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Chapter 1. Introduction

To study the motion of water waves is one of classical problems in fluid mechanics.
However, it is rather hard to solve the full problem of water waves, with no approximation
based on the assumption that water waves have small amplitude. This fact comes from
not only its nonlinearity, but also an unknown free boundary to be determined as a part
of the solution.

Several papers addressed the well-posedness for the exact problem of water waves, in
the sense of existence and uniqueness of solution. Nekrasov[30], Levi-Civita[24] and
Struik [38] considered progressing waves. The papers of Lavrentiev [23], Ter-Krikorov [41],
[42], Friedrichs and Hyers [10], Beale [3], Amick and Toland [2] concerned solitary wave
solutions. Later, Gerber[11] examined steady waves over periodic and over monotone
bottoms.

Using the abstract Cauchy-Kovalevskaya theorem, Nalimov [27], Ovsjannikov [34] and
Shinbrot [36] showed the well-posedness for the general initial value problem of surface
waves with analytic data. Moreover we see the similar assertions in [17], [18], [19], [35],
[39], [40]. '

As for the initial data in a class of functions with finite smoothness, unique solvability of
the plane problem of vortex-free water waves of infinite depth was proved by Nalimov [28].
Here the direction of the pressure gradient on the free surface plays a crucial role for well-
posedness of the problem. That is to say, if it points inside the fluid at the initial time
then there is a unique smooth solution at small time. Yosihara solved the problem when
the domain is of finite depth, without and with the surface tension in [46] and [47],
respectively. On the basis of their papers, two-phase problem in a Sobolev class was
considered in [13] and [15]. In these articles, we required that the initial surface and the
bottom were almost flat. In [44] Wu removed this restriction for the problem of gravity
waves in case of infinite depth. She established the unique solvability even when the initial
surface is not a single-valued graph, by showing the fact that the sign condition relating to
Rayleigh-Taylor instability always holds for nonself-intersecting interface. This condition
implies that for any solutions of the water wave problem, it is necessary that the pressure
gradient in the inner normal direction on the free surface is positive. In [8], we see that
the problem is actually ill-posed without the sign condition. Recently, Wu [45] extended
her result to the problem for three-dimensional space. The problem of capillary-gravity
waves in the two-dimensional space with a bottom and the large initial data was treated
by Iguchi[14].

On the other hand, Nalimov[29] and Iguchi, Tanaka and Tani[16] investigated the
problem describing the dynamics of planar vortical surface waves of infinite depth. When
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the flow is irrotational, we can reduce the free boundary problem to an initial value
problem on the free surface. Then the solvability for the reduced problem leads to that
for the original problem. However, for the rotational flow, we cannot deduce the problem
only on the surface. We must investigate both the problems in the interior and on the
boundary of the domain.

In this thesis, we address water waves for rotational flow in the plane domain with a
fixed bottom. We will prove the temporary local existence and uniqueness of the solution
in classes of finite smoothness.

Let the fluid occupy the domain (¢) bounded by the free surface I's(¢) and the bottom
Fb .

Q(t) = {Z = (21522); _h + b(zl) <z < n(tazl)a 21 € RI})
[y ={z = (21,22); 22 = —h +b(2), 21 € R},
Fs(t) = {Z = (21722); 22 = n(t721)7 z € Rl}v

where h is a positive constant. Then the motion of the fluid is described by

0
P(a—:-l-(v-vz)v) +V.p=—p(0,9) inQ(t), t >0, (1)
Verv=0 in Q(t), t >0, @)
p—pe=—0H on I's(t), t >0, (3)
m + U1a—21 —vy =0 on I's(t), t >0, (4)
v-n= on 'y, t >0, (5)
n(0,21) = mo(z1), v(0,2) = vo(2) on Q = Q(0). (6)

Here p is density (constant), v = (v;,v,) is the velocity, p is the pressure, g is a gravi-
tational constant, p. is an atmospheric pressure (constant), o is the coefficient of surface
tension, H = (9/021){(0n/3z1)(1 + (3n/821)?)~/?} is a curvature of [',(t) and n is the
unit outer normal to I'y.
We introduce a function P defined by
P P — Pe

+ gz,.

Then by the Lagrangian coordinates (¢, )

t

z=ux -|—J u(r,z)dr = Ou(z;t), u(t,z) =v(t, ®u(z;t)), (7)

0
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problem (1) — (6) becomes

%—?+qu=0 in, t>0, (8)
Va-u=0 inQ,¢>0, (9)
g=g (mg + J; u2(r,:1:)d7> — oH(y(z:t) on T, =T4(0), t >0, (10)
u-n(®,(z;t)) =0 onI'y, t >0, (11)
Uli—o = Vo on §). (12)

Here q(t,z) = P(t,®y(2;t)), Vu = AuV, and

¢ ¢
1+J Ezi:idT —J %dT

A = t(aq)u)_l_ 06-’172 061‘1
u = - t t 9
Oz —J %d'r 1+J —EldT
0 0z, 0 0z

Throughout this thesis we use the notation in vector analysis.
Once the solution (u,q) of problem (8) — (12) is determined, the solution of problem
(1) — (6) is given by

v(t,2) = u(t, 05 (550),  Plt,2) = qlt, 031 (55),  Qt) = Bu(1).

Therefore we will construct the solution of the problem (8) — (12).

In Chapter 2, we study the free boundary problem in case that surface tension is not
effective. It is shown that if the initial surface and the bottom are almost flat, the unique
solution exists, locally in time, in a class of functions of finite smoothness.

In Chapter 3, the problem with surface tension is studied. If the assumptions mentioned
above are satisfied, the problem is well-posed. Furthermore it will be shown that this
solution converges to the solution of the problem without surface tension as the coeflicient
of surface tension tends to zero.

In Chapter 4, we study the problem without surface tension again. Here we find
that for the well-posedness of the problem it is not necessary to assume the almost
flatness of the boundaries. Therefore, the result in Chapter 4 is a generalization of that
in Chapter 2.



Chapter 2. Problem Close to Equilibrium

In this chapter, we consider the free boundary problem when the effect of surface tension
is negligible. Then the problem is solved under the condition that the initial surface and
the bottom are almost flat and that the initial velocity is suitably small. Furthermore,
we find that the existence time of the solution increases unboundedly, as the initial data
tend to zero.

2.1. Main result

Theorem 2.1. Let 0 = 0, g > 0 and s > 3 + 1/2. There exist positive constants
81 = 61(g,s) and b3 = d2(s) such that if

no € H¥3/2(RY), be HH3(RY), voe€ H(Q),
170ll a3 mr) + [1Bll 53 (mr) + [[Voll ga+12(0) + llwoll o412 () < 1, (2.1.1)
6] re+2(m1) < b2,

where wo = VE - vy, VL = (—0/0z2,0/0z,), and vy satisfies the compatibility conditions,
then problem (8) — (12) has a unique solution (u,q) on some time interval [0, T] satisfying

{u € Ci([0,T); H+3/*-i2(Q)), 7 =0,1,2, (212)
q € CI([0,T); H+**=i2(Q)), j=0,1.
Remark. The magnitude of T in the above theorem can be taken such that
T — oo as ol e+srzmry + [ Voll mrevarz ) + llwoll goterzia) — 0.
We give a brief sketch of the proof.
In the Lagrangian coordinates, vorticity
Vi.v=w
can be written as
Vi-u=wy, in Q, t>0. (2.1.3)

In order to investigate this together with (9) it is convenient to use the coordinate trans-
formation mapping

r=y+(0,m0(y)) = ¥(y)
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from €2 onto the horizontal slab

Y={y=(y1,52); —h <y <0, y € R},
where 7 is a function such that 7g(-,0) = no(-) and 7(-, —h) = b(-). Therefore from (7)

2= (VW) =y + X(LY), X(y) = (0,7() + | u(mv)dr (214)

Putting

X(t,y1) = X(t,11,0), (2.1.5)
we derive from (8), (10)
1 g+
ayl 0t? ayl 0t2
(see [16]) and from (9),(2.1.3)
Xoy= KXy + H for t>0

with an operator K = K(X,b) and a function H = H(X,w;), wi(y) = wo(¥(y)), being
given explicitly in Section 2.3. In Section 2.4 the properties of K and H will be investi-
gated. In Section 2.5, assuming that an H is given, we consider the Cauchy problem for
X with the initial conditions determined by (2.1.4),(2.1.5). In order to solve it, we will
quasi-linearize the equations on the surface. Then we obtain the system which contains
a weakly hyperbolic equation. For the well-posedness of the initial value problem for this
weakly hyperbolic equation, we need a kind of sign condition, which requires the condition
for gravity in Theorem 2.1. Further, we will show that the solution of quasi-linear system
satisfies the nonlinear Cauchy problem on the free surface. In Section 2.6, for a given X,
we find u (in ) by solving the boundary value problem for (9),(2.1.3). Here we apply
the partial Fourier transform to reduce the problem to the boundary value problem for
the system of ordinary differential equations. Then X is determined through (2.1.4). In
Section 2.7 by repeating this procedure, the solution (u, X, X) is obtained. Moreover ¢
can be obtained from (8).

):0 for t>0

2.2. Preliminaries

Let j be a nonnegative integer, 0 < T < co and B a Banach space. We say that
u € C/([0,T}; B) if u is a j-times continuously differentiable function on [0, 7] with values
in B. Let D be a domain in R", m a nonnegative integer and 0 < r < 1. By H™(D) we
denote the usual Sobolev space on D of order m. By H™*+"(D) we denote the Sobolev-
Slobodetskii space.

From [1, Lemmas 7.44 — 7.45] it follows that the semi-norm

— ulw)? 1/2
(Lo o aee)
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is equivalent to

o _ 2 1/2
(|,] ez vzt o)

|CL'1 — y1|1+2r
1/2
O Ju(z1,72) —u(zy, 4)[*
’ ’ dy,dz = ||lull gr sy + el 50
+ (L J_h |25 — yo| 2" Y2 lull e sy + llullz )
Moreover, we introduce the norm || - ||5 5, 1, (A1, A2 > 1):

2N M”aa1 7 102)%ul| (s for s =m,

|la|<m

r —a a —(o2+1 o
lellsnine = S Asllullmanne + D0 T2 0% ull v gy + ATV )[0%u] 7 )

|la|=m

for s=m+r,

where o = (ay,...,a,) is a multi-index, 0% = 87! --- 97" and 9; = 3/dz;. Then it holds
that

Lemma 2.2.1. For any s >0, A;,A\; > 1 and u,v € C(X) we have

luollonne < (lallz=m) + 327 C o) ollas,a,
where
1 if seZ, 2+¢ (Ye>0) if 0<s<2,
7:{5—[8] if s¢€Z, 50:{3 if s> 2,
and C = C(s,80,A;) > 0.

Under the appropriate assumptions on 7y, ¥ is a diffeomorphism from ¥ onto Q. Hence
we define

H'(Q) = {w;uo ¥ € H'(2)} with [[ullgoq) = luo ¥ (),
HS(FS) = {U, u o \P(yl,O) € HS(RI)} with ”u“Hs([‘s) = ||u (0] \I’(',O)”Hs(Rl)
and so on.

The following classes of operators have already been introduced and used to simplify
the estimates for K and H in [16], [46].

Definition. For 0 < r,t < s,
(1) L(r,s;t) is the totality of M satisfying the conditions:

(i) M = M(P; P(J)) is a linear operator depending on P = P(P,,..., P;), where
Pj are real-valued functions, J is the subset of {1,...,k}, P(J) = (Pj,,..., P;) if
J={j1,...,5} and P(J) =0 if J is empty,

(ii) There exists d = d(M,t) > 0 such that if P, P° € H*(R!) satisfy

1P (D) ey 1P (Dlremey < dy || Pllarsways | PO ey < do
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for some dy > 0, then for any u € H"(R!)
IM(P; P(J))ullrsmry < Cllulla-@ey,
IM(P; P(J))u — M(P% P°(J))ullrsrry < ClIP = POllemaylul
where C' = C(r,s,t,d,dy) > 0,
(2) Lo(r,s;t) consists of M € L(r,s;t) such that
IM(P; P(]))ulls @) < ClIP| e @llullar @e)-

Hr(R1),

Lemma 2.2.2 ([16, Lemma 2.9]). Suppose that 0 < r,t < s < s;. Then

(1) L(r,s;t) and Lo(r,s;t) are algebras,

(2) Lo(r,s;t) is a two-sided L(r,s;t)-module,

(3) If f is smooth in a neighbourhood of 0 € R*, then the operator M defined by
M(P; P)u = f(P)u belongs to L(s,s;t) for1/2 <t <s and s > 1,

(4) If M = M(P; P) € Lo(g,q;t) for any q € [s, s1] and T,M(P; P) = M(T,P;T,P)T,
for y € R, where (Tyu)(z) = u(z +y), then (1 + M)~Y(P; P) € L(q,q;s) for any
q € [s,s1].

2.3. Representation of A and H

Throughout this section let the time ¢ > 0 be arbitrarily fixed. We assume that v and
X are smooth and tend to zero as variables tend to infinity. We identify R? _ with the
complex z = z; 4 12z, plane. Then [',(¢) and T, are given by

{w) cw () = 1 + Xa(y) +iXa(w),
Ly rwe(yr) =y +i(—h + b(y1)), —o00 < y; < oo.
Further let v satisfy the equations

V-v=0, Vt-v=w inQ(t), v-n=0 onl},
and put

F = v —1v,,

fy) = filyr) + ifo(y1) = Flws(yr)),
9(y1) = 91(y1) +ig2(y1) = F(we(y1))-

Now let us take w9 € I';(t) and the closed path v in Q(¢). As v tends to I';(¢) UT}, the
Cauchy integral formula yields

—1——J Mdz — —gﬂiF(wO) — %v.p.Ls( F(z) dz + LJ Fz) dz

2mi by 2 —w? T t) 2 — w? 2m Jr, 2 — w?
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and the Green formula yields

— 20 E(z — w°
1 J FG) o J J OB Z W) 4 J J WOEE =)
2 Jy z — wf Q(t) 0z Q(t) 029

Here E(z) is the fundamental solution of Laplace’s equation in two-dimensional space:

1
E(z)= ﬁlog|z|.

Therefore we have
0F(z —w° 0F(z —w?
— 21 JJ w——(Z—wS)dzldzz -2 JJ w—(%—LS)dzleQ
Q(t) 0z, Q(t) 029

1 f(y1) dwy(y1)
+f(@) + Ev'p'Jrs(t) w(yr) = ws(z1)  dyn

ij 9(y1) dwb(yl)dyl
T T, wy(yr) — ws(zy)  dy

with z; € R! such that w? = w,(z;). After the integration by parts, the real part of
(2.3.1) leads to the equation

0E(z — w?) .
| B Dfp+ Afi + A
Q(t)w 27 z1dz + fi +isgnDfr + Aifi + Aqfo (23.2)

= e™"Plg; +isgnDe *Plg, + Asgy + Augy,

where D = —10/0z; and

0 du

AJu(wl) :J aj(‘rhyl)d_(yl)dyl) ] = 17273747

a, = —lImlog (1 + Xi(y1) = Xi(21) + iXQ(yl) - X2(5U1)) ’
0 Y1 — 2 Y1 —
1 X - X X - X

a; = ——Relog (1 + 1(%1) 1) +1 (1) 2(1:1)) ,
m Y1 — Ty Y1 — 1

asz = —-llmlog (1 + —Xu(z) +b(y) — 1X2(x1)) ,
™ Y1 — 1 — th

ay = —lRelog (1 + —Xu(@1) + b(ys) — ZXZ(J:I)) .
m Y1 —x; —th

Taking wy € ', and proceeding in the same way as above, we obtain

0E(z — wy) :
2| WSz dz, + gy — isgnDgs + Asgy + A
o) 32, 1422 + g1 gnig, 591 692 (2.3.3)

= e Pl f, isgnDe™ Pl f, 1+ A+ f, + Asfo
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where

Au(en) = | ai(onp)g-ndy,  §=5.6,78,

Y1 — T
46 = —~Relog (1 L) - b(xl))
4 Y — 1
ar = —llmlog (1 + Xi(y) + ZX2(y1)'— ’b(ﬂfl)) ’
T Yy — xy +th
__1 Xi(y1) + iXa(yr) — ib(zy)
\as = —;Relog (1 + —— '

Eliminating ¢, and g, from (2.3.2),(2.3.3) and v - n = 0, we have

.0
{1 — e 2Dl _jsenD(1 + e—zthl)BQ} - 2” dezld22
Q(t) 02z
0F(z — w?
— Q(G—thl + B3)(1 + B4)—1 JJ dezleQ
Q(t) 029

= —isgnD(1 4+ e~ 2"PY(1 + B)) f,,
where

B =isgnD(1 + e~2AIPhy~ { A, + e thlA + Bs(—isgnDe P! 4 Ag)
— (e7MPl 4 B3)B4(1 + By)~(—isgnDe P! 4 AS)} ,
B, =1sgnD(1 ‘2h|D| {A h|D|A7 _ Bg(e_thl + A7)
+ (7Pl 4 By)By(1+ By) ™' (e7MP! 4 Ar)}
Bs = ~isgnDe_h|D|b’ + Az — Agb,
By = 1sgnDV + A5 — Agl'.

