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Chapter 1

Introduction

Earthquakes occur frequently in many parts of the world. The essence of
the earthquake has been accurately identified only recently during the 1960’s.
According to the modern theory of plate tectonics [34] this essence is the fault
movement that releases the strain energy accumulated in the bedrock (rock
mass) underground. Indeed, first a strong force is exerted on the rock mass
underground. As a result, this rock mass gradually becomes deformed. At
the same time, energy accumulates in the form of strain in the rock mass.
When the rock mass can no longer withstand the continually mounting pres-
sure a rupture occurs. The stored strain energy is violently released in the
form of a seismic wave. Earthquakes are caused by the occurrence of this
phenomenon underground. The rupture that occurs underground and causes
an earthquake consists of a rapid slipping movement along weak planes (fault
planes or cracks) between giant slabs of rock- mass.

Various results of researches reveal that in the Japanese Archipelago and
the surrounding areas several plates are converging each other, for example
the Pacific Plate, the Philippine Sea Plate and a plate on land. At the bound-
ary of these covering plates, both plates are pushing against each other or one
plate subducts the other. It is easy to imagine that many large earthquakes
(fault movements) are generated there. Therefore, the practical goal of seis-
mology is to prevent or reduce damages due to earthquakes by estimating
its hazard at a given site or by forecasting the occurrence of the next strong
event. At present the prevailing approach to these problems is to extrapolate
data from the record of past events and apply their information to the future.
However, this purely phenomenological approach is unreliable, due mainly to
the lack of representative data. From these reasons the motivation arises to
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face this thesis and we study fracture phenomena that are considered to oc-
cur in the case of earthquakes from the mathematical viewpoint.

An underground structure of the Earth constitutes three parts, crust, man-
tle and core, by means of a difference of chemical composition. On the other
hand a dynamical outermost layer of the Earth is commonly called litho-
sphere or plate composed of crust and the upper part of mantle. It is well
known that the lithosphere behaves elastic in regard to the movement in a
time scale of shorter than several hundred thousands years. Moreover, under
the lithosphere there exists a viscoelastic layer called athenosphere which
is very fluid. It is necessary to take athenosphere into account in order to
explain the movement of plate and the accumulated process of the strain
energy. According to the above reason, we consider the elastic or viscoelastic
media with cracks. Particularly, in this thesis we deal with the case that the
material response is linearly elastic because of assuming that strain is very
small. This is based on the fact that in stones or rocks such as a plate of the
earth is led to the brittle fracture by a small strain.

Theory of elasticity has been thoroughly developed (see for example, [29],
[30], [31]). Mathematical existence theorems in a linear elastic theory were es-
tablished by Fichera [10] in 1972. Recently, Constanda studied the boundary
value problems for the system of equilibrium equations of plane elasticity in
[6]–[9]. By means of elastic single and double layer potentials he reduced the
boundary value problems mentioned above to the integral equations. Then
applying the theory of integral equations lead to the solvability of the inte-
rior and exterior Dirichlet and Neumann problems. However, the problems
considered in [6]–[9] were those in a compact domain without any cracks.

On the other hand, for boundary value problems in a planar domain, Airy’s
stress function is, in general, used so that the system of partial differential
equations is transformed into a biharmonic equation (see, for example [16]).
Although the stress tensor is uniquely determined by this transformation,
the boundary conditions seem to be inequivalent. Recently, Chudinovich and
Constanda [4] in 1999 investigated plate problems for both an infinite and
a finite plates with a finite crack and proved a unique solvability in Sobolev
spaces. Krutitskĭı [26]–[28] studied the Dirichlet and Neumann problems for
Laplace and Helmholtz equations in a connected plane region with cuts. The
problems were reduced to Fredholm integral equations of second and first
kind, which were uniquely solvable with the help of a nonclassical angular
potential.

Propagation of cracks is a phenomenon which leads to the brittle failure of
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materials. Analysis of the crack growth has been a major subject of fracture
mechanics since Griffith’s celebrated work [19] in 1920. Griffith wanted to
know the difference between theoretical and practical strength of the glass.
In the consideration of a brittle elastic body containing a crack, Griffith rec-
ognized that the macroscopic potential energy of the system, consisting of
the internal stored elastic energy and the external potential energy of the
applied loads, varied with the size of the crack. This expression is mistaken
in equation (8) of [19]. To clarify this Sih [39] gave the correct version of
Griffith’s energy treatment. And Griffith supposed that a certain amount of
work per unit area of crack surface must be expended at a microscopic level
to create that area. In this context, the term ”microscopic” implies that this
work is not included in a continuum description of the process. He simply
included this work as an additional potential energy of the system. Then,
using the equilibrium principle of minimum potential energy for conservative
systems, he considered the system to be in equilibrium when in an infinite
plate with a particular crack length the uniform stress is loaded normal to
the crack plate at the infinity. As a result, he postulated that the crack is at
a critical state of incipient growth if the reduction in macroscopic potential
energy associated with a small virtual crack advance from that state is equal
to the microscopic work of creation of new crack surface by the virtual crack
advance. A particular attraction of Griffith’s energy fracture condition is
that it obviates the need to examine the actual fracture process at the crack
tip.

