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Abstract

The present thesis focuses on the development and applications of the tight-binding (TB) and

TB molecular dynamics (MD) methods. In particular, emphasis is put upon applications to

real systems. We improve the transferability of tight-binding models, and further implement

order-N tight-binding. We use these methods to analyze the properties of nanostructures,

complex liquids, and associated amorphous solids.

In chapter 1, we give a general introduction for the present thesis. We study various

methods and approximations used to simulate condensed-matter systems by computers, and

describe the role of TB methods. Then, we give an overview of the entire thesis.

Chapters 2 and 3 are devoted to the description of TB methods and TBMD methods. In

chapter 2, we discuss on the basic formulation of the TB methods, along with a brief review

of MD simulations. Then, we describe the way in which we extend TB methods to MD

simulations. In chapter 3, we focus on order-N tight-binding. When applied in a straight-

forward manner, calculational costs of TB methods scale as order-N3. We show that, by

introducing suitable approximations, it is possible to improve the scaling behavior to order-N .

We investigate such order-N algorithms for TB methods. In particular, the case of non-

orthogonal TB (NTB) and applications to MD simulations are taken into account. Several

new techniques are introduced to improve the speed, memory requirement, and stability of

the method. We perform realistic test MD simulations for germanium (Ge) by the obtained

order-N method. The results obtained show, for the first time, that order-N NTB is in fact

applicable to MD simulations.

In chapters 4 and 5, we focus on the study of photoluminescence properties of silicon (Si)

nanostructures. Silicon nanostructures, unlike bulk Si, are known to show efficient photolu-

minescence at room temperature. We introduce new structural models for Si nanostructures,
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and study their electronic states and optical properties. In chapter 4, the first of our new

model, “Si nanostructure devoid of point-group symmetry”, is analyzed by the TB method.

The results show that this model well accounts for the discrepancy found between theoretical

calculations and experiments in the behavior of the radiative recombination time. In chapter 5,

we introduce another new model, where structural relaxation of “poorly-passivated” Si nanos-

tructures are taken into account. The effects of structural relaxation for “well-passivated”

Si nanostructures have been studied in the past, while those for the “poorly-passivated” Si

nanostructures are investigated for the first time in the present work. From our analyses based

on the TB method, we find that the behavior of the so-called ‘F’-band luminescence is well

described by this model. In short, we successfully obtain a unified view on the mechanism of

‘S’ and ‘F’ band luminescence by introducing new structural models for Si nanostructures.

We further study the static and dynamical structures of liquid (�-) and amorphous (a-)

Ge in chapters 6 and 7. In particular, we thoroughly study properties at high density. In

chapter 6, we construct a new, transferable NTBMD scheme for Ge, and apply the method to

the study of �-Ge. We perform TBMD simulations at low to high density, and calculate static

and dynamical structures at each density. The obtained results are in excellent agreement

with available experimental data. From our analyses, we clearly observe that, with density

increase, random configurations characteristic of liquids increase compared to configurations

originating from covalent bonds, while the remaining covalent bonds become close to those

of the β-Tin structure. In chapter 7, TBMD simulations on a-Ge are performed. We use

the order-N , NTBMD scheme constructed in the present work. Firstly, we perform glass-

transition simulation of Ge. We start from a liquid well above melting point, and quench it

to an amorphous solid. The static and dynamical structures of the liquid, super-cooled liquid,

and amorphous Ge are extensively studied. We conclude that the large structural change

which occurs during the glass transition is addressed to the increase of the covalent bonds.

We further increase the density of a-Ge obtained in order to study the structural change of

a-Ge with density increase. At each density simulated, we carefully analyze the static and

dynamical structure of a-Ge. Our results show that the local structure of a-Ge transforms from

tetrahedral at low-density to β-Tin-like at high density. We also find that, at intermediate
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density, both low-density and high-density amorphous structures coexist. From our work,

a comprehensive knowledge concerning liquid and amorphous Ge at low to high density is

obtained for the first time.

Finally, we conclude the present thesis in chapter 8. We summarize the achievements

obtained in our work, and discuss their consequences. We also comment on work left to be

performed in future studies.
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Chapter 1

Introductory remarks

1.1 General overview

The development of theoretical and computational methods at the atomic scale has been an

important part in the study of condensed-matter systems (CMS) for quite a long time. These

methods allow us to predict new phenomena, and bring new insight into our knowledge of the

world. Moreover, they provide us tools to be used in the industry area, for example, material

design is nowadays aided by computational methods.

The elementary building blocks of CMS (the nuclei and the electrons) and the theory

to which they obey (quantum mechanics) are all well known, so in principle, it is possible

to calculate any property of any given system to the desired accuracy. Unfortunately, this

is not possible in practice; as Dirac pointed out in 1929 [1], “The underlying physical laws

necessary for the mathematical theory of a large part of physics and the whole of chemistry

are thus completely known, and the difficulty is only that the exact application of these laws

leads to equations much too complicated to be solved.” This statement is true even in today’s

world, in which state-of-the-art computers allow us to perform vastly complicated calculations

compared to Dirac’s age.

The difficulty of the problem is in the complexity of the quantum-many-body problem. Any

attempt to solve this problem in a straight-forward manner is doomed to fail. Consequently,

inclusion of adequate approximations is essential in order to perform practical calculations.

The so-called Born-Oppenheimer approximation [2] is widely used in electronic-structure

calculations. Since the nuclei are much heavier than electrons, the electrons respond instan-

taneously to the motion of the nuclei. For this reason, it is possible to treat the nuclei adia-
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batically, which leads to a separation of electronic and nuclear coordinates in the many-body

wave function. This approximation allows us to reduce the problem to solving the equations

for the electrons in some “frozen” configuration of the nuclei.

The Born-Oppenheimer approximation greatly simplifies the situation, but nonetheless, the

problem still remains too complicated to be tackled as it is. Another difficulty is in the strong

electron-electron interaction within the system. The exact treatment of the electron-electron

interaction is possible, for example, by the quantum Monte-Carlo method, but practical ap-

plicability to CMS is still rather limited.

Another approximation widely used is the one-electron approximation, where a single elec-

tron moving in an effective potential is taken into account. Electron-electron interactions are

included in the calculation in some effective way. By adopting this approximation, the prob-

lem finally becomes tractable. There are, however, still many approximations and assumptions

made in practical applications. In Fig. 1.1, we show the table shown in ref. 3, in which various

computational methods of treating CMS at the atomic level are compared. The overall ten-

dency of Fig. 1.1 is that, the more close to exact the method is, the higher the computational

burden.

The method frequently used by physicist is the method based on density-functional theory

(DFT) [2, 4, 5]. This method is based on the principle that the total energy of a system is, in

principle, exactly expressible in terms of the density for the electrons. Using this principle, it

is possible to replace the many-electron problem by an equivalent set of self-consistent one-

electron equations, or the so-called Kohn-Sham equations [5]. The method based on DFT is

an ab initio method in the sense that no empirical parameters of any kind are not necessary

for its execution.

Calculations based on DFT give excellent results for almost all materials of interest. How-

ever, the computational burden of the method is quite high, which severely limits the appli-

cability of the method for large N , where N is the number of atoms within the system under

consideration.

Another method used widely is the semi-empirical tight-binding (TB) method [6], which

will be the main topic of the present thesis. In this method, the Hamiltonian matrix elements
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Figure 1.1: Comparison of methods for calculations of materials in the atomic scale, reproduced
from ref. 3.

for the electronic system is expressed in terms of the relative coordinates for the atoms. The

calculations are considerably faster than DFT (typically by about an order of two to three), and

yet give good results for a wide variety of systems. Further, the simplicity of its formulation

allows us to obtain clear insights into the physical and chemical nature of the system.

Now let us argue the problem of dealing with CMS by computational methods from a

different point of view. An alternative way for computing properties of CMS in the atomic

scale is to assume some classical potential of the atoms, for instance the Lennard-Jones po-

tential, and treat them as classical particles [7]. In this case, the basic theory underlying the

dynamics of the system is classical statistical mechanics. From this perspective, there are two
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major methods in the market, namely, the Monte-Carlo method and the molecular dynamics

(MD) method. The former method aims to calculate the partition function of the system by

stochastic methods; this method will not be further mentioned in the present thesis. On the

other hand, the MD method is a simulational method in which we calculate the trajectory of

the atoms by integrating the classical equation of motion derived from the potential given.

A great innovation was made in 1985, when Car and Parinello reported on an algorithm

which efficiently merges the DFT and the MD method [8]. The innovation in their algorithm

was two-folds: (1) the DFT method was efficiently integrated into the MD method, and (2) by

adopting iterative algorithms for the diagonalization of the Kohn-Sham equations, the DFT

calculations are now performed much more efficiently than conventional methods. In the new

algorithm, the number of operations necessary scales as O (NbNPW logNPW) when a plane-

wave basis set is used, where Nb is the number of occupied bands and NPW is the number

of plane waves, compared to O (N3
PW) in the conventional matrix diagonalization algorithm.

This is a great improvement; however, for large N , the computational cost scales as O (N3),

and consequently, the method becomes extremely difficult to apply as N grows.

In the TB method, on the other hand, it is possible to reduce the calculational cost to

O (N) [9–11], and further, integration into MD methods is performed with ease [12]. The

O (N) scaling is achieved by using the fact that in TB methods, the basis set is localized atomic

orbitals, and that the density matrix decays exponentially in insulators and semiconductors,

and also for finite-temperature metals [13,14]. These properties of the TB method makes the

method particularly suited for systems which require relatively large N , e.g., nanostructures

and non-crystalline systems.

1.2 Purpose of the present thesis

The TB method is a very efficient method for the quantitative calculation of the electronic

structure in CMS. Moreover, it gives surprisingly good results in many cases. However, the

applicability of the TB method to certain fields of physics and chemistry is not always clear.

Further, applications of O (N) TB have so far been limited. From these considerations, the

following questions arise:
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1. The TB methods give good description of valence bands, but in general, the conduction

bands are not as well-described [15]. How good is the TB method for the study of optical

processes, in which transitions from valence to conduction bands, or vice versa, must be

taken into account?

2. Transferability of TB methods to various situations is not always obvious. Is it possible

to apply the TB method to situations where the environment of the atoms greatly

changes?

3. Order-N implementation for TB methods have so far been limited mostly to TB models

with limitations, i.e., TB models based on orthogonal basis sets, nearest-neighbor in-

teractions, and large band gaps. How efficient is the O (N) TB method for other, more

complex TB models?

Keeping all of the above points in mind, it is the purpose of the present thesis to construct

accurate, efficient TB methods and TBMD methods, and apply the scheme for the study of

realistic systems. To this end, we carry out the following:

1. construct and/or implement various TB methods and TBMD methods.

2. implement O (N) TB for the case of non-orthogonal and long-range TB model.

3. apply the obtained method to:

(a) the study of optical properties in nanostructures, and

(b) to the study of structural properties for covalently-bonded liquids and amorphous

solids at various density.

Now let us closely examine the topics listed above. The TB and TBMD methods are

constructed so that they are transferable and/or give good description of the band structure

in the crystal phase. Moreover, we extend O (N) TBMD for non-orthogonal and relatively

long-range TB models. For the calculation of nanostructures, it is necessary to explicitly take

into account all the atoms within the system. This leads to systems containing a maximum
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of some 1000-2000 atoms, which are not accessible by ab initio methods. Another point is

in that since we work with optical properties, a good description of not only the valence but

also the conduction band is of critical importance. For MD simulation of covalently bonded

liquids and amorphous solids, quantum-mechanical treatment of the forces is indispensable.

We also note that the bonding nature for these systems changes as density changes. In order

to simulate such a situation, a transferable TB scheme is needed. In short, the topics we

deal with not only have interests of their own, but also give answers to the aforementioned

questions we addressed.

1.3 Organization

The present thesis will be organized as follows.

In chapters 2 and 3, formulations for the TB and TBMD methods are given. The TB

methods have been widely used since the epoch-making paper by Slater and Koster in 1954 [16].

The essence of this paper is that the Hamiltonian matrix elements can be parameterized

by the position vector of two atoms under consideration, provided that the so-called “two-

center approximation” is adopted. The parameterized Hamiltonian are calculated from a

small number of independent integrals and formula related to the relative position of the

two atoms. This leads to significant simplifications for the electronic-structure calculations.

The importance of this paper may perhaps be best described by the “anecdotal evidence”

introduced in the review by Goringe, Bowler, and Hernández [6]: “in the shelves of the Radcliffe

Science Library, Oxford, volume 94 of Physical Review stands out from its shelf for its broken

spine, and falls open at table 1 on page 1503”.

Chapter 2 is devoted to the description of the basic concepts for the TB and TBMD

methods. We will not attempt to give the full account of all the work performed in this

field, but will focus on the concepts and techniques used in the rest of the thesis. Then in

chapter 3, we describe O (N) TB. We concentrate on the method called the “Fermi-operator

expansion method”. In particular, we discuss the case of non-orthogonal TB, in which the

non-orthogonality of the atomic orbitals is explicitly taken into account, and MD methods

based on it. We comment on the techniques introduced in this work, and further perform test
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MD simulations to show that the scheme really works.

We present in chapters 4 and 5 the study on the photoluminescence properties of sil-

icon (Si) nanostructures. Since bulk Si has an indirect band structure with band gap of

∼ 1.1 eV in the infrared region, the luminescence efficiency of bulk Si is very low, and even

if it showed luminescence, it will be invisible. However, in 1990, efficient, room temperature,

and visible photoluminescence from porous [17] and nanocrystalline [18] Si was observed. This

phenomenon is important from a technological point of view, in that it shows a passage to

Si-based optoelectronic devices, and further from a fundamental point of view, in that the

low dimension of the system is the crucial aspect of the luminescence. The impact of the

phenomenon is best seen in the number of publications for porous Si, the most well-studied

system for light-emitting Si, shown in Fig. 1.2 (the figure is from ref. 19). We observe from

Figure 1.2: Publications per year for porous Si, plotted against year. Note that the vertical axis is
logarithmic. Reproduced from ref. 19.

Fig. 1.2 that the number of publications has increased explosively after the discovery of the

luminescence phenomena.

In chapter 4, we give results for the new model we introduce, which we refer to as “Si

nanostructure without point-group symmetry”. Our model shows different behavior from

conventional model nanostructures. In chapter 5, we introduce another new model, in which

the local symmetry of Si nanostructures, e.g., bond length and bond angles, are not present.
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From analyses of this model, we find that this model well accounts for the so-called ‘F’-band

luminescence from porous Si [20].

We further study the static and dynamical structures of liquid (�-) germanium (Ge) and

amorphous (a-) Ge at various density. The problem of the structural properties of covalently-

bonded liquids and amorphous solids has been studied for quite a long time [21]. The behavior

they show at different density, however, are not fully elucidated as of now. The difficulty of

simulating such systems is in that the bonding nature of the system changes as the density is

changed. We tackle this problem by the TBMD method.

We construct transferable, non-orthogonal TB scheme for Ge, and apply the scheme for

the study of �-Ge at different density in chapter 6. We thoroughly examine the static and

dynamical structures of the system, and deduce the structural change of �-Ge with density in-

crease. We further study glass transition of Ge and high-density structure of a-Ge in chapter 7.

Glass transition is simulated by rapid quenching of �-Ge well above melting temperature. We

then compress a-Ge thus obtained, and deduce the structural changes of a-Ge with density

increase.

Finally, we conclude the present thesis in chapter 8. We give a summary of the achievements

obtained in our work, and further comment on work left to be performed in future studies.
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Chapter 2

The tight-binding method and the
molecular dynamics method

2.1 Introduction for this chapter

In the present thesis, we use the tight-binding (TB) method and the TB molecular dynamics

(MD) method to study various physical properties of nanostructures, liquids, and associated

amorphous solids. The present chapter is devoted to a description of these methods.

Tight-binding methods have been used widely to study the electronic properties of condensed-

matter systems, ever since the epoch-making work by Slater and Koster [16]. Tight-binding

calculations are much faster than ab initio methods (typically by about two to three orders of

magnitude), and yet possess sufficient accuracy to be practical in realistic quantum mechan-

ical calculations. For this reason, the methods have been used extensively to study various

systems, including covalently bonded systems, metallic systems, and even ionic systems in

crystalline, liquid, and amorphous solid forms [6].

Tight-binding molecular dynamics simulation (MD) was first performed by Wang, Chan,

and Ho [12]. In their work, a very simple total energy calculation scheme based on the TB

method was presented. It was formulated in such a way that the calculations be performed

more or less systematically. The stability of the crystal structure of silicon (the diamond

structure) was investigated, which gave good results. Note that the diamond structure cannot

be stabilized by classical potentials, unless an artificial three-body term is included so that

atoms with tetrahedral bonding have the lowest energy. Since then, TBMD simulations have

been performed extensively for a wide variety of materials [22].
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The advantages of the TB method are rather obvious; to list some of them,

1. it is the fastest quantitative electronic structure calculation method. In particular, it

is possible to reduce the calculational cost from O (N3) to O (N) by adopting suitable

approximations.

2. the simplicity of its formulation gives clear physical and chemical picture of the system,

for example, the local density of states is clearly and easily calculated and interpreted.

3. it can be formulated in both real and reciprocal space, so that artificial periodic boundary

conditions need not be introduced, for example, in the calculation of nanostructures.

The present and succeeding chapter is devoted to the description of the TB and the TBMD

method. In the present chapter, general overview of the methods will be given, while in the

succeeding chapter, we focus on order-N TB method, in which the problem is solved by order-

N operations (whereas in standard methods, order-N3 operations are needed). We will not

discuss on the detailed account of the vast amount of work put forward in this field; rather,

we will focus on the aspects which are of importance in the rest of the present thesis.

The rest of the chapter is organized as follows. In section 2.2, we formulate the TB

method. We describe the basic formulation, and approximations made. We also discuss on

the calculation of optical properties within the framework of the TB method. Section 2.3 is a

brief review of MD methods. We focus only on the aspects used in the present study. Then,

in section 2.4, we give descriptions on TBMD. Finally, we conclude this chapter in section 2.5.

2.2 The tight-binding method

2.2.1 basic formulation

We first describe the basic formulation of the TB method. The TB method is based on the

assumption that, near an atom nuclei, the wave functions of valence electrons are expressible in

terms of the wave functions of isolated atoms. In other words, the basis set for the electronic-

structure calculation is the atomic orbitals.
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Let us begin with the one-electron Hamiltonian of an isolated atom,

Ha = − �
2

2m
∆ + va (r) (2.1)

where � is the Planck constant divided by 2π, m is the mass of an electron, and va (r) is the

potential for the electron at position r. Consequently, the Shrödinger equation of the isolated

atom is written as

Haψν (r) = εisolated
ν ψν (r) , (2.2)

where ψν (r) and εisolated
ν are the eigenfunction and eigenvalue of the isolated atoms, respec-

tively, and ν denotes angular momentum. Note that in general, the functions ψν (r)’s are

non-orthogonal, i.e.,
∫
ψ∗

ν (r − ri)ψν′ (r − ri′) d
3r �= δνν′δii′ .

We now take into account the case of crystals. Note that the method is equally applicable

to other condensed-matter systems, such as liquids and amorphous solids. The Hamiltonian

is written as

Hc = − �
2

2m
∆ + v (r) , where

v (r) =
∑
i�

va (r − di − R) . (2.3)

Here, di denotes position vector for atom i within the unit cell, and R represents the cellvectors

of the unit cell. The eigenstates for eq. (2.3) are expressed in terms of the Bloch sum,

Ψn� (r) =
1√
N

∑
�,i

∑
ν

aiν,n�e
i�·(�i+�)ψν (r − di − R) . (2.4)

Note that the Bloch sum is not an essential aspect of the method; it is possible to formu-

late the problem completely in real space. This is particularly useful in nanostructures, in

which reciprocal space cannot be defined unless an artificial periodic boundary condition is

introduced. In this case, the Shrödinger equation for the crystal is expressed as

HcΨn� (r) = εn�Ψn� (r) . (2.5)

Now we multiply e−i�·(�i+�)ψ∗
ν(r − R − di) to eq. (2.5) from the left and integrate it, which

results in the following generalized eigenvalue problem,

H�
iν,i′ν′ai′ν′,n� = εn�S

�
iν,i′ν′ai′ν′,n�. (2.6)
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Here, the matrices H�
iν,i′ν′ and S�iν,i′ν′ , hereafter referred to as the Hamiltonian matrix and the

overlap matrix, respectively, are defined by the following equations,

H�
iν,i′ν′ =

∑
�′

ei�·(�′+�i′−�i)

∫
ψ∗

ν (r − di)Hcψν′ (r − R′ − di′) d
3r, and (2.7)

S�iν,i′ν′ =
∑
�′

ei�·(�′+�i′−�i)

∫
ψ∗

ν (r − di)ψν′ (r − R′ − di′) d
3r, (2.8)

where we have used the periodicity of the unit cell to truncate one summation for the cellvector.

By diagonalizing eq. (2.6), we obtain the one-electron eigenvalues εn and the corresponding

eigenfunctions (to be exact, the expansion coefficients of the eigenfunctions). The tight-binding

and overlap matrices are empirically fitted so as to reproduce results obtained from ab initio

calculations or experiments, for example, the band structure of some crystal structure.

In many cases, the overlap matrix is assumed as an unit matrix. Since all known atomic

orbitals are non-orthogonal, this assumption is not always valid. The justification for this

assumption is that it is always possible to create an orthogonal basis set from a non-orthogonal

one, in such a way as to preserve the symmetry properties of the original set [23]. This

transformation is referred to as the “Löwdin transformation”, and is executed as follows,

ψiν =
∑
i′ν′

S
− 1

2
iν,i′ν′φi′ν′. (2.9)

In this case, ψiν is used to construct the Bloch sum of eq. (2.4), while the “real” atomic orbital

is φi′ν′ . However, this justification only applies for the system which is fitted. Once the system

is changed to a different one, a new Löwdin transformation is needed. For this reason, it is

preferable that we work in the non-orthogonal picture in the first place. In chapters 6 and

7, we construct transferable non-orthogonal TB schemes for germanium (Ge), and study low-

and high-density forms of liquid and amorphous Ge.

2.2.2 approximations made in tight-binding

two-center approximation

The tight-binding integral, eq. (2.7), has three centers, namely, the position of the wave

function on the left, the positions of the Hamiltonian itself, and the position of the wave

function on the right. Therefore, eq. (2.7) is a three-center integral. By assuming that this
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integral is a two-center integral, the fitting procedure and applications to molecular dynamics

simulations become drastically easier. In this case, eq. (2.7) is expressed as

H�
iν,i′ν′ =

∑
�′

ei�·(�′+�i′−�i)

∫
ψ∗

ν (r − di)H
′
cψν′ (r − R′ − di′) d

3r, (2.10)

where H ′
c is a reduced Hamiltonian which only includes terms corresponding to either atoms

placed at the center of the left wave function or at the center of the right wave function. The

integral in eq. (2.10) is non-zero only when the two atomic wave functions have the same

symmetry, which significantly reduces the number of independent integrals. For example,

there are only ten independent tight-binding integrals for systems with s, p, and d orbitals,

which are shown in Fig. 2.1.

Figure 2.1: The ten independent integrals for s, p, and d orbitals. Reproduced from ref. 24.

Concerning the atomic orbitals, rather than using the spherical harmonic functions them-

selves, it is more convenient to use a real function constructed from a linear combination of

spherical harmonic functions. For example, in the case of p orbitals, we use the functions

φx(r) = f1(r)
1√
2
[−Y1,1 (r̂) + Y1,−1 (r̂)] =

√
3
4π
f1(r)

x
r

φy(r) = f1(r)
i√
2
[Y1,1 (r̂) + Y1,−1 (r̂)] =

√
3
4π
f1(r)

y
r

φz(r) = f1(r)Y1,0 (r̂) =
√

3
4π
f1(r)

z
r
.

(2.11)

Now the interaction between orbitals centered at different atoms is calculated as shown in

Fig. 2.2. All the formula necessary for the evaluation of the interaction between s, p, and d
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Figure 2.2: Calculation of the matrix elements between s and p orbitals. Reproduced from ref. 25

orbitals are given in table 1 of ref. 16.

The two-center approximation greatly simplifies calculations, and further gives surprisingly

accurate results in many cases. However, inclusion of three-center terms gives better represen-

tation of the system, so it is preferable in certain cases that these terms are taken into account.

In chapters 4 and 5, we use the orthogonal, sp3, three-center tight-binding scheme constructed

in ref. 26. This TB model reproduces the conduction band of bulk Si, and therefore, is suited

for calculation of optical properties.

crystal-field terms

When the two orbitals in the integral of eq. (2.10) are located at the same atom, we obtain

the following expression,

H�
iν,iν′ =

∫
ψ∗

ν (r)Haψν′ (r) d3r +
∑
i′�

∫
ψ∗

ν (r) va (r − di′ − R′)ψν′ (r) d3r

= εν,ν′δν,ν′ + ∆εν,ν′ . (2.12)

The first term of eq. (2.12) is the usual one-electron energy for the isolated atom. The second

term is the so-called “crystal-field term”, and physically corresponds to contribution from
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atomic potential surrounding the atom under consideration. In short, the crystal-field term

means that, strictly speaking, the on-site term is not diagonal. This term is not explicitly

taken into account in most tight-binding calculations, since it gives little effects for systems

which TB methods work well.

