

sure for S.
b

(i) : : v >1) is an independent and identically distributed sequence
b(")

r+1
of random variables with respect to m”.

Proof. (i) It is enough to show that
m”(S7HbW, .. b)) = m (M, ... ™))

for every cylinder set (b, ... b®). Let

b,
b= :
br+1
with
0 1<i<j
1 L
b = r=J (5.15)
b, € I, j<i<r

b; € Fg[X], degb; > 1 i=r1+1,

Then we see that

S7HW, . b™) ={ J(b,bM, ..., b)),
b

where b takes all such vectors with 1 < j < r. If we fix b, then S|y, ) __pw)y 18

.....

1-1 and onto (bY), ... b®). For any f € L of deg f = —n, we consider

Si(g) =2 - [%J for gelL.

The composition m o Sy of the normalized Haar measure on L and Sy is defined
by
(m o Sp) (A) = m(S5; A)



for a Borel subset A of L. Then it is easy to see that

dmo Sy n
——(9) =4 a.e.
holds. Also we consider
1 1
Vifl==-|=

=7 M

and have
dmoV

(f)=¢" (ae).

dm
This means that the Radon-Nikodym derivatives of Sy and V' are constants (a.e.)

if deg f = —n. This shows

dm oS _
—(f1,-- - fr) =g - q""V

(a.e.)

n (b,b® ... b®) Hence we have

¢V m (b, M b)) = m (D, ™))

when degb,,; = n > 1. Moreover, the number of b with (5.7) is ¢"7¢™(q — 1).

Therefore,

m(S~HbW, ... bM)) = m" (U(b, bW, ,b<">)>
b
= Y m'({(b,bM, .. b))
b

- = n r—'mr(<b(1)7"'7b(u)>)
= Zz(q - l)q q ’ q2nqn(r—1)

jlnl
_ 9=1 (W v)
- qu(n 1)r+] ""’b ))
7=1 n=1
= w((Y, . bWY).

(i) A similar calculation shows that
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This means that the coefficients of the MJPA induce an independent and identi-

cally distributed sequence of (r + 1)-dimensional F,[X]-valued random variables.

O
From Theorem 5.2.4, we have the following.
Proposition 5.2.1 Fora.e. (f1,...,f,) €L,
(i) ,
1< n< = — =7
g A 1sn<v, k) =4} _ (4=1)g l<i<r
v—00 v q — 1
(il
o #n 1< n< v deghh =n} g -1
v—00 1% q"" ’
(iii)
lim #{n:1<n<v k() =7, deghl)y =n}  g-1
v—00 v B q("“‘l)""*‘j'
Proof. It is easy to see that
-1
m({f : deg f = —n}) = L,
1
m({f : deg f < —n}) = -
and
m({f: degf < —n} = —.
So,
mr({(fl) v 7fr) : (fl) sy f'r) S H—‘;) degf] = *n})
- F) )
qn qn qn—l
-1
a (5.16)

q(n—l)r+j ’



Then the strong law of large numbers shows (iii). Also (i) and (ii) are easily shown

by

Sk - 2EQ)
q(n—l)r+j qr

n=1
_ @—1
qgq —1
and
. ¢g-1 g—1 "1
Z n—1)r+ = n—1)r Z o
= q( r+i q( ) et q]
_ 71
qrn
O
Proposition 5.2.2 Fora.e. (f1,...,fr) €L,
(v) _
Ry Z degbrin = 7y

Proof. We consider the sequence of random variables {X,} on the probability

space (L",m") by X, (f1,...,f-) = deg b,+1 From (5.8), we have

qg—1
Z Z qJ q(n—l)r

]lnl

I

E(X,)

g —1

By the strong law of large numbers, we have the conclusion.

Now we put
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Lemma 5.2.3 Let

w(v) := max s,

Ts <V
then there exists o > 0 such that
lim M =« a.e.
V—00 1 %4
Proof. For a fix s > 1, we put
A ={(f,.. -, fr) €L : 7opy — 1, =1}, forl >r,

and {Y,} is the sequence of random variables on (L, m") defined by Y,(f1,..., f+) =

Te+1 — Ts- Lhen, we have

E(Y,) = Zl-m'(A,)

r+im’(Ys > 1).