The formulation of fracture mechanics began with Irwin [20], [21] and his
associates around 1950’s. The impetus for the development of this discipline
originally came from the increasing demand for more reliable safety crite-
ria in engineering design. And the continuum field approach to fracture of
solids was launched with the introduction of the elastic stress intensity factor
as a crack tip field characterizing parameter by Irwin (1957)[20]. This idea
provided a framework in discussing the strength of cracked solids of elastic
material. He proposed that a crack begins to grow in a cracked body with
limited plastic deformation when the elastic stress intensity factor reaches
at a value called the fracture toughness of the material. The equivalence of
the Irwin’s stress intensity factor criterion and the Griffith’s energy criterion
for onset of growth of a tensile crack in a two-dimensional body of elastic
material under plane stress conditions was demonstrated in [20], [21]. Irwin
also introduced the energy release rate which means a rate of the energy, per
unit length along the crack edge, that is supplied by the elastic energy in
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the body and by the loading system in creating the new fracture surface. He
showed that the energy release rate is described by the elastic stress intensity
factor.

Another idea that has been important in the evolution of fracture me-
chanics concerns the size scale over which different phenomena dominate.
The idea is implicit in Irwin’s stress intensity factor concept and it is a cen-
tral feature of the crack tip cohesive zone model introduced by Barenblatt
(1959)([1], [2], [3]). He considered a planar crack in a body subjected to ten-
sile loading normal to the plane of the crack and supposed that the material
response is linearly elastic, except for a region near the crack edge where
the response departs from linearity. The source of nonlinearity can be plas-
tic deformation, diffuse microcracking, nonlinear interatomic forces, or some
other physical mechanism. The crack tip region is said to be autonomous at
fracture initiation or during crack growth if the following two conditions are
met:

1. the extent of the region of nonlinearity from the crack edge is very
small compared to all other length dimensions of the body and loading
system,

2. the mechanical state within this end region at incipient growth or dur-
ing growth is independent of loading and geometrical configuration.

For the particular case of an elastic-plastic material, the property of auton-
omy implies that the crack tip plastic zone is completely surrounded by an
elastic stress intensity factor field and that the state within the plastic zone
is determined by the level of stress intensity of the surrounding field. This
situation was termed small-scale yielding by Rice (1968)[38]. In this situa-
tion the stress intensity factor is a useful fracture characterizing parameter.
Rice has made out standing contributions to virtually all fields in crack and
fracture mechanics including the introduction of the J-integral concept for
crack analysis [38], which laid the foundation of the nonlinear fracture me-
chanics and three-dimensional dynamic crack propagation. His impact on the
whole field has been singular and enormous. Moreover, he [38] dealt with
the application of linear elasticity to fracture and discussed dynamic running
crack problems, the energy rate computations and the stress concentrations
at smooth-ended notches.

In the dynamic field, the significant and pioneering contributions by Freund
(see, [15]) deserve particular mention. Among his numerous contributions

5



may be mentioned a series of four papers (1970’s)([11], [12], [13], [14]) on
crack propagation with nonconstant velocity and other dynamic problems,
such as stress wave interaction with cracks. Friedman and Liu (1996)[16]
described the energy release rate at the crack tip following [38] and [15].
Friedman, Hu and Velazquez (1998)[17] analyzed an asymptotic solution of
fields near the moving crack tip. The coefficients of leading terms in this so-
lution coincide with stress intensity factors. When a crack propagates in an
elastic medium, the stress intensity factors evolve with the crack tip. Then,
they (2000)[18] derived formulae which describe the evolution of these stress
intensity factors for a homogeneous isotropic medium under plane strain
conditions. At present, it is well known that there are some criteria which
determine the crack extension. Ohtsuka [36] introduced the three famous cri-
teria in homogeneous isotropic elastic plates and showed the crack extension
is described by the stress intensity factor.