2.2.3 solving the tight-binding problem

Here, we briefly comment on the method of solving the TB problem. The evaluation of the

eigenvalues and eigenstates for the TB problem is achieved by diagonalizing eq. (2.6). This is

performed by standard methods in the case of orthogonal TB [27]; first, the Hamiltonian is

transformed into tridiagonal form by the Householder transformation, and then the eigenvalues

and eigenvectors of the tridiagonal matrix are obtained by iterative procedures. In the case of

non-orthogonal TB, we deal with the overlap matrix by performing a Cholesky decomposition,

S = LLT . (2.13)

We multiply L−1 to eq. (2.6) from the left, and redefine the wave function as Ψ′
n = LT Ψn to

obtain the following symmetric, standard eigenvalue problem,

L−1H
(
LT
)−1

Ψ
′
n = εnΨ

′
n. (2.14)

Finally, we obtain the wave function from a reverse transformation, Ψn =
(
LT
)−1

Ψ′
n.

The procedures described here are standard ways of solving the TB problem. In both

cases, diagonalization of a matrix is necessary, which means that calculational costs scale as

O (N3), while memory requirements scale as O (N2). These facts lead to severe limitations

when large systems are taken into account, even in TB methods which are two to three orders

of magnitude faster than ab initio methods. It is, however, possible to reduce the scaling

behavior for both the calculational costs and memory requirements to O (N) by adopting

suitable approximations. This topic of the O (N) TB will be treated in the succeeding chapter.

2.2.4 calculation of optical properties

In chapters 4 and 5, we deal with the optical properties of Si nanostructures. Here, we describe

the method of calculating such properties within the framework of the TB method.
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We first calculate the inter-band oscillator strength, defined by the following equation [15]:

fc,v =
2

m(εc − εv)
|〈Ψc |e·p|Ψv〉|2 , (2.15)

where Ψc and Ψv are the one-electron wave functions for conduction band c and valence band

v, respectively, p is the momentum operator, e is the polarization vector of light, m is the

mass of an electron, and εc and εv are the eigenvalues corresponding to conduction band c and

valence band v, respectively. We have suppressed the index for the wave vector, as we only

take into account the case of the Γ-point. The oscillator strength is averaged for the three

directions of p. By writing |Ψb〉 =
∑

iν a
b
iν |iν〉, where i is the site index and ν is the angular

momentum, the matrix element in eq. (2.15) is rewritten as

〈ψc|e·p|ψv〉 =
∑
iν,jµ

ac∗
iνa

v
jµ〈iν|e·p|jµ〉 (2.16)

The oscillator strength is a dimensionless quantity, which expresses the strength of a transition

between conduction band c and valence band v [15].

Once the oscillator strength is calculated, optical properties are derived from it. For

example, the radiative recombination time of a transition from conduction band c to valence

band v is calculated by the following equation [28]:

τc,v =
m�c2

2n0α(εc − εv)2fc,v
, (2.17)

where n0 is the refractive index. In chapters 4 and 5, we choose the value of n0 = 1.2, the

experimental value of porous Si [29]. Symbol α is the fine structure constant, c and � have their

usual meanings, i.e., the light velocity and the Planck constant divided by 2π, and all other

symbols are the same as defined in the above. A similar quantity, the radiative recombination

rate, is the inverse of τc,v, which will also be calculated.

Since the oscillator strength is scattered between bands, it is not informative to study τc,v

for each c, v pair. Instead, we calculate the thermal average of eq. (2.17) by the following
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equation:

〈τ〉 =

∑
τn,n′exp

[
− (εn−εn′)

kBT

]
∑

exp
[
− (εn−εn′)

kBT

] . (2.18)

Here, kB is the Boltzmann constant, T is the temperature, n and n′ represent conduction and

valence bands, respectively, and the other symbols are the same as described in the above.

Equation (2.18) is a good approximation if the carriers are in thermal equilibrium prior to

recombination, which is the case for Si nanostructures [30].

The thermally-averaged radiative recombination time reflects the low-energy structure of

the energy band, as evidently seen from eq. (2.18). This is appropriate for the study of lu-

minescence, because in general, luminescence involves only transitions which are energetically

near or at the band edge [31].

However, it is also important to understand the optical response for the full energy band.

For this purpose, we calculate the imaginary part of the dielectric function by the following

equation [15]:

ε2(�ω) ∝ 1

(�ω)

∑
c,v

fc,vδ [εc − εv − �ω] , (2.19)

where �ω is the energy of the incident light, and all other symbols are the same as above. The

imaginary part of the dielectric function ε2 is calculated as a sum of the contribution from

each band, and therefore is an appropriate function to study for the aforementioned purpose.

Now let us describe the method to calculate the matrix elements for the momentum oper-

ator, p. This is not an easy task when working in the TB picture, since in TB, the actual form

of the atomic wave functions is not known, but only the matrix elements of the Hamiltonian

matrix are known. In order to calculate eq. (2.19) in such a situation, we use the scheme pro-

posed in ref. 32. From eq. (2.16), the matrix element we calculate is expressed as 〈i′µ′ |p| iµ〉.
By using the commutative relation of p, namely,

p =
im

�
[r, H ] , (2.20)

and by inserting 1 =
∑

lλ |lλ〉〈lλ|, we obtain the following,

∑
lλ

〈i′µ′|r|lλ〉〈lλ|H |iµ〉 −
∑
lλ

〈i′µ′|H |lλ〉〈lλ|r|iµ〉. (2.21)
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The Hamiltonian matrix elements within eq. (2.21) are known. On the other hand, the matrix

elements for the position operator, r, is not easily derived. We first assume that matrix

elements between different atoms are zero. Under this assumption, the matrix elements of r

are written as

〈i′µ′|r|iµ〉 = [dµ′,µ + Ri′,iδµ′,µ] δi′,i. (2.22)

The first term of the right-hand side of eq. (2.22) cannot be calculated unless we know the

form of the atomic wave functions, and physically corresponds to contribution from isolated

atoms. This term is known to be small in semiconductors [33], and will be ignored in the

present work. The second term, on the other hand, arises only when there are interaction

between atoms, and is simply the position vector of an atom. From all of the above, we

finally obtain the following equation for the matrix elements of the momentum operator:

〈iµ|p|jν〉 =
im

�
〈iµ|H |jν〉Rij, (2.23)

where Rij is Ri −Rj. We insert eq. (2.23) into eq. (2.16) in order to obtain the final quantity

we wish to evaluate.

2.3 Brief introduction to molecular dynamics simula-

tion

We now move on to the description of molecular dynamics (MD) simulation. We will not

cover all the vast amount of work done in this field, nor shall we go into the technical details

of the method; there are a number of good textbooks around, for example, ref. 7, suited for

this purpose. Rather, we focus on the basics, and physical properties calculated in the present

thesis.

2.3.1 basic formulation

In MD simulations, the atoms in the system are assumed to follow the rules of classical

mechanics. We integrate the equation of motion for classical mechanics, and deduce properties

of the system from the trajectory of the atoms thus obtained.
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Let us start from the generalized coordinates, {qi}, and their conjugate momenta, {pi}.
The Hamiltonian for the system (the reader is not to be confused with the quantum mechanical

Hamiltonian of, for instance, eq. (2.3)) is expressed as

H ({pi} , {qi}) = K ({pi}) + V ({qi}) , (2.24)

where K (pi) is the kinetic energy of the system, defined as K ({pi}) =
∑N

i=1

∑
α

p2
iα

2mi
, the

symbol α being the three Cartesian coordinates, and mi being the mass of atom i. The term

V ({qi}) is the potential energy of the system. Hamilton’s equations of motion are derived

from eq. (2.24) by the standard way as [34]

dqi

dt
=
∂H ({pi} , {qi})

∂pi
→ dqi

dt
=

pi

mi
(2.25)

dpi

dt
= −∂H ({pi} , {qi})

∂qi
→ dpi

dt
= −∂V ({qi})

∂qi
= fi, (2.26)

where fi is the force acting on atom i. Provided that the potential energy is known as

a function of {qi}, it is possible to integrate eqs. (2.25) and (2.26). The integrations are

performed by methods such as the Verlet method or the predictor-corrector method proposed

by Gear. If the simulation is performed for long enough times, we obtain thermodynamically-

meaningful results. Note that in this situation, the Hamiltonian, H ({pi} , {qi}), is a constant

of the motion.

2.3.2 the “extended system” method

When MD simulations are applied as it is, the resultant trajectory of the atoms forms the so-

called microcanonical ensemble in statistical mechanics, in which the number of atoms N , the

volume of the system V , and Hamiltonian of the system are conserved. It is possible, however,

to work in other ensembles. One way of generating different ensembles is to add “extended

systems” to the original system [35]. As an example, we describe the constant-temperature

method proposed by Nosé [35].

We first introduce “virtual” variables, which are scaled by factor s as

q′
i = qi

p′
i = pi/s (2.27)

dt′ = dt/s,
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where we have denoted the “virtual” variables without a prime, and “real” variables with

a prime. In this situation, we add an “extended system”, corresponding to a “heat bath”

attached to the system, to the Hamiltonian in the following manner,

Htotal = H ({pi} , {qi}) + HNosé (Ps, s) , where

H ({pi} , {qi}) =
∑

i

p2
i

2mis2
+ V ({qi}) and (2.28)

HNosé (Ps, s) =
P 2

s

2Q
+ gkBT log s.

Here, Ps is the conjugate momentum for s, Q is the “mass” of the heat bath, and g is the

number of freedoms, which is 3N + 1 when we work with the virtual variables, while it is 3N

when we work with real variables. Hamilton’s equations of motion are derived from standard

procedures from eq. (2.28). We obtain the following coupled differential equations,

dq′
i

dt′
=

p′
i

m
(2.29a)

dp′
i

dt′
= −∂V ({qi})

∂q′
i

− 1

s

ds

dt′
p′

i (2.29b)

ds

dt′
=
Ps

Q
s (2.29c)

dPs

dt′
=

N∑
i

3∑
α=1

p′
i

mi

− 3NkBT. (2.29d)

Note that eqs. (2.29a)-(2.29d) are expressed in terms of the “real” variables instead of the

“virtual variables”. It is possible to prove that the trajectory of the atoms derived from the

above equations of motion form the so-called canonical ensemble, in which the number of

atoms N , the volume of the system V , and the temperature T is conserved [36]. In the same

manner, it is possible to obtain, for example, the isobaric-isoenthalpic ensemble, by adding an

extra degree of freedom corresponding to a piston attached to the system [37].

2.3.3 properties calculated from molecular dynamics

In MD simulations, physical properties are evaluated as time averages. We present here the

quantities calculated in the present thesis. Note that, since we only work with the atomic

coordinates of the system, the generalized coordinate qi will be hereafter referred to as simply

ri.
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thermodynamic quantities

1. temperature of the system, T

The temperature T of the system is related to the kinetic energy K of the system, and

is calculated by the following equation,

T =
2

3kB
〈K〉 . (2.30)

2. pressure of the system, P

The pressure of the system is obtained from the virial theorem, and in practice, is

evaluated as

P =
NkBT

V

(
1 − 1

3NkBT

〈
N∑

i=1

N∑
j>i

rij
dV (rij)

drij

〉)
, (2.31)

where rij = |ri − rj|.

static structure

1. two-body distribution function, g(r)

The two-body distribution function is related to the two-body correlation function,

n(2) (r1, r2). The two-body correlation function has the following property: the proba-

bility of finding two particles within a volume fraction d3r and d3r′ is proportional to

n(2) (r1, r2) d
3rd3r′. Provided that n(2) (r1, r2) is normalized as

∫∫
n(2) (r, r′) d3rd3r′ =

N !
(N−2)!

(in which case n(2) (r, r′) is formally expressed as
∑

i,i′
i�=i′

δ (r − ri) δ (r′ − ri′)),

g(r, r′) is defined as

g (r, r′) =
n(2) (r, r′)

ρ2
, (2.32)

where ρ is the average density of the system. In homogeneous and isotropic systems,

e.g., liquids, eq. (2.32) depends only on the distance between two atoms, r = |r − r′|,
and g (r, r′) is simply written as g(r). The two-body distribution function describes the

probability of finding an atom with distance r apart from a reference atom, normalized

by the average density. Since for infinite r, the probability is equal to the average density,

g(r) approaches 1 for large values of r. From g(r), it is possible to calculate the number
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of atoms present within a distance rc of some reference atom, or in other words, the

coordination number Nc. This is performed by the following equation [21],

Nc =

∫ rc

0

4πr2ρg (r) dr. (2.33)

Note, however, that Nc is well-defined only for crystalline systems. In liquids and amor-

phous solids, the best we can do is to evaluate the average of Nc. Further, the usual

procedure is to take rc up to the first minimum of g(r), but in some cases, this is not ap-

propriate. The definition of Nc is not unique in non-crystalline systems; in the evaluation

of Nc, an important point is to stay consistent throughout the discussion.

2. static structure factor, S(Q)

The static structure factor expresses the correlation of the density in reciprocal space. It

is possible to calculate S(Q) from either its definition, or by Fourier transforming g(r).

Concerning the former method, the definition of S(Q) is given by

S(Q) =
1

N
〈ρ(Q)ρ(−Q)〉

ρ(Q) =
N∑

j=1

e−i�·�j , (2.34)

where rj is the position of the jth atom and N is the number of atoms. We note

that, in calculating eq. (2.34), we average over all Q vectors of equal magnitude, and

that, because of the finite size of the simulation cell, the Q vectors are restricted to

2π
(

nx

Lx
, ny

Ly
, nz

Lz

)
, where nx, ny, and nz are integers and Lx, Ly, and Lz are the lengths

of the simulation cell in the x, y, and z direction, respectively. On the other hand,

concerning the latter method, it is possible to calculate S(Q) from the Fourier transform

of g(r) in the following manner,

S (Q) = 1 +

∫ ∞

0

4πr2ρ0 [g(r) − 1]
sin (Qr)

Qr
dr. (2.35)

For simulation cell of infinite size, the two methods give identical results. However, since

we must work in a finite-size cell, we adopt the former method in order to obtain S(Q)

accurately.
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3. bond-angle distribution function, g(3) (rc, θ)

The bond-angle distribution function gives the distribution of the angles formed by

pairs of vectors drawn towards two neighboring atoms within a cutoff distance rc from

some reference atom. This property is related to the three-body correlation function,

n(3) (r1, r2, r3), which has obvious correspondence with the two-body correlation func-

tion, n(2) (r, r′). We note that in many cases, it is convenient to normalize this function

by (sin θ)−1, since for a perfectly random bond-angle distribution, g(3) (rc, θ) is propor-

tional to sin θ.

dynamical structure

One of the great advantages of the MD method is that it allows us to study the dynamical

structure of the system quantitatively. Here, we present the quantities we calculate in the

present thesis for the dynamical structure.

1. mean-square displacement,
〈
R (t)2〉

The mean-square displacement is defined by the equation,

〈
R (t)2〉 =

〈|r (t + t0) − r (t0)|2
〉
. (2.36)

By studying this function, we are able to determine whether the system is diffusive or

not. For diffusive systems, eq. (2.36) evolves linearly against time, while for non-diffusive

systems, the function saturates at very short times, and does not increase from that time

on.

2. velocity autocorrelation function, ψ (t)

It is possible to calculate the autocorrelation of the velocity by the following equation,

ψ (t) =
〈v (t+ t0) · v (t0)〉
〈v (t0) · v (t0)〉 . (2.37)

For short times, the velocities at different times are strongly correlated, and there-

fore, ψ (t) ∼ 1. On the other hand, for sufficiently long times, the velocities lose their

correlation with respect to the original velocities, meaning that 〈v (t+ t0) · v (t0)〉 ≈
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〈v (t + t0)〉 〈v (t0)〉 ≈ 0. Note that the average of the velocity is always zero (correspond-

ing to zero velocity for the center of gravity), since we determine the initial velocity so

as to give zero for the average velocity, and further total velocity is a constant of motion.

3. diffusion coefficient, D

The diffusion coefficient D is calculated either from
〈
R (t)2〉 or ψ (t).

(a) From MSD, D is calculated by using the Einstein relation as

D = lim
t→∞

1

6 (t− t0)

〈
[r (t) − r (t0)]

2〉 . (2.38)

(b) From VAF, D is calculated from the following equation,

D =
kBT

m

∫ ∞

0

ψ (t) dt (2.39)

4. spectrum density, ψ (ω)

The spectrum density is a Fourier transform of the VAF, and is expressed as

ψ (ω) ∝
∫ ∞

0

cos (ωt)ψ (t) dt. (2.40)

The significance of ψ (ω) lies in that it reflects the vibrational modes in the system. By

investigating this function, it is possible to deduce the magnitude of a certain vibrational

mode in the system. Note that the mode at ω = 0 corresponds to the diffusive mode, as

is evidently shown from eq. (2.39).

2.4 Tight-binding molecular dynamics

2.4.1 basic formulation

In the present thesis, we perform MD simulations based on TB electronic state calculations.

From the arguments of the preceding section, we need to evaluate the total Hamiltonian of

the system, and forces consistent with it, from atomic positions in order to perform this task.

Here, we describe on how to calculate such properties within the framework of the TB method.
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The total Hamiltonian H of a system is written as [12, 22]

H = K + Ebinding,

Ebinding (r1, · · · , rN) = EBS (r1, · · · , rN) + Urep (r1, · · · , rN) . (2.41)

Here, Ebinding is the binding energy of the system, and EBS is the so-called band-structure

energy, defined as

EBS = 2

Nocc∑
n

εn, (2.42)

where εn is the one-electron energy and Nocc is the number of occupied levels. The second

term, Urep, represents the sum of the ion-ion repulsion and corrections to the double counting

of the electron-electron interaction in EBS.

There are various methods proposed in order to calculate eq. (2.41) within the framework

of the TB method [22]. Here, we describe a simple scheme, based on the method described

by Wang, Chan, and Ho in ref. 12. This method will be used in chapters 4 and 5 to evaluate

structural relaxation of Si nanostructures.

In the scheme of Wang, Chan, and Ho, the band structure energy is determined by the

eigenvalue of the TB Hamiltonian, and the bond-length dependence of the TB parameters are

determined according to Harrison’s universal d−2 law, d being the distance between two atoms

under consideration [15]. The term Urep is determined by

Urep(r) = Ebinding(r) − EBS(r), (2.43)

where r is the nearest-neighbor distance for the diamond structure. The r-dependence of

Ebinding is taken from first-principles calculations. By assuming that U(r) can be written as a

sum of two-body potentials as

Urep(r) =
1

2N

N∑
i,j=1
i�=j

φ(rij), (2.44)

and that the two-body potential contains only nearest-neighbor interactions, and finally that

each nearest neighbor contributes equally to the total two-body potential energy, the pair

potential is written as

φ(rij) =
1

2
[Ebinding(rij) −EBS(rij)] . (2.45)
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Although the scheme by Wang, Chan, and Ho [12] is simple and useful, the main drawback

of this scheme is the TB model used. In particular, the description of the conduction band is

very poor in their scheme. Since in chapters 4 and 5 we want to deal with optical properties, a

good description of the conduction band is indispensable. In addition, it has been pointed out

that, in order to perform calculations for nanostructures by a semi-empirical method such as

the TB method, it is necessary that the band structure for the bulk is described accurately [38].

With these situations in mind, we change the TB part of Wang, Chan, and Ho’s scheme. The

TB model we choose is the nearest-neighbor, two-center, sp3s∗d5 scheme reported by Jancu

et al. [39]. In this scheme, an extra s orbital and five d orbitals are added to the minimal

basis sp3 scheme. This TB model gives a very good description of the bulk band structure,

and can further stabilize the diamond structure for bulk silicon. In their work, Jancu et

al. [39] determined the distance dependence of the TB parameters according to the extended

Harrison’s scheme:

Hα = H0
α (d0/d)

να , (2.46)

where d denotes the distance between two atoms, d0 denotes the bulk nearest-neighbor dis-

tance, Hα denotes the Slater-Koster two-center integrals such as Hssσ, Hspσ, etc. with respect

to d and H0
α denotes the same integral with respect to d0. The να’s were determined by fitting

to the values of the deformation potentials, obtained from pseudopotential calculations and

experiments. Details are found in ref. 39. We show in Figs. 2.3 (a) and (b) the variation of

the total energy and EBS with volume change, plotted against the nearest-neighbor distance

for Si.

We use the above-described scheme for the evaluation of the band structure energy, and

calculate some T = 0 K properties of bulk silicon. We use a 64 atom super cell, and the

band structure energy is evaluated at the Γ-point. We show our results along with the values

obtained by Wang, Chan, and Ho and experiments [12] in table 2.1. We find that the agreement

for the phonon frequency is generally not bad.

In order to execute MD simulations, the expression of the force is also needed. The

contribution from Urep is trivially calculated by differentiating eq. (2.44). The contribution

from EBS, on the other hand, is calculated from the Hellmann-Feynman theorem [2]. The
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Figure 2.3: Variation of energy with volume change, (a): for the total energy, and (b): for the
band-structure energy.

Hellmann-Feynman force acting on atom i, fHF
i , is expressed as

fHF
i = −2

Nocc∑
n=1

∂εn

∂ri

= −2

Nocc∑
n=1

〈
Ψn

∣∣∣∣∂H∂ri

∣∣∣∣Ψn

〉

= −2

Nocc∑
n=1

∑
i′ν′,iν

a∗i′ν′,naiν,n
∂Hi′ν′,iν

∂ri
, (2.47)

where xi denotes Cartesian coordinate of atom i. In the case of non-orthogonal TB, H is



36 Chapter 2. The tight-binding method and the molecular dynamics method

Table 2.1: Some T = 0 K properties of bulk Si calculated from our scheme, along with those
obtained from the scheme by Wang, Chan, and Ho, and experiments.

Our model Wang et al. Experiments
LTO(Γ) THz 14.19 16.95 15.53
TA(X) THz 4.90 4.96 4.49
TO(X) THz 12.08 14.71 13.90
LOA(X) THz 9.49 12.37 12.32

replaced by H − εnS, which gives

fHF
i = −2

Nocc∑
n=1

〈
Ψn

∣∣∣∣∂ (H − εnS)

∂ri

∣∣∣∣Ψn

〉

= −2

Nocc∑
n=1

∑
i′ν′,iν

a∗i′ν′,naiν,n

(
∂Hi′ν′,iν

∂ri
− εn

∂Si′ν′,iν

∂ri

)
. (2.48)

Note that, since we are working with the matrix elements of the Hamiltonian instead of the

Hamiltonian operator itself, we are calculating the exact derivative of EBS, hence corrections

to the so-called “Pulay force” [40] need not be taken into account.

We finally note on the validity of eq. (2.41), in which the binding energy of a system is

written as a sum of eigenvalues of a Hamiltonian matrix plus a sum of pair terms. The origin

of this expression is not at all clear at first sight. However, in ref. 41, it was shown that

the TB expression of the binding energy is very close to the Harris-Foulkes formulation of

density functional theory, thereby showing that TB methods have grounds based on ab initio

methods.

2.4.2 formulation in the case of finite electron temperature

In eq. (2.42), the band-structure energy is evaluated by adding up the one-electron eigenvalue

for all occupied states. This policy corresponds to zero electron temperature. It is also

possible to work with finite electron temperature. This is particularly of importance in the

case of O (N) tight-binding, discussed in the next chapter.

In the case of finite electron temperature, the band-structure energy, EBS, is expressed as

EBS = 2

Nlevel∑
i=1

f (εn − µ) εn, (2.49)
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where Nlevel is the number of energy levels, while its derivative is modified as

dEBS

d3r
= 2

Nlevel∑
n

[
f (εn − µ)

∂εn

∂r
+
df (εn − µ)

d (εn − µ)

∂ (εn − µ)

∂r
εn

]
. (2.50)

Here, f (εn − µ) is the Fermi distribution function,

f (εn − µ) =
1

exp [β (εn − µ)] + 1
, (2.51)

where µ is the chemical potential of the electronic system, and β is defined as kBTel, where Tel is

the electron temperature. Note that the summation of εn is now taken for all the energy levels,

not only for the occupied levels. The chemical potential of the electron system is determined

so as to conserve the number of electrons, calculated as

Nel = 2

Nlevel∑
n

f (εn − µ) . (2.52)

This procedure is performed easily by using, for example, the Newton-Rapson algorithm.

For a system with a finite electron temperature and a constant number of electrons, it is

not appropriate to take the total Hamiltonian, H, as the constant of motion. Rather, it is

more appropriate to take the Mermin free energy, defined as

Ω = H− TelSel, (2.53)

where Sel is the electron entropy,

Sel = −2kB

Nlevel∑
n

{f (εn − µ) log [f (εn − µ)] + [1 − f (εn − µ)] log [1 − f (εn − µ)]} , (2.54)

as the constant of motion [42–44]. In this case, the second term within the summation of the

right-hand side of eq. (2.50) is canceled from the contribution from the entropy term, and

therefore the forces acting on the atoms are calculated simply as

fi = −2

Nlevel∑
n=1

f (εn − µ)
∂εn

∂ri
. (2.55)

Note that, in the present formulation, we are effectively taking into account the contribution

from the change of µ with respect to atomic displacement, since we are determining µ for each

atomic configuration so as to fulfill the conservation of charge.
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2.5 Conclusions for this chapter

In this chapter, we give an overview on the TB methods and TBMD methods. We describe the

basic formulation of the TB method, along with a brief description on the method of solving

the TB problems and on the method of calculating optical properties within the framework

of the TB method. We also give a brief review on MD simulations. The basic concept of the

method and physical properties calculated by MD simulations are explored. We further give

a method of extending the TB method to MD simulations. A simple example for Si are also

explained. Finally, we give a description on the method for performing TBMD simulations at

finite electron temperature.
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Chapter 3

Order-N tight-binding

3.1 Introduction for this chapter

Although the calculations by tight-binding (TB) methods are faster than those by ab initio

methods, the calculational cost still scales with the third power of the number N of atoms

in the system when TB methods are applied in a straight-forward manner, since they re-

quire direct diagonalization of the Hamiltonian matrix. In other words, they are essentially

O (N3) methods. Because of this bottleneck, the calculation time of the TB methods becomes

increasingly long as the size of the system increases.