Since fi; = vi|r,() and f2 = —va|r (), we see that Xo = KXy, + H with

I( = —(1 —|— Bl)_l(i tanh(hD) “r BQ)
=: —i tanh(hD) + K7,



H = —i{sgnD(1 + e 2"Ph(1 4 Bl)}"1 {Hy+ (7Pl 4 By)(1 + By) ™' Ha},

.0
OBz =) 4. dz.
622

H, = 2JJQ(t)w(z)Mdzldz2, H, = 2JL(t)w(z)

622

2.4. Estimates for K and H

Assuming that X depends on z; and ¢, we define A4; (X, ..., afa;l)‘(, b,..., 6;1 b; X, b),
j=1,2,....8 k,1=0,1,2,..., by

0
a:l)l’

Ajoo = Aj, Ajos = [

0
Aj,k,l: la,A]"k_L[:l, k‘: 1,2,3,..., l:0,1,2,...

Aj,o,l_ljl 3 l = 1,2,3, ey

and replace 902 X by X??. Here [A,B] = AB — BA for operators A, B and 9, =
0/0t, 0, = 0/dz;. Moreover we define K, for k,l = 0,1,2,... in the same way
as Ajr;. Then the following results come from [46, Lemmas 4.14 — 4.20] and Lemma
2.2.2(4).

Lemma 2.4.1.
1) Ajpa( X%, ., XM b .. 0L b; X% b) € Lo(2+ (s — [s]), s;2 for s > 2.
VLD 1
(2) Kpipa(X ..., X b, 0L b; X% b) € Lo(2 + (s — [s]),5;3) fors>3.

) 1

(3) {1+ 21+ Z,K(X,Z,b;X,Z,b)}"! € L(s,s;3) fors>3.
For s > 0 we introduce the notation

IIX s = N1 X W presrrzsy + 1 X GOz mry + 11X =) ey
and
[H(®)]s = | H( )l zre+1 ) + [10:H ()| gres1r2mry + 107 H ()] 72 (ro),
O = Oy IO Oy 10w + EH O,
24.1

ps = |lwrllgerarz(s)-

Assumption 2.1.
(1) wy € H*T3/2(%),
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(2) There exist ¢ > 0, d > 0, I; > 0 (j = 1,2,...,5) such that for s > 3,
0<T < oo, X and b satisfy

X € Ci([0,T); H**+*-9/*(%)), j=1,2,3,

X(t,-,0) € C([0,T); H*+3/2~3/2(RY)), j=1,2,3,

X(t,-,—h) € CI([0,T); H**3/2I2(RY)),  j=1,2,3,

X (lls < co,  NX(Olls+1 < d, (2.4.2)

N0 X (D lls+arz-je <Ly G =1,2,3,

NI X (Olls < ljyss 5 =1,2,

||bHH3(R1) < co, ”b”Hs+1(R1) <d.

It is to be noted that ¢y is chosen sufficiently small so that

(X, 0)|[re(ma) < Cllen]

Hs+1/2(2)

and for X', X? satisfying (2.4.2),

IH(X,8) = HX2,B)llsqry < CIXE = X2 oo gervagey,
where C' = C(s, ¢y, d) > 0.
Proposition 2.4.1. Under Assumption 2.1 we have

H = H(X,b) € CI([0,T); H+*?-IIX(RY)),  j=1,3,

(H), < Cisy |HI, < Copyy 0<EST. (2.43)
Moreover, for X' and X? satisfying (2.4.2), we have
2
[H(X1,8) — H(X2,B)), < Cupea 308X (1) = 31X (D)1
7=0
3

|H(X,b) — H(X?,b)ls < Cops (I1IXH(t) = X2(t) o1+ 3 0 X (8) — 37X (1) lls43/2-i/2),

J=1

0<t<T,

where Cl = Cl(S,Co,d, l4,l5) >0 and CQ = CQ(S,Co,d, 11,12,l3) > 0.
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2.5. Problem on the surface

In this section we consider Cauchy problem

X\ 9°X, 03X, 22X,
1+ +

ayl at2 ayl at2
XZt:A’XIt'i_Ha tZOa

Xlt:O = (0’ 770)7 X1t|t=0 = u01|y2=0

):0, >0,

(2.5.1)

(2.5.2)
(2.5.3)

for a given function H. First we reduce problem (2.5.1) - (2.5.3) to the initial value
problem for a quasi-linear system. Then by solving this reduced initial value problem, we
show that problem (2.5.1) — (2.5.3) is solvable. For simplicity we will use X and y instead

of X and y, in the following.
From (2.5.2) and (2.3.4) it follows that

0F Xoe = K(X)OF X1y + Fro(X,...,08X) + 0FH,

070y Xor = K(X)0;0, X1, + Fiu(X,..., 050 X, 01 X,) + 8¥d' 1,

where k = 0,1,2,..., [ =1,2,3,... and Fy = [9;0}, K1]X,,. Put
Y=Xu Z=X, W=(XY,2), W=(XY).
In virtue of (2.5.4) with k = 2 we have
Yor = K(X)Yi + Foo(X, X, Y) 4+ Hy =: fo(W, W/, H).
From (2.5.5) with k =0, [ =1 and (2.3.4) it follows that

Xoty =K X1y + Fon (X, X, X14) + H,

= — ’L'SgHDXIty + Z(SgIlD — tanh(hD))ayXu + [\,1 ayXU + F01 + H

= —sgnD Xy + For0 + Hy,
hence we obtain
Zyt = —isgnDZy, + Foo + H,,.
Differentiating (2.5.1) with respect to ¢ and using (2.5.7), we have
Zy = —{(g9 + Y2)(—isgnD) + ¥; }7

x {(g + Y2)(Fowo + Hy) + (1 4+ Z1)Yae + Zofo(W, W/, H)}

=: f3(W, W/, H).
Putting (2.5.8) into (2.5.7) leads to

Zoe = —usgnD fs(W, Wy, H) + Foro + Hy =: fo(W, W], H).

12
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Next, differentiating (2.5.1) twice with respect to ¢ implies
(1+ Z)Yiee + Z2You + YiYi, + (g+ Y2)Yey +2Z: - Y, = 0. (2.5.10)
Since (2.5.4) with k£ = 3 and (2.5.5) with £ =1 =1 yield

You = K(X)Yiu + Fao(X, Xi, Y, Y}) + Hyy,
Yva = I((X)}/ly + FII(X7Xt7 Z’ Ztv }/1) + th,

one can rewrite (2.5.10) in the form

Yie+ (14 Z1+ Z,K)"{Y1 + (g + Y2)K}3, Y4

o 2.5.11)
= (14214 Z,K) {22, - Y, + Z5(F3 + Hy) 4+ (g + Y2)(Fi + Hy) }- (

The identity

(14 Z1+ Z;K)""{Y1 + (g + Y2)K'}
={(1+ 2+ Z3}7H{(L + Z)Yi + Z5(9 + V2)}
+{(1+ 2Z)*+ Z1 " H(1 + Z1)(g + Y2) — ZyY1}H{—isgnD + i(sgnD — tanh(kD))} + Py,

P =P(W;X,Z)
={(1+ 2+ Z5} {1 + Z1)(g + Ya) — ZoaY1} K,
—{(1+ 21" + Z3} T ZA[K ) + [K, V) K + (9 + Ya2) (1 + K7)}
{1+ 20) + Z3} ' ZA[K, Z1) + [K, Zo)K + Z(1 + K*)}Y(1 + Zy + Z,K) ™!
x{Y1+ (g +Yo) K},

and using (2.5.6),(2.5.8),(2.5.9) lead the equivalent equation to (2.5.11)
Yiu + a(W)[DIYy = fiu(W, W, H)
with

a(W)={(1+ 2> + Z;} {1 + Z1)(g + Y2) — Z.Y1},
fh=-PoY,—(1+2Z,+ Z,K)""{2Z,- Y, + Zy(Fso(X, X0, Y, Y:) + Hyyt)
+ (g + }/2)(F11(X, Xt, Z, Zt, )/1) + th)} - a(W)(zsgnD —1 tanh(hD))ale

Thus the required quasi-linear system is of the form

{Xtt =Y, Y+ a(W)DIY) = fi(W, W], H), (2.5.12)

Yoo = (W, Wi H), Zy = s(W W] H),  Za = fo(W, W], H).
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Lemma 2.5.1. Let s > 3 and 0 < T < co. There exists a positive constant ¢; = ¢,(g)
such that if W, W/, H b satisfy
(W, W] € C°([0, T]; H*(RY)),
H € CI([0,T]; HH*I2(RY), 5 =1,3,
be HsTH(R!Y), (2.5.13)
IWOlls@y) < e, W sy + W ()]l meme) < do,
HOL < doy bl < o [bllioss ey < d”
for 0 <t < T and some constants dy,dy,d’ > 0, then
o(W) =g e CU([0,T]; H*(RY)), f= f(W,W,,H,b) € C°([0,T]; H*(R")),

{IIf(W, Wi H)llasmy) < Cs(IW llasme) + Wl s mey + [H),
1(f2s f3, f ) (W, W, H) s ry < Cal[W [ ey + W sy + [H],).
Moreover, for WO, W°, and H® satisfying (2.5.13)
la(W) = a(W°)l|lrmiy < CalW = WO|gsmy),
IF(W, W], H) = (W, W, H)|| s
< C3(|W = WOlasmay + W] = WOl sy + | H — H),),
where C3 = Cs(cy,g,do, dy, 5,¢0,d") > 0 and Cy = Cy(ey, g,do, s, co,d") > 0.

Proof. The properties of a were shown in [46, Lemmas 5.18 — 5.20]. Other estimates are
easily derived from the lemmas in Section 2.4. (]

The initial value problem

{utt +a(W)Dlu = f for 0<t<T, (25.14)

U = Ug, U = U at t=0
was solved in [46, Theorem 6.20].

Theorem 2.5.1. Let s > 2 and 0 < T < co. There exists a positive constant ¢, = c1(g)
such that if W = (0,Y,Z) € C°([0,T]; H*(R')) N CY([0, T); H*(R')) satisfies

IW(Ollzgey < 1 Wi Ollizgsy < dus [WE)legey < do for 0<t< T

with some positive constants do,d,, then for any uy € Hsf"l/2(R1), u; € H*(R') and
f€C[0,T); H*(R")), (2.5.14) has a unique solution u € C¥([0, T); H*+/>=i/(RY)), j =
0,1,2, such that

t
[u(t)ls < C5e™[u(0)], + Cs JO U F(7) | e (mryd,

where
[u(®)]s = lue()l| sy + [u() ez,

14



Cs = Cs(e1,9,8) > 0 and Cg = Cg(c1,9,do,dy,8) > 0.
Now we consider the initial value problem (2.5.12) with
W) =W =(X,Y,Z), W}(0)=W= (X, ) (2.5.15)
Let us introduce the new norms

Yi(O)ls = 1Y)l sy + 1Yi(O)llgrorrr2mr)s
IW(@t)]s = Xy + I Xe(@lla=@yy + Vel ey + IYi (Ol gorrromer)
Y2y + 12l e )
Theorem 2.5.2. Let ¢; = ¢i1(g) be the constant in Lemma 2.5.1 and Theorem 2.5.1,
s>3+41/2and0 < T, <oo. If H € CI([0,Ty]; H*+3/*-1/2(RY)), j = 1,3, b€ H*t'(RY),
16/l 53 (m1y < co,

X,Z,W} € H'(RY), Y, € H*''2RY), [[W|ge@) < a1/2, (2.5.16)

then there exists T € (0,T;] such that problem (2.5.12),(2.5.15) has a unique solution
W =(X,Y, Z) satisfying

X € C¥([0,T); H(RY)), Y5, Z € CY([0,T]; H*(RY)),
Yi € CU([0,T); H+/*2(RY),  j=10,1,2, (2.5.17)
W) memy < e for 0<t<T.

Proof. Take the constants J, Jy, dy, Jo,ds, J1,d; and d’ such that

J = (3 + C5)|W(O)|S7 JO > 2']7 dO = ma‘x{17J0}7

Jo > sup |H(t)|s, d2 = max{1l,J:},
0<t<T (2.5.18)
Ji=Jo+ Cs(Jo + J2), di = max{l,J,},

blge+1mry < d.
By S; we denote the totality of W = (X,Y, Z) satisfying

W e CY([0,T]; H*(RY)), Yi e C°([0,T]; H*+'/*(R")),
WOl sy + W ()| orry < do,
W (t)]s < J exp(Crt) + JoCrt exp(Crt),
IWOllaemy < er, IYe(Ollmzwy + 122y < Ty 0 "< T,
where C7 = Cs + 24 Cy + C3Cs. For W° = (X° Y, Z°) € S, by M;(W°) we denote the

solution W of the initial value problem for

X+ X =X+Y% Yig+aWO)DJY; = L(W°, W, H),
Yor = (WO, WO H),  Zy = fs(WO, WO, H), Za= fo(W°,W°, H)
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with (2.5.15). Lemma 2.5.1 and Theorem 2.5.1 imply that

WOl < (34 Co)eP W O)], + (24 Ca + CoCs) || W), + [H (7))o

Here we choose T' as

. ¢ 1 Jo ( Jo )
T = T, e 0 _o_ 2.5.19
mm{ Y Y(Jet ) G- 8o P \ac ) [ ( )

where ¢(t) = texp(C7t) and 7' is the inverse function of ¢;. Then M, is a mapping
from S to itself. Since s —1/2 > 3, the successive approximation and Lemma 2.5.1 show
that there is a unique solution W of (2.5.12), (2.5.15) and satisfies (2.5.17) with s replaced

by s —1/2. Refering to [16, Theorem 6.27], we can show that W obtained above satisfies
(2.5.17). 0

By the same method used for the derivation of Lemma 2.5.1 we obtain
Lemma 2.5.2. Let W° = (X°,Y?, Z°) be the solution of (2.5.1),(2.5.2) with H replaced
by H® € CI([0,T); H*H3/273/2(RY)), j = 1,3, whose initial data WO(0), W (0) satisfy
(2.5.16). We have
t
W) = WO0)losya < € (W) = WOO)orge + [ 1H(r) ~ B yadr)
for 0 <t < T, where C = C(cy,9,do,dy,dy, 8, T, co,d’) > 0.

In view of the original problem, we specify the initial data as follows:

X = (0,170)7 7 — X’y’ 5(;5 = uOl('70)7 5(; = I\’(S{)E + H(O),
Yi=—(1+ Zi + ZoK(X)) " Za(g + Fro(X, X; ) + Hy(0)),

Y, = K(X)Yi + Fio(X, X, ) + H;(0), (2.5.20)
Yie=~(1+Z1 + Z,K (X))
\ x {Zo(Fao(X, X:,Y ) + Hyt(0)) + Y10, X1 + (g + Y2)0, Xt}

For these, one can easily prove

Lemma 2.5.3. Let ¢; = ¢(g) be the constant in Lemma 2.5.1 and Theorem 2.5.1. Then
there exists a positive constant €, = €,(g) such that if

No € Hs+3/2(R1), be HS+I(R1), Uol(',O) c HS+1(R1),
0JH(0) € HH-I/2(RY), j=0,1,2,

16|21y < co, bl rs+r(rey < d,

ol sy + tor (-, O)ll sy + I H (O)l| sy + I He(O) [ 1roqmsy < 1,

10l 51545 2 gy + lluon (- O) [zt 1y + [HH(0) | aro1 gy + [ H(O) prevare oy < g
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with s > 3, dy > 0, then the initial data W,FI/IZ’ defined by (2.5.20) satisfy the condition
(2.5.16) and

2
(W(0)], <C (||770||Hs+3/2(nl) +[luor(-, )l e+1me) + D ||a§H(0)||Hs+1—J/2(R1)) ;
7=0

where C' = C(¢y,¢o,€1,9,da,8,d") > 0.
From Lemma 2.5.3 and Theorem 2.5.2 we conclude

Theorem 2.5.3. Let &1 = ¢1(g) be the constant in Lemma 2.5.3, b € H*tY(R!), s >
34+1/2, ||blgemr) < o and 0 < Ty < co. If no,uoi(+,0) and H satisfy the conditions

Mo € Hs+3/2(R1), uOl(',O) c HS+I(R1), (2 . 21)
10/l 521y + llwor (-, 0) || rerry < €1/2, o
H € Ci([0,Ty); HH3/*-/2(RY)), j=1,3, (2.5.22)
I H(O)|| 21y + | He(0) || 3 mry < €1/2, o

then there exists T € (0,T}] such that problem (2.5.1) — (2.5.3) has a unique solution
X € CU([0,T); HH3/*I2(RY), j=1,2,3. (2.5.23)
Now we assume that
[H(t)], < Js, 0<¢t<T, (2.5.24)
and put d3 = max{l, J3}. Then we get
Lemma 2.5.4. Let X be the solution of (2.5.1) - (2.5.3) obtained in Theorem 2.5.3. Then

we have
IXe(®)llz ey + 1 X1l osrr2@y + 1 Xl o) < do,
IRy < (1+ C)1J exp(Crt) + JoCrt exp(Crt)} + Culy
< (14 Cy)do+ Cyds, 0<t<T.
By Lemma 2.5.2 and the similar arguments as above we obtain

Proposition 2.5.1. Suppose that H satisfies the conditions in (2.5.22) and X° is the
solution of (2.5.1),(2.5.2) with H replaced by H® and (2.5.3). Then

2
31017 X0 = 0 X Dl

t
< Cq ([H(O) — HYO)]oo 1o + [H(t) — H()]y-1)s + JO \H(r) - HO(T);S_I/QdT)
fOT 0<t < T, where Cs = Cg(Co,g,do,dl,dg,S,T, C],d,) > 0.
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2.6. Problem in the interior

In this section we will solve the boundary value problem

Ve-u=0, Vi -u=uwy inQ, t>0,
up = Xy, onT,, t >0, (2.6.1)
u-n(®,(z;t)) =0 only, t>0

for a given X. First let us investigate problem

Viu=¢, Vi-u=¢, inX,
up = b on {y, = 0}, (2.6.2)
uy = b, on {y, = —h}.