I=r

r ~1 r—k l
m' (Y, >1) < (1—(17—1!——) ,
1

Here we have

k= q_l
and have
o) r q—1 1
< + —_— | =74 qy < 0.
Y () e

It is easy to see that {Y;};<1 is an independent and identically distributed se-

quence. The law of large numbers implies

1
Slgr;o 5 Z_; Y,=7r+ap a.e. (5.17)
Since
s S
TS+1 = Z(Ts+1 - Ts) = ZYS
s=1 s=1
and

Tw(w) <V < Ty(w)+1,
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we have
S w(v) S
> Y. Y,
s=1 s=1

when w(v) = S. From (5.17), we have the assertion of the Lemma with

1
7‘+C¥0.

=
g

Proposition 5.2.3 For a.e.(f1,...,fr) € L7, there exists a positive constant

C, = C1(ge) such that

B
B{"

Gy

fi - < qva(l—e)

|BY) foranye>0, 1<i<r.

Proof. We fix ¢ > 0. For a.e. (fi1,...,f,) € L", from Lemma 5.2.6,
w(v)

a—e< —<a+e¢
v

for sufficiently large v, equivalently,

va —ve < w(v) < va + ve.

Then,

for sufficiently large v.

Theorem 5.2.3 For a.e.(f1,...,f.,) € L7, there ezists a positive constant Cy =
Cy(e) such that

Gy

14+2(1-¢)

for any >0, 1<i<r.

<
1By
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Proof. We fix € > 0. From Proposition 3,

B
f1 - B(V)
0

|BY]

Since
deg By =) _deghly,
=1
from Proposition 2, we have

va(1-§) vre(1-5)

q q

(mpre-0)

2

v

= |BW50-3)

for sufficiently large v. Then there exists a positive constant C, such that

Y BY C
’ B
Cs
B
which means o)
B Cy
fi— l,, < SR
O
5.3 Rational functions
In this section, we study the number of (%, c %) with B; € F,[X], deg B; <

degBp=n2>1,1<:<r.
Definition 5.3.1 For (By, By, ..., B,) € F [X]*! with

(Bo,Bi1,...,B,) =1 and degB;<degBy for 1<i<r,
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we denote by

L=L(By,B,...,B,)
the length of the expansion by the MJPA.

Definition 5.3.2 We put

(BO, Bl, eeey Br) € IF,;[X]T+1 : (Bo, Bl, e ,B,) = 1, L= v,
E,(n) = # max deg B; < deg By = n

1<i<r
and
(Bo,Bl, .. .,B,.) € ]qu[X]r+1 : (BQ,Bl, e .,B,-) =1
E(n) = # max deg B; < deg By =n

Theorem 5.3.1 We have

and

B(n) = (¢" — 1)g" ).

Proof. For (By, By, ..., B,) € F [X]*!, if L = v, then By is determined by v
polynomials b£1+)1, o ,bf';)l. Recall that deg B(()") =n=>_ deg bfill. Then, the
number of choices of deg bi’ll, 1 <i<v,isequal to (;’j) Put n; = deg bﬂl for
1 < ¢ < v, then the number of possible choices of {bg’ll is (g—1)q™. So when we
fix positive integers ny,...,n, with >_._, n; = n, the number of possible choices
of {bﬁ:L 1< i<r}is(¢g—1)"¢". Consequently the number of all choices of

polynomials bﬁﬂl, e, bf';)l is equal to

(Z:i) (g-1)"q"

Since the number of possible choices of {b§~i) 01 <3 <r}is ¢ "¥ the one of
{b§i): 1<j5<r,1<k(t)<r}is

r

qd—n(i) _ g —1
)

g—1

k(i)=1
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Therefore

From the definition, it is clear that

B(n) = gE”(")
= g (Z: 1) (¢ - 1)

n_r(n-1)

= (¢ —1)q"¢q

— (qr _ l)q(r+l)n—rl

Definition 5.3.3 We put

- (BOvBlv o 'aBT) € ]FQ[X]T+1 : (BO:Bla - '1BT) =1,
E(n) = # max deg B; < deg By =n

1<i<r

Theorem 5.3.2 We have
E(n) = (¢" = 1)g"*".
Proof. For (By, By, ..., B,) € F [X] ! satisfying
deg B; < deg By = n for 1<i1<r

and

(B07Bly"'7Br) = 17
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there are ¢ polynomials B; of the form

B,‘:CBo-f-B,' CE]Fq.

It is clear that

~

(By,B;)=1 and degB;=n

unless ¢ = 0. Hence for each (By, By, ..., B,) € F,[X]", we get ¢" vectors

(Bi,..., B, ) which satisfies

(BO,Bl,...,B,)-—-l and degBign for 0<i<r.

Then

~

(r+1)n—r

I
Q
S
—
Lo}
I
—
~—
L)

ro_ 1)q(r+1)n‘

]
—_
J»)
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