In order to overcome this difficulty, new algorithms have been proposed which deal with the

TB problem without carrying out direct diagonalization of the Hamiltonian matrix [11]. Such

algorithms commonly use the concept of locality in quantum mechanics, where the locality

indicates that the dominating physical properties of a given atom depend only on the behaviors

of atoms located within a certain distance from that atom [11]. By using this concept, it is

possible to split the large matrix-diagonalization problem into subsets of smaller problems. If

the scaling behavior of the smaller problem is better than O (N2), we obtain better scaling

behavior than O (N3) for the whole problem. In particular, if the computational cost of the

small problem is constant being independent of N , we have an O (N) algorithm. Note that

the conventional direct diagonalization method (DDM) cannot take advantage of the locality

in the way as described here.

One way of using the locality of a system and improving the scaling behavior is to formulate

the problem by means of the density matrix. The density matrix is localized in space for

semiconductors and insulators, and also for finite-temperature metals [13, 14]. It is noted
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that almost all physical properties of interest are calculated from the density matrix. There

have been several methods proposed on this line, which include the Fermi operator expansion

method (FOEM) [10] and the density matrix minimization method [45]. Both methods are

O (N) methods under suitable approximations. In the present thesis, in which we study liquid

metals, we are concerned only with the former method (FOEM) because the latter method of

the density matrix minimization is best suitable for insulators.

In the FOEM, the density matrix is constructed directly from the Hamiltonian matrix by

Chebyshev polynomials [27]. This method has been widely used with empirical TB schemes,

because (1) the implementation of the method is relatively easy in general and, in particular,

the method is easily incorporated in molecular dynamics (MD) simulations, (2) parallel im-

plementation of the method is made very efficiently, and (3) the method deals, by introducing

a finite electron temperature, even with metallic systems which are difficult to be treated by

other O (N) schemes [11].

In spite of the advantageous features concerning the FOEM as described in the above,

successful implementation of the FOEM has so far been limited mostly to orthogonal TB

models [10,43,46,47], while extensions to non-orthogonal TB models have rarely been studied.

An exceptional example is the work by Stephan and Drabold [48] in which the FOEM was

extended to non-orthogonal TB schemes, but tests and actual operations of realistic MD

simulations were not performed in their work.

On the other hand, non-orthogonal TB schemes are important in the following respects.

First, transferability of TB schemes is greatly improved by explicitly incorporating the non-

orthogonality of atomic wave functions. This was seen in our recent work [49] and also in

ref. 50. Second, ab initio methods based on localized orbitals, to which the FOEM is directly

applicable, also require non-orthogonal basis sets. Further, non-orthogonal basis sets are

generally more localized than orthogonal basis sets [51].

Judging from all of the above, we find it necessary to further pursue the work done in

ref. 48 on O (N) implementation for non-orthogonal TB methods. Of particular importance

is to carry out tests and applications of MD simulations to show that the FOEM is really

applicable to MD simulations based on non-orthogonal TB methods. This is exactly what
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we do in the present work. Keeping this in mind, it is the purpose of the present chapter

to describe the FOEM, in particular for the case of non-orthogonal TB, and extend it to

applications in MD simulations. We further perform test MD simulations.

The rest of the chapter is organized as follows. In section 3.2, we describe the basic

formulation of the FOEM. In particular, we discuss the cases of both orthogonal and non-

orthogonal TB, and extensions to MD simulations. In section 3.3, we comment on several

notes concerning the actual implementation of the method. Finally, in section 3.4, we perform

test MD simulations for �-Ge, and show that O (N) TBMD is applicable to the case of non-

orthogonal TB models.

3.2 Basic formulation of the Fermi-operator expansion

method

Here, we present the way in which the FOEM is formulated and solved both in orthogonal and

non-orthogonal TB schemes. Note that, whenever an actual example appears in this chapter,

the TB model used is the non-orthogonal TB model described in chapter 6.

In the FOEM, the one-electron density matrix F , defined as

F =
∑

n

fn |Ψn〉 〈Ψn| , (3.1)

where fn is the Fermi distribution function (eq. (2.51)), is used to calculate physical properties.

Note that fn is the eigenvalue of the operator F as is evidently shown in eq. (3.1). The density

matrix F allows us to calculate all quantities of interest such as the band-structure energy

EBS and the force originating from it. The great advantage of the density matrix is that it is

localized in space for insulators and semiconductors, and also for metals with finite electron

temperatures [13, 14].

3.2.1 orthogonal tight-binding

We first study, for the sake of comparison, the case in which the atomic orbitals are orthogonal.

In this case, the overlap matrix becomes the unit matrix, and therefore the band-structure
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energy EBS is written, using the density matrix, as

EBS = 2Tr [FH ] , (3.2)

while the number of electrons is expressed as

Nel = 2Tr [F ] . (3.3)

In this manner, the problem is reduced to the issue of calculating F in an O (N) fashion.

In the FOEM, the density matrix is directly fitted by means of the Chebyshev polynomials

as a matrix functional. Using the j th-order Chebyshev polynomial Tj (H), the density matrix

is expressed as [10, 27]

F (H) =
c0
2

I +

Npl∑
j=1

cjTj (H) , (3.4)

where cj ’s are expansion coefficients, I is the unit matrix, and Npl is the number of the

Chebyshev polynomials taken into account, which we set as 70 in this work.

The Chebyshev polynomials are calculated without reference to the function to be fitted

by using the following recursive relation of the Chebyshev polynomials [27],

T0 (H) = I

T1 (H) = H (3.5)

Tj (H) = 2Tj−1 (H) H − Tj−2 (H) .

Equation (3.5) is calculated in an O (N) fashion when the range of the matrices H and F are

finite. We hereafter refer to the range of H and F as rH and rF , respectively. In practice, the

O (N) scaling is achieved by the following manner. Firstly, when no decay properties are taken

into account at all, we have O (N3) scaling, since we have a matrix-matrix multiplication in line

3 of eq. (3.5), which requires N2-times column-vector operations. Next, when the sparseness

of the Hamiltonian matrix is taken into account, the scaling behavior reduces to O (N2),

since the number of non-zero matrix elements for a given vector of H in the column-vector

operation is independent of N . Finally, we obtain O (N) scaling by performing column-vector

operations for Tj and H only when they correspond to atoms within rF . Note that, not only

the calculational cost, but also memory requirements scale as O (N) in the present scheme.
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On the other hand, the expansion coefficients cj ’s are calculated solely from the function

to be estimated in the following manner [27]

cj =
2

Npl

Npl∑
k=1

F
[
cos

(
π
(
k − 1

2

)
Npl

)]
cos

(
π (j − 1)

(
k − 1

2

)
Npl

)
, (3.6)

where the function F denotes the function to be fitted. In the present case of evaluating

eq. (3.4), we have F = fn.

3.2.2 non-orthogonal tight-binding

In the second place, we study the case in which the atomic orbitals are non-orthogonal. In

this case, the overlap matrix is no longer an unit matrix, but all of the above arguments hold

if we use the matrix H = S−1H instead of the Hamiltonian matrix H itself [48]. By using

H , eq. (2.6) becomes formally equivalent to the case of an orthogonal TB model for which we

have

HCn = εnICn. (3.7)

We note, however, that the matrix H is not Hermite in general. Using H , EBS is calculated

as:

EBS = 2Tr
[
F
(
H
)
H
]
, (3.8)

and therefore it becomes possible to apply the FOEM as explained in the above without any

substantial changes. The problem is now reduced to the question of finding a way to calculate

either S−1 or H efficiently.

In general, the calculation of an inverse matrix such as S−1 requires O (N3) operations.

To overcome this difficulty, several ideas have been proposed [52]. In the present article, we

employ the algorithm proposed in ref. 53 and used in ref. 48. The algorithm is based on

the idea of dividing one large matrix-inversion problem into many small problems. In this

algorithm, the inverse matrix is never calculated, but instead, the following linear equation,

SH = H , (3.9)

is solved to obtain H . When localization of the matrices is not taken into account, the

matrix equation (3.9) corresponds to Nlevel simultaneous linear equations with matrix size
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(Nlevel ×Nlevel); hence a straight-forward approach to eq. (3.9) will end up in O (N3) opera-

tions. However, these equations couple only within the range of S, H , and H , and therefore

it is possible for us to divide the equations into many small problems. Since the computational

cost for solving each small problem is independent of the system size, we are able to calculate

this equation in a strictly O (N) fashion. We hereafter refer to the range of H as rH̄ .

Now let us move on to the calculation of the force in the present scheme. Here, we only

describe the contribution from EBS. By differentiating eq. (3.8) with respect to the position

x of a certain atom, we obtain

dEBS

dx
= 2Tr

[
F
∂H

∂x
+
dF
(
H − µI

)
d
(
H − µI

) ∂
(
H − µI

)
∂x

H

]
. (3.10)

As described in chapter 2, the constant of motion for a system with finite electron temperature

is the Mermin free energy, Ω. In this case, the second term of eq. (3.10) exactly cancels out

the contribution from the electron entropy, and consequently, all we have to calculate for the

force from EBS is the first term of eq. (3.10). By noting that ∂�−1

∂x
= −S−1 ∂�

∂x
S−1, the first

term of eq. (3.10) is calculated as

F
∂H

∂x
= F

[
S−1∂H

∂x
− S−1∂S

∂x
H

]

= F

[
∂H

∂x
− ∂S

∂x
H

]
, (3.11)

where F = FS−1. The range of F is also finite, and we denote this range as rF̄ . The matrix

F is calculated in an O (N) fashion by the same algorithm as used to calculate H . We note

that the matrices H and F are not in general Hermite, meaning that the ordering of eq. (3.11)

is important.

We find that in practice, the computational costs for the calculations of the matrices H

and F are much smaller than those for the calculations of the recursive fit, eq. (3.5) (refer to

the next section). Therefore, non-orthogonal TB methods are calculated almost as efficiently

as in the case of orthogonal TB methods by the FOEM.
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3.3 Notes on the actual implementation

3.3.1 electron temperature

In our O (N) non-orthogonal TBMD method, we introduce finite electron temperature Tel.

The purpose of introducing finite electron temperature is twofold; i.e., (1) to make the FOEM

applicable to metallic systems, and (2) to save the computational cost. In the first place, the

introduction of finite electron temperature is especially of importance for metallic systems,

because for metallic systems, the density matrix is localized only when the electrons have

a finite temperature [13, 14]. Concerning the second point, calculational costs are lower for

higher electron temperature. This is because for high electron temperature, (1) the Fermi

distribution function becomes smoother near the Fermi energy, which allows us to perform

the fitting procedure with fewer Chebyshev polynomials, and (2) the localization of the density

matrix becomes stronger [11]. On the other hand, it is not allowed to set the temperature too

high to be physically meaningful.

It is possible to estimate the effects of electron temperature on calculational cost from

the following arguments. Firstly, as discussed in ref. 11, the adequate choice for the degree

of the Chebyshev polynomials roughly scales as the inverse of the electron temperature, i.e.,

NPL ∝ (kBTel)
−1. Next, the scaling behavior of rF with respect to the electron temperature is

estimated as rF ∝ (kBTel)
−1. This is derived from the following decay property of the density

matrix for a finite-temperature metal,

F (|r − r′|) ∝ kF
cos (kF |r − r′|)

|r − r′|2 exp

(
−ckBTel

kF

|r − r′|
)
, (3.12)

where r and r′ are the position vectors of two atoms under consideration, kF is the Fermi

wavelength, and c is some constant of order 1. Since the calculational cost scales as the number

of atoms within rF , the increase of the calculational cost from the increase of rF is estimated

as r3
F ∝ (kBTel)

−3. From the above arguments, the increase of the calculational cost with

the decrease of electron temperature is estimated as ∼ (kBTel)
−4. This is, unfortunately, a

significant increase, so from the view point of calculational cost, it is preferable that we take

the electron temperature as high as possible.

In order to choose an optimum value for Tel, we have tested the effects of Tel in a preliminary
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Figure 3.1: Distribution function calculated for �-Ge at several electron temperatures, (a) : two-
body distribution function g(r), and (b) : static structure factor S(Q).

MD simulation for �-Ge. We show g(r) and S(Q) calculated for kBTel = 0.0, 0.1, 0.4, and 0.6 eV

in Fig. 3.1. We find that up to kBTel = 0.4 eV, structural properties are almost identical,

but for kBTel = 0.6 eV, we find slight deviations from liquid structures obtained at a lower

electron temperature. Therefore we adopt kBTel = 0.4 eV as an optimum value for the electron

temperature throughout this work.

3.3.2 the expansion coefficients for the density matrix

Now we give several notes concerning eq. (3.6).

First, it is possible to make the conservation of charge fulfilled by modifying the chemical

potential µ in the Fermi distribution function included in eq. (3.6), so that eq. (3.3) is satisfied

to a certain precision. This is performed at virtually no extra computational cost, since the



3.3 Notes on the actual implementation 47

most time-consuming part of the calculation is the recursive fit of eq. (3.5). If this procedure

is omitted, the method will conserve the chemical potential for the electronic system instead

of the number of electrons, Nel.

Secondly, we note that, in general, eq. (3.6) decreases exponentially as j increases [27]. We

show cj , plotted against j, in Fig. 3.2. We utilize this property of cj to speed up calculations.
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Figure 3.2: The expansion coefficients for the density matrix, cj , plotted against j.

Since cj for large j are relatively unimportant, Tj (H) for larger j is substituted by that

calculated with a shorter cutoff distance. By this scheme, we accomplish a speed-up by about

a factor of two. In addition, we obtain an increase in the degree of the stability for the

calculations.

Finally, we introduce a new technique concerning the calculation of cj, which significantly

reduces the memory requirements for our calculations. In the above arguments, it is necessary

to store all non-zero matrix elements of Tj at one time in order to conserve the total charge

of the system. This constraint leads to large memory requirements when the density of atoms

in the system is high. In particular, our NTB model is not a simple nearest-neighbor model,

which significantly increases memory requirements. When performing MD simulations, it is

possible to improve this point by changing the way we calculate the expansion coefficients

cj ’s, in which all the information regarding charge conservation is included. Instead of using

the expansion coefficients calculated at the time step under consideration, we use expansion
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coefficients calculated one step before. This procedure allows us to store only the diagonal

elements of Tj , which results in a reduction of memory requirements by about a factor of 20.

The drawback of this technique is that the exact conservation of charge is no longer fulfilled.

However, the effects of this drawback are ignorable. We show this situation in Fig. 3.3. In
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Figure 3.3: The number of electrons, plotted against simulation time. Note that the exact value is
four.

this figure, the number of electrons per atom is plotted against simulation time. We find from

this figure that the fluctuation of the number of electrons is less than 0.05%, which will give

virtually no effects on the essential results of our simulations.

3.3.3 cutoff distances

We have four cutoff distances in our O (N) non-orthogonal TBMD method, namely, rH , rF ,

rH̄ , and rF̄ . Here, we discuss the adequate choice for these distances.

Firstly, rH depends on the original TB scheme. This value is to be chosen so that the

matrix elements are sufficiently small at this distance. We find that the value of rH = 5.63 Å,

which was adopted in ref. 49, is sufficient. The value of rH̄ is necessary in order to calculate

eq. (3.9). In general, the inverse matrix of a sparse matrix is not sparse, meaning that H is

not necessarily a sparse matrix. However, as discussed in ref. 53, in many cases the matrix

elements of H decay faster than those of H . This property of H allows us to disregard matrix

elements of H corresponding to two atoms separated by distance longer than rH , i.e., to set

rH̄ = rH . We find this choice to be sufficient for our calculations.
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Next, we take into account the range of the density matrix, rF . The range of the density

matrix is in general longer than rH̄ . The value of rF gives effects to all pairs of atoms (not

only for pairs of atoms with distance rF apart) through the recursive fit of eq. (3.5), which

makes it difficult for us to obtain good enough energy conservation in MD simulations without

taking a large value for rF . In particular, simulations of liquids require a very large value for

rF . This is because in MD simulations, the largest error occurs when atoms enter or leave

the region within rF , which frequently occurs for liquids. On the other hand, it is possible to

use smaller values of rF for crystalline systems. From trial and error, we adopt the value of

rF = 9.85 Å for liquids, and rF = 6.47 Å for crystals.

Lastly, we choose the value of rF̄ . The situation is similar to the case of rH̄ , but a large

difference is in that the matrix F acts only on very localized matrices, namely, ∂�
∂x

and ∂�
∂x

H

(eq. (3.11)). Therefore, we find it sufficient to take rF̄ equal to rH or rH̄ . This is a huge

advantage compared to the case of rF̄ = rF , because eq. (3.9) requires O
(
N2

F̄

)
operations,

where NF̄ is the number of atoms within rF̄ , which means that the total computational cost for

calculating eq. (3.9) is O
(
r6
F̄

)
. We find that in our implementation, by choosing rH̄ = rF̄ = rH ,

computational costs necessary to calculate H and F are much smaller than those required by

the recursive fit (about 10 %), meaning that non-orthogonal TB models are calculated almost

as efficiently as orthogonal TB models by the FOEM.

3.4 Test molecular dynamics simulations

Keeping all of the above points in mind, we perform test MD runs for crystalline and liquid

Ge. Simulations are performed for N = 512, in the NV Ω ensemble (note that Ω is defined

by eq. (2.53), the Mermin free energy). Specific conditions of the calculations are described

in the preceding sections.

In Fig. 3.4, the conservation of the Mermin free energy is shown, along with the fluctuation

of the potential and kinetic energies. We find from this figure that energy conservation is

satisfactory in both cases. In MD simulations, small fluctuations, if any, in the constant of

motion are tolerable, since they give virtually no effects to the statistical averages we want to

evaluate.
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Figure 3.4: The behavior of the kinetic, potential, and Mermin free energies, plotted against simu-
lation time, (a) : for crytalline system, (b) for liquid system.

We perform another test with N = 64, in order to compare the structures generated by

DDM and FOEM. The calculations are performed in the liquid phase, with exactly the same

initial condition in the NV Ω ensemble. The calculated pair correlation function g(r) and

static structure factor S(Q) from DDM and FOEM are shown in Fig. 3.5. We find from these

figures that, within the scatter of our data, the two methods give virtually identical structures.

We further show in Fig. 3.6 the cpu time necessary to perform one MD step in the present

scheme and in DDM, plotted against the number of atoms in the system. We find from

this figure that the scaling of the computational cost is in fact O (N) in FOEM, and at

N = 512, FOEM is considerably faster than DDM. We also find that the computational costs

for crystalline systems are smaller than liquid systems by about a factor of four to five, since

we use a shorter rF̄ for crystalline systems. We finally note that, although the results of

the test simulations in the NV Ω ensemble are demonstrated in the present subsection, the

essential conclusions drawn from these tests hold for test simulations in the NV T ensemble

as well.

3.5 Conclusions for this chapter

In the present chapter, O (N) TB methods are taken into account. In particular, TB methods

based on non-orthogonal basis sets are successfully calculated in O (N) fashion. We further
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integrate the O (N) non-orthogonal TB methods into molecular dynamics calculations. In

performing these calculations, we introduce several new techniques concerning the calculation

of the expansion coefficients for the density matrix. Test MD simulations are performed,

which show that the FOEM is applicable to realistic MD simulations even in the case of

non-orthogonal TB method. Moreover, we find that the application of the FOEM for non-

orthogonal TB is almost as efficient as that for orthogonal TB. To our knowledge, this is the

first report on the successful application of O (N) non-orthogonal TBMD based on the FOEM.
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Chapter 4

Silicon nanostructure without
point-group symmetry

4.1 Introduction for this chapter

Since the innovative discovery of efficient, visible, and room temperature photoluminescence

(PL) from porous (π-) [17] and nanocrystalline (n-) [18] silicon (Si), the phenomenon has been

extensively studied throughout the world. Much work has been performed on the topic, but a

detailed understanding of the exact origin and mechanism of this phenomenon has not been

reached [54].

Silicon is a dominant material in the present-day microelectronics technology. However,

because of its indirect band structure and band gap of 1.1 eV in the infrared region, it has not

been possible to use Si as light-emitting devices. For this reason, the discovery of the efficient,

visible PL from low-dimensional Si is remarkable from a technological point of view, because

it opens the possibility to the use of Si as light-emitting devices compatible with Si-based

optoelectronic integrated circuits [54].

In addition, this phenomenon is interesting from a physical point of view, since the essential

mechanism has not yet been clarified for the appearance of the efficient light emission as a

result of a drastic reduction of size and dimensionality of Si all the way down to the order

of nanometers [54]. Canham proposed that the origin of the efficient, visible light emission

is free-standing Si wires, whose band gap is broadened by the quantum confinement (QC)

effect [17]. Since the original proposal, much work has been done in order to confirm this

statement.
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For the visible PL, possibilities other than QC effect were sought for by many workers.

Based on their experimental findings, several proposals have been made as candidates for

the origin of the efficient luminescence which include hydrogenated amorphous Si formed

on the surface of Si nanostructures [55], surface hydrides [56], particular molecules (such as

siloxene) [57], and surface states [58]. All of these proposals are expected to be possible

explanations for the phenomenon.

And yet, we argue that, in spite of all these proposals from experiments, the source of the

efficient PL in Si nanostructures must be searched in quantum-confined Si itself. The grounds

for our assertion are the facts (1) that PL has been observed from Si prepared in a wide variety

of conditions [59], and (2) that the phonon-related steps appear in the PL spectra obtained

from resonant excitations [60–63].

For this reason, it is the purpose of our study in the present and succeeding chapter to

understand the essential aspects of the electronic and optical properties of quantum-confined

Si itself without going into the details of individual samples. In particular, we lay our focus

on the theoretical elucidation of the unsolved problem concerning the mechanism related to

the so-called ‘S’ (slow) and ‘F’ (fast) band in the radiative recombination time for PL [20].

In order to clarify our standpoint, it is worth giving a brief review of the theoretical

situation about the study of light-emitting Si [29, 30, 64–71]. So far, quite a few theoretical

calculations have been carried out on the electronic states and the radiative recombination

time. These calculations have revealed that

1. the band gap increases according to the decrease of the system size,

2. one- and two-dimensional nanostructures have direct band structures,

3. the direct transitions between states near or at the band edges give a finite oscillator

strength,

4. oscillator strength increases as the system size is reduced.

These results are generally in good agreement with experiments, and lend support to the QC

hypothesis.
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On the other hand, no theoretical attempts published so far have succeeded in achieving

quantitatively correct values for the radiative recombination time τ [29,30]. As for the ‘S’ band,

the theoretical value of τ derived from the oscillator strength is larger than the experimental

value almost by two orders of magnitude. As for the ‘F’ band, there is no theoretical study

performed by now.

Before presenting our model, it is appropriate to mention the characteristics of the ‘S’ and

‘F’ band [20].

For the ‘S’ band, we have that [20]

1. the emission extends over the energy region approximately between 1.4 eV and 2.2 eV,

2. the values for τ range from several micro seconds to several tens of micro seconds,

3. τ increases as the emission energy EPL decreases,

while for the ‘F’ band, we have [20]

1. the emission extends over the energy region approximately between 1.8 eV and 3.2 eV,

2. the values for τ range from several nano seconds to several tens of nano seconds,

3. τ is independent of the emission energy.

Occasionally, the ‘S’ band is taken in the broad sense by including those that would fulfill

only the third characteristic (3), i.e., τ increases as EPL decreases.

It is important to find the origins for these behavior of τ since the emission intensity is

evaluated by the inverse of τ , the radiative recombination rate. Our assertion is that these

problems are solved by introducing realistic model atomic structures for nanostructures, which

is realized by lifting the symmetry of systems and/or reducing the quantitative order in bond

length and angles. The models previously studied are limited to nanocrystalline structures

with high symmetry of the point-group. The advantage of dealing with symmetric models is

that the high symmetry makes calculations much easier to perform by applying group theory.

The disadvantage, on the other hand, is that the models do not manifest real nanostructures

and therefore bring about incorrect results for physical properties.



56 Chapter 4. Silicon nanostructure without point-group symmetry

In the present chapter, we study the effects due to the removal of the point-group symmetry

from model atomic structures, and show that the low-symmetry structures account for the

features of the ‘S’ band. In the succeeding chapter, we present that, when the quantitative

order in structures is reduced, the features of the ‘F’ band is derived.

The rest of the chapter is organized as follows. In section 4.2, our model nanostructure is

introduced, along with a brief description of our calculation scheme. In section 4.3, our results

for one-dimensional system are described. One-dimensional Si nanostructures are important

in that they have been regarded as model of π-Si [17], the most widely-used material for light-

emitting Si. Further, we discuss our results for zero-dimensional and two-dimensional systems

in section 4.4. Finally, we will conclude the present chapter in section 4.5.

4.2 Model and calculational scheme

There exist various techniques to prepare Si nanostructures, which include deposition, etching

and chemical treatments at high temperatures. The prepared samples are 2D thin films, 1D

wires and 0D dots (small spheres). Porous Si is regarded as either 1D or 0D, depending on

the situation.

The size of a nanostructure is measured by the ‘thickness’ of a thin film, by the ‘width’ of a

wire, or by the ‘diameter’ of a dot (a sphere). These sizes are order of nanometer, which is the

grounds for the name of ‘nanostructure’. When the thickness, the width or the diameter is as

small as nanometer scale, the quantum mechanical effects for electrons show up on macroscopic

physical properties. In the case of a thin film, for example, the potential which an electron

feels is finite within the film, while it is infinite outside of the film, thus exhibiting an image

of an electron being confined in a well when viewed along the axis perpendicular to the film

surface. In this context, a thin film with a thickness of nanometer scale is called a ‘quantum

well’. Similar consideration is the basis for the naming of a ‘quantum wire’ for a wire with the

width of a nanometer scale and a ‘quantum dot’ for a dot with the diameter of a nanometer

scale. In many occasions, the prepared samples of Si nanostructures have the same topological

connectivity of chemical bonds as bulk crystalline (c-) Si despite the smallness of sizes [72].