Applying the partial Fourier transform with respect to y; to (2.6.2) yields the ordinary
differential equations, whose solutions are easily estimated so that

Theorem 2.6.1. Suppose that ¢ = (¢1,¢2) € H*(X) and 0 = (0,,0,) € H/?(R') with
s > 0. Then the boundary value problem (2.6.2) has a unique solution u = (uy,uy) such
that

ue Hs+1(2), u(-,O) c HS+1/2(R1), u(-,—h) c Hs+l/2(R1),

allss 10 < (Co 4 AT Cro)l1Blls a0 + A5C10010) ret1r2(mo)

(2.6.3)
fOT’ /\13/\2 Z la
||U('>O)||Hs+1/2(nl) + |lu(, —h)||Hs+1/2(R1) < Cullléllms) + ||‘9|le+1/2(111))’
where Cg > 1 and C; = C(s) > 1, j =10,11.
Similar estimates hold for problem
Viu=¢;, Vi-u=¢, inl,
uy = 6, on {y; = 0}, (2.6.4)
Uy = 03 on {y2 = —h}
Next we consider problem
V-u=¢;, Vi-u=¢, inQ,
u; =6, on [y, (2.6.5)

u-n=yu on ['.
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Assumption 2.2. Let 19 and b satisfy no € H*+V2(RY), b € H*+32(R!) with so > 2
and

{Ilnollm(m) <k, bllmm < fo
|I770“H50+]/2(R1) S dOa ”b”H50+3/2(R1) S d’,
In what follows we set 7g as

N 1 o __eiylﬁ(elﬁl(y2+2h) _ elﬁlyz)ﬁo(g) + eiylé(elél(y2+h) — e|§|(h—y2))i)(§)
(Y1, y2) = —J 1 — 2kl y
(2.6.6)

2

— 00

Lemma 2.6.1. If 1o,b € H**Y2(RY) with s > 3/2, then o € CY(T), 70 € H*TL(D),

{HV%HCO(E) < Cia(lImoll 2wy + 110l 2(me))s

_ (2.6.7)
0llls+1/2 < Curlllmoll ge+irzray + 1bll e 1r2m1)),

where Cyy > 1.

Proof. First estimate of (2.6.7) is easily derived from (2.6.6). Second estimate of (2.6.7)
comes from Theorem 2.6.1 since u = (uy,uy) = (7o, uz) satisfies (2.6.4) with ¢, = ¢, =

0, 6, =no and 05 = b. [

Put w(y) = u(¥(y)), ¢(y) = 6(¥(y)), 1(3n) = 6:1(L(y1,0)), v(y1) = (1, —h+b(x1))
in (2.6.5). Then this system is equivalent to
Vew=Jsor+(({ - A;)V)-w in ¥,

0

Vi-w=Jsop+ (I - A;)V)E-w  in 3,

0

wy = 7-91 on {y2 = 0}7
wy =1\/1 4 b2 — w ¥ on {y, = —h},

where A~ is a matrix whose (z, 7)-element is the (3, j)-cofactor of the Jacobian matrix

(0W/dy) and J is its Jacobian.

(2.6.8)

Theorem 2.6.2. Under Assumption 2.2, if ¢ = (é1,¢2) € H*(R), 6, € H*tV(T,) and
p € HHY2(Ty) with 0 < s < so, then (2.6.5) has a unique solution u satisfying

ue H(Q), ulr, € HPVAT,), ulp, € HFY2(T,),
lullgs+i@) < CUIllae) + N0l g2,y + il sz,

||U|Fs||Hs+1/2(rs) + ”u!Fb”H5+1/2(Fb)
< Clllelae@y + N0l zrevrrz e,y + Il
where C = C(s, sg,dy) > 0.

HS+1/2(Fb))’
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Proof. 1t is sufficient to solve (2.6.8). For a given w satisfying w € H*t!(X), we denote
by w = ®(w) the solution W = (w;,w;) of the problem

V-w=Jsor1+ (I -A;)V)-w in X,
VEw = Jopr+ ([ = Az)V)E - w  in %,
W, =Y on {y, = 0},

’L’I)Q =14/1 + b,2l/ — wlb’ on {y2 = —h}

By virtue of (2.6.3),(2.6.7) and Lemma 2.2.1 we see that

1Q(W)lls41.01,0, <{(Co + AT'C10)(Cra(ky + £2) + A7 C13Cia(do + d’)) + A3Cio(k2 + d’)}
X NWllst1a0, + ACullellase) + 1illzsoirz@y + Ivllgstrzme)),

where Ci3 = Ci3(s,80,A1) > 0, Ciy = Cr4(s, S0, A1, K1,K2,do,d’) > 0 and v > 0. If we
take A;, Ay, d’, K1, Ko appropriately, ® is a contraction mapping with respect to the norm
| lls+1,01,2.- This shows the first estimate. For the second estimate, use Theorem 2.6.1. []

From Theorem 2.6.2 it follows
Theorem 2.6.3. Under Assumption 2.2, if
¢ € CU([0, T]; H*T1/2-11%(Q)),

0, € Cj([O,T];Hs+1‘J/2(Fs)),
p e Ci([0,T); HH=/2(Ty)),  j=0,1,2

with 1/2 < s < so—1/2, 0 < T < 0o, then (2.6.5) has a unique solution u satisfying
u € CI([0,T); Ho+32i2(Q)),
u[psupb € C]([O,T], Hs+l—j/2(rs U Fb)) for ] =0,1,2.
Moreover, the solution u satisfies
8u()sr1-j/2.0 < Cis([187@() | revr/2-sr2(0) + 10701 ()| presr-srar,
+ 110 (D)l gri-22(r,))
Jor 0<t<T and 3 =0,1,2, where Ci5 = Cy5(s,30,do) > 0. Here we used the notation

(2.6.9)

lulso = |[ull stz + alr lasr.) + [alr, |75 ry)-

Now problem (2.6.1) is rewritten as

V-u=((I—-A,)V) u=:hy(u;t) inQ,0<t<T,

Vi u=wy+ (I = Au)V)t - u =:wp + hy(u;t) inQ, 0<t<T,

u = Xug onl'y, 0<t<T,
t

u - n(z) :u-{n(:r)—n(:v+J u(T,:L‘)dT)} only, 0<t<T.
0
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Assumption 2.3. There exists vo € H*t3?(Q) such that
wo=Vt.ovy, V-vg=0 in €.
Let Ty > 0, X satisfy
Xy € CI([0,Ty); HH-9/%(Ty)), j=0,1,2,
I X1 ()l me o) + 1 X el sz ey + 1 X1 ()| oy < do,

I|X1t(t)||Hs+l([‘s) < (14 Co){J exp(Crt) + JoCrtexp(Crt)} + CyJ3
< (14 Cy)do + Cuds

and
Vn € H*TH(Ty). (2.6.10)
Theorem 2.6.4. Under Assumptions 2.2, 2.3 with so = s + 1/2 there exists T € (0,T]

such that problem (2.6.1) has a unique solution u satisfying

{u € Ci([0, T); H+3/2-112(Q)), (2.6.11)

ulFsUFb € C]([()? T]7 Hs-}-l—j/?(l"s U Fb)) fOT‘ ] =0,1,2.
Proof. We denote by S, the totality of u satisfying (2.6.11) and

u(t)|s+1.0 < 2C15((1 + Cy)do + Cads) + 2dy =: ey,
|ut(t)|s+1/2,ﬂ < 2(016 + ClsllvnHysHﬂ(rb))ef-i' 2Cs5dy =: €2,
[uge(t)]s,0 < 2(Cie + 3C15]|Vn||msr,))ere2 + 2C15do =: €3,
[u(t)]s41,0 < 2Cs|| X0e(t) || et oy + 24

(2.6.12)

for 0 <t < T, where dy = max{1, J,}, Cis = Ci6(s,do) > 1 and
J4 = 015||V0”Hs+1(p5) + 015”V0 . nlle+1([‘b) + |V0|s+1’Q. (2613)

For u € &3, Theorem 2.6.3 shows that the boundary value problem

V.U = hy(u;t) nmQ, 0<t<T,

ViU = wg + he(u;t) in, 0<t<T,

U1:X1t OnFsaOStSTa
t

U-n(z) = u-{n(w) (e +| u(T,x)dT)} onTy 0<t<T,
0

21



has a unique solution U = M,(u) satisfying
U |s41.0 < Crs([B(u; )| gresirzgy + [ Xae(®)l|go+r . t

# Vol s,y + u - {n(e) = n(e + | Wl

+ Vo nllms+1ry)) + |Volst1,0 t

< (Co + Csl Vil |, [0() o adr
+ Cusl| Xve ()| ars+r(ry) + Jas t
[U()]s+1/2.0 < (Cie + Cusl| V|| sz, [ue(t) [s41/2.0 L [u(7)|s41/2,0dT
+ (Ci6 + Cus|| V| gesrrz (o)) u(t) 34120 + Crsl Xuee()l| g2t
[Uw(t)]s2 < (Cr6 + Cus||Vn|lgsry))ue(t)]sa E lu(7)ls,0dr
+ (Ci6 + 3C15| Vn ge(r,)) [ue ()]s u(®) [0 + Crsl| Xie () || =r,)-

If we put
T = min{ -1 ( ! )
(Pl 32(015(1 + 04) + 1)(016 + Cl5llvn||Hs+l([‘b))(J + J3 + J4) ’
1
St , Tie, (2.6.14
72 (32015(1 + C4)C7(Ci6 + 015||VHI|H8+1(1“,,))J2) 1} ( )
where

(1) = texp(Crt), (1) = £ exp(Ci),
the last estimate of (2.6.12) implies that

oo | =

¢ 1 ¢
Ch6 sup J [u(t)|s+1,0dm < =, Cis5]|Vn|ge+rr,) sup J [u(t)|s41,0dr <
0<t<T Jo 8 0<t<T Jo

Therefore U satisfies (2.6.12) and M, maps S, to itself.

We introduce a new norm

llalllszy = sup (Ju(t)|srr.0 + A7 Hue(t)[or1/2.0 + A7 ue(t)|s0),
0<t<T

where A > 1 is a parameter to be determined later. For u® u® ¢ S, we set U =

My(u), j =1,2. Then

V- (UW —U@) = pH _ p? inQ, 0<t<T,
Vi (UW —U®) = pH — p® inQ, 0<t<T,
v —u® =0 onl,, 0<t<T,

(UO —UD). n(z) = ul® . {n(:c) “n(z+ Lt u(r, x)dT)}

t
_ u(2) . {n(x) — n({]j —l—J u(2)(T, .’L')dT)} on Fb, 0 S t S T7
0
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where hg) = hp(u;t), k,j =1,2. It follows from (2.6.9) and (2.6.12) that

IIOW = U, < %]Hu(l) —u® s 70 + A7H{C6(2(er + €2) + (€2 + €3)T)
+ 15[Vl gesirairy (3(er + €2) + (e2 + €3)T) Hiu® — u® ||, 7,1

If we put

A =4{C6(2(e1 + €2) + (2 + €3)T) + C15[| V|| grerrr2r,) (3(e1 + €2) + (e2 + €3)T)} + 1,
we get '

1Mz(ut) = Ma(u®)[lo;z < %Illu(l) —u®lly .

Hence the desired solution is obtained. (]
By the same way we have the following lemmas.

Lemma 2.6.2. Let u be the solution of (2.6.1) obtained in Theorem 2.6.4. Then it holds
that

{|U(t)]s,9 < 2C5dp + 2d4 =: ey,
lut(t)|379 S 2(016 + “VHHHS+1/2(I‘5))GZ + 2015(10 = €5
for0 <t <T.

Note that e;, e, and e3 depend on ds, but ey and e5 do not.

Proposition 2.6.1. Let u be the solution of (2.6.1) obtained in Theorem 2.6.4 and u®
the solution of (2.6.1) with X replaced by X°, which satisfies Assumption 2.3. Then we
have

2

> sup [dlu(r) — 32u’(7)|s1/2-i/2.0
j:OOSTSt

2
< 0172 sup ||61+1X1(T) — afr-HX?(T)||Hs+1/2—1/2(ps)

iSoo<r<t
fors>2,0<t<T, where Ci7 = Cir(e1,€2,€3,C15,Ci6) > 0.
Let us consider the second relation of (2.1.4).

Lemma 2.6.3. Suppose that the same assumptions of Theorem 2.6.4 are satisfied. Let
co be the constant chosen in Assumption 2.1 and u the solution of (2.6.1) obtained in
Theorem 2.6.4. There exist positive constants eg = €o(co) and To(< T) such that if

170l 73y + 110l 12 (m1) < €0, (2.6.15)
then X = X (t,y) defined by (2.1.4) satisfies (2.4.2) with T replaced by Ty.
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Proof. Lemma 2.6.1 implies

13X ())llls+a/2-is2 < Crsld ™ u(t)lsraa-ipar J=1,2,3,
107 X ()lls < Crs[0] M u(t)]s0, 5 =1,2,

IIX(lls+1 < Crallimoll s+ @y + oL+ 1)) + Cist sup Ju(7)]s110,

0<7<t
X (Ol < Cuallmolls sy + [Blrsy) + Cust sup ()

for 0 <t < T, where Cig = Cis(s,do,d’) > 0. We define Ty, e0,d, (7 =1,2,...,5) as

Ty = min{ T, 7" o
o ¥ 8(Cis(1+Cy)+ 1)Cis(J + I3+ Js) )’

—1 Co
2 (8015(1 + 04)C7CISJ2) } ’ (2.6.16)
0 = (2012)"co, d=Cui(do+d')+ 2297
lj = 0186]‘, j = 172,...,5,
then the desired result follows from (2.1.4) and Lemma 2.6.1. [

Proposition 2.6.2. Suppose that X° and u® also satisfy (2.1.4). Then we have
1277 X (t) = 3 X (1) ls1/2-572 < Cis[Bfu(t) — 3{u(t)|s41/2-jj20, §=0,1,2,
¢
X () = X°(Ollls+1/2 < Chs L [u(r) = u®(7)|s1/20d7 for 0<t<T.

2.7. Proof of Theorem 2.1

In the same way as in Section 2.4, we can prove

Lemma 2.7.1. Let €; = €,(g) be the constant chosen in Lemma 2.5.3. There exists a
positive constant €5 = €5(g) such that if X|—o = (0,70), 0:X|=0 = ug and

I17ollls + I[wollzre+1r2(gy + llwrll gresrrz(zy < €2, (2.7.1)

then we have

| H(X)|t=ollm3®) + 110: H(X)|1=ol| 53 (r1) < €1/2-

From Lemma 2.6.1 we see that if (2.1.1) is satisfied, (2.5.21),(2.6.10), (2.6.15), (2.7.1)
and Assumption 2.2 with sp = s + 1/2 are valid. About the constants we take

Jz - C’gus, J3 = Clus (272)
from (2.5.18), (2.5.24) and (2.4.3). J, that is, W and W/ are determined by no and vy.
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In view of (2.5.19),(2.6.14) and (2.6.16), we take

T =mi a —1—10 Jo —1< Jo )
B DI A NN PV AR CTeA

3 min(1, ¢o)

1 (32(015(1 + C4) + 1)(Ci6 + Cisl| V| o1,y + Cis)(J + J3 + J4)> ’ (2.7.3)

1 ( min(1, ¢p) )}
72 \32C35(1 + C1)Cr(Cro + Crsl Vil oy + Cu) 2 ) |
Now define the sets S3,S54 and Sy as

S3 = {X; X satisfies (2.5.23) and
X't::O = 5{, tht:O = 5(?, Xttlt:O = ?,
I X0 ()l e ry + 1 Xaee ()| gersrzmry + 1 X1 ()| ey < do,
||X1t(t)||Hs+1(Rl) < (1 4+ Co){J exp(Crt) + J,Crt exp(Crt)} + CyJs

< (14 Cy)do + Cads

for 0<t<T},

S4 = {u; usatisfies (2.6.11) and
u|t=0 = Vy, utlt:O = Wy,
/u(t)]er1-jj20 < €41, §=0,1,2,
Pu(t)lsn < €jya, 7 =0,1,
[u(t)]s41,0 < 2C15(1 + Cy){J exp(Crt) + J,Crtexp(Crt)} + 2C15Cat5

+ 2J4

for 0<t<T},

S5 = {X; X satisfies (2.4.2) and
Xli=o = (0,70), Xilt=o = w0, Xitlt=0o =Wwoo0 v},

where wq 1s the solution of

0vgy 0voy 0voy 0vg2

SWo = 2 — Liwy = i
v Wo (axz axl a:pl a:E? ), \Y% Wy 0 m Q,
wor = Y on [, (2.7.4)
t
Wo - n(z) = Wo - {n(x) “n(z + L u)} “vo-{(uo- V)n(z)} onTs.
For X° € S5 we denote by X = M3(X°) the solution of problem (2.5.1) — (2.5.3) with H

replaced by H(X?). Then Proposition 2.4.1 and the arguments in Section 2.5 show that
M3 is a mapping from Ss to S3. For X € Ss, let u = My(X) be the solution of (2.6.1).
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Noting that the solution to (2.6.5) is unique, we see that u;—¢ = vg follows from (2.6.1) at
t = 0 and that u,|,—p = Wq since uy|,—¢ satisfies the same equations as (2.7.4). Therefore
M, is a mapping from S3 to Sy according to the results in Section 2.6. For u € S, define
X by (2.1.4) and set M5(u) = X. We see that Ms is a mapping from S to Ss.

