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Chapter 1

Introduction

Kirkman’s schoolgirls problem: Fifteen young ladies in a school walk out
three abreast for seven days in succession: it is required to arrange them
daily, so that no two walk twice abreast.

Combinatorial designs (or graph decompositions) have their roots in the
work of Euler, who in 1782 introduced the 36 officers problem. In the mid-
19th century, Kirkman, Steiner and Cayley worked on combinatorial designs.
The modern history of design theory is originated in the statistical design of
experiments found by R. A. Fisher and F. Yates in 1920s. Stimulated by the
statistical application, combinatorial design theory has been developed exten-
sively by many researchers including Bose, Ryser, Hanani, Hall and others.
The fundamental problems related to combinatorial designs are their exis-
tence, construction and classification of non-isomorphic designs. In 1970s,
Wilson proved asymptotic existence of a BIB design and the technique was
generalized to the case of simple graph decompositions of complete graphs.

Many authors proposed many useful designs. In 1979, Singh and Dey
introduced a balanced incomplete block design with nested rows and columns
(BIBRC for short), which is posed from the statistical point of view. Mean-
while, Raghavarao constructed square lattice designs. Recently, these designs
are generalized to grid-block designs by Fu, Hwang, Jimbo, Mutoh and Shiue
(2004) to utilize them for a pooling design in DNA library screening. These
designs are classified into so-called “array type” designs, which is one of the
main theme of this thesis.

An “edge-colored graph decomposition” is equivalent to some combinato-
rial design. That is, the existence of a combinatorial design is shown by ap-
plying a corresponding edge-colored graph decomposition of complete graph.
In fact, array type designs can be represented by the terms of edge-colored
graph decompositions. Such approach can provide more general results not
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only for array type designs.
In this thesis, we will discuss constructions of array type combinatorial

designs and show existence of the designs and will determine the existence
of array type designs for some specific parameters. The method of Lamken
and Wilson (2000) is useful to show asymptotic existence of combinatorial
designs, which correspond to that of simple edge-colored graph decomposi-
tions of complete graphs. However, their method may not be applied to the
existence of some kinds of array type designs like BIBRCs. We will generalize
their notion to the case of “colorwise simple graphs” and show asymptotic
existence of such graph decompositions of complete graphs. Moreover, the
results are applied to the existence problem of BIBRCs.

In this chapter, we briefly describe some backgrounds of combinatorial
designs related to this thesis.

1.1 Background of combinatorial designs

The combinatorial designs were started by Euler who introduced 36 officers
problem in 1782 and began the search for pairs of orthogonal Latin squares
(or mutually orthogonal Latin squares). Euler went on to conjecture that
such an n × n array does not exist for n = 6, nor does one exist whenever
n ≡ 2 (mod 4). This was known as the Euler conjecture until its disproof in
1960 by Bose, Shrikhande and Parker [18].

In the mid-19th century, Kirkman [59, 60] and Steiner [92] proved the
existence of Steiner triple systems. Kirkman introduced the 15 schoolgirls
problem in his paper [60]. The existence of Kirkman triple systems was a cel-
ebrated open problem throughout the period 1850-1970. The first published
solution was given by Ray-Chaudhuri and Wilson [84]. The first record of a
solution appears to be that of Lu Jiaxi [66] in Mongolia in 1965.

Thus, combinatorial design theory has been started from these problems.
Since then, the first papers dealing directly with decompositions of graphs
due to Petersen, Kempe, Tait, Heawood, König and others. Some of them
are closely related to combinatorial designs.

In the early part of the 20th century, design of experiments has been built
up by two founders, R. A. Fisher and F. Yates. In 1925, Fisher introduced
the three basic principles for planning experiments, i.e., (i) replication, (ii)
randomization, (iii) local control (or blocking), in his famous books [42, 43].
In 1936, Yates proposed the use of balanced incomplete block designs for some
agricultural experiments in his paper [106].

At the earliest stage of the study, there was no other practical applica-
tion than agricultural field experiment. Later, block designs have played an
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important role in industrial experiment. Indeed, it is known that orthogonal
array, factorial designs, etc., which are often used for production manage-
ment in industries, have a deep relation with some kinds of block designs
(see, for instance, [14, 29, 38]). Also, we can find a significant role of block
designs also in the filed of information science, for example, coding theory
[10, 68], cryptography [93], computer science [31], etc.

In the mid-20th century, Bose [16], Rao [82, 83] studied systematic con-
structions for combinatorial designs by using finite fields and finite geome-
tries. Those techniques have been further developed and contributed to
the investigation of various kinds of block designs. Subsequently, Hanani
[46, 47, 48] proved the existence of BIB designs with block sizes 3, 4 and 5
and gave partial results for 6 and 7. Recently, we obtained the partial results
of the existence of BIB designs with block sizes smaller than 10. Also, Bose
[17] introduced the term of resolvable designs, which was initially posed by
Kirkman [60].

Another attractive property for block designs would be automorphisms
(for example, cyclic, abelian and rotational property). The reason why cyclic
(or abelian, rotational) property is so attractive is that we can generate
designs easily from a set of blocks called base blocks (initial or starter blocks)
without knowing all blocks of the designs.

The concept of a nested design was introduced by Preece [80] in 1967 as a
generalization of a resolvable design. In 1979, Singh and Dey [90] introduced
a balanced incomplete block design with nested rows and columns (BIBRC
for short), and they gave a construction with some examples. Several con-
structions are obtained in many papers. However, most constructions give
completely balanced BIBRCs (or criss-cross nested BIBDs), which were intro-
duced by Morgan [72] and Preece [80], respectively. Uddin and Morgan [98]
gave constructions for non-completely balanced BIBRC. As far as the au-
thor knows, these are only direct constructions for non-completely balanced
BIBRC.

Moreover, combinatorial designs were used as an efficient way of group
testing such as medical science and pharmaceutical science (see, for example,
Du and Hwang [40]). Recently, Hwang [52] proposed array type designs for
DNA library screenings (see, for example, [12, 13]). Since then, Fu, Hwang,
Jimbo, Mutoh and Shiue [44] introduced grid-block designs for the applica-
tion to the DNA library screenings. Berger, Mandell and Subrahmanya [13]
showed that array type designs are useful for DNA library screenings from
information theoretical point of view.

In 1970’s, Wilson [99, 100, 101] showed that PBD-closed sets are eventu-
ally periodic. Three years later, he [103] showed that the necessary conditions
for existence of BIB designs are sufficient for all sufficiently large positive in-
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tegers by utilizing the previous result. Afterward, he [102, 104] also proved
that the necessary conditions for existence of simple graph decompositions
of complete graphs are sufficient for all sufficiently large integers by the same
result.

Since then, Colbourn and Stinson [32] and Caro, Roditty and Schönheim
[22, 23, 24] worked on some edge-colored designs (or edge-colored graph de-
compositions). Lamken and Wilson [63] proved that necessary conditions
for simple edge-colored graph decompositions of complete graphs are suffi-
cient for all sufficiently large integers. And they mentioned that these graph
decompositions are equivalent to some combinatorial designs, for example,
resolvable BIB designs, nested BIB designs, reverse triple systems, skew room
squares, etc.

Again, the fundamental problems related to designs are their “existence,”
“construction” and “classification of non-isomorphic designs” from a combi-
natorial (or mathematical) point of view. In this thesis, we will mention
constructions of array type combinatorial designs and show existence of the
designs. And we will generalize the technique of Lamken and Wilson to col-
orwise simple edge-colored graphs and show the asymptotic existence of such
graph decompositions of complete graphs and BIBRCs.

1.2 BIB designs and other combinatorial

designs

Let V be a set of v elements, called points or treatments, and B be a collection
of k-subsets, called blocks, of V , where |B| = b. A pair (V, B) is called a
balanced incomplete block (BIB) design or 2-design, if the following conditions
are satisfied:

(i) Every point occurs at most once in each block of B.

(ii) Every pair of two distinct points of V occurs in exactly λ blocks of B.

It is easy to see that the number r of blocks containing a given point x is a
constant not depending on the choice of x and that the relations

vr = bk and λ(v − 1) = r(k − 1) (1.2.1)

hold among the five parameters v, k, r, b, and λ of a BIB design. Since the
parameters satisfies the relations (1.2.1), a BIB design is often denoted by
B(v, k, λ) by omitting b and r.
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Example 1.2.1 A B(7, 3, 1) is given by V = {0, 1, . . . , 6} and

B =

{ {0 1 3}, {1 2 4}, {2 3 5}, {3 4 6},
{4 5 0}, {5 6 1}, {6 0 2}

}
.

It can be readily checked that each pair of distinct points occurs together in
exactly one block, i.e., λ = 1.

Here, we define an isomorphic BIB design as follows. Let (V1, B1) and
(V2, B2) be a B(v, k, λ). (V1, B1) and (V2, B2) are isomorphic B(v, k, λ)’s
if there exists a bijection σ : V1 → V2 such that Bσ

1 belongs to B2 for any
B1 ∈ B1, where Bσ = {bσ1 , bσ2 , . . . , bσk}.

By the equations (1.2.1), the following lemma is obtained.

Lemma 1.2.1 Necessary conditions for the existence of a B(v, k, λ) are

λ(v − 1) ≡ 0 (mod k − 1) and λv(v − 1) ≡ 0 (mod k(k − 1)).

When k = 3, 4 and 5, it has been proved by Hanani [46, 47, 48] that
the conditions of Lemma 1.2.1 are also sufficient for the existence of a BIB
design except for the non-existence of B(15, 5, 2). For k ≥ 6, the conditions
in Lemma 1.2.1 may not be sufficient in general. For k = 6, 7 and 8, partial
results were established for some specified λ by Abel, Bluskov and Greig [1],
Abel, Finizio, Greig and Lewis [2, 3], Abel and Greig [6], Hanani [47, 48],
etc.

Let M and K be finite or infinite sets of positive integers. Again, assume
that V is a finite set of v points and B is a collection of blocks of V , size of each
block from a set K, i.e., K = {|B| : B ∈ B}. Further let G be a partition of V
into subsets called groups whose sizes belong to M . Then a triple (V, G, B) is
called a group divisible design, denoted by GD(v, K, M, λ), if the following
conditions are satisfied:

(i) For each group G ∈ G and each block B ∈ B, |G ∩B| ≤ 1 holds.

(ii) Every pair of points from distinct groups occurs in exactly λ blocks.

The type of a group divisible design (V, G, B) is the multiset of {|G| : G ∈ G}
and an exponential notation is used to describe types: a type gu1

1 g
u2
2 · · · gun

n

denotes ui occurrences of gi, 1 ≤ i ≤ n.
When M = {1}, that is, the type of a group divisible design is 1v, then

a pair (V, B) is called a pairwise balanced block design (PBD), denoted by
B(v, K, λ). When M = {1} and K = {k} for an integer k, a group divisible
design (V, G, B) is naturally a BIB design (V, B). While, when M = {n},
K = {k} and the type of a group divisible design is nk, a triple (V, G, B) is
called a transversal design.
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Example 1.2.2 A GD(20, {5}, {4}, 1) is given by V = {0, 1, . . . , 19},

G =

{ { 0 1 2 3 }, { 4 5 6 7 }, {8 9 10 11},
{12 13 14 15}, {16 17 18 19}

}
and

B =



{0 4 8 12 16}, {0 5 9 13 17}, {0 6 10 14 18}, {0 7 11 15 19},
{1 4 9 14 19}, {1 5 8 15 18}, {1 6 11 12 17}, {1 7 10 13 16},
{2 4 10 15 17}, {2 5 11 14 16}, {2 6 8 13 19}, {2 7 9 12 18},
{3 4 11 13 18}, {3 5 10 12 19}, {3 6 9 15 16}, {3 7 8 14 17}


 ,

which is a transversal design.

Group divisible designs, transversal designs and pairwise balanced block
designs are useful to construct combinatorial designs recursively and to show
the existence of combinatorial designs. For a finite or infinite setK of positive
integers, B(K) be the set of integers v such that there exists a B(v, K, 1).
Then, K is called a PBD-closed set if B(K) = K holds. This notion is
the most useful tool for showing the asymptotic existence of combinatorial
designs.

In 1960, Chowla, Erdös, and Straus [28] showed that transversal designs
always exist for sufficiently large positive integers, where they use the term
of the maximal number of pairwise orthogonal Latin squares. This proof was
based on the result of Bose, et al. [18]. As far as the author knows, this
result was the first asymptotic existence of the combinatorial designs.

In 1972, Wilson [100, 101] showed that PBD-closed sets are eventually
periodic by combining his result [99] and Chowla, et al. [28]. Three years
later, he [103] showed that the necessary conditions for the existence of BIB
designs are sufficient for all sufficiently large positive integers by utilizing the
property of PBD-closed sets.

Next, we define a resolvable BIB design. Let (V, B) be a BIB design. For
a subclass B′ ⊆ B, if {B : B ∈ B′} is a partition of V , then B′ is called a
resolution class (or a parallel class). A pair (V, B) is called a resolvable BIB
design if the collection B of blocks can be partitioned into resolution classes.

Example 1.2.3 A resolvable B(15, 3, 1) is given by V = {∞}∪{00, 10, . . . ,
60} ∪ {01, 11, . . . , 61} and

B =




{∞ 00 01}, {10 20 40}, {21 30 51}, {31 41 60}, {50 61 11},
{∞ 10 11}, {20 30 50}, {31 40 61}, {41 51 00}, {60 01 21},
{∞ 20 21}, {30 40 60}, {41 50 01}, {51 61 10}, {00 11 31},
{∞ 30 31}, {40 50 00}, {51 60 11}, {61 01 20}, {10 21 41},
{∞ 40 41}, {50 60 10}, {61 00 21}, {01 11 30}, {20 31 51},
{∞ 50 51}, {60 00 20}, {01 10 31}, {11 21 40}, {30 41 61},
{∞ 60 61}, {00 10 30}, {11 20 41}, {21 31 50}, {40 51 01}



.
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This is a solution of Kirkman’s fifteen schoolgirls problem.

It is obvious that the following result holds.

Lemma 1.2.2 Necessary conditions for the existence of a resolvable (V, B)
are

λv ≡ 0 (mod k) and λ(v − 1) ≡ 0 (mod k − 1).

In fact, the first question on a resolvable design was to find a resolvable
B(15, 3, 1) posed by Kirkman [60] in 1850, though the concept of resolvability
was introduced much later, in 1942, by Bose [17]. In Mathon and Rosa
[71], it can be found that there are exactly seven nonisomorphic resolvable
B(15, 3, 1).

Solutions of the existence of a resolvable B(v, 3, 1) were given by Lu [66]
in 1965 and Ray-Chaudhuri and Wilson [84] in 1971, independently. One
year later, Hanani, Ray-Chaudhuri and Wilson [49] derived a necessary and
sufficient condition for the existence of a resolvable B(v, 4, 1). Next year,
Ray-Chaudhuri and Wilson [85] showed that the necessary conditions of re-
solvable B(v, k, 1) are sufficient for all sufficiently large integers by utilizing
the property of PBD-closed set. In 1984, for any positive integer λ, Lu
[67] proved that the necessary conditions of resolvable B(v, k, λ) are suffi-
cient for all sufficiently large integers. His paper was written in Chinese.
In 1995, Lee and Furino [64] translated his paper into English. Abel and
Greig [5] constructed resolvable B(v, 5, 1) for all but six possible exceptions
v ∈ {45, 185, 225, 345, 465, 645}. The existence of a B(185, 5, 1) was shown
by Abel, Ge, Greig and Zhu [4].

1.3 Grid-block designs, packings and

resolvability

Let V be a set of v points and A be a collection of k1 × k2 arrays with
elements in V . Each array in A is called a grid-block. A pair (V, A) is called
a grid-block design, denoted by GB(v, k1, k2), if the following conditions are
satisfied:

(i) Every point occurs at most once in each grid-block of A.

(ii) Every pair of two distinct points of V occurs exactly once in the same
row or in the same column of a grid-block.

Especially, when v = k1 × k2 and k1 = k2 hold, then a pair (V, A) is called
square lattice design.
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Example 1.3.1 A GB(10, 2, 3) is given by V = {0, 1, . . . , 9} and

A =

{
1 2 4
7 6 9

,
2 3 5
8 7 0

,
3 4 6
9 8 1

,
4 5 7
0 9 2

,
5 6 8
1 0 3

}
.

Example 1.3.2 A GB(9, 3, 3) is given by V = {1, 2, . . . , 8} and

A =




1 2 3
4 5 6
7 8 9

,
1 6 8
9 2 4
5 7 3


 ,

which is a square lattice design.

In a k1 ×k2 grid-block design (V, A), each point x of V has v−1 distinct
points which occur together with x in the same row or in the same column,
while each entry of a k1 × k2 grid-block has k1 + k2 − 2 entries in the same
row or in the same column. That is, the number r of grid-blocks containing
a given point x is

r =
v − 1

k1 + k2 − 2
, (1.3.1)

which is a constant not depending on the choice of x. Also, there are
v(v− 1)/2 pairs which occur once in a grid-block of A while each grid-block
generates k1k2(k1 + k2 − 2)/2 pairs. Thus, the number b of grid-blocks is

b =
v(v − 1)

k1k2(k1 + k2 − 2)
. (1.3.2)

Since r and b must be integers, we obtain the following lemma from equations
(1.3.1) and (1.3.2).

Lemma 1.3.1 Necessary conditions for the existence of a GB(v, k1, k2) are

v − 1 ≡ 0 (mod k1 + k2 − 2) and

v(v − 1) ≡ 0 (mod k1k2(k1 + k2 − 2)).
(1.3.3)

A grid-block designs was introduced by Fu et al. [44] to apply it to DNA
library screening. When k1 = k2 = 2, it is known that the condition of
Lemma 1.3.1 is also sufficient for the existence of a GB(v, 2, 2) in terms of
“4-cycle systems.” When k1 = 2 and k2 = 3, it has been proved by Carter
[25] that the condition of Lemma 1.3.1 is also sufficient for the existence of
a GB(v, 2, 3). He utilized the notion of 3-regular graph decompositions.

Next, we define a packing and a grid-block packing. For a set V of v
points, let B be a collection of k-subsets. A pair (V, B) is called a packing,
denoted by P(v, k, λ), if the following condition (ii)’ is satisfied instead of
the condition (ii) in the definition of a BIB design:
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(ii)’ Every pair of two distinct points of V occurs in at most λ blocks B.

Similarly, let A be a collection of grid-blocks. A pair (V, A) is called a grid-
block packing, denoted by GBP(v, k1, k2), if the following condition (ii)’ is
satisfied instead of the condition (ii) in the definition of a k1 × k2 grid-block
design:

(ii)’ Every pair of two distinct points of V occurs at most once in the same
row or in the same column of a grid-block.

Similarly, for a packing (V, B), it is called a resolvable packing if the
collection of blocks can be partitioned into resolution classes. And for a grid-
block design (or grid-block packing) (V, A) is also called resolvable if the
collection of grid-blocks can be partitioned into resolution classes. Example
1.3.2 is a resolvable grid-block design.

Example 1.3.3 A resolvable grid-block packing GBP(8, 2, 2) is given by
V = {∞0, 00, 10, 20} ∪ {∞1, 01, 11, 21} and

A =




∞0 00

01 ∞1
,

∞0 10

11 ∞1
,

∞0 20

21 ∞1
,

10 20

21 11
,

20 00

01 21
,

00 10

11 01



.

Example 1.3.4 A resolvable grid-block packing GBP(18, 3, 3) is given by
V = {0, 1, . . . , 17} and

A =




0 1 2
3 4 5
6 7 8

,
0 4 8
5 6 9
7 10 14

,
0 9 13
10 17 8
12 7 3

,

9 10 11
12 13 14
15 16 17

,
1 3 15
12 16 11
17 2 13

,
1 5 11
6 15 2
16 14 4



.

For a grid-block packing (V, A) with v points, let rx be the number of grid-
blocks containing a point x. Then,

rx ≤
⌊ v − 1

k1 + k2 − 2

⌋

9



holds, where 
a� be the largest integers not exceeding a. If a grid-block
packing is resolvable, then v is divisible by k1k2, rx is a constant (= r) and
the number of grid-blocks is

b = r
v

k1k2

≤ v

k1k2

⌊ v − 1

k1 + k2 − 2

⌋
.

A resolvable grid-block packing attaining this bound is said to be maximal.
In Example 1.3.3, the resolvable GBP(8, 2, 2) is maximal. On the other
hand, the resolvable GBP(18, 3, 3) in Example 1.3.4 is not maximal since
the upper bound of the number of resolution classes is 4.

1.4 DNA library screening: an application of

grid-block designs

In DNA library screening, there are many oligonucleotides (clones) to be
tested whether they are positive or negative. An oligonucleotide is a short
string of nucleotides adenine (A), cytosine (C), guanine (G) and thymine
(T). The goal of a DNA library screening is to identify all positive clones.
Economy of time and costs requires that the clones be assayed in groups.
Each group is called a pool. If a pool gives a negative outcome, all clones
contained in it are found to be negative. In this case, we can save numbers
of tests. On the other hand, if the pool is positive, at the second stage we
test each clone individually. This screening method is called a two-stage test,
which is a popular group testing.

In such screening, a microtiter plate, which is an array with size 8 × 12
or 16×24, etc. is utilized and different clones are settled in each spot, called
well, of the plate.

In this method, every row and every column in a microtiter plate is tested
at the same time as a pool in the first stage, and each clone with positive
response is tested individually in the second stage. This method is called
the basic matrix method (BMM). In this method each clone is tested twice.
If the array contains only a single positive clone, or more generally, if there
is only one row (or column) of positive then we can determine the positive
clones without individual tests. However, it does not always occur, that is,
arrays often contain several positive clones. For example if two rows and
two columns are positive as we see in Figure 1.4.1 (b), we can not determine
whether the four clones settled at the crossing spots of positives are really
positive or not.

Thus, if it is allowed to test more than twice for each clone, then, it is
desired that every two distinct clones occur at most once in the same row
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or the same column, which is called the unique collinearity condition. The
efficiency of the unique collinearity condition was shown by Barillot, Lacroix
and Cohen [12] by simulation and was also proved theoretically by Berger,
Mandell and Subrahmanya [13].

:  a positive response

:  a positive clone

(a) One column is positive.

:  a positive response

:  a semipositive clone

(b) Two rows and columns are positive.

Figure 1.4.1: Results of the first stage group tests in DNA library screening.

We consider the case when there is a single positive clone within the set
of v clones and we place those clones on t k1×k2 microtiter plates at random
allowing repetition, where n = tk1k2 ≥ v holds. Then, the expectation of the
total number of different clones, which occur in at least one microtiter plate,
is

1

vn

v∑
k=1

k

(
v

k

) k∑
i=1

(−1)k−i

(
k

i

)
in = v − (v − 1)n

vn−1
= v −

(
1 − 1

v

)n

v.

In this case, the expectation of the number of individual tests we need is at
least (1 − 1

v
)nv. However, if n = v and each clone is settled exactly once

on the microtiter plates, then we can decide the positive/negative only by
the first stage group tests since there is only one positive clone and we can
reduce about (1 − 1

v
)vv tests comparing with the randomly allocated test.

In the case when the probability p of positive clones are given, we can also
show it by a simulation shown in Figure 1.4.2. In this figure, there are
v = 1000 clones. The vertical line is the number of tests for (i) the case of
the same replication number and (ii) the case when the replication numbers
are not constant. From Figure 1.4.2, we can see that, in case of the constant
replications, the number of tests can be reduced comparing with the case of
non-constant replications.
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Figure 1.4.2: A simulation result of a comparison between (i) constant repli-
cations and (ii) random replications.

It is a favorite property that the number of replications for each clone
should be almost the same in the first stage. This condition is called the
equal replication number of tests.

A k1 × k2 grid-block packing defined by Section 1.3 satisfies “the unique
collinearity condition,” besides, a resolvable k1 × k2 grid-block packing sat-
isfies also “the equal replication number of tests.”

Berger et al. [13] gave the optimal size of the array and the optimal repli-
cation number according as the probability (ratio) p of positive clones under
the implicit condition of the equal replication number of tests. Though they
utilized the terminology of “n-dimensional array,” it implies that the repli-
cation numbers are equal (= 2n). Knill, Bruno and Torney [96] considered
non-adaptive group testing problems with some errors.

1.5 Nested BIB designs and BIB designs with

nested rows and columns

For a set V of v points, let B1 and B2 be collections of k1-subsets (called
superblocks) and k2-subsets (called subblocks) of V , respectively, where k2

divides k1. A triple (V, B1, B2) is called a nested balanced incomplete block
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design (nested BIB deign) and is denoted by nested B(v; k1, λ1; k2, λ2) if the
triple satisfies the following conditions:

(i) (V, B1) is a B(v, k1, λ1),

(ii) (V, B2) is a B(v, k2, λ2) and

(iii) Each block of B1 can be partitioned into k1/k2 subblocks having k2

elements each such that the resulting collection of subblocks coincides
with the collection B2.

For a nested BIB design (V, B1, B2), we say that the blocks B2 are nested
within those in B1.

The concept of this “nested BIB design” was first introduced in the sta-
tistical literature in 1967 by Preece [80] as a generalization of a resolvable
design in which a resolution class and a block are considered as a nesting
block and a subblock of a nested BIB design, respectively. Independently of
Preece, in 1972, Federer [41] brought another concept under the name of a
“nested BIB design.” Kageyama and Miao [56, 57] unified the two concepts
of nested designs.

Example 1.5.1 A nested B(7; 6, 5; 3, 2) is given by V = {0, 1, . . . , 6} and

B =




({0 1 3} {5 4 2}), ({1 2 4} {6 5 3}),
({2 3 5} {0 6 4}), ({3 4 6} {1 0 5}),
({4 5 0} {2 1 6}), ({5 6 1} {3 2 0}),
({6 0 2} {4 3 1})


 .

Each part enclosed by parentheses is a superblock. In a superblock, there
are two subblocks of size 3 which are enclosed by the braces.

Constructions for nested BIB designs have been studied by Bailey, Goldrei
and Holt [11], Dey, Das and Banerjee [37], Jimbo and Kuriki [54], Kageyama
and Miao [58] and other people. Morgan [72] and Morgan, Preece and Rees
[73] gave some constructions of nested BIB designs and listed known results
on the existence of nested BIB designs for v ≤ 36 and r ≥ v − 1. The uses
and statistical analysis of nested designs are available in the literature (see,
for example, [21, 41, 72, 80]).

Next, we give a definition of a “BIBRC.” For a set V of v points, let
A be a collection of b arrays of size k1 × k2 (called blocks) whose entries
are elements of V . We denote the numbers of blocks of A in which two
distinct points x and y occur in the same row, in the same column and in
the same block by λR{x, y}, λC{x, y} and λB{x, y}, respectively. We often
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use λE{x, y} = λB{x, y} − λR{x, y} − λC{x, y} instead of λB{x, y}. A
pair (V, A) is called a balanced incomplete block design with nested rows and
columns (BIBRC for short), denoted by BIBRC(v, k1, k2, λ), if the following
conditions are satisfied:

(i) Every point occurs at most once in each block of A.

(ii) Every point occurs in exactly r blocks of A.

(iii) For any pair of distinct points x and y,

λ = k1λR{x, y} + k2λC{x, y} − λB{x, y}
= (k1 − 1)λR{x, y} + (k2 − 1)λC{x, y} − λE{x, y}

is a constant independent of the pair of points x and y.

A BIBRC was introduced by Singh and Dey [90]. Moreover, if the following
stronger condition (iii)’ holds instead of (iii), then a pair (V, A) is called a
criss-cross nested BIBD or a completely balanced BIBRC which were intro-
duced by Preece [80] (see also [72]).

(iii)’ For any pair of distinct points x and y, λR{x, y}, λC{x, y} and λB{x, y}
(or λE{x, y}) are constants, say λR, λC and λB (or λE), independent
of the pair of points x and y.

In this case, we call the constants λR, λC , λB and λE indices of a completely
balanced BIBRC. For a completely balanced BIBRC, it is easy to show that
the indices are uniquely determined by k1, k2 and λ as follows:

λR =
λ

k1 − 1
, λC =

λ

k2 − 1
, λB =

(k1k2 − 1)λ

(k1 − 1)(k2 − 1)
, and λE = λ. (1.5.1)

Example 1.5.2 A BIBRC(5, 2, 2, 1) is given by V = {0, 1, . . . , 4} and

A =

{(
0 1
2 3

)
,

(
0 4
1 2

)
,

(
0 3
4 1

)
,

(
0 2
3 4

)
,

(
1 2
4 3

)}
.

In this case, λ is a constant 1, but λR{x, y}, λC{x, y} and λB{x, y} are not.
For example, the pair {0, 2} is contained once in the same row, once in the
same column and three times in blocks, which gives

λ = k1λR{0, 2} + k2λC{0, 2} − λB{0, 2} = 1.

On the other hand, the pair {3, 4} is contained twice in the same row, three
times in blocks, but not contained in any columns, which also gives

λ = k1λR{3, 4} + k2λC{3, 4} − λB{3, 4} = 1.
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Example 1.5.3 A BIBRC(7, 2, 3, 2) is given by V = {0, 1, . . . , 6} and

A =




(
0 1 3
5 4 2

)
,

(
1 2 4
6 5 3

)
,

(
2 3 5
0 6 4

)
,

(
3 4 6
1 0 5

)
,

(
4 5 0
2 1 6

)
,

(
5 6 1
3 2 0

)
,

(
6 0 2
4 3 1

)


.

This BIBRC is a completely balanced BIBRC(7, 2, 3, 2). In this case, λR,
λC and λB are constants, i.e., λR = 2, λC = 1 and λB = 5, independent of
the choice of two distinct points.

For the existence of a BIBRC(v, k1, k2, λ), Singh and Dey [90] showed as
the following:

Lemma 1.5.1 Necessary conditions for the existence of a BIBRC(v, k1, k2,
λ) are

λ(v − 1) ≡ 0 (mod (k1 − 1)(k2 − 1)) and

λv(v − 1) ≡ 0 (mod k1k2(k1 − 1)(k2 − 1)).
(1.5.2)

For a BIBRC, several constructions were given by Agrawal and Prasad [7,
8, 9], Cheng [26], Hishida and Jimbo [51], Jimbo and Kuriki [54], Morgan [72],
Mukerjee and Gupta [75], Street [94], Uddin [97], Uddin and Morgan [98],
etc. The existence of BIBRC(v, 2, 2, λ) was completely solved by Srivastav
and Morgan [91].

1.6 Graph decompositions of complete graphs

Let C be a set of colors {1, 2, . . . , c}. An edge-c-colored graphG is an ordered
4-tuple (X(G), E(G), θG, ψG) consisting of a nonempty set X(G) of vertices,
a set E(G), disjoint from X(G), of edges, a color function θG assigned from
E(G) to C and an incidence function ψG that associates each edge of G with
an unordered pair of distinct vertices of G. If i is a color and e is an edge
such that θG(e) = i, it is said that e has the color i. If e is an edge and x
and y are vertices such that ψG(e) = {x, y}, then e is said to join x and y;
the vertices x and y are called the ends of e.

Let Ei be the subset of E assigned color i, that is, Ei = θ−1
G (i). Then

E can be divided into disjoint sets {E1, E2, . . . , Ec} and we define E as the
partition {E1, E2, . . . , Ec}. As long as there are no confusion, we often omit
θG and ψG and use a pair G = (X, E) as an edge-c-colored graph instead
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of (X(G), E(G), θG, ψG). If C consists of a single color, an edge-1-colored
graph G = (X(G), E(G), ψG), or (X, E), is simply called graph which is the
usual graph.

If (X, E1 ∪ E2 ∪ · · · ∪ Ec) is a simple graph, that is E1 ∪ E2 ∪ · · · ∪Ec

does not include multiple edges nor loops, then (X, E) is called a simple
edge-c-colored graph. And a pair (X, E) is called a colorwise simple graph
with c colors if (X, Ei) is a simple graph for each color i. That is, there are
no loops, there is at most one edge {x, y} between any two vertices x and y
in each (X, Ei). When dealing with colorwise simple graph with c colors, it
is often convenient to refer to the edge of color i with ends x and y as “the
edge {x, y} of color i.”

Example 1.6.1 Three graphs G1, G2 and G3 in Figure 1.6.1 are edge-3-
colored, colorwise simple edge-3-colored and simple edge-3-colored graphs,
respectively.

(a) an edge-3-colored
graph

(b) a colorwise simple
edge-3-colored graph

(c) a simple edge-3-
colored graph

Figure 1.6.1: Examples of edge-3-colored graphs.

Let λ = (λ1, λ2, . . . , λc) be a vector of positive integers. An edge-c-
colored graph G = (X, E) is called an edge-c-colored complete graph of mul-
tiplicity λ, denoted by K–

v , if the graph on v vertices has exactly λi edges
of color i between any two distinct vertices x and y. When the greatest
common divisor λ of λi’s is greater than 1, we often use λK

–/λ
v instead of

K–
v . Especially in the case when λ = (1, 1, . . . , 1), K–

v is a colorwise simple

edge-c-colored complete graph and denoted by K
[c]
v instead of K–

v . Moreover,

in the case of c = 1, K
[1]
v is the usual complete graph, denoted by Kv.

Let G = (X(G), E(G), θG, ψG) and G′ = (X(G′), E(G′), θG′ , ψG′) be
edge-c-colored graphs with the same color set C. G is said to be isomorphic
to G′ if there exist bijections ΦX from X(G) to X(G′) and ΦE from E(G) to

16



E(G′) such that θG(e) = i and ψG(e) = {x, y} if and only if θG′(ΦE(e)) = i
and ψG′(ΦE(e)) = {ΦX(x), ΦX(y)}.

Let F be a family of subgraphs of a graph K. F is called a decomposition
of K if every edge in E(K) belongs to exactly one member of F . Given a
family G of edge-c-colored graphs, a G-decomposition of K is a decomposition
F , denoted by D(K, G), such that every graph F in F is isomorphic to some
graph G in G. If G consists of a single graph G, then G-decomposition is
simply called a G-decomposition denoted by D(K, G).