One of the most troublesome surface effect is that it causes the appearance of dangling
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bonds on the surface, each of which gives rise to an energy level within the band gap, un-

desirable from the view point of light-emitting devices, since the levels in the gap degrade

the emission efficiency via non-radiative recombination processes. In many nanostructures

used in experiments, these obstructive dangling bonds are terminated by hydrogen, oxygen or

nitrogen atoms. The stability and the optical properties of nanostructures are also influenced

by the kinds of these terminator atoms.

In the construction of our theoretical structure models, with these situations in mind, our

policy is, for the fruitful discussion of Si nanostructures, to extract the essential features of

nanostructures, without being bothered by trifles and details. Along this policy, we construct

our structure models of Si nanosystems in the way as demonstrated in the following.

In Fig. 4.1, we show our model nanostructures. Every model in Fig. 4.1 is constructed by

cutting each appropriate shape out of bulk Si of diamond crystalline structure. Note that any

dangling bonds which arise in our models are passivated by hydrogen atoms. Figs. 4.1 (a) and

(b) correspond to 0D models, Figs. 4.1 (c) and (d) to 1D models, and Figs. 4.1 (e) and (f) to

2D models.

(1) 0D quantum dots (QDs)

Symmetric shapes such as spheres as shown in Fig. 4.1 (a) are cut out, and accordingly,

the obtained shapes have high symmetry in atomic configurations. Ellipsoids cut out

of bulk c-Si also belong to this category, where some aspects of symmetry are still

maintained. Models in Fig. 4.1 (b) are constructed by cutting out non-symmetric shapes

composed of atoms whose numbers are almost as many as in the case of Fig. 4.1 (a).

There exists no symmetry in the atomic configurations of this type.

(2) 1D quantum wires

Models in Fig. 1 (c) represent thin wires (or square pillars to be precise), which are

cut out along the [001] axis in such a way that the symmetry is high. In this figure,

the distribution of atoms belonging to the four layers in the unit cell of a thin wire is

depicted as a projection onto a (001) plane, where all the atoms are expressed by gray

spheres of the same size, thus leaving out, for simplicity, the description for the relative

positions along the direction parallel to the [001] axis. The situation is clearly explained
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Figure 4.1: Typical examples of our structure models. In all cases presented here, models are
constructed by cutting out of bulk crystalline silicon (c-Si) with the diamond structure,
some appropriate shapes which could be either two dimensional (2D), one dimensional
(1D) or zero dimensional (0D). In each figure, a larger sphere represents a Si atom,
while a smaller sphere denotes an terminator such as a hydrogen atom. Details of
model construction are found in the text.
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by Fig. 4.2, which is also a projection of Si atoms onto a (001) plane. In the figure,

the relative positions of Si atoms along the [001] axis are expressed by the sizes of black

circles, positions being at 0, a/4, 2a/4, and 3a/4 in the direction of the [001] direction,

where a is the lattice constant of a diamond crystal. Notation H in Fig. 4.2 stands for

a hydrogen atom introduced to terminate a dangling bond on the surface.
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Figure 4.2: The atomic distribution in the unit cell of a thin wire as shown in Fig. 4.1 (c) is depicted
as a projection onto a (001) plane so as to explain the relative positions of atoms in the
direction of the [001] axis. Details are explained in the text.

Figure 4.1 (c) has the p4̄m2 symmetry, and it is generally called an ‘N×N quantum wire’.

Models are also made by cutting out, instead of a square pillar, a N ×M rectangular

pillar, which is usually called an ‘N ×M quantum wire’.

In Fig. 4.1 (d), an example of non-symmetric thin wires, composed from comparative

number of atoms as in Fig. 4.1 (c), is shown. Note that Fig. 4.1 (d) is also a projection

of atoms in the four layers. Both wires presented in Figs. 4.1 (c) and (d) are obtained by
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stacking, periodically in the z direction (parallel to the [001] direction), the unit cells,

each of which contains four layers. Accordingly, our wires are infinite in the z direction.

(3) 2 D quantum wells

Models as shown in Fig. 4.1 (e) are constructed by cutting out thin films in parallel

with the (001) plane so that the symmetry is high, while models as shown in Fig. 4.1 (f)

are constructed by randomly adding some atoms onto the surfaces of the thin films

in Fig. 1 (e) so that the atomic configurations are made non-symmetric. Both films

in Fig. 4.1 (e) and (f) are made to have the two-dimensional periodicity within the

(001) place, or in other words in the x-y plane. As a consequence, our thin films are

infinite in the x and y directions.

The periodic boundary conditions for 1D models in the z direction and for 2D models in

the (001) plane are both introduced for the sake of calculational convenience. Except for these

periodicity, none of models in Figs. 4.1 (b), (d) and (f) have space-group symmetry in atomic

configurations.

For each model described in the above, we calculate the electronic states by the tight-

binding method, and show band structures, energy gap Eg, and the thermally-averaged ra-

diative recombination time, 〈τ〉. The tight-binding method we use here is the third-neighbor,

three-center, sp3, orthogonal scheme presented in ref. 26. The parameters for the Si-H bonds

were also determined in ref. 26 in such a way that the eigenvalues for the silane molecule are

reproduced accurately. Through the investigation of 〈τ〉, we obtain information concerning the

transition between near-band-edge states. In order to study the full band, we also calculate

the imaginary part of the dielectric function, ε2.

4.3 Results 1 : the case of one dimension

We first study the case of the one-dimensional model. Note that this model has been used in

the interpretation of the photoluminescence from π-silicon [17].
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4.3.1 band structure

We show in Figs. 4.3 (a) and (b) the band structure calculated for the atomic configuration

shown in Figs. 4.1 (a), 13 × 13 wire, and 4.1 (c), a low-symmetry wire with 182 Si atoms

and 100 H atoms per unit cell. These systems have comparative band gaps, about 1.5 eV

(blue-shifted compared to the bulk).
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Figure 4.3: Band structure of quantum wires; (a) is the band structure for the unit cell shown in
Fig. 4.1 (c), and (b) is the band structure for the unit cell shown in Fig. 4.1 (d). Both
have band gap of about 1.5 eV, and are direct at the Γ-point. Parameter a in the figure
denotes the lattice constant of the unit cell.

We see from Figs. 4.3 (a) and (b) that the band structure is direct at the Γ-point for both

systems, as expected from previous studies [29, 67–70].

The overall dispersion of the band is similar for the two cases, except that there are many

degenerate levels for the 13 × 13 wire, reflecting its symmetry.

Band structures for other unit cell were also studied, and they show more or less the same

tendencies. The difference in symmetry does not substantially affect the band structure in
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all cases; they are all direct, blue-shifted compared to the bulk, and have the same overall

dispersion.

4.3.2 relation between band gap and size

In Fig. 4.4, the optical band gap is plotted against the size of the unit cell (number of Si

atoms per unit cell). The results are shown for the N × N and N ×M wires, and for the

low-symmetry wires. There are already a number of studies for high-symmetry systems which

investigated the relation between band gap Eg and the size of the system, and all of them

have stated that Eg shifts to the blue as the system size becomes smaller, reflecting the QC

effect. [29, 30, 64–71] Similar results are shown in Fig. 4.4 by filled circles for high-symmetry

systems and by open circles for low-symmetry systems.
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Figure 4.4: Optical band gap, Eg, plotted against the width of the wire. Open circles denote results
from the low-symmetry model, while filled circles denote results from the high-symmetry
model.

It is not surprising that we obtain results consistent with the QC hypothesis even for the

low-symmetry systems. The interesting feature in Fig. 4.4 is that Eg is slightly larger for the
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low-symmetry wires than for the high-symmetry wires in all sizes. This result implies that the

blue-shift of the band gap is induced not only from the QC effect, but also from the reduction

in the degree of symmetry in nanostructures. It must be noted, however, that this difference

is not substantial. From Fig. 4.4, we conclude that the band gap of a quantum wire is mainly

governed by the QC effect, with some modifications coming from symmetry properties.

It is possible to understand the physical meaning of the slight blue-shift in terms of the

effective coordination number of the Si atoms. For the high-symmetry wires, the effective

coordination number is high (although much lower than the bulk value of four), while for the

low-symmetry wires, it is lower. Therefore, when compared to the high-symmetry wires, the

band width is narrower for the low-symmetry wires, which leads to a larger band gap.

4.3.3 relation between energy and the thermally-averaged radiative
recombination time

We show in Fig. 4.5 the thermally-averaged radiative recombination time 〈τ〉 (at 300 K) plotted

against the PL emission energy EPL for the N × N , N ×M , and low-symmetry wires. The

experimental results for π-Si, reproduced from ref. 73, are also shown for comparison.

The relation between τ and EPL was studied in previous works for the high-symmetry

structures, and it was shown that radiative recombination time (or the inverse of the oscil-

lator strength) increases as EPL decreases (or as size increases) [30, 54]. It was pointed out

that τ increases (or the oscillator strength decreases) rather rapidly as EPL decreases, and is

inconsistent with experiments at low (<2.0 eV) energies [29, 30, 54].

We see from Fig. 4.5 that the results for the low-symmetry unit cell wires are qualitatively

different from the results of the N × N and N ×M wires. The results for the N × N and

N ×M wires are consistent with previous works; 〈τ〉 increases rapidly as Eg decreases, and

is inconsistent with experiments at lower energies. On the other hand, The results for the

low-symmetry wires show a slower increase in 〈τ〉, and is consistent with experiments at all

energy range.

When the energy changes from 2.2 eV to 1.5 eV, 〈τ〉 changes by more than two orders

of magnitude for the N × N and N × M wires, while the change is about one order for

the low-symmetry wires. The behavior of the latter is not only qualitatively very similar to
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Figure 4.5: The thermally-averaged radiative recombination time plotted against the PL emission
energy EPL for the low- and high-symmetry wires. The results of PL decay measure-
ments, reproduced from ref. 73, are also plotted for comparison.

experiments, but also quantitatively, as can be seen from Fig. 4.5.

Our results show that symmetry changes the oscillator strength considerably for these

wires, especially for low-energy transitions. The physical meaning of this result is as follows.

Firstly, in the case of bulk Si, both the conduction and valence bands have p-symmetry,

which leads to zero oscillator strength. Secondly, for the N × N and N × M wires, the

translational symmetry of bulk Si is broken, which invokes mixing between s and p states

at states near or at the band edge. This leads to a finite oscillator strength. In order to

confirm this point, we present in Fig. 4.6 the s-p ratio for states near the band edge. Thermal

average is taken as in the case of τ . From this figure, we see that as the gap energy increases
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Figure 4.6: The thermally-averaged s-p ratio for N × N wires, plotted against optical band gap.

(or, as the size of the system decreases), the s-p ratio increases. This behavior accounts for

the increase of τ with the decrease of the system size. However, since the symmetry of the

atomic configurations and wave functions is still high, many of the terms in the summation

in eq. (2.16) cancel. Finally, for the low-symmetry wires, there is no symmetry in the atomic

configurations and wave functions, and all the terms in the summation in eq. (2.16) effectively

contribute to the oscillator strength. In other words, the selection rule for angular momenta

is relaxed when we deal with non-symmetric wires. For this reason, the low-symmetry wires

give the largest values for the oscillator strength.

Before concluding the present argument, let us comment on the rather large scatter of the

data for 〈τ〉 shown in Fig. 4.5. The origin of this scatter has been discussed by Delerue, Allan

and Lanoo in ref. 30. The first reason for the scattering is that symmetry of the electron

and hole states varies very sensitively to the size and shape of nanostructures. The electron

and hole states are highly degenerate for bulk Si, but the degeneracy is lifted in the case of

nanostructures. Since the lifting of the degeneracy is different from system to system even for

nanostructures of comparable size, the scattering of 〈τ〉 arises. The second reason is that, as

discussed by Hybertsen from an analytical point of view by the effective-mass theory [74], the

overlap of the electron and hole wave functions is a strongly oscillating function of the size
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of a nanostructure. This situation is illustrated in Fig. 4.7, in which the overlap of electron

Figure 4.7: The overlap of electron and hole wave function, plotted against nanostructure size.
Reproduced from ref. [74].

and hole wave functions, plotted against nanocrystallite size, is depicted (the figure is from

ref. 74). Since this overlap is roughly proportional to the oscillator strength, the data for 〈τ〉
becomes scattered.

4.3.4 calculation of ε2

The thermally-averaged radiative recombination time reflects the low-energy structure of the

energy band. In order to investigate the structure of the full band, we calculate the imaginary

part of the dielectric function, ε2, polarized in the z-direction. Since it is not informative

to show the results for all the structures we calculate, we show, as an example, the results

obtained for the atomic configurations shown in Figs. 4.1 (a) and (c). These two configurations

have comparative band gaps (about 1.5 eV).

In Fig. 4.8 (a), ε2 for the full band is shown. We note that at this scale, the N × N and

low-symmetry wires have almost the same values for ε2. The only noticeable difference is that

the 13×13 wire has non-continuous derivatives at several points, reflecting its symmetry. The

change in symmetry most seriously influences the oscillator strength for transitions near or at
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Figure 4.8: The imaginary part of the dielectric function ε2 for the structure of Figs. 4.1 (c) and (d).
The solid line corresponds to Fig. 4.1 (c), while the dotted line corrsponds to Fig. 4.1
(d). In (a), spectrum up to 6 eV is shown, while in (b), spectrum is shown for 1.5 eV
to 2.0 eV.

the band edge; we see at this scale no substantial difference between the two.

The most relevant feature in Fig. 4.8 (a) is that near the band edge (about 1.5 eV), ε2

seems to be ignorablly small. This result is consistent with experiments [75], and implies

that Si nanostructures, in a sense, have indirect-like properties. In fact, ε2 is very similar

between bulk Si and nanostructured Si, as shown in Fig. 4.9, in which we compare ε2 of bulk

Si and Si quantum wire. The fact that Si nanostructures have indirect-like properties does

not mean, however, that there are no direct transitions near or at the band edge, as we saw

in the previous subsection.

In Fig. 4.8 (b), ε2 for �ω = Eg to Eg + 500 meV is shown. Since 500 meV corresponds

to temperatures well above room temperature, Fig. 4.8 (b) contains information that is not
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Figure 4.9: Comparison of the imaginary part of the dielectric function ε2, solid line : Si quantum
wire, dashed line : bulk Si.

included in 〈τ〉. At this scale of Fig. 4.8 (b), we observe considerable difference between the

two systems under consideration. The low-symmetry system has much better optical response

than the high-symmetry system, even for transitions 500 meV above the band edge.

There is no substantial difference between the high- and low-symmetry systems for the

full spectra, but when transitions near the band edge are studied, we observe substantial

differences, up to about 500 meV above band edge. This result is consistent with the results

obtained in the previous subsection, and can be interpreted in the same way.

The tendency that the low-symmetry wires have larger oscillator strengths persists up to

500 meV above band edge, but when the full spectrum is studied, there is no essential differ-

ence. This is because at higher energies, the optical response from states which correspond to

bulk direct states come into play. Although the band edge states for the low-symmetry wires

give considerable oscillator strength, it is much smaller than the oscillator strength coming

from states corresponding to bulk direct states, which is not affected by the difference in sym-

metry of the unit cell. For this reason, ε2 for the full spectra is virtually the same for the high-

and low- symmetry structures, and the contribution to ε2 from the higher-energy transitions

is much larger than the contribution from the lower-energy transitions.
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4.3.5 stokes shift

Before concluding this section, we mention the structural relaxation which occurs for the

excited states. When an electron is excited from the valence band to the conduction band, the

distribution of electrons changes, which triggers the rearrangement of the atomic configuration.

In many cases, this structural relaxation does not cause drastic changes, such as reconstruction

of the connectivity or topology for the bonds, but only the bond lengths and bond angles are

modified to a certain degree. The electronic distribution in turn is varied as a result of the

structure relaxation for atomic positions, and therefore the band structure is also influenced.

The schematic idea of the conversion is shown in Fig. 4.10. When this modification of the

band structure brings about the emission energy lower than the incident energy, the so-called

Stokes shift takes place.
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Figure 4.10: A schematic drawing on the mechanism of the Stokes shift.

In chalcogenide glasses, the structural relaxation originating from the rearrangement of

the electron distribution is expected to happen more or less readily due to the fact that the

coordination number is two (or in other words, there are only two bonds per atom), and

that there exist the lone pairs which make the atomic structure flexible. Materials such as

nanostructures are also subject to the structural relaxation because of the high percentage

of surface atoms which are easily shifted. By taking this point into account, we allow the

structure relaxation after the excitation of electrons, and examine the change of the band

structure. Structural relaxation is evaluated by the simple tight-binding total energy method
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described in chapter 2. Our calculations clarify that the magnitude of the Stokes shift is about

20 meV. This result shows that the effect of the structural relaxation on Eg is not significant.

4.4 Results 2 : the case of zero and two dimension

In the present section, we further study the case of zero dimension and two dimension for the

model described in Fig. 4.1.

4.4.1 band structures and band gaps

In Figs. 4.11 (a)-(c) and 4.12 (a) and (b), the optical band gap is plotted against the size of

the nanostructures. Each of Figs. 4.11 (a)-(c) presents comparison between the two models

which have the same dimension, while each of Figs. 4.12 (a) and (b) demonstrates comparison

among the three different dimensions which belong to the same model.
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Figure 4.11: The optical band gap plotted against the size of the system. Each of the three figures
presents comparison between the two models with the same dimension: (a) 0D, (b)
1D, and (c) 2D Si nanostructures. The open circles represent the results for the ‘high-
symmetry’ models, while the filled circles represent the results for the ‘low-symmetry’
models.

Similar results are obtained for both ‘high-symmetry’ and ‘low-symmetry’ model, as can

be seen from Figs. 4.11 and 4.12; the optical band gap is blue-shifted as the size is decreased

for both model structures.
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Figure 4.12: Optical band gap plotted against the size of the system. Each of these figures presents
comparison among the three different dimensions which belong to the same model: (a)
‘high-symmetry’ model and (b) ‘low-symmetry’ model Si nanostructures. The filled
traiangles represent the results for 0D systems, the open triangles represent the results
for 1D systems, and the filled circles represent the results for 2D systems.

The values of Eg for ‘low-symmetry’ model systems are slightly larger than those for ‘high-

symmetry’ model systems in all sizes for 0D and 1D systems, while it is almost the same for

2D systems. This result is interpreted by the same mechanism as described in the previous

section.

It can be seen from Figs. 4.12 (a) and (b) that for both ‘high-symmetry’ and ‘low-symmetry’

model, 0D structures have the largest blue-shift, and as the dimension of the nanostructure

becomes higher, the blue-shift becomes smaller. This result is understood in terms of the

difference in confinement dimension. The confinement dimension for 0D nanostructures is

three-dimension, while that for 1D and 2D nanostructures are two- and one-dimensions, re-

spectively. It comes out straightforwardly that the higher the confinement dimension, the

larger the blue-shift, as shown in Figs. 4.12 (a) and (b).

From the results obtained here, we conclude that the optical band gap Eg (1) increases

as the system size decreases, (2) increases as the dimension of the system decreases, and (3)

is not influenced very much by the symmetry of the system. These results imply that it is

possible to control the energy of the luminescence by controlling the size and dimension of the
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nanostructures.

We finally note that all structures calculated have direct band structures (which is a trivial

concept for 0D systems). Examples of the band structures for 1D and 2D systems are shown

in Figs. 4.13 (a) and (b).
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Figure 4.13: Band structures for (a) 1D and (b) 2D Si nanostructures. Both are for ‘high-symmetry’
models; similar results are obtained for ‘low-symmetry’ model structures.

4.4.2 radiative recombination rate

In Figs. 4.14 (a)-(c) and 4.15 (a) and (b), we show the results obtained for radiative recom-

bination rates (the inverse of the radiative recombination time, hereafter referred to as 〈 1
τ
〉),

plotted against the size of the nanostructures. Each of Figs. 4.14 (a)-(b) shows comparison

between the two models which have the same dimension, while each of Figs. 4.15 (a) and (b)

shows comparison among the three different dimensions which belong to the same model.

Firstly, we point out that, from Figs. 4.14 and 4.15, the general tendency is that radia-

tive recombination rate increases as the system size decreases. This result is consistent with
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Figure 4.14: Thermally-averaged radiative recombination rate plotted against the size of the sys-
tem. Each of the figures present comparison between the two models with the same
dimension: (a) 0D, (b) 1D, and (c) 2D Si nanostructures. The open circles represent
the results for the ‘high-symmetry’models, while the filled circles represent the results
for the ‘low-symmetry’ models.
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Figure 4.15: Thermally-averaged radiative recombination rate plotted against the size of the system.
Each of the figures presents comparison among the three different dimensions which
belong to the same model: (a) ‘high-symmetry’ model and (b) ‘low-symmetry’ model
Si nanostructures. The filled triangles represent the results for 0D systems, the open
triangles represent the results for 1D systems, and the filled circles represent the results
for 2D systems.
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previous works, and also with the discussions given in the previous section. As the size of

the nanostructure decreases, the ratio of the s-like property in the wave function at or near

the band edges (which is zero for bulk Si) increases, which leads to an enhancement of the

oscillator strength.

We now give a more detailed description of our results.

Figures 4.14 (a) and (b) show the results obtained for 0D and 1D Si nanostructures,

respectively. From these figures, we find that in zero- and one-dimension, the radiative re-

combination rate is higher for ‘low-symmetry’ model systems, where the atomic configurations

have no point-group symmetries. This result is understood in terms of the breaking of the

selection rule, as discussed in Sec. 6.3. Because the atomic configurations are non-symmetric,

contributions other than s-p orbital pairs arise in the summation of eq. (2.16), which leads to

an enhancement of the oscillator strength near the band-edge, and hence an enhancement of

〈 1
τ
〉.
On the other hand, from Fig. 4.14 (c), we find that in the case of 2D systems, the situation

is reversed. The radiative recombination rate is much higher for the ‘high-symmetry’ model.

This abnormal behavior of the radiative recombination rate seems, at first sight, inconsistent

with the case in zero- and one-dimension, but can be understood in terms of the phases of the

wave functions in 2D systems.

Firstly, the value of the oscillator strength is governed by the summation in eq. (2.16).

For systems with low symmetries, the summation results in a large value, because in this

case contributions other than s-p pair arise. However, the oscillator strength can have an

even larger value if, for some reason, most or all the products of the coefficients for the wave

functions in eq. (2.16) have the same signs, which is the case for 2D systems.

Now we describe why the terms in eq. (2.16) all have the same signs for the case of ‘high-

symmetry’ model of 2D systems. From the effective-mass equation, the wave function for this

system can be approximately written as [31]:

φ(z) =
2

Lz

cos

(
nzπz

Lz

)
(4.1)

where φ is the wave function, z represents the position, Lz is the width of the film, and nz are

non-zero integers.
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An example of s and px wave function pair which gives the abnormally large oscillator

strength is shown in Fig. 4.16. The behavior of the wave function is consistent with eq. (4.1);

0.0

0.2

-0.2

-0.4

0.4
s

p x

atomic site

 w
av

e 
fu

nc
tio

n 
(a

rb
. u

ni
ts

)

Figure 4.16: Coefficient of the s and px wave functions for ‘high-symmetry’, 2D Si nanostructures.
The vertical axis represents the value of the coefficients, while the horizontal axis
represents different atomic sites along the direction perpendicular to the surface (the
[001] direction).

the wave function is oscillating one-dimensionally. We note that the phases of the s and px

wave functions are opposite to each other for all atoms. This special pair of wave functions

emerge only for ‘high-symmetry’ model in two-dimension, whose wave functions can be written

in the form of eq. (4.1). From this s-px pair, every nearest-neighbor terms in the summation

of eq. (2.16) have the same sign, and consequently, the oscillator strength for this pair of levels

becomes abnormally high.

Each of Figs. 4.15 (a) and (b) shows the radiative recombination rates compared among

the three different dimensions. From Fig. 4.15 (a), we find that for ‘high-symmetry’ model

structures, 2D nanostructures have the highest recombination rate, while from Fig. 4.15 (b),

we find that for ‘low-symmetry’ model structures, the rates have comparable values in all

dimensions. From both Figs. 4.14 and 4.15, we observe that the case of 2D systems differ

greatly from the case of 0D and 1D systems.

From the results obtained in this section, we conclude that the thermally-averaged radia-
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tive recombination rate 〈 1
τ
〉 (1) increases as the system size decreases, (2) is larger for ‘low-

symmetry’ model systems in zero- and one-dimension, (3) is larger for ‘high-symmetry’ model

systems in two-dimension, and (4) shows the largest value for ‘high-symmetry’ model in two-

dimension. These results demonstrate that radiative recombination rates for Si nanostructures

show different behavior on changes in structural properties, such as sizes, symmetries,

and dimensions. As a consequence, we assert that, in order to fabricate functional devices,

it is important to control these properties according to the results obtained in this work.

4.5 Conclusions for this chapter

In this chapter, we calculate properties such as band structure, radiative recombination time

and the imaginary part of the dielectric function for high-symmetry and low-symmetry sili-

con nanostructures in zero, one, and two dimensions. We find that our new model with low

symmetry has optical properties which considerably differ from previous models with high

symmetry, and further that for one-dimensional system, this difference accounts for the dis-

crepancy in radiative recombination time previously reported between theoretical calculations

and experiments. In other words, we have succeeded in describing the behavior of the so-called

‘S’ band.