Let us define the approximate solutions {X",u”, X"}, n =1,2,3,..., as

XO(t,y) = (0,0(y)) + tuo(y) for y €%, Yt 20,
Xn = M3(Xn—l)’ u” = M4(Xn), X" = M5(lln) for n = 1,2,3,. cen

Since X satisfies (2.4.2), X! = Ms(X°) is well-defined and belongs to S5 with 7' re-
placed by some 7", which is of a similar form to (2.7.3). Here we denote 7" by T
again. Repeating this argument, we conclude that {X™ u", X"} are well-defined and
XneS;, ut €8y, X" €85, n=1,2,3,.... Propositions 2.5.1, 2.6.1, 2.6.2 and 2.4.1
show that X™,u™, X" are Cauchy sequences in the corresponding spaces. Hence there
exist X, X and u such that

2
Hs+1/2(R1) + Z “a]T'HXn(T) — az_+lX(T)||Hs+1/2—-]/2(R1)

i=0

sup {IIX”(T) —X(7)]

0<r<t

2
+I1X™(7) = X(D)lllsaz2 + 2 MATHX" () = 01 X (7)o 1/2-i/2

i=0
2 . -

+ Y [o2u™(7) — dlu(7)|st1/2-j/20 ¢ = 0 as n — oco.
—

We see that X,u and X are solutions of problem (2.5.1) — (2.5.3), problem (2.6.1), (12)
and problem (2.1.4), respectively. Moreover X € S3,u € 84, X € Ss.
For the proof of (2.1.5) it is sufficient to set
v(t,z) = u(t, ' (2;1)), w(t,z) =wo(t,®;'(2;t)), Qt) = ®u(Qs0).

The uniqueness of the solution is proved in the same way.
Finally we define g as a solution of the boundary value problem

Agq=-V - (A7 ) inQ, t>0,
t
g=g (x2 + Jo uo(T, m)dr) on [y, t >0, (2.7.5)
9 _ 4.V )u-n(@,) onTy, t>0
an(@u) = u u) only, 12U,

where the last condition on I'y is derived from applying (9/0n(®,)) to both sides of
(1). If we take T sufficiently small, which is of the same form as (2.7.3), the results

in Section 2.6 imply the unique existence of the solution ¢ of (2.7.5) satisfying q €
CI([0,T); H*+3/273/2(Q)), j = 0,1. Further, if we put V = A7'u, + Vg, it holds that

V-V=0, VY V=(A7'V)"-u);=0 in Q,0<¢t<T,
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Vilr.=0, V|p,-n(z) =0, 0<¢t<T.
Again uniqueness of the solution to problem (2.6.2) implies V = 0, hence (8).

We see that (u,q) satisfy (8) — (12) and (2.1.2). The uniqueness of the solution to
problem (8) - (12) comes from that of problem (2.5.1) - (2.5.3), (2.6.1), (12), (2.1.4), and
(2.1.5). The proof is complete.

In conclusion, if

noll zre+sr2mry + Vol grotsr2() + llwollgo+sr2 @) — 0,
then by Lemma 2.5.3 and (2.4.1),(2.6.13),(2.7.2), J,J3, J3, Jy, us — 0. Putting J, =
max{v2J,/us}, we have T'— oo.
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Chapter 3. Problem with Surface Tension

In this chapter, we are concerned with the free boundary problem when surface tension
is effective. We prove the unique existence of the solution, locally in time. Furthermore,
it is shown that this solution converges to the solution of the problem without surface
tension as the coeflicient of surface tension tends to zero.

In Chapter 2, gravity has to work downward for the existence of solution of the problem
without surface tension. However, if the surface tension is effective, we see that the
problem is well-posed irrespective of the direction of gravity.

3.1. Main results

The unique existence theorem for problem (8) - (12) is the following.

Theorem 3.1. Let 0 > 0 and s > 5+ 1/2. There exist positive constants &, = §,(g,s)
and 62 = 83(s) such that if

{ no € HH2(RY), be H4(RY), vy € H2(Q),
lImollersm1y + 116l s ®r) + [[Vollga+1/2(q) + llwoll re+1r2¢q) < 01, [[b]| etamry < 52,(3_1.1)

where wg = V3 vo, V& = (—0/0x2,0/0z,), and vy satisfies the compatibility conditions,
then problem (8) — (12) has a unique solution (u, q) on some time interval [0, T) satisfying

{ u e O/ ([0, T]; H22(Q)), - j=0,1,2,
g € C([0,T]; H**T/2=%7%(Q)), j =0, 1.
Remark. T' can be taken such that T — oo as |[nol|gs+or2mr) + |[Vollrerorz gy = 0.

The next theorem is about the convergence of the solution for the surface tension.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied and 0 < o < 1.
If g > 0, we can take the existence time T' in Theorem 3.1 so that T is independent of o.
Moreover if s > 5+ 1/2+ 50, 0 < so < 2, then the solution (u?,q°) of problem (8) - (12)
converges to the solution (u,q) of problem (8) - (12) with o =0 :

u’ —u  in CY[0,T]; H*"1=%(RQ)),

@ —q in C([0,T]; H*=1=%(Q)).
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Notations. Let j be a nonnegative integer, 0 < 7' < oo and B a Banach space. We say
that w € C?([0, T); B) if u is a j-times continuously differentiable function on [0, 7] with
values in B. Let D be a domain in R™ and s > 0. By H*(D) we denote the Sobolev-
Slobodetskii space. Moreover we use the commutator [A, B] = AB — BA for operators A
and B.

3.2. Problem on the surface
At first, we introduce the coordinate transformation mapping ¢ = y+ (0, 7(y)) = ¥(y)
from 2 onto the strip region

Y={y=(1,12); —h<y2<0, y € R'},
where 7)o is a function s ch that 7o(-,0) = no(-) and (-, —h) = b(:). Then from (7) it

follows

z=0u(V(y)st) =y+ X(ty), X(ty)=(0,7(y)) + EU(T» U(y))dr. (3.2.1)

By putting
X(t7y1) = X(t7y170)7 (322)
it is derived from (8), (10) that
(14 X1y, X1et + Xoy, (9 + Xon) = puR + S for t >0, (3.2.3)
where

( -1

P
Q(Xy) = {(1+ X1y, )? + Xoy,2}'72,
R(Xyy, X)) = =3Q(Xy) 7 {(1 4 X)) Xiays + Xy, Koy, |
% { =Xy Xiguyn + (14 K1) Koy },
[ S = S(Xy1, Xyryn) = QX)) {= Xy Xiyyyrys + (1 + Xig) Xy } -

Q

v O F®
Il

Since vorticity V* - v = w can be written as
Vﬂ; “U = wy
in the Lagrangian coordinates, it follows from (9),(11) that
Xoy=KX,,+H for t>0 (3.2.4)

with

K = —itanh(hD) + K,, H = H(X,w,).
Here D = —i0/0y;, K, = K1(X,b) is a smoothing operator and w;(y) = wo(¥(y)). The
explicit forms of A" and H are given in Section 2.3.
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Assuming that an X in H is given, we solve the Cauchy problem (3.2.3), (3.2.4) for X
with the initial conditions

X = (0,7]0), Xlt = U01|y2:0 = U01|y2=0 for t =0. (325)
For that we put
Y=Xu Z=X,, W=(XY,2), W=(X")

and reduce problem (3.2.3) - (3.2.5) to the initial value problem for quasi-linear equations.
In the remaining of this section, for simplicity we use X and y instead of X and v;.
Differentiating (3.2.4) leads to

3 X = K(X) Xy, + Fio(X,...,00X) +0H,

005 X2 = —isgnD]OF X1, + Fixo + 005 H, (3.2.7)

Fjiro = {isgnD + K(X)}0]05 X1, + Fjr(X,...,9]05X,9iX,,),
where 7 = 0,1,2,...,k =1,2,3,... and Fj; = [a{az,lx’l]X”. By (3.2.6) with 7 = 2, we
obtain

Yo = K(X)Y1: + Foo( X, X1, Y) + Hy =: fo(W, W/, H).
It follows from (3.2.7) with j =0, k=3 and j =0, k = 1 that
Zy = —isgnDZy, + (1 + pD?) " (Foro — pFoz0) + Hy, (3.2.8)
where
Foro = Foro(X, Z,...,057'Z, X},)
= {isgnD + K(X)}(iD)* Xy, + For(X, Z,...,057' Z, X)), k=13

Since equation (3.2.3) implies that

1+ Z1)Yi + Zo(9g+Ya) = wR(Z, Z,) + uS(Z, Zyy) + go(1 + pD?)"YisgnD(Z; — iD X))
(3.2.9)

with the constant go being determined later, differentiating (3.2.9) with respect to ¢ and
(3.2.8) give

{g9o(1 + uD?)~YisgnD + P, } Zy;
+(—g — uD? + Py) {—isgnDZy; + (1 + uD?) ™" (Foro — pFoso)}
—(1+4 Z1)Yie — Z2Ya + go(1 + HDZ)—IDSgDDXU +(—g — uD?*+ P)H, =0

with
PJ = PJ(Y’ szyaZyy)
R 35 R S
= -Y; —(Z,7Z —(Z. 7 —— (7 - NY
J+uaZj( ) y””azj( ) yy)+uazjy( ,Zy)lD+uaijy(Z,Zyy)(zD)

+ (] - I)ND27 ] = 172
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Therefore we get
Zy = isgnD {g + go(1 + uD?) ™ + uD?} " (14 Py)~!
x {=(1+ Z)Yse = Zafo + go(1 + uD?) 7' D] X,
+(—g — uD? + B)(1 + puD?) ™ (Foro — pFoso) + (=g — uD? + Py)H, }
=: fo(W, W}, H),
Zoy = —isgnD f3 + (1 + uD2) ™ (Foro — tFuso) + H, = fo( W, W!, H),

where .

Py = —(PyisgnD + P,) {g + go(1 4+ uD?)™' + uDz}
Notice that if we put

[u—

SN

Yo—gr it g<o,
o =
if ¢g>0,
then the operator
-1
{g+90(1 4 uD*)™" 4 uD?}
is well-defined.
In virtue of (3.2.6) with 7 = 3, we have

Yorw = KYiu + Foo(X, X, Y, YY) + Hy. (3.2.10)
Hence, by differentiating (3.2.3) twice with respect to ¢, it follows from (3.2.10) that

(1 + X1y + Xoy K)Yiy
= (R + S)u — Vi Xiuy — (9 + Y2) Xowy — 2X3y - Vi — Xy F30 — Xoy Hine
= P(Y, Xy, Xy, Xyyy)Xiny + {=g —uD* + Po(Y, X, X,,, Xyyy)} Xotey (3.2.11)
+N11(Xya Xtyv ny’ Xtyzn nyya Xtyyy) - 2Xty Y — X2yF30 - X2yHttt'
On the other hand, by (3.2.7) with j =k =1 and j = 1, k = 3, it holds that
Y'Qy = —ngnD)/iy + (1 + /,LD2)_1(F110 — ,llFlgo) + th, (3212)
Firo = Fro(X, Xy, 2, Z,,..., 0,71 2,0,7 Z,, Y1)
= {isgnD + K(X)}(iD)*Yy + Fiu(X, Xy, Z, Z,,..., 051 2,057 Z, 1)), k=1,3.
Therefore putting (3.2.12) into (3.2.11) leads to
Yie = Q71+ Zy + ZzisgnD) {P, — (=g — uD? + P;)isgnD}iDY;
+ Py{Py — (=g — pD* + P,)isgnD} DY, + (1 + Z, + Z,K)~'1I,
+ (14 Zi + ZoK) " {(—g — uD* + P)(1 + uD?)" Hy, — ZyHyyi }

31



where

Py = Py(X,Z)
— —Q~*Zy(isgnD + K(X)) + Q2 Zo{[K, Z1] + [K, Zo]K + Za(1 + K2)}
X (14 Zy + Z;K)71,
L=1L(X, X,, Y, Yo, Z, Zs, Zy, Zuy, Zuys Ziny)
= 1 (Z, Zyy Zy, Zugs Zoys Zigy) + {—g — uD* + Po(Y, 2, Z,, Z,,)}
X (14 pD?) ™Y Fiio — pFiz0) — 2Z: - Y — Z2F30(X, Xy, Y, Y)).

Using the identity

(1+ Z, + ZyisgnD){ P, — (—g — uD? + P,)isgnD}
= (1 + Zl)Pl + Z2(°—g - ,UD2 + Pz) + {Zzpl - (1 + Zl)(—g — ,IJ,]:)2 + Pg)}zsgnD
+ 172, {[sgnD, P;] — [sgnD, PJisgnD},

we get the equation for Y;:
Yie + (M + L)Y, = fi,
where

M = M(W,u) = p{Q(2)7°|IDP° —i(Q(2)~?),DID| + A,D?},

L= L(W,u) =ipAsD + (nAs + Ag)|D],

Q=0(2)={1+2)*+2}'7

Ay = A\(Z,2,) = =3Q(Z2){~ 2221y + (1 + Z1) 22y},

Az = Ay(Z, Zy, Zyy) = Q(Z)_2{4R(Z Z ) +35(2, Zyy)}7

As = As(Z, Zy, Zyy) = 3Q(Z)” {( Z3Zy + (1 + ZI)Z2y)2 — (1 + Zl)Zly + Z2Z2y)2}

+ Q( ) 5{(1 + Zl)Zlyy + Z2Z2yy},

Ay =AY, 2) = Q(Z2){(1 + Z))(9 + Ya) — Z2Yh},

fi =12,Q(Z)~*{[sgnD, P\] — [sgnD, P,}isgnD}:DY;
+ Pi{P, — (—g — uD? + P)isgnD}iDY; + (1 + Zy + ZoK) 'L,
+(1+2Z + Z2K)_l{(_g - #DZ + P2)(1 + F‘Dz)”lth - Z2Httt}

with Y5, alcht in I, are replaced by fs, a’;(fs, fa), respectively.
Thus we obtain the quasi-linear equations for W of the form

{ Xtt:Y; Yitt+(M+L)}/1:f1(Wam,7H7u)7
Yét - fZ(Wa Wt,’Hmu)a th = fB(Wv Wt,> H,,U), ZQL‘ = f4(Wa VVt,,Hvu)' (3213)
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Here the new notations are introduced:

W, W s,
= (“X”%IS(Rl) + || X:| %{s(nl))m + (N”Xlt“;-]sh’»/?(]{l) ‘|‘93H_1”X1t||%1s(m))1/2

+ (el ey + Il resorp gy + IYill e ray) 2 + Y2l s oy
+ I(1 + uD?) Z|| g (mr),

[H(t)],,, = 1He()l|lgmr) + |(1 + pD*)H ()| o1 (),

|H(t)]s,. = [H(®)]su + 1 H() | o1 mry + [ Heae()] e w1,

W" = (Y2, 2),

A=1+1D]|,

UW,W/) = (A3/2X1, Xo, A¥2Y1, Yy, N2Z, NP2 Xy, X, Yir),

V(W[ W) = (A3/2X1n7 KXo, A_3/2Y1tt, Yo, A2Zt)-

Lemma 3.2.1. Let 4 >0, s > 1, do > 0. There exists a positive constant c such that if
W =(0,Y, Z) satisfies

Ye Hs(Rl)v Z € Hs+2(R1)7 ”Z1||H1(R1) < 2 ”YI

Hs(Rl) + ”Z“HS(RI) S do,
(3.2.14)

then it holds that
JOM + Dyullisy < Cr(1+ 101+ 1D Z oy (1 + D) Do,
where Cy = Cy(c,do, s,9) > 0. Moreover if W° = (0,Y°, Z°) satisfies (3.2.14), then

(M — M° + L — L°)u|| s (mr)
<G {HY = YO gy + (1 + I(1 + #D?) Z] gy + 1(1 + #D?) Z°|| go(r1))?
X||(1+ pD2)(Z = Z°) || gy } (1 + #D?*) Dl prorsy

with M® = M(W° p), L° = L(W°, pu).
- Proof. Since Sobolev’s embedding theorem leads to
12| < CllZy||g my),

where C' is a universal constant, the condition (3.2.14), shows that the inverse operators
in M and L exist. Then the above estimates follow easily. ]
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Lemma 3.2.2. Let p >0, 0 < T < o0, s >4, dg >0, d > 0. There exists a positive
constant ¢ = ¢(g) such that if b € H***(R') satisfies ||b||pamr) < ¢, ||b]|gs+srty < do and

W, W, N*?Y,, A*Z, N¥2X,, € C°([0,T); H*(RY)),

H e Ci([0,T); H+°/?=31/2(RY)), 5 =1,3,

1 XN ey + 1Y @y + |1+ 4D Z | m@myy + | Z||momey < ¢, (3.2.15)
(W, W)llge®) < do,

|H|;, <d, for 0 <t<T,

then fi, fa, (14+pD?)fs, (1 4+pD?)fy € CO([0,T]; H*(R')) and
|(frs f)llmsmry + 1(1 + #D?)(f3, fa)llrsmry

< Co(L+ ) (14 W, WL ) (W, Wil + [ Hl ),

|l follzrs ey + (1 + uD?)(fs, fa)llae(rer)
< Ca(1+ p! ) (14 W, W[[5,) > P2 (W, W lls  + [H]s ),

where Cy = Cy(c,do,s,9,d1) > 0, C3 = Cs(c,do,s,9) > 0 and f; = f;(W, W/, H,u),
j=1,...,4. Moreover for WO, W' H° satisfying (3.2.15), it holds that
11 = Rl + 1f2 = f2lla@ey + 11+ #D?)(f5 = f)lmerr)
HI(1 + uD?)(fa — f)llmr=rr)
< Co(L+ )1+ W, Wi s, + IWO, W[5,0)% 10
< (W = WO, W} = Wl + [H — H, ).