Example 1.6.2 Let G4 be a colorwise simple edge-2-colored graph shown
in Figure 1.6.2. A D(K

[2]
7 , G4) with vertex set V = {0, 1, . . . , 6} is given by

F in Figure 1.6.3.

Figure 1.6.2: A colorwise simple edge-2-colored graph G4.
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40

26

Figure 1.6.3: A G4-decomposition of K
[2]
7 .

There are a number of examples of decompositions of Kv into graphs with
a single color. For example, a B(v, k, λ) is equivalent to a D(λKv, Kk) and
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a B(v, K, λ) is equivalent to a D(λKv, G), where G is a family of complete
graphs with k vertices for k ∈ K.

The cartesian product of graphs G = (X, E) and G′ = (X ′, E ′), denoted
by G × G′, is defined by a graph on the vertex set X × X ′ such that two
vertices x = (x, x′) and y = (y, y′) are adjacent whenever x = y and x′

is adjacent to y′ in G′ or symmetrically if x′ = y′ and x is adjacent to y
in G. Then, a k1 × k2 grid-block is equivalent to a graph Kk1 × Kk2 and a
GB(v, k1, k2) is equivalent to a D(Kv, Kk1 ×Kk2).

Other decompositions of Kv into cycles and other small graphs have also
been investigated and surveys of these results can be found in [15, 50, 65].

There are a few examples of decompositions of K–
v by graphs with more

than one color (see [22, 23, 24, 32]). For a color set C = {1, 2} and a vertex
set X of sk2 vertices, let G5 = (X, E) be the following simple edge-2-colored
graph:

(i) X1, X2, . . . , Xs is a partition of X such that each group Xi has k2

points.

(ii) There is an edge of color 1 between every two vertices from distinct
groups.

(iii) There is an edge of color 2 between every two vertices from the same
group.

Then, a nested B(v; k1, λ1; k2, λ2) is equivalent to a D(K
(λ1−λ2, λ2)
v , G5),

where k1 = sk2.
Similarly, for a color set C = {1, 2, 3} and for vertex sets X1 and X2

with k1 and k2 vertices each, let G6 = (X1 ×X2, E) be the following simple
edge-3-colored graph:

(i) Every edge between vertices (x1, x2) and (x1, x
′
2) has the color 1 for

x1 ∈ X1 and x2 �= x′2 ∈ X2.

(ii) Every edge between vertices (x1, x2) and (x′1, x2) has the color 2 for
x1 �= x′1 ∈ X1 and x2 ∈ X2.

(iii) Every edge between vertices (x1, x2) and (x′1, x
′
2) has the color 3 for

x1 �= x′1 ∈ X1 and x2 �= x′2 ∈ X2.

By identifying G6 with a k1×k2 array, a completely balanced BIBRC(v, k1, k2,

λ) is equivalent a D(K
(λR, λC , λE)
v , G6), where λR = λ/(k1−1), λC = λ/(k2−1)

and λE = λ. Other decompositions of K–
v into some simple edge-r-colored

graphs have been studied and such decompositions were applied to show the
asymptotic existence of combinatorial designs by Lamken and Wilson [63].
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We define a notion of “admissibility” to show necessary conditions for
the existence of G-decompositions of K–

v . Let G be a family of edge-c-colored
graphs G and λ = (λ1, λ2, . . . , λc) be a vector of positive integers. For a
vertex x of an edge-c-colored graph G = (X, E), the degree-vector of x is
defined by

τG(x) = (deg1(x), deg2(x), . . . , degc(x)),

where degi(x) denotes the degree of vertex x in the subgraph (X, Ei) of G
determined by the number of edges of color i with end x, 1 ≤ i ≤ c. We
denote by α(G; λ) the greatest common divisor of the integers t satisfying∑

G∈G

∑
x∈V (G)

aG, xτG(x) = t(λ1, λ2, . . . , λc)

for integers aG, x. If there is no such t, we define α(G; λ) = 0. Equivalently,
α(G; λ) is the least positive integer t0 such that t0λ is an integral linear
combination of the degree-vectors τG(x). When G consists of a single edge-
c-colored graph, α({G}; λ) is simply denoted by α(G; λ).

For each G, let µ(G) = (m1, m2, . . . , mc), where mi is the number of
edges of color i in G. Then it follows that µ(G) = 1

2

∑
x∈V (G) τG(x). We

denote by β(G; λ) the greatest common divisor of integers m satisfying∑
G∈G

bGµ(G) = m(λ1, λ2, . . . , λc)

for integers bG. If there is no such m, we define β(G; λ) = 0. Equivalently,
β(G; λ), if not zero, is the least positive integer m0 such that m0λ is an
integral linear combination of the vectors µ(G). When a family G consists of
a single graph G, assume that the greatest common divisor of λi’s is 1. If G
has mλi edges of each color i, then β({G}; λ) (or simply β(G; λ)) is m and
is zero otherwise.

We remark that α(G; λ) is always a divisor of 2β(G; λ) since

2β(G; λ) · λ =
∑
G∈G

bG · 2µ(G) =
∑
G∈G

∑
x∈V (G)

bGτG(x),

which is a scalar multiple of α(G; λ) · λ.
If a G-decomposition of K–

v exists, then the set of λi(v− 1) edges of each
color i incident with some fixed point x of K–

v are partitioned by the isomor-
phic copies of G ∈ G so that vector (v − 1)(λ1, λ2, . . . , λc) is a nonnegative
integral linear combination of the vectors τG(x), x ∈ V (G) and G ∈ G. Thus
α(G; λ) divides v − 1 whenever a decomposition exists. And it is obvious
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that the vector v(v − 1)λ/2 is a nonnegative integral linear combination of
the vectors µ(G), hence 2β(G; λ) divides v(v − 1).

We say that a graph G0 is useless in G when in any nonnegative rational
linear relation

(λ1, λ2, . . . , λc) =
∑
G∈G

bGµ(G) with all bG ≥ 0, (1.6.1)

we have bG0 = 0. Such graphs can not occur in any G-decomposition of a
graph K–

v . We say that G is λ-admissible when there exists a nonnegative
rational linear relation (1.6.1) and when no member of G is useless in G.
Then, the following lemma is obtained.

Lemma 1.6.1 Let G be a λ-admissible family of edge-c-colored graphs. Then,
necessary conditions for the existence of G-decompositions of K–

v are

v − 1 ≡ 0 (mod α(G; λ)) and

v(v − 1) ≡ 0 (mod 2β(G; λ)).
(1.6.2)

If α(G; λ) = 0 or β(G; λ) = 0, there do not exist any G-decompositions of
K–

v . When λ = (1, 1, . . . , 1) is the all-one vector, α(G; λ) and β(G; λ) are
simply denoted by α(G) and β(G), respectively. Also λ-admissible is simply
called admissible. If G consists of only one edge-r-colored graph, α({G})
and β({G}) are similarly denoted by α(G) and β(G). Then Lemma 1.6.1 is
rewritten as follows:

Lemma 1.6.2 Let G be an admissible family of edge-c-colored graphs. Then,
necessary conditions for the existence of G-decompositions of K

[c]
v are

v − 1 ≡ 0 (mod α(G)) and

v(v − 1) ≡ 0 (mod 2β(G)).
(1.6.3)

When G consists of a single simple edge-1-colored graph G, it was shown
by Wilson [104] that necessary conditions for the existence of G-decomposi-
tion of Kv is asymptotically sufficient. In this thesis, the term “asymptot-
ically sufficient” means that there exists a constant v0 = v0(G) such that
G-decompositions of K–

v exist for all integers v ≥ v0 satisfying the neces-
sary conditions. Meanwhile, when G consists of only simple edge-c-colored
graphs, necessary conditions for the existence of G-decomposition of K–

v is
asymptotically sufficient by Lamken and Wilson [63]. Note that they proved
the asymptotic existence not only in the case of unordered edges but also in
the case of directed edges that are not described in this thesis.
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1.7 Cyclic and rotational combinatorial

designs

Let (V, B) be a B(v, k, λ). For a BIB design (V, B), let σ be a permutation
on V . If Bσ = {Bσ : B ∈ B} = B, then σ is called an automorphism of
(V, B), where Bσ = {bσ1 , bσ2 , . . . , bσk} for any B = {b1, b2, . . . , bk} ∈ B. If
there exits an automorphism with a single orbit of length v, then the BIB
design is said to be cyclic and the point set V can be identified with Zv, i.e.,
the additive group of residues modulo v. In this case, the automorphism is
represented by σ : i → i+1 (mod v), the block orbit of B is defined by a set
of distinct blocks

Bσi

= B + i = {b1 + i, b2 + i, . . . , bk + i} (mod v)

for i ∈ Zv and the length of a block orbit is the minimum positive integer t
such that B+t = B for an arbitrary block B in the block orbit. A block orbit
of length v is said to be full, otherwise short. We fix one block arbitrarily in
each block orbit and call it a base block.

It is easy to show that if a cyclic B(v, k, 1) exists, then v ≡ 1, k (mod k(k−
1)). When v ≡ 1 (mod k(k − 1)), the design is developed only from base
blocks with full block orbits and the family of base blocks is called a cyclic
difference family, while if v ≡ k (mod k(k−1)), then it consists of full block
orbits and a single short block orbit developed from{

0,
v

k
,

2v

k
, . . . ,

(k − 1)v

k

}
,

which is called a regular short base block.

Example 1.7.1 Let V = Z15 be a point set and

B = {{0, 1, 4}, {0, 2, 8}, {0, 5, 10} (mod 15)}

be a collection of blocks. Then (V, B) is a cyclic B(15, 3, 1). The base block
{0, 5, 10} has regular short block orbit length of 5.

In Example 1.2.1, the B(7, 3, 1) is also cyclic.
Cyclic designs have a simple structure and are related to interesting alge-

braic properties. In fact, the “method of differences” introduced by Bose [16]
is an algebraic technique to construct BIB designs effectively, say, cyclically.
There have been many methods of constructing cyclic BIB designs (see, for
example, [34, 55, 70]). The spectrum of cyclic B(v, 3, λ) was determined by
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Colbourn and Colbourn [33]. But for k ≥ 4, the existence problem has not
been solved yet in general.

For a BIB design (V, B), if there exists an automorphism consisting of a
single fixed point and l cycles of length (v−1)/l, then the BIB design is said
to be l-rotational. The automorphism can be represented by

π = (∞)(00, 10, . . . , (n− 1)0) · · · (0l−1, 1l−1, . . . , (n− 1)l−1)

on the point set V = {∞} ∪ (Zn × {0, 1, . . . , l − 1}), where n = (v − 1)/l
and xi denotes the element (x, i) ∈ Zn × {0, 1, . . . , l − 1}. A block orbit of
an l-rotational BIB design is defined similarly to that of a cyclic BIB design.
In Example 1.2.3, the B(15, 3, 1) is 2-rotational.

The terminology of “l-rotational” was initially introduced by Phelps and
Rosa [79]. There are several results on rotational BIB designs. For example,
necessary and sufficient conditions for the existence of a 1-rotational BIB
design with block size 3 were derived by Cho [27] and Kuriki and Jimbo
[62], independently. Colbourn and Jiang [30] solved the existence problem
of l-rotational BIBD designs with block size 3 completely by use of recursive
constructions together with some results due to Cho [27], Doyen [39], Phelps
and Rosa [79], Rosa [87] and Teirlinck [95].

We give a notion before we define cyclic or l-rotational grid-block designs.
Two k1 × k2 grid-blocks A and A′ are said to be equivalent if there exist
permutation matrices P and Q such that PAQ = A′. For a k1 × k2 grid-
block design (V, A), let σ be a permutation on V . If there is a permutation
σ such that an equivalent k1 × k2 grid-block to Aσ belongs to A for any
A ∈ A, then σ is called an automorphism of the k1 × k2 grid-block designs,
where Aσ = (aσ

ij) for any A = (aij) ∈ A. Thus, if an automorphism σ of
k1 × k2 grid-block design (V, A) has a cycle of length v, the design is said
to be cyclic. If a k1 × k2 grid-block design (V, A) has an automorphism π
consisting of a single fixed point and l cycles of length (v − 1)/l each, the
design is said to be l-rotational. A grid-block orbit of a k1 × k2 grid-block
design is defined similarly to that of BIB designs. The 2×3 grid-block design
with 10 points in Example 1.3.1 is cyclic.

1.8 Finite geometries and cyclotomic cosets

For a prime power q, let AG(n, q) denote the affine geometry of dimension
n over the finite field GF(q) with q element. Each point of AG(n, q) is
represented by x where x is an element of GF(qn). And AGt(n, q) denotes
the set of t-dimensional subspaces and their cosets of AG(n, q). Specifically,
AG0(n, q) denotes the set of points of AG(n, q). Each element of AGt(n, q) is
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called t-flat. Let AG∗
t (n, q) be the set of t-flats passing through the origin 0.

It is well-known that the numbers of the t-flats of AGt(n, q) and AG∗
t (n, q)

are qn−tφ(n, t, q) and φ(n, t, q), respectively, where

φ(n, t, q) =
(qn − 1)(qn−1 − 1) · · · (qn−t+1 − 1)

(qt − 1)(qt−1 − 1) · · · (q − 1)
.

A pair (GF(qn), AGt(n, q)) is a B(qn, qt, φ(n− 1, t− 1, q)).
For a t-flat U of AGt(n, q), we define a parallel class P(U) containing U

as the set of all t-flats which are parallel to the t-flat U . Here U is said to be
parallel to U ′ if there exists some element x in GF(qn) such that U = U ′ + x
holds. A parallel class P(U) has qn−t t-flats. Clearly, AGt(n, q) is partitioned
into parallel classes and each parallel class contains exactly one t-flat passing
through the origin 0. Thus, the pair (GF(qn), AGt(n, q)) is a resolvable BIB
design.

Let PG(n− 1, q) denote the projective geometry of dimension n− 1 over
GF(q). We introduce an equivalence relation x ∼ y on GF(q)n if and only
if there exists an element u ( �= 0) in GF(q) such that y = ux holds. An
equivalence class containing x is denoted by (x) and the set of all points in
(x) is a 1-flat of AG(n, q) passing through the origin 0. Thus, each point of
PG(n− 1, q) is represented by a 1-flat of AG∗

1(n, q). And PGt−1(n− 1, q)
is the set of U/∼ for all U in AG∗

t (n, q), where U/∼ = {(x) : x ∈ U}. Each
element of PGt−1(n− 1, q) is called a (t − 1)-flat. The number of (t − 1)-
flat of PGt−1(n− 1, q) is φ(n, t, q) since the number of t-flat of AG∗

t (n, q)
is φ(n, t, q). A pair (V, PGt−1(n− 1, q)) is a BIBD((qn − 1)/(q − 1), (qt −
1)/(q − 1), φ(n− 2, t− 2, q)), where V = PG0(n− 1, q) is the set of all
points in PG(n− 1, q).

Next, we define the notions of the sum, the scalar multiplication and
the product over additive groups for lists. For a finite set V , a formal sum
L =

∑
x∈V mx{x} is called a list, where the nonnegative integer mx is the

multiplicity of x in the list L. Also we use the notation L = (xi : i ∈ I) to
indicate the list of xi’s, where I is an index set. We identify a subset S of V
with a list whose multiplicities xi are 1 or 0 depending on whether x belongs
to S or not.

We define the addition and the scalar multiplication for lists L =
∑

x∈V lx
{x} and M =

∑
x∈V mx{x} by L + M =

∑
x∈V (lx + mx){x} and λL =∑

x∈V λlx{x} for a nonnegative integer λ. Moreover, if lx ≤ mx holds for
each x ∈ V , then we write L ≤ M .

In the case when V is an additive group of order v, the product of two
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lists L =
∑

x∈V lx{x} and M =
∑

x∈v mx{x} is defined by

L ◦M =
∑
z∈V

( ∑
x, y

xy=z

lxmx

)
{z}.

List multiplication is commutative, associative and distributive over the ad-
dition of lists. For any subset S of V and for any element y of V , let
S + y = {s+ y : s ∈ S} and Sy = {sy : s ∈ S}.

Now, we define difference families. For an abelian group Γ of order v,
let ∆B = (bj − bi : 1 ≤ i �= j ≤ k) be the list of differences of a k-set
B = {b1, b2, . . . , bk} with elements in Γ. For a family B = {Bi : i ∈ I} of
k-subsets of Γ, we define ∆B =

∑
i∈I ∆B. The family B is called a (v, k, λ)-

difference family in Γ, denoted by (v, k, λ)-DF, if ∆B = λ(Γ \ {0}).
We generalize such notion to a k1 × k2 grid-block. We introduced the list

of differences of a k1 × k2 grid-block A = (aij) with elements in Γ as follows:

∂A = (aij′ − aij : 1 ≤ i ≤ k1, 1 ≤ j �= j′ ≤ k2)

+ (ai′j − aij : 1 ≤ i �= i′ ≤ k1, 1 ≤ j ≤ k2).

For a family of grid-blocks A = {Ai : i ∈ I} with elements in Γ, we define
∂A =

∑
i∈I ∂Ai. Then, the family A is called a gird-block difference family,

denoted by (v, k1, k2)-GBDF, if ∂A = Γ \ {0}. For a (v, k1, k2)-GBDF A,
let A = {Ai + x : Ai ∈ A, x ∈ Γ}, then (Γ, A) is a GB(v, k1, k2).

Next, we give a notion of the method of mixed differences introduced by
Bose [16]. For an additive group Γ and an index set L = {0, 1, . . . , l − 1},
let V = Γ×L be a set of v points. For g ∈ Γ and B = {(b1, l1), (b2, l2), . . . ,
(bk, lk)} ⊆ V , we define the addition B + g by

B + g = {(b1 + g, l1), (b2 + g, l2), . . . , (bk + g, lk)}.
For a k-set B = {(b1, l1), (b2, l2), . . . , (bk, lk)}, let ∆ijB be the list of differ-
ences bt′ − bt such that (bt, i) and (bt′ , j) occur in B, that is,

∆ijB = (bt′ − bt : 1 ≤ t �= t′ ≤ k, lt = i, lt′ = j).

Note that if i �= j the difference bt′ − bt = 0 can occur, but not for i = j.
Obviously, ∆ijB = −∆jiB. For a family B of k-subsets of Γ, we define
∆ijB =

∑
B∈B ∆ijB. ∆iiB is called the i-th list of pure differences. In case

of i �= j the list ∆ijB is called the list of mixed differences for the index
pair (i, j). Similarly, ∆ijB = −∆jiB holds and the difference 0 is allowed
in ∆ijB if and only if i �= j holds.

The development of B is defined by B = {B + g : B ∈ B, g ∈ Γ}. A pair
(V, B) is a BIB design B(v, k, λ) if and only if
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(i) ∆iiB = Γ \ {0} holds for every i ∈ L and

(ii) ∆ijB = Γ holds for any pair of two distinct indices i and j ∈ L.

Then, the BIB design is said to be l-cyclic.
Similarly, for a k1 × k2 grid-block A = ((ast, lst)), let ∂ijA be the list of

differences as′t′ − ast which occur in the same row or in the same column of
A, that is,

∂ijA = (ast′ − ast : 1 ≤ s ≤ k1, 1 ≤ t �= t′ ≤ k2, lst = i, lst′ = j)

+ (as′t − ast : 1 ≤ s �= s′ ≤ k1, 1 ≤ t ≤ k2, ls′t = i, lst = j)

.

For a family of grid-blocks A with elements in Γ, we define ∂ijA =
∑

A∈A A.
Obviously, ∂ijA = −∂jiA and the difference 0 is allowed in ∂ijA if and only
if i �= j holds.

The development of A is defined by A = {A + g : A ∈ A, g ∈ Γ}. Then
a pair (Γ, A) is a k1 × k2 grid-block design if and only if

(i) ∂iiA = Γ \ {0} holds for every i ∈ L and

(ii) ∂ijA = Γ holds for any pair of two distinct indices i and j ∈ L.

Finally, we define cyclotomic cosets and give a proposition to show several
theorems. For a positive integer m, let q be a prime power such that q ≡ 1
(mod m). The cyclic multiplicative subgroup GF(q)∗ of nonzero elements in
the field of q elements has a unique subgroup Hm

0 of index m. The multi-
plicative cosets Hm

0 , H
m
1 , . . . , H

m
m−1 of Hm

0 are called the cyclotomic classes
of index m and may be indexed so that a ∈ Hm

i and b ∈ Hm
j imply ab ∈ Hm

i+j,
where the subscripts are read modulo m; if ω is a primitive element in GF(q),
we may take Hm

i = {ωt : t ≡ i (mod m)}. We select an element si from each
Hm

i for m = 0, 1, . . . , m− 1 and call the set Sm = {s0, s1, . . . , sm−1} a
system of representatives for cosets modulo Hm

0 . Then GF(q)∗ = Hm
0 ◦ Sm

holds.
For an integer k ≥ 2, let Pk be the set of ordered pairs {(i, j) : 1 ≤

i < j ≤ k}. For Hm = {Hm
0 , H

m
1 , . . . , H

m
m−1}, we define a choice to be

any map M : Pk → Hm, assigning each pair (i, j) ∈ Pk to a coset M(i, j)
modulo Hm

0 in GF(q). A k-tuple (x1, x2, . . . , xk) of elements in GF(q) is
said to be consistent with the choice M if and only if xj − xi ∈ M(i, j) for
all 1 ≤ i < j ≤ k. The following proposition is proved by Wilson [99].

Proposition 1.8.1 For given m and k, there exists a constant q0 = q0(m, k)
such that for all prime power q ≡ 1 (mod m) with q ≥ q0, and for all choices
M : Pk → Hm, there exists a k-tuple (x1, x2, . . . , xk) of elements of GF(q)
which is consistent with M .
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1.9 Summary of this thesis

In Chapter 2, grid-block designs, resolvable grid-block designs and packings
are discussed. In Section 2.1, we list known results and give new direct
and recursive constructions. In Sections 2.2 and 2.3, it is shown that the
necessary conditions for the existence of 3 × 3 and 2 × 4 grid-block designs
are sufficient by utilizing direct and recursive constructions listed in Section
2.1. In Section 2.4, the definition of a grid-block design is generalized to n-
dimensional case and direct constructions for a 2×2×2 grid-block design for
every parameters satisfying the necessary conditions are given. In Section
2.5, we construct resolvable grid-block designs and show the existence of
resolvable grid-block designs for sufficiently large prime powers. In Section
2.6, some constructions of resolvable grid-block packings are given. Some of
them are able to construct maximal resolvable grid-block packings.

In Chapter 3, nested BIB designs and BIBRCs are treated. In Section
3.1, a construction of nested BIB designs is given by utilizing finite affine
geometries. Some of them are new nested BIB designs which are not found
in the tables of Morgan [72] and Morgan, Preece and Rees [73]. In Section
3.2, a construction of BIBRCs is given by the same method in Section 3.1.
In Section 3.3, a construction of BIBRCs is given by utilizing finite fields
and it is shown that the existence of BIBRCs for sufficiently large prime
powers. Moreover, it is listed that a table for existence of BIBRCs with
small parameters in Appendix A, which are obtained by the construction in
Section 3.3.

In Chapter 4, asymptotic existence of colorwise simple edge-colored graph
decompositions of complete graphs is shown. Firstly, in Section 4.1, we give
a notion of “treeordered,” which plays an important role for the proof of
asymptotic existence of colorwise simple edge-colored graph decompositions
of complete graphs. In Sections 4.2, 4.3, 4.4 and 4.5, it is shown that there
exist such decompositions of K

[c]
v for sufficiently large integers v satisfying

the congruences (1.6.3). In Section 4.6, we consider the case when the de-
composition is “balanced” and an asymptotic existence theorem of balanced
graph decompositions of K

[c]
v . In Section 4.7, we generalize the results given

in Sections 4.2, 4.3, 4.4, 4.5 and 4.6 to the case when the graph is K–
v .

Finally, in Chapter 5, it is shown that there exist BIBRCs with some λ’s
for sufficiently large integers satisfying the necessary conditions by applying
the asymptotic existence results given in Chapter 4. In Section 5.1, we dis-
cuss a relationship between BIBRCs and some balanced edge-colored graph
decompositions of complete graphs. In Section 5.2, it is shown that there
exist completely balanced BIBRCs for sufficiently large integers satisfying
the necessary conditions, which is proved by utilizing the result of Lamken
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and Wilson [63]. In Sections 5.3 and 5.4, we also show asymptotic existence
of BIBRCs with some λ by utilizing our theorem in Chapter 4. These results
can not be obtained by the result of Lamken and Wilson [63]. In Section
5.5, it is proved that BIBRCs exist for sufficiently large integers satisfying
the necessary conditions in the case of λ ≥ k1k2(k1−1)(k2−1) by combining
the results in Sections 5.3 and 5.4.
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Chapter 2

Existence and construction of
grid-block designs

In this chapter, existence and construction of grid-block designs and resolv-
able grid-block designs are discussed. In Section 2.1, some constructions of
grid-block designs are given. In Sections 2.2 and 2.3, it is shown that grid-
block designs GB(v, 3, 3) and GB(v, 2, 4) exist for all integers v satisfying
the necessary conditions by constructing a few grid-block designs and using
the methods in Section 2.1. In Section 2.4, the definition of grid-block de-
signs is generalized to n-dimensional case and cyclic or 3-rotational 2× 2× 2
grid-block designs are constructed directly by the “method of differences.” In
Section 2.5, we construct resolvable grid-block designs by utilizing grid-block
difference families and show the existence of resolvable grid-block designs for
sufficiently large integers satisfying some conditions. Lastly, in Section 2.6,
constructions of resolvable grid-block packings are given. Some of them give
maximal resolvable grid-block packings.

2.1 Constructions of grid-block designs

For a set V of v points (or vertices), let {V1, V2, . . . , Vs} be a partition of
V with |Vi| = ti. Each Vi is called a partite set. A pair G = (V, E) is said
to be a complete s-partite graph, denoted by Kt1, t2, ..., ts, if an edge {x, y}
belongs to E(G) for all pairs of two points x and y from distinct partite sets.
If ti = t holds for all i, then the complete s-partite graph is regular and is
also denoted by Ks(t). Then, a group divisible design GD(v, K, M, λ) with a
group type tu1

1 t
u2
2 · · · tun

n is equivalent to a G-decomposition D(λK, G), where
K is a complete (

∑n
i=1 ui)-partite graph having ui partite sets with ti vertices

for each i, λK means λ copies of K and G is a family of complete graphs
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with k vertices belonging to K. In this thesis, we consider mainly regular
complete s-partite graphs.

Let Gk1, k2 be a graph Kk1 × Kk2 which is equivalent to a k1 × k2 grid-
block. If there exists a Gk1, k2-decomposition of Ks(t) (or D(Ks(t), Gk1, k2)),
then a triple (V, P, A) is called a group divisible grid-block design, where V
is the point set of Ks(t), P is the family of the partite sets (called groups)
and A is a family of k1 × k2 grid-blocks that are equivalent to the subgraphs
of D(Ks(t), Gk1, k2). It is easy to show that the following lemma holds:

Lemma 2.1.1 Necessary conditions for existence of a D(Ks(t), Gk1, k2) are

(s− 1)t ≡ 0 (mod k1 + k2 − 2) and

(s− 1)st2 ≡ 0 (mod k1k2(k1 + k2 − 2)).

We list some recursive constructions from the results in Fu et al. [44].
We omit the subscript k1, k2 in Gk1, k2 in this section.

Proposition 2.1.2 There exists a D(Kst+1, G) if there exist a D(Kt+1, G)
and a D(Ks(t), G).

Proposition 2.1.3 There exists a D(Kv(t), G) if there exist a B(v, K, 1)
and D(Kk(t), G)’s for k ∈ K. Especially, there exists a D(Kv(t), G) if there
exist a B(v, k, 1) and a D(Kk(t), G).

Corollary 2.1.4 There exists a D(Kvt+1, G) if there exist a B(v, K, 1), a
D(Kt+1, G) and D(Kk(t), G)’s for k ∈ K. Especially, there exists a D(Kvt+1,
G) if there exist a B(v, k, 1) and a D(Kk(t), G).

Proposition 2.1.5 There exists a D(K(v−1)t+1, G) if there exist a B(v, k, 1),
a D(Kt+1, G), a D(K(k−1)t+1, G) and a D(Kk(t), G).

Proposition 2.1.6 There exists a D(K(v+i)t+1, G) if there exist a resolvable
B(v, K, 1) with at least i resolution classes, a D(Kt+1, G), D(Kit+1, G)’s, a
D(Kk(t), G) and a D(Kk+1(t), G).

Proposition 2.1.7 There exists a D(Ks(mt)+1, G) if there exist a D(Ks(t), G)
and s− 2 mutually orthogonal Latin squares of order m for s ≥ 3.

We give a recursive construction generalized from these results in Propo-
sitions 2.1.2, 2.1.5 and 2.1.6 and Corollary 2.1.4.

Theorem 2.1.8 There exists a D(Kvt+1, G) if there exist a GD(v, K, M,
1), D(Kmt+1, G)’s and D(Kk(t), G)’s for any m ∈M and k ∈ K.
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Proof. For a set V of v points, let a triple (V, P, B) be a GD(v, K, M, 1).
Let T = {0, 1, . . . , t− 1} and V ∗ = (V ×T )∪{∞}. For each block B ∈ B of
size k ∈ K, let (B × T , P(B), A(B)) be the ingredient design D(Kk(t), G),
where A(B) is a collection of grid-blocks and P(B) is a family of groups {bi×
T} for each bi ∈ B. We define a collection of grid-blocks A∗

1 =
⋃

B∈B A(B).
Also, for each group P ∈ P of size m ∈ M , let ((P × T ) ∪ {∞}, A′(P ))
be the ingredient design D(Kmt+1, G), where A′(P ) is a collection of grid-
blocks. We define another collection of grid-blocks A∗

2 =
⋃

P∈P A′(P ) and let
A∗ = A∗

1 ∪A∗
2. Then a pair (V ∗, A∗) is the desired D(Kvt+1, G).

In fact, if two distinct points x and y in V are not contained in the same
group P , then x and y occur together exactly once in a block B ∈ B. Hence
(x, i) and (y, j) occur exactly once in the same row or in the same column of
a grid-block in A∗

1 and do not occur in A∗
2 since they occur once in the same

row or in the same column in the ingredient design (B × T , P(B), A(B)).
Otherwise two points x and y in V are contained in the same group P includ-
ing the case of x = y, then x and y does not occur together in any B ∈ B.
In this case, (x, i) and (y, j) except for x = y and i = j occur exactly once
in the same row or in the same column of a grid-block in A∗

2 and do not
occur in A∗

1 since they occur once in the same row or in the same column in
the ingredient design ((P × T ) ∪ {∞}, A′(P )). Lastly, ∞ and (x, i) for any
x ∈ V and i ∈ T occur exactly once in the same row or in the same column
of a grid-block in A∗

2 since they occur once in the same row or in the same
column in the ingredient design ((P × T ) ∪ {∞}, A′(P )) and x belongs to a
group P which is a partition of V . �

In the case of k1 = k2, we give two direct constructions in Fu et al. [44].
Firstly, we give a construction by utilizing affine geometries.

Theorem 2.1.9 For an even integer n and an odd prime power q, there
exists a GB(qn, q, q) (or D(Kqn , Gq, q)).

Proof. Let ω be a primitive element of GF(qn). Then each point of AG(n, q)
is represented by ωi. For convenience, let ω∞ = 0(= 0). Let A be a q × q
grid-block as follows:

ω∞ ω0 ω2u · · · ω(2q−4)u

ωu ω0 + ωu ω2u + ωu · · · ω(2q−4)u + ωu

ω3u ω0 + ω3u ω2u + ω3u · · · ω(2q−4)u + ω3u

...
...

...
. . .

...
ω(2q−3)u ω0 + ω(2q−3)u · · · ω(2q−4)u + ω(2q−3)u

, (2.1.1)
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where

u =
qn − 1

2(q − 1)
.

Then A is a 2-flat and rows and columns are 1-flats in AG(n, q). Let P(A)
be a parallel class containing A. The development of P(A) is defined by
A = {ωiA′ : A′ ∈ P(A), 0 ≤ i ≤ u− 1}. A pair (GF(qn), A) is the desired
GB(qn, q, q).

In fact, let ωi and ωj be two distinct points in AG(n, q). To count
the number of rows and columns of q × q grid-blocks containing ωi and ωj

simultaneously, we have only to count the number of rows and columns such
that the origin 0(= ω∞) and ωj − ωi occur together. We can represent
ωl = ωj − ωi for some integer l. There is a 1-flat passing through the origin
0 and ωl, which proves the theorem. �

Secondly, we give a construction by combining base blocks of a cyclic BIBD.

Theorem 2.1.10 Let p be an odd prime and v ≡ p (mod 2p(p− 1)). Then
there exists a GB(pv, p, p) if there exists a cyclic B(v, p, 1).

Proof. It is known that a cyclic B(pv, p, 1) can be constructed from a cyclic
B(v, p, 1) for a prime p, which was obtained by Colbourn and Colbourn [35],
Grannell and Griggs [45] and Jimbo and Kuriki [55], independently. We use
the similar method to construct a GB(pv, p, p).

Let a pair (V, B) be a cyclic B(v, p, 1), where V is identified with Zv.
Then, the cyclic B(v, p, 1) has 2t base blocks with cycle length v and a base
block with regular short block orbit u, where t = (v − p)/2p(p − 1) and
u = v/p. Let B = {B1, B2, . . . , B2t} be a family of base blocks with cycle
length v. Without loss of generality, we assume that Bi includes 0 for each
i. It is obvious that

B = {Bm + x : m = 1, 2, . . . , 2t, x ∈ Zv} ∪ {B0 + x : x = 0, 1, . . . , u− 1}

and ∆B = Zv \ {0, u, 2u, . . . , (p− 1)u} hold.
Let V ∗ = Zpv. By combining B2m−1 and B2m for m = 1, 2, . . . , t, we

obtain the following p× p base grid-blocks:

Am = (b2m−1, i + b2m, j + ijv),

=

0 b2m−1, 1 · · · b2m−1, p−1

b2m, 1 · · ·
...