We observe that properties which depend on the overall electronic structure, such as band

structure and the full ε2, is practically unaffected by the change in symmetry. On the other

hand, we find that properties which depend on the electronic structure near the band edge,

such as the band gap, the thermally-averaged radiative recombination time, and ε2 near the

band edge, change considerably when symmetry of model systems is varied. The band gap

is slightly blue-shifted because of the change in the effective coordination number, and the

oscillator strength near or at the band edge is greatly enhanced because of the change in

symmetry of the atomic configurations and wave functions of the quantum wire unit cell,

which leads to relaxation of selection rules for angular momenta.

We note that we did not incorporate excitonic effects into our calculations, whose impor-

tance was pointed out in ref. 68. Excitonic effects can enhance the oscillator strength by

about a factor of two. However, this applies for both the low and high symmetry wires, and
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our assertions that the difference in symmetry greatly changes the behavior of the oscillator

strength, and that this difference accounts for the discrepancy previously observed between

theory and experiments, are unchanged.

We further calculate the case of zero-dimensional and two-dimensional Si nanostructures.

For the optical band gap Eg, we find that it increases as the size and dimension of the system

decrease. For the radiative recombination rate,
〈

1
τ

〉
, we observe that in 0D and 1D, it is larger

for ‘low-symmetry’ model systems, while in 2D, it is larger for ‘high-symmetry’ model systems.

Our results are interpreted by a simple argument based on the effective mass approximation.

From our calculations, we conclude that, for the purpose of understanding the PL from

Si in detail, it is necessary to incorporate point-group symmetry properties explicitly into the

model for atomic configurations.
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Chapter 5

Silicon nanostructure with local
disorders

5.1 Introduction for this chapter

According to ref. 20, it is possible to classify the observed luminescence from nanostructured

Si into four categories in order of wave length; (1) the near-infrared luminescence, (2) the near-

infrared-green ‘S’ (slow) band luminescence, (3) the green-blue ‘F’ (fast) band luminescence,

and (4) the ultra violet luminescence.

Out of the four types of luminescence listed above, the most well-studied is the ‘S’ band

luminescence. The ‘F’ band luminescence has also been studied with great interests, though

not as extensively as the ‘S’ band luminescence. The near-infrared and ultra violet lumines-

cence have been studied less frequently, and in any case they are not of our interest in these

series of our work which aim theoretical elucidation of nanostructured Si as a possible device

of visible luminescence. From this view point, we are concerned only with luminescence in the

aforementioned categories (2) and (3).

It has been confirmed from experiments that the so-called ‘S’ band luminescence is observed

in porous or nanocrystalline Si samples which are relatively well-passivated, while the so-called

‘F’ band luminescence is achieved when π-Si is thermally-oxidized [54].

Experimental studies have revealed the essential aspects for the ‘S’ and ‘F’ bands as follows.

As for the ‘S’ band [20,54], (a) the optical band gap is blue-shifted from bulk Si, the blue-

shift being larger for the smaller nanostructures, (b) the luminescence spectrum is broad, with

a tunable peak over a wide range of energy (from 1.4 eV up to 2.2 eV, or even higher), (c) the
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spectral decay time is in the order of microseconds at room temperature, and (d) the spectral

decay time is dependent on luminescence energy, the higher-energy luminescence having the

shorter decay time.

As for the ‘F’ band, on the other hand, some aspects of the spectral characteristics are

totally different from those for the ‘S’ band luminescence, as described in the following [20,

54, 76]; (a) the optical band gap is blue-shifted from bulk Si, (b) the luminescence spectrum

ranges from about 1.8 eV to about 3.2 eV with a peak at around 2.6 eV, (c) the spectral decay

time is very fast being of the order of nanoseconds, (d) the spectral decay time is independent

of the luminescence energy.

Canham in his pioneering study proposed that the origin of the ‘S’ band luminescence lies

in the size itself of Si quantum wires, whose band gap and radiative efficiency are governed

by the quantum confinement (QC) effect for nanometer-sized materials [17]. Following this

original proposal, quite a number of experimental and theoretical studies have been performed

in order to confirm the validity of this statement [54].

In the previous chapter, we have introduced a new structural model devoid of point-

group symmetries for Si quantum wires. We have shown that our model yields radiative

recombination time which agrees remarkably well with experimental results for the ‘S’ band

luminescence. This is in contrast to previous studies, which failed to show such beautiful

agreement [29, 30, 54]. The atomic configurations in our model have lower symmetry than

the previously-studied models, the latter having high point-group symmetries in the atomic

configurations. We have shown that the oscillator strength near the band edge, and hence the

radiative recombination time, change considerably when the symmetry of a Si nanostructure is

changed. Because it is unlikely that realistic nanostructures have high point-group symmetries,

we asserted that our model is a more realistic model for the ‘S’ band luminescence.

On the other hand, the spectral characteristics for the ‘F’ band luminescence cannot be

explained even by our model of chapter 4. Nor can they be explained by the models put

forward by other workers. Above all, the previous models [29, 30, 54] (1) can realize a decay

time in the order of nanoseconds only in the energy region of band gaps larger than 4.0 eV,

and (2) give the decay time clearly dependent on the energy of the luminescence. Neither of
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these features are found in the ‘F’ band luminescence.

In the work described in chapter 4 which successfully accounts for the characteristics of

the ‘S’ band luminescence, we have studied model structures lacking point-group symmetry

alone. This means that, in our previous model, the local order in atomic configurations is

preserved; i.e., the bond-length and bond-angles are kept fixed. This is a good assumption

for the ‘S’ band luminescence, because crystallinity is known to be preserved even for very

small nanostructures in the case of the ‘S’ band luminescence [20]. However, this may not be

a good assumption for the ‘F’ band luminescence, because, as pointed out in ref. 76, samples

for the ‘F’ band luminescence contain small Si clusters with sizes smaller than 1 nm, and more

importantly, with inhomogeneous pressures acting on their surfaces. This situation leads to

considerable structural relaxation at near-surface regions. In this situation, our model for the

‘S’ band is no longer valid, and we must study nanostructures with locally-disordered atomic

configurations.

Therefore, it is our purpose of the present chapter to study electronic and optical properties

of Si nanostructures with local disorders, in order to elucidate the origin of the observed ‘F’

band luminescence. For the sake of comparison, let us note that, in the work of chapter 4, we

studied nanostructures with low point-group symmetry and high local order. It is interesting

to see how the different degrees of disorder incorporated into the model would change the

electronic and optical properties of nanostructures.

The rest of the chapter will be organized as follows. In section 5.2, our model and calcu-

lational method is presented. In particular, we introduce a new model, in which structural

relaxation of nanostructures with perfect and imperfect passivation is taken into account.

Then in section 5.3, our results are given. Emphasis is put upon the comparison between the

two models we introduce. Finally, in section 5.4, we give some conclusions for the present

chapter.

5.2 Model and calculational method

As mentioned in the previous section, we perform electronic state calculations for Si clusters

with local disorder as well as low point-group symmetry. For this purpose, we start with
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nanostructures with local order, and calculate structural relaxation for these structures un-

der various conditions. Structural relaxation has been calculated in the past for square and

rectangular Si quantum wires [29, 69, 77]. It was concluded that, for Si wires with symmet-

ric unit cell and perfect passivation at the surface, the effects of structural relaxation are

minimal [29,69,77]. This may not be the case for the model introduced in the previous chap-

ter, whose unit cell is shown in Figs. 4.1 (b), (d), and (f). For this reason, we first study

structural relaxation for the model structure shown in Fig. 4.1 to check its stability. Atomic

configurations made in this fashion will hereafter be referred to as ‘well-passivated’.

In refs. 29,69,77 the atomic configurations were stable because the surface dangling bonds

were perfectly passivated by hydrogen. This may not be the case for the ‘F’ band samples.

For this reason, we calculate structural relaxation for Si clusters with poor passivation. This

prompts a large structural relaxation at near-surface regions. Atomic configurations made by

this scheme will hereafter be referred to as ‘poorly-passivated’.

The atomic configurations for the ‘poorly-passivated’ model are made by the following

procedures:

1. by removing some hydrogen atoms from the surface region, construct arbitrary number

of dangling bonds in Si clusters with perfect passivation and with sizes of about 1 nm,

but no point-group symmetry,

2. allow structural relaxation to take place from the above structure of 1.,

3. re-passivate the dangling bonds by hydrogen atoms,

4. allow structural relaxation to take place from the structure of 3.

By following the above-described procedures, we obtain model structures with atomic con-

figurations in local minima in the energy landscape. This kind of local minima is normally

unreachable from the well-passivated model. It is expected that model structures obtained in

this way have local disorders such as distribution of bond-lengths and bond-angles. Conse-

quently, atomic configurations thus obtained simulate well the essential aspects of the samples

for the ‘F’ band luminescence.
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Calculations for the well-passivated model will be performed for one-dimensional quan-

tum wires, while calculations for the poorly-passivated model will be performed for zero-

dimensional Si clusters. The essence of the results is insensitive to the spatial dimension of

the nanostructure.

The calculations are performed by the tight-binding method. The tight-binding model

we use is the nearest-neighbor, two-center, sp3s∗d5 scheme reported by Jancu et al. [39].

Structural relaxation is evaluated by the simple tight-binding total energy method described

in chapter 2. We calculate the optical band gap, Eg, and the thermally-averaged radiative

recombination rate,
〈

1
τ

〉
, and compare the results obtained from the two models.

5.3 Results and discussions

5.3.1 results for the ‘well-passivated’ model

In this subsection, results for the ‘well-passivated’ model described in section 5.2 are presented.

This model is very similar to the one examined in the previous chapter; the difference is that

structural relaxation is taken into account.

In Fig. 5.1, examples of the relaxed and unrelaxed structures are shown. From Fig. 5.1, we

see that the effects of relaxation for the core region is negligibly small, while it is appreciable

near the surface. The largest relaxation we obtained in this scheme is in the order of several

percent in terms of atomic positions.

In Fig. 5.2, we show the results of the thermally-averaged radiative recombination time 〈τ〉
plotted against luminescence energy EPL. From Fig. 5.2, we see that there is no substantial

difference for 〈τ〉 between the relaxed and unrelaxed structures.

From the two results shown in Fig. 5.2, we conclude that well-passivated Si quantum wires

are stable against structural relaxation. It is worth noting here that, in previous studies,

atomic configurations with high point-group symmetries are also shown to be stable against

structural relaxation if the passivation is complete [54,69,77]. This indicates that, as long as a

system is well-passivated, the effect of structural relaxation is practically very small, whether

the point-group symmetry is high or low in the atomic configuration of the system.
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Figure 5.1: An example of a structural relaxation for the well-passivated model. The filled circles
represent unrelaxed Si atoms, while the open circles represent relaxed Si atoms. The
hydrogen atoms are not shown.

5.3.2 results for the ‘poorly-passivated’ model

In this subsection, we present results for the ‘poorly-passivated’ model described in section 5.2.

In this model, structural relaxation mainly takes place in the vicinities of dangling bonds.

Therefore, considerable amount of relaxation occurs at near-surface regions. An example

of the relaxed atomic configuration is shown in Fig. 5.3. when compared to Fig. 5.1, large

structural relaxation is observed for near-surface regions. The unrelaxed structures have local

order, while the relaxed structures have no local order. It is very likely that electronic and

optical properties differ considerably between these two cases.

In Fig. 5.4, the relation between the number of Si atoms in a certain cluster and its band

gap Eg is shown. Figure. 5.4 (a) shows the results for the unrelaxed clusters, while Fig. 5.4

(b) shows the results for the relaxed clusters. It can be seen that the band gap is largely

red-shifted for the structures with local disorder. The degree of the red-shift is larger than

the blue-shift invoked by the quantum confinement effect, and Eg for the relaxed clusters are
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Figure 5.2: The relation between luminescence energy EPL and the radiative recombination time
for the relaxed and unrelaxed quantum wire.

independent of size.

Because of the local disorder, the band width is broadened, which results in the red-shift

of Eg. The degree of the red-shift depends on the degree of disorder for the Si-Si and Si-H

bonds, which differs from system to system. Furthermore, the changes in band gap induced

by local disorder is much larger than the changes induced by the quantum confinement effect.

For this reason, the band gap becomes independent of the system size. In other words, the

system size, defined by the number of Si atoms in the system, is no longer a good measure for

the characterization of that cluster. We must count in not only the number of atoms but also

the degree of local disorder, the degree of asymmetry and the surface-volume ratio.
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Figure 5.3: An example of a structural relaxation for the poorly-passivated model. The filled circles
represent unrelaxed Si atoms, while the open circles represent relaxed Si atoms. The
hydrogen atoms are not shown.

In Fig. 5.5, the thermally-averaged radiative recombination time is plotted as a function

of EPL. Results for both the relaxed and unrelaxed clusters are shown. We see from Fig. 5.5

that, for clusters with local disorder,

1. the luminescence energy is in the range of 1.8 eV to 3.2 eV,

2. the radiative recombination time is in the order of 10−9 s to 10−7 s, and

3. the radiative recombination time is independent of energy.

These features are in contrast with the features of clusters with local order, which are

stated as follows;

1. the radiative recombination time is in the order of 10−7 s to 10−5 s, and

2. the radiative recombination time is dependent on EPL; the lower the energy, the longer

the recombination time.
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Figure 5.4: The relation between band gap Eg and the number of Si atoms, for the structures (a)
without local disorder and (b) with local disorder.

The results obtained for cluster with local disorder are consistent with the main features

of the experimental results for the ‘F’ band luminescence, i.e., for Si clusters with diameter of

1 nm or less,

1. the luminescence energy ranges from 1.8 eV to 3.2 eV,
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Figure 5.5: The relation between the luminescence energy EPL and the thermally-averaged radiative
recombination time 〈τ〉. The filled triangles represent results for structrures without
local disorder, while the filled circles represent results for structures with local disorder.
The solid and dashed lines are guides for the eyes.

2. the decay time is in the order of 10−9 s to 10−8 s,

3. the decay time is independent of the luminescence energy.

These experimental results contradict with calculations on model structures which does

not include local disorder, and we assert that local disorder is the key factor in the ‘F’ band

luminescence.

Now let us give some comments concerning the results obtained here. At near-surface

region, the atomic configuration is highly disordered, which leads to a large increase in the

oscillator strength at this region. Since the degree of disorder is larger than in the case of

the model introduced in chapter 4, the increase of the oscillator strength is expected to be
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larger. It is possible to investigate this point from the comparison of Fig. 5.5, which show

that the radiative recombination time for the structure with local disorder is considerably

shorter than for the structure without local disorder. Another point is that the degree of

disorder differs from system to system, which leads to a large distribution for the osillator

strength. Finally, the emission energy is independent of system size, ranging from 1.8 eV

to 3.2 eV. These situations lead to radiative recombination time independent of the system

size, with a relatively short value of 10−9 s to 10−7 s. It is not possible to obtain this result

for nanostructures with local order, in which case the emission energy and oscillator strength

depend largely on system size.

The structural characteristic of the locally-disordered model is also consistent with exper-

iments, because as pointed out in ref. 76, samples showing the ‘F’ band luminescence contain

small Si clusters with characteristic sizes of 1 nm or less, with inhomogeneous pressures acting

on their surfaces. In this situation, small Si clusters with locally-disordered surfaces are made.

We note here that our calculations may be open to argument from a quantitative point of

view, because we did not include various many-body effects, such as excitonic effects, which

may contribute considerably to the oscillator strength. However, our calculations include the

most essential effect, namely the dipole matrix element, and accordingly our conclusion that

local disorder is the key factor in understanding the ‘F’ band luminescence is intact from a

qualitative point of view.

A schematic drawing of the sample for the ‘F’ band luminescence is shown in Fig. 5.6.

The sample consists of mostly oxidized Si, whose band gap will be much larger than that of

visible light, with very small Si clusters embedded in it. In such a situation, photogeneration

of the carriers will occur at the oxide region, followed by a relaxation of the carriers to the

region where the energy is lower, i.e., to the locally-disordered Si clusters. Then, the carriers

recombine at the Si clusters to give the ‘F’ band luminescence, which is in the visible region.

The schematic picture given above can well account for the essential features of the ‘F’ band

luminescence, and is also consistent with the results of our calculations.
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Figure 5.6: A schematic figure for thermally-oxidized porous Si. Small Si clusters with disordered
surfaces are embedded in a relatively large oxide region.

5.4 Conclusions for this chapter

In the present chapter, we calculate electronic states and radiative recombination time for Si

nanostructures with disordered surfaces. We find that, for Si clusters with characteristic sizes

of 1 nm and disorder at the surface region, the radiative recombination time is independent of

the luminescence energy, and is in the order of 10−9 s to 10−7 s. These results are consistent

with the experimental results for the so-called ‘F’ band luminescence, and cannot be obtained

from calculations based on a simple quantum confinement hypothesis. From our calculations,

we conclude that the effects of local disorder in atomic configurations are the essential factor
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for the appearance of the ‘F’ band luminescence. Finally, let us state that, from the present

and previous chapters, we successfully obtain a unified view on the mechanism of ‘S’ and ‘F’

band luminescence by introducing new structural models for Si nanostructures.
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Chapter 6

Static and dynamical structure of
liquid germanium at high density

6.1 Introduction for this chapter

Germanium (Ge) is a diamond-structure semiconductor in the solid phase, and becomes metal-

lic upon melting [21]. Contrary to the cases of ordinary solid-liquid phase transitions, the

transition in Ge is accompanied by an increase in the density, with significant structural

changes.

Concerning atomic structures in the liquid phase, Ge under atmospheric pressure is known

to have several features which are unusual when compared to ordinary simple liquids [21].

These features cannot be accounted for in the framework of the isotropic pair-potential models,

which have been commonly used to describe the structures of simple liquids [78]. This fact

has prompted much experimental [79–82] and simulational [83–86] studies. To list some of

the findings, in particular in comparison with the properties of simple liquids; (1) the static

structure factor S(Q) has a distinct shoulder on the immediate right-hand side of the first

peak, (2) the first peak of S(Q) has a relatively small value, (3) the first peak of the pair

distribution function g(r) also has a relatively small value, (4) the coordination number Nc is

considerably lower than Nc found in simple liquids, (5) the dip between the first and second

peaks of g(r) is quite shallow, and (6) the ratios of the positions of the first and second peaks

of S(Q) and g(r) have much higher values than those for a hard-sphere liquid.

The structural features listed above have been understood as evidence that solid-like local

structures persist in the liquid state for Ge [21, 87]. Unlike simple liquids, both covalent-like
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and metallic-like bonds are expected to exist in liquid Ge (�-Ge). The competition between the

two different types of bondings determines the complex local structures of �-Ge. In refs. [81]

and [86], it was shown that a ‘disordered’ β-Sn type model, in which the structure of �-Ge

is characterized as β-Sn structure with disorders in bond lengths and bond angles, can well

account for the essential structural features found in �-Ge.

The structural properties of �-Ge at atmospheric pressure have been extensively studied,

as described in the above. What is not fully elucidated yet is the behavior of �-Ge under

pressure. When pressure is applied to �-Ge, we expect that it will shrink non-uniformally.

This observation is based on the following reasons: (1) the contraction of the bonds due to

pressure is expected to be anisotropic because of the anisotropic nature of covalent bonds, and

(2) the bonding property is anticipated to become more metallic than covalent when pressure

is applied. From the above arguments, we expect that �-Ge shrinks by changing its local

structure when pressure is increased.

In order to clarify the above point, high-pressure experiments (up to 25.0 GPa) were

performed recently [88]. The results of the experiments imply that the local structure of �-Ge

does indeed change in the following manner when pressure is applied [88]. In the low-pressure

region, the local structure of �-Ge is characterized as a ‘disordered’ β-Sn type structure, a

structure having a wide distribution of bond angles with essentially tetrahedral bonding of

the β-Sn type, while in the high-pressure region, the local structure is characterized by a

‘pure’ β-Sn structure, a structure having a narrow distribution of bond angles with peaks at

characteristic angles of the β-Sn structure.

Experimental studies, however, give an understanding of the local structure in liquids only

to a certain extent, because all the information obtained from experiments is limited to the one-

dimensional representation projected from and averaged over the real three-dimensional atomic

configurations. This is where the importance of simulational studies enters that play roles

complementary to experimental studies, so that the understanding of atomic configurations

in liquids is achieved in full detail. From this view point, we perform tight-binding (TB)

molecular dynamics (MD) simulations on �-Ge at seven different densities. We calculate g(r)

and S(Q), and compare them with results obtained from experiments. We further study the
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bond-angle distribution function g(3)(rc, θ), and deduce the change in the local structure of

�-Ge under pressure.

The rest of the present chapter will be organized as follows. In section 6.2, our TBMD

method and simulation procedure used in this work are described in detail. In section 6.3,

the results obtained from our simulations, along with discussions, are presented, with special

emphasis on the change in local structure of �-Ge with increase of the density. Finally, in

section 6.4, we draw some conclusions for the present chapter.

6.2 Simulation method

6.2.1 non-orthogonal tight-binding scheme

As mentioned in section 6.1, we perform TBMD simulations for �-Ge. Since we are interested

in the structure of �-Ge at various densities, we need a transferable TB scheme which can

accurately reproduce both the low- and high-pressure forms of Ge. This is a demanding task,

since the bonding nature of Ge changes from covalent-like to metallic-like when compressed. In

recent researches, it has been clarified that one way to construct such a transferable scheme,

within the framework of the TB picture, is to explicitly incorporate the non-orthogonality

of the atomic wave functions [50]. This procedure makes the TB model dependent on the

environment of each atom, and the TB model thus obtained can accurately describe the very

different bonding nature of the low-density and high-density liquids.

The TB model we use is based on the TB model described in ref. 89. This TB model

includes the non-orthogonality of the wave functions in a natural way. In ref. 89, the cluster

geometry of Ge was investigated, which gave good agreement with available experiments and

ab initio MD simulations [89]. However, we found that, when applied to �-Ge, the original

scheme presented in ref. 89 gives inaccurate results; in particular, the high-pressure form

could not be simulated accurately [90]. We therefore modify this scheme so that it is more

appropriate for our simulations.

In the following, we first describe the original scheme presented in ref. 89. Then we describe

the modifications we apply to this scheme.

In the original scheme, the total energy Etot of the system under consideration is written
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in the usual fashion as follows:

Etot = EBS + Erep + E0. (6.1)

The first term, EBS, is the band-structure energy, and is the sum of the one-electron energies

{εn}: EBS =
∑

n εn, where the sum over n is taken for all occupied states. Note that in

this chapter, we simply add εn for all occupied states, which corresponds to zero electron

temperature. The second term is a repulsive term, and physically describes the repulsions of

the ions and the corrections to the double counting in the band-structure energy. This term is

assumed to be written in terms of pair potentials: Erep =
∑

i<j φ(ri,j), where ri,j denotes the

distance between atoms i and j. The pair potential φ(ri,j) is written in the following form:

φ(r) = φ0e
−β(r−d0), (6.2)

where φ0 and β are fitting parameters, and d0 is the nearest-neighbor distance in diamond-

structure solid at 0 K (in the case of Ge, 2.44 Å). The third term, E0, is a constant term.

This term will only shift the zero of the energy, and will not be taken into account explicitly.

The one-electron energy necessary for the evaluation of the band-structure energy is cal-

culated from the non-orthogonal TB (NTB) method described in chapters 2 and 3. The basis

set is the minimal sp3 set. The force from EBS is calculated from the Hellmann-Feynman

theorem. Note that force coming from Erep is easily calculated by differentiating eq. (6.2).

Now the problem is reduced to determining the Hamiltonian and overlap matrices from

atomic positions. This is performed by modifying the scheme originally formulated by van

Schilfgaarde and Harrison [91].

According to van Shilfgaarde and Harrison, the Hamiltonian matrix elements, for two

atoms with distance r apart, in the NTB scheme is described in terms of the Hamiltonian

matrix elements in the orthogonal TB (OTB) scheme, by the following equation:

Hλλ′µ(r) = Vλλ′µ(r)

(
1 +

1

K
− S2

2

)
. (6.3)

Here, Hλλ′µ(r) denotes the Hamiltonian matrix elements in the NTB scheme, Vλλ′µ(r) denotes

the Hamiltonian matrix elements in the OTB scheme, λλ′µ denotes combinations of angu-

lar and magnetic quantum numbers of the atomic wave functions for the two atoms under
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consideration, for example, spσ, S2 is the ‘non-orthogonality between sp3 hybrids’, defined as

S2 = Sssσ−2
√

3Sspσ−3Sppσ

4
, where Sssσ, Sspσ, and Sppσ are overlap matrix elements, and finally K

is an empirical parameter being assumed to have the following distance dependence:

K(r) = K0e
σ(r−d0)2 , (6.4)

where σ and K0 are fitting parameters.

The overlap matrix elements Sλλ′µ is also written in terms of the Hamiltonian matrix

elements in the OTB scheme. This is carried out in the spirit of the extended Hückel theory,

i.e., [92]

Sλλ′µ(r) =
2Vλλ′µ(r)

K(r)(ελ + ελ′)
, (6.5)

where Sλλ′µ(r) is the overlap matrix element and ελ is the on-site energy of the atoms.

Finally, the Hamiltonian matrix elements in the OTB scheme is written as follows:

Vλλ′µ(r) = Vλλ′µ (d0) e−α(r−d0), (6.6)

where α is a fitting parameter, and is related to β as α = β
4
. The term Vλλ′µ(d0) is determined

from Harrison’s universal parameters [15].

The four fitting parameters, α (or β), φ0, K0, and σ, are determined so as to reproduce

the cohesive energy for the diamond structure of Ge. Once these four parameters are given,

we are able to calculate the total energy eq. (6.1) and the force consistent with this energy.

The advantage of the NTB scheme given in the above lies in that it can be constructed

in a systematic manner, with a small number (four) of fitting parameters. However, from our

previous work [90] we found that, when applied to �-Ge as it is, the properties of the high-

pressure liquids cannot be reproduced accurately. In particular, the temperature of melting

was found to be too high, for example, about 3000 K at 24.0 GPa, which is much higher than

the experimental value of about 1300 K at the corresponding pressure region. This point could

not be improved by simply refitting the four fitting parameters, and therefore we modify the

original scheme in the following manner.