Proof. If condition (3.2.15), is satisfied for a sufficiently small ¢, the operator (1 + P3)~!
in f;3 exists. Using Lemma 2.4.1, we obtain the estimates. ]

In order to solve the initial value problem (3.2.13), we need the unique existence theorem
for the problem

Uy + (M + L)u = for 0 <t<T,
{” ( ju=f (3.2.16)

U= ug, U= U at t =0,
which is obtained in [47, Theorem 4.35].

Theorem 3.2.1. Let s > 3 and dy > 0. There exists a positive constant ¢ such that if
Y, Z satisfy

Y € Ci([0,T]; H*(RY)), Z € C/([0,T); H=¥(RY)), j=0,1,
Y(t) e H*(R'), Z(t)e H*T*(RY),
YOl + 122y < ¢, 1Y)l mr) + 12(2))
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and ug € H*H3/2(RY), u, € H(RY), f € C°([0,T); H'(RY)), f(t) € H*(RY), then the

initial value problem (3.2.16) has the unique solution

w € CI([0,T); H+3/*3/2(RY)) 0 C*([0, T); H(RY)), j=0,1,

such that
t
0Ol < Ca u(0)]oy + C [ D) o

where Cy = Cy(c,s8,9) > 2, Cs = Cs(e, 8,9, p,do, T) > 0,
[u(®)]s,u = [lwe(@)lr@r) + pllu@)| gsrer@y) + u(@aetirz@e)-

In addition, if Y, f € C°[0,T); H*(R")), Z € C°([0,T]; H***(R')), then we have u
€ C*([0,T); H*3/*(RY)).
Now we consider the initial value problem (3.2.13) with
W(0) =W =(X,Y,Z), W/(0)=W =(X,Y5) (3.2.17)

By Theorem 3.2.1 together with Lemmas 3.2.1, 3.2.2, we obtain

Theorem 3.2.2. Let s > 5+1/2, 0 < T, < oo. There exists a positive constant ¢ = ¢(g)
such that if H € CI([0, Ty]; H*¥/*-3/2(RY)), j = 1,3, b€ H*3(RY), [B]lmm:) <
UW, W) € H*RY), | X|m@y + 1V lrz@e) + 11+ 4D Z|| g1ty + 1 2] 2wy < e,
then for some T € (0,T;] problem (3.2.13),(3.2.17) has a unique solution W satisfying

UW, wy), V(W W) € C°([0,T]; H*(R')),

XAl + 1Y (Ollrz@ey + (1 + uD) Z(O)m @y + 1203y < ¢
0<t<T.

Let us specify the initial data W, ﬁ/:’ as the value of W, W/ at ¢ = 0 in order that the
solution of problem (3.2.13),(3.2.17) becomes the solution of (3.2.3) — (3.2.5):
X = (0,m0), Z = Xy, Koo = n(,0), X = K(X) X5, + H(0),
Vi = (14 Z + Z,K(X))™!
< {uR(Z,Z,) + uS(Z, Z,,) = Za(g + Fio(X, X2) + H,(0))},
= K(X)Y1 + Fio(X, X,) + H,(0), (3.2.18)

Yie=(1+Z; + Z,K(X))™!
3 n

o

Then Theorem 3.2.2 and (3.2.18) lead us to
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Theorem 3.2.3. Let s > 5+ 1/2, 0 < Ty < oo. There exists a positive constant €, =
e1(g) such that ifb € H**92(RY), 16]| 2 r1y < € and no, woi(+,0), H satisfy the conditions

{ o € HHP(RY),  uo(+,0) € HF*(RY),
lIn0llzzsrty + 11+ £D*)noll a2y + luoi (- 0)|| s (rey < €1/2,

H CJ 0.7 .HS+9/2_3j/2 Rl , ) = 1,3,
{ € C([0, Th); (RY), J (3.2.19)

IH O3y + 1 H:(0)]| 2y < €1/2,

then for some T € (0,T,] problem (3.2.3) — (3.2.5) has a unique solution X satisfying
conditions

X € Ci([0,T); H*¥9/2-3i/2(RY)), 7=0,1,2,3,
{ € C7([0,7) (RY), (32.20)

IX(Olgz@y <e, 0<t<T.
We need an additional estimate for the solution X of problem (3.2.3) - (3.2.5).

Proposition 3.2.1. Suppose that H® satisfies the conditions in (3.2.19) and X° is the
solution of (3.2.3),(3.2.4) with H replaced by H° and (3.2.5). Then we have

3
DIRUX () — X)) | gers-ssrz2(mr)
71=1

< Cs ([H(O) — H°(0)]s—s/2, + [H(t) — H(t))s=5/2,4 + Lt |H(T) — HO(T)|s—3/2,ud7')

for 0 <t < T, where Cs = Cg(c, do, s,9,d1,p,T) > 0.

3.3. Proof of Theorem 3.1

We apply the successive approximation to problem (3.2.3) — (3.2.5), problem

Ve-u=0 in, t>0,
Viou=uw, in 2, t>0,

_ (3.3.1)
up = Xq¢ onl'y, t>0,

u-n(®,)=0 only, t>0
and problem (3.2.1),. We remark that if X|,—o = (0,7), 0:X|i=0 = up and (3.1.1) are

satisfied, the assumptions in Theorem 3.2.3 are also satisfied.
Let us first define X© as

X%(t,y) = (0,7(y)) + tuo(¥(y)) for y €, ¥t >0.

Putting X° into H, we see that (3.2.19) holds. Hence Theorem 3.2.3 guarantees that
there exists the unique solution X' on some time interval [0,7] for problem (3.2.3) -
(3.2.5) which satisfies (3.2.20). Next, for a given X!, we find u' on some time interval
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0 <t < T, as the solution of (3.3.1) under condition (3.1.1). We denote T;(< T') by T
again. Then X! is defined through (3.2.1),. Clearly X'|;—o = (0,70), 0;X"|s=0 = uo.

Take T', in the form similar as (2.7.3), sufficiently small. Then repeating the above pro-
cedure difines the approximate solutions {X™,u", X"}, n =1,2,3,...,0n [0,T]. Moreover
it follows from Section 2.4 that

2
[H(X™) = H(X" s—ar2 < C 3_MBX"(8) = 07X (t)lllsa/2-3i25

i=0

H(X™) = HX™™]ozaya < CUIX™(E) = X0 erars (3.3.2)

3
+ 237X (t) — 0 X" ()|l 43-34/2)
j=1

for 0 <t < T, where

XMl = [ X[ zre+1r2sy + 1 X C 0| ey + 11X (¢ =h) e (ma).-

Here and in what follows in this section, C' means the positive constant independent of n
and t. For the solution u” of problem (3.3.1) with X, replaced by X7, it holds that

2
Y sup [02u"t (1) — 0Ju"(7)|ss3/2-35/2.0

o 0<r<t
=0 , (3.3.3)
S CZ sup llai+1X{l+l(T) — aJT‘+1X{Z(7‘)||Hs+3/2—31/2(R1), 0 S t S T
]‘=00S7'St
with
lulso = [[ull gs+1r29) + lulr, [ #s@ry + e, | zs g1y

By (3.2.1), we have
197 X"+ (8) — B X" () lls43/2-3i72 < ClOJum+(t) — Bju™(t)|s43/2-3/20, J =0,1,2,
t
X0 = Xl < C [ ()~ 0 ()madr, 0EST (334

Then Proposition 3.2.1 and (3.3.2) - (3.3.4) imply that there exists a limit function
{X,u,X}on [0,T] of {X™ u™, X"} in the sense that for any ¢t € [0,7] and s > 5+ 1/2,

2
sup {”XH(T) - X(T)||Hs+3/2(nl) + Z ||ai+1(Xn(T) - X(T))I|H~°+3/2—3J/2(R1)

OS’TSt ]=0

+IX™(7) = X(T)lllsrazz + 2T (X (1) = X (7)) lls43/2-35/2

i=0

2
+ > [ (u(r) — u(r))|5+3/2_3j/2,g} —0 asn — oo.
=0
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Obviously X,u and X are the solutions of problem (3.2.3) — (3.2.5), problem (3.3.1) and
problem (3.2.1),, respectively, and satisfy

X € CU([0,T); H***~%X(RY)), j=1,2,3, (3.3.5)

{ u € CI([0,T); H**7/>=%/2(q)), (33.6)
ulr,ur, € C/([0,T); HF2=%2(D, UTy)), j=0,1,2, .

X € CI([0,T); He*3=212(53)), (33.7)
XIFSUF(, € C]([O’TL Hs+9/2_3j/2(R1))7 .7 = 1?273 o

with s replaced by s — 3/2. Then applying the arguments in [47, Theorem 5.7] leads to
(3.3.5) — (3.3.7). Moreover we see that (3.2.2) holds.

The uniqueness of the solutions to problems (3.2.3) - (3.2.5),(3.3.1), (3.2.1), follows in
the same way as above.

Now define g as a solution of boundary value problem

Ag= -V - (A7 uy) inQ, t>0,
t
qg=yg (:rg + Jo uz(r,a:)d7'> —oH(®,) on Ty, t >0, (3.3.8)
0
an(éu) = —(u-Vyu-n(d,) on Iy, t >0.

Then it is easy to show the unique existence of the solution ¢ of problem (3.3.8) satisfying
g € C7(0, T} HTP=1%(Q)), j =0,1

for sufficiently small T of the form similar as above. Furthermore, the uniqueness of

solution to problem (8) — (12) is obtained by the uniqueness of the solutions to problems
(3.2.3) - (3.2.5), (3.3.1), (3.2.1),. The proof is complete.

3.4. Proof of Theorem 3.2

Throughout this section we assume that g > 0 is a fixed constant. Then as in Section
3.2 we can get the following lemmas.

Lemma 3.4.1. There exists a positive constant ¢ such that if the assumptions in
Lemma 3.2.1 are satisfied, then we have

I{M(W,e) — M(W,6) + L(W,e) — L(W,6) }ul| s mry
< Cr(6 —€)B7H (1 + (1 + BD?) Z|| gs(r1))?||(1 + BD?)Dul| ooy,
where 0 < e < 4, =632 0<sy<2andC,= C7(c,do,s,9) > 0.
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Lemma 3.4.2. There exists a positive constant ¢ = ¢(g) such that if the assumptions in
Lemma 3.2.2 are satisfied with s replaced by s + s, 0 < 89 < 2, then for0 <e <d < 1,
it holds that

15 = fillasey + 1 f5 = fallmeqrey + 11(1+€D?)(f5 = f)llms(rr)
HI(1 +eD?)(f5 = f)llasm)
< (14 W W [l5450,6) % 20F (6 — ) (| W, W llos0,6 + [H |s50,6);
where f' = f(W, W/, H,p) and Cs = Cg(c,do, s,50,9,d1) > 1.
Lemma 3.4.3. Let p >0, s > 3, do > 0. There exists a positive constant ¢ such that if
be H°t3(R') satisfies ||b||psmr) < ¢, ||bllge+2rry < do and
mo € HY2(RY),  ug(-,0) € H*H3(RY),
d7H(0) € H*+3=%/2(RY), j=0,1,2,
Imollasmry < ¢, lmollars+ors@mry + llwor (- 0) || ms+2miy < do,
then we have
1Y% = Yo erarzqmry + 1V = Yl < Co(6 — &)([lmollprevorzqry + lluon (-, 0) | resaqy),
where Cg = Cy(c,do, ) >0 and 0 < & < 4.

Theorem 3.4.1. Suppose that the assumptions in Theorem 3.2.3 hold. Then T in
Theorem 3.2.3 can be taken in such a way that T' depends only on ¢, dy, s,c1, g,d;, but does
not depend on u. Moreover if s > 5+ 1/2+ 54, 0 < 59 < 2, then the solution X = X* of
problem (3.2.3) — (3.2.5) with u > 0 converges to the solution of problem (3.2.3) - (3.2.5)
with u =0 as p — 0.

Proof. The first part of the proof is standard.
In order to prove the second part, it is sufficient to prove

) < Cho(d — 5)50/2(“770”H3+3/2(R1) + [[woi(+, 0)]

Hr(R! Hs(RY) + d1)7

where 0 S t S T, 0<ex< ) < 1, r= 8—3/2—80 and CIO = Clo(C,do,S,El,g,dl,So,T) >
0. Let W* be the solution of the problem (3.2.13),(3.2.17) corresponding to X*#. Then
W = We — W9 is a solution of the problem

Xtt + X == X + Y,
Yieo + (M* 4+ L)Yi = ff — f{ = (M® — M° + L* — L°)Y},
Ya=fi—f, Zu=fi—1f5, Zu=f;—f,
W(0) = W= — We,  W/(0) = W¢' — W,
where f* = fA(W* W/ H,u), j=1,...,4, M* = M(W* u), L* = L(W*, ). Using

Lemmas 3.4.1 - 3.4.3, we estimate W as in Theorem 3.2.2. Then the required result is
obtained. I
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Since the estimate of the solution u® of the boundary value problem (3.3.1) with Xy
replaced by X7, implies that

187 (0 — u)|[ g2 (@) + 1107 (0 — u)[r.ury (e
<Ol (X = XO)gr@my,  7=0,1,
Theorem 3.4.1 leads to
u’ - u in CY([0,T]; H™+'/2(Q)),
{ u’|rur, = Ulr,or, 10 CY[0,T); H (s UTy)).
Then similar arguments in Section 3.3 show that
¢ —q inC(0,T]; H**Q)),

which completes the proof.
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Chapter 4. Problem Far from Equilibrium

We consider the free boundary problem in the same situation as Chapter 2 except
almost flatness of the boundaries, that is, in case that the effect of surface tension is
negligible. We show the unique existence of the solution, even if the initial surface and
the bottom are uneven.

4.1. Main Result

Theorem 4.1. Let 0 = 0, g > 0 and s > 4. There exists a positive constant § = 6(g)
such that if

mo € HFX(RY), be H3(RY), v, € HT32(Q),
inf{no(z1) — (=h + b(z1))} > 0, (4.1.1)

[Voll g2+1r2() + llwoll 2+1/2(0) < 6,

where wy = Vi - vy, VL = (—0/0z4,0/0z,), and vy satisfies the compatibility conditions,
then problem (8) — (12) has a unique solution (u,q) on some time interval [0, T| satisfying

u e Ci([0,T); H+3/2-3/2(Q)), 5 =0,1,2,3,
{q € Ci((0,T); H*+*312(Q)), j =1,2. (4.1.2)
Our approach is as follows: put
X(t,z) = Eu(r,x)dr (4.1.3)
and
X(t,zy) = X(t,z1,mo(z1)),  X(t,21) = X(t,21,—h + b(zy)). (4.1.4)

Then by (8),(10), we get

aXl aZXl dT]o aX2 62){2
( 0z, ) ot? (dxl 0z, 9T 3 0 for t20 (4.15)
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On the other hand, since in the Lagrangian coordinates vorticity

Viv=w
can be written as
Viu=w, in Q, t>0, (4.1.6)
it follows from (9), (4.1.6) that
Xy =KXy +H  for t>0 (4.1.7)

with an operator K = K(X) and a function H = H(X, X, wo). We will give the explicit
form of K and H in Section 4.3. Here the operator K has a simpler form than those in
Chapters 2 and 3, or in the previous articles for the free boundary problem in case of finite
depth ([14],[46],[47]). In Section 4.4, the properties of K and H will be investigated.
To verify the existence of the inverse operators in K and H, we apply the method by
Verchota [43] and Kenig[20] as in [14],[45]. Wu and Iguchi assumed that the flow is
irrotational, but we will see that this method is applicable to the problem for rotational
motion. In Section 4.5, assuming that an H is given, we solve the Cauchy problem
(4.1.5),(4.1.7) for X with the initial conditions determined by (4.1.3),(4.1.4),. As in
Chapter 2, we convert to the quasi-linear system which contains a weakly hyperbolic
equation. Moreover we show that the solution of the quasi-linear system satisfies the
initial value problem (4.1.5),(4.1.7). In Section 4.6, for a given X, we find u by solving
the boundary value problem for (9),(4.1.6). Then X and X are determined through
(4.1.3) and (4.1.4),, respectively. In Section 4.7 by repeating this procedure, the solution

(X,u, X, X) is obtained. Moreover we can obtain ¢ by (8).