...
. . .

...
b2m, p−1 · · · b2m−1, p−1 + b2m, p−1 + (p− 1)2v

,
(2.1.2)
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where Bm′ = {0, bm′, 1, bm′, 2, . . . , bm′, p−1}. Then all elements of each Am

are distinct. In fact, elements in the same row or in the same column are
obviously distinct. We check the other cases as follows. Firstly, b2m−1, 1,
b2m−1, 2, . . . , b2m−1, p−1 and b2m, 1, b2m, 2, . . . , b2m, p−1 in Am are distinct. In
fact, if b2m−1, i = b2m, j holds, the same difference occurs in B2m−1 and B2m.
Secondly, we assume that there exists indices i �= i′ and j �= j′ such that
b2m−1, i +b2m, j + ijv = b2m−1, i′ +b2m, j′ + i

′j′v holds. Let d = b2m−1, i−b2m−1, i′

and d′ = b2m, j − b2m, j′. Then d+d′ is not multiple of v. If d+d′ is a multiple
of v, d′ = −d holds in Zv. This means that d and d′ are the same difference
in Zv. Thus, b2m−1, i + b2m, j + ijv and b2m−1, i′ + b2m, j′ + i′j′v are distinct.

Let A = {A1, A2, . . . , At} be a family of base grid-blocks obtained by
the equation (2.1.2) and A1 = {Am + x : m = 1, 2, . . . , t, x ∈ Zpv}.

By Theorem 2.1.9, there exists a GB(p2, p, p). Let a pair (U, A2) be
the GB(p2, p, p), where U = {0, u, 2u, . . . , (p2 − 1)u}. We define another
collection of grid-blocks A′

2 = {A+ x : A ∈ A2, x = 0, 1, . . . , u− 1} and
A∗ = A1 ∪A′

2. Then a pair (V ∗, A∗) is the desired GB(pv, p, p).
In fact, let x and y be two distinct points in Zpv. To count the number of

rows and columns of grid-blocks containing x and y simultaneously, we have
only to count the number of rows and columns such that 0 and z = y − x
occur together. For a p-subset in Zpv, it is obvious that ∆B = ∆(B + x)
holds for x ∈ Zpv by the definition. Thus, we obtain the following equations:

∂A =

t∑
m=1

∂At

=

t∑
m=1

( p−1∑
j=0

∆{0, b2m−1, 1 + jv, . . . , b2m−1, p−1 + (p− 1)jv}

+

p−1∑
i=0

∆{0, b2m, 1 + iv, . . . , b2m, p−1 + (p− 1)iv}
)

=
2t∑

m=1

p−1∑
i=0

∆{0, bm, 1 + iv, bm, 2 + 2v, . . . , bm, p−1 + (p− 1)iv} = Zpv \ U,

since p is a prime. That is, if z is not a multiple of u, 0 and z occur exactly
once in the same row or same column in a grid-block in A1 and do not occur
in A′

2. Otherwise, z is a multiple of u. They occur exactly once in the same
row or same column in a grid-block in A′

2 and do not occur in A1. �
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2.2 Existence of 3 × 3 grid-block designs

In this section, we show the existence theorem of 3 × 3 grid-block designs
GB(v, 3, 3). By Lemma 1.3.1, the necessary conditions for the existence of
a GB(v, 3, 3) are v ≡ 1, 9 (mod 36). We show the following theorem by
constructing these designs directly.

Theorem 2.2.1 The necessary conditions v ≡ 1, 9 (mod 36) for the exis-
tence of a GB(v, 3, 3) are also sufficient.

Note that the existence of a GB(9, 3, 3) is shown in Example 1.3.2. By uti-
lizing the GB(9, 3, 3) and a B(v, 9, 1), we can obtain a GB(v, 3, 3). That
is, if there exists a B(v, 9, 1) for v ≡ 1, 9 (mod 72), then there exists a
GB(v, 3, 3). Unfortunately the existence problem for a B(v, 9, 1) is not
completely solved yet. Thus, we construct a GB(v, 3, 3) for all v ≡ 1, 9
(mod 36) directly. Firstly, we need the following proposition (see, for exam-
ple, [29]).

Proposition 2.2.2 If v ≡ 1, 3 (mod 6) and v �= 9, then there exists a cyclic
B(v, 3, 1).

By virtue of Theorem 2.1.10 and Proposition 2.2.2, we obtain the following
lemma.

Lemma 2.2.3 If v ≡ 9 (mod 36), then there exists a GB(v, 3, 3).

Secondly, we obtain the following lemma by utilizing a computer.

Lemma 2.2.4 If v ≡ 1 (mod 36), then there exists a GB(v, 3, 3).

Proof. Firstly, in the case of v = 72t+ 1, Peltesohn [78] showed that there
exists a cyclic B(v, 3, 1) (see also Beth, et al. [14, pp. 483–484]). According
to his result,

(0, 1 + 2m, 33t+ 1 +m); m = 0, 1, . . . , 3t− 1; (2.2.1)

(0, 2 + 2m, 24t+ 2 +m); m = 0, 1, . . . , 3t− 2; (2.2.2)

(0, 9t+ 1 + 2m, 27t+ 1 +m); m = 0, 1, . . . , 3t− 1; (2.2.3)

(0, 9t+ 2 + 2m, 18t+ 2 +m); m = 0, 1, . . . , 3t− 1; (2.2.4)

(0, 6t, 24t+ 1); (2.2.5)

are base blocks of a cyclic B(v, 3, 1).
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By adding some constants for these base blocks and arranging them in
3×3 grid-blocks as follows, we obtain base grid-blocks for a GB(72t+ 1, 3, 3).

Am =
0 3 + 2m 33t+ 2 +m
9t+ 3 + 2m 9t+ 4 + 4m 42t+ 4 + 3m
27t+ 2 +m 27t+ 4 + 3m 51t+ 4 + 2m

,

Bm =
0 6 + 2m 24t+ 4 +m
9t+ 6 + 2m 9t+ 10 + 4m 33t+ 9 + 3m
18t+ 4 +m 18t+ 9 + 3m 51t+ 7 + 2m

for m = 0, 3, . . . , 3t− 6, and

C1 =
0 6t− 3 36t− 1
15t− 3 21t− 8 51t− 5
30t− 1 36t− 5 57t− 2

, C2 =
0 15t 66t
15t− 1 21t− 1 39t
30t 51t 45t− 2

.

We define

A = {Am : m = 0, 1, . . . , 3t− 6} ∪ {Bm : m = 0, 1, . . . , 3t− 6} ∪ {C1, C2}
and A = {A+ x : A ∈ A, x ∈ V }, where V = Z72t+1. Then, (V, A) is the
desired GB(72t+ 1, 3, 3).

In fact the rows in Am are obtained by adding 0, 9t+3+2m and 27t+2+m
to (2.2.1) for m = 1, (2.2.1) for m = 0 and (2.2.2) for m = 0 in Table 2.2.1.
And the columns in Am are obtained by adding 0, 3 + 2m and 33t+ 2 +m
to (2.2.1) for m = 1, (2.2.1) for m = 0 and (2.2.2) for m = 0.

Similarly, for Bm, C1, and R2, the rows and columns are constructed
by (2.2.1) to (2.2.5). Moreover, note that m ≡ 0, 1, and 2 (mod 3) occurs
exactly once for each of (2.2.1) to (2.2.5) in Am and Bm of Table 2.2.1. Thus
by considering Am, Bm for m = 0, 3, 6, . . . , 3t− 6 and C1 and C2, the base
blocks in (2.2.1) to (2.2.5) occur exactly once.

Similarly, in the case of v = 72t + 37, the following 3 × 3 grid-blocks
generate a GB(v, 3, 3) for m = 0, 3, . . . , 3t− 3:

Am =
0 33t+ 16 −m 33t+ 17 +m
9t+ 7 + 2m 42t+ 22 +m 42t+ 25 + 3m
27t+ 15 +m 51t+ 26 51t+ 28 + 2m

,

Bm =
0 5 + 2m 33t+ 19 +m
18t+ 7 −m 18t+ 11 +m 42t+ 21
27t+ 16 +m 27t+ 22 + 3m 51t+ 31 + 2m

,
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Table 2.2.1: The correspondence of the base grid-blocks and base blocks

base block � m adding constants

rows in Am

(2.2.1) 1 0
(2.2.1) 0 9t+ 3 + 2m
(2.2.2) 0 27t+ 2 +m

columns in Am

(2.2.3) 1 0
(2.2.3) 0 3 + 2m
(2.2.4) 0 33t+ 2 +m

rows in Bm

(2.2.2) 2 2
(2.2.2) 1 9t+ 6 + 2m
(2.2.1) 2 18t+ 4 +m

columns in Bm

(2.2.4) 2 0
(2.2.4) 1 6 + 2m
(2.2.3) 2 24t+ 4 +m

rows in C1

(2.2.1) 3t− 2 0
(2.2.1) 3t− 3 15t− 3
(2.2.2) 3t− 3 30t− 1

columns in C1

(2.2.3) 3t− 2 0
(2.2.3) 3t− 3 6t− 3
(2.2.4) 3t− 3 36t− 1

rows in C2

(2.2.4) 3t− 1 66t
(2.2.5) − 15t− 1
(2.2.4) 3t− 2 30t

columns in C2

(2.2.3) 3t− 1 0
(2.2.1) 3t− 1 15t
(2.2.2) 3t− 2 39t
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C =
0 18t+ 9 24t+ 12
15t+ 7 45t+ 23 9t+ 6
30t+ 15 9t+ 4 3t+ 2

.

Thus, the lemma is proved. �

2.3 Existence of 2 × 4 grid-block designs

In this section we apply the results in Section 2.1 to prove the following
theorem.

Theorem 2.3.1 The necessary conditions v ≡ 1 (mod 32) for the existence
of a GB(v, 2, 4) are also sufficient.

The existence theorem is shown by utilizing a recursive construction. Firstly,
we give an existence of a group divisible design.

Lemma 2.3.2 For any integer v ≥ 12, there exists a GD(v, K, M, 1), where
K = {4, 5} and M = {1, 2, . . . , 7}.

Proof. According to Brouwer [19], Brouwer, Schrijver and H. Hanani [20]
and Beth et al. [14], we know the existence of a GD(v, K, M, 1) for any
v ≥ 12 except for v = 18 and 19 as is listed in Table 2.3.1 (see also [61] and
[74]).

Table 2.3.1: Table of the existence of group divisible designs

v K group type u exceptions ref.
0, 1 (mod 4) {4, 5} 1u 0, 1 (mod 4) 12 [14]

12 4 34 − − [19]
2 (mod 12) 4 2u 1 (mod 3) − [20]
3 (mod 12) 4 3u 1 (mod 4) − [20]
6 (mod 12) 4 6u Anything 18 [20]
7 (mod 12) 4 711u 0 (mod 12) 19 [19]
10 (mod 12) 4 711u 3 (mod 12) − [19]
11 (mod 12) 4 512u 0 (mod 3) − [19]

Moreover, it is known that there exists a GD(20, {5}, {4}, 1), which was
listed in Example 1.2.2. By deleting a single point of the GD(20, {5}, {4}, 1),
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we can show the existence of a GD(19, {4, 5}, {3, 4}, 1). Similarly, by delet-
ing two points from the same group of the GD(20, {5}, {4}, 1), we obtain a
GD(18, {4, 5}, {2, 4}, 1), which prove the case of v = 18 and 19. Thus, the
lemma is proved. �

Secondly, we give two group divisible grid-block designs which are ob-
tained by computer.

Lemma 2.3.3 There exists a D(Kk(32), G2, 4) for k = 4 and 5, where Kk(32)

is the complete k-partite graph and G2, 4 is the graph K2 ×K4.

Proof. For V = Z128, let

A1 =
0 1 6 15
13 30 3 48

, A2 =
0 21 58 47
22 63 20 97

and

A3 =
0 25 74 55
63 56 17 122

,

be base grid-blocks which are listed in Table 2.3.2. Now we define A =
{Ai + x : i = 1, 2, 3, x ∈ Z128}. then (V, A) is the desired D(K4(32), G2, 4).

In fact, by calculating
∑3

i=1 ∂Ai, any difference except for multiples of 4
occurs exactly once.

Similarly, for V = Z160, by utilizing four base grid-blocks A1, A2, A3

and A4 in Table 2.3.2, we obtain a D(K5(32), G2, 4). In fact, by calculating∑4
i=1 ∂Ai, any difference except for multiples of 5 occurs exactly once. �

Table 2.3.2: Table of the base grid-blocks of group divisible grid-block designs

k base grid-blocks

4
0 1 6 15 0 21 58 47 0 25 74 55
13 30 3 48 22 63 20 97 63 56 17 122

5

0 1 7 3 0 31 17 63 0 66 47 133
11 27 48 39 22 73 129 30 13 149 105 51
0 111 52 23
84 15 141 102

Thirdly, we give some grid-block designs which are also obtained by com-
puter.
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Lemma 2.3.4 There exists a GB(32m+ 1, 2, 4) for any m = 1, 2, . . . , 11.

Proof. By utilizing the base grid-blocks in Tables 2.3.3 and 2.3.4, we obtain
the desired GB(32m+ 1, 2, 4)’s for m = 1, 2, 3, 6, 7, . . . , 11. By applying
Proposition 2.1.2 to a D(K4(32), G2, 4) and D(K5(32), G2, 4) in Lemma 2.3.3
and a GB(33, 2, 4), GB(32m+ 1, 2, 4)’s are obtained for m = 4, 5. �

Table 2.3.3: Table of the base grid-blocks of grid-block designs

v base grid-blocks

33
0 1 3 9
12 5 23 28

65
0 1 3 7 0 10 21 45
5 13 22 38 47 32 60 9

97
0 1 3 7 0 10 23 41 0 15 37 61
5 13 22 33 33 65 86 3 39 55 84 12

193

0 36 65 60 0 46 180 153 0 55 108 73
89 155 152 153 186 23 71 169 114 77 133 81
0 14 97 165 0 105 54 44 0 76 67 148

102 52 40 134 75 34 178 55 39 189 73 174

225

0 104 76 167 0 189 223 92 0 221 77 194
67 137 121 209 156 74 167 199 41 94 42 16
0 122 177 140 0 15 220 111 0 7 10 24

212 190 106 67 95 76 55 46 38 82 206 32
0 87 161 99
79 192 102 13

Now, we will show the existence theorem.

Proof of Theorem 2.3.1. It is sufficient to show that the necessary con-
ditions v ≡ 1 (mod 32) for the existence of a GB(v, 2, 4) are sufficient. Now
we write v = 32m + 1, then there exists a GB(32m+ 1, 2, 4) for m ≤ 11
by Lemma 2.3.4. By Lemma 2.3.2, a GD(m, K, M, 1) exists for m ≥ 12,
where K = {4, 5} and M = {1, 2, . . . , 7}. And a D(Kk(32), G2, 4) exists
for k = 4 and 5 by Lemma 2.3.3. Thus, by Theorem 2.1.8 there exists a
GB(32m+ 1, 2, 4) for any m ≥ 12, which prove the existence theorem. �
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Table 2.3.4: Table of the base grid-blocks of grid-block designs (continued)

v base grid-blocks

257

0 51 168 216 0 22 230 37 0 58 61 234
148 147 81 37 30 211 187 193 200 118 101 154
0 107 73 14 0 169 42 98 0 132 246 124
50 79 202 176 63 61 96 216 20 41 72 162
0 171 210 65 0 75 178 247

202 190 197 206 72 255 210 185

289

0 217 34 207 0 199 54 19 0 228 8 13
28 188 253 168 105 282 236 183 86 35 165 189
0 179 122 4 0 241 47 244 0 27 256 218

209 37 211 284 124 191 110 98 248 182 225 98
0 185 148 163 0 133 271 227 0 25 32 213

128 186 216 180 166 14 150 206 77 255 266 164

321

0 235 247 257 0 3 101 281 0 35 186 37
310 101 228 133 76 105 212 309 244 138 264 16
0 160 1 265 0 26 317 9 0 7 157 25

158 66 291 221 269 178 228 315 23 205 143 74
0 146 61 16 0 315 211 33 0 279 200 255

283 288 174 115 206 78 146 254 34 105 272 308
0 240 165 294

313 59 255 175

353

0 286 267 129 0 133 95 248 0 81 72 26
198 149 219 118 22 20 275 113 82 257 147 261
0 294 142 15 0 88 76 2476 0 337 109 217
34 173 198 1 71 222 144 194 66 150 2 211
0 340 7 343 0 169 254 122 0 193 8 44

195 5 234 264 316 229 17 59 352 103 127 76
0 52 23 154 0 186 40 83
45 192 134 4 236 298 201 293
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2.4 Existence of 2 × 2 × 2 grid-block designs

In this section, we generalize the definition of a grid-block design to the
n-dimensional case. Let V be a set of v points and A be a collection of
k1 × k2 × · · · × kn arrays with elements in V . Each array in A is called an
n-dimensional grid-block. Let ai1i2...in be the (i1, i2, . . . , in)-element of an n-
dimensional grid-block. We call L = {ai1...im...in : 1 ≤ im ≤ km} a grid-block
line. A pair (V, A) is called a k1 × k2 × · · · × kn grid-block design, if the
following conditions are satisfied:

(i) Every point occurs at most once in each grid-block of A.

(ii) Every pair of two distinct points of V occurs exactly once in the same
grid-block line.

Example 2.4.1 A 2 × 2 × 2 grid-block design with 16 points is given by
V = {∞}∪{00, 10, . . . , 40}∪{01, 11, . . . , 41}∪{02, 12, . . . , 42} and A shown
in Figure 2.4.1.

For k1×k2×· · ·×kn grid-block design (V, A) with v points, each point x of
V has v−1 distinct points which occur together with x in the same grid-block
line, while each entry of a k1×k2×· · ·×kn grid-block has k1+k2+· · ·+kn−n
entries in the same grid-block line. That is, the number r of grid-blocks
containing a given point x is

r =
v − 1

k1 + k2 + · · ·+ kn − n
, (2.4.1)

which is a constant not depending on the choice of x. Also, there are
v(v− 1)/2 pairs which occur once in a grid-block of A while each grid-block
generates k1k2 · · · kn(k1 + k2 + · · · + kn − n)/2 pairs. Thus, the number b of
grid-blocks is

b =
v(v − 1)

k1k2 · · · kn(k1 + k2 + · · ·+ kn − n)
. (2.4.2)

Since r and b must be integers, we obtain the following lemma by the equa-
tions (2.4.1) and (2.4.2).

Lemma 2.4.1 Necessary conditions for the existence of a k1 × k2 × · · ·× kn

grid block design with v points are

v − 1 ≡ 0 (mod k1 + k2 + · · ·+ kn − n) and

v(v − 1) ≡ 0 (mod k1k2 · · · kn(k1 + k2 + · · · + kn − n)).
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1 00

01 10

2002

11 31

1 10

11 20

3012

21 41

1 20

21 30

4022

31 01

1 30

31 40

0032

41 11

1 40

41 00

1042

01 21

22

32 30

4140

21 42

12 32

42 40

0100

31 02

22 42

02 00

1110

41 12

32

02

12 10

2120

01 22

42 12

22 20

130

11 32

02

3

Figure 2.4.1: An example of a 2 × 2 × 2 grid-block design with 16 points.
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For graphs G, G′ and G′′, G×G′×G′′ is defined by (G×G′)×G′′. Then,
a k1×k2×· · ·×kn grid-block is equivalent to the graph Kk1×Kk2×· · ·×Kkn .
Let G be the graph Kk1 ×Kk2 × · · · ×Kkn. Then, Propositions 2.1.2, 2.1.3,
2.1.5 and 2.1.6 and Theorem 2.1.8 hold in term of k1×k2×· · ·×kn grid-block
design.

By Lemma 2.4.1, necessary conditions for the existence of a 2 × 2 × 2
grid-block design with v points are v ≡ 1, 16 (mod 24). Maheo [69] proved
the following proposition by utilizing recursive constructions.

Proposition 2.4.2 The necessary conditions v ≡ 1, 16 (mod 24) for the
existence of a 2 × 2 × 2 grid-block design with v points are also sufficient.

We define the cyclic or l-rotational grid-block designs in the similar way in
Section 1.7. Then, we give another proof of Proposition 2.4.2 by constructing
cyclic and 3-rotatoinal grid-block designs with 24t + 1 and 24t + 16 points,
respectively. Firstly, we define the 2 × 2 × 2 grid-block difference families in
Γ. For a 2 × 2 × 2 grid-block A = (ai1i2i3) with elements in Γ as follows:

∂A = (ai1i2i′3 − ai1i2i3 : 1 ≤ i1, i2 ≤ 2, 1 ≤ i3 �= i′3 ≤ 2)

+ (ai1i′2i3 − ai1i2i3 : 1 ≤ i1, i3 ≤ 2, 1 ≤ i2 �= i′2 ≤ 2)

+ (ai′1i2i3 − ai1i2i3 : 1 ≤ i2, i3 ≤ 2, 1 ≤ i1 �= i′1 ≤ 2).

For a family of grid-blocks A, we define ∂A =
∑

A∈A ∂A.
Similarly, for a 2 × 2 × 2 grid-block A = ((at1t2t3 , lt1t2t3)), let ∂ijA be the

list of differences at′1t′2t′3 − at1t2t3 occur in the same line of A, that is,

∂ijA = (at1t2t′3 − at1t2t3 : 1 ≤ t1, t2 ≤ 2, 1 ≤ t3 �= t′3 ≤ 2, lt1t2t3 = i, lt1t2t′3 = j)

+ (at1t′2t3 − at1t2t3 : 1 ≤ t1, t3 ≤ 2, 1 ≤ t2 �= t′2 ≤ 2, lt1t2t3 = i, lt1t′2t3 = j)

+ (at′1t2t3 − at1t2t3 : 1 ≤ t2, t3 ≤ 2, 1 ≤ t1 �= t′1 ≤ 2, lt1t2t3 = i, lt′1t2t3 = j).

For a family of grid-blocks A, we define ∂ijA =
∑

A∈A ∂ijA. Obviously,
∂ijA = −∂jiA and the difference 0 is allowed in ∂ijA if and only if i �= j
holds.

Lemma 2.4.3 For any v ≡ 1 (mod 24), there exists a cyclic 2× 2× 2 grid-
block design with v points.

Proof. Let v = 24t+ 1 for t ≥ 1, V = Zv and

Am =

0

36m+17

24m+12

24m+14

12m+4

24m+812m+2

12m+1
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be 2 × 2× 2 base grid-blocks for m = 0, 1, . . . , t− 1. In fact, by identifying
Am as a block,

∆Am = (±1, ±2, ±2, ±3, ±4, ±6, ±(12m+ 4), ±(12m+ 10),

± (12m+ 13), ±(24m+ 8), ±(24m+ 12), ±(24m+ 13),

± (24m+ 14), ±(24m+ 15), ±(24m+ 16), ±(36m+ 17))

∪ (±(12m+ 1), ±(12m+ 2), . . . , ±(12m+ 12))

It is obvious that each ∆Am does not have 0 ∈ Zv. That is, all elements of
Am are distinct for each m = 0, 1, . . . , t− 1.

Now we define A = {Am + x : m = 0, 1, . . . , m− 1, x ∈ V }, then (V, A)
is the desired 2 × 2 × 2 grid-block design. In fact, for each Am,

∂Am = (±(12m+ 1), ±(12m+ 2), . . . , ±(12m+ 12))

holds. Thus,
t−1∑
m=0

∂Am = Zv \ {0}

holds. �

Lemma 2.4.4 For any v ≡ 16 (mod 24), there exists a 3-rotational 2×2×2
grid-block design with v points.

Proof. In the case of v = 16, there exists a 2×2×2 grid-block design listed
in Example 2.4.1. Let v = 24t+ 16 for t ≥ 1, V = (Z8t+5 × {0, 1, 2})∪ {∞}
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and

Am, 0 =

00

(12m+12)2

(8m+8)2

(8m+9)1

(4m+3)2

(8m+7)1(4m+3)0

(4m+2)2

Am, 1 =

01

(12m+13)0

(8m+9)0

(8m+9)2

(4m+4)0

(8m+7)2(4m+3)1

(4m+3)0

Am, 2 =

02

(12m+13)1

(8m+9)1

(8m+10)0

(4m+4)1

(8m+8)0(4m+3)2

(4m+3)1

be 2 × 2 × 2 base grid-blocks for m = 0, 1, . . . , t− 1. Moreover, let

B0 =
1 00

01 10

2002

11 31

and B1 =
22

32 30

4140

21 42

12

be 2 × 2 × 2 base grid-blocks.
Firstly, we check that all elements of each 2 × 2 × 2 base grid-block are

distinct. By identifying Am, s as a block,

∆s, sAm, s = (±(4m+ 3)), ∆1+s, 1+sAm, s = (±2),

∆2+s, 2+sAm, s = (±1, ±(4m+ 3), ±(4m+ 4),

± (4m+ 5), ±(4m+ 6), ±(8m+ 9), ±(8m+ 10))

44



hold for each m = 0, 1, . . . , t− 1 and s = 0, 1, 2. Note that the indices are
calculated by modulo 3 for s = 0, 1, 2. Each ∆iiAm, s does not have 0 ∈ Z8t+5

for i = 0, 1, 2. Thus, all elements of Am, s are distinct. It is obvious that all
elements of B0 or B1 are distinct.

Now we define Am = {Am, 0, Am, 1, Am, 2}, A = ∪t−1
m=0Am ∪ {B0, B1}

and A = {A + x : A ∈ A, x ∈ Z8t+5}. Then (V, A) is the desired 2 × 2 × 2
grid-block design.

Firstly,
∂iiB0 + ∂iiB1 = (±1, ±2)

and

∂01B0 + ∂01B1 = ∂12B0 + ∂12B1 = (0, ±1, ±2)

∂02B0 + ∂02B1 = (0,±1, −2, −3)

hold for i = 0, 1, 2. For m = 0, 1, . . . , t− 1,

∂iiAm = (±(4m+ 3), ±(4m+ 4), ±(4m+ 5), ±(4m+ 6))

∂01Am = ∂12Am = (±(4m+ 3), ±(4m+ 4), ±(4m+ 5), ±(4m+ 6))

∂02Am = (4m+ 2, 4m+ 3, ±(4m+ 4), ±(4m+ 5), −(4m+ 6), −(4m+ 7))

hold. Thus, we obtain the following:

∂iiA = ∂iiB0 + ∂iiB1 +

t−1∑
m=0

∂iiAm = Z8t+5 \ {0}

for i = 0, 1, 2. Similarly,

∂01A = ∂12A = ∂01B0 + ∂01B1 +

t−1∑
m=0

∂01Am = Z8t+5,

∂02A = (0, ±1, −2, −3) +
t−2∑
m=0

∂02Am

+ (4t− 2, 4t− 1, ±4t, ±(4t+ 1), −(4t+ 2),−(4t+ 3))

= Z8t+5

hold since −(4t+ 3) = 4t+ 2 holds.
Thus, for any two distinct points x and y in V \ {∞}, they occur exactly

once in the same grid-block line. Lastly, it is easy to show that ∞ and xi

occur exactly once in the same grid-block line in the grid-block B0 + x for
x ∈ Z8t+5 and i = 0, 1, 2. �
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2.5 An asymptotic existence of resolvable

grid-block designs

In this section, we give constructions of resolvable grid-block designs. Firstly,
we give a recursive construction. We utilize a resolvable group grid-block
design D(Ks(t), Gk1, k2) which is defined by the similar way in Section 1.3.
Now, we define an OA. For N = {0, 1, . . . , n− 1}, an orthogonal array of
order n, degree k and index λ, denoted by OA(n, k, λ), is an (n2λ × k)-
matrix with entries from N such that each (n2λ × 2)-submatrix contains
every ordered pair of N precisely λ times.

Example 2.5.1 The following (9 × 4)-matrix forms an OA(3, 4, 1):


0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 2 0 1 1 2 0
0 1 2 1 2 0 2 0 1




T

,

where T is a transpose of a matrix.

We give a recursive construction of a resolvable GB(v, k1, k2).

Theorem 2.5.1 Assume that k1 ≤ k2. If there exist a resolvable D(Ks(t),
Gk1, k2), an OA(n, k2 + 1, 1) and a resolvable GB(nt, k1, k2), then there ex-
ists a resolvable GB(nst, k1, k2).

Proof. For an st-set V , let a triple (V, M, A) be a resolvable D(Ks(t),
Gk1, k2). The number bV of the grid-blocks is t2s(s − 1)/k1k2(k1 + k2 − 2).
Let {P1, P2, . . . , PrV

} be a resolution of the resolvable D(Ks(t), Gk1, k2), the
number rV of the resolution classes is t(s− 1)/(k1 + k2 − 2).

Similarly, for an nt-set W , let a pair (W, B) be a resolvable GB(k1, k2,
nt). The number bW of the grid-blocks is nt(nt − 1)/k1k2(k1 + k2 − 2).
Let {Q1, Q2, . . . , QrW

} be a resolution of the resolvable GB(nt, k1, k2), the
number rW of the resolution classes is (nt− 1)/(k1 + k2 − 2).

For N = {0, 1, . . . , n− 1}, let (n2 × (k2 + 1))-matrix L = (ρij), for i =
0, 1, . . . , n2 − 1 and j = 0, 1, . . . , k2, be an OA(n, k2 + 1, 1). By applying a
permutation to rows of L, we assume that the (k2 + 1)-th column as follows:

ρ0, k2 = 0, ρ1, k2 = 0, . . . , ρn−1, k2 = 0,
ρn, k2 = 1, ρn+1, k2 = 1, . . . , ρ2n−1, k2 = 1,
...

...
...

ρ(n−1)n, k2 = n− 1, ρ(n−1)n+1, k2 = n− 1, . . . , ρn2−1, k2
= n− 1.
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Moreover, each n× 1-column vector (ρun, j , ρun+1, j , . . . , ρun+n−1, j)
T for u =

0, 1, . . . , n− 1 and j = 0, 1, . . . , k2 − 1 contains every element of N pre-
cisely once.

Let V ∗ = V ×N = {(a, ρ) : a ∈ V, ρ ∈ N} and for each grid-blocks A =
(al, m) of (V, M, A), we define

Ci(A) = ((al, m, ρi, l+m))

=

(a00, ρi, 0) (a01, ρi, 1) . . . (a0, k2−1, ρi, k2−1)
(a10, ρi, 1) (a11, ρi, 2) . . . (a1, k2−1, ρi, 0)
...

...
. . .

...
(ak1−1, 0, ρi, k1−1) (ak1−1, 1, ρi, k1) . . . (ak1−1, k2−1, ρi, k2+k2−2)

for A ∈ A and i = 0, 1, . . . , n2 − 1. Note that in the second subscript of
ρ, l + m means l + m (mod k2). We define A∗

1 as {Ci(A) : A ∈ A, i =
0, 1, . . . , ns − 1}. Up to now we have n2bV = n2t2s(s− 1)/k1k2(k1 + k2 − 2)
gird-blocks, but we need nts(nts− 1)/k1k2(k1 + k2 − 2) grid-blocks in total.

In order to get further grid-blocks, letW = M×N and let (W (M), B(M))
be the ingredient resolvable design GB(nt, k1, k2) for each partite set M ∈
M. Now, we define A∗

2 =
⋃

M∈M B(M). Then we obtain sbW = snt(nt −
1)/k1k2(k1 + k2 − 2) new grid-blocks, in total

n2bV + sbW =
nst(nss− 1)

k1k2(k1 + k2 − 2)

grid-blocks. Let A∗ = A∗
1 ∪ A∗

2, then a pair (V ∗, A∗) is the desired GB(k1,
k2, nst).

In fact, if two distinct points a1 and a2 in V are not contained in the same
partite set M ∈ M, then a1 and a2 occur together exactly once in A ∈ A
and the pair (ρ1, ρ2) occur exactly once in the OA(n, k2 + 1, 1). Hence each
pair (a1, ρ1) and (a2, ρ2) for any ρ1, ρ2 ∈ N occurs exactly once in the same
row or in the same column of a grid-block in A∗

1 and does not occur in A∗
2.

Otherwise two distinct points a1 and a2 in V are in the same partite set M ,
then each pair (a1, ρ1) and (a2, ρ2) for all ρ1, ρ2 occurs exactly once in the
same row or in the same column of a grid-block in (W (M), B(M)) and does
not occur in A∗

1. That is, (V ∗, A∗) is a GB(nst, k1, k2). It remains to show
that (V ∗, A∗) is resolvable.

We partition the grid-blocks into r∗ = (nst−1)/k1k2(k1+k2−2) resolution
classes. At first, let Ru

m be as follows:

Ru
m = {Ci(A) : i = us, us+ 1, . . . , us+ s− 1, A ∈ Pl}
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for m = 1, 2, . . . , rV and u = 1, 2, . . . , n− 1. Then, Ru
m is a resolution

class.
We construct still more resolution classes. For resolution classes {Q1(M),

Q2(M), . . . , QrW
(M)} in (W (M), B(M)), let Ol =

⋃
M∈M Ql(M). Obvi-

ously, Ol is a resolution class. The total number of resolution classes Ru
m

and Ol is nrV + rW = (nst− 1)/(k1 + k2 − 2) as desired. �

If each partite set has a single point, then we obtain the following corol-
lary.

Corollary 2.5.2 Assume that k1 ≤ k2. If there exist a resolvable GB(s, k1,
k2), an OA(n, k2 + 1, 1) and a resolvable GB(n, k1, k2), then there exists a
resolvable GB(ns, k1, k2).

The following construction for a resolvable BIB design is obtained by
Ray-Chaudhuri and Wilson [85].

Proposition 2.5.3 For a prime power q, if there exists a mutually dis-
joint difference family (q, k, 1)-DF in GF(q), then there exists a resolvable
B(kq, k, 1).

By combining a resolvable grid-block design with a resolvable BIB designs,
we obtain the following corollary.