1. Both the liquid and β-Sn phase of Ge are metallic, and accordingly the information of

the conduction band is important. For this reason, we add an extra s∗ orbital, following

ref. 93. In doing so, we assume that matrix elements Vs∗sσ, Ss∗sσ, and Ss∗pσ are zero.
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Table 6.1: Parameters for our TB model. All symbols are defined in the text.

ε′s (eV) ε′p (eV) α(Å
−1

) β(Å
−1

)

−14.38 −6.36 −1.25 −3.88

φ0(eV) K0 σ0(Å
−2

) d0(Å)
0.66 1.1 1.0 2.44

εs (eV) εp (eV) ε∗s(eV) Vssσ(d0) (eV)
−8.38 −0.36 11.64 −1.30

Vspσ(d0) (eV) Vppσ(d0) (eV) Vppπ(d0) (eV) Vs∗pσ(d0) (eV)
0.95 1.14 −0.329 0.51

2. Hamiltonian matrix elements for the OTB scheme are modified so that the band structure

of the solid-diamond phase is reproduced.

3. The term ελ, which appears in eq. (6.5), is now assumed to be independent of the on-site

energy terms of the Hamiltonian matrix, and is denoted as ε′λ.

4. Fitting parameters α and β are assumed to be independent of each other.

We carry out the above modifications, and determine the fitting parameters so that the co-

hesive energies for the diamond and β-Sn structures, the band structure for the solid-diamond

phase, and the liquid structure of Ge can be reproduced simultaneously. The parameters thus

obtained are shown in table 6.1.

The cohesive energies for the diamond and β-Sn phases of Ge obtained by our modified

scheme are shown in Fig. 6.1. As shown in Fig. 6.1, the fact that the cohesive energy versus

volume relations achieved from our modified TB scheme are in good agreement with those

obtained from ab initio calculations strongly confirms the validity of our modified TB scheme

in all the volume regions covering both for the diamond and β-Sn structures.

6.2.2 simulational details

Now we list the details of the simulational conditions we adopt in this work. We perform

NV T -ensemble MD simulations for �-Ge at seven different densities. The densities adopted

are taken from experiments. The number of atoms N is 256.

The initial configuration is constructed from a preliminary simulation in theNV E-ensemble,

with 64 Ge atoms in a cubic cell of size 11.3Å × 11.3Å× 11.3Å, corresponding to a diamond-
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Figure 6.1: Cohesive energy curves for the diamond and β-Sn structures, plotted against volume.
The unit of volume is taken as the volume for the diamond structure at 0K. The solid
lines are from our calculations, while the solid circles are from ab initio calculations of
ref. 94.

structure solid at 0 K. The initial configuration for the preliminary simulation is diamond-

structure solid. The liquid structure is realized by sequentially increasing the system total

energy until the system melts. The system is judged to have melted by studying the relation

between the average potential energy and temperature [95]. The initial configuration for the

productive simulations is constructed by arranging four of the above-described cubes so that

the resulting simulation cell is a rectangular parallelepiped of size 22.6Å × 22.6Å × 11.3Å,

followed by a suitable rescaling of the entire simulation cell according to the density.

The initial velocities are drawn from a Maxwellian distribution, with the temperatures

set at the experimental values. The one-electron energy is calculated at the Γ-point. Equa-

tion (2.6) is solved by direct diagonalization. The temperature of the system is controlled

by means of the Nosé-Hoover thermostat [35]. The thermal mass parameter is chosen in the

following manner. According to Nosé [35], the characteristic frequency of the thermostat ωT

can be written as:

ω2
T =

2gkBT

Q
(6.7)

The value of Q is chosen so that ωT is in the same order of the characteristic frequency of the

system (∼ 10 ps−1).
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The equation of motion is integrated by using a six-value Gear algorithm [7]. The pressure

of the system is evaluated from the Virial theorem [7]. The time step is chosen to be 2.4 fs.

Simulations are performed over 5000 steps, resulting in a simulation time of 12 ps. The data

obtained from the last 4000 steps are used to calculate physical quantities. We perform our

simulations for �-Ge with density ranging from 5.53 g / cm3 (density for �-Ge at atmospheric

pressure) to 7.49 g / cm3 (density for �-Ge at P = 25.0 GPa). We hereafter refer to the density

as ρ.

Statistical errors are estimated by assuming that the quantity under interest is a Gaussian

process [7]. The simulation is divided into four parts (1000 steps for each part), and the

standard deviation calculated from these four parts are deemed as statistical errors.

Finally, in Figs. 6.2 (a) and (b), we show the temperature and pressure of our simulations,

plotted against density. Note that the pressure obtained from our simulations are in remarkable

agreement with those of experiments with the same density.
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Figure 6.2: The pressure and temperature of our simualations, plotted against density; (a) : pres-
sure, and (b) : temperature. In (a), the solid line with squares is from our calculations,
while dashed line with circles are from experiments.
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6.3 Results and discussions

6.3.1 static structure

Here, we study the change in the static structure as the density of �-Ge increases. We inves-

tigate the following properties:

1. two-body correlation

• two-body distribution function, g(r), and auxiliary quantities.

• static structure factor, S(Q), and auxiliary quantities.

2. three-body correlation

• bond-angle distribution function, g(3) (rc, θ).

• the “covalent part” of the bond-angle distribution function, g
(3)
covalent (rc, θ).

Further, in order to obtain a visual image for the structural change, we also study the

snapshots of typical atomic configurations.

two-body correlation

two-body distribution function We first calculate the two-body distribution function,

g(r). In Fig. 6.3, we show our results, along with the results obtained from experiments [81,88].

As can be seen from these figures, our results are in excellent agreement with experiments in

all regions of density studied from the lowest up to the highest, which again confirms the

validity of our NTB scheme and our choice of parameters.

We note that, as density increases, the following trends are observed from both simulations

and experiments:

1. the position of the first peak, r1, does not change dramatically, despite a great increase

in density,

2. the position of the second peak, r2, on the other hand, changes considerably,

3. the heights of the first and second peak increase,
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4. the dip between the first and second peak becomes deeper.

In Fig. 6.4, we show r1 and r2 plotted against density, scaled by the corresponding values

at 5.53 g / cm3, the lowest density investigated. Also plotted in Fig. 6.4 is the cubic root of

the volume of the simulation cell, which we denote as �cell, scaled in the same way as r1 and

r2.

Firstly, we find from this figure that up to ρ = 6.81 g / cm3, r1 increases (not decreases),

small though the increment is, according to the increase of density. This is an unusual behav-
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Figure 6.4: The position of the first peak of g(r), r1, and of the second peak of g(r), r2, plotted
against pressure, with error bars. Also plotted in this figure is the cubic root lcell of
the simulation volume. All values are scaled by the corresponding values at the lowest
pressure.

ior, because the volume of the simulation cell itself is obviously smaller at higher densities.

The increase of r1 implies that the application of pressure is accompanied by non-uniform

compression, which leads to significant changes in the local structure.

We also find from this figure that for r2, the behavior is as expected; it decreases as density

increases. From this figure, we understand that the change of r2 is almost proportional to �cell.

This indicates that r2 decreases more or less uniformly as density increases. We also note that

the change of r1 is very small compared to that of r2. The decrease of r1 at high density is an

expected behavior, but the degree of decrease is trivially small, and it is much smaller than

the decrease of r2 and �cell. This implies that the local structure changes considerably for all

densities investigated.

The ratio of the positions of the first and second peak, r2/r1, plotted against density, is

shown in Fig. 6.5. This quantity is known to reflect the structure of liquids in the following

way [21,96]. For isotropic liquids, the value of r2/r1 is about 1.91, and as the anisotropy of the

local structure increases, the value of r2/r1 increases. We find that, for �-Ge at low density,

r2/r1 has a highly anisotropic value of 2.2, and decreases as density increases, or in other

words, becomes closer to an isotropic liquid. This does not mean, however, that anisotropy
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Figure 6.5: The ratio of the second and first peaks of g(r) plotted against pressure, with error bars.
The corresponding value for close-packed liquids, 1.91, is also shown by an arrow.

completely disappears at high pressures, because the value of r2/r1 is still an anisotropic value

of ∼ 2.0 even at the highest density investigated.

Generally speaking, it is expected that metallic bonds are isotropic and covalent bonds

are anisotropic. On the basis of this fact, it is natural to assume that isotropic structures

originate from metallic bonds, while anisotropic structures originate from covalent bonds. In

this respect, the behavior of r2/r1 in Fig. 6.5 indicates that as density increases, the system

becomes more metallic, although the covalent nature persists even at densities as high as

7.49 g / cm3, the highest density investigated. We note that, from this view point, the increase

of r1 at low density is understood in terms of the weakening of the strong covalent bonds.

coordination number We now proceed to the evaluation of the coordination number Nc.

Here, a problem arises as to the way to define the length of the first-coordination shell, rfcs,

because the first coordination shell is not a well-defined concept in liquids. This is particularly

true for covalent liquids, because the shape of the first peak in g(r) is usually highly asymmetric

for these liquids. Further, the results are very sensitive to the choice of this value rfcs. For

example, rfcs = 2.9Å at ρ = 5.53 g / cm3 gives Nc = 4.1, while rfcs = 3.3Å, corresponding to



6.3 Results and discussions 105

Table 6.2: The values of r0, r1, and rfcs. Refer to the text for a definition of these quantities.
ρ (g / cm3) r0 (Å) r1 (Å) rfcs(Å)
5.53 2.13 2.52 2.91
5.62 2.14 2.53 2.92
5.96 2.15 2.53 2.91
6.42 2.17 2.54 2.96
6.81 2.16 2.56 2.97
7.18 2.13 2.55 2.97
7.49 2.11 2.54 2.97

the position of the first minimum of g(r), gives Nc = 6.4. The difference is considerably large.

Therefore, it is important that we adopt the same definition of rfcs for all data, and discuss

their relative changes.

In the present chapter, we define rfcs as rfcs = r1 + (r1 − r0), where r0 is the distance at

which g(r) starts rising; to be more precise, we take r0 so that g(r0) = 0.01. In Table 6.2, we

show the values of r0, r1, and rfcs for all of our simulations.

In Fig. 6.6 (a), we plot Nc against density. We see from this figure that Nc increases as

density increases, which is consistent with our findings thus far that, as density increases, the

system becomes more metallic. We note here that, even under the highest density investigated,

7.49 g / cm3, Nc is less than the characteristic values found in simple liquids, which is 10-11.

This is again consistent with our findings thus far that the covalent nature is preserved even

at densities as high as 7.49 g / cm3.

Now let us further study the distribution of Nc in Fig. 6.6 (b). With the increase of the

density, a decrease of four-fold atoms and an increase of eight-fold atoms is observed, while

six-fold atoms first increase with density, and decrease for densities higher than 6.81 g / cm3.

For all densities, the distribution of Nc changes, which implies that the local structure of the

liquid is different for all densities studied.

static structure factor In the next place, we calculate the static structure factor, S(Q).

In Fig. 6.7, we show the calculated S(Q) for all densities investigated, along with results ob-

tained from experiments. From these figures, we see that our results are again in excellent
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agreement with experiments. The changes that the increase of density brings about are es-

pecially well reproduced, which provides strong evidence that our simulations give realistic

atomic configurations for both low- and high-density liquids.

We note that, as density increases, the following trends are observed from both simulations

and experiments:

1. the shoulder on the immediate right-hand side of the first peak becomes less distinct,

although it still exists at ρ = 7.49 g / cm3.

2. the height of the first peak increases.
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3. S(Q) at ρ = 7.49 g / cm3 resembles S(Q) of �-Sn at ambient pressure.

Among the features listed above, the most striking one is that the shoulder next to the

first peak, which has been interpreted as evidence that covalent bonds persist in the liquid

state [21, 87], decreases in magnitude as density increases. We also note that the shoulder,

although less distinct, still exists at ρ = 7.49 g / cm3.

These findings give support to the results obtained from g(r), that (1) the degree of metallic
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nature in the liquid increases as density increases, and (2) covalent bonds still exist at densities

as high as 7.49 g / cm3. This behavior of �-Ge is also seen from the ratio of the first and second

peaks of S(Q), Q2/Q1, plotted against density, shown in Fig. 6.8. This quantity, along with
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3
)

1.86

Figure 6.8: The ratio of the second and first peaks of S(Q), plotted against pressure. The corre-
sponding value for close-packed liquids, 1.86, is also shown by an arrow.

r2/r1, has been used to characterize the structure of liquids [21, 96]. For close-pack liquids,

Q2/Q1 typically takes the value of 1.86, and as the anisotropy of the local structure increases,

Q2/Q1 also increases [21, 96]. From Fig. 6.8, we find that at low densities, Q2/Q1 is about

2.1-2.15, a highly anisotropic value, and for densities higher than 6.81 g / cm3, Q2/Q1 is about

1.95-2.0, which is close to the value found for �-Sn at ambient pressure, but larger than the

close-pack value of 1.86. This behavior of Q2/Q1 again indicates that covalent and anisotropic

structure at low density becomes a more metallic and isotropic structure as density is increased.

three-body correlation

bond-angle distribution function From both g(r) and S(Q), we have seen thus far that

the local structure of �-Ge is covalent and anisotropic in the low-density region, while it is

more metallic and isotropic in the high-density region. We have also seen that the atomic
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configurations of �-Ge are not completely isotropic even at densities as high as 7.49 g / cm3.

We will now proceed on to the calculation of the bond-angle distribution function, which

will make our discussions clearer. An important point is that this property about the bond-

angle distribution cannot be derived from experiments. In other words, the properties of this

kind, non-attainable from experiments, are exactly what gives credit to simulational work for

elucidating the detailed atomic configurations in liquids.

The bond-angle distribution function, g(3)(rc, θ), gives the distribution of the angles formed

by pairs of vectors drawn from a reference atom to any two other atoms within a cutoff radius

rc of that reference atom. In Figs. 6.9 (a) and (b), we show g(3)(rc, θ), normalized by (sin θ)−1.

We take two different values for rc, namely, r1 and rfcs.

From Figs 6.9 (a) and (b), we observe significant changes in the distribution of the bond

angles according to the increase of density. For the low-density liquids, we find a broad peak

at 90◦-110◦, characteristic of covalent, tetrahedral bonding from both cutoff distances. The

position of the peak is roughly the same in both cases. At rc = rfcs, we find another peak around

60◦. This peak corresponds to contribution from metallic bonds. The two-peak structure of

g(3)(rc, θ) for the low-density liquids clearly shows that the bonding in �-Ge is indeed a mixture

of covalent and metallic bonds, and that the local structure of �-Ge is determined from the

competition of these two kinds of bonds.

On the other hand, g(3)(rc, θ) of high-density liquids differs greatly from that of low-density

liquids. For rc = rfcs, the 90◦-110◦ peak found for the low-density liquids shifts to the low-

angle side according to the increase of density, and becomes a broad peak, ranging from 60◦

to 80◦-90◦. We also find that the peak position of this peak depends on the value of rc. For

rc = r1, the peak position is about 90◦, while for rc = rfcs, the peak position shifts to the

low-angle side. Finally, we observe a slight hint of another peak at around 150◦-180◦ for both

cutoff distances.

This behavior of g(3)(rc, θ) indicates that, for high-density liquids, the local structure is

almost isotropic, with a broad characteristic peak at 60◦. However, g(3)(rc, θ) of the high-

density liquid is not completely isotropic, as the 60◦-90◦ peak is actually too broad in width

and too low in height for a completely isotropic liquid. The behavior of g(3)(rc, θ) at high
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Figure 6.9: The bond-angle distribution function g(3) (rc, θ) at each density.

pressures can also be interpreted as mixture of covalent and metallic bonds, with higher

percentage of metallic bonds. This point is investigated further in the following.

“covalent part” of the bond-angle distribution function We have seen that, for both

the low- and high-density liquids, the local structure is characterized as a mixture of covalent

and metallic parts. Now, let us try to divide g(3)(rc, θ) into these two parts.

We firstly assume that the contribution to g(3)(rc, θ) from the isotropic part of atomic
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configurations is expressed by that obtained from a Lennard-Jones (LJ) 9-6 liquid, which we

will denote as g
(3)
isotropic(rc, θ). We calculate g

(3)
isotropic(rc, θ) at T ∗ = 1.0 and ρ∗ = 0.8, where T ∗

and ρ∗ denote scaled temperature and density for the LJ potential [7, 97], respectively. We

note that the temperature and density chosen are in the region of the stable liquid phase of

the LJ 9-6 potential [97–99]. The value of rc for g
(3)
isotropic(rc, θ) is chosen as ∼ 1.20, where

the unit of length is again the scaled units of the LJ potential [7, 97]. The reason why we

extract the contribution from the isotropic part from the whole atomic configuration is that

we like to clarify the behavior of the anisotropic contributions. In other words, we regard the

difference g(3)(rc, θ) − g
(3)
isotropic(rc, θ) as the contribution from the anisotropic part of atomic

configurations, which is mainly attributed to the covalent nature of cohesion. As a result, this

difference is expected to provide us with ample information about the local configurations of

atoms. We denote this difference as g
(3)
covalent(rc, θ), which we try to express by the sum of five

Gaussians to be fitted properly.

In Figs. 6.10 (a) and (b), we show the results of such fitting procedures for �-Ge at ρ =

5.53 g / cm3 and 7.49 g / cm3, with the value of rc in g(3)(rc, θ) chosen as rc = rfcs. From

Figs. 6.10 (a) and (b), we see clearly that the ratio of metallic bonding is indeed larger for

high-density �-Ge than low-density �-Ge, in agreement with our findings from g(r) and S(Q).

In Fig. 6.11, we show g
(3)
covalent(rc, θ) for all densities investigated. From these figures, we

find significant differences in low- and high-density liquids.

For low-density liquids, we have a single broad peak, with peak position at ∼ 90◦. This

broad peak can be interpreted as reflections of essentially tetrahedral bonding of the β-Sn

type, with a very wide distribution for the bond angles. This type of distribution for the bond

angle is consistent with the ‘disordered’ β-Sn model [81,86] mentioned in section 6.1, in which

the structural features is characterized by a β-Sn structure with a wide distribution of bond

angles. Note that it is not possible to characterize this distribution by a single β-Sn-type

structure, because if this were the case, there must be another peak at the high-angle side.

Instead, we observe a broad, featureless tail. This structure is interpreted as a structure close

to the β-Sn structure but with large fluctuations in the atomic configurations. The broad tail

is interpreted as originating from distribution of β-Sn-like structures, with different c/a ratios.
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Figure 6.10: Examples of the fitting results described in the text for (a): 1.1GPa, and (b): 24.0GPa.

As density is increased, we find that the width of this peak becomes gradually narrower, and

at 6.81 g / cm3, a new peak arises at 150◦-180◦. We also observe a dip at ∼ 120◦ at the high-

density region. The relatively narrow peak is interpreted as a mixture of the 75◦, 94◦, and

105◦ peaks for the β-Sn structure, while the 150◦-180◦ peak is interpreted as the 150◦ and 180◦

peaks for the β-Sn structure. The dip at ∼ 120◦ reflects the fact that there is no characteristic

peaks for β-Sn structure in the region between 105◦-150◦. This type of distribution of the

bond angle is consistent with the ‘pure’ β-Sn structure mentioned in section 6.1, in which

the essential structural features is characterized by the β-Sn structure with relatively narrow

distribution of bond angles. The behaviors of g
(3)
covalent(rc, θ) show that the structural model

suggested from experiments [88], that low-density liquids have ‘disordered’ β-Sn structure

while high-density liquids have ‘pure’ β-Sn structure, well accounts for the covalent part of

the liquid.
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snap shots of atomic configurations

Finally, we show snap shots of atomic configurations at ρ = 5.53 g / cm3 in Fig. 6.12 (a), and

at ρ = 7.49 g / cm3 in Fig. 6.12 (b). In these figures, atoms less than rfcs apart are connected

by bonds. From Fig. 6.12, we visually confirm that long-range order is completely lost, and
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Figure 6.12: Snapshots of the atomic configurations, (a): 5.53 g / cm3, (b): 7.49 g / cm3

that the local structures of the low- and high-density liquids differ greatly. As found from

g(r), S(Q), and g(3)(rc, θ), the low-density liquid has low coordination with an anisotropic

local structure, while the high-density liquid has high coordination with a more isotropic local

structure. We note, however, that behaviors found for g
(3)
covalent(rc, θ) is difficult to observe from

these figures.
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6.3.2 dynamical structure

Now let us study the change in the single-particle dynamics. For the dynamical structure, we

calculate the following properties:

• mean square displacement (MSD),

• velocity autocorrelation function (VAF), ψ (t),

• diffusion constant, D, calculated from both MSD and VAF,

• spectrum density ψ (ω).

For the high-density liquids, we also compare our results with those of crystalline β-Sn

structure at high-temperature (T = 800 K).

mean-square displacement

In Fig. 6.13, we show the MSD obtained at each density. From this figure, it is readily seen

that (1) the system shows liquid-like diffusive behavior at all densities studied, and (2) the low-

density liquid is more diffusive than the high-density liquid. The better diffusive behavior of

the low-density liquid is easily understood in terms of the coordination number of the system.

Since the low-density liquid has smaller coordination number, it is possible for the atoms to

move more freely, resulting in better diffusive behavior.

velocity autocorrelation function

Now we present the VAF calculated from our simulations in Fig. 6.14. At low densities, we find

a peak around ∼ 0.2 ps. For a purely Brownian motion, the VAF will show an exponential

decay; the presence of a peak implies that there are some characteristic modes within the

dynamics. In this case, it reflects the fact that covalent bonds persist in the liquid phase. As

the density increases, we find that this peak becomes more distinct, and at high densities,

the VAF starts to oscillate. This behavior of the VAF shows that the so-called “cage effect”,

in which an atom is trapped within a “cage” formed by themselves, is significant for high-

density �-Ge. The same phenomenon is seen for the low-density liquid to a certain extent,

but the larger diffusive motion for the low-density liquid prevents the atoms from staying
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Figure 6.13: The mean-square displacement at each pressure.

within a certain region for a long time, resulting in a smaller cage effect than the case of the

high-density liquid.

We now compare our results with those obtained from other simulations. In Fig. 6.15, we

compare our VAF for the lowest density to that obtained in ref. 84. We observe immediately

that their results and our results are quite similar; the hump is present at t = 0.2 ps, and

further the VAF tends to zero at times longer than t = 0.6 ps. One difference is that the VAF

obtained in ref. 84 oscillates slightly beyond t = 0.6 ps, and does not decay completely. This is

because we are working with a larger unit cell and longer simulation time, leading to smaller

statistical errors in our case.

diffusion coefficient

The diffusion coefficient D, calculated from both the MSD and the VAF, is shown in Fig. 6.16.

As expected, the values obtained from the two method are reasonably close to each other.
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spectrum density

Here, we study the spectrum density. This property is important in that it is related to the

phonon modes in the system.

We present in Fig. 6.17 the results for the spectrum density. For the low-density liquid,

we find a hump-like peak at ∼ 30 ps−1, reflecting the phonon mode of the covalent bond.

This mode softens with density increase at low densities, but at higher densities, it gradually

hardens with density increase, and for the highest density studied, shifts to ∼ 35 ps−1. At the

highest density studied, we find another peak at ∼ 10 ps−1. This behavior for the high-density

liquid again reflects the strong cage effect found in high-density �-Ge.
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comparison with crystalline β-Sn crystal

Finally, we compare our results with those of crystalline β-Sn structure. The dynamical

structure of crystalline β-Sn are obtained from simulation performed with the same density,

with T = 800 K.

In Fig. 6.18, the VAF and spectrum density are plotted for both high-density liquid Ge

and crystalline β-Sn structure. The results show that the dynamical structure of �-Ge and
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β-Sn crystal are quite similar. For the VAF, we find that the period of oscillation is roughly

equal; only the liquid damps much faster, reflecting the disorder and diffusion present in the

liquid. For the spectrum density, the peaks are located at comparable frequencies, but the

distribution for the high-density liquid is broader. Another difference is seen in the region

where the frequency is almost zero; these modes correspond to diffusive modes, which is

completely absent for the case of the β-Sn structure.

From these results, we clearly observe that the dynamical structures of high-density �-Ge

are similar to those of the β-Sn structure, with differences coming from disorders and diffusion

present in liquids.
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6.3.3 summary of results and discussions

The results obtained in the present section are summarized as follows.

I Static structure,

1. two-body correlation

• from g(r),

(a) the position of r1 does not change dramatically, despite a great increase in

the density,
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(b) the dip between the first and second peak increase,

(c) coordination number Nc increases with density

• from S(Q),

(a) the shoulder on the immediate right-hand side of the first peak becomes

less distinct,

(b) the height of the first peak increases,

2. three-body correlation

• from g(3) (rc, θ),

(a) at low densities, a broad peak at 90 ◦ ∼ 110 ◦ is found,

(b) at high densities, a broad peak at 60 ◦ is found,

• from g
(3)
covalent (rc, θ),

(a) at low densities, the local structure of �-Ge is interpreted as a mixture of

tetrahedral covalent bonds and isotropic cohesion,

(b) at high densities, the local structure of �-Ge interpreted as a mixture of

covalent bonds close to crystalline β-Sn structure and isotropic cohesion

(c) isotropic cohesion is more significant for the high-density liquid

II Dynamical structure

• from MSD,

(a) diffusive behavior is found for all densities

(b) low-density liquids diffuse more readily than high-density liquids

• from ψ (t),

(a) The so-called “cage effect” is larger for the high-density liquids,

(b) the VAF of high-density liquids are similar to that of high-temperature crys-

talline β-Sn

• spectrum density, ψ (ω).
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(a) a shoulder-like phonon peak is found at ∼ 30 ps−1 for the low-density liquids,

while a two-peak structure, with peak positions at ∼ 10 ps−1 and ∼ 35 ps−1, is

found for the high-density liquids

(b) the spectrum density for the high-density liquids are similar to that of high-

temperature crystalline β-Sn

Our results from the static structure imply that, for the low-density liquids, the covalent

bonds are significant, while for the high-denity liquids, the covalent bonds are not as significant.