4.2. Notations

Let 7 be a nonnegative integer, 0 < 7" < oo and B a Banach space. We say that
u € C9([0,T]; B) if u is a j-times continuously differentiable function on [0, 7] with values
in B. Let D be a domain in R". Then by H*(D), —oo < s < 0o, we denote the Sobolev
space. We use the commutator [A, B] = AB — BA for operators A and B. Moreover the
adjoint operator of A is denoted by A*.

For a Lipschitz continuous function ¢ on R!, we define the curve I' by I' = {(z1, p(z1));
z € R'}. Then the non-tangential cones C*(P), P = (y1,(y1)) € ', are given by

{C+(P) = {(z1,22) € R 25 — (1) > Mlz, -y}, (4.2.1)

C™(P) = {(z1,22) € R* x5 — p(z1) < —M|zy — w1},
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where ||¢'|| Loty < M. For a function v on R*\ T, the non-tangential maximal functions
and the non-tangential limits of v are defined by

vE(P)= sup |v(X)| for P€T,
XeC*(P)

vE(P) = lim v(X) for PelT,
X—P,XeC*(P)
respectively.
We often use some integral operators. The layer potentials £,(¢;u) and Ly(p;u) are

defined by

. L ely) —xe — @' (y) (v —2)
Lilpiu)(e) = 2m J— (y1 — 1) + (o(y1) — 22)? ulyn)dyr,

) —
: _ Ly — o+ @' (y)(e(y) — 22) 2
‘CZ(S‘O’U)(:E) - 27‘(‘ J_ (yl _ xl) + (‘P(yl) ) (yl)dyl, x € R \F

Further the singular integral operators L,(p;u) and Lo(p;u) are defined by

) = Lo [ 2W) = e(z1) — Py — 1)
Llomte) = gvp | ) sl O

) = Lo [ e+ @ (y)(e(yn) — (1))
L) = v | S el

u(yl)dyl, T € Rl.

We also use the layer potential M(p;u) = (M;(p;u), Mo(p;u)),

_ _L e _mmanelp) —e) rc R
M) = o | e S u)dy, @ e R\ T.

4.3. Representation of K and H

Throughout this section let the time ¢ > 0 be arbitrarily fixed. We assume that v and
X are smooth and tend to zero as variables tend to infinity. We regard the plane R?

21,22
as a complex space of z = 21 + 12,. Hence I'4(¢) and [’y are given by
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{Fs(t) swy(z1) = 21 4+ Xi(e1) +i(no(z1) + Xa(21)),
Iy : wb(:vl) =+ Z(—h + b(l’l)), —00 < 71 < 0.

We suppose that v satisfies the equations
V.v=0, V'-v=w inQ(t)
and put

F = v — vy,
f(z1) = filzy) +ifo(zr) = Flws(z1)),
9(1) = gi(z1) +1g2(z1) = Fwp(zy)).

Then Cauchy integral formula implies that

1 flyr)  dws(yr) 1 g(y1)  dwy(y1)
F(2°) = — —J d —,J d
(=) 211 Jr,@y) we(yy) — 20 dyy 4 27, wy(yy) — 2°  dy; %
_ 50 _ .0
. Z” waE(z z )ledZ2 B ” waE(z z )dzldzz, (4.3.1)
Q(t) GER Q(t) 02z

where z° € Q(¢) and

1
E(z)= —2—7rlog |z|.

9 = wy(z,) on I'y(t) non-tangentially, by the relation

Therefore if we take z° to w

1 dw,(yy)
ws(y1) —ws(z1)  dys

= é—ay—l log(ws(y1) — ws(z1))

= a—ay: {log {y1 — =1+ i(no(y1) — no(z1))} + log

w, (Y1) — w,(zy) }
y1 — 1+ ¢(no(y1) — no(21))

and the imaginary part of (4.3.1), we get the equation

1
fa= §f2 + Asfi + Aifo — Aufi + Asfo — Asgr — Asge + Hiy,
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where

Aju(zy) = Ly(no; u)(zy),
Agu(z1) = La(no; u)(z1),

Azu(zy) = QLJOO Imlog{1+

T J_

+ {1 = 2)(Xi(y1) = Xa(21)) + (no(w1) — m0(21))(Xa(yr) — Xa(a:1)

~i{(m0(y1) — mo(z1))(Xi(1) — Xi(z1)) = (1 — 21)(Xa(y1) — X2($1))}}

X {(yl —z1)* + (no(y1) — 770($1))2}—1}Ul(y1)dy17

1 [}
Aqu(zy) = 2_7rJ Relog{1+

+ {(yl —z1)(X1(y1) — Xu(21)) + (mo(y1) — mo(21))(Xa(y1) — Xa(z1))

—i{(m0(y1) — mo(@1)) (X1 (y1) — Xi(21)) = (11 — 21)(Xa(y1) — Xa(21))}}

X {(yl —21)? + (mo(y1) — no(xl))z}—l}u,(yl)dylv

_ Lo —h+b(y) —no(z1) — Xa(z1) — by — 21 — ):(1(1’1)) "
Auen) = 2 | G mn = e 5 (o 00m) = men] — Taleg )

_ e e = Xa(@) + 6 (=h + b(yy) — molen) — Xy(21)) "
Asu(m) = 2m J—oo (y1 — 21 — Xi(21))2 + (=h + b(y1) — no(z1) — Xa(21))? (w1)du,

.0
H, = J J w(z)2EE =) g, g,
Q(t) 0z,

Since fi = vilr,¢), fo = —v2lr.), 91 = vilr, and g2 = —vs|r,, we see that Xy, =

KX+ H with

. 1 -
K :—<§—A1—A3) (A; — Ay)

1

-1
__ (5 — A - A3) <§zsgnD — Ay - A4>

= —isgnD + 2(— A7 — Ay)
1

Ay
+ 2(——141 + Ag) (5 - Al + A3) (alngD + A7 + A4)

(4.3.2)

=: —sgnD + K,
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1 - y v
H=— (5 — Al — A3> (—Alet + A5X2t + Hl)?

where

D = —i0/0z,, Aru(z,)= éLJO; log{1 + (Wo(yl) — 770(351)) P2 (y1)dys.

™J- Y1 —

4.4. Estimates for K and H
First we investigate the operators A; (j = 1,3,4,...,7).

Lemma 4.4.1. Suppose that inf{no(z1) — (=h + b(z1))} > 0.
(1) Let no € H*(RY), 5,50 > 3/2. It holds that

|Ajullas @y < Cllullgsomry, J=1,7, C = C(s,s0,||n0l|m:®r)) > 0.

(2) Let no be the Lipschitz continuous function and ny € H***2(RY), s > 0. It holds
that

|Ajull @y < Cllullaomry, 7 =1,7, C = C(s, |[nollge+sr2mr), 1m0l (m1)) > 0.
(3) There exists a positive constant ¢y such that if ny € L>(RY), no, X, X° € H*(RY),

s > 2 and || X|gz@y, 1 Xmz@ey < oo (1X|as@)s [ XOllms@my < d for some
d > 0, then it holds that

{“Aj(X)UHHs(Rl) < O X || s mny el o0 (m1),

[4;(X)u — Aj(X)ullperry < CNIX — X\l gremyy ||l oo (r1), 7 = 3,4, s0 > 3/2,

where C = C(S,So,Co,d, “"YOHHS(Rl)a ”ng”L“’(R‘)) > 0.
(4) Letno, X, X° € H*(R'), s > 0, b the Lipschitz continuous function and 1 X || 2 m1),
XN eremry < d for some d > 0. It holds that
{HAJ‘(X)U”H-*(RI) < Clluf|om),
[4;(X)u — Aj(XO)ullgs@my < CIIX — X\lge@ylullmomyy, 7= 5,6,

where C' = C(s,d, ||nol

Hs(R1), Ilb/”Loo(Rl)) > 0.

Proof. (1) and (2) follow from [46, Section 4] and [6, Section 9], respectively. The proof
for (4) is standard. It remains to show (3). If Re z > —1, it holds that log(1 + 2) = 2f(z)
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where f(z) is holomorphic in 2. Hence, if X is small in H¥(R!),¢ > 3/2, it is sufficient to
investigate the function

2

J"" (y1 — 1)
~co (Y1 — 21)? + (M0(y1) — no(z1))?

y {X1(y1) - Xl(l'l) 4 no(y1) — no(z1) X2(y1) - Xﬁl(ml)

Y1 — T Y1 — Yr —

— (no(y1) —1o(z1) Xi(y1) = Xi(21) _ Xo(y1) — Xz(l‘l))}

Y1 — Ty nh—n y1—

< F (770(3/1) —no(z1) Xi(y1) — Xi(z1) Xa(y1) — Xo(21)
y1— ’ Y1 — 1 ’ Y1 — &y

) u(y1)dy,

where F is a smooth function. Then the arguments in [46, Section 4] show (3). [

Now we will show the operator % — A, — Aj is invertible. To see this fact, we use the
following proposition.

Proposition 4.4.1. Suppose that A is a bounded linear operator in L*(R') and satisfies
||Au||L2(R1) Z C]]u|]L2(R1), ||A*u||L2(Rx) 2 CHUHLZ(RI) (441)
for any v € L*(R"), where C' > 0. Then the operator A is invertible in L*(R').

Proof. By the first estimate of (4.4.1), we see that the operator A is injective. The second
estimate implies that the adjoint operator A* has the closed range. Since the operator A
is bounded, A is surjective on L*(R!). I

In the same way as [14, Lemma 5.2], we can obtain

Lemma 4.4.2. Let ng be the Lipschitz continuous function and C*(P), P € T, the cones
defined by (4.2.1) with ¢ replaced by ny. Suppose that
(1) v = (91,0;) satisfies V-v =0 and V' -v =0 in R?\ T,

(2) The non-tangential mazimal functions v¥ = supxecxpy [V(X)], P € I's, belong to

(3) The non-tangential limits V¥ = (V£ Vi¥) = limx_pxectp) V(X), P € I's, exist
for almost every P,
(4) v(z) = O(]z|™") as |z| = oo.
If we denote the normal vector and the tangential vector to I's by N = (N,N,), T =
(N2, —N1), respectively, then the norms |[Vi||r2ma), [|VallL2 @), [N - V|z2gey and ||T -
Vl|2r1) are equivalent, where V.=V* or V-,
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Lemma 4.4.3. Suppose that ny is the Lipschitz continuous function. Then the operator
1 — A L*(R') — L*(R') is invertible. Moreover, it holds that

IG5~ A ulzzqey < Cllellay
with C = O[]l z=ny) > 0.
Proof. Let us first consider the layer potentials
Uy = Ly(nosu), v = —La(no; u)
for u € L*(R'). In the same way as [9, Theorem 1.3], we see that

. 1 .
Vli = :F§u + Aju, Vf = —Aju.

Moreover, v satisfies V- v = 0 and V* - v = 0. Hence it follows from Lemma 4.4.2 that

1 1
|[(§ + Aull 2wy < C||(§ — Aullzzme)-

Therefore we see that
1
”’UHLZ(Rl) S Cll(i — Al)U”LZ(Rl). (442)
Secondly, we consider the layer potentials

vy = My(nosu), Uy = My(no;u)

for u € L*(RY). Then for the non-tangential limits V* of ¥ we have
; 1 ;
N.VE = N2(¢§u — Alu), T-VE=_N,Au,

which lead to

I

Again by Lemma 4.4.2, we see that

) 1,
+ ADullzzry < Cll(G = ADullzwe).

L.
”U“Lz(Rl) S 0“(5 - Al)u||L2(R1). (443)
Therefore the estimates (4.4.2) and (4.4.3) give our assertion. (]

Lemma 4.4.4.

(1) Suppose that no € H**3/*(R'), X,X° ¢ HS(RI),_ lnollzr+sr2mry < K and s > 2.
There exists a positive constant co such that if | X ||g2mry, | X g2y < co, then
the operator 3+ — Ay — Az : H*(R') — H*(R') is invertible. Moreover it holds that
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1 _
IG5 = Av = As) "l < Cllullmem,

ll(% — Ay = A3) T (X)u — (% — A1 — As3) T (XO)ullgerey (4.4.4)

< ONX = X s ry el s may,

where C = C(s,k) > 0.

(2) Suppose that no, X, X° € H*(R'), |Inollpsrr) < & and s > 4. There exists a
positive constant co such that if || X||\m2mr), | X% 2@y < co, then the operator
:— Ay — Az H*(R') — H*(R') is invertible. Moreover (4.4.4) holds.

Proof. We only show the proof for (1). At first, we show that the operator 1 — A, is
invertible in H*(R'),s > 0. Note that for any positive integer m

1 -1 ) 1 -1 . 1 -1
om (5 _ A1> —om [a (5 _ AI) ] +om (5 _ Al) 2.,

1 -1 1 -1 _ 1 -1 4.4.5
— ot (5 _ A1> .., Ay] (5 _ A1> +omt (5 _ Al) axl,( )

where 0,, = 0/0z;. Then Lemma 4.4.3 lead that % — A, is invertible in H™(R'),m =
1,2,...,[s], inductively. Here [s] is the largest integer no more than s. Hence by interpo-
lation, it holds that

1 -
”(5 — Al) 1U||Ht(R1) < CHUHH”(Rl)a 0<t< [8]7 C= C(t? ”77(/)||L°°(R1)a,€) > 0.

From (4.4.5) replaced 07, by ak}(l +ID])7, 0 < r < s —[s], it follows that  — A; is
invertible in H*(R'). Then by the proof for Lemma 2.2.2(4), the above assertions are
obtained. (]

It follows from (4.3.2) and Lemmas 4.4.1, 4.4.4(1) that

Lemma 4.4.5. There ezists a positive constant co such that if no € H*(R'), no €
H.31+3/2(R1)’ X,XO € HS(Rl)’ S 2 2, S0, 81 > 3/2 and ||T]0“H$(Rl) S K, “770||H51+3/2(R1) S

/i,, ”XHH?(Rl)a ”X_0||H2(Rl) S Co, ||X”H¢‘(R1)7 ”XO”HS(RI) S dfOT’ some d > 0, then it holds
that

{HKIO? Jull ey < Cllullaom,
IK1(X)u — Ki(XO)ullgerry < CIX — X°|

Hs(Rl)”u”Hso(Rl),
where C = C(s, 8o, ¢, d, k,£") > 0.
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Assuming that X depends on z; and ¢, we define Ky 4 (X, ...,3;0% X), 9, = /3¢, k,I
=0,1,2,..., by

0
Kip0 = Ky, Ko = [—71{1,0,1—1} , 1=1,2,3,...,
al’l
. (-
[\1,1‘,11: [a’hhknlyl:}’ k‘:1,2,3,..., 120,1,2,....

Moreover we replace 902 X by XP7. Then we have

Lemma 4.4.6. There exists a positive constant co such that if o € H*H(R'), no €
Hsl+l+3/2(R1), S Z 2, S1 > 3/2, ||X00||H2(R1),”X/ 00||H2(R1) S Co and I|770||H$+’(R1) S
K, |70l He1+H43/2(R)) < K, ||(X00,...,Xk1)||Hs(R1), (X% ... X' kl)”Hs(Rl) < d for some
d >0, then for any u € H**(R'), so > 3/2, it holds that

H]X’Lk,[(XOO, e ,Xkl)u“Hs(Rl) S CHu”Hso(Rl),
“I(IJV’I(XOO, e ,X“)u — A’rlykyl(X/OO, ceey X' kl)u”Hs(Rl)
S COX® = X0, XM = X M) ey 1wl o r1y,

where C = C(s, so,¢o,d,K,&") > 0.

Let us introduce the new norm

11X Mlls = 1X [ zrer 1720y + 1X (5 mo( ) sy

Lemma 4.4.7. Suppose that no € H*(R'), b € H*(R'), s > 2. There exists a positive
constant ¢y such that if

I1X1ll2 < co, WXIlls < d, d >0,

then we have

{||H1||H-*(R1) < Cllwollge+1/2()
1Hi(XY) = Hi(X*) sy < CHIXY = X2l llwoll gresrr2qy.

where C = C(s,¢o,d) > 0.
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Proof. We introduce the coverings {Q®")}_ | of Q and associated smooth cut-off functions
{¢:}*, on © which has following properties:

Jao =1,

O = {ze® a < -am}, 22 ={re® ar>a),

diameter(QV) < 00, 1=3,...,n,

QONT)=Tu#é, 1=3,...,m,
QONT)=¢, i=m+1,...,n,
0<¢W(z) <1, supp¢? =00, 3¢ =1

for a; > 0,5 > 0. Take m,n, ay, a, sufficiently large and diameter(Q?)), i = 3,... m,
sufficiently small. Then it is enough to estimate H;({)w) for all i.
(1) Proof for: = 1,2.