Corollary 2.5.4 Let q be a prime power, if there exists a mutually disjoint
(q, v, 1)-DF in GF(q) and a resolvable GB(v, k1, k2), then there exists a
resolvable GB(vq, k1, k2).

Similarly, we obtain the following theorem by utilizing a mutually disjoint
(q, k1, k2)-GBDF.

Theorem 2.5.5 For a prime power q, assume that k1k2(k1 + k2 − 2) divides
q − 1. If there exists a mutually disjoint (q, k1, k2)-GBDF in GF(q) and a
GB(k1k2, k1, k2), then there exists a resolvable GB(k1k2q, k1, k2).

Proof. Let (W, F) be a GB(k1k2, k1, k2), where F = {F0, F1, . . . , Fbk1k2
−1}

and bk1k2 = (k1k2 − 1)/(k1 + k2 − 2). And let {A1, A2, . . . , At} be a mu-
tually disjoint (q, k2, k1)-DF, where the number t of base grid-blocks is
(q − 1)/k1k2(k1 + k2 − 2). Hence,

t∑
i=1

= tk1k2 < q,
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and without loss of generality, we assume that 0 �∈ Ai for i = 1, 2, . . . , t.
For N = {0, 1, . . . , k1k2 − 1}, let V = GF(q) × N . For a k1k2-set let B0 =
{(0, 0), (0, 1), . . . , (0, k1k2 − 1)}, (B0, F(B0)) be the GB(k1k2, k1, k2) and

Bj
i = Ai × {j} = ((ai

l, m, j))

for i = 1, 2, . . . , t and j ∈ N and Ai = (ai
l, m). Up to now we have bk1k2 +

k1k2t = (k1k2 + q − 2)/(k1 + k2 − 2) base grid-blocks.
In order to get further base grid-blocks, we choose arbitrary k1k2 distinct

points u0 = 1, u1, . . . , uk1k2−1 of GF(q) \ {0}, and let

Cx = {(u0x, 0), (u1x, 1), . . . , (uk1k2−1x, k1k2 − 1)}
for x ∈ GF(q) \ {0}. And we define (Cx, F(Cx)) as the GB(k1k2, k1, k2).
Then, we have bk1k2(q − 1) new base grid-blocks, in total

bk1k2 + k1k2t+ bk1k2(q − 1) = (k1k2q − 1)/(k1 + k2 − 2)

base grid-blocks Fh(B0), B
j
i and Fh(Cx) are obtained, where Fh(B0) and

Fh(Cx) are grid-blocks in (B0, F(B0)) and (Cx, F(Cx)), respectively. Now
we replace the base grid-blocks Bj

i by ujB
j
i to satisfy the condition of resolv-

ability and we define A of new grid-blocks by

A = {Fh(B0) : h = 0, 1, . . . , bk1k2 − 1}
∪ {ujB

j
i : i = 1, 2, . . . , t, j ∈ N}

∪ {Fh(Cx) : h = 0, 1, . . . , bk1k2 − 1, x ∈ GF(q) \ {0}}.
The pure differences arise from the ujB

j
i , and the mixed differences come

from the Fh(Cx) and Fh(B0). Since {A1, A2, . . . , At} is a (q, k1, k2)-GBDF,

t∑
i=1

∂jj(ujB
j
i ) =

t∑
i=1

uj∂jjB
j
i = uj(GF(q) \ {0}) = GF(q) \ {0}

holds. Furthermore, for i < j,

bk1k2
−1∑

h=0

∂ijFh(B0) = ∆ijB0 = {0}

and

∑
x∈GF(q)\{0}

( bk1k2
−1∑

h=0

∂ijFh(Cx)

)
=

∑
x∈GF(q)\{0}

∆ijCx

= (uj − ui)(GF(q) \ {0})
= GF(q) \ {0}
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hold.
Hence ∂iiA = GF(q)\{0} and ∂ijA = GF(q) hold for i �= j, which implies

that the pair (V, A) is a GB(k1k2q, k1, k2) for A = {A + x : A ∈ A, x ∈
GF(q)}. It remains to show that A is resolvable.

We partition the grid-blocks into r = (k1k2q− 1)/(k1 + k2 − 2) resolution
classes. We identify the set {ai

l, m : l = 1, 2, . . . , k1, m = 1, 2, . . . , k2} with
the grid-block Ai. Let P0 be as follows:

P0 = {F0(B0)} ∪ {ujB
j
i : i = 1, 2, . . . , t, j ∈ N}

∪ {F0(Cx) : x �∈ Ai for any i}.

Then the number of grid-blocks in P0 is 1 + k1k2t+ (q− 1− k1k2t) = q. The
point in these grid-blocks are

(0, 0), (0, 1), . . . , (0, k1k2 − 1),

(uja
i
11, j), . . . , (uja

i
21, j), . . . , (uja

i
k1, k2

, j) for i = 1, 2, . . . , t and j ∈ N ,

(u0x, 0), (u1x, 1), . . . , (uk1k2−1x, k1k2 − 1) for all x except for x ∈ Ai.

Obviously every point V occurs exactly once, i.e. P0 is a resolution class.
We define a map πg : (x, j) → (x+ g, j) for all g ∈ GF(q) and Pg =

{πg(A) : A ∈ P0}. Then it is obvious that Pg’s are resolution classes. It
is easy to see that Qx = {πg(F (Cx)) : g ∈ GF(q)} is a resolution class for
each x ∈ A1 ∪ A2 ∪ · · · ∪ At. Similarly, we construct still more classes Rh

x =
{πg(Fh(Cx)) : g ∈ GF(q)} and Rh

0 = {πg(Fh(B0)) : g ∈ GF(q)} for h = 1,
2, . . . , bk1k2 − 1. Each Rh

x is also a resolution class. The total number of
resolution classes Pg, Qx and Rh

x is

q + k1k2t+ (bk1k2 − 1)q =
k1k2q − 1

k1 + k2 − 2
= r.

Hence the theorem is proved. �

From Corollary 2.5.4 with v = k1k2, we obtain a resolvable GB(k2
1k

2
2(k1k2

−1)t+ 1, k1, k2) when k1k2(k1k2 − 1)t+ 1 is a prime power. But from The-
orem 2.5.5, we obtain a resolvable GB(k2

1k
2
2(k1 + k2 − 2)t+ 1, k1, k2) when

k1k2(k1+k2−2)t+1 is a prime power. By the existence of a GB(k1k2, k1, k2),
k1 + k2 − 2 divides k1k2 − 1. That is, Corollary 2.5.4 is included in Theorem
2.5.5. For example, in the case of k1 = k2 = 3 and q = 37, there exists a
mutually distinct (37, 3, 3)-GBDF but a B(37, 9, 1) does not exists. Hence
we can not find the existence by Corollary 2.5.4, while we can claim the
existence by Theorem 2.5.5.
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Finally, we show the existence of a resolvable GB(k1k2q, k1, k2) when q is
sufficiently large prime powers satisfying q ≡ 1 (mod k1k2(k1 + k2 − 2)) and
there exists a resolvable GB(k1k2, k1, k2). First, we give a lemma to show
the existence of resolvable grid-block designs.

Lemma 2.5.6 For a prime power q = 1 (mod k1k2(k1 + k2 − 2)), let m =
k1k2(k1 +k2−2)/2. If there exists a k1×k2 array A = (aij) over GF(q) such
that two differences of ∂A lie in each coset modulo Hm, or equivalently, such
that

−→
∂ A = (ajl − ail : 1 ≤ i < j ≤ k1, 1 ≤ l ≤ k2)

∪ (alj − ali : 1 ≤ l ≤ k1, 1 ≤ i < j ≤ k2).

are a system of representative for the cosets Hm, then there exists a (q, k1, k2)-
GBDF in GF(q).

Proof. Since 2m divides q− 1, we have −1 �= 1 ∈ Hm
0 . By the assumption,−→

∂ A must have precisely one entry in each coset Hm
i for 0 ≤ i ≤ m − 1,

and ∂A = (1, −1) ◦ −→∂ A holds. Let S be a system of representatives for the
cosets of the quotient group Hm

0 /{1, −1}, so that Hm
0 = S ◦ (1, −1). Let

A = {sA : s ∈ S}. Then,

∂A = S ◦ ∂A = S ◦ (1, −1) ◦ −→∂ A = GF(q) \ {0},

i.e. A is a (q, k1, k2)-GBDF in GF(q). �

By Proposition 1.8.1 and Lemma 2.5.6, we obtain the following theorem.

Theorem 2.5.7 If there exists a GB(k1k2, k1, k2), then there exists a con-
stant q0 = q0(k1, k2) such that a resolvable GB(k1k2q, k1, k2) exists for all
prime powers q ≥ q0 satisfying the congruence q ≡ 1 (mod k1k2(k1+k2−2)).

Proof. It is sufficient that there exists a mutually disjoint (q, k1, k2)-GBDF
in GF(q). Let I = {(i, j) : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2} and let Pk1×k2+1 be the
set of the following ordered pairs of I ∪ {0}, that is,

Pk1×k2+1 = {((i, j), (i′, j′)) : 1 ≤ i ≤ i′ ≤ k1, 1 ≤ j, j′ ≤ k2,

except for i = i′ and j = j′}
∪ {(0, (i, j)) : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}.
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We divide Pk1×k2+1 into three subsets as follows:

PR
k1×k2

= {((i, l), (i′, l)) : 1 ≤ i < i′ ≤ k1, 1 ≤ l ≤ k2}
PC

k1×k2
= {((l, j), (l, j′)) : 1 ≤ l ≤ k1, 1 ≤ j < j′ ≤ k2}

PE
k1×k2

= {((i, j), (i′, j′)) : 1 ≤ i < i′ ≤ k1, 1 ≤ j �= j′ ≤ k2}
P S

k1×k2
= {(0, (i, j)) : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}.

(2.5.1)

By considering a pair (i, j) ∈ I as k2j+ i, the set of pairs in Pk1×k2+1 can be
identified with Pk1k2+1 = {(i′′, j′′) : 1 ≤ i′′ < j′′ ≤ k1k2 + 1}.

Let m = k1k2(k1 + k2 − 2)/2 and M : Pk1×k2+1 → Hm be a choice
such that (i) M is an injection from PR

k1×k2
∪ PC

k1×k2
to Hm, (ii) it maps

PE
k1×k2

into Hm arbitrarily and (iii) each ordered pair (0, (i, j)) ∈ P S
k1×k2

into mutually distinct cosets Hm
l . Then by Proposition 1.8.1, we can find an

element x0 ∈ GF(q) and a k1 × k2 array (xij) over GF(q) consistent with the
choice M .

Let A = (aij) = (xij −x0), then the elements of ∂A occur exactly twice in
each coset of Hm. Then A = {hA : h ∈ Hm

0 /{1, −1}} is a (q, k1, k2)-GBDF
by Lemma 2.5.6. Moreover, aij ’s lie in distinct cosets modulo Hm

0 . Thus,
all points contained in all hA ∈ A are distinct, that is, the sets hA for h ∈
Hm

0 /{1, −1} are disjoint, i.e. A is also a mutually disjoint (q, k1, k2)-GBDF,
which prove the theorem by Theorem 2.5.5. �

2.6 Constructions of resolvable grid-block

packings

In this section, we construct maximal resolvable 2 × 2 grid-block packings
and q × q grid-block packings for a prime power q and give some recursive
constructions. Firstly, we give the following theorem by constructing directly.

Theorem 2.6.1 There exists a maximal resolvable GBP(v, 2, 2) for any v ≡
0 (mod 4).

Proof. Let V = (Z2t−1 ∪ {∞}) × {0, 1} for any t ≥ 1. We define base
gird-blocks

A∞ =
∞0 00

01 ∞1

and

Am =
m0 (2t−m− 1)0

(2t−m− 1)1 m1
,
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for m = 1, 2, . . . , t− 1. Also we define the family A of base grid-blocks by

A = {Am : m = ∞, 1, 2, . . . , t− 1}.
Moreover, we define a map πg : (m, i) → (m+ g, i) for m ∈ Z2t−1 ∪ {∞},
g ∈ Z2t−1 and i = 0, 1. Note that ∞ + g = ∞. Let A = {πg(Am) : m =
∞, 1, 2, . . . , t− 1, g ∈ Z2t−1}. Then (V, A) is a GB(4t, 2, 2) since

∂00A = ∂01A = ∂10A = ∂11A = Z2t−1 \ {0}
hold and ∞i and gj occur exactly once in the same row or in the same column
of a grid-block for each i, j = {0, 1} and each g ∈ Z2t−1.

Also, πg(A) is obviously a resolution class for each g ∈ Z2t−1. The number
of resolution classes is

2t− 1 =
⌊4t− 1

2

⌋
,

which implies that the resolvable grid-block packing is maximal. �

In Theorem 2.1.9, when q is an odd prime power and n is an even integer,
then there exists a GB(qn, q, q). It is easy to show that this grid-block design
is resolvable. Next, for any prime power q and a positive integer n, we can
construct a maximal resolvable GBP(qn, q, q) as follows:

Theorem 2.6.2 For a positive integer n and a prime power q, there exists
a maximal resolvable GBP(qn, q, q). Moreover, when n is even and q is odd,
the maximal resolvable grid-block packing is a resolvable grid-block design.

Proof. Let V = GF(q) and

u =
⌊ qn − 1

2(q − 1)

⌋
.

We define A as the same array (2.1.1) and A by a similar manner to Theorem
2.1.9. Then a pair (V, A) is the desired maximal resolvable GBP(qn, q, q).

In fact, it is sufficient to count the number of rows and columns of q × q
grid-blocks containing the origin 0(= ω∞) and ωl. Then, there is at most
one line passing through the origin 0 and ωl. Furthermore, we define a class
P0 as a set consisting of A and its parallel 2-flats. Its cyclic shifts ωiP0 for
i = 0, 1, . . . , u− 1 are obviously resolution classes and it is obvious that
there are u resolution classes, which implies that the grid-block packing is
maximal. �

Next, we give some recursive constructions of resolvable GBP(v, k1, k2)’s.
Firstly, we give a construction by generalizing Theorem 2.5.1.
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Theorem 2.6.3 Assume that k1 ≤ k2. If there exist a resolvable GBP(v,
k1, k2) with t resolution classes and an OA(n, k2 + 1, 1), then there exists a
resolvable GBP(nv, k1, k2) with nt resolution classes.

Proof. A proof is similar to that of Theorem 2.5.1. �

Moreover, we give constructions of resolvable GBP(v, k1, k2)’s by utilizing
a resolvable packing.

Theorem 2.6.4 In case of k1 ≤ k2, if there exists a resolvable P(v, k2, 1)
with t resolution classes, then there exists a resolvable GBP(k1v, k1, k2) with
t resolution classes.

Proof. For a v-set V , let a pair (V, B) be a resolvable P(v, k2, 1) with t
resolution classes. Let {Q1, Q2, . . . , Qt} be a resolution of the resolvable
P(v, k2, 1).

For N = {0, 1, . . . , k1 − 1}, let V ∗ = V ×N and let

A(B) = ((bl+n, n))

=

(b0, 0) (b1, 0) . . . (bk2−1, 0)
(b1, 1) (b2, 1) . . . (b0, 1)
...

...
. . .

...
(bk1−1, k1 − 1) (bk1 , k1 − 1) . . . (bk1+k2−2, k1 − 1)

for each block B = {bi}. Note that in the first subscript of b, l + n means
l + n (mod k2). We define the set A as {A(B) : B ∈ B}.

Since two distinct points b1 and b2 in V occur together at most once in a
block of the P(v, k2, 1), each pair (b1, i) and (b2, i) occurs at most once in
the same row of an array in A for any i ∈ N . And each pair (b1, i) and (b2, j)
occurs at most once in the same column of an array in for any i �= j ∈ N .
Hence, the pair (V ∗, A) is a GBP(k1v, k1, k2). Moreover, let

Pj = {A(B) : B ∈ Qj}

for j = 1, 2, . . . , t. Obviously, each Pj is a resolution class. Thus, the
theorem is proved. �

Theorem 2.6.5 In case of k1 ≤ k2, if there exists a resolvable P(v, k2, 1)
with t resolution classes and a resolvable GBP(k1k2, k1, k2) with s + 1 grid-
blocks, then there exists a resolvable GBP(k1v, k1, k2) with st+ 1 resolution
classes.
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Proof. For sets N1 = {0, 1, . . . , k1} and N2 = {0, 1, . . . , k2}, let W =
N1 ×N2 and (W, F) be a resolvable GBP(k1k2, k1, k2), where F = {F0, F1,
. . . , Fs}. Without loss of generality, we assume

F0 =

(0, 0) (0, 1) . . . (0, k2 − 1)
(1, 0) (1, 1) . . . (1, k2 − 1)
...

...
. . .

...
(k1 − 1, 0) (k1 − 1, 1) . . . (k1 − 1, k2 − 1)

. (2.6.1)

It is obvious that each point in W occurs exactly once in every Fu. Moreover,
(i, j) and (i, j′) do not occur in the same row and column of F1, F2, . . . , Fs.
Similarly, (i, j) and (i′, j) do not occur, either.

Now, let (V, B) be a resolvable P(v, k2, 1) with t resolution classes {Q1,
Q2, . . . , Qt}. Let V ∗ = V ×N1 and let

Au(B) = ((bρu
lm
, σu

lm))

for each block B = {bi} and Fu = ((ρu
lm, σ

u
lm)). We define Pu

w = {Au(B) :
B ∈ Qw}. It is obvious that Pu

w is a resolution class. Now, let

A∗ = P0
1 ∪

{ s⋃
u=1

t⋃
w=1

Pu
w

}
.

Then, a pair (V ∗, A∗) is the desired resolvable grid-block packing.
In fact, for any two distinct points (b1, i1) and (b2, i2) in V ∗

(i) in the case of b1 = b2, (b1, i1) and (b2, i2), i1 �= i2, occur exactly once
in a column of a grid-block in P0

1 ,

(ii) in the case of b1 �= b2,

(a) if there is no block in (V, B) containing b1 and b2 simultaneously,
then (b1, i1) and (b2, i2) do not occur in the same grid-block in A,

(b) if there is a block B containing b1 and b2, there is at most one row
or one column of a grid-block in Pu

w which contains (b1, i1) and
(b2, i2), i1 �= i2, simultaneously,

(c) if there is a block B ∈ Q1 containing b1 and b2, there is exactly
one row of a grid-block in P0

1 which contains (b1, i) and (b2, i),
simultaneously.

Thus, the theorem is proved. �

55



By coupling two mutually orthogonal k× k Latin squares, we can obtain
an Euler square. Thus together with F0 in the array (2.6.1) for k1 = k2 = k,
we obtain a GBP(k1k2, k1, k2) with two grid-blocks. Since there are two
mutually orthogonal Latin squares except for k = 6, we obtain the following
corollary.

Corollary 2.6.6 For a positive integer k �= 6, if there exists a resolvable
B(v, k, 1), then there exists a resolvable GBP(kv, k, k) with (v−1)/(k−1)+1
resolution classes.

Moreover, when k is an odd prime power, there exists a resolvable GB(k2,
k, k) by Theorem 2.1.9. Thus, we obtain the following corollary.

Corollary 2.6.7 For an odd prime power k, if there exists a resolvable
P(v, k, 1) with t resolution classes, then there exists a resolvable GBP(kv, k,
k) with t(k − 1)/2 + 1 resolution classes.

For example, in the case of k1 = k2 = 3, it is well known that there is a
resolvable B(6t+ 3, 3, 1) for any positive integer t. By Corollary 2.6.6, we
obtain a resolvable GBP(18t+ 9, 3, 3) with 3t+ 2 resolution classes for any
t. The number of pairs which occur in the same row or in the same column
in a grid-block is 18(3t+ 2)(2t+ 1) and the total number of the pairs of two
distinct points is (18t + 9)(18t + 8)/2. That is, more than 2/3 of the pairs
occur in the same row or in the same column in the grid-block packing.

In addition, it is known that there is a resolvable P(6t, 3, 1) with 3t− 1
resolution classes for any t ≥ 2 (see, for example, [29]). That is, we obtain a
resolvable GBP(18t, 3, 3) with 3t resolution classes. Similarly, in this case,
about 2/3 of the pairs occur in the same row or in the same column in the
grid-block packing.
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Chapter 3

Constructions of Nested BIB
designs and BIB designs with
nested rows and columns

In this chapter, constructions of nested BIB designs and BIBRCs are dis-
cussed. In Section 3.1, constructions of BIB designs and nested BIB designs
are given by utilizing affine geometries. In Section 3.2, a construction of
completely balanced BIBRCs is given by the same method. In the case
when a dimension of affine geometry is even and k1 = k2 holds, BIBRCs,
which are not completely balanced, are obtained by the same construction.
In Section 3.3, a construction of BIBRCs is given by utilizing finite fields,
which are not necessarily completely balanced. And the existence of BIBRCs
for sufficiently large prime powers is shown by applying this construction to
Proposition 1.8.1. In Appendix A, we list the parameters of BIBRCs with
small parameters which are obtained by computer based on this construction.

3.1 A construction of nested BIB designs

Firstly, we give the following results given by Rao [82] and Yamamoto,
Fukuda and Hamada [105]. For any m-flat U , ωU = {ωu : u ∈ U} is also
an m-flat, where ω is a primitive element of GF(qn). The minimum positive
integer θ satisfying ωθU = U is called the minimum cycle length of the m-
flat U . Let θ be the minimum cycle length of an m-flat U passing through
the origin 0. Let p = (qn − 1)/(q − 1), then θ divides p and the minimum
cycle length of an m-flat passing through the origin 0 is a divisor of p. The
set O(U) = {ωiU : i = 0, 1, . . . , θ − 1} is called the orbit or cycle containing
the m-flat U . If θ = p, then the orbit is said to be full, otherwise short. A
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necessary condition for the existence of an m-flat having the minimum cycle
length θ < (qn − 1)/(q− 1) is that (qn − 1)/(q− 1) and (qm − 1)/(q− 1) are
not relatively prime. An m-flat passing through the origin 0 which has the
minimum cycle length p always exists. And all m-flat not passing through
the origin 0 have the minimum cycle length qn − 1.

When d is a divisor of n, let θ = (qn − 1)/(qd − 1) then qd − 1 is the
least integer c satisfying (ωθ)c = 1 where ω is a primitive element of GF(qn).
Thus, ωθ is one of the primitive elements of GF(qd). GF(qd) can, therefore, be
represented as GF(qd) = {0, ω0, ωθ, . . . , ω(qd−2)θ}. In particular, GF(q) =
{0, ω0, ωη, . . . , ω(qd−2)η}, where η = (qn − 1)/(q − 1). When d is a divisor
of n, the set of points in AG(n/d, qd) is identified with the set of points in
AG(n, q).

Moreover, when d is a common divisor of n and m, an (m/d)-flat in
AGm/d(n/d, q

d) is also anm-flat of AGm(n, q). There always exists an (m/d)-
flat U of AG∗

m/d(n/d, q
d) whose cycle length is θ = (qn−1)/(qd−1). All points

on (m/d)-flat U are given by {0}∪(S ◦T ), where S = {ω0, ωθ, . . . , ω(qd−2)θ},
T ⊂ {ω0, ω1, . . . , ωθ−1} and S ◦ T = {st : s ∈ S, t ∈ T}. Therefore, this
(m/d)-flat U is equivalent to an m-flat of AG∗

m(n, q) whose cycle length is θ.
Note that T is an (m/d− 1)-flat of PGm/d−1(n/d− 1, qd).

If T has the minimum cycle length θ′ < θ in PGm/d−1(n/d− 1, qd), then
the m-flat U = {0} ∪ (S ◦ T ) also has the minimum cycle length θ′ in
AG∗

m(n, q). The following lemma follows from these results.

Lemma 3.1.1 Let q be a prime power and d be a common divisor of n and
m. Then there exists a B(qn, qm, (qm − 1)/(qd − 1)).

Proof. Let V = AG0(n, q) and θ = (qn − 1)/(qd − 1). Let U be an m-flat
passing through the origin 0 whose cycle length is θ. We define

B =
⋃

U ′∈P(U)

O(U ′) = {ωiU ′ : i = 0, 1, . . . , θ − 1, U ′ ∈ P(U)},

where P(U) is a parallel class containing U . Note that ωiθU ′ belongs to P(U)
for each i = 0, 1, . . . , qd − 2. In fact, U is an (m/d)-flat of AG∗

m/d(n/d, q
d).

We define U as an (n/d −m/d)-flat of AG∗
n/d−m/d(n/d, q

d) passing through

the origin 0 such that U ∩ U = {0} holds. Then, if x belongs to U , ωiθx,
which is a scalar multiple of x over GF(qd), also belongs to U . And for each
U ′ ∈ P(U), there exists a point x ∈ U such that U ′ = U + x. Therefore,
ωiθU ′ = ωiθ(U + x) = U + ωiθx belongs to P(U) for each i.

Then (V, B) is a B(qn, qm, (qm − 1)/(qd − 1)). In fact, to count the num-
ber of blocks containing two points x and y, we have only to check the num-
ber of blocks containing the origin 0 and z = x− y in O(U). U is given by
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{0}∪ (S ◦T ), where S = {ω0, ωθ, . . . , ω(qd−2)θ} and T is an (m/d−1)-flat of
PGm/d−1(n/d− 1, qd). Therefore, the number of m-flats containing the ori-
gin 0 and z = ωlθ+m( �= 0) is |T | = ((qd)m/d − 1)/(qd − 1) = (qm − 1)/(qd − 1)
since the point set of O(tS) is identified with the point set AG0(n, q) \ {0}
for each t ∈ T . Thus the lemma is proved. �

The following proposition is given by Jimbo and Kuriki [54].

Proposition 3.1.2 Let q be a prime power. Then for any m1 and m2 such
that n = m1+m2 and m1 > m2, there exists a nested B(qn; qm1 , λ1; q

m2 , λ2),
where λ1 = φ(n− 1, m1 − 1, q) and λ2 = φ(n− 1, m2 − 1, q).

The nested BIB design constructed by Proposition 3.1.2 is generated by all
m1-flats and by all m2-flats of AG(n, q). Here we will give another construc-
tion of a nested BIB design which has smaller λ’s than that of Proposition
3.1.2.

Theorem 3.1.3 Let q be a prime power and let d be a common divisor of
integers n, m1 and m2 such that n > m1 > m2 > 0. Then there exists a
nested B(qn; qm1 , (qm1 − 1)/(qd − 1); qm2 , (qm2 − 1)/(qd − 1)).

Proof. For V = AG0(n, q) and θ = (qn − 1)/(qd − 1), let U1 and U2 be an
(m1/d)-flat and an (m2/d)-flat of AG∗(n/d, qd), respectively, such that U1

includes U2 and that their cycle lengths are θ or its divisors. Then, U1 and
U2 are also an m1-flat and an m2-flat of AG(n, q), respectively. Note that
their cycle lengths are θ or its divisors also in AG(n, q).

Let

B1 =
⋃

U ′
1∈P(U1)

O(U ′
1) = {ωiU ′

1 : i = 0, 1, . . . , θ − 1, U ′
1 ∈ P(U1)},

and

B2 =
⋃

U ′
1∈P(U2)

O(U ′
2) = {ωiU ′

2 : i = 0, 1, . . . , θ − 1, U ′
2 ∈ P(U2)}.

Then, it is obvious that the blocks in B2 are nested within the blocks in B1.
By Lemma 3.1.1, (V, B1) and (V, B2) are a B(qn, qm1 , (qm1 − 1)/(qd − 1))
and a B(qn, qm2 , (qm2 − 1)/(qd − 1)), respectively. Therefore, (V, B1, B2) is
a nested B(qn; qm1 , (qm1 − 1)/(qd − 1); qm2 , (qm2 − 1)/(qd − 1)). �

Now, we compare a nested BIBD constructed by Theorem 3.1.3 with
one of Proposition 3.1.2. A nested B(32; 8, 35; 4, 15) is generated by 3-flats
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and 2-flats of AG3(5, 2) and AG2(5, 2) by Proposition 3.1.2. On the other
hand, we obtain a nested B(32; 8, 7; 4, 3) by Theorem 3.1.3. These two
nested BIBDs have the same parameters v, k1, k2, but the design obtained
by Theorem 3.1.3 has smaller λ than that of Proposition 3.1.2. In general,
our method can generate a nested BIBD with smaller λ’s than the ones
constructed via Proposition 3.1.2, since our method uses a subclass of the
m1-flats and the m2-flats of AGm1(n, q) and AGm2(n, q).

As a consequence of Theorem 3.1.3, we obtain the following corollary.

Corollary 3.1.4 For any prime power q and for any integers n, m1 and m2

such that m2 divides n and m1, then there exists a nested BIBD(qn; qm1 ,
(qm1 − 1)/(qm1 − 1); qm2 , 1).

By Theorem 3.1.3, we can construct nested BIBDs with parameters

(v; k1, λ1; k2, λ2) = (32; 4, 3; 2, 1), (32; 8, 7; 2, 1), (32; 8, 7; 4, 3).

These designs are not found in Morgan [72], Morgan, Preece and Rees [73],
nor in their related website of tables of nested BIBDs for v ≤ 36 and r ≥ v−1
(see Rees [86]). Similarly, we can get more examples of nested BIBDs with
parameters

(v; k1, λ1; k2, λ2) = (64; 4, 3; 2, 1), (64; 8, 7; 2, 1), (64; 8, 7; 4, 3) etc.

which may be also new. The construction of Corollary 3.1.4 gives a nested
BIBD with the smallest number of blocks for given v = qn, k1 = qm1 and
k2 = qm2 since λ = 1.

Example 3.1.1 Let q = 2, n = 8, m1 = 4 and m2 = 2 in Corollary 3.1.4.
For a primitive element ω of GF(28), we represent each element ωi of AG(8, 2)
simply by the power i. For convenience, let ∞ be the origin 0. And let U1

and U2 be a 4-flat and 2-flat as following:

U1 = {(∞, 0, 85, 170), (1, 25, 41, 157), (86, 110, 126, 242), (171, 195, 211, 72)},
U2 = {∞, 0, 85, 170}.
These flats generate a nested B(256; 16, 5; 4, 1).

3.2 A construction of BIB designs with nested

rows and columns

In this section, we give constructions of BIBRCs and completely balanced
BIBRCs by using the previous method. The following proposition is given
by Jimbo and Kuriki [54].
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Proposition 3.2.1 There exists a completely balanced BIBRC(q3, q, q, q −
1) for any prime power q.

The design which is constructed by Proposition 3.2.1 is generated by the
1-flats and 2-flats of AG(3, q). The following theorem includes Proposition
3.2.1 as a special case.

Theorem 3.2.2 Let q be a prime power and let d be a common divisor of
positive integers n, m1 and m2 satisfying m1 +m2 ≤ n. Then there exists a
completely balanced BIBRC(qn, qm1 , qm2 , (qm1 − 1)(qm2 − 1)/(qd − 1)).

Proof. For V = AG0(n, q) and θ = (qn − 1)/(qd − 1), let U , U1 and U2 be
an ((m1 + m2)/d)-flat, an (m1/d)-flat and an (m2/d)-flat of AG∗(n/d, qd),
respectively, such that U is spanned by U1 and U2 and that their cycle lengths
are θ or its divisors. Then, U , U1 and U2 are also an (m1 +m2)-flat, an m1-
flat and m2-flat of AG∗(n, q), respectively. And their cycle lengths are θ or
its divisors.

Then, the element in U is arranged in a qm1 × qm2 array A. In fact,
arrange the elements of U1 in the first column of the array and those of
U2 in the first row such that the (1, 1)-element is the origin 0. And define
the (i, j)-element by adding the i-th element of U1 and the j-th element of
U2. Here we identify the array A with U = U1 ⊕ U2. We define U as an
(n − (m1 + m2))-flat of AG∗

n−(m1+m2)(n, q) such that U ∩ U = {0} holds.

Moreover, we define P(A) = {A+ x : x ∈ U} as a parallel class of A. Now,
let

A =
⋃

A′∈P(A)

O(A′) = {ωiA′ : i = 0, 1, . . . , θ − 1, A′ ∈ P(A)},

B1 =
⋃

U ′
1∈P(U1)

O(U ′
1) = {ωiU ′

1 : i = 0, 1, . . . , θ − 1, U ′
1 ∈ P(U1)} and

B2 =
⋃

U ′
2∈P(U2)

O(U ′
2) = {ωiU ′

2 : i = 0, 1, . . . , θ − 1, U ′
2 ∈ P(U2)}.

Note that the columns in P(A) is identified with m1-flats in P(U1). Let U1 =
U2⊕U . Then U1 is an (n−m1)-flat of AG(n, q) passing through the origin 0.
The set of columns of A is {U1 + x : x ∈ U2} and the set of columns of the ar-
rays in P(A) is {U1 + x : x ∈ U1}, which is P(U1). Thus, by Lemma 3.1.1, the
family B1 of columns of arrays in A forms a B(qn, qm1 , (qm1 − 1)/(qd − 1)).

Similarly, B2 is the set of rows of the arrays in A, which forms a B(qn, qm2 ,
(qm1 − 2)/(qd − 1)). And (V, A) is a B(qn, qm1+m2 , (qm1+m2 − 1)/(qd − 1))
by identifying A′ ∈ A with (m1 + m2)-flats. Thus, (V, A) is the desired
completely balanced BIBRC(qn, qm1 , qm2, (qm1 − 1)(qm2 − 1)/(qd − 1)). �
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Also, we have the following corollary.

Corollary 3.2.3 For any prime power q and for any positive integers n, m1

and m2 such that m2 divides n and m1 and m1 + m2 ≤ n, then there exists
a completely balanced BIBRC(qn, qm1 , qm2 , qm1 − 1).