On the other hand, the dynamical structures show that the dynamics of low-density liquids are

relatively closer to Brownian dynamics, while those of the high-density liquids are relatively

closer to the corresponding crystalline systems. The results for the static and dynamical

structures, at first glance, seem to contradict, but it is possible to interpret these results in

the following manner.

For low-density liquids, the covalent bonds are relatively more significant than the metallic

bonds. This results in an open structure, as seen from our calculations, which is why the

atoms diffuse more readily than high-density liquids. Consequently, the dynamical structures

become close to those of Brownian dynamics, despite the existence of a large percentage of

covalent bonds. On the other hand, for high-density liquids, liquid-like isotropic bonds are

relatively more significant compared to the case of low-density liquids. This results in a more

close-packed structure compared to low-density liquids, leading to less diffusive behavior. As

a consequence, dynamical structures have significant “cage effects”, and further, become close

to those of crystalline systems, despite the fact that covalent bonds are not as significant as

in the case of low-density liquids.

6.4 Conclusions for this chapter

In this chapter, we perform TBMD simulations on �-Ge at seven different pressures. We

find that the local structure of �-Ge changes very much under pressure, as suggested from

experiments [88].

Our TB scheme is constructed by modifying an NTB scheme reported previously [89]. The

calculated g(r) and S(Q) from our TB scheme are found to be in excellent agreement with
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experimental results.

For g(r), we have found that r1 increases as density increases at low pressures, which is a

consequence of the significant change in the local structure. We have observe that r2/r1 has

the covalent values at low pressures, and isotropic values at high pressures. For S(Q), we find

that the shoulder next to the first peak decreases as density increases, which is interpreted as

evidence that the covalent bonds in �-Ge decrease with increasing density. We also observe

that this shoulder, although small in magnitude, still exists at the highest density investigated.

We find that Q2/Q1 shows similar behaviors as r2/r1. The general trends found from g(r) and

S(Q) are that local structure of �-Ge can be interpreted as a mixture of covalent and metallic

parts, and that the ratio of the metallic part increases as density increases, although covalent

bonds still exist at ρ = 7.49 g / cm3 (P = 24.0GPa). The agreement between our simulational

results and experimental data concerning g(r) and S(Q) confirms the validity of our new TB

scheme.

The advantage of simulational work over experiments consists in the fact that it makes

possible to evaluate the properties about atomic configurations which are not achieved from

experiments. Such properties include the bond-angle distribution function g(3)(rc, θ) which

is fully analyzed in the preceding section. Our analyses clarify that, at low pressures, the

atomic configuration of �-Ge is a mixture of tetrahedral covalent bonds (or ‘disordered’ β-

Sn structure) and isotropic cohesion, while, at high pressures, the configuration is a mixture

of covalent bonds as regarded as ‘pure’ β-Sn structure and isotropic cohesion. The key to

the success of this detailed analyses has been the idea to extract the contributions from the

essentially anisotropic part of atomic configurations by subtracting the contributions from the

isotropic nature of atomic distributions, g
(3)
isotropic(rc, θ) from the total value of the bond-angle

distribution, g(3)(rc, θ).

We also calculate the dynamical structure of the system. From the mean-square displace-

ment, we find that high-density �-Ge is less diffusive than low-density �-Ge, while from the

velocity autocorrelation function and the spectrum density, we find that the dynamical struc-

tures of high-density �-Ge is quite close to those of the β-Sn structure, again showing that

covalent contribution to the high-density �-Ge is characterized as ‘pure’ β-Sn structure.
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Chapter 7

Amorphous germanium: glass
transition and high-density structure

7.1 Introduction for this chapter

Amorphous germanium (a-Ge) is a network-forming amorphous solid, with essentially tetra-

hedral bonding at atmospheric pressure. The particular interest of this system lies in that

it seems to have a very different short-range order from liquid germanium (�-Ge). This fact

implies that a large structural change occurs as the liquid is quenched into a-Ge via glass tran-

sition, but a detailed analyses of such large structural change have been limited. Simulational

methods are best suited to study such problems.

Glass-transition simulations of Ge have been performed by ab initio MD [44] for N = 64

and by classical Stillinger-Webber potential [95] for larger systems [100]. Since the marked

feature of an amorphous solid is the presence of short-range order and the absence of long-

range order, it is useful to perform MD simulations based on quantum-mechanically-derived

forces for systems larger than N = 64. With this situation in mind, it is the first purpose of

the present chapter to perform glass-transition simulation of Ge by our O (N) tight-binding

molecular dynamics (O (N) NTBMD) method. We quench �-Ge from well above melting

temperature into an amorphous solid, with N = 512. We thoroughly examine the structural

properties at each temperature, and deduce the structural change of Ge as it transforms from

liquid to super-cooled liquid, and finally into amorphous solid.

The behavior of a-Ge under pressure has been of considerable interest in the past, since

tetrahedrally-bonded amorphous materials show complex structural changes when compressed
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[101]. Of particular interest is the possibility of polyamorphism, in which some distinct phases

of low-density amorphous (LDA) and high-density amorphous (HDA) structures realize.

In order to elucidate the high-pressure form of a-Ge, several experimental studies have been

made [101–103]. The results of these studies imply that, depending on the sample preparation

and pressure-loading conditions, it is possible that different types of high-pressure structures

realize. In ref. 101, a “distorted β-Sn structure” was reported as high-pressure form of a-

Ge. Note that the β-Sn structure is the high-pressure form of crystalline Ge (c-Ge) [104]. In

ref. 102, it was reported that 25% of the atoms in a system transform into crystalline β-Sn,

while the rest of atoms remain amorphous. No significant structural changes were found in

ref. 103.

A simulational study on the topic has been performed in ref. 105, in which a clear first-

order transition from an LDA phase to an HDA phase was reported. The initial amorphous

structure was prepared using the Wooten-Winer-Weaire (WWW) algorithm [106], which gen-

erates defect-free tetrahedral amorphous configurations, usually referred to as “continuous

random network (CRN)”. According to the aforementioned experimental studies, the results

are not necessarily the same if some different initial configurations are used. For this reason,

it is interesting to further pursue this problem by means of computer simulations, using initial

configurations other than those prepared from the WWW algorithm.

From the above considerations, our next purpose of the chapter is to perform molecular

dynamics (MD) simulations for a-Ge at low to high densities, and show that the structural

change of a-Ge takes place upon compression. We again use O (N) NTBMD scheme con-

structed in chapter 3. As our initial atomic configuration, we use the amorphous structure

of Ge obtained through a glass-transition simulation performed prior to this calculation. We

gradually increase the density of the system, and systematically examine the atomic configu-

ration and dynamical structure of the system at each density.

The rest of the chapter is organized as follows. In section 7.2, we describe the conditions

of our calculations, for both the glass-transition simulation and compression of a-Ge. In

section 7.3, we give our results for glass transition of Ge, while in section 7.4, we describe the

structural change of a-Ge with the increment of density. Finally, we conclude this chapter in
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section 7.5.

7.2 Conditions of the calculations

In the present chapter, we first perform glass-transition simulation of Ge from temperatures

well above melting point. After we obtain an amorphous structure in this manner, we gradually

increase the density of the system, and study the structural changes which occur when a-Ge

is compressed. In this section, we describe the conditions of these simulations.

For both cases, we perform O (N) NTBMD simulations in the NV T ensemble, with tem-

perature controlled by the Nosé-Hoover thermostat [35]. The conditions of the O (N) NTBMD

are the same as those described in chapter 3. Note that, for the glass-transition simulation,

we use the O (N) method which exactly conserve the total charge of the system, while for the

simulation of low- and high-density amorphous Ge, we use the approximate scheme described

in section 3.3.2, which greatly reduces memory requirements. This is because calculations of

high-density a-Ge is memory-consuming when the former method is used.

The thermostat parameter is chosen in the same way as in chapter 6. The number N

of atoms is chosen as N = 512. The equation of motion is integrated by a six-value gear

algorithm [7], with a time step of 2.4 ps. The initial velocity for the atoms are drawn from the

Maxwell distribution.

7.2.1 glass transition

Firstly, in order to study the glass transition of �-Ge, we start our simulations at T = 1650 K,

well above the melting temperature (about 1200 K), and decrease the temperature by 200 K

at every 4.8 ps. This corresponds to a quench rate of 4.2 × 1013 K /s. Physical properties at

each temperature are calculated from data accumulated from the last 3.6 ps. We repeat this

procedure until the temperature is 50 K.

The density of the system ρ is taken as ρ = 5.53 g / cm3. At this density, the system is

in a stable liquid phase. This density is larger than the experimental value (4.79 g / cm3)

for amorphous germanium (a-Ge) under atmospheric pressure [107]. In order to compare our

results with experiments concerning a-Ge, a final run is performed with the density set at
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the experimental value of a-Ge by rescaling the simulation cell and the positions of the atoms

accordingly, at T = 300 K.

7.2.2 low- and high-density amorphous Ge

Now we describe the conditions we adopt to study low- and high-density amorphous Ge. We

set the temperature T as 300 K. The density ρ is initially chosen as 4.79 g/ cm3, which is the

experimental value of a-Ge at atmospheric pressure [107]. After we perform MD simulations

of about 6.0-12.0 ps, we compress the whole simulation cell by about 1% in linear dimension.

Statistical averages at each density are taken from data obtained through the last 3.6 ps.

We perform this procedure until the density is 7.69 g/ cm3. At each density, the static and

dynamical structures of the system are calculated.

7.3 Results 1 : glass transition

In this section, we perform quench simulations of Ge from liquid to amorphous phase, using

the O (N) NTBMD implemented in chapter 3. Not only does this calculation have interests of

its own, but also it serves as a realistic test for our newly implemented calculational scheme.

Calculations of this kind has been performed by ab initio MD [44] for N = 64 and by

classical Stillinger-Webber potential [95] for larger systems [100]. Since the marked feature

of an amorphous solid is the presence of short-range order and the absence of long-range

order, it is useful to perform MD simulations based on quantum-mechanically-derived forces

for systems larger than N = 64.

7.3.1 glass transition

When a liquid is rapidly quenched, the diffusion of atoms becomes increasingly difficult, and

the system generally transforms from a liquid into glass at a glass transition temperature Tg,

where Tg in many cases depends on the quench rate [108]. In order to show that we have

simulated a glass transition for Ge, we present here the following quantities:

• pressure of the system, and

• mean-square displacement (MSD), and diffusion coefficients derived from it.
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pressure of the system

Firstly, we present in Fig. 7.1 the pressure obtained from our simulations, plotted against

temperature. The marked feature of Fig. 7.1 is that an abnormal increase in the pressure is

observed from T = 450 K to T = 250 K, reflecting the fact that for Ge, the liquid phase is

more dense than the solid phase. This result shows that the system is solid-like at temperatures

below T ∼ 450 K.
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Figure 7.1: Pressure plotted against temperature

mean-square displacement and diffusion coefficients

Next, in Fig. 7.2, we show the mean square displacement (MSD) of the atoms, calculated at

different temperatures. We also show in the inset of Fig. 7.2 the diffusion coefficients D. We

clearly see from Fig. 7.2 that as temperature decreases, diffusion becomes less significant. In

particular, we observe an abrupt decrease in D (by about a factor of five) from T = 650 K

to T = 450 K, which indicates a transition from a diffusive phase (a liquid) to a non-diffusive

phase (a solid). As we show in what follows, the solid phase thus achieved turns out to

be non-crystalline, or in other words, a glass, and accordingly the cross-over temperature

is identified as the glass-transition temperature Tg. We note that the diffusion coefficient

obtained at T = 1250 K in a liquid phase is D = 1.2 × 10−4 cm2 /s, in excellent agreement

with experiments (D = 1.21×10−4 cm2 /s) [109] and ab initio MD (D = 1.2×10−4 cm2 /s) [84].
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Figure 7.2: The mean-square displacement (MSD) at each temperature, plotted aganist time of the
simulations. Inset : The diffusion coefficients calculated from the MSD.

7.3.2 static structure

Now we move on to the investigation of the static structure as the temperature of the system

decreases. The following quantities are calculated:

1. two-body correlation

• two-body distribution function, g(r), along with auxiliary quantities such as the

coordination number,

• static structure factor S(Q).

2. three-body correlation

• bond-angle distribution function, g(3) (rc, θ).

We also compare our results for a-Ge with available experimental data.
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two-body correlation

two-body distribution function In Fig. 7.3, we show the results obtained for the two-

body distribution function, g(r).
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Figure 7.3: The pair-distribution function g(r) calculated at temperatures shown in the figure.

Firstly, we summarize the temperature change of g(r) as follows: as we lower the tem-

perature, (1) the peaks become sharper, (2) the position of the first peak, r1, shifts to the

low-r side, (3) the hump-like peak next to the first peak becomes a distinct peak, and its peak

position, rh, shifts to the high-r side, and (4) a clear trough arises between the first peak and

the hump-like (the second) peak, which becomes more distinct as the temperature decreases.
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We show in Fig. 7.4 the position of the first peak, r1, the position of the hump-like peak,

rh, and the ratio of the two positions, rh/r1, plotted against temperature. We note that the
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Figure 7.4: The position of the first peak, r1, the hump-like peak, rh, and tow ratio of the two
positions, rh/r1, plotted against temperature.

positions of further peaks do not change. The large change of g(r) between r = 2.0 to 6.0 Å

implies a very large change in the local atomic structure.

Among the changes listed above, the most marked one is in the behavior of the hump-like

peak next to the first peak. For amorphous solids, this peak is easily interpreted; it simply

expresses the correlation between second-neighbor atoms in the diamond structure. This is

understood from the presence of a well-defined trough, and the value of rh/r1, which is 1.58,

close to the diamond value of 1.63 (Fig. 7.4). In the liquid and super-cooled liquid region,

the situation is not that easy. The local structure in this region has been interpreted as com-

bination of randomly-packed configuration, hereafter referred to as “isotropic configuration”,



7.3 Results 1 : glass transition 133

and anisotropic, tetrahedral-like bonds originating from covalent bonds, hereafter referred to

as simply “covalent bonds” [44, 49, 84]. Note that we use the term “isotropic configuration”

for randomly-packed configurations on the basis of the fact that a random packing takes place

when the interatomic interactions are isotropic. The absence of a trough between the first

peak and the hump-like peak in the liquid region implies that sufficient amount of isotropic

configurations exist in this region. Further, the covalent bonds are not diamond-like as in the

case of amorphous solids, because if this were the case, the ratio rh/r1 will have the same value.

The value of rh/r1 for T = 1650 K is about 1.3 (Fig. 7.4), and therefore the covalent bonding

in this region is not diamond-like. We speculate that the covalent bonds in the liquid region

are actually a combination of several β-Sn-type bonding, with different c/a ratios, as discussed

in chapter 6. In this case, the origin of the hump-like peak is interpreted as contribution from

the second, third, and fourth neighbor atoms of the β-Sn-type structure.

coordination number We further calculate the coordination number, Nc, from the ob-

tained g(r). For the calculation of Nc, we need the value of rfcs, the length of the first-

coordination shell. The value of rfcs is easily determined for amorphous and super-cooled

liquid region, where there is a well-defined first minimum. Ambiguity arises concerning the

way to define rfcs in the liquid region, where no clear first minimum appears in our simula-

tions. In the present section, we determine rfcs by extrapolating from the values obtained

at lower temperatures. Note that this definition of rfcs is not the same as that adopted in

chapter 6. The value of rfcs is not unique in non-crystalline systems; an important point is to

stay consistent throughout the discussion.

In Fig. 7.5, we show Nc and its distribution, plotted against temperature. We clearly

see from this figure that the coordination number is classified into three categories. In the

temperature region of 1250 K < T < 1650 K, the system is in the liquid state. The coordi-

nation number is about 5.8 at T = 1650 K and decreases slightly towards T = 1250 K, while

the distribution is almost unchanged with decreasing temperature, showing that the structural

change in this region is not significant. In the temperature region of 650 K < T < 1050 K, the

system is in the super-cooled liquid phase. A rapid decrease of Nc is observed between 1250 K



134 Chapter 7. Amorphous germanium: glass transition and high-density structure

0.8

0.6

0.4

0.2

0.0

di
st

ri
bu

tio
n

160012008004000

Temperature / K

6.0

5.5

5.0

4.5

4.0

3.5

to
ta

l c
oo

rd
in

at
io

n 
nu

m
be

r

amorphous super-cooled liquid liquid

   four-fold
   five-fold
   six-fold

(a)

(b)

Figure 7.5: The total coordination number Nc (a) and its distribution (b) plotted against temper-
ature.

and 1050 K, and decreases further as temperature decreases. A remarkable point is that the

change in the distribution of Nc is quite large in this region, implying a considerable change in

the atomic configuration in this temperature region. The number of six-fold atoms decreases,

while the number of five-fold and four-fold atoms increases as temperature decreases. This

behavior indicates that the atoms start preferring four-fold coordinations typical of covalent

bonds while isotropic coordinations become unfavorable. Finally, in the temperature region

of 50 K < T < 450 K, the system is in the amorphous solid phase. The coordination number

decreases rapidly between 650 K and 450 K, reaching a value close to four. The distribution

of Nc shows that the bonding is almost completely four-fold, implying that most of the atoms

in the amorphous solid region is covalently-bonded.



7.3 Results 1 : glass transition 135

static structure factor Now let us discuss the temperature change in S(Q). In Fig. 7.6,

we show our results obtained for S(Q). As in the case of g(r), the most remarkable change of
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Figure 7.6: The static structure factor S(Q), calculated at the temperautures shown in the figure.

S(Q) is observed at the hump next to the first peak. As the temperature decreases, the hump,

which is characteristic of group IV liquids [21], becomes more distinct, and finally becomes a

well-defined peak in the amorphous region. As temperature decreases, covalent bonds rapidly

increase, and isotropic configurations rapidly decrease, until the system becomes almost totally

covalent in the amorphous region. We note that the hump of S(Q) becomes more distinct

as this change takes place; however the hump does exist at high temperatures. This result
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implies that a certain number of covalent bonds are present even in liquids [87].

comparison with experiments Finally, we compare our results with experiments. We

use the results obtained from our final simulation, performed at ρ = 4.79 g / cm3 and T =

300 K. In Figs. 7.7 (a) and (b), we show experimental g(r) and S(Q) [107] (squares) in

comparison with those obtained from our simulations (solid lines). We find that, for both
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Figure 7.7: Comparison between our simulation and the experimental results of ref. 107; (a) : g(r),
(b) : S(Q). The open squares denote experimental results, while the solid lines denote
our results.

g(r) and S(Q), the agreement is excellent, showing that our simulations give realistic atomic

configurations for a-Ge. The very good agreement between experiments and calculations shows

the validity of our O (N) NTB model. The coordination number in this case is 3.84, in good

agreement with the experimental value of 3.68 [107]. The percentage of four-fold bonding in

this case is about 80 %. The remaining atoms are mostly three-fold coordinated (about 16 %),
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while atoms with five-fold coordination appears with much less probability (about 3 %). From

these results, we deduce that the defects in our amorphous structures are mostly dangling

bonds rather than the so-called “floating bonds” [110].

three-body Correlation

bond-angle distribution function Systems with covalent bonding, like Ge, show charac-

teristic behaviors in the three-body correlation. Here, we present the bond-angle distribution

function, g(3) (rc, θ), which gives the distribution of the angles formed by pairs of vectors drawn

towards two neighboring atoms within the cutoff distance rc from a reference atom. We show

in Fig. 7.8 the results obtained for g(3) (rc, θ), normalized by (sin θ)−1, at rc = r1 and rfcs.
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Figure 7.8: The bond-angle distribution function g(3) (rc, θ) at different temperatures; (a): rc = r1,
(b): rc = rfcs, where rfcs is the length of the first coordination shell.
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In Fig. 7.8 (a), which demonstrates the results for rc = r1, we find at T = 1650 K a

characteristic broad peak at around 90 ◦ ∼ 100 ◦, with a very long tail towards the high-angle

side. We also find a slight vestiges of a peak at around 60 ◦. The peak around 90 ◦ ∼ 100 ◦

comes from four-fold bonding while the peak at 60 ◦ is the influence of random packing.

Tetrahedral bonding for the diamond structure peaks at 109.5 ◦, and therefore the broad peak

is interpreted as contribution from distorted tetrahedral bonding. We note that the distorted

tetrahedral structure cannot be interpreted as a single β-Sn-like structure, because if this

were the case, another characteristic peak must appear in the high-angle region. Instead, we

observe a broad, featureless tail. As discussed in chapter 6, this structure is characterized as a

“disordered” β-Sn structure, a structure close to the β-Sn structure but with large fluctuations

in the atomic configurations. The broad tail is interpreted as originating from distribution of

β-Sn-like structures with different c/a ratios, as implied from chapter 6 and analyses of g(r).

As the temperature decreases, we find that the broad peak becomes narrower, and the

high-angle tail becomes less significant. We also find that the peak shifts to higher angles,

approaching the value of the diamond structure, 109.5 ◦. At T = 50 K, where 80% of atoms

have four-fold coordination (Fig. 7.5), the peak is at 106.5 ◦. We clearly find from this behavior

that, as temperature decreases, the local structure up to r = r1 changes gradually from a

distorted tetrahedral structure to a diamond-like tetrahedral structure.

Figure 7.8 (b) shows the results for rc = rfcs. The most prominent difference from

Fig. 7.8 (a) is the increase of the 60 ◦ peak in the liquid and super-cooled liquid region.

This behavior shows that, when the search is made in a larger region around each atom, the

isotropic nature of atoms at higher temperatures is more clearly observed. As temperature

decreases, this contribution clearly decreases, and almost completely disappears at T = 50 K,

resulting in a bond-angle distribution similar to the one for rc = r1. The behavior of g(3) (rc, θ)

depends greatly on the value of rc for the liquid and super-cooled liquid. This is because the

isotropic coordination and the covalent bonds have different characteristic lengths from each

other. In the amorphous solid region, we find no considerable difference. This indicates that

in this region, the bonding is almost exclusively covalent, which is consistent with the analyses

of g(r).
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7.3.3 dynamical structure

In this subsection, the change of dynamical structures with temperature decrease is studied.

The quantities taken into account are the following:

• velocity autocorrelation function, ψ (t),

• spectrum density, ψ (ω).

velocity autocorrelation function

In Fig. 7.9, the VAF is plotted for different temperatures. In the liquid region, we find a single
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Figure 7.9: The velocity autocorrelation function obtained at each temperature.
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peak at t ∼ 0.2 ps. This peak, as discussed in chapter 6, shows that covalent bonds exist in the

liquid phase. As the temperature decreases, we find that this peak becomes more significant,

and shifts to shorter times. Finally, a drastic change is observed around the glass-transition

temperature; a new peak arises around 0.25 ps, and the decay becomes much slower, indicating

that in the glass region, the system is more strongly correlated in time than in the liquid and

super-cooled liquid regions.

spectrum density

We further study the spectrum density in Fig. 7.10. In the liquid region, we find a
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Figure 7.10: Spectrum density obtained at each temperature.

shoulder-like peak at ω ∼ 30 ps−1, reflecting vibrational mode coming from the covalent bonds.
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This peak, however, is not a distinct one, and most of the system is diffusive, as discussed

in chapter 6. As the temperature decreases, the shoulder-like peak becomes more distinct,

accompanied by a hardening of this mode. Again a drastic change is seen after the glass

transition; the spectrum density becomes a two-peak structure, with a new peak at ω ∼
10 ps−1. In connection with the phonon modes of crystalline Ge, it is possible to assign the

low-frequency peak as the TA mode, and the high-frequency peak as the TO mode.

7.3.4 summary of results and discussions

The results obtained in the present section are summarized as follows.

I Static structure,

1. two-body correlation

• from g(r),

(a) the peaks become sharper with temperature decrease,

(b) the hump-like peak next to the first peak becomes a distinct peak with

temperature decrease,

(c) coordination number decreases as temperature decreases, and becomes four

in the amorphous solid region.

• from S(Q),

(a) with temperature decrease, the shoulder on the immediate right-hand side

of the first peak becomes a distinct peak.

(b) with temperature decrease, the height of the first peak becomes lower,

while that of the second peak becomes higher, until the height of the two

peaks are reversed.

2. three-body correlation

• from g(3) (rc, θ),

(a) for rc = r1:
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� high temperature: a peak at 90 ◦ ∼ 100 ◦, with a long tail towards the

high-angle side.

� Shift of the peak to the high-angle side with temperature decrease.

� low temperature (amorphous solid): a single peak near the tetrahedral

angle

(b) for rc = rfcs :

� high temperature (liquid and super-cooled liquid): increase of the isotropic

(60 ◦) peak

� low temperature (amorphous solid): no essential changes from the case of

rc = r1.

II Dynamical structure

• from ψ (t),

(a) single hump-like peak at t ∼ 0.2 ps for the liquid region,

(b) drastic change at the glass-transition temperature

• spectrum density, ψ (ω).

(a) a weak phonon peak at ω ∼ 30 ps−1,

(b) hardening of phonon modes with temperature decrease,

(c) emergence of a new peak at ω ∼ 10 ps−1 in the amorphous region.

We observe significant changes in both the static and dynamical structures as the system

transforms from a stable liquid to super-cooled liquid, and finally into an amorphous solid.