Let us define a function 8(z;) € H*(R') such that

B(zy) =b(zy) ifzy < —aq, 1 > a,
{Hﬁllz <e,
where € > 0 is a sufficient small constant. Then by the mapping
z=y+(0,70(y)),
Q0 is transformed onto a part of the horizontal strip

Y={y=(y,12); —h<y<0, y € Rl}.

Here 79 1s the function

Mo(y1,y2)
1 (oo _eiylﬁ(elﬁl(y2+2h) _ e|5|y2)ﬁ0(§) + eiylﬁ(e|§|(y2+h) _ el&l(h—yz))B(f)
~ o J_oo 1 — e2leln dc.

By Lemma 2.6.1, similar arguments as in Section 2.4 show the desired estimates for
Hl(C(i)wo)-
(2) Proof fori =3,...,m.

Notice that

IH1(CDwo)ll ey < NHi(¢Vwo)llme(r.) + | Hi(CPwo)|| e ara)-

The first term on the right hand side is estimated as in (1). The estimate for the second
term is easily obtained.

(3) Proof for i =m +1,...,n.
In this case the proof is standard. (]
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Assumption 4.1. The functions ny and b satisfy
o € HP(RY), be H'(RY).

There exist cg >0, d >0, 1; >0 (3 =1,2,...,6), K > 0 such that fors >3, 0 < T < oo,
X, X and no satisfy

X € Ci([0, T); Hs*+273/2(Q)), j=1,2,3,4,

X|p, € CI([0,T]; H**3/2-i2(RY)),  j=1,2,3.4,

X = X|p, € C7([0,T); H+3/2=i/2(RY)),  j=1,2,3,4,

NIX @2 < o, X Dlls+1 < d, (4.4.6)
0 X (#)lsrsa—ie + 1 X )l resorrmsrrmy < by 5=1,2,3,4,

N X(@)llls + 107X (W)l arsrr) < s 5= 1,2,

|[77()“Hs+2(R1) < K.

We use the following notations:

[H(O)]s = [ H)||mrer1 ey + 18 H )l o2y + 107 H () || roma),
[H(8)]s = 1H@) ||+ ey + 18 H Ol oy + (107 H ()| memey + 107H (1) | re(rery,
s = 1+ |lwoll grevare(qy-
Then it follows from Lemmas 4.4.1, 4.4.4, 4.4.7 that
Proposition 4.4.2. Under Assumption 4.1 we have
H=H(X,X)eC'([0,T); H*+3**RY)),  j=1,3,

H), < Cipyy ||, < Copsy 0SE<T. (147)
Moreover, for X', X' and X2, X? satisfying (4.4.6), we have
([H(X', X') — H(X?, X?)),

2

< Cup Y (IIFXH ) = 03X (W) lwr—yyo + 1357 X = 31 X2 yoqar))

i=0

|H(X', XY — H(X?, X?)|,
< Copts {IXH(E) = X2 lswr + 1 XY = X mo(mr)

3
+ 37 (IR7X(8) = 3 X2 (8)lapajamsya + 13771 X — 0 X2 ogay)
]:

=1

where 0 <t <T,Cy = Cy(s,co,d,15,l6,6) >0 and Cy = Cy(s, co,d, 11,1y, l3,14,5) > 0.
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4.5. Problem on the surface

In this section, for a given H, we solve the initial value problem

_ 2 % 2 v

0z, 0t2 dz; 0z ot?
Xy =KX+ H  for t>0, (4.5.2)
X[t:o = (0, 0), Xltlt:o = u01|ps. (453)

We first reduce the problem (4.5.1) — (4.5.3) to the initial value problem for a quasi-
linear system. Then the existence and uniqueness of solution to the quasi-linear system
is proved. Moreover, we show that the solution of this quasi-linear system satisfies the
problem (4.5.1) — (4.5.3). In the remaining of this section, for simplicity, we use X and z
instead of X and z,, respectively.

From (4.3.2) and (4.5.2) it follows that

O Xor = K(X)OF X1, + Fro(X,...,0/X) + 0F H, (4.5.4)

0FOL Xy = K(X)OFOLX 1, + Fu(X,..., 050, X, 0571 X)) + 0FOLH,  (4.5.5)
where k =0,1,2,..., [ =1,2,3,..., and Fy; = [0F0!, K1]Xy,. We put
Y=Xu, Z=X,, W=(X,Y,Z), W=(X,1).
In virtue of (4.5.4) with k£ = 2 we have
Yo = K(X)Yi + Foo( X, X, Y) + Hyy =: fo(W, W/, H). (4.5.6)
Differentiating (4.5.1) with respect to ¢ and using (4.5.5) with £ =0, [ = 1, we obtain
Zy = —{(g + Y2)(—isgnD) + Yl}nl{(g + Y5) (K1 (X)0, X1 + Fou (X, Z, X1:) + Ha)
+ (L4 Z)Yie + (no: + Z2) f2(W, WY, H)}
=: fo(W, W/, H). (4.5.7)
Putting (4.5.7) into (4.5.5) with £ =0, [ =1 leads to
Zy = —isgnD fo(W, W/, H) + K(X)0, X1, + For + H, =: fu( W, W/, H). (4.5.8)

Next we proceed to the equation for Y;. Differentiating (4.5.1) twice with respect to ¢
implies

14+ Z)Yiu + Moz + Z2)You + YiVie + (9 + Y2) Yo + 22, - Y, = 0. (4.5.9)
By (4.5.4) with £ = 3 and (4.5.5) with £ = [ =1, it holds that
Yo = K(X)Yiu + Fao(X, X3, Y, Y3) + Hy,
Yor = K(X)Y1i: + Fuu(X, X, Z, Z, Y1) + Hy,.
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Hence it follows from (4.5.9) that

Yie + {14 Z1 + (noz + Z2) K} {Y1 + (¢ + Y2) K}, Y}
= {142+ (o= + Z2) K} (4.5.10)
X {272 - Yy + (Mow + Z2)(Fs0 + Hue) + (9 + Y2)(Fi1 + He)}-

The identity

{14+ Z1+ (nos + Z2) K} "{Y1 + (g + Y2)K'}
= {(1+ Z1)* + oz + Z2)"} {1 + Z0)Y1 + (nos + Z2)(g + Y2)}
+{(1+ Z1)* + (noe + Z2)*} (1 + Z1) (g + Ya) — (noz + Z2)Y1}(—isgnD) + P,

P, =P(W;X,7)
={(14 Z1)* + (o + Z2)*} " H{(1 + Z1)(g + Y2) — (0= + Z2)Y1} K,
—{(1+ 20 + (moz + Z2)°} " (now + Z2){[K, Y] + [K, Yol K + (9 + Ya)(1 + K%)}
+{(1+ Z1)* + (Mos + Z2)*} " (Nox + Z2)
x {[K, Z1) + [K, (oz + Z2)]K + (noz + Z2)(1 + K?)}
X AL+ Zi + (nos + Z) K} {1 + (9 + Y2) K,

and (4.5.6) — (4.5.8) lead the equivalent equation to (4.5.10)
Yiee + a(W)|DIYy = fL(W, W/, H)
with
a(W) ={(1+ Z1)* + (o= + 22)*} {1 + Z1)(9 + Y2) — (n0= + Z2)Y1},

fi=—-Po, Y1 — {14+ Zi+ (o + Z2)K} {22, - Y,
+ Moz + Z2)(F30(X, X, Y, Y2) + Huw) + (g + Yo ) (Fu(X, Xe, Z, 24, Y1) + Hiz)}

Thus the required quasi-linear system has the form

{Xtt =Y, Yia+a(W)DY: = A(W, W], H),

(4.5.11)
YZi = fZ(Wa W/tlvH)v th = f3(W7 VVtI7 H)7 Z?t = f4(W7 thvH)'

We show the estimates for the inverse operators in (4.5.11). The following lemma is
obtained by Lemma 2.2.2(4).

54



Lemma 4.5.1.
(1) There exists a positive constant ¢; = c¢1(g) such that if Y,Y° € H*(R'), s > 2 and
||Y||H2(R1)aHY0“H2(R1) S C1, HYle(Rl),“YO”Hs(Rl) S dl, d1 > O, then it holds
that

I{Y1 + (g + Y2)(—isgnD)} " ul| s (rry < Cllullmsmr),
I{Y1 + (g + Y2)(—isgnD)}'u — {Y? + (g9 + Y2)(—isgnD)} " 'ullgs(m)
<CONY =Y u@mylullgsm),  C=C(s,e1,di,g) > 0.

(2) There exists a positive constant ¢, such that if no € H*Y'(RY), Z,Z° € H*(R'),
S Z 1 and HZlHHl(Rl), ”Z?HHI(RI) S Ci, ”Z”Hs(Rl),”ZOHHs(Rl) S dl, d1 > O, then
it holds that

{1+ 2,

)2+ (Noz + Z2)*} ull ey < Cllul| ey
1{(1 + Z,)?
<

(Moz + Z2)*} " 'u — {(1 + Z9)* + (m0z + 22)*} ' ullm=ry)
C”Z — ZOHHs(Rl)Hu”Hs(Rl), C = C(S,Cl,dl) > 0.

+
+

In order to define the operator {1 + Z; + (nor + Z2)K}~', we consider the operator
{1 —noo(3 — A1)7 A}

Lemma 4.5.2. The operator 1 —no,(3 — A1) Ay : L2 (R') — L*(RY) is invertible. More-
over it holds that

S C||u||L2(Rl)

. . )
H{l —7’]03(— —Al)_lAQ} (72
L*(R1)

2

with C = C(”T}OIHLOO(RI)) > 0.

Proof. Suppose that the function v = (9;, 9;) satisfies

V.¥=0, VE-v=0 inQ
{ V=5 v oo (4.5.12)

v =40 on [,

where
Qoo = {.’1: = (a:l,;vg); T < 770(5(:1), T, € RI}
Then similar arguments as in Section 4.3 conclude that the non-tangential limit V- =

(Vim, V) of ¥ satisfies V;” = —(L — A;)~'4,V,". Moreover, it holds that

2

— 1
T- V™ = NQ{]. _7701‘(5 —Al)_lAz}o, (4513)
where T = (N,,—N;) is the tangential vector to I',. On the other hand, the layer
potentials

N 1 . 1
v = Ll <770, (5 + Al)_la) y Vg = —£2 (770, (5 + Al)_la)
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are the unique solution of the problem (4.5.12) and it holds that
T.-V- =N, {1 - nOzAz(% + Al)‘l} 6. (4.5.14)

Here we can show that the operator % + A; is invertible in the same way as Lemma 4.4.3.
Therefore, by virtue of (4.5.13) and (4.5.14), it is sufficient to show that the operator
1 — oz Az2(5 + A1)t = (5 4+ AL — no:A2)(5 + A) 7! is invertible.

Now we consider the layer potentials

01 = Li(nosur) + L2(no; uz), 02 = —La(no; ur) + L1(n0; u2)
for uy,u; € L*(R'). Then it holds that

. 1 . 1
Vli = :F§U1 + Ajur + Azus, Vzi = —Aus F 5“2 + At

Furthermore, we can apply Lemma 4.4.2. Putting u; = 0 and u; = u, we see that
ol < ClG + Ay = mow Aol o) (45.15)
Next, for u;,uy € L%(R!), consider the layer potentials
o1 = Mi(no; ur) + Ma(nojus), U = Ma(no; ur) — My(no; uz)-

Again by Lemma 4.4.2, taking u; = u and u, = ng,u gives

]‘ * *
sy < CIG + Af = Anos)ul s, (4.5.16)
Therefore the estimates (4.5.15) and (4.5.16) give the desired assertions. (]

Lemma 4.5.3. Suppose that no € H***(R'), ||no|lge+2r1) < K, s > 2. There exists a
positive constant ¢y such that if || X||g2mr), |Z]|m2we), | X w20y, |1 20 2Ry < e,
| X || zr=my, [| XN mremry < di, di >0, then the operator 1 4+ Zy + (nos + Z2)K : H*(R') —
H*(R') is invertible and satisfies

{1 4+ Z1 + (nox + Z2) K(X)} 'ullgsmr) < CN(X, Z)||gs@y)llullmemrys
1L+ 20+ (s + Z2)K(X)} 0 — {1+ 29+ (0w + ZD) K (XO)} a1y
S CONX = X% Z = Z°)| sy llull e rey,
where C = C(s,¢y,dy, k) > 0.

Proof. As the proof for Lemma 4.4.4, we can show that the operator 1 — nOI(% —A))1A,
H*(R') — H*(R!'),s > 0, is invertible and satisfies

< Cllullgsmyy,
He(RY)

1 !
{1=moaly - Ay}
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where C = C(s,k) > 0. By the proof for Lemma 2.2.2(4), it holds that the operator
1410, K =1 —noa(2 — Ay — A3)71(Az — Ay) is invertible in H*(R'),s > 2, and

2
(1 + 70 K) " ull ey < C'lullaemr),

where C' = C'(s,¢1,d1,£) > 0. Again, Lemma 2.2.2(4) implies that the operator 1 +
Z1 + (noz + Z2) K is invertible and satisfies the first estimate. The second estimate is also
obtained in the same way. [

Now we consider the initial value problem (4.5.11) with
W)=W = (X,Y,Z), WI(0)=W=(X,Yyn). (4.5.17)
Assumption 4.2. Let T} > 0. There exist positive constants J and J' such that
[H(t)]s < J,
{[H(t)]s <J, 0<t<T.
By Lemmas 4.5.1,4.5.3, similar arguments as in Theorem 2.5.2 lead to the following.

Theorem 4.5.1. There ezists a positive constant ¢; = c1(g) such that if H € Ci([0, Ty];
Ho+32=3(RY)), 57=1,3, s >3+1/2, 0< Ty < oo, no € H**?(R') and

X,2,Wi € H'(RY), Vi€ HHERY, W < /2
then there exists T € (0,T] such that problem (4.5.11),(4.5.17) has a unique solution
W = (X,Y, Z) satisfying
X e C*([0,T;; H*(RY)), Yi,Z € CH([0,T]; H*(RY)),
Y, € CI([0, T); H*+Y?-3/2(RY)), j=0,1,2,
W2y < e for 0<t<T.

In view of the original problem, we set the initial data as follows:

X =(0,0), Z =X, =(0,0), Xp, =uoi(,m0("), X = K(0,0)Xy, + H(0),
Y1 = —(1 +10.K(0,0)) n0:(g + Fio(X, X ) + Hy(0)),
Yy = K(0,0)Y; + Fio(X, X)) + H,(0),
Yie = —(1 4 o, K(0,0))"
X {nOx(on(Y,X, ?) + H:(0)) + Y/Iax)’(vu + (9 + 372)315(;}

Then Theorem 4.5.1 yields
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Theorem 4.5.2. There exists a positive constant €; = €,(g) such that if s > 3+ 1/2,
0 < T < oo and ng,upy|r,, H satisfy the conditions

Mo € HS+2(R1), u01|ps € HS+I(R1), (4 5 18)
[orlr ey < £1/2, ~
{H e CI([0,Tu); H*T3*=I2(RY)), j=1,3, (4519)

| H(0)|| 21y + | Hi(0)]| 2 (mry < €1/2,

then there exists T € (0,T}] such that problem (4.5.1) - (4.5.3) has a unique solution
X € Ci([0,T]); H+3/273I2(RY), §=1,2,3,4. (4.5.20)
Here we put
dy = max{1,J}, d3z=max{l,J'},

2
di = [[nollr+2m) + or|r. ] grosr oy + 22 107 H (0)|lrei-o2(m1).-

=0

Lemma 4.5.4. Let X be the solution of (4.5.1) - (4.5.3) obtained in Theorem 4.5.2.
Then there exist a positive constant dy = do(¢y,9,$,€1,dy), which is independent of t, and
a monotone increasing function ds(t) such that

{“Xt(t)”Hs(Rl) + I Xl gsrrrzmy + 1 X aomr) < do,

% (4.5.21)
| Xe(t)|| sty rry < ds(t), 0<t<T.

Furthermore we obtain

Proposition 4.5.1. Let s > 4. Suppose that H® satisfies the conditions in (4.5.19) and
X0 is the solution of (4.5.1),(4.5.2) with H replaced by H°, where H(0) = H°(0), and
(4.5.3). Then it holds that

2
ol X(t) — 071 XO(2) | zrs+12=52(m1)
=0

< 03([H(t) — H°()]s-1/2 + Lt |H(T) — HO(T)Is—l/sz) ;

Xreae(®) = XDy < Ca (H(E) = HOO)ls + [ 1H(7) = H()| 107

for 0 <t < T, where C3 = Cs(c1,9,do, d2,8,T) > 0.
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4.6. Problem in the interior

Suppose that an X is given. We consider the boundary value problem

Ve-u=0, Vi -u=uw inQ, t>0,
u = Xyt onl, t >0,
u-n(®y(z;t)) =0 on [y, t>0.