The BIBRC constructed by Theorem 3.2.2 gives a completely balanced
BIBRC with minimum possible value of λ in the case of λR = 1 or λC = 1.
If k1 = k2 = q and n is even, the BIBRC which is constructed by Theorem
3.2.2 has the same parameters with those of Singh and Dey [90]. Corollary
3.2.3 includes the result given by Jimbo and Kuriki [54] as a special case
by letting k1 = k2 = q and n = 3. By Theorem 3.2.2, we can construct a
BIBRC(16, 2, 4, 3) and a BIBRC(32, 2, 4, 3). The BIBRC(16, 2, 4, 3) can
be also constructed by applying the method of Mukerjee and Gupta [75] and
Cheng [26].

Moreover, when k1 = k2 and q is an odd prime power, we give another
construction of a BIBRC whose λ is smaller than that of Theorem 3.2.2.

Theorem 3.2.4 If 2m divides n and q is an odd prime power, then there
exists a BIBRC(qn, qm, qm, (qm − 1)/2).

Proof. Let V = AG0(n, q), θ = (qn−1)/(qm−1) and θ′ = (qn−1)/(q2m−1).
For S = {ω0, ωθ, . . . , ω(qm−2)θ} and S ′ = {ω0, ωθ′, . . . , ω(q2m−2)θ′}, let U =
{0} ∪ S and U ′ = {0} ∪ S ′. U and U ′ are an m-flat and a (2m)-flat passing
through the origin whose minimum cycle length are θ and θ′, respectively.
Obviously, U ′ includes U . By Lemma 3.1.1, the orbit of U and their parallel
classes forms a B(qn, qm, 1) and the orbit of U ′ and their parallel classes also
forms a B(qn, q2m, 1).

Assuming that 2m divides n and q is an odd prime power, θ/2 is an
integer. Let U1 = U and U2 = ωθ/2U1 = {0, ωθ/2, ω3θ/2, . . . , ω(qm−1)θ/2}. U2

is the m-flat with minimum cycle length θ. By arranging the elements U1

and U2 in the first row and in the first column of a qm×qm array A, similarly
to the proof of Theorem 3.2.2, every element of U ′ which is spanned by U1

and U2 occurs as an entry of A. Let

A = {ωiA′ : i = 0, 1, . . . , θ/2 − 1, A′ ∈ P(A)} and

B = {ωiB : i = 0, 1, . . . , θ/2 − 1, B ∈ P(U1)}
∪ {ωiB : i = 0, 1, . . . , θ/2 − 1, B ∈ P(U2)}

= {ωiB : i = 0, 1, . . . , θ − 1, B ∈ P(U)}.
Since the family B of rows and columns of the arrays in A forms a B(qn, qm, 1),
(V, A) has index λR{x, y}+ λC{x, y} = 1. And by considering A as a block
of size q2m, (V, A) is recognized as θ/(2θ′) copies of the B(qn, q2m, 1).

62



In fact, for i = 1, 2, . . . , θ/(2θ′), (2m)-flat A and ωiθ′A are the same
by considering (2m)-flats as blocks of size q2m. However, note that by
considering them as arrays, ωiθ′ is different from each element of A for
i = 1, 2, . . . , θ/(2θ′) and the array A and the transpose of ωθ/2A are the
same. For A′ ∈ P(A) not passing through the origin 0, ωiθA′ also belongs
to P(A) for i = 0, 1, . . . , qm − 1. And the transpose of ωiθ/2A′ belongs to
P(A) for i = 1, 3, . . . , 2qm − 1. Moreover, by considering A′ as a block of
size q2m, ωiθ′A′ belongs to P(U ′) for i = 0, 1, . . . , q2m − 1.

Hence, λ = qm − θ/(2θ′) = (qm − 1)/2 holds for each two distinct pairs
{x, y}. Therefore, (V, A) generates a BIBRC(qn, qm, qm, (qm − 1)/2). �

Example 3.2.1 For V = AG0(4, 3), let A be blocks and P(A) be a parallel
class of A as follows:

A =


∞ 0 40

20 30 50
60 10 70


 , A1 =


 1 4 53

55 62 38
49 37 76


 , ω40A1 =


41 44 13

15 22 78
9 77 36


 ,

A2 =


11 72 6

47 63 65
48 59 14


 , ω40A2 =


51 32 46

7 23 25
8 19 54


 ,

A3 =


21 75 69

24 2 57
73 58 16


 , ω40A3 =


61 35 29

64 42 17
33 18 56


 ,

A4 =


31 67 68

12 3 79
26 5 34


 , ω40A4 =


71 27 28

52 43 39
66 45 74


 ,

where the elements ωi in AG4(3, q) is represented by its power i and the origin
0 is represented by ∞. The blocks are 2-flats and their rows and columns
are 1-flats in AG4(3, q). Then, P(A) = {A, A1, . . . , A4, ω

40A1, . . . , ω
40A4}

holds. We define A = {ωiA′ : i = 0, 1, . . . , 19, A′ ∈ P(A)}. Then, (V,A) is
a BIBRC(81, 3, 3, 1).

Here, define θ and θ′ as in the proof of Theorem 3.2.4. Then θ = (34 −
1)/(3 − 1) = 40 and θ′ = (34 − 1)/(32 − 1) = 10 holds. And

ωθ′A = ω10A =


∞ 10 50

30 40 60
70 20 0




holds. By considering A and ω10A as blocks with size 9, they are the same.
However, note that the array ω10A is different from A. Similarly, ω10A1 and

63



A2 are different arrays though they are the same block by recognizing them
as sets. On the other hand, A3 and the transpose of ω20A1 are the same by
considering them as arrays.

For given v ≤ 512, 3 ≤ max{k1, k2} ≤ 5 and k1k2 < v, Table 3.2.1
lists the smallest feasible new BIBRCs generated by Theorem 3.2.2, that is,
these BIBRCs have the minimum possible value of λ. Note that the case of
k1 = k2 = 2 is completely solved by Srivastav and Morgan [91].

Table 3.2.1: Examples of new BIBRCs constructed by our method

v k1 k2 λ our method
32 2 4 3 Th.3.2.2 AG(5, 2)
32 4 4 9 Th.3.2.2 AG(5, 2)
64 2 4 3 Th.3.2.2 AG(6, 2)

128 2 4 3 Th.3.2.2 AG(7, 2)
128 4 4 9 Th.3.2.2 AG(7, 2)
256 2 4 3 Th.3.2.2 AG(8, 2)
512 2 4 3 Th.3.2.2 AG(9, 2)
512 4 4 9 Th.3.2.2 AG(9, 2)

3.3 An asymptotic existence of BIB designs

with nested rows and columns over GF(q)

In this section we will give a direct construction of a BIBRC which is based
on the well known technique given by Wilson [99] for constructing a BIB
design. Firstly, we define some symbols. For a prime power q = mf + 1, let
A = (aij) be a k1 × k2 array with elements in GF(q). We define ∆R

d (A) as
the number of ordered pairs (aij, aij′) lying in the same row of A such that
the difference aij′ − aij′ is d.

∆R
d (A) = |{(aij, aij′) : aij′ − aij = d, 1 ≤ i ≤ k1, 1 ≤ j �= j′ ≤ k2}|.

Similarly, we define ∆C
d (A) and ∆E

d (A) as the number of ordered pairs (aij ,
ai′j′) such that ai′j′−aij is d and they occur in the same column and elsewhere,
respectively. That is,

∆C
d (A) = |{(aij, ai′j) : ai′j − aij = d, 1 ≤ i �= i′ ≤ k1, 1 ≤ j ≤ k2}| and

∆E
d (A) = |{(aij, ai′j′) : ai′j′ − aij = d, 1 ≤ i �= i′ ≤ k1, 1 ≤ j �= j′ ≤ k2}|.
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Let A be a family of f blocks A. Then, we define ∆R
d (A) =

∑
A∈A ∆R

d (A),
∆C

d (A) =
∑

A∈A ∆C
d (A) and ∆E

d (A) =
∑

A∈A ∆E
d (A).

Now, let δR
l (A) be the sum of ∆R

d (A)’s over all d belonging to Hm
l . That

is
δR
l (A) =

∑
d∈Hm

l

∆R
d (A).

Similarly, we define δC
l (A) and δE

l (A) for the sums of ∆C
d (A)’s and ∆E

d (A)’s
such that d belongs to Hm

l , respectively. That is,

δC
l (A) =

∑
d∈Hm

l

∆C
d (A) and δE

l (A) =
∑

d∈Hm
l

∆E
d (A).

The following theorem is obtained by generalizing the idea of Wilson
[99]. By utilizing the following theorem, we can obtain many new designs
having the smallest r and λ among the known constructions. In fact, such
designs are listed in Table A.1 by name of “Th.3.3.1.” Among them, there
are non-completely balanced designs. For example, the following designs in
Table 3.3.1 are non-completely balanced. Note that in the case of completely
balanced, r, b and λ must be larger than these designs.

Table 3.3.1: Some examples of non-completely balanced BIBRCs

v k1 k2 r b λ v k1 k2 r b λ
13 3 3 9 13 3 17 3 5 30 34 15
17 3 3 36 68 9 19 3 4 12 19 4
17 3 4 24 34 9 25 3 3 18 150 3

Theorem 3.3.1 Let q = mf + 1 be a prime power and let A be a k1 × k2

array with elements in GF(q) such that the following condition hold:

(C1) There is some constant λ such that

(k1 − 1)δR
l (A) + (k2 − 1)δC

l (A) − δE
l (A) = λ

for each 0 ≤ l < m.

Then there exists a BIBRC(q, k1, k2, λ). Moreover, if q is an odd prime
power and 2m divides q − 1, then there exists a BIBRC(q, k1, k2, λ/2).
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Proof. Let Au = ωumA for u = 0, 1, . . . , f − 1 and let A = {A0 =
A, A1, . . . , Af−1}, where ω is a primitive element of GF(q). Fix an element
d ∈ Hm

l . Then,

∆R
d (A) =

f−1∑
u=0

∆R
d (Au) =

∑
d′∈Hm

l

∆R
d (A) = δR

l (A)

holds. Similarly, ∆C
d (A) = δC

l (A) and ∆E
d (A) = δE

l (A) hold. Assuming the
condition (C1),

(k1 − 1)∆R
d (A) + (k2 − 1)∆C

d (A) − ∆E
d (A) = λ (3.3.1)

holds for each d ∈ GF(q) \ {0}. Hence, by defining V = GF(q) and A =
{Au + x : Au ∈ A, x ∈ GF(q)}, a pair (V, A) is a BIBRC(q, k1, k2, λ).

Now, let q be an odd prime power and 2m|(q − 1) such that 1 �= −1 and
−1 ∈ Hm

0 . Then ±d belong to the same coset Hm
l for any d ∈ GF(q) \ {0}.

Therefore, δR
l (A), δC

l (A), δE
l (A) and λ are even and∑

d∈Hm
l /{ωm,−ωm}

(k1 − 1)∆R
d (A) + (k2 − 1)∆C

d (A) − ∆E
d (A) =

λ

2
(3.3.2)

holds for each m. Now let {h0 = 1, h1, . . . , hf/2−1} = Hm
0 /{1, −1}, A′

u =
huA for u = 0, 1, . . . , f/2 − 1 and let A′ = {A′

0, A
′
1, . . . , A

′
f/2−1}. By the

equation (3.3.2),

(k1 − 1)∆R
d (A′) + (k2 − 1)∆C

d (A′) − ∆E
d (A′) =

λ

2

holds for each d ∈ GF(q)\{0}. Hence, by constructing blocks A′ = {A′
u +x :

A′
u ∈ A′, x ∈ GF(q)}, we obtain a BIBRC(q, k1, k2, λ/2). �

Example 3.3.1 Let V = GF(19), then ω = 2 is a primitive element of
GF(19). Furthermore, let m = 3 and

A =

(
0 1 4
16 6 17

)
.

Then δR
0 (A) = 6, because there are (i) a pair {0, 1} whose differences are

1 = ω0 and −1 = ω9 in H3
0 in the first row and (ii) two pairs {16, 17} and

{6, 17} whose differences are ±1, 8 = ω3 and 11 = −8 = ω12 in the second
row. Similarly, δC

0 (A) = 0 and δE
0 (A) = 2 holds since the differences of a pair

{4, 6} are 7 = ω6 and −7 = 12 = ω15. That is,

(k1 − 1)δR
0 (A) + (k2 − 1)δC

0 (A) − δE
0 (A) = 1 · 6 + 2 · 0 − 2 = 4.
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Similarly,

(k1 − 1)δR
1 (A) + (k2 − 1)δC

1 (A) − δE
1 (A) = 1 · 2 + 2 · 4 − 6 = 4 and

(k1 − 1)δR
2 (A) + (k2 − 1)δC

2 (A) − δE
2 (A) = 1 · 4 + 2 · 2 − 4 = 4

hold. Let A = {hA+ x : h ∈ H3
0 , x ∈ GF(19)}. Then (V, A) is a BIBRC(19,

2, 3, 4). Moreover, since −1 = 18 = ω9 ∈ H3
0 , if we utilize A′ = {hA+x : h ∈

H3
0/{1, −1}, x ∈ GF(19)} instead of A, then (V, A′) is a BIBRC(19, 2, 3, 2).

Moreover, if there exists a k1 × k2 array A with elements in GF(q) satis-
fying condition (C1) holds, there exists a BIBRC(qn, k1, k2, λ).

Corollary 3.3.2 Under the same assumptions of Theorem 3.3.1, there exists
a BIBRC(qn, k1, k2, λ) for n ≥ 1. Moreover, if q is an odd prime power and
2m divides q − 1, then there exists a BIBRC(qn, k1, k2, λ/2).

Proof. Let A = {A0, A1, . . . , Af−1}, where Au = ωumA for u = 0, 1, . . . ,
f −1 and ω is a primitive element of GF(q). By Theorem 3.3.1, the equation
(3.3.1) holds for each d ∈ GF(q) \ {0}.

If we consider GF(q) as a subfield of GF(qn), then GF(q) \ {0} is the
multiplicative group Hg

0 of g-th powers in GF(qn) where g = (qn−1)/(q−1).
Let S be any system of representatives for the cosets Hg modulo Hg

0 in
GF(qn), i.e., S is a set of g field elements and S ◦ Hg

0 = GF(qn) \ {0}. We
define A∗ as {sAu : Au ∈ A, s ∈ S}. By the equation (3.3.1),

(k1 − 1)∆R
d (sA) + (k2 − 1)∆C

d (sA) − ∆E
d (sA) =

{
λ if d ∈ sHg

0

0 if d �∈ sHg
0

holds for each s ∈ S. Here, we add more blocks A∗ = {A′ + x : A′ ∈ A∗, x ∈
GF(qn)}. Then, (V ∗, A∗) is a BIBRC(qn, k1, k2, λ), where V ∗ = GF(qn).

When q is an odd prime power and 2m divides q − 1, we utilize A′ =
{A0, A1, . . . , Af/2−1} instead of A, where Au = huA and Hm

0 /{1, −1} =
{h0 = 1, h1, . . . , hf/2−1}. From this, we get a BIBRC(qn, k1, k2, λ/2). �

If m = 1 and q is a prime power, or m = 2 and q is an odd prime power,
then there always exists a k1 × k2 array satisfying (C1). That is, there
exits a BIBRC(q, k1, k2, k1k2(k1 − 1)(k2 − 1)) for a prime power q(> k1k2)
and there exists a BIBRC(q, k1, k2, k1k2(k1 − 1)(k2 − 1)/2) for an odd prime
power. If m ≥ 3, we show an asymptotic existence of a BIBRC by utilizing
Proposition 1.8.1.

Theorem 3.3.3 For any positive integers k1, k2 and λ, let λ0 = gcd(λ,
k1k2(k1 − 1)(k2 − 1)). Assume that one of the following conditions holds:

67



(i) in the case when k1k2(k1 − 1)(k2 − 1)/λ0 is even,

(k1 − 1)
⌊ λ0

k1 − 1

⌋
+ (k2 − 1)

⌊ λ0

k2 − 1

⌋
≥ λ0 or (3.3.3)( λ0

k1 − 1
−

⌊ λ0

k1 − 1

⌋)
+

( λ0

k2 − 1
−

⌊ λ0

k2 − 1

⌋)
≥ 1, (3.3.4)

(ii) in the case when k1k2(k1 − 1)(k2 − 1)/λ0 is odd,

(k1 − 1)
⌊ λ0

2(k1 − 1)

⌋
+ (k2 − 1)

⌊ λ0

2(k2 − 1)

⌋
≥ λ0

2
or (3.3.5)( λ0

2(k1 − 1)
−

⌊ λ0

2(k1 − 1)

⌋)
+

( λ0

2(k2 − 1)
−

⌊ λ0

2(k2 − 1)

⌋)
≥ 1. (3.3.6)

Then there exists a constant q0 = q0(k1, k2, λ) such that a BIBRC(q, k1, k2,
λ) exists for all prime powers q ≥ q0 satisfying

λ(q − 1) ≡ 0 (mod k1k2(k1 − 1)(k2 − 1)). (3.3.7)

As an application of Theorem 3.3.3, we can obtain the following corollar-
ies. In the case of k1 = k2 = k, we can state the following corollary.

Corollary 3.3.4 For any positive integer k, let λ = (k − 1)/2 if k is odd or
let λ = k/2 if k is even. Then there exists a BIBRC(q, k, k, λ) for sufficiently
large prime powers q satisfying the congruence (3.3.7).

Proof. In Theorem 3.3.3, λ0 = lcm(λ, k2(k − 1)2) = λ, which clearly satis-
fies the inequality (3.3.4). Thus the corollary is shown. �

Similarly, when k is even, the following corollary is obtained.

Corollary 3.3.5 For an even integer k, let λ = k/2. Then there exists
a BIBRC(q, k − 1, k, λ) for sufficiently large prime powers q satisfying the
congruence (3.3.7).

Moreover, we consider the case of a completely balanced BIBRC. In this
case, λ is a multiple of lcm(k1 − 1, k2 − 1) by the equation (1.5.1). Then,
the conditions (3.3.3) and (3.3.5) hold. Therefore, we obtain the following
corollary.

Corollary 3.3.6 For any positive integers k1 and k2, let λ be a multiple of
lcm(k1 − 1, k2 − 1). If q is a sufficiently large prime power satisfying the con-
gruence (3.3.7), then there exists a completely balanced BIBRC(q, k1, k2, λ).

68



For the proof of Theorem 3.3.3, we use the same notations (2.5.1) in the
proof of Theorem 2.5.7. And let Pk1×k2 = PR

k1×k2
∪PC

k1×k2
∪PE

k1×k2
. We define

εRl by the number of ordered pairs ((i, j), (i, j′)) such that F ((i, j), (i, j′)) =
Hm

l for all ((i, j), (i, j′)) ∈ PR
k1×k2

. Similarly, we define εCl and εEl by the
numbers of ((i, j), (i′, j)) and ((i, j), (i′, j′)) such that F ((i, j), (i′, j)) =
Hm

l and F ((i, j), (i′, j′)) = Hm
l for ((i, j), (i′, j)) ∈ PC

k1×k2
and ((i, j), (i′,

j′)) ∈ PE
k1×k2

, respectively. For the numbers of the pairs PR
k1×k2

, PC
k1×k2

and
PE

k1×k2
, the following equations obtained:

m−1∑
l=0

εRl = k1

(
k2

2

)
=
k1k2(k2 − 1)

2
, (3.3.8)

m−1∑
l=0

εCl = k2

(
k1

2

)
=
k1k2(k1 − 1)

2
and (3.3.9)

m−1∑
l=0

εEl = k2(k2 − 1)

(
k1

2

)
=
k1k2(k1 − 1)(k2 − 1)

2
. (3.3.10)

Conversely, for any nonnegative integers εRl , εCl and εEl , 0 ≤ l < m,
satisfying the equations (3.3.8), (3.3.9) and (3.3.10), there is a corresponding
choice F defined as above with these numbers. Moreover, if −1(�= 1) ∈ Hm

0

holds and if there exists a k1 × k2 array A over GF(q) which is consistent
with the choice F , then

2{(k1 − 1)εRl + (k2 − 1)εCl − εEl }
= (k1 − 1)δR

l (A) + (k2 − 1)δC
l (A) − δE

l (A)

holds for each l. Here we consider the following condition:

(C2) (k1 − 1)εRl + (k2 − 1)εCl − εEl = λ holds for each 0 ≤ l < m.

If the condition (C2) is satisfied, then we can construct a BIBRC(q, k1, k2, λ)
by Theorem 3.3.1.

Example 3.3.2 Let V = GF(19), then ω = 2 is a primitive element of
GF(19). Furthermore, let m = 3. We define a choice F : P2×3 → H3 as
follows:

F ((1, 1), (1, 2)) = H3
0 F ((1, 1), (1, 3)) = H3

2 F ((1, 2), (1, 3)) = H3
1

F ((2, 1), (2, 2)) = H3
2 F ((2, 1), (2, 3)) = H3

0 F ((2, 2), (2, 3)) = H3
0

F ((1, 1), (2, 1)) = H3
1 F ((1, 2), (2, 2)) = H3

1 F ((1, 3), (2, 3)) = H3
2

F ((1, 1), (2, 2)) = H3
2 F ((1, 1), (2, 3)) = H3

1 F ((1, 2), (2, 1)) = H3
2

F ((1, 2), (2, 3)) = H3
1 F ((1, 3), (2, 1)) = H3

0 F ((1, 3), (2, 2)) = H3
1

.
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The choice F satisfies εRl +2εCl −εEl = 2 for each l = 0, 1, 2. Let A be the same
2 × 3 array over GF(19) in Example 3.3.1. Then, the array A is consistent
with the choice F . Therefore a BIBRC(19, 2, 3, 2) exists by Theorem 3.3.1.

Proof of Theorem 3.3.3. Obviously, it is sufficient to show the existence
of a BIBRC(q, k1, k2, λ0), since a BIBRC(q, k1, k2, λ) can be obtained by
making λ/λ0 copies of the BIBRC.

Case (i). In the case when k1k2(k1 − 1)(k2 − 1)/λ0 is even, q is always an
odd prime power by the congruence (3.3.7). Letm = k1k2(k1−1)(k2−1)/2λ0,
then 2m divides q−1 by the congruence (3.3.7), that is, −1(�= 1) ∈ Hm

0 . We
define s = k1k2(k2−1)/2m = λ0/(k1−1), t = k1k2(k1−1)/2m = λ0/(k2−1).
We set εRl = s, εCl = t and εEl = λ0 for all 0 ≤ l < m, then the equations
(3.3.8), (3.3.9) and (3.3.10) and the condition (C2) are satisfied. But, s and
t may be rational.

If we find nonnegative integers εRl , εCl and εEl satisfying the equations
(3.3.8), (3.3.9) and (3.3.10) and the condition (C2). Then we can fix a choice
F . By Proposition 1.8.1, there exists a k1×k2 array which is consistent with
the choice F for sufficiently large prime powers satisfying the congruence
(3.3.7). Thus, we can construct a BIBRC(q, k1, k2, λ0) by Theorem 3.3.1.
In the following, we will find such nonnegative integers εRl , εCl and εEl .

Case (i-a). In the case when the inequality (3.3.3) hold, that is, (k1 −
1)
s� + (k2 − 1)
t� − λ0 ≥ 0 holds. Let �a� be the smallest integers which
is not less than a. We arbitrarily define either εRl = 
s� or εRl = �s� for
l = 0, 1, . . . , m− 1 so that the numbers of 
s� and �s� are (�s� − s)m and
(s − 
s�)m, respectively. Similarly, we define either εCl = 
t� or εCl = �t� so
that the numbers of 
t� and �t� are (�t� − t)m and (t− 
t�)m, respectively.
Note that the numbers (�s� − s)m, (s − 
s�)m, (�t� − t)m and (t − 
t�)m
are nonnegative integers. And let εEl = (k1 − 1)εRl + (k2 − 1)εCl − λ0. Then
εEl are nonnegative integers for any l. It is easy to see that εRl ’s, εCl ’s and
εEl ’s satisfy the equations (3.3.8), (3.3.9) and (3.3.10) and the condition (C2)
holds.

Case (i-b). In the case when the inequality (3.3.4) holds, that is, (�s� −
s)m ≤ (t−
t�)m and (s−
s�)m ≥ (�t�− t)m hold. We define εRl , εCl and εEl
similarly to the Case (i-a). However, we define εRl and εCl so that εRl = 
s�
and εCl = 
t� do not occur simultaneously. Then, εEl is a nonnegative integer
for each l. It is easy to see that εRl ’s, εCl ’s and εEl ’s satisfy the equations
(3.3.8), (3.3.9) and (3.3.10) and the condition (C2) holds.

Case (ii). We consider the case when k1k2(k1−1)(k2−1)/λ0 is odd. Nec-
essarily, λ0 is a multiple of 4. We take m = k1k2(k1−1)(k2−1)/λ0. If q is an
odd prime power, 2m divides (q − 1) since the equation (3.3.7) holds. Oth-
erwise q is a power of 2, and −1 = 1 holds. In any case, we have −1 ∈ Hm

0 .
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Similarly, put εRl = 
λ0/2(k1 − 1)� or �λ0/2(k1 − 1)�, εCl = 
λ0/2(k2 − 1)� or
�λ0/2(k2 − 1)� and εEl = (k1 − 1)εRl + (k2 − 1)εCl − λ0/2, so that the num-
bers of 
λ0/2(k1 − 1)�, �λ0/2(k1 − 1)�, 
λ0/2(k2 − 1)� and �λ0/2(k2 − 1)�
are (�λ0/2(k1 − 1)� − λ0/ 2(k1 − 1))m, (λ0/2(k1 − 1) − 
λ0/2(k1 − 1)�)m,
(�λ0/2(k2 − 1)� − λ0/2(k2 − 1))m and (λ0/2(k2 − 1)− 
λ0/2(k2 − 1)�)m, re-
spectively.

Similarly, we can find nonnegative integers εRl ’s, εCl ’s and εEl ’s satisfying
the equations (3.3.8), (3.3.9) and (3.3.10) and the condition (C2) holds. That
is, in any case, we can fix a choice F such that the condition (C2) holds. Thus,
the theorem is shown. �
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Chapter 4

Multiple edge-colored graph
decompositions

In this chapter, the asymptotic existence of colorwise simple edge-colored
graph decompositions of complete graphs is discussed. In Section 4.1, we
introduce a simple property “tree-ordered” to show the asymptotic existence
of colorwise simple edge-colored graph decompositions of complete graphs.
In Section 4.2, outline of a proof of the main theorem is given. In Sections
4.3, 4.4 and 4.5, some theorems are prepared to show the main theorem. In
Section 4.6, we introduce a notion of “balanced” decomposition of graphs.
And we show the asymptotic existence of balanced graph decompositions of
complete graphs. In Section 4.7, the asymptotic existence of graph decom-
positions is shown for any edge-colored graph K–

v . Also, balanced case is
treated.

4.1 Tree-ordered structure of edge-colored

graphs

First, we define the property “tree-ordered.” Let G = (X(G), E(G), θG, ψG)
be an edge-c-colored graph. For each distinct vertices x and y of X(G), let
〈x, y〉 be the edge set ψ−1

G ({x, y}) between x and y in G and let E〈G〉 be
the family of all edge sets in G. We define C(〈x, y〉) as a color multiset of
an edge set 〈x, y〉, that is, C(〈x, y〉) = (θG(e) : e ∈ 〈x, y〉) and C(G) as the
family of all color multisets over all edge sets of G. If G is colorwise simple,
a color multiset is simply a set. And we denote an edge with color i between
vertices x and y by {x, y}i.

Let G be a family of edge-c-colored graphs. We define C(G) =
⋃

G∈G C(G).
Then G is said to be tree-ordered if (i) C1 ⊂ C2, C1 ⊃ C2, or C1 ∩ C2 = ∅
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holds for any distinct color multisets C1 and C2 in C(G) and (ii) the color
multisets (i) belongs to C(G) for any i. Especially, G is called tree-ordered
edge-c-colored graph if C({G}) is tree-ordered. If G consists only of colorwise
simple edge-c-colored graphs, then we use the term “color sets” instead of
color multisets.

Then we obtain the following theorem.

Theorem 4.1.1 Let G be a tree-ordered λ-admissible family of colorwise
simple edge-c-colored graphs, where λ = (λ1, λ2, . . . , λc) is a vector of pos-
itive integers. Then there exists a constant v0 = v0(G, λ) such that G-
decompositions of K–

v exist for all integers v ≥ v0 satisfying the congruences
(1.6.2).

To prove Theorem 4.1.1, we firstly show the following theorem which is
a simple version of Theorem 4.1.1.

Theorem 4.1.2 Let G be a tree-ordered admissible family of colorwise simple
edge-c-colored graphs. Then there exits a constant v0 = v0(G) such that G-

decompositions of K
[c]
v exist for all integers v ≥ v0 satisfying the congruences

(1.6.3).

A proof of Theorem 4.1.2 will be stated in Sections 4.2, 4.3, 4.4 and 4.5.
And a proof of Theorem 4.1.1 will be stated in Section 4.7. Moreover, we
obtain a similar theorem to Theorem 4.1.2 in the case of “balanced” graph
decompositions of complete graphs in Section 4.6.

4.2 Outline of the proof of an asymptotic

theorem for graph decompositions

For a set K of positive integers, let B(K) be the set of integers v such that
there exists a pairwise balanced design B(v, K, 1). K is called a PBD-closed
set if B(K) = K holds.

For given c, we fix a tree-ordered admissible family G of colorwise simple
graphs with c colors. Let (V, B) be a B(v, K, 1). It is readily seen that there

exists a D(K
[c]
v , G) if there exists a D(K

[c]
|B|, G) for every B ∈ B by combining

all such decompositions. That is, in the terminology of Wilson [101], the set
of integers

D(G) = {v : D(K [c]
v , G) exists}

is PBD-closed. The main result of Wilson [101] asserts the following propo-
sition.

73



Proposition 4.2.1 If a PBD-closed set D contains integers greater than 1,
then D is eventually periodic with some positive period β(D), that is,

v ∈ D ⇒ v + tβ(D) ∈ D for all sufficiently large t.

Now the assumption that G is admissible implies that there exists a pos-
itive integer m such that the constant vector (m, m, . . . , m) of length c is
a nonnegative integral linear combination of the µ(G)’s for G ∈ G. This in
turn means that we can obtain a colorwise simple graph G0 with c colors
which consists of the disjoint union of graphs isomorphic to members of G
and such that G0 has exactly m edges of each color. Then, the following
theorem is obtained, which is proved in Section 4.3.

Theorem 4.2.2 Let G0 be a tree-ordered colorwise simple graph with c colors
and m edges of each of c colors. Then there exists a constant q0 = q0(m, k)

such that K
[c]
q admits a G0-decompositon for every prime power q ≡ 2m+ 1

(mod 4m) with q ≥ q0, where k is the number of vertices of G0.

By Theorem 4.2.2, there are (infinitely many) values of v for which there

exist D(K
[c]
q , G0)’s, and hence a G-decomposition of K

[c]
q . Thus we have the

existence of an eventual period β0 �= 0 for D(G) by Wilson [101]. A multiple
of an eventual period is also an eventual period of D(G), so we may assume
β0 is divisible by β(G). To complete the proof of Theorem 4.1.2, it will suffice
to show the following theorem which is proved in Section 4.5.

Theorem 4.2.3 Let G be a tree-ordered admissible family of colorwise simple
graphs with c colors. Let n be a positive integer satisfying the congruences
(1.6.3). Then there exists an integer v0 such that v0 ≡ n (mod β0) and that

K
[c]
v0 admits a G-decomposition, where β0 is an eventual period of D(G).

In order to prove Theorem 4.2.3, we first show the following theorem.
The proof is given in Section 4.4.

Theorem 4.2.4 Let G be a tree-ordered admissible family of colorwise simple
graphs with c colors. Let v be a positive integer satisfying the congruences
(1.6.3) and v ≥ 2 + |V (G)| for all G in G. Then, for an eventual period β0

of D(G), there exists a prime power q ≡ 1 (mod β0) such that qK
[c]
v admits

G-decomposition.

In summary, the proof of Theorem 4.1.2 will be completed by the material
in the next three sections.
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4.3 A construction from cyclotomy in finite

fields

In this section, we prove Theorem 4.2.2 by utilizing Proposition 1.8.1.

Proof of Theorem 4.2.2. Let Γ denote the group of q(q− 1)/2m permu-
tations

{x → ax+ b : a ∈ H2m
0 , b ∈ GF(q)}

of GF(q). Then by letting Γ act naturally on the set

{(x, y) : x, y ∈ GF(q), x �= y},
we obtain 2m orbits

{(x, y) : y − x ∈ H2m
i , x, y ∈ GF(q)},

on which Γ is sharply transitive. Here we consider the following condition:

(C3) There is an injective mapping φ : V (G0) → GF(q) such that for each
color i, the 2m field elements

{±(φ(x) − φ(y)) : {x, y} ∈ Ei(G0)}
form a system of representatives for the cyclotomic classes H2m

0 , H2m
1 ,

. . . , H2m
2m−1 of index 2m.

By virtue of the condition (C3), we claim that K
[c]
q can be decomposed into

G0’s. When we apply the permutations in Γ to the vertices of the image of
G0, we obtain a decomposition of K

[c]
q into q(q−1)/2m subgraphs isomorphic

to G0 by the condition (C3).
Proposition 1.8.1 asserts that, provided q is sufficiently large, we can

map vertices of G0 to field elements so that the difference φ(x)−φ(y) (x, y ∈
V (G0)) in one direction is in some cyclotomic class H2m

i we may wish, but
then the difference φ(y) − φ(x) in the other direction will belong to the
cyclotomic class H2m

i+� where � is an integer satisfying −1 ∈ H2m
� . If q is a

prime power with q ≡ 2m + 1 (mod 4m), −1 ∈ H2m
m , since −1 = ω(q−1)/2

and (q − 1)/2 ≡ m (mod 2m). Thus if a ∈ H2m
i , then −a ∈ H2m

i+m.
It is clear, from Proposition 1.8.1, that there exists an injection φ satis-

fying the condition (C3) if G0 is a simple edge-c-colored graph. To handle a
colorwise simple graph with c colors, we want to find an injection φ which is
a choice for any color i and is well-defined for each edge set.