The origin of the structural change is in the increase of covalent bonds within the system as

temperature decreases.

This situation is best seen from the behavior of the bond-angle distribution function. For

high-temperature liquids, g(3) (rc, θ) shows different distributions for different cutoff distances.

This implies the existence of both isotropic bonds and covalent bonds. As the temperature

decreases, we observe that the magnitude of the 60 ◦ peak for longer rc gradually decreases,
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and finally in the amorphous solid region, the 60 ◦ peak almost disappears. The 60 ◦ peak is

contribution from isotropic bonds, and therefore, the decrease of its magnitude indicates the

increase of the covalent bonds.

Covalent bonds have the lowest internal energy when they form a certain bond angle (in

this case, the tetrahedral angle 109.5 ◦). On the other hand, the special angle formed by

covalent bonds leads to open structures, which amounts to a large value in the PV term and

the entropy term within the free energy of the system. From these considerations, it is possible

to interpret the large structural change with decrease of the temperature as follows. System

at relatively high temperature tends to have relatively close-pack structures because of atomic

diffusion. As temperature decreases, and diffusion of the atoms becomes less significant, the

covalent bonds in the system increase in order to receive the merit of the decrease in the

internal energy. This behavior of the system accounts for the tetrahedral configuration of

a-Ge, and further for the higher pressure in the solid region.

7.4 Results 2 : high-density amorphous structure

In this section, we study the change in the static and dynamical structure of a-Ge with

increasing density. Since the low-pressure and high-pressure forms of c-Ge are the diamond

structure and the β-Sn structure, respectively, it is expected that the short-range order (SRO)

of LDA Ge resembles that of the diamond structure, while the SRO of HDA Ge resembles

that of the β-Sn structure. This point is confirmed in the forthcoming arguments.

7.4.1 static structure

Let us first study the change in the static structure with the increment of the density. The

following quantities are investigated:

1. two-body correlation

• two-body distribution function, g(r), along with auxiliary quantities such as the

coordination number,

• static structure factor S(Q).
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2. three-body correlation

• bond-angle distribution function, g(3) (rc, θ).

• coordination-number dependent bond-angle distribution function.

In order to obtain a visual image of low-density and high-density a-Ge, we also study the

snapshots of typical atomic configurations for the lowest and highest densities studied.

two-body correlation

two-body distribution function In Fig. 7.11, we show the two-body distribution func-

tion g(r), calculated at selected densities. We also show in Figs. 7.12 (a) and (b) the positions

of the first and second peak in g(r), to which we refer as r1 and r2, plotted against density.

From Figs. 7.11 and 7.12, we find considerable structural changes for a-Ge as the density ρ is

increased.

The most remarkable change for g(r) is observed in the behavior of r1. In the low-density

(4.79 g/ cm3 ∼ 6.0 g/ cm3) and high-density (7.0 g/ cm3 ∼ 7.69 g/ cm3) regions, r1 mono-

tonically decreases as the density increases. On the other hand, at intermediate densities

(6.0 g/ cm3 ∼ 7.0 g/ cm3), r1 increases as the density increases. The increase of r1 in the

intermediate-density region is an unusual behavior in the sense that the first-peak position r1

increases on the increase of the density as well as that the increase of r1 is almost discontin-

uous when the density is about 6.4 g / cm3. This result implies a large change in the atomic

configuration at this density region. The decrease of r1 in the low-density region or in the

high-density region, on the other hand, is a normal behavior, and implies that the contrac-

tion of the system is uniform in these density regions. We also note that the position of the

second peak, r2, monotonically decreases as the density increases. Another interesting point

is the behavior of the third peak, whose shape changes from symmetric to asymmetric. The

asymmetry of the third peak in the high-density region implies that atoms of multiple origins

contribute to this peak.

From the behavior of r1, we obtain the following picture for the structural change of a-

Ge with density increase. Firstly, in the low-density region, the LDA structure contracts
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Figure 7.11: Two-body distribution function g(r) calculated at selected densities.

uniformly. Then in the intermediate-density region, the system gradually transforms into the

HDA structure, and finally in the high-density region, the HDA structure contracts uniformly.

This structural change shows that the LDA and HDA structure obtained in our simulations

belong to distinct structures.

coordination number In the next place, let us study the coordination number, Nc. The

result is shown in Fig. 7.13 (a). From Fig. 7.13 (a), we find that in the low-density region, Nc

is about four, showing that in this region, the bonding in the system is mostly tetrahedral.

The coordination number increases as the density increases, and becomes about 6.0−6.5 in
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Figure 7.12: Peak positions plotted against density; (a) : for r1, and (b) : for r2.

the high-density region.

We further demonstrate the distribution of Nc in Fig. 7.13 (b). From this figure, we

clearly observe that, in the low-density region, the system is almost exclusively tetrahedral.

In the intermediate-density region, the number of atoms with four-fold coordination decrease,

while the numbers of atoms with both five-fold and six-fold coordination increase. Finally, in

the high-density region, the numbers of atoms with both four-fold and five-fold coordination

decrease, and atoms with six-fold coordination become dominant.

static structure factor We further study the static structure factor, S(Q). Since data

obtained for S(Q) are rather scattered, we also smooth our results with cubic spline functions.

In Fig. 7.14 we show our results for S(Q), calculated at the densities as shown in Fig. 7.14.

We note that, for the LDA structure, we have already shown in the previous section that our
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results for S(Q) are in remarkably good agreement with experiments. When the density is

increased, we find considerable changes both in the first and second peak. At low densities, the

first peak is lower than the second peak, but as the density increases, the first peak becomes

higher and the second peak becomes lower, until the heights of the two peaks are reversed.

We note that the second peak corresponds to the characteristic “shoulder” found in liquid
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Ge (�-Ge) [49, 111]. The changes of S(Q) according to the increase of the density are similar

to those found in �-Ge, depicted in chapter 6; that is, in the case of �-Ge, the “shoulder”

becomes less distinct, and the first peak becomes higher as the density increases. This fact

implies that structural changes of �-Ge and a-Ge are, in a way, similar. One large difference

is the presence of diffusion for the case of �-Ge. When diffusion is present, it is difficult for

the system to maintain open structures, which makes �-Ge more closely packed than a-Ge.

We also note that the “shoulder” for the S(Q) of �-Ge has been interpreted as evidence that

tetrahedral-like units exist even in the liquid phase [87]. From this point of view, it is natural

that the second peak for a-Ge is more distinct than the shoulder for �-Ge.
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three-body correlation

bond-angle distribution function The study of three-body correlation is important for

systems which include covalent bonds, such as a-Ge, since it allows us to investigate the effects

of directional bonding. The bond-angle distribution function g(3)(rc, θ) gives the distribution

of bond angles, where a bond angle is defined by the angle formed by a pair of vectors drawn

from a reference atom to any two other atoms within a cutoff radius rc of that reference

atom. In Figs. 7.15 (a) and (b), we show g(3) (rc, θ), normalized by (sin θ)−1. Figure 7.15

(a) represents g(3) (rc, θ) calculated with rc = r1, while Fig. 7.15 (b) illustrates g(3) (rc, θ)

calculated with rc = rmin. We note that the bond-angle distribution function is not accessible

from experimental studies.
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In the low-density region, we find a single peak around the tetrahedral angle, while in

the high-density region, we find a peak around 80 ◦ ∼ 110 ◦ as well as around 160 ◦ ∼ 180 ◦

with a trough around 120 ◦. Note that, in either case, we have a similar distribution for both

cutoff distances. This result shows that the system is uniform in low-density and high-density

regions.

On the other hand, the behavior of g(3) (rc, θ) in the intermediate density region is different

for the two cutoff distances, thus implying that, in this density region, the system is not

uniform. From Figs. 7.15 (a) and (b), we find that, for the case of rc = r1, the distribution

is similar to that for LDA Ge, while for the case of rc = rmin, the distribution is similar to

that for HDA Ge. This result further implies that LDA-like and HDA-like structures coexist

in this region. The average nearest-neighbor distance for the LDA structure is shorter than

that for the HDA structure. Therefore, the behavior of g(3) (r1, θ) in the intermediate density

region of Fig. 7.15 (a) reflects the existence of tetrahedral coordination as found in the LDA

structures, while the behavior of g(3) (rmin, θ) in the same region of Fig. 7.15 (b) confirms the

existence of the short-range configuration as found in the HDA structures.

Nc-dependent bond-angle distribution function In order to make our point securer,

we show in Fig. 7.16 the behavior of g(3) (rc, θ) for each coordination number Nc in the

intermediate-density region, with rc = rmin. From this figure, we observe that the distri-

bution of four-fold coordinated atoms resembles LDA distributions, while the distributions of

the five-fold and six-fold coordinated atoms resemble HDA distributions. This result reinforces

the above statement of ours that in the intermediate density region, atoms with LDA-like and

HDA-like configurations both exist.

snapshots of atomic configurations

In order to give a visual confirmation of the structural change of a-Ge with density increase,

we show snapshots of atomic configurations in Fig. 7.17. Typical structures in the low-density,

intermediate-density, and high-density regions are shown. The unfilled spheres represent atoms

with Nc less than or equal to four, while the filled spheres represent other, more highly-

coordinated atoms. We clearly observe that, for the low-density and high-density regions, the
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atoms have a relatively uniform distribution, while for the intermediate-density region, there

are both low-density-like and high-density-like regions.

7.4.2 dynamical structure

Now we look into the changes in the dynamical structure with density increase. For this

purpose, the following quantities are explored:

• mean-square displacement,
〈
R (t)2〉,

• velocity autocorrelation function, ψ (t), and

• spectrum density, ψ (ω).

We also give a comparison between the dynamical structures of high-density a-Ge and

high-temperature crystalline β-Sn structure, as done for �-Ge in chapter 6.

mean-square displacement

Let us first show the calculated mean-square displacements in Fig. 7.18. We observe from this

figure that there are no diffusive behavior characteristic of liquids, showing that we are in fact

studying amorphous solids.
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ρ = 4.79 g/cm3

ρ = 6.32 g/cm3

ρ = 7.69 g/cm3

Figure 7.17: Snapshots of typical atomic configurations for a-Ge in the low-density, intermediate-
density, and high-density regions. Unfilled spheres represent atoms with Nc less than
or equal to four, while filled spheres represent other atoms.

velocity autocorrelation function

In Fig. 7.19, we show the results obtained for the velocity autocorrelation function (VAF).

Figure 7.19 shows that there exist distinguished differences between ψ (t)’s for LDA and HDA

structures. In particular, we observe that the peak around 0.3 ps for the LDA structures

completely disappears for the HDA structures. We also see from Fig. 7.19 that, for the HDA
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Figure 7.18: Mean-square displacements obtained at selected densities.

structures, the oscillation of the VAF is slower and damps faster. These differences in the

VAF show that atoms in the HDA structures move slower and are less correlated in time than

those in the LDA structures.

spectrum density

It is informative to study the Fourier transform ψ (ω) of the VAF, which is often referred to as

the spectrum density, since this function is related to the phonon modes in the system. Note

that ω represents the frequency of the corresponding phonon mode. In Fig. 7.20 (a), we show

ψ (ω) calculated at the six densities as concerning the other properties. The most marked

change observed in ψ (ω) is in the behavior of the large-scale peak on the high-frequency

side. This peak is generally designated as the TO mode from correspondence with crystalline

diamond Ge [112]. In Fig. 7.20 (b), we show the top position of this peak, hereafter referred to

as ωTO, plotted against the density ρ. At the lowest-density (ρ = 4.79 g / cm3) case, the top of

this large-scale peak is placed around ω ∼ 43 ps−1. According to the increase of the density in

the low-density region, the top-position frequency ωTO moves towards higher frequencies. On

a further increase of the density in the intermediate density region, the top-position frequency

ωTO is decreased. When the density is increased further in the high-density region, the top-
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Figure 7.19: The velocity autocorrelation function, calculated at selected densities.

position frequency ωTO is increased again. The increase of ωTO in the low- and high-density

region is related to a familiar hardening of the phonon modes accompanying the increase of

the density. On the other hand, the decrease of ωTO with the increase of the density indicates

the occurrence of a large structural change in the intermediate-density region. In fact, the

origin for this softening of the TO mode is explained in connection with the behavior of r1 as

illustrated in Fig. 7.12. Since r1 increases as density increases at intermediate densities, the

interaction between nearest-neighbor atoms weakens, which results in the softening of the TO

mode in this density region.
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Figure 7.20: Results for the spectrum density, (a) : calculated from the VAF of Fig. 7.19, and (b)
: top-position frequency ωTO, plotted against density.

comparison with crystalline β-Sn

The dynamical structure of LDA Ge has previously been studied in connection with that of

crystalline Ge [44, 112], but the dynamical structure of HDA Ge has not been studied so far.

In order to elucidate the nature of the dynamics in HDA Ge, we compare in Figs. 7.21 (a)

and (b) the VAF and the spectrum density for HDA structure and crystalline β-Sn structure

simulated at T = 800 K. Concerning the VAF, the oscillations are quite similar, but the
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Figure 7.21: Comparison between the HDA structure and crystalline β-Sn structure, (a) : VAF,
and (b) : spectrum density. The solid curve corresponds to HDA structure, while the
dashed curve corresponds to crystalline β-Sn strucrure.

VAF for HDA structure damps faster than that for crystalline β-Sn structure. Concerning the

spectrum density, we find that the phonon peaks appear at the corresponding frequencies, but

the distribution over frequencies is broader for HDA structure than that for crystalline β-Sn

structure. These results clearly show that the dynamical structure of the atoms for the HDA

structure are similar to that of the crystalline β-Sn structure, except that the correlation is

weaker for the HDA structure because of disorder in the atomic configurations.

7.4.3 summary of results and discussions

Now let us summarize the results obtained in the present section.

I Static structure,
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1. two-body correlation

• from g(r),

(a) r1 decreases with the increase of the density at low and high densities,

while the opposite behavior is seen at intermediate densities. Note that

the values of r1 at low and high densities are comparable to those of the

diamond and β-Sn structures, respectively.

(b) coordination number changes from four to six. Note that the coordination

number for the diamond structure is four, while that for the β-Sn structures

is six.

• from S(Q),

(a) the changes of S(Q) according to the increase of the density are similar

to those found in �-Ge [49]. Note that SRO of �-Ge at high density has

been interpreted as combination of structures close to the β-Sn structure

and isotropic structure originating from diffusive motion of the atoms.

2. three-body correlation

• from g(3) (rc, θ),

(a) at low densities, a single peak arises at the tetrahedral angle,

(b) at high densities, peaks occur at around 80 ◦ ∼ 110 ◦ and 160 ◦ ∼ 180 ◦,

with a trough at around 120 ◦. Note that the peak and trough angles are

comparable to those of the β-Sn structure.

II Dynamical structure

• from MSD,

(a) a non-diffusive behavior is found,

• from ψ (t),

(a) a peak around 0.3 ps for the LDA structures disappears for the HDA structures,

(b) for the HDA structure, oscillation of ψ (t) is slower and damps faster.
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• spectrum density, ψ (ω).

(a) The TO mode hardens with the increase of the density at low and high den-

sities, while the opposite behavior is seen at intermediate densities. Note that

for both ψ (t) and ψ (ω), the dynamical structures of HDA structure resemble

those of the crystalline β-Sn structure.

From the inspection of all the results as stated in the preceding section, we come to

the conclusion that, at low density, the SRO of atoms in a-Ge is tetrahedral and therefore

essentially the same as that of the diamond structure, while at high density the former is close

to the SRO of the β-Sn structure. Our results also show that, in the intermediate-density

region, a drastic structural change accompanying the increase of the density takes place from

the low-density phase to the high-density phase. Note that there exists no long-range order

at all in a-Ge for any density. A remarkable point is that all the structural and dynamical

properties, which are evaluated in the present simulations, consistently indicate the above-

stated conclusion of ours.

Our study here sheds light on the confusion concerning the interpretation of the experi-

mental results by different groups [101–103]. It is also worth noting that our conclusion lends

support to the assertion from experiments in ref. 101 that the high-density configurations of

a-Ge are expected to be the “distorted β-Sn structure”. Let us emphasize, however, that

the expression “distorted” used in ref. 101 is somewhat misleading, because it reminds us of

“high-temperature crystal” in which the connectivity of bonds is exactly the same as that for

a perfect crystal although the atomic positions themselves are thermally disordered.

The high-pressure form of a-Ge has been studied by simulational methods in ref. 105. Most

of their results are similar to our results, but there are some substantial differences. To list

them,

1. In their work, a clear first-order phase transition was observed, while no signs of first-

order phase transition are detected in the present work. The pressure-density curve

shows no discontinuities as seen from Fig. 7.22, showing that the structural change

observed in our work is not of first order.
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Figure 7.22: Pressure obtained from our simulations, plotted against density.

2. The high-pressure form obtained in their work is close to ours, but the bond-angle dis-

tribution function reported has more close-pack-like contributions (peak at 60 ◦), which

implies that the structure obtained in their work is close to that of �-Ge.

One possible explanation for these differences can be given from the difference in the initial

atomic configuration. In ref. 105, the initial atomic configuration was constructed from the

WWW algorithm, and has no defects in the atomic configuration. Actually, this kind of

structure is generally known as a continuous random network (CRN). On the other hand, the

initial atomic configuration used in the present study has been prepared from glass-transition

simulation, and has defects in the atomic configuration [111]. We note that experimentally, a-

Ge has defects; for example, in ref. 107, a coordination number of 3.68 was reported, meaning

that sufficient number of dangling bonds exist in a-Ge. The presence of defects in our case

makes the system readily transformable by means of compression. This situation results in no

clear first-order transition and a different high-density amorphous structure.

7.5 Conclusions for this chapter

In the present chapter, we study the static and dynamical structure of amorphous Ge, using

the O (N) non-orthogonal tight-binding molecular dynamics scheme.
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We first investigate the glass transition in Ge. We start from a liquid well above melting

point, and quench it to an amorphous solid. Clear signs of glass transition are seen from the

behaviors of both the diffusion coefficient and pressure of the system. The static structures

of the liquid, super-cooled liquid, and amorphous Ge are extensively analyzed through the

pair-distribution function, coordination number, static structure factor, and the bond-angle

distribution function, while the dynamical structures are deduced from the VAF and spectrum

density. From these analyses, we conclude that the structure of liquid Ge changes in the

following manner as it transforms into super-cooled liquid and amorphous solid states: (1)

structure originating from isotropic coordination decreases, while structure originating from

covalent bonds increases, and (2) the covalent contribution changes from a highly disordered

tetrahedral configuration to a diamond-like tetrahedral configuration.

We further study the change of a-Ge as the density is increased. The initial a-Ge is the

one obtained in the glass-transition simulation. We gradually increase the density of the

system, and analyze the static and dynamical structures for a-Ge at each density. From

our analyses, we find that the short-range order of a-Ge transforms from tetrahedral at low

density to β-Sn-like at high density. We also find that, at intermediate density, both low-

density and high-density amorphous structures coexist. Some of the results are different from

previous simulations; the differences are explained in terms of the difference in the initial

atomic configurations. Finally, we note that the work performed in this chapter, together

with that of chapter 6, is the first report on a comprehensive investigation concerning liquid

and amorphous Ge at low to high density by computational methods.
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Chapter 8

Concluding remarks

8.1 Summary of our work

The difficulty of any electronic-structure calculation lies in the complexity of the quantum

many-body problem. Applicability of true ab initio calculations (in the sense that electron-

electron interactions are handled exactly), even with the present-day, state-of-the-art comput-

ers, is still limited. Naturally, some kind of an approximation must be adopted in order to

treat realistic condensed-matter systems.

The tight-binding method is one way to deal with the electronic-structure problem. The

strength of the TB method is that calculations are performed efficiently. In particular, it is

possible to perform O (N) calculations. Its weakness, on the other hand, lies in that calcula-

tions which require detailed quantum-mechanical treatments are not easily dealt with.

In the present thesis, we applied the TB and TBMD methods to the study of photolu-

minescence properties in Si nanostructures, and also to the study of structural properties for

covalently-bonded liquids and amorphous solids at various density. Both of these problems

require careful quantum-mechanical considerations. From our studies, we have shown that

the TB methods are applicable to these problems. Moreover, we have successfully performed

O (N) non-orthogonal TBMD simulations, showing that O (N) TB is applicable to relatively

complex TB models. This achievement gives way to O (N) calculations of ab initio electronic-

structure calculations based on localized basis sets.

Now we summarize the achievements obtained in the present thesis.

We described the basic concepts of the TB and TBMD methods in chapters 2 and 3.

In chapter 2, discussions on the basic formulation of the TB method and a brief review of
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MD simulations were given. We further described the way to extend TB calculations to

MD simulations, and gave formulation at finite electron temperature. Then in chapter 3, we

described the order-N TB method. In particular, emphasis was put upon order-N TB for non-

orthogonal TB. We have also introduced several new techniques concerning the calculation of

the expansion coefficient for the density matrix, which allowed us to increase the speed and

the degree of stability for the calculation, and further decrease memory requirements by about

a factor of 20. We successfully performed test MD simulations for non-orthogonal TB model

of Ge, and showed that the method really works. The results obtained show, for the first time,

that order-N non-orthogonal TB is in fact applicable to MD simulations.

In chapter 4 and 5, we investigated the photoluminescence properties of silicon (Si) nanos-

tructures. Silicon nanostructures, unlike bulk Si, are known to show efficient photolumi-

nescence at room temperature. In each of chapters 4 and 5, we introduced new structural

models for Si nanostructures, and calculated their electronic states and optical properties.

In chapter 4, “Si nanostructures devoid of point-group symmetry” were analyzed by the TB

method. Our model differs from previous models in that it has lower symmetry. Our results

revealed that the newly-introduced model well accounts for the discrepancy found between

theoretical calculations and experiments in the behavior of the radiative recombination time

for the so-called ‘S’-band luminescence. This result was interpreted as follows: because of

the lower symmetry of our new model, some forbidden transitions become allowed, which

leads to a change in the behavior of the radiative recombination time. In chapter 5, we intro-

duced another new model. Here, structural relaxation was taken into account for two types

of Si nanostructures, namely, “well-passivated Si nanostructures” and “poorly-passivated Si

nanostructures”. The “poorly-passivated Si nanostructures” were modeled by the following

procedures: for some Si nanostructure under consideration, (1) prepare dangling bonds at the

surface region, (2) calculate structural relaxation for the nanostructure obtained in (1), (3)

re-passivate the nanostructure, and (4) calculate structural relaxation for the nanostructure

of (3) to obtain the final atomic configuration to be used in the analyses of the optical prop-

erties. The “well-passivated Si nanostructures” gave results which are essentially the same as

those found in chapter 4, while the “poorly-passivated Si nanostructures” gave results which
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well describes the behaviors of the so-called ‘F’-band luminescence. From our work, we have

obtained a unified view on the mechanism of ‘S’- and ‘F’-band luminescence by introducing

new structural models for Si nanostructures.

We have further studied the static and dynamical structures of liquid (�-) and amorphous

(a-) Ge in chapters 6 and 7. In particular, we thoroughly investigated the properties at high

density, which are barely known as of now. In chapter 6, we built a NTBMD scheme applicable

to the study of �-Ge at low to high density by introducing a new basis and by refitting

empirical parameters for existing NTB model of Ge. We carried out TBMD simulations

at low to high density, and evaluated the static and dynamical structures at each density.

The obtained results were found to be in excellent agreement with available experimental

data. From our analyses, we found that the following changes occur with density increase:

(1) random configuration typical of liquids increases, and (2) configurations originating from

covalent bonds become close to those of the β-Sn structure. In chapter 7, TBMD simulations

on a-Ge were performed. We used the order-N , NTBMD scheme constructed in the present

work. Firstly, we have done a glass-transition simulation for Ge. We started from a liquid

well above melting point, and quenched it to an amorphous solid. The static and dynamical

structures of the liquid, super-cooled liquid, and amorphous Ge were extensively studied. We

clarified that the large structural change which occurs during the glass transition is addressed

to the increase of the covalent bonds. We further increased the density of a-Ge obtained in

order to study the structural change of a-Ge with density increase. At each density simulated,

we carefully analyzed the static and dynamical structures of a-Ge. Our results show that the

local configuration of a-Ge transforms from tetrahedral configuration at low-density to six-fold

coordinated, β-Sn-like configuration at high density. We have also found that, at intermediate

density, both low-density and high-density amorphous structures coexist. From the present

work, a comprehensive knowledge concerning liquid and amorphous Ge at low to high density

has been obtained for the first time.
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8.2 Work left to be performed

A natural extension for the present work is the development of O (N) methods for ab initio

electronic-structure calculations. Perhaps this demanding task may be possible by the so-

called ab initio TB methods [113]. In these methods, the Hamiltonian and overlap matrix

elements are calculated from first principles. Application of these methods is still limited, and

bottlenecks other than diagonalization of a matrix have prohibited efficient O (N) solutions

to these problems. Nonetheless, its establishment is one step towards the ultimate dream of

computational condensed-matter physicist: to be able to calculate any property of any given

system to the desired accuracy within a computer.
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5. J. Kōga, K. Nishio, F. Yonezawa, and T. Yamaguchi:“Theoretical study on the relation

between structural and optical properties in Si nanostructures”, Physica E 15 pp. 182-

191 (2002).
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[35] S. Nosé, Prog. Theor. Phys. Supp. 103, 1 (1991).
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[111] J. Kōga, K. Nishio, T. Yamaguchi, F. Yonezawa, J. Phys. Soc. Jpn. 73, 136 (2004).

[112] N. Maley, J. S. Lannin, D. L. Price, Phys. Rev. Lett. 56, 1720 (1986).

[113] A. P. Horsfield, A. M. Bratkovsky, J. Phys.: Condens. Matter 12, R1 (2000).