At first, let us investigate problem
Vou=¢y, Vt-u=¢, inQ,
u = 6, on [,
u-n==~0, on ['.
In order to solve this problem we use the identification as in Section 4.3:
T =1z + 12,.
Put
F(z) = wi(z) — iuy(z),
f(z1) = Flar + imo(21)),
8(z1) = Flz1 +1(—h + b(z1))).

Then it follows that

(4.6.1)

(4.6.2)

F(x°) = L(no;)(z°) +iLa(m0; )(2°) — L1(—h + b;@)(2°) — iLa(—h + b; g)(2°)

+iH1(2%) + Ha(2®), 2 e,

where
Hy(z1, 22) = L” $a(yr — @) — iy — ) |
1 1,42) — 27'[' Q (yl _ .’L'1)2 + (y2 . $2)2 yl y27
_ L Sy — ) + dalye — 72)
Haler,w2) = 2m JJQ (y1 —21)? + (y2 — 22)? dy1dye.

If 2° tends to points on I'; and I’y non-tangentially, it holds that
1 ) . .
f= (5 + A1) + 1 Asf — Asg — iAsg + 1 Ha|r, + Halr,,

. 1 . .
g = Arf+1Asf — (—5 + As)g — i As9 + Hir, + Halr,,
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where

Aju(zy) = Li(no; u)(z1), Azu(zi) = La(no; u)(z1),

Asu(zy) = Li(—h + byu)(zy), Agu(zy) = Lay(—h + byu)(zy),

Asu(zy) = L1(—h + byu)(z1,m0(21)), Asu(zy) = Lo(—h + b;u)(zy,n0(z1)),
| Aru(zy) = Li(no;u)(z1, —h + b(zy)), Asu(zy) = La(no;w)(z1, —h + b(z1)).

Since g, = —b'g; — 02, the imaginary part of the first relation of (4.6.4) and the real part
of the second lead to

uz|r, = X6 + 3, (4.6.5)

where

1 -1
X {(——Asbl + Ae) (5 + A3 + ./44[),) (A492 - Hzll“b) + A502 + Hl

Fs}’

1 -1
By = Ay — (—AsH + Ag) (5 b A+ A4b') A,

1 -1
Bo= Ay (—Ash + Ao) (5 + A+ A¥ ) Ag

and

1
wilr, = (5 YA+ A4b’) (Ary — Astialr, — Asby + Halr,), 166)

UQ‘Fb = b’u1|pb + 02.
The arguments similar as in Lemma 4.5.2 show the following lemma.

Lemma 4.6.1. The operator 5 + Az + At/ : L*(R') — L*(R') is invertible. Moreover,
it holds that

15 + A+ A) ey < Cllull s,
where C' = C(”bIHL‘X’(Rl)) > 0.
Lemma 4.6.2 ([14, Lemma 5.5]). Let no, b be the Lipschitz continuous functions, inf

{no(z1) — (=h + b(z1))} > 0 and C*(P), P € [ UT, the cones defined by (4.2.1) with ¢
replaced by no or b. Suppose that

(1) v = (01, 02) satisfies V-v=0 and V+-v =0 in R?\ (I, UT}),
(2) The non-tangential mazimal functions v = supxec(py |[V(X)|, P € T,Uly, belong
to L*(R?),
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(3) The non-tangential limits V¥ = (VE, Vit) = limy_,pxecctp) V(X), P € Iy, and
W = (Wft,th) =limx_pxecct(p) V(X), P € Iy, exist for almost every P,
(4) v(z) = O(Jz|™") as |z| = oo.
If we denote the normal vector and the tangential vector to I'y and 'y by N, T, respectively,
then it holds that

(1) The norms ||Vit|| 2@y, 1Vs 2@y, IN - V|| 2@y and || T - VF||2(ryy are equiv-
alent,

(2) The norms ||W1 ||z |Wa |lz21), [IN-W™||z2(r1) and ||T-W || 2(m1) are equiv-
alent,

(3) If, in addition, N - W+ =0 or Wi =0, then ||V2_||L2(Rl) < C||VI_HL2(R1) and
HN . V—“L2(R1) < C”T . V_”L?(Rl) with C' = C(Il’r]6||Loo(R1)) > 0.

Lemma 4.6.3. The operator 3 — By : L*(R') — L*(R!) is invertible. Moreover, it holds
that

1
IG5 = By)"tull ey < Cllullz@y,
where C = C(||V|| o m1)) > 0.
Proof. For u; € L*(R'), i =1,...,4, let us consider the layer potentials
{@1 = L1(n0; ur) + La(no; uz) + L1(—h + byuz) + Lo(—h + b uy),
Uy = —La(no; ur) + L1(n0; uz) — Lo(—h + bjuz) + L1(—h + b uy).
Note that v satisfies V-v = 0 and V1 - v = 0. Putting vy = 0, uy = u, us =
—(% + Az + A) "1 Agu, uy = b'uz, by Lemma 4.6.2 we see that
1

with C = C(||¢|| L)) > 0.

Next we consider the layer potentials

{51 = M (no; ur) + Ma(no; uz) + My(=h + b;us) + Ma(—h + b; uy),
vy = Ma(no; ur) — My(no; uz) + Ma(—h + b;us) — My (—h + b;uy).
Then taking uy = 0, uz = u, uz = —(3 + A5+ VA7) (0 A; — A3)u, ug = 0 gives

1 *
lullzzriy < Cll(5 = Ba)ullzge)- (4.6.8)

Therefore the estimates (4.6.7) and (4.6.8) imply the desired assertion. ]
Let us introduce the operator Ag by

Agu = JRI log{1 + (no(yl) — no(x1)> Y2 (y1)dyr.

2 Y1 — T4
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Then we have

1
./42 = §zsgnD - .Ag. (469)

Lemma 4.6.4. Suppose that inf{no(z,) — (—h + b(z1))} > 0. Then we have

(D) [Ajullgsmry < Cllullgsomry, 7=1,9, 8,50 >3/2,C = C(s,s0,|In0llm=@)) >0,

(2) lA4jullarmry < Cllullzowyy, 7=1,9, s >0,

C = C(s, ol zrs+sr2(r1ys 1m0l Lo (r1)) > 0,

(3) jullromy) < Cllullpowy), J=3,4, C = C(|t'[L=w)) >0,
4) | Aullgsmry < Cllullgowry, 7 =5,6, s >0,C = C(||bllgr+w1), || o (m1)) > 0,
(5) I A;ullgomyy < Cllullgowry, 7=7,8, C = C(|nlle=my)) >0,
(6) 1Halr sy + [Helr llae®y) < Cllllger2)y, s2>1/2,C=C(s)>0.

I

Proof. (1) and (2) follow from [46, Section 4] and [6, Section 9], respectively. The proofs
for (3) — (5) are standard. Similar arguments as in Lemma 4.4.7 show (6). [

Theorem 4.6.1. Suppose that ¢ = (¢1,¢p9) € H*Y2(Q), 0 = (61,0,) € H*(RY), no,b €
H*(R") and ||no||g:m1), ||0llg=mry < & with s > 3. Then the boundary value problem
(4.6.2) has a unique solution u = (uy,us) such that

{u € H+/2(Q),
u('ﬂ?o('))a u('7 —h + b()) € HS(R1)7

{||U|IH5+1/2(Q) < Culllllge-1r2() + 10l mr))
a, o)l + llul, =k + b()l|m:@r) < Calllllgs-1r2(0) + 10l m=mr))s (4.6.10)
where Cy = Cy(s,k) > 0.

Proof. 1t is sufficient to show the proof for estimates. Since

—1 -1
_ (.;_ — 32) B, =—-2B;, —4 {32 + B2 (% - 82) }Bl, (4.6.11)

by (4.6.9) and Lemma 4.6.4, it holds that
1501 || o r) < Cll01||me(m1)s
where C' = C(s, k) > 0. Using the relation similar to (4.6.11), we get
1H | sy < CU Al gra-1r20) + 101l s (m1))-
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Hence the required estimate for u,|r, follows from (4.6.5). The estimate for u|r, is also
obtained by (4.6.6). Moreover slight improvement of the proof in Lemma 4.4.7 shows that

1£i(no; D)l =) + 1Li(=h + b5 9) @) < CIfllzr-1r2mry + I8l pre-112(m1))
< C(l|llge-rr2() + 10l msR1)),

[ Hillrs@) < Clldllm-1(g),
where 1 = 1,2, C = C(s) > 0. Then the first estimate of (4.6.10) follows from (4.6.3). ]

Now problem (4.6.1) is written as

Veu= (I -A4)V)-u in, 0<t<T,
Vi u=wy+ (I —A,)V)*-u inQ, 0<t<T,
u = X onl,, 0<t<T,
u-n(m)::u-{n(a:)—n(a:+J:u(T,x)dT)} only, 0<t<T.

Assumption 4.3. There exists vo € H*+*2(Q) such that
V-vo=0, wy=V+-vg n €.
Let Ty > 0, X satisfy
X1 € CI([0,Ty]; HH-/2(RY)), j=0,1,2,3,

[ X1l oty + 1 Xaee (Ol rerir2mry + 1 X e () ey < o,
| X1e(8) || ot ey < ds(2)

and
no € H°H'(RY), ne H*P(RY). (4.6.12)
Here we introduce the notation
lulso = [lullgerr2i) + luCmo( ) sy + lul, = + b))l m=r).-

Theorem 4.6.2. Under Assumption 4.3 there exists T € (0,T)] such that problem (4.6.1)
has a unique solution u satisfying

u € CI([0,T); H*+3/2-3/2(Q))),
. . (4.6.13)
ulr,,ulr, € C¥([0,T]; H+'=9/2(RY))  for j=0,1,2,3.
Proof. The similar arguments as in Theorem 2.6.4 lead to the result. (]
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Lemma 4.6.5. Let u be the solution of (4.6.1) obtained in Theorem 4.6.2. There ezx-
ist positive constants e;, j = 1,...,5,7, which are independent of t, and a monotone
increasing function eg(t) such that

|a{u(t)!s+1—j/2,9 <e;, 1=12,3,

[olu(t)]sa < ejpa, 7=0,1, (4.6.14)
|u(t)|s+1,ﬂ S Ce(t) S €7, 0 S t S T.

Here ey and es are independent of ds.

Proposition 4.6.1. Let u be the solution of (4.6.1) obtained in Theorem 4.6.2 and u®
the solution of (4.6.1) with X replaced by X°, which satisfies Assumption 4.3. Then we
have

3
Z sup |0lu(r) — aiuo('r)|s+1/2_]-/2,g
j:OOSTSt
3 . p— . p—
< (s Z sup [0/ Xy (7) — af'lX?('r)||Hs+1/2-;/2(R1)
SZ00<T<t

fOT s > 2, 0 S t S T, where Cs = C5(€1,€2,63,€7,5,d0) > 0.

Let us investigate equation (4.1.3).

Lemma 4.6.6. Suppose that Assumption 4.3 with s > 3/2 is satisfied. Let ¢y be the con-
stant chosen in Assumption 4.1 and u the solution of (4.6.1) obtained in Theorem 4.6.2.

There exists a positive constant To(< T) such that X = X(t,z), X = X(t,z) defined by
(4.1.3),(4.1.4), satisfy (4.4.6) with T replaced by To.

Proof. 1t is obvious that
|HagX(t)|”8+3/2—j/2 + ”a{X(t)“HS*‘?’/?_Jﬂ(RI) S Ia{_lu(t)|8+3/2—j/2,9) ] = 1a2)374’
17X () + 13 X (Dl o) < 18 u ()]s = 1,2,
X @Mls1 <t sup [u(r)]s41,0,
0<r<t

X @Il <t sup Ju(r)lst10
0<7<t

for 0 <t <T. If we define Ty, d,l;(7 = 1,2,...,6) appropriately, then the desired result
follows. I
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Proposition 4.6.2. Suppose that X, X and X°, X° satisfy (4.1.3),(4.1.4), for u,u®, re-
spectively. Then we have

IO (X(2) — X0y sa/2-2 + 193 () = KO ooy
S C6Iai(u(t) - uo(t))|s+l/2—j/2,97 .7 = 07 17 27 37

t
IX(0) = X°Ollsryzz < G | fa(r) = w°(F)loyapzadr,

where Cg = Cg(s,do) >0, 0 <t < T.

4.7. Proof of Theorem 4.1

In this section we prove Theorem 4.1. Let us define the sets S;,S; and Ss as

S1={X; X satisfies (4.5.20), (4.5.21) and
X|t:0 = 3{7 Xt‘tzo = 5(7, Xtt|t=0 = ?}7
Sz ={u; usatisfies (4.6.13),(4.6.14) and
Uli=0 = Vo, Uilt=o = Wol},
S;={(X, X); X and X satisfy (4.4.6) and
Xlt=o = (0,0), X¢|t=0 = uo, Xtt|t=0 = Wo,
Xi=o = (0,0), Xili=o = uo|r,, Xuli=o = wolr,},
where wy is the solution of

avm 61)02 avm 61)02

V-wo =2 - towo = in O
wo (8:v2 6:p1 al‘l ax2>’ v Wo 0 RS

wor = ¥, onI,, (4.7.1)
Wo - n(z) = Wo - {n(:c) —n(z+ J; u)} —vo- {(Uo - V)n(z)} on T}

First, notice that if (4.1.1) is satisfied, (4.5.18),(4.6.12) are valid. For (X°, X°) € S,
we denote by X = M;(X°, X°) the solution of problem (4.5.1) - (4.5.3) with H replaced
by H(X°, X°). In view of (4.4.7), J and J’ in Assumption 4.2 are taken as follows:

J = Copus, J' = Cip,.
There exists a positive constant e, = €2(g) such that if

[Wollgr2+1/2() + llwoll 41120y < €2,

then the second estimate of (4.5.19) is satisfied. Therefore Proposition 4.4.2 and the
arguments in Section 4.5 show that M; maps from S; to S; for a sufficiently small T'. For
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X € 8y, let u = My(X) be the solution of (4.6.1). We see that Uls—¢ = Vp follows from
(4.6.1) at ¢ = 0 and that u,|;=o = Wy since uy|;—o satisfies the same equations as (4.7.1).
Therefore, M; becomes a mapping from S; to S, on some time interval [0, T}], owing to
the results in Section 4.6. Here we denote Ty(< T') by T again. For u € S, define X by

(4.1.3), X by (4.1.4), and set Ms(u) = (X, X). We see that M; is a mapping from S, to
Ss.
Here we define the approximate solutions {X",u", X, X"}, n=1,2,3,..., as

XO(t) = tug, XO(t) = tug|r, for ¢t >0,
X" = My(X"~L, X1, ur = My(X™), (X", X") = Ms(u®) for n=1,2,3,....
If we take T sufficiently small, X! = M;(X°, X°) is well-defined and belongs to S; because
X° and X° satisfy (4.4.6). Repeating this argument, we conclude that {X", u", X", X"}
are well-defined and X™ € S;, u* € S, (X", X") € S3, n = 1,2,3,.... Propositions

4.5.1, 4.6.1, 4.6.2 and 4.4.2 show that there exist X,u, X and X such that

3
sup {HX”(T) = X(M)lge+rz@my + D107 X () — 07 Xy (7) | gresrromarz iy

OSTSt j:O

2
+ 21077 X5 (r) = 07 X ()l gosrrzsragmry + X7 (7) = X () o172

7=0

3

+ 3 (105 X7 () = 37 X (7l 122+ 107 X7(7) = B K (5 gevs s roan)

J=0

3
+ > [@lu(r) - 6iu(r)|s+1/2_j/2,9} — 0 as n — 0o.
=0

We see that X, u, X and X are solutions of problem (4.5.1) - (4.5.3), problem (4.6.1), (12),
problem (4.1.3) and problem (4.1.4),, respectively. Moreover X € S, u € S;, (X, X) €
Ss.

If we set
v(t,z) = u(t, (I);l(z;t)), w(t,z) = wo(t, q);l(z; £)), Q) = 2u(1),

then (4.1.4), holds.

The uniqueness of the solutions to problem (4.5.1) - (4.5.3), problem (4.6.1),(12),
problem (4.1.3) and problem (4.1.4) is proved in the same way.
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Finally we define g as a solution of the boundary value problem

Ag=-V - (A7 uy) inQ, ¢t>0,
¢
g=g (x2 + Jo ua(T, :c)d7'> on Iy, ¢t >0, (4.7.2)
% (u-Vy)u-n(®y) on Ty, t>0
=—(u- ‘n .
an(@u) u u on ly, 1 =2

Then the results in Section 4.6 imply the unique existence of the solution ¢ of (4.7.2)
satisfying ¢ € CY([0, T]; H*+?79/%(Q)), j = 1,2, for a sufficiently small 7.

We see that (u,q) satisfy (8) — (12) and (4.1.2). The uniqueness of the solution to
problem (8) — (12) comes from that of problem (4.5.1) - (4.5.3), (4.6.1), (12), (4.1.3), and
(4.1.4). The proof is complete.
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