Let E〈G0〉 be a family of all edge sets in G0. A subfamily E1 ⊂ E〈G0〉
is called a resolution class of color set C if (i) ∪〈x, y〉∈E1

C(〈x, y〉) = C and
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(ii) C(〈x, y〉) ∩ C(〈x′, y′〉) = ∅ for any distinct edge sets 〈x, y〉 and 〈x′, y′〉
in E1. E〈G0〉 is said to be resolvable with respect to color set C if E〈G0〉 is
partitioned into resolution classes of color set C.

By the assumption, C(G0) is tree-ordered. We can choose a resolution
class E1 from E〈G0〉 since G0 has m edges of each color i and C1 ∩ C2 = ∅,
C1 ⊂ C2, or C1 ⊃ C2 holds for any distinct color sets C1 and C2 in C(G0).
In fact, we fix a color i1 ∈ C and chose the maximal color set C1 containing
i1. Secondly, we fix a color i2 ∈ C \ C1 and choose the maximal color set C2

containing i2. Then C1 ∩ C2 = ∅ since C(G0) is tree-ordered. By continuing
this process, we obtain a resolution class E1 of color set.

We define G1 as the graph having the same vertex set with G0 and the
edge set E〈G0〉 \ E1. Then, we can choose a resolution class E2 from E〈G1〉
since C(G1) is also tree-ordered. By continuing this process, we obtain m
resolution classes {E1, E2, . . . , Em} of E〈G0〉. Each El has exactly one edge
of color i for each i ∈ C. We can choose an injection φ such that

φ(x) − φ(y) ∈ H2m
l and

φ(y) − φ(x) ∈ H2m
l+m

hold for any edge {x, y} in El, l = 0, 1, . . . , m− 1. With such a choice φ
satisfying the condition (C3), by applying Proposition 1.8.1, we obtain the

required G0-decomposition of K
[c]
q for sufficiently large q. �

4.4 Integral solutions for a certain linear

system

In this section, we will show Theorem 4.2.4, which will be utilized to show
Theorem 4.2.3 in the next section. To show Theorem 4.2.4, we give a lemma
which says that the congruences (1.6.3) are sufficient for the existence of an
integral solution of a certain system of linear equations. Here, we use the
following well known proposition to show the lemma (see, for example, [88]).

Proposition 4.4.1 Let M be a rational s × t matrix and c be a rational
column vector of length s. The equation Mx = c has an integral solution
x, a column vector of length t, if and only if yM integral implies yc is an
integer for all rational row vectors y of length s.

For a family of colorwise simple graphs G with c colors, let F denote the
set of all subgraphs F of K

[c]
v each of which is isomorphic to some member

of G. And let M be the matrix whose rows are indexed by the cv(v − 1)/2
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edges of K
[c]
v and whose columns are indexed by the members in F , where

the entry in row e and column F of M is 1 if e ∈ E(F ) and 0 otherwise. Let
1 be all-one vector of length cv(v − 1)/2.

Lemma 4.4.2 Let G be a tree-ordered admissible family of colorwise simple
graphs with c colors and let F denote the set of all subgraphs F of K

[c]
v each of

which is isomorphic to some member of G. In addition, assume v ≥ 2+|V (G)|
for all G in G. The equation Mx = 1 has an integral solution {sF : F ∈ F}
if and only if v satisfies the congruences (1.6.3).

Proof. The proof is similar to that of Lamken and Wilson (see [63, Theorem
5.4]) though the first part of the proof is different from them because of the
existence of multiple edges. So, we show only different parts of the proof.

We assume that rationals b(e) for e ∈ E(K
[c]
v ) are given such that b(F ) =∑

e∈E(F ) b(e) is integral for each F ∈ F . For an edge e = {x, y}i, bi{x, y} =

b(e). For rational numbers a and b, a ≡ b means that the difference b− a is
an integer.

For each color i ∈ C, let Gi be a graph in a tree-ordered admissible
family G having an edge of color set {i}. Note that Gi and Gi′ may be

the same graph. Let x, y, u and v be any four vertices of K
[c]
v and let

Fi, 1 be an isomorphic copy of Gi in K
[c]
v such that Fi, 1 contains the edge

{x, y}i of color i and that u, v �∈ V (Fi, 1). Let Fi, 2, Fi, 3 and Fi, 4 be the
isomorphic graphs to Fi, 1 obtained by applying the permutations (xu), (yv)
and (xu)(yv), respectively. Now since b(Fi, l) is integral for l = 1, 2, 3, 4, we
have

b(Fi, 1) + b(Fi, 4) ≡ b(Fi, 2) + b(Fi, 3). (4.4.1)

Each side of this congruence consists of sums of b(e)’s. Since Fi, l (l =
1, 2, 3, 4) have common edges, by deleting b(e)’s corresponding to these edges
from both side of the congruence (4.4.1), the congruence (4.4.1) is reduced
to

bi{x, y} + bi{u, v} ≡ bi{x, v} + bi{u, y}. (4.4.2)

Since the congruence (4.4.2) holds for any x, y, u and v in V (K
[c]
v ), there

exist rationals γi(x) of each x ∈ V (K
[c]
v ) such that

bi{x, y} ≡ γi(x) + γi(y). (4.4.3)

To prove the congruence (4.4.3), choose distinct vertices p, q, r and solve
the equations bi{p, q} = γi(p) + γi(q), bi{q, r} = γi(q) + γi(r), bi{r, p} =
γi(r)+γi(p) and define γi(x) = bi{x, p}−γi(p) for any x �= p, q, r. Then the
congruence (4.4.3) holds for any two vertices x and y. Note that γ’s may be
rationals.
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The reminder of the proof of this lemma is the same as that of Lamken
and Wilson (see [63, Theorem 5.4]). �

Now we are ready to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. The congruences (1.6.1) holds for some positive
rationals aG, since G is admissible. Given G ∈ G, the number of F ∈ F
with F ∼= G that contain an edge e of K

[c]
v depends only on its color. More

precisely, there is a constant MG such that the number of F ∈ F with F ∼= G
containing an edge e of color i is miMG, where µ(G) = (m1, m2, . . . , mc).
Let dF = aG/MG for F ∼= G. Then∑

F :e∈E(F )

dF = 1 for every edge e of K [c]
v .

Define zF = MdF , where M is a positive integer chosen so that all zF are
(positive) integers. Then∑

F :e∈E(F )

zF = M for every edge e of K [c]
v .

Let v be a positive integer satisfying the congruences (1.6.3). We assume
that v ≥ 2 + |V (G)| for all G in G. We define {sF : F ∈ F} as in Lemma
4.4.2. Let s′F = sF + tzF for each F ∈ F and for any integer t, then∑

F : e∈E(F )

s′F = 1 + tM for every edge e of K [c]
v .

We fix t so that

(i) s′F = sF + tzF ≥ 0 for each F ∈ F and

(ii) q = 1 + tM is a prime or a power of prime congruent to 1 modulo β0.

The existence of t satisfying (ii) is due to the well-known theorem by Dirichlet

(see, for example, [36]). Thus, we obtain a G-decomposition of qK
[c]
v . �

4.5 A linear algebraic construction

To prove Theorem 4.2.3, we use Theorem 4.2.4 together with the following
techniques utilized in Wilson [103] to show that there is at least one G-

decomposition of K
[c]
v for each feasible congruence class modulo β0. The

following proposition is necessary to show Theorem 4.2.3 (see, for example,
[103]).
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Proposition 4.5.1 Let W be a d-dimensional vector space over GF(q), and
let � : W → GF(q) be any nonzero linear functional. If d ≥ n2, there
exist linear transformations T1, T2, . . . , Tn of W to itself with the following
properties: Sij = (Tj − Ti)

−1 exists whenever i �= j and for any n(n − 1)/2
scalars ρij, 1 ≤ i < j ≤ n, there exist vectors x1, x2, . . . , xn ∈ W such that

�(Sij(xj − xi)) = ρij

holds for 1 ≤ i < j ≤ n.

Fix an integer n satisfying the congruences (1.6.3). By Theorem 4.2.4,

there exists a G-decomposition F of qK
[c]
n , where q ≡ 1 (mod β0) is some

prime power. Take each subgraph F ∈ F with multiplicity s′F to get a
multiset F1, F2, . . . , FN of subgraphs in F such that each edge {x, y} of

color i in K
[c]
n appears in exactly q of these subgraphs, i = 1, 2, . . . , c.

For a positive integer d, let v0 = nqd. Then v0 ≡ n (mod β0) holds. Let

{1, 2, . . . , n} be the vertex set of K
[c]
v , and V = W × {1, 2, . . . , n} be the

vertex set of K
[c]
v0 , where W is a d-dimensional vector space over GF(q). We

note that the following lemma is proved by Proposition 4.2.1 together with
Theorem 4.2.2.

Lemma 4.5.2 Let G be a tree-ordered admissible family of colorwise simple
graphs with c colors. There exists a positive integer β0 which is divisible by
2β(G) with the property: If K

[c]
v0 admits a G-decomposition for some positive

integer v0, then K
[c]
v can be G-decomposed for all sufficiently large integers

v ≡ v0 (mod β0).

Again, we utilize Theorem 4.2.2 as follows. In Theorem 4.2.2, it is obvious
that β(G) divides m, where m is the number of edges of each color in G0.
Let G′

0 be a graph having β0 components which are isomorphic to G0 and
let m′ = β0m be the number of edges of each color in G′

0. By applying
Theorem 4.2.2 to G′

0, there exist G′
0-decompositions (G-decompositions) of

K
[c]
p for sufficiently large prime power p ≡ 2m′ + 1 (mod 4m′). It is obvious

that β0 divides 2m′, thus p ≡ 1 (mod β0). By Lemma 4.5.2, there exist G-

decompositions of K
[c]
v for sufficiently large integer v ≡ 1 (mod β0). Hence,

there exist G-decompositions of K
[c]

qd for q ≡ 1 (mod β0) and for sufficiently
large integers d.

By choosing an integer d ≥ n2 which is large enough, K
[c]

qd defined on

the vertex set W × {x} can be G-decomposed for each x. Let K
[c]

n(qd)
be a

colorwise simple complete n-partite graph with c colors. Then we obtain the
following lemma.
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Lemma 4.5.3 For a tree-ordered admissible family G of colorwise simple
edge-c-colored graphs, if there exists a G-decomposition of qK

[c]
n for a prime

power q and an integer n satisfying the congruences (1.6.3), then there exists

a G-decomposition of K
[c]

n(qd)
for any d ≥ n2.

Proof. For each subgraph Fh, h = 1, 2, . . . , N , by decomposing qK
[c]
n as

in the previous section, we want to assign scalars ρh(x, y) in GF(q) to all
ordered pairs (x, y) of vertices of Fh with x < y and for which x and y are
adjacent so that: for every pair (x, y) with 1 ≤ x < y ≤ n and every color i,
1 ≤ i ≤ c, the following condition is satisfied:

(C4) For each l ∈ GF(q) and x, y in qK
[c]
n , there is a unique edge {x, y} of

color i in F to which scalar l = ρh(x, y) is assigned.

Note that for each {x, y}i ∈ 〈x, y〉 such that x < y, ρh(x, y) is assigned to
the same element of GF(q) not depending i.

We regard the subgraphs F1, F2, . . . , FN as “formally disjoint” by distin-
guishing the q edges {x, y} in qK

[c]
n as distinct edges. Let E〈x, y〉 be a family

of the edge sets 〈x, y〉 that appear in F1, F2, . . . , FN . Assume that G is tree-
ordered, then E〈x, y〉 is partitioned into resolution classes E1, E2, . . . , Eq in
a similar manner to the proof of Theorem 4.2.2. For an edge set 〈x, y〉 ∈ Fh,
if 〈x, y〉 belongs to El, we define ρh(x, y) = l, where x < y and l ∈ GF(q).

The reminder of the proof of this theorem is the same as that of Lamken
and Wilson (see [63, Theorem 6.2]) together with Proposition 4.5.1. That is,

there exists a G-decomposition of K
[c]

n(qd)
. �

A G-decomposition of K
[c]

nqd is obtained by applying the decompositions

of K
[c]

qd in Theorem 4.2.2 and Lemma 4.5.2 and K
[c]

n(qd)
in Lemma 4.5.3. Thus,

Theorem 4.1.2 is proved.

4.6 Balanced graph decompositions

In this section, we introduce a property “balanced” to a G-decomposition of
K

[c]
v . For a family G of edge-c-colored graphs, a G-decomposition F of K

[c]
v is

called balanced if each vertex ofK
[c]
v belongs to exactly the same number(= r),

which is called replication number, of subgraphs F ∈ F . In the reminder of
this section, we consider only a case when G consists of graphs which have
the same number of vertices and edges for each color.

Let G be a family of colorwise simple edge-c-colored graphs with k vertices
and m edges of each color and F be a balanced G-decomposition of K

[c]
v with
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b = |F| members and the replication number r. Then,

vr = bk and b =
v(v − 1)

2m

hold, hence

r =
k(v − 1)

2m
. (4.6.1)

Moreover, we need the following condition (C5).

(C5) There exist integers uG(x) for x ∈ V (G) and G ∈ G such that∑
G∈G

∑
x∈V (G)

uG(x)τG(x) = (v − 1, v − 1, . . . , v − 1) and

∑
G∈G

∑
x∈V (G)

uG(x) =
k(v − 1)

2m
,

(4.6.2)

where τG(x) is the degree vector of vertex x in G.

It can be shown that an integer v ≡ 1 (mod 2m) satisfies the formulas (1.6.3)
and (4.6.1) and the condition (C5) by letting uG(x) = (v − 1)/(2m) and
uG′(x′) = 0 for all vertices x and x′ in a graph G and the graphs G′ ∈ G\{G},
respectively.

If there exists an integer n such that there are integers uG(x) satisfying
the condition (C5). Then, all integers v ≡ n (mod 2m) satisfy the condi-
tion (C5). In fact, let s = (v − n)/(2m) and let uG, v(x) = uG(x) + s and
uG′, v(x

′) = uG′(x′) for each x and x′ in a graphG and the graphsG′ ∈ G\{G},
respectively. Then, it is easy to show that the equations (4.6.2) hold. Con-
versely, if there exists an integer n not satisfying the condition (C5) but the
formulas (1.6.3) and (4.6.1), then every integer v ≡ n (mod 2m) does not
satisfy the condition (C5). In fact, assume that there exists an integer v ≡ n
(mod 2m) satisfying the condition (C5) and the formulas (1.6.3) and (4.6.1),
then all integers v0 ≡ v (mod 2m) satisfy the condition (C5) by the above
discussion, which is contradiction. Thus, we define T as the subset of inte-
gers in Z2m such that they satisfy the formulas (1.6.3) and (4.6.1) and the
condition (C5). Then, we obtain the following lemma.

Lemma 4.6.1 Let G be a family of colorwise simple graphs with k vertices,
c colors and m edges for each of c colors. Then, necessary conditions for the
existence of balanced G-decompositions of K

[c]
v are

v ≡ t (mod 2m) for each t ∈ T . (4.6.3)
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Then, the following theorem is obtained.

Theorem 4.6.2 Let G be a family of tree-ordered colorwise simple edge-c-
colored graphs with k vertices and m edges for each of c colors. Then there
exists a constant v0 = v0(G) such that balanced G-decompositions of K

[c]
v exist

for all integers v ≥ v0 satisfying the congruence (4.6.3).

A proof is similar to that of Theorem 4.1.2. Firstly, we have to show the
following lemma.

Lemma 4.6.3 Let G be a family of tree-ordered colorwise simple edge-c-
colored graphs with m edges for each of c colors and D(G) be the set of

integers v such that there exists a balanced D(K
[c]
v , G), that is,

D(G) = {v : balanced D(K [c]
v , G) exists}.

Then, D(G) is a PBD-closed set.

Proof. For any v ∈ B(D(G)), we have only to show that v ∈ D(G) since
it is obvious that D(G) ⊂ B(D(G)). For any v ∈ B(D(G)), there exists a
B(v, K, 1) for K = D(G). Let (V, B) be a B(v, K, 1). Since K = D(G), for

any block size k ∈ D(G), there exists a balanced D(K
[c]
|B|, G). For each block

of a (V, B), it is readily seen that if there exists a balanced D(K
[c]
|B|, G) for

every B ∈ B, then there exists a D(K
[c]
v , G). It is sufficient to show that the

constructed D(K
[c]
v , G) is balanced.

For each B ∈ B, a balanced D(K
[c]
|B|, G) has the replication number k(|B|−

1)/2m by the equation (4.6.1). For each x ∈ V , let Bx be the family of
blocks B such that x belongs to B and rx be the replication number of x in
D(K

[c]
v , G). Then, ∑

B∈Bx

(|B| − 1) = v − 1

and

rx =
∑
B∈Bx

k(|B| − 1)

2m
=
k(v − 1)

2m

hold. That is, the replication number rx is a constant for each x ∈ V . That
is, D(K

[c]
v , G) is balanced. Thus v ∈ D(G), which proves the lemma. �

A G-decomposition of K
[c]
q , which is obtained by Theorem 4.2.2, is always

balanced. Thus the existence of an eventual period β0 �= 0 for D(G) is
shown, and β0 is divisible by m. To complete the proof of Theorem 4.6.2, it
is sufficient to show the following theorem.
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Theorem 4.6.4 Let G be a family of tree-ordered colorwise simple edge-c-
colored graphs with k vertices and m edges for each of c colors. Let n be
a positive integer satisfying the congruences (4.6.3). Then there exists an

integer v0 such that v0 ≡ n (mod β0) and that K
[c]
v admits a balanced G-

decomposition.

In order to prove Theorem 4.6.4, we first show the following theorem.

Theorem 4.6.5 Let G be a family of tree-ordered colorwise simple edge-c-
colored graphs with k vertices and m edges for each of c colors. Let v be a
positive integer satisfying the congruences (4.6.3) and v ≥ max{k + 3, 7}.
Then there exists a prime power q ≡ 1 (mod β0) such that qK

[c]
v admits a

balanced G-decomposition.

If we show Theorem 4.6.5, there exists a balanced D(qK
[c]
n , G) for all

n satisfying the congruences (4.6.3). Thus, we can show that there exists

a balanced G-decomposition of K
[c]

nqd by the similar manner in the proof of
Theorem 4.2.3, which shows Theorem 4.6.4.

In order to prove Theorem 4.6.5, it is sufficient to show the following
lemma by the similar way in the proof of Theorem 4.2.4. Let G be a family
of colorwise simple edge-c-colored graphs with k vertices and m edges for
each c colors, and let F denote the set of all subgraphs F of K

[c]
v each of

which is isomorphic to some member of G. Let M be the matrix whose rows
are indexed by the edges and the vertices of K

[c]
v and whose columns are

indexed by the members in F , where the entry in row e and column F of M
is 1 if e ∈ E(F ) and 0 otherwise and the entry in row x and column F of M
is 1 if x ∈ V (F ) and 0 otherwise. Let

cT = (

cv(v−1)/2︷ ︸︸ ︷
1, 1, . . . , 1,

v︷ ︸︸ ︷
r, r, . . . , r)

be a vector of length cv(v − 1)/2 + v whose coordinates are indexed by the

edges and the vertices of K
[c]
v , where r = k(v − 1)/2m.

Lemma 4.6.6 Let G be a family of tree-ordered colorwise simple edge-c-
colored graphs with k vertices and m edges for each of c colors and let F
denote the set of all subgraphs F of K

[c]
v each of which is isomorphic to

some member of G. In addition, assume that v ≥ max{k + 3, 7} holds. The
equation Mx = c has an integral solution {sF : F ∈ F} if and only if v
satisfies the congruences (4.6.3).
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Proof. The proof is similar to that of Lemma 4.4.2 but note that the “bal-
anced” property must be considered. We define rationals b(e) for e ∈ E(K

[c]
v )

and a(x) for x ∈ V (K
[c]
v ) so that

s(F ) = (b+ a)(F ) =
∑

e∈E(F )

b(e) +
∑

x∈V (F )

a(x)

is integral for each F ∈ F . We use the same notations in the proof of Lemma
4.4.2.

For each color i ∈ C, let Gi be a graph having an edge of color set {i}.
Let x, y, u and v be any four vertices of K

[c]
v and let Fi, 1 be an isomorphic

copy of G in K
[c]
v such that Fi, 1 contains the edge {x, y} in K

[c]
v of color i and

that u, v �∈ V (Fi, 1). Let Fi, 2, Fi, 3 and Fi, 4 be the isomorphic graphs to Fi, 1

obtained by applying the permutations (xu), (yv) and (xu)(yv), respectively.
Now since s(Fi, l) is integral for l = 1, 2, 3, 4, we have

s(Fi, 1) + s(Fi, 4) ≡ s(Fi, 2) + s(Fi, 3). (4.6.4)

Each side of this congruence consists of sums of b(e)’s and a(x)’s. Since Fi, l

(l = 1, 2, 3, 4) have common edges and vertices, by deleting b(e)’s and a(x)’s
corresponding to these edges and vertices from both side of the congruence
(4.6.4), the congruence (4.6.4) is reduced to

bi{x, y} + bi{u, v} ≡ bi{x, v} + bi{u, y}. (4.6.5)

By the same method in Lemma 4.4.2, there exist rationals γi(x) for each

x ∈ V (K
[c]
v ) such that

bi{x, y} ≡ γi(x) + γi(y) (4.6.6)

holds.
Let z be a vertex of G ∈ G. Given vertices x, y of K

[c]
v , choose isomorphic

copy F ∈ F of G such that x ∈ V (F ), y �∈ V (F ) and x corresponds to z
under the isomorphism. Let F ′ be the image of F under the permutation
(xy). We have τF (x) = τF ′(y) = τG(z).

Of course, s(F ) ≡ s(F ′), as both have been assumed to be integers. After
cancelling terms b(e)’s and a(p)’s that appear on both sides, we have∑

(b(e) : e ∈ E(F ) incident with x) + a(x)

≡
∑

(b(e) : e ∈ E(F ) incident with y) + a(y)
(4.6.7)
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Let Ui denote the set of vertices u of F for which the edge {x, u} in K
[c]
v

of color i is in F (or, equivalently, such that the edge {y, u} of color i is in
F ′). Then we obtain

c∑
i=1

∑
u∈Ui

bi{x, u} + a(x) ≡
c∑

i=1

∑
u∈Ui

bi{y, u} + a(y) (4.6.8)

from the congruence (4.6.7).

Choose and fix a vertex p of K
[c]
v distinct from x and y. By the congruence

(4.6.5), we have

bi{x, u} − bi{x, p} ≡ bi{y, u} − bi{y, p}
for u ∈ Ui. The point is that even if we replace bi{x, u} and bi{y, u} in
the congruence (4.6.8) by bi{x, p} and bi{y, p}, the congruence is preserved.
Thus,

c∑
i=1

|Ui|bi{x, p} + a(x) ≡
c∑

i=1

|Ui|bi{y, p} + a(y)

holds modulo an integer. From the congruence (4.6.6), the expression of the
congruence (4.6.7) is, modulo an integer,

c∑
i=1

|Ui|(γi(x) + γi(p)) + a(x) ≡
c∑

i=1

|Ui|(γi(y) + γi(p)) + a(y).

The congruence (4.6.7), after canceling terms involving p on both sides, re-
duces to

c∑
i=1

degi(z)γi(x) + a(x) ≡
c∑

i=1

degi(z)γi(y) + a(y), (4.6.9)

where degi(z) = |Ui| since τF (x) = τF ′(y) = τG(z) hold. The congruence

(4.6.9) hold for all vertices x, y of K
[c]
v and vertices z of any member of G.

Let γ(x) be the vector (γ1(x), γ2(x), . . . , γc(x)). It can be written

〈τG(z), γ(x)〉 + a(x) ≡ 〈τG(z), γ(y)〉 + a(y), (4.6.10)

where the angle brackets denote the dot product of vectors. Fix the ver-
tices x and y of K

[c]
v . By the assumption, there exist integers uG(z) such

that the condition (C5) holds. That is, by applying equations (4.6.2) to the
congruence (4.6.10), we have∑

G∈G

∑
z∈V (G)

uG(z)(〈τG(z), γ(x)〉 + a(x))

≡
∑
G∈G

∑
z∈V (G)

uG(z)(〈τG(z), γ(y)〉 + a(y)).
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Hence, we obtain

(v−1)
c∑

i=1

γi(x)+
k(v − 1)

2m
a(x) ≡ (v−1)

c∑
i=1

γi(y)+
k(v − 1)

2m
a(y). (4.6.11)

This congruence holds for all vertices x, y in K
[c]
v .

By hypothesis, s(F ) is an integer, and we have

s(F ) =
c∑

i=1

( ∑
{x, y}∈E(F )

bi{x, y}
)

+
∑

x∈V (F )

a(x).

We apply the congruence (4.6.6) to the terms bi{x, y}’s and use the congru-
ence (4.6.9) for the second congruence, to find that

s(F ) ≡
∑

u∈V (F )

( c∑
i=1

degi(u)γi(u) + a(u)

)

≡
∑

u∈V (F )

( c∑
i=1

degi(u)γi(p) + a(p)

)

≡ 2m
c∑

i=1

γi(p) + ka(p) ≡ 0. (4.6.12)

Finally, we will show that s′(K [c]
v ) =

∑
e b(e)+

k(v−1)
2m

∑
x a(x) is an integer.

s′(K [c]
v ) =

c∑
i=1

( ∑
{x, y}

bi{x, y} +
k(v − 1)

2m

∑
x

a(x)

)

≡
c∑

i=1

( ∑
{x, y}

(γi(x) + γi(y)) +
k(v − 1)

2m

∑
x

a(x)

)

≡
c∑

i=1

(
(v − 1)

∑
x

γi(x) +
k(v − 1)

2m

∑
x

a(x)

)

≡
∑

x

(
(v − 1)

c∑
i=1

γi(x) +
k(v − 1)

2m
a(x)

)
.

By the congruence (4.6.11),

s′(K [c]
v ) ≡ v(v − 1)

c∑
i=1

γi(x) +
kv(v − 1)

2m
a(x)

≡ v(v − 1)

2m

(
2m

c∑
i=1

γi(x) + ka(x)

)
.
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By the assumption, v(v−1) ≡ 0 (mod 2m) and the congruence (4.6.12) hold.

Thus, s(K
[c]
v ) is an integer and the lemma is proved. �

Thus, Theorems 4.6.5 and 4.6.2 are shown.

4.7 Generalization to decompositions of

multiple edge graphs

In this section, we show Theorem 4.1.1. The proof of Theorem 4.1.1 is similar
to that of Theorem 4.1.2. To show Theorem 4.1.1, we prepare three theorems
which are generalized versions of Theorems 4.2.2, 4.2.4 and 4.2.3.

Theorem 4.7.1 Let G0 be a tree-ordered colorwise simple graph with c colors
and mλi edges of color i. Then there exists a constant q0 = q0(m, k) such that
K–

q admits a G0-decomposition for every prime power q ≡ 2m+1 (mod 4m)
with q ≥ q0, where k is the number of vertices of G0.

Proof. It is sufficient to show the following generalized condition of (C3):

(C3)’ There is an injective mapping φ : V (G0) → GF(q) such that for each
color i, mλi field elements ±(φ(x)−φ(y)) belong to the cyclotomic class
Hm

l λi times for each l = 0, 1, . . . , 2m− 1 when e = {x, y} ranges over
the edges of color i in G0.

Let C be a multiset of color set C which contains color i λi times. Let
E〈G0〉 be a family of all edge sets in G0. A subfamily E1 ⊂ E〈G0〉 is called a λ-
resolution class if (i) ∪〈x, y〉∈E1C(〈x, y〉) = C and (ii) C(〈x, y〉) ⊂ C(〈x′, y′〉),
C(〈x, y〉) ⊃ C(〈x′, y′〉), or C(〈x, y〉) ∩ C(〈x′, y′〉) = ∅ for any distinct edge
sets 〈x, y〉 and 〈x′, y′〉. E〈G0〉 is said to be λ-resolvable if E〈x, y〉 is parti-
tioned into λ-resolution classes.

Assume that λ1 ≤ λ2 ≤ · · · ≤ λr. We can choose a class E1 from E〈G0〉
in a similar manner to Theorem 4.2.2 such that E1 has λ1 edges of each color
i because of the assumption of tree-ordered property. We define G′

0 as the
graph having the same vertex set with G0 and edge sets E〈G0〉 \ E1. G

′
0 has

mλi − λ1 edges of each color i, i = 1, 2, . . . , c. For color i, i = 2, 3, . . . , c,
λi − λ1 edges are not included in any edge set with color 1. Then, a class
E ′

1 can be chosen from E〈G′
0〉 such that E ′

1 has λ2 − λ1 edges of each color i,
i = 2, 3, . . . , c since C(G′

0) is tree-ordered. We add the class E ′
1 to E1. We

continue this for each i = 1, 2, . . . , c. Then, we can get a λ-resolution class
E1 from E〈G0〉.
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Similarly, we define G1 as the graph with the edge set E〈G0〉\E1. Then, we
can choose a λ-resolution class E2 from E〈G1〉. We continue this process for
each i = 1, 2, . . . , m, then E〈G0〉 hasm λ-resolution classes {E1, E2, . . . , Em}.
Each El has exactly λi edges of color i for each i ∈ C. Thus, we can show
that there exists such injective mapping φ by Proposition 1.8.1. �

Theorem 4.7.2 Let G be a tree-ordered λ-admissible family of colorwise
simple graphs with c colors. Let v be a positive integer satisfying the congru-
ences (1.6.2) and v ≥ 2 + |V (G)| for all G in G. Then there exists a prime
power q ≡ 1 (mod β0) such that qK–

v admits a G-decomposition.

The proof of Theorem 4.7.2 is similar to that of Theorem 4.2.4.

Theorem 4.7.3 Let G be a tree-ordered λ-admissible family of colorwise
simple graphs with c colors. Let n be a positive integer satisfying the congru-
ences (1.6.2). Then there exists an integer v0 such that v0 ≡ n (mod β0) and
that K–

v0
admits a G-decomposition.

Proof. By Theorem 4.7.2, there exists a family F = {F1, F2, . . . , FN}
which is a G-decomposition of qK–

n . For any vertex x and y in qK–
n , there are

λiq Fh’s including an edge {x, y} of color i. Now, we consider an assignment
ρh(x, y) of GF(q) to each edge set 〈x, y〉 in Fh so that the following condition
holds:

(C4)’ For each l ∈ GF(q) and x, y in K–
n , there are exactly λi edges {x, y}

of color i in F to which the same value l = ρh(x, y) is assigned.

It suffices to show that there exists an assignment {ρh(x, y)} satisfying the
condition (C4)’. Let E〈x, y〉 be a collection of the edge sets 〈x, y〉 that appear
in F1, F2, . . . , FN . Assume that G is tree-ordered, then E〈x, y〉 is partitioned
into λ-resolution classes E1, E2, . . . , Eq in the similar manner to the proof of
Theorems 4.2.3 and 4.7.1. For an edge set 〈x, y〉 ∈ Fh, if 〈x, y〉 belongs to
El, we define ρh(x, y) = l, where x < y and l ∈ GF(q). Thus, the theorem is
proved. �

By utilizing Theorems 4.7.1, 4.7.2 and 4.7.3, we can show Theorem 4.1.1
similarly to the proof of Theorem 4.1.2 in Sections 4.2, 4.3, 4.4 and 4.5.

Now, we will give a “balanced” version of Theorem 4.1.1. For λ =
(λ1, λ2, . . . , λc), let G be a family of colorwise simple edge-c-colored graphs
with k vertices and mλi edges of each color i. Then µ(G) = mλ holds for
each G ∈ G. Let F = {F1, F2, . . . , Fb} be a balanced G-decomposition of
K–

v with the replication number r. Then,

vr = bk and b =
v(v − 1)

2m
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hold, hence we obtain

r =
k(v − 1)

2m
. (4.7.1)

Moreover, we need the following condition:

(C5)’ There exist integers uG(x) for x ∈ V (G) and G ∈ G such that∑
G∈G

∑
x∈V (G)

uG(x)τG(x) = (v − 1)λ and

∑
G∈G

∑
x∈V (G)

uG(x) =
k(v − 1)

2m

hold, where τG(x) is the degree vector of vertex x in G.

We define T as the subset of integers in Z2m satisfying the formulas (1.6.2)
and (4.7.1) and the condition (C5)’. Then, we obtain the following lemma.

Lemma 4.7.4 For λ = (λ1, λ2, . . . , λc), let G be a family of colorwise sim-
ple graphs with k vertices and mλi edges of each color i. Then necessary
conditions for the existence of balanced G-decompositions of K–

v are

v ≡ t (mod 2m) for each t ∈ T . (4.7.2)

Then, the following theorem is obtained.

Theorem 4.7.5 For λ = (λ1, λ2, . . . , λc), let G be a family of tree-ordered
colorwise simple edge-c-colored graphs with k vertices and mλi edges of each
color i. Then there exists a constant v0 = v0(G, λ) such that balanced G-
decompositions of K–

v exist for all integers v ≥ v0 satisfying the congruence
(4.7.2).

A proof of Theorem 4.7.5 is similar to that of Theorems 4.6.2 and 4.1.1.
Finally, we obtain the following corollary.

Corollary 4.7.6 Let λ = (λ1, λ2, . . . , λc) be a vector whose entries λi are
positive integers such that the greatest common divisor of λi’s is 1. And
let G be a family of tree-ordered colorwise simple edge-c-colored graphs with
k vertices and mλi edges of each color i such that the congruences (1.6.2)
are equivalent to the congruence (4.7.2). For λ ≥ 1, there exists a constant
v0 = v0(G, λλ) such that balanced G-decompositions of Kλ–

v exist for all
integers v ≥ v0 satisfying the congruences

λ(v − 1) ≡ 0 (mod α(G; λ)) and

λv(v − 1) ≡ 0 (mod 2m).
(4.7.3)
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Proof. By the assumption, β(G; λ) = m holds. the congruence λv(v−1) ≡
0 (mod 2m) means that λv(v − 1)λ/2 is an integral linear combination of
vectors µ(G), G ∈ G. While, the congruence v(v − 1) ≡ 0 (mod 2β(G; λλ))
means that v(v − 1)λλ/2 is an integral linear combination of µ(G), G ∈ G.
These are obviously equivalent. Similarly, λ(v − 1) ≡ 0 (mod α(G; λ)) is
equivalent to v − 1 ≡ 0 (mod α(G; λλ)). Hence by Theorem 4.7.5, the
corollary is proved. �
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Chapter 5

Asymptotic existence of BIB
designs with nested rows and
columns

In this chapter, the asymptotic existence of BIBRCs with some λ’s is dis-
cussed. Theorem 4.7.5 is applied to show the asymptotic existence of BIBRCs.
In Section 5.1, a relationship between BIBRCs and some balanced edge-
colored graph decompositions of complete graphs is discussed. We consider
the balanced edge-colored graph decompositions of complete graphs instead
of BIBRCs. In Section 5.2, the asymptotic existence of completely balanced
BIBRCs is shown, which is derived from the result of Lamken and Wilson
[63]. In Section 5.3, 5.4, it is also shown that BIBRCs with some λ’s exist
for sufficiently large v by utilizing Theorem 4.7.5. These results can not be
obtained by the result of Lamken and Wilson [63]. In Section 5.5, the asymp-
totic existence of BIBRCs in the case of λ ≥ k1k2(k1 − 1)(k2 − 1) is shown
by combining the results in Sections 5.3, 5.4.

5.1 A relationship between BIBRCs and

edge-colored graph decompositions

In this section, we define edge-colored graphs such that balanced decompo-
sitions by those graphs are equivalent to BIBRCs.

Example 5.1.1 Let V = Z13 and A = {Ai + x : i = 1, 2, 3, x ∈ Z13} be a
family of 2 × 3 arrays, where

A1 =

(
0 1 2
3 4 10

)
, A2 =

(
0 3 6
9 12 4

)
, A3 =

(
0 9 5
1 10 12

)
.
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Then, the pair (V, A) is a BIBRC(13, 2, 3, 3). Half of unordered pairs {x, y}
of V have

(λR{x, y}, λC{x, y}, λE{x, y}) = (3, 1, 2) (5.1.1)

and the rest of the pairs have

(λR{x, y}, λC{x, y}, λE{x, y}) = (3, 2, 4), (5.1.2)

both give a constant λ = 3.
Let G be an edge-3-colored graph shown in Figure 5.1.1, where the solid

edges represent color 1, the dashed edges color 2 and the dotted edges color
3. It is not a colorwise simple graph with 3 colors. Let F = {Gi + x : i =

Figure 5.1.1: G

1, 2, 3, x ∈ Z13} be a family of subgraphs of K
(3, 2, 4)
13 , where G1, G2 and G3

are shown in Figure 5.1.2.

1

4

0

3

2

10

3

12

0

9

6

4

9

10

0

1

5

12

Figure 5.1.2: G1, G2 and G3

Then, we claim that a BIBRC(13, 2, 3, 3) is equivalent to a balanced

G-decomposition of K
(3, 2, 4)
13

Assume that there exists a balanced G-decomposition of K
(3, 2, 4)
13 . For

unordered pair {x, y} of distinct vertices of K
(3, 2, 4)
13 , when x and y occur
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together exactly once in an edge set with the color multiset (1, 2, 3, 3), they
do not occur in any other edges of the color sets (1), (2) and (3). On the
other hand, when x and y do not occur in an edge set with the color multiset
(1, 2, 3, 3), they occur exactly once in an edge of the color sets (1), (2) and

twice in edges of the color set (3). We identify the vertex set of K
(3, 2, 4)
13 with

V and subgraphs with 2 × 3 arrays. And let A be a family of such arrays.
Then, for any two distinct pair {x, y} of V , the equation (5.1.1) holds if

two vertices corresponding to x and y occur in an edge set of a graph in G
with the color multiset (1, 2, 3, 3). The equation (5.1.2) holds if two vertices
corresponding to x and y do not occur in an edge set with the same color
multiset. Thus, λR{x, y}+ 2λC{x, y} − λE{x, y} = 3 holds for any distinct
pair x and y in V . That is, (V, A) is a BIBRC(13, 2, 3, 3).

Conversely, assume that there exists a BIBRC(13, 2, 3, 3) (V, A). For
any two distinct pair {x, y} in V , either the equation (5.1.1) or (5.1.2) holds.

We identify V with a vertex set of K
(3, 2, 4)
13 . For any A = (aij) in A, let

λ{aij , ai′j′} = (λR{aij , ai′j′}, λC{aij, ai′j′}, λE{aij, ai′j′}) and we define a
subgraph with vertices aij’s as follows:

(i) For aij and aij′, j �= j′, if λ{aij, aij′} is of type (5.1.1), then we put
four edges between aij and aij′ and colored by color multiset (1, 2, 3, 3),
otherwise, we put an edge of color 1.

(ii) For aij and ai′j, i �= i′, we put an edge of color 2.

(iii) For aij and ai′j′, i �= i′ and j �= j′, we put an edge of color 3.

By permuting rows and columns in 2 × 3 arrays, all such subgraphs are
equivalent to G. Then, it is easy to show that the family of subgraphs is a
balanced G-decomposition of K

(3, 2, 4)
13 .

Thus, to show that there exist BIBRC(v, 2, 3, 3)’s for sufficiently large
integers v ≡ 1 (mod 2), it is sufficient to show that there exist balanced

G-decompositions of K
(3, 2, 4)
v for sufficiently large integers v ≡ 1 (mod 2).

Unfortunately, since G is not a colorwise simple graph with 3 colors. We can
not apply Theorem 4.7.5. However, by replacing some of the edge of color
3 by another color 4 which is represented by the dashed-dotted edges and
define G′ as a colorwise simple graph with 4 colors shown in Figure 5.1.3
instead of G. If there is a balanced G′-decomposition of K

(3, 2, 2, 2)
v , then it

can be considered as a G-decomposition of K
(3, 2, 4)
v . It is easy to check that

α(G; λ) = 2, β(G; λ) = 2, G′ is tree-ordered and the condition (C5) holds
for v ≡ 1 (mod 2), where λ = (3, 2, 2, 2). By Theorem 4.7.5, there exist

G-decompositions of K
(3, 2, 2, 2)
v for sufficiently large integers v ≡ 1 (mod 2).

That is, BIBRC(v, 2, 3, 3)’s exist for all sufficiently large v ≡ 1 (mod 2).
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Figure 5.1.3: G′

In the sequel of this chapter, assume that 2 ≤ k1 ≤ k2. For a positive
integer λ, fix positive integers λR, λC and λE such that λR ≥ � λ

k1−1
�, λC ≥

� λ
k2−1

� and λ = (k1 − 1)λR + (k2 − 1)λC − λE hold. We use three colors
{R, C, E}. Let G(0, 0) be a simple edge-3-colored graph with k1k2 vertices
V = {vij | 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}, which is colored as follows and is shown
in Figure 5.1.4, where the solid edges, the dashed edges and the dotted edges
represent color R, C and E, respectively:

(i) Each edge {vij, vij′} is colored by R for 1 ≤ i ≤ k1 and 1 ≤ j < j′ ≤ k2.

(ii) Each edge {vij , vi′j} is colored by C for 1 ≤ i < i′ ≤ k1 and 1 ≤ j ≤ k2.

(iii) Each edge {vij , vi′j′} is colored by E for 1 ≤ i < i′ ≤ k1 and 1 ≤ j �=
j′ ≤ k2.

color R

color C

color E

Figure 5.1.4: G(0, 0)

For given integers 0 ≤ aR ≤ k1k2(k2 − 1)/2 and 0 ≤ aC ≤ k1k2(k1 − 1)/2,
let G(aR, aC) be an edge-3-colored graph such that (i) an edge of color C and
k2 − 1 edges of color E are added to each of aR edges of color R in G(0, 0)
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and (ii) an edge of color C and k1 −1 edges of color E are added to aC edges
of color C in G(0, 0). That is, aR edges of color R in G(0, 0) are replaced by
aR edge sets with color multiset (R, C, E, . . . , E) where the number of E’s
is k2−1 and aC edges of color C in G(0, 0) are replaced by aC edge sets with
color multiset (R, C, E, . . . , E) where the number of E’s is k1 − 1. And let
G(aR, aC) be the family of all G(aR, aC)’s.

(i) −→ k2
M −1

(ii) −→ k1
M −1

Figure 5.1.5:

By identifying G ∈ G(aR, aC) with k1×k2 array, a balanced G-decomposi-

tion F of K
(λR, λC , λE)
v is equivalent to a BIBRC(v, k1, k2, λ). In fact, for any

two distinct vertices x and y of a balanced G-decomposition of K
(λR, λC , λE)
v ,

if they occur in sR (≤ λR) edge sets of color multiset (R, C, E, . . . , E) with
k2−1 E’s and in sC (≤ λC) edge sets of color multiset (R, C, E, . . . , E) with
k1−1 E’s, then they occur in λR−sR edges of color set (R), in λC −sC edges
of color set (C) and in λE − (k2 − 1)sR − (k1 − 1)sC edges of color set (E),
where λE = (k1 − 1)λR + (k2 − 1)λC − λ. By identifying the vertices of each
graph with entries of k1 × k2 array, λR{x, y} = λR − sC , λC{x, y} = λC − sR

and λE{x, y} = λE − (k2 − 1)sR − (k1 − 1)sC hold. That is,

(k1 − 1)λR{x, y} + (k2 − 1)λC{x, y} − λE{x, y} = λ

holds. Hence, hereafter we consider a balanced G-decomposition ofK
(λR, λC , λE)
v

instead of a BIBRC(v, k1, k2, λ). In the following sections we will show
asymptotic existence of BIBRCs for four cases of λ.

5.2 The case of completely balanced

In this section we consider the case when λ is a multiple of lcm(k1−1, k2−1).
In this case we have only to consider a completely balanced BIBRCs to show
the asymptotic existence since the equations (1.5.1) are satisfied.
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Theorem 5.2.1 For positive integers k1 ≤ k2, let λ be a multiple of lcm(k1−
1, k2−1). Then there exists a constant v0 = v0(k1, k2, λ) such that completely
balanced BIBRC(v, k1, k2, λ)’s exist for all v ≥ v0 satisfying the congruences
(1.5.2).

Proof. By Corollary 4.7.6 ([63, Corollary 13.3]), it is sufficient to show an
asymptotic existence of BIBRCs with λ0 = lcm(k1 − 1, k2 − 1). Let λR =
λ0/(k1 − 1), λC = λ0/(k2 − 1), λE = λ0 and λ = (λR, λC , λE), and let
G = G(0, 0).

Then, G is a simple edge-3-colored graph. It is obvious that G is λ-
admissible, that is,

τG(x) = (k2 − 1, k1 − 1, (k1 − 1)(k2 − 1)) =
(k1 − 1)(k2 − 1)

λ0

λ

hold for any x ∈ V (G). Hence, G-decompositions of K–
v are obviously bal-

anced and α(G; λ) = (k1 − 1)(k2 − 1)/λ0. And

µ(G) = (k1k2(k2 − 1), k1k2(k1 − 1), k1k2(k1 − 1)(k2 − 1))

=
k1k2(k1 − 1)(k2 − 1)

λ0
λ

hold. Thus, β(G; λ) = k1k2(k1 − 1)(k2 − 1)/λ0 holds. That is, the necessary
conditions (1.5.2) are equivalent to the congruences v−1 ≡ 0 (mod α(G; λ))
and v(v − 1) ≡ 0 (mod 2β(G; λ)). Hence by Corollary 4.7.6 ([63, Corollary
13.3]), there exists a G-decomposition for sufficiently large v satisfying the
necessary conditions. Thus, the theorem is proved. �

Moreover, if k1 equals to k2 and they are odds, then we obtain the fol-
lowing corollary by identifying the colors R and C as the same color.

Corollary 5.2.2 For an odd integer k, let λ be a multiple of (k−1)/2. Then
there exists a constant v0 = v0(k, λ) such that BIBRC(v, k, k, λ)’s exist for
all v ≥ v0 satisfying the congruences (1.5.2).

5.3 The case when λ is a multiple of k1 − 1

or k2 − 1

Theorem 5.3.1 For positive integers k1 ≤ k2, let λ be a multiple of k1 −
1 or k2 − 1. Then there exists a constant v0 = v0(k1, k2, λ) such that
BIBRC(v, k1, k2, λ)’s exist for all v ≥ v0 satisfying the congruences (1.5.2).
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Proof. In the case when k1 = k2 holds, we obtain the theorem by Theorem
5.2.1. Thus, we assume that k1 < k2 and consider the case when λ is a
multiple of k1 − 1. Note that the proof for the case when λ is a multiple of
k2 − 1 is similar to the present case. Now, let λ0 = k1 − 1.

We use k2 + 1 colors {R, C, E1, . . . , Ek2−1}. We define integers λR =
λ0/(k1 − 1) = 1, λC = �λ0/(k2 − 1)�, λE = (k1 − 1)λR + (k2 − 1)λC − λ0 =
(k2 − 1)λC and a vector λ = (1, λC , λC , . . . , λC) of length k2 + 1. (Note
that λC is 1 in the case of k1 < k2 but in case of k1 > k2, λC > 1.) Let G =
G′(m0, 0) be the family of all edge-(k2 +1)-colored graphs G′(m0, 0) which is
defined as follows, where m0 = m(λE −λ0)/(k2 −1) and m = k1k2(k2 −1)/2.
Note that 0 < m0 < k1k2(k2 − 1)/2 holds.

(i) The edges of color E of G(m0, 0) are replaced by λC colors Ei for i = 1,
2, . . . , k2 − 1 such that each color does not occur twice in each edge of
the color multiset (R, C, E, . . . , E).

Then, a family of color sets in G is

C(G) = {{R}, {C}, {E1}, . . . , {Ek2−1}, {R, C, E1, . . . , Ek2−1}}.

And

µ(G) = (m, mλC , mλC , . . . , mλC) =
k1k2(k2 − 1)

2
· λ (5.3.1)

holds since the number of edges with color C is k1k2(k1 − 1)/2 +m0 = mλC .
That is, G is tree-ordered and λ-admissible.

Next, we claim that (v − 1) ≡ 0 (mod (k2 − 1)) and v(v − 1) ≡ 0
(mod k1k2(k2 − 1)) together imply v − 1 ≡ 0 (mod α(G; λ)), v(v − 1) ≡ 0
(mod 2β(G; λ)) and the condition (C5). The second congruence can be de-
rived from the equation (5.3.1). To show the first congruence, we have only
to show that (v−1)·λ is an integral linear combination of the vector τG(x) for
x ∈ V (G) in G ∈ G. Since G is the family of all G′(m0, 0)’s, there exist G1,
G2 ∈ G and vertices x1 ∈ V (G1), x2 ∈ V (G2) such that the degree vectors
are

τG1(x1) = (k2 − 1, k1 − 1, k1 − 1, . . . , k1 − 1) and

τG2(x2) = (k2 − 1, k1, k1, . . . , k1),

respectively. Since the following equation

λ =
(k1 + k

k2 − 1
− λC

)
τG1(x1) +

(
λC − k1 + k − 1

k2 − 1

)
τG2(x2)
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holds, we have v−1 ≡ 0 (mod α(G; λ)). Also, this implies that the condition
(C5) is satisfied since(k1 + k

k2 − 1
− λC

)
+

(
λC − k1 + k − 1

k2 − 1

)
=

1

k2 − 1
=
k1k2

2m

holds. By Theorem 4.7.5, there exists a balanced G-decomposition of K–
v for

sufficiently large v satisfying the necessary conditions. By Corollary 4.7.6, it
is shown that there exist BIBRCs for sufficiently large v in the case when λ
is a multiple of k1 − 1 or k2 − 1. Thus, the theorem is shown. �

5.4 The case when λ is a multiple of k2 and

k1 ≤ k2

Theorem 5.4.1 For positive integers k1 ≤ k2, let λ be a multiple of k2. Then
there exists a constant v0 = v0(k1, k2, λ) such that BIBRC(v, k1, k2, λ)’s
exist for all v ≥ v0 satisfying the congruences (1.5.2).

Proof. When k2 is a multiple of k1 − 1, there exists BIBRC(v, k1, k2, λ)’s
for sufficiently large integers satisfying the necessary conditions by Theo-
rem 5.3.1. Assume that k2 is not a multiple of k1 − 1 and that k1 is
greater than 2. Let λ0 = k2 and let λR = �k2/(k1 − 1)� ≥ 2, λC =
�k2/(k2 − 1)� = 2, λE = (k1 − 1)λR + (k2 − 1)λC − λ0 = (k1 − 1)λR + k2 − 2,
λ′R = λR − 1 and λ′E = λE − (k1 + k2 − 2). We use k1 + k2 + 3 col-
ors {R′, R1, C

′, C1, E
′, E1, E2, . . . , Ek1+k2−2} and define a vector of length

k1 + k2 + 3 as

λ = (λ′R, 1, 1, 1, λ′E,

k1−1︷ ︸︸ ︷
1, 1, . . . , 1,

k2−1︷ ︸︸ ︷
1, 1, . . . , 1).

Let

εR =
k1k2(k2 − 1)

2
, εC =

k1k2(k1 − 1)

2
,

m =
k1k2(k1 − 1)(k2 − 1)

2λ0
=
k1(k1 − 1)(k2 − 1)

2
.

Let G′(0, 0) be the family of all edge-(k1 + k2 + 3)-colored graphs which are
obtained by the following replacement of colors:

(i) The εR edges of color R of G(0, 0) are replaced by mλ′R edges of color
R′ and εR −mλ′R edges of color R1.
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(ii) The εC edges of color C are replaced by m edges of color C ′ and εC −m
edges of color C1

(iii) The mλ0 edges of color E are replaced by mλ′E edges of color E ′,
εR −mλ′R edges of colors E1, E2, . . ., Ek1−1, and εC −m edges of colors
Ek1 , Ek1+1, . . ., Ek1+k2−2.

For nonnegative integers aR and aC , 0 ≤ aR ≤ εR and 0 ≤ aC ≤ εC , let
G′(aR, aC) be the family of all edge-(k1 +k2 +3)-colored graphs such that aR

edge sets with the color set {C1, Ek1, . . . , Ek1+k2−2} are added to aR edges
of color R′ in G, respectively and such that aC edge sets with the color set
{R1, E1, . . . , Ek1−1} are added to aC edges of color C ′ in G, respectively,
where G belongs to G ′(0, 0). That is, for G ∈ G′(0, 0), aR edges of color R
in G are replaced with aR edge sets of color set {R′, C1, Ek1 , . . . , Ek1+k2−1}
and aC edges of color C ′ in G are replaced with aC edge sets of color set
{R1, C

′, E1, . . . , Ek1−1}.
Since 3 ≤ k1 ≤ k2 holds, we have 0 < mλR − εR < m and 0 < 2m− εC <

mλ′R. Moreover,

m− (k1 − 1) > εR −mλR and mλ′R − (k2 − 1) > 2m− εCλR (5.4.1)

hold. Let G = G′(2m− εC, mλR − εR). Then, a family of color set G is

C(G) = {{R′}, {R1}, {C ′}, {C1}, {E ′}, {E1}, . . . , {Ek2−1},
{R1, C

′, E1, . . . , Ek1−1}, {R′, C1, Ek1 , . . . , Ek1+k2−2}}.

And

µ(G) = (mλ′R, m, m, m, mλ
′
E ,

k1−1︷ ︸︸ ︷
m, m, . . . , m,

k2−1︷ ︸︸ ︷
m, m, . . . , m)

=
k1(k1 − 1)(k2 − 1)

2
· λ

(5.4.2)

holds. That is, G is tree-ordered and λ-admissible.
Next, we claim that k2(v−1) ≡ 0 (mod (k1−1)(k2−1)) and v(v−1) ≡ 0

(mod k1(k1−1)(k2−1)) together imply v−1 ≡ 0 (mod α(G; λ)), v(v−1) ≡ 0
(mod 2β(G; λ)) and the condition (C5). Then, v(v−1) ≡ 0 (mod 2β(G; λ))
holds by the equation (5.4.2) and the second congruences. Assuming the first
congruence, we will show that (v− 1) ·λ is an integral linear combination of
the vectors τG(x) for x ∈ V (G) in G ∈ G.

By the inequalities (5.4.1) and mλ′E > (k1−1)(k2−1), there exist vertices
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xi in Gi, for i = 1, 2, . . . , 5, with degree vectors

τG1(x1) = (k2 − 1, 0, k1 − 1, 0, (k1 − 1)(k2 − 1),

k1−1︷ ︸︸ ︷
0, . . . , 0,

k2−1︷ ︸︸ ︷
0, . . . , 0),

τG2(x2) = (k2 − 1, 1, k1 − 1, 0, (k1 − 1)(k2 − 1), 1, . . . , 1, 0, . . . , 0),

τG3(x3) = (k2 − 1, 0, k1 − 1, 1, (k1 − 1)(k2 − 1), 0, . . . , 0, 1, . . . , 1),

τG4(x4) = (k2 − 2, 1, k1 − 1, 0, (k1 − 1)(k2 − 2), 1, . . . , 1, 0, . . . , 0),

τG5(x5) = (k2 − 1, 0, k1 − 2, 1, (k1 − 2)(k2 − 1), 0, . . . , 0, 1, . . . , 1).

Since the equation

λ =
( k2

(k1 − 1)(k2 − 1)
− 2

)
τG1(x1) +

(
λR − k2

k1 − 1

)
τG2(x2)

+
k2 − 2

k2 − 1
τG3(x3) +

( k2

k1 − 1
− (λR − 1)

)
τG4(x4) +

1

k2 − 1
τG5(x5)

and k2(v − 1) ≡ 0 (mod (k1 − 1)(k2 − 1)) hold, we obtain v − 1 ≡ 0
(mod α(G; λ)). Also, this implies that the condition (C5) is satisfied since( k2

(k1 − 1)(k2 − 1)
− 2

)
+

(
λR − k2

k1 − 1

)
+
k2 − 2

k2 − 1
+

( k2

k1 − 1
− (λR − 1)

)
+

1

k2 − 1

=
k2

(k1 − 1)(k2 − 1)
=
k1k2

2m

holds. By Theorem 4.7.5, there exists a balanced G-decomposition of K–
v for

sufficiently large v satisfying the necessary conditions. By Corollary 4.7.6, it
is shown that there exist BIBRCs for sufficiently large v in the case when λ
is a multiple of k2. Thus, the theorem is shown. �

5.5 The case of λ ≥ k1k2(k1 − 1)(k2 − 1)

By Theorems 5.3.1 and 5.4.1, we obtain the following theorem.

Theorem 5.5.1 For positive integers k1 ≤ k2, let λ be an integer which
is greater than or equals to k1k2(k1 − 1)(k2 − 1). Then there exists a con-
stant v0 = v0(k1, k2, λ) such that BIBRC(v, k1, k2, λ)’s exist for all v ≥ v0

satisfying the congruences (1.5.2).
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Proof. Note that k1 ≤ k2 is assumed. Let λ′ = λ/(k1(k1 − 1), λ), λ1 =
(k2 − 1)(k2, λ

′)(k1(k1 − 1), λ)) and λ2 = k2(k2 − 1, λ′)(k1(k1 − 1), λ). Then,
λ′ ≥ k2(k2 − 1) holds since λ ≥ k1k2(k1 − 1)(k2 − 1).

Now k2/(k2, λ
′) and (k2 − 1)/(k2 − 1, λ′) are relatively prime integers, so

there exist integers s1 and s2 such that 0 < s1 < k2/(k2, λ
′) and

λ′

(k2(k2 − 1), λ′)
= s1

k2 − 1

(k2 − 1, λ′)
+ s2

k2

(k2, λ′)

hold. Multiplying the above equation by (k2(k2−1), λ′) = (k2−1, λ′)(k2, λ
′),

we obtain λ′ = s1(k2, λ
′)(k2 − 1) + s2(k2 − 1, λ′)k2. Thus s2 is positive.

Moreover, by multiplying (k1(k1 − 1), λ), we find λ = s1λ1 + s2λ2 for some
positive integers s1 and s2.

Let v be an integer satisfying the congruences (1.5.2). Then, it is obvious
that

λi(v − 1) ≡ 0 (mod (k1 − 1)(k2 − 1))

λiv(v − 1) ≡ 0 (mod k1k2(k1 − 1)(k2 − 1))

hold for i = 1, 2. By Theorems 5.3.1 and 5.4.1, there exist BIBRC(v, k1, k2,
λ1)’s and BIBRC(v, k1, k2, λ2)’s for sufficiently large integers v satisfying the
necessary conditions (1.5.2). That is, we can obtain a BIBRC(v, k1, k2, λ)
by combining s1 copies of BIBRC(v, k1, k2, λ1) and s2 copies of BIBRC(v,
k1, k2, λ2). �
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Further Research and Open
Problems

In Chapter 2, we discussed the existence of grid-block designs. As was stated
in Sections 1.3, 2.2 and 2.3, the existence problem for a GB(v, k1, k2) in the
case of (i) k1 = k2 = 2, (ii) k1 = 2 and k2 = 3, (iii) k1 = 2 and k2 = 4 and (iv)
k1 = k2 = 3 were completely solved. However, it remains open for (a) k1 = 2
and k2 = 5, (b) k1 = 2 and k2 = 6, (c) k1 = 3 and k2 = 4, (d) k1 = k2 = 4
and so on. We list such problems for the existence of a GB(v, k1, k2).

Problem 1 Is the necessary condition v ≡ 1 (mod 25) for the existence of
a GB(v, 2, 5) sufficient?

Problem 2 Is the necessary condition v ≡ 1 (mod 72) for the existence of
a GB(v, 2, 6) sufficient?

Problem 3 Is the necessary condition v ≡ 1, 16, 21, 36 (mod 60) for the
existence of a GB(v, 3, 4) sufficient?

Problem 4 Is the necessary condition v ≡ 1 (mod 96) for the existence of
a GB(v, 4, 4) sufficient?

In Problem 3, if there exists a GB(60m+ 1, 3, 4) for m = 1, 2, . . . , 11, a
D(K4(60), G3, 4) and a D(K5(60), G3, 4), where G3, 4 = K3 × K4, then we can
show that there exists a GB(v, 3, 4) for any v ≡ 1 (mod 60) by utilizing
some similar recursive constructions to those in Section 2.3. In Appendix B,
we show examples of GB(60m+ 1, 3, 4)’s for m = 1, 2, 3, 4, 6, 7, 9, 10, 11
and a D(K4(60), G3, 4). If there are a D(K5(60), G3, 4) and a GB(481, 3, 4),
then a GB(60m+ 1, 3, 4) will exist for any positive integer m. In other
cases of v ≡ 16, 21, 36 (mod 60), it may not be easy to show the existence
for GB(v, 3, 4).

Similarly, in Problem 4, if there exists a GB(96m+ 1, 4, 4) for m =
1, 2, . . . , 11, a D(K4(96), G4, 4) and a D(K5(96), G4, 4), where G4, 4 = K4 ×
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K4, then we can show that the necessary condition v ≡ 1 (mod 96) for
the existence of a GB(v, 4, 4) is sufficient by utilizing some recursive con-
structions. In Appendix B, we show examples of GB(96m+ 1, 4, 4)’s for
m = 1, 2, 3, 6, 7, 8, 10. If there are a D(K4(96), G4, 4), a D(K5(96), G4, 4),
a GB(865, 4, 4) and a GB(1057, 4, 4), then a GB(96m+ 1, 4, 4) exist for
any positive integer m. Thus, Problem 4 will be solved by obtaining these
designs.

Now we turn our attention to the case of resolvable. In this case, the
another condition k1k2|v is added to the congruences (1.3.3). The smallest
possible size for the existence of a resolvable GB(v, k1, k2) is k1 = k2 = 3. In
this case, we can construct some resolvable GB(v, 3, 3)’s by Theorems 2.1.9
and 2.5.5.

Problem 5 Is the necessary condition v ≡ 9 (mod 36) for the existence of
a resolvable GB(v, 3, 3) sufficient?

The second smallest possible size is k1 = 3 and k2 = 4.

Problem 6 Is the necessary condition v ≡ 36 (mod 60) for the existence of
a resolvable GB(v, 3, 4) sufficient?

In this case, as far as the author knows, no resolvable GB(v, 3, 4) has been
found yet. Another problem is asymptotic existence of resolvable GB(v, k1,
k2)’s.

Problem 7 For any positive integers k1 and k2, is there a constant v0 =
v0(k1, k2) such that resolvable GB(v, k1, k2)’s exist for all v ≥ v0 satisfying
the congruences (1.3.3) and the condition k1k2|v?

In Chapters 3 and 5, we mentioned BIBRCs and showed the asymptotic
existence for BIBRCs with some λ. As was stated in Section 1.5, the existence
problem for a BIBRC(v, k1, k2, λ) was completely solved only in the case of
k1 = k2 = 2.

Problem 8 Are the necessary conditions λ(v− 1) ≡ 0 (mod 2) and λv(v−
1) ≡ 0 (mod 12) for the existence of a BIBRC(v, 2, 3, λ) sufficient?

Problem 9 Are the necessary conditions λ(v− 1) ≡ 0 (mod 3) and λv(v−
1) ≡ 0 (mod 36) for the existence of a BIBRC(v, 2, 4, λ) sufficient?

Problem 10 Are the necessary conditions λ(v−1) ≡ 0 (mod 4) and λv(v−
1) ≡ 0 (mod 36) for the existence of a BIBRC(v, 3, 3, λ) sufficient?
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While, when λ ≥ k1k2(k1 − 1)(k2 − 1) holds, there exist BIBRC(v, k1, k2,
λ)’s for sufficiently large integers satisfying the necessary conditions. In the
case when k1 ≤ k2 and λ < k1k2(k1 − 1)(k2 − 1), if λ is a multiple of k1 − 1,
k2 − 1, or k2 there exist BIBRC(v, k1, k2, λ)’s for sufficiently large integers
satisfying the necessary conditions. On the other hand, in the case when
λ = 1, if 3 ≤ k1 ≤ k2 holds except for k1 = k2 = 3, it is easy to show that
there does not exist any BIBRC(v, k1, k2, λ). However, the author does not
know a boundary of λ whether a BIBRC(v, k1, k2, λ) exists or not for fixed
k1 and k2.

Problem 11 For a positive integer k1 and k2, find a condition of λ for which
there exist BIBRC(v, k1, k2, λ)’s. Moreover if λ satisfies such condition, is
there a constant v0 = v0(k1, k2, λ) such that BIBRC(v, k1, k2, λ)’s exist for
all v ≥ v0 satisfying the congruences (1.5.2)?

In Chapter 4, we assumed the “tree-ordered” property. But there are
some cases a G-decomposition exists even when G is not tree-ordered. As an
example, let G1 be a colorwise simple graph with 3 colors shown in Figure 1.
Though G1 is not tree-ordered, in this case, there exist many G1-decomposi-
tions of K

[3]
v . (For example, we may construct some G1-decompositions by

utilizing Heffter’s difference triples in [14, pp. 481–488] and [89].)

Figure 1: G1

We find α(G1) = 1 and β(G1) = m = 3. We can show that there exist

G1-decompositions of K
[3]
q for sufficiently large prime powers q ≡ 1 (mod 6)

by utilizing Theorem 4.2.2. By utilizing a notion of PBD-closed set, there
exist G1-decompsotions of K

[3]
v for sufficiently large integers v ≡ 1 (mod 6).

Similarly, in the case of v ≡ 0, 3, 4 (mod 6), we could show that there exist
G1-decompositions for sufficiently large such integers if we construct a G1-
decomposition of K

[3]
v for each of v ≡ 0, 3, 4 (mod 6).
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If we fix a λ-admissible family G of colorwise simple graphs with c colors
which are not necessarily tree-ordered, then we can show an asymptotic ex-
istence theorem for G-decompositions of K–

v . However, for any λ-admissible
family of colorwise simple graphs which are not tree-ordered, we can not show
asymptotic existence theorem, as far as author knows. But we can obtain
partial asymptotic existence by utilizing Theorem 4.2.2.

On the other hand, as an example, let G2 be a colorwise simple graph
with 3 colors shown in Figure 2. In this case, it is easy to show that there
do not exist any G2-decompositions of K

[3]
v .

Figure 2: G2

The first problem is as follows:

Problem 12 Find a more general condition for family G of colorwise simple
edge-c-colored graphs such that there exist G-decompositions of K–

v .

Problem 13 If G satisfies the above condition, is there a constant v0 =
v0(G, λ) such that G-decompositions of K–

v exist for all integers v ≥ v0

which satisfy the congruences (1.6.2)?

We know that there exist G2-decompositoins of K
(2, 2, 2)
v . Thus, we con-

sider the following problem.

Problem 14 Let λ = (λ1, λ2, . . . , λc) such that the greatest common divi-
sor λi’s in λ is 1. For any λ-admissible family G of colorwise simple edge-c-
colored graphs, find a condition of λ such that there exist G-decompositions of
Kλ–

v . Moreover if λ satisfies such condition, is there a constant v0 = v0(G, λ)
such that G-decompositions of Kλ–

v exist for all v ≥ v0 satisfying the congru-
ences (1.6.2)?

More generally, we can consider G-decompositions of K–
v even in the case

where G is not necessarily a family of colorwise simple edge-c-colored graphs.
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Problem 15 For any λ-admissible family of edge-c-colored graphs, find a
condition family G of edge-c-colored graphs such that there exist G-decomposi-
tions of K–

v . Moreover if G satisfies such condition, is there a constant
v0 = v0(G, λ) such that G-decompositions of K–

v exist for all integers v ≥ v0

which satisfy the congruences (1.6.2)?

Also, we can extend edge-colored graphs to edge-colored directed graphs
whose edges are ordered pairs of the vertex set instead of unordered pairs.
Similarly, we can define α(G; λ), β(G; λ) and λ-admissible and show the
necessary conditions.

Problem 16 For any λ-admissible family of edge-c-colored directed graphs,
find a condition family G of edge-c-colored directed graphs such that there
exist G-decompositions of K–

v . Moreover if G satisfies such condition, is
there a constant v0 = v0(G, λ) such that G-decompositions of K–

v exist for
all integers v ≥ v0 which satisfy the necessary conditions?

Moreover, these problems can be extended to balanced cases. Lastly,
the author believes that the graph decomposition problem can be applied to
many types of combinatorial designs.
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Appendices

A. A table of BIB designs with nested rows

and columns having small parameters

In Section 3.3, we considered the existence theorem for sufficiently large
prime power v = q. In this section, we list the parameters of the designs for
q ≤ 101 and 3 ≤ k1 ≤ k2 ≤ 11 which are obtained by computer according
to Theorem 3.3.1. In Table A.1, q is restricted to the case of prime power.
For the actual base blocks of the designs see Mutoh [77]. The replication
number of a BIBRC is defined by r = λ(q − 1)/(k1 − 1)(k2 − 1). Though
Table A.1 does not include the value b to save the space, it can be computed
by b = λq(q−1)/k1k2(k1−1)(k2−1). It is obvious that in the case when q is
an odd prime power, there exists a BIBRC(q, k1, k2, k1k2(k1 − 1)(k2 − 1)/2)
with r = k1k2(q − 1)/2. And in the case when q is a power of 2, there
exists a BIBRC(q, k1, k2, k1k2(k1 − 1)(k2 − 1)) with r = k1k2(q − 1). Thus
we list the designs whose replication number r is smaller than k1k2(q − 1)/2
or k1k2(q − 1). In Table A.1, r is the smallest integer found by a computer
according to Theorem 3.3.1 or other literatures. The designs are constructed
by the methods listed in Sources. Finally, we list the possible smallest λm

satisfying the equation (1.5.2) in the case when there are no known construc-
tions attaining λm. Here, “−” implies that the minimum λm is attained by
the construction given in the table.

Table A.1: Constructed BIBRCs for q ≤ 101

q k1 k2 r λ Source λm q k1 k2 r λ Source λm
13 3 3 9 3 IJ, UM5, Th3.3.1 − 19 3 3 9 2 P, Th3.3.1 −
13 3 4 12 6 JK5, Th3.3.1 − 19 3 4 12 4 Th3.3.1 −
16 3 3 45 12 JK5, Th3.3.1 − 19 3 5 45 20 JK5, Th3.3.1 −
16 3 4 60 24 JK5, Th3.3.1 6 19 3 6 18 10 Th3.3.1 −
16 3 5 15 8 JK5, Th3.3.1 − 19 4 4 48 24 Th3.3.1 8
17 3 3 36 9 UM4, Th3.3.1 − 25 3 3 18 3 UM4, Th3.3.1 −
17 3 4 24 9 Th3.3.1 − 25 3 4 24 6 AP1, Th3.3.1 3
17 3 5 30 15 Th3.3.1 − 25 3 5 30 10 Th3.3.1 1
17 4 4 16 9 Th3.3.1 − 25 3 6 36 15 Th3.3.1 −
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Table A.1: (cont.)

q k1 k2 r λ Source λm q k1 k2 r λ Source λm
25 3 7 84 42 UM3, JK5, Th3.3.1 21 41 3 11 330 165 Th3.3.1 33
25 3 8 24 14 JK5 − 41 4 4 80 18 SD2, UM4, Th3.3.1 −
25 4 4 32 12 UM5, Th3.3.1 6 41 4 5 40 12 AP1, JK5 6
25 4 5 12 6 C1 2 41 4 6 120 45 Th3.3.1 9
25 4 6 48 30 JK5 15 41 4 7 140 63 Th3.3.1 −
27 3 3 13 2 JK9, Th3.2.2 − 41 4 8 160 84 Th3.3.1 −
27 3 4 156 36 Th3.3.1 12 41 4 9 360 216 JK5, Th3.3.1 108
27 3 5 195 60 Th3.3.1 20 41 4 10 80 54 JK5 27
27 3 6 234 90 Th3.3.1 10 41 5 5 50 20 UM5 10
27 3 7 273 126 Th3.3.1 42 41 5 6 120 60 JK5 15
27 3 8 312 168 Th3.3.1 56 41 5 7 140 84 JK5 21
27 4 6 312 180 Th3.3.1 60 41 5 8 40 28 JK5 −
29 3 3 63 9 UM4, Th3.3.1 − 41 6 6 360 225 Th3.3.1 45
29 3 4 84 18 JK5, Th3.3.1 − 43 3 3 63 6 S6, C1(AP2, 3 × 7), −
29 3 5 105 30 Th3.3.1 − UM2, JK5, Th3.3.1
29 3 6 126 45 Th3.3.1 − 43 3 4 84 12 S6, C1(AP2, 3 × 7), −
29 3 7 42 18 JK5 9 UM2, JK5, Th3.3.1
29 3 8 168 84 JK5, Th3.3.1 12 43 3 5 105 20 JK5, Th3.3.1 −
29 3 9 378 216 JK5, Th3.3.1 108 43 3 6 126 30 S6, C1(3 × 7), −
29 4 4 112 36 C1(AP1, 4 × 7), − UM3, JK5, Th3.3.1

UM1, JK5, Th3.3.1 43 3 7 21 6 AP2, JK5 −
29 4 5 140 60 UM1, JK5, Th3.3.1 − 43 3 8 168 56 JK5, Th3.3.1 8
29 4 6 168 90 JK5, Th3.3.1 − 43 3 9 189 72 JK5, Th3.3.1 −
29 4 7 28 18 JK5 − 43 3 10 210 90 JK5, Th3.3.1 −
29 5 5 175 100 UM1, Th3.3.1 − 43 3 11 231 110 JK5, Th3.3.1 −
31 3 3 45 6 S6, UM2, JK5, Th3.3.1 − 43 4 4 112 24 UM2, Th3.3.1 −
31 3 4 60 12 S6, C1(P, 3 × 5), − 43 4 5 140 40 Th3.3.1 −

UM2, JK5, Th3.3.1 43 4 6 168 60 C1(AP1, 6 × 7), −
31 3 5 15 4 JK5, Th3.3.1 − UM3, JK5, Th3.3.1
31 3 6 54 18 Th3.3.1 6 43 4 7 84 36 JK5 12
31 3 7 105 42 UM3, JK5, Th3.3.1 − 43 4 8 224 112 Th3.3.1 16
31 3 8 120 56 JK5, Th3.3.1 − 43 4 9 252 144 JK5, Th3.3.1 −
31 3 9 135 72 JK5, Th3.3.1 − 43 4 10 280 180 Th3.3.1 −
31 3 10 30 18 JK5 − 43 5 6 210 100 JK5, Th3.3.1 −
31 4 4 80 24 UM2, Th3.3.1 − 43 5 7 105 60 JK5 20
31 4 5 60 24 JK5, Th3.3.1 8 43 5 8 840 560 JK5, Th3.3.1 80
31 4 6 120 60 JK5, Th3.3.1 12 43 6 6 252 150 JK5, Th3.3.1 150
31 4 7 140 84 Th3.3.1 − 43 6 7 42 30 JK5 −
31 5 5 75 40 JK5, Th3.3.1 − 49 3 3 36 3 UM5, Th3.3.1 −
31 5 6 30 20 JK5 − 49 3 4 24 3 Th3.3.1 −
32 3 4 372 72 Th3.3.1 18 49 3 5 60 10 Th3.3.1 5
32 3 6 558 180 Th3.3.1 90 49 3 6 72 15 Th3.3.1 −
32 3 8 744 336 Th3.3.1 42 49 3 7 48 12 C1(4 × 7) 3
32 3 10 930 540 Th3.3.1 270 49 3 8 48 14 JK5 7
32 4 4 31 9 Th3.2.2 − 49 3 9 216 72 JK5, Th3.3.1 9
32 4 5 620 240 Th3.3.1 60 49 3 10 240 90 JK5, Th3.3.1 45
32 4 6 744 360 Th3.3.1 45 49 3 11 264 110 JK5, Th3.3.1 55
32 4 7 868 504 Th3.3.1 126 49 4 4 64 12 UM5, Th3.3.1 3
32 5 6 930 600 Th3.3.1 300 49 4 5 80 20 Th3.3.1 5
37 3 3 18 2 Th3.3.1 1 49 4 6 96 30 C1(4 × 7), 15
37 3 4 24 4 Th3.3.1 2 JK5, Th3.3.1
37 3 5 45 10 Th3.3.1 − 49 4 7 16 6 C1 3
37 3 6 54 15 Th3.3.1 5 49 4 8 192 84 Th3.3.1 14
37 3 7 126 42 UM3, JK5, Th3.3.1 7 49 4 9 144 72 JK5 18
37 3 8 72 28 JK5, Th3.3.1 − 49 4 10 240 135 Th3.3.1 45
37 3 9 162 72 JK5, Th3.3.1 12 49 4 11 352 220 Th3.3.1 55
37 3 10 180 90 JK5, Th3.3.1 15 49 5 5 150 50 UM4, Th3.3.1 25
37 3 11 198 110 JK5, Th3.3.1 55 49 5 6 180 75 Th3.3.1 25
37 4 4 32 8 Th3.3.1 4 49 5 7 210 105 Th3.3.1 5
37 4 5 60 20 Th3.3.1 − 49 5 8 240 140 Th3.3.1 70
37 4 6 72 30 JK5 10 49 5 9 360 240 JK5, Th3.3.1 30
37 4 7 168 84 UM3, Th3.3.1 14 49 6 6 144 75 C1(6 × 7), UM4 −
37 4 8 192 112 Th3.3.1 56 49 6 7 24 15 C1 −
37 4 9 36 24 JK5 − 49 6 8 96 70 JK5 35
37 5 5 225 100 UM1, Th3.3.1 − 53 3 3 117 9 UM4, Th3.3.1 −
37 5 6 180 100 JK5, Th3.3.1 50 53 3 4 156 18 JK5, Th3.3.1 −
37 5 7 630 420 JK5, Th3.3.1 70 53 3 5 195 30 Th3.3.1 −
37 6 6 216 150 JK5, Th3.3.1 25 53 3 6 234 45 Th3.3.1 −
41 3 3 90 9 UM4, Th3.3.1 − 53 3 7 273 63 Th3.3.1 −
41 3 4 60 9 Th3.3.1 − 53 3 8 312 84 JK5, Th3.3.1 −
41 3 5 60 12 JK5, Th3.3.1 3 53 3 9 351 108 Th3.3.1 −
41 3 6 72 18 Th3.3.1 9 53 3 10 390 135 Th3.3.1 −
41 3 7 210 63 Th3.3.1 − 53 3 11 429 165 Th3.3.1 −
41 3 8 120 42 JK5, Th3.3.1 − 53 4 4 208 36 C1(AP1, 4 × 13), −
41 3 9 135 54 Th3.3.1 − UM1, JK5, Th3.3.1
41 3 10 120 54 JK5 27 53 4 5 260 60 UM1, JK5, Th3.3.1 −
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Table A.1: (cont.)

q k1 k2 r λ Source λm q k1 k2 r λ Source λm
53 4 6 312 90 JK5, Th3.3.1 − 64 7 9 63 48 JK5 −
53 4 7 364 126 JK5, Th3.3.1 − 67 3 3 99 6 S6, UM2, JK5, Th3.3.1 −
53 4 8 416 168 JK5, Th3.3.1 − 67 3 4 132 12 S6, UM2, JK5, Th3.3.1 −
53 4 9 468 216 JK5, Th3.3.1 − 67 3 5 165 20 JK5, Th3.3.1 −
53 4 10 520 270 JK5, Th3.3.1 − 67 3 6 198 30 S6, C1(AP2, 3 × 11), −
53 4 11 572 330 JK5, Th3.3.1 − UM3, JK5, Th3.3.1
53 5 5 325 100 UM1, Th3.3.1 − 67 3 7 231 42 S6, UM3, JK5, Th3.3.1 −
53 5 6 390 150 Th3.3.1 − 67 3 8 264 56 JK5, Th3.3.1 −
53 5 7 455 210 Th3.3.1 − 67 3 9 297 72 JK5, Th3.3.1 −
53 5 8 520 280 JK5, Th3.3.1 − 67 3 10 330 90 JK5, Th3.3.1 −
53 5 9 585 360 Th3.3.1 − 67 3 11 33 10 JK5 −
53 5 10 1300 900 JK5, Th3.3.1 450 67 4 4 176 24 UM2, Th3.3.1 −
53 6 6 468 225 Th3.3.1 − 67 4 5 220 40 Th3.3.1 −
53 6 7 546 315 Th3.3.1 − 67 4 6 264 60 UM3, JK5, Th3.3.1 −
53 6 8 624 420 Th3.3.1 − 67 4 7 308 84 UM3, Th3.3.1 −
53 7 7 637 441 Th3.3.1 − 67 4 8 352 112 Th3.3.1 −
61 3 3 45 3 UM5, Th3.3.1 − 67 4 9 396 144 JK5, Th3.3.1 −
61 3 4 60 6 AP1, JK5, Th3.3.1 − 67 4 10 440 180 Th3.3.1 −
61 3 5 30 4 JK5 2 67 4 11 132 60 JK5 20
61 3 6 90 15 Th3.3.1 3 67 5 6 330 100 JK5, Th3.3.1 −
61 3 7 105 21 Th3.3.1 − 67 5 7 385 140 Th3.3.1 −
61 3 8 120 28 Th3.3.1 − 67 5 9 495 240 JK5, Th3.3.1 −
61 3 9 270 72 JK5, Th3.3.1 36 67 5 10 550 300 Th3.3.1 −
61 3 10 60 18 JK5 9 67 5 11 165 100 JK5 −
61 3 11 330 110 JK5, Th3.3.1 11 67 6 6 396 150 C1(AP1, 6 × 11), −
61 4 4 80 12 SD2, UM5, Th3.3.1 − UM1, JK5, Th3.3.1
61 4 5 60 12 AP1, JK5 4 67 6 7 462 210 UM1, JK5, Th3.3.1 −
61 4 6 120 30 JK5, Th3.3.1 6 67 6 8 528 280 JK5, Th3.3.1 −
61 4 7 280 84 UM3, Th3.3.1 42 67 6 9 594 360 JK5, Th3.3.1 −
61 4 8 320 112 Th3.3.1 56 67 6 10 660 450 JK5, Th3.3.1 −
61 4 9 180 72 JK5 − 67 6 11 66 50 JK5 −
61 4 10 120 54 JK5 18 67 7 7 539 294 UM1, Th3.3.1 −
61 4 11 440 220 Th3.3.1 22 67 7 8 616 392 Th3.3.1 −
61 5 5 75 20 UM5 − 67 7 9 693 504 JK5, Th3.3.1 −
61 5 6 60 20 AP1, JK5 10 71 3 5 105 12 JK5, Th3.3.1 −
61 5 7 175 70 Th3.3.1 14 71 3 6 126 18 Th3.3.1 −
61 5 8 120 56 JK5 − 71 3 7 105 18 JK5, Th3.3.1 −
61 5 9 90 48 JK5 24 71 3 8 840 168 JK5, Th3.3.1 24
61 5 10 500 300 Th3.3.1 30 71 3 10 210 54 JK5, Th3.3.1 −
61 5 11 330 220 JK5 110 71 3 11 231 66 Th3.3.1 −
61 6 6 180 75 UM4 15 71 4 5 140 24 JK5, Th3.3.1 −
61 6 7 420 210 UM1, JK5, Th3.3.1 21 71 4 6 168 36 Th3.3.1 −
61 6 8 240 140 JK5 28 71 4 7 140 36 JK5 −
61 6 9 540 360 JK5, Th3.3.1 36 71 4 8 1120 336 JK5, Th3.3.1 48
61 6 10 130 90 JK5 45 71 4 10 280 108 JK5 −
61 7 7 245 147 UM4 − 71 4 11 1540 660 JK5, Th3.3.1 132
61 7 8 560 392 Th3.3.1 196 71 5 5 175 40 S6, UM2, JK5, Th3.3.1 −
64 3 3 63 4 Th3.3.1 − 71 5 6 210 60 S6, C1(AP2, 5 × 7), −
64 3 4 252 24 JK5, Th3.3.1 2 UM2, JK5, Th3.3.1
64 3 5 315 40 JK5, Th3.3.1 − 71 5 7 35 12 JK5 −
64 3 6 378 60 JK5, Th3.3.1 10 71 5 8 280 112 JK5, Th3.3.1 16
64 3 7 63 12 JK5 4 71 5 9 315 144 JK5, Th3.3.1 −
64 3 8 504 112 JK5, Th3.3.1 2 71 5 10 350 180 JK5 −
64 3 9 189 48 JK5 − 71 5 11 385 220 JK5 −
64 3 10 630 180 JK5, Th3.3.1 30 71 6 6 252 90 UM2, Th3.3.1 −
64 3 11 693 220 JK5, Th3.3.1 − 71 6 7 210 90 JK5 18
64 4 4 21 3 JK9, Th3.2.2 1 71 6 8 1680 840 JK5, Th3.3.1 24
64 4 5 1260 240 Th3.3.1 20 71 6 9 1890 1080 JK5, Th3.3.1 216
64 4 6 504 120 JK5, Th3.3.1 5 71 6 10 420 270 JK5 −
64 4 7 252 72 JK5 2 71 6 11 2310 1650 JK5, Th3.3.1 330
64 4 8 63 21 Th3.2.2 1 71 7 7 245 126 JK5 −
64 4 9 252 96 JK5 24 71 7 8 280 168 JK5 −
64 4 10 840 360 Th3.3.1 15 71 7 9 315 216 JK5 −
64 4 11 2772 1320 Th3.3.1 110 71 7 10 70 54 JK5 −
64 5 6 630 200 JK5, Th3.3.1 100 71 8 8 2240 1568 JK5 224
64 5 7 315 120 JK5 40 73 3 3 36 2 SD2, Th3.3.1 1
64 5 8 2520 1120 Th3.3.1 20 73 3 4 36 3 Th3.3.1 1
64 5 9 315 160 JK5 − 73 3 5 90 10 Th3.3.1 5
64 5 10 3150 1800 Th3.3.1 100 73 3 6 108 15 Th3.3.1 5
64 6 6 756 300 JK5, Th3.3.1 25 73 3 7 126 21 Th3.3.1 7
64 6 7 126 60 JK5 10 73 3 8 72 14 JK5 −
64 6 8 1008 560 JK5, Th3.3.1 5 73 3 9 108 24 JK5 6
64 6 9 378 240 JK5 120 73 3 10 360 90 JK5, Th3.3.1 15
64 6 10 1260 900 JK5 75 73 3 11 396 110 JK5, Th3.3.1 55
64 7 7 441 252 JK5 28 73 4 4 96 12 UM5, Th3.3.1 2
64 7 8 504 336 JK5 14 73 4 5 120 20 Th3.3.1 10
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Table A.1: (cont.)

q k1 k2 r λ Source λm q k1 k2 r λ Source λm
73 4 6 144 30 JK5 5 81 5 5 100 20 UM5 5
73 4 7 252 63 Th3.3.1 7 81 5 6 240 60 S6, UM2, JK5 5
73 4 8 288 84 JK5, Th3.3.1 28 81 5 7 280 84 JK5 21
73 4 9 72 24 JK5 12 81 5 8 80 28 JK5 14
73 4 10 360 135 Th3.3.1 15 81 5 9 360 144 JK5 2
73 4 11 396 165 Th3.3.1 55 81 5 10 400 180 UM3, JK5 45
73 5 5 225 50 UM4, Th3.3.1 − 81 5 11 440 220 UM3, JK5 55
73 5 6 270 75 Th3.3.1 25 81 6 6 144 45 UM5 5
73 5 7 315 105 Th3.3.1 35 81 6 7 840 315 Th3.3.1 21
73 5 8 360 140 JK5, Th3.3.1 − 81 6 8 480 210 Th3.3.1 7
73 5 9 180 80 JK5 20 81 6 9 540 270 Th3.3.1 1
73 5 10 450 225 Th3.3.1 25 81 6 10 480 270 UM3, JK5 45
73 5 11 495 275 Th3.3.1 − 81 6 11 528 330 UM3 55
73 6 6 216 75 UM4, Th3.3.1 25 81 7 7 980 441 Th3.3.1 −
73 6 7 504 210 UM1, Th3.3.1 35 81 7 8 560 294 JK5 147
73 6 8 144 70 JK5 − 81 7 9 1260 756 Th3.3.1 21
73 6 9 216 120 JK5 30 81 7 10 560 378 JK5 189
73 6 10 720 450 JK5, Th3.3.1 75 81 7 11 1540 1155 Th3.3.1 231
73 6 11 792 550 JK5, Th3.3.1 275 81 8 8 320 196 C1(8), UM4 −
73 7 7 294 147 UM4 49 81 8 9 40 28 C1 −
73 7 8 504 294 JK5, Th3.3.1 98 81 8 10 160 126 JK5 63
73 7 9 252 168 JK5 42 89 3 3 198 9 UM4, Th3.3.1 −
73 7 10 840 630 Th3.3.1 105 89 3 4 132 9 Th3.3.1 −
73 8 8 576 392 JK5, Th3.3.1 − 89 3 5 165 15 Th3.3.1 −
73 8 9 72 56 JK5 − 89 3 6 396 45 Th3.3.1 −
79 3 3 117 6 S6, UM2, JK5, Th3.3.1 − 89 3 7 462 63 Th3.3.1 −
79 3 4 156 12 S6, C1(AP2, 3 × 13), − 89 3 8 264 42 JK5, Th3.3.1 −

UM2, JK5, Th3.3.1 89 3 9 297 54 Th3.3.1 −
79 3 5 195 20 JK5, Th3.3.1 − 89 3 10 660 135 Th3.3.1 −
79 3 6 234 30 S6, UM3, JK5, Th3.3.1 − 89 3 11 132 30 JK5 15
79 3 7 273 42 S6, UM3, JK5, Th3.3.1 − 89 4 4 176 18 UM4, Th3.3.1 −
79 3 8 312 56 JK5, Th3.3.1 − 89 4 5 220 30 Th3.3.1 −
79 3 9 351 72 JK5, Th3.3.1 − 89 4 6 264 45 Th3.3.1 −
79 3 10 390 90 JK5, Th3.3.1 − 89 4 7 308 63 Th3.3.1 −
79 3 11 429 110 JK5, Th3.3.1 − 89 4 8 352 84 Th3.3.1 −
79 4 4 208 24 UM2, Th3.3.1 − 89 4 9 396 108 Th3.3.1 −
79 4 5 260 40 Th3.3.1 − 89 4 10 440 135 Th3.3.1 −
79 4 6 312 60 UM3, JK5, Th3.3.1 − 89 4 11 88 30 JK5 15
79 4 7 364 84 UM3, Th3.3.1 − 89 5 5 275 50 UM4, Th3.3.1 −
79 4 8 416 112 Th3.3.1 − 89 5 6 330 75 Th3.3.1 −
79 4 9 468 144 JK5, Th3.3.1 − 89 5 7 385 105 Th3.3.1 −
79 4 10 520 180 Th3.3.1 − 89 5 8 440 140 JK5, Th3.3.1 −
79 4 11 572 220 Th3.3.1 − 89 5 9 495 180 Th3.3.1 −
79 5 6 390 100 JK5, Th3.3.1 − 89 5 10 550 225 Th3.3.1 −
79 5 7 455 140 Th3.3.1 − 89 5 11 220 100 JK5 25
79 5 9 585 240 JK5, Th3.3.1 − 89 6 6 792 225 Th3.3.1 −
79 5 10 650 300 Th3.3.1 − 89 6 7 924 315 Th3.3.1 −
79 6 6 468 150 UM1, JK5, Th3.3.1 − 89 6 8 528 210 JK5, Th3.3.1 −
79 6 7 546 210 UM1, JK5, Th3.3.1 − 89 6 9 594 270 Th3.3.1 −
79 6 8 624 280 JK5, Th3.3.1 − 89 6 10 1320 675 Th3.3.1 −
79 6 9 702 360 JK5, Th3.3.1 − 89 6 11 264 150 JK5 75
79 6 10 780 450 JK5, Th3.3.1 − 89 7 7 1078 441 Th3.3.1 −
79 6 11 858 550 JK5, Th3.3.1 − 89 7 8 616 294 JK5, Th3.3.1 −
79 7 7 637 294 UM1, Th3.3.1 − 89 7 9 693 378 Th3.3.1 −
79 7 8 728 392 Th3.3.1 − 89 7 10 1540 945 Th3.3.1 −
79 7 9 819 504 JK5, Th3.3.1 − 89 7 11 308 210 JK5 105
79 7 10 910 630 Th3.3.1 − 89 8 8 704 392 JK5, Th3.3.1 −
79 7 11 3003 2310 JK5, Th3.3.1 770 89 8 9 792 504 JK5, Th3.3.1 −
79 8 9 936 672 JK5, Th3.3.1 − 89 8 10 880 630 JK5, Th3.3.1 −
81 3 3 20 1 Th3.2.4 − 89 8 11 88 70 JK5 −
81 3 4 120 9 Th3.3.1 3 89 9 9 891 648 Th3.3.1 −
81 3 5 120 12 JK5 1 97 3 3 72 3 UM5, Th3.3.1 −
81 3 6 360 45 Th3.3.1 1 97 3 4 96 6 AP1, JK5, Th3.3.1 3
81 3 7 420 63 Th3.3.1 21 97 3 5 120 10 Th3.3.1 5
81 3 8 240 42 JK5, Th3.3.1 7 97 3 6 288 30 S6, UM3, JK5, Th3.3.1 15
81 3 9 40 8 Th3.2.2 1 97 3 7 336 42 S6, UM3, JK5, Th3.3.1 21
81 3 10 240 54 JK5 9 97 3 8 96 14 JK5 7
81 3 11 660 165 Th3.3.1 11 97 3 9 324 54 Th3.3.1 9
81 4 4 80 9 SD2, Th3.3.1 − 97 3 10 480 90 JK5, Th3.3.1 45
81 4 5 80 12 AP1, JK5 3 97 3 11 528 110 JK5, Th3.3.1 55
81 4 6 240 45 Th3.3.1 3 97 4 4 128 12 UM5, Th3.3.1 3
81 4 7 280 63 Th3.3.1 − 97 4 5 160 20 Th3.3.1 5
81 4 8 320 84 JK5, Th3.3.1 42 97 4 6 192 30 JK5 15
81 4 9 360 108 Th3.3.1 6 97 4 7 336 63 Th3.3.1 21
81 4 10 160 54 JK5 27 97 4 8 384 84 JK5, Th3.3.1 7
81 4 11 440 165 Th3.3.1 33 97 4 9 288 72 JK5 9
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Table A.1: (cont.)

q k1 k2 r λ Source λm q k1 k2 r λ Source λm
97 4 10 480 135 Th3.3.1 45 101 4 4 400 36 C1(4 × 5), −
97 4 11 528 165 Th3.3.1 55 UM1, JK5, Th3.3.1
97 5 5 300 50 UM4, Th3.3.1 25 101 4 5 100 12 AP1, JK5 −
97 5 6 360 75 Th3.3.1 25 101 4 6 600 90 JK5, Th3.3.1 18
97 5 7 420 105 Th3.3.1 35 101 4 7 700 126 JK5, Th3.3.1 −
97 5 8 480 140 JK5, Th3.3.1 35 101 4 8 800 168 JK5, Th3.3.1 −
97 5 9 540 180 Th3.3.1 15 101 4 9 900 216 JK5, Th3.3.1 −
97 5 10 600 225 Th3.3.1 75 101 4 10 200 54 JK5 −
97 5 11 660 275 Th3.3.1 − 101 4 11 1100 330 JK5, Th3.3.1 66
97 6 6 288 75 UM4, Th3.3.1 − 101 5 5 125 20 UM5 4
97 6 7 672 210 UM1, JK5, Th3.3.1 105 101 5 6 300 60 S6, UM2, JK5 6
97 6 8 192 70 JK5 35 101 5 7 350 84 JK5 42
97 6 9 648 270 Th3.3.1 45 101 5 8 200 56 JK5 −
97 6 10 960 450 JK5, Th3.3.1 225 101 5 9 450 144 JK5 72
97 6 11 1056 550 JK5, Th3.3.1 275 101 5 10 500 180 AP4, S6, UM3, JK5 18
97 7 7 392 147 UM4 − 101 5 11 550 220 UM3, JK5 22
97 7 8 672 294 JK5, Th3.3.1 49 101 6 6 180 45 UM5 9
97 7 9 756 378 Th3.3.1 63 101 6 7 1050 315 Th3.3.1 63
97 7 10 1120 630 Th3.3.1 315 101 6 8 1200 420 JK5, Th3.3.1 84
97 7 11 1232 770 Th3.3.1 385 101 6 9 1350 540 Th3.3.1 108
97 8 8 384 196 UM4 98 101 6 10 600 270 JK5 27
97 8 9 288 168 JK5 42 101 6 11 1650 825 Th3.3.1 33
97 8 10 960 630 JK5, Th3.3.1 105 101 7 7 1225 441 Th3.3.1 −
97 8 11 1056 770 JK5 385 101 7 8 1400 588 JK5, Th3.3.1 −
97 9 9 486 324 UM4 54 101 7 9 1575 756 Th3.3.1 −
97 9 10 1440 1080 JK5, Th3.3.1 135 101 7 10 700 378 JK5 189

101 3 3 225 9 UM4, Th3.3.1 − 101 7 11 1925 1155 Th3.3.1 231
101 3 4 300 18 JK5, Th3.3.1 − 101 8 8 1600 784 JK5, Th3.3.1 −
101 3 5 150 12 JK5 6 101 8 9 1800 1008 JK5, Th3.3.1 −
101 3 6 450 45 Th3.3.1 9 101 8 10 400 252 JK5 −
101 3 7 525 63 Th3.3.1 − 101 8 11 2200 1540 JK5, Th3.3.1 308
101 3 8 600 84 JK5, Th3.3.1 − 101 9 9 2025 1296 Th3.3.1 −
101 3 9 675 108 Th3.3.1 − 101 9 10 900 648 JK5 324
101 3 10 300 54 JK5 27 101 9 11 4950 3960 JK5, Th3.3.1 396
101 3 11 825 165 Th3.3.1 33 101 10 10 1000 810 JK5 81

P, Preece [80]; SD2, Singh & Dey [90, Th.2]; S6, Street [94, Th.6]; AP1, AP2 and
AP4, Theorems 1, 2 and 4 of Agrawal & Prasad [7]; JK5 and JK9, Theorems 5 and
9 of Jimbo & Kuriki [54]; IJ, Ipinyomi & John [53]; C1, Cheng [26, Th.2.1]; UM1,
UM2, UM3, UM4 and UM5, Theorems 1, 2, 3, 4 and 5 of Uddin & Morgan [98];
Cheng’s result combines a BIBD with a BIBRC to give a new BIBRC, both row-
column designs having the same v; when the referenced design does not explicitly
appear in his paper, the dimensions k1 × k2 of the required initial BIBRC are in
parentheses. See http://jim.math.keio.ac.jp/˜yukiyasu/table.html.
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B. Examples of grid-block designs with small

parameters

In this appendix, grid-block designs mentioned in the open problems in page
102 are listed. Firstly, GB(60m+ 1, 3, 4)’s for m = 1, 2, 3, 6, 7, 9, 10, 11
are listed in Table B.1. They are constructed by utilizing finite fields as
in Lemma 2.5.6. We list m, primitive elements (or polynomials) and base
grid-blocks A which satisfies the condition of Lemma 2.5.6.

Table B.1: Table of the base grid-blocks of 3 × 4 grid-block designs

m
primitive element
or polynomial

A

1 2
0 1 3 7
5 25 56 43
19 47 30 59

2 ω2 + ω1 + 7
ω∞ ω0 ω1 ω2

ω3 ω5 ω15 ω98

ω24 ω95 ω97 ω45

3 2
0 1 3 7
5 13 23 63
99 90 142 39

6 ω2 + ω1 + 2
ω∞ ω0 ω1 ω2

ω3 ω4 ω7 ω8

ω52 ω210 ω289 ω93

7 2
0 1 3 7
5 13 23 37

105 365 281 86

9 2
0 1 3 7
5 14 22 46
64 474 250 521

10 7
0 1 3 7
5 13 28 56

141 130 414 307

11 2
0 1 5 11
7 15 53 100
50 67 331 218
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Let V = Z240 and A be a family of base grid-blocks as follows:

0 1 6 15
13 30 3 48
2 23 60 101

,
0 25 74 143
34 195 140 97
123 84 233 210

,
0 73 26 135
85 230 127 20
179 148 77 58

We define A = {A+ x : A ∈ A, x ∈ Z240}. Then a pair (Z240, A) is a
D(K4(60), G3, 4) since ∂A = Z240 \ {0, 4, 8, . . . , 236} holds.

Secondly, GB(96m+ 1, 4, 4)’s for m = 1, 2, 3, 6, 7, 8, 10 are listed in
Table B.2. They are also obtained by utilizing Lemma 2.5.6.

Table B.2: Table of the base grid-blocks of 4 × 4 grid-block designs

m
primitive element
or polynomial

A

1 5

0 1 3 7
5 13 81 38
16 60 26 86
46 74 61 29

2 5

0 1 3 7
5 14 25 39
35 72 131 62
82 150 110 183

3 ω2 + ω1 + 3

ω∞ ω0 ω1 ω2

ω3 ω4 ω5 ω6

ω20 ω17 ω155 ω83

ω46 ω70 ω221 ω7

6 5

0 1 3 7
5 13 26 41
14 67 258 418
229 490 357 279

7 5

0 1 3 7
5 13 22 38
15 37 172 338
515 581 481 186
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Table B.2: (cont.)

m
primitive element
or polynomial

A

8 11

0 1 3 7
5 13 23 37
16 52 168 473
572 345 739 80

10 ω2 + ω1 + 12

ω∞ ω0 ω1 ω2

ω3 ω4 ω5 ω6

ω10 ω7 ω434 ω569

ω318 ω427 ω211 ω660

123