Various boundary value problems in smooth domains have already been
investigated by many authors until now. However, in order to study more
real physical phenomena it is necessary to treat such problems in less smooth
domains, whose boundaries have corners or cuts or cracks. Constanda [4],
[5] investigated Reissner-Mindlin-type model of bending of plates, which is
an improvement of Kirchhoff’s classical model in the sense of taking into
account the effects of transverse shear deformation. Chudinovich and Con-
standa (2000)[5] studied the initial-boundary value problems for plates with
transverse shear deformation in interior and exterior smooth domains with-
out any cracks under Dirichlet and Neumann boundary conditions. And they
proved the existence of a unique weak solution in Sobolev-type spaces. Be-
fore this they (1999)[4] investigated the existence and uniqueness of a weak
solution represented by single and double layer potentials with distributional
densities in the cases of both an infinite and a finite plate with a crack and its
continuous dependence on the data. And Popelar and Atkinson (1980)[37]
treated the dynamic propagation of a semi-infinite crack in an infinite linear
viscoelastic strip subjected to mode 1 loading.

On the other hand, Kawashima and Shibata studied the initial-boundary
value problem for nonlinear hyperbolic system of second order with third
order viscosity. They showed in [24] the global existence of smooth solutions
to the above problem for small and smooth initial data in a bounded domain,
without any cracks, of n-dimensional Euclidean space with a smooth bound-
ary. Nonlinear viscoelasticity was treated as an application of it.

In this thesis, as the first step to understand fracture phenomena that are
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supposed to occur in the case of earthquakes from the mathematical view-
point, we deal with boundary value problems and crack propagation in elastic
or viscoelastic media with cracks. This thesis is organized as follows.

In Chapter 2, we study a problem in a two-dimensional infinite elastic
strip with a semi-infinite crack. On the boundaries of the strip asymmetric
conditions are imposed for the purpose of determining the direction of crack
propagation as the next problem. This problem leads to a singular integral
equation by the potential theory. By proving the compactness of singular
integral operator and using the results in [25], [33], [40], the existence of a
unique solution is shown by the Fredholm alternative.

In Chapter 3, following Griffith’s theory we apply the maximum energy
release rate criterion of three famous criteria in [36], (see for example [41]).
For virtual crack extension, by using the results of [35], [36], an energy release
rate due to non-smooth crack growth can be represented by calculating the
potential energy function. And in our situation we show that the direction of
kinked crack extension can be determined only by the surface force without
using the stress intensity factor.

In Chapter 4, we study an initial-boundary value problem in an infinite
linear viscoelastic strip with a semi-infinite fixed crack. Taking into account
an effect of dissipative forces, we consider a linear viscoelastic model con-
structed in [30] in a two-dimensional strip with a semi-infinite fixed crack,
similar to the situation in [22], and define a weak solution of this problem.
We prove the existence of a unique weak solution to the Laplace transformed
problem by virtue of the Riesz theorem. Then by the Parseval’s equality
and the method in [5] we show that the solution of the transformed problem
is a unique solution of the original viscoelastic problem and the latter solu-
tion belongs to the inverse Laplace transformed space corresponding to the
Sobolev-type space in [5].
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Chapter 2

A boundary value problem for
an infinite elastic strip with a
semi-infinite crack

In Chapter 2, we study a boundary value problem for an infinite elastic strip
with a semi-infinite crack. By using the single and double layer potentials
this problem is reduced to a singular integral equation, which is uniquely
solved in the Hölder spaces by the Fredholm alternative.

2.1 Preliminaries

By u = (ui)i=1,2,3, ε = (εij)i,j=1,2,3 and σ = (σij)i,j=1,2,3 we denote the
displacement vector, the strain tensor and the stress tensor, respectively.
The linear elasticity equations for a homogeneous isotropic material consist
of the constitutive law (Hooke’s law)

σij = 2µεij + λεkkδij, i, j = 1, 2, 3 (2.1)

and the equilibrium conditions without any body forces

∂

∂xj
σij = 0, i, j = 1, 2, 3. (2.2)

Here and in what follows we use the summation convention. λ and µ are
Lamé constants, δij is the Kronecker’s delta and the strain-displacement
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relation is given by

εij =
1

2
(ui,j + uj,i) , ui,j = ∂jui, i, j = 1, 2, 3. (2.3)

In the state of a plane strain, the 3rd component u3 of the displacement u is
zero, while the components u1 and u2 are functions of x1 and x2 only, hence
εi3 = 0, σ13 = σ23 = 0. Let Ω = {(x1, x2) | x1 ∈ R,−a < x2 < a} (a > 0)
be a strip in R2, representing a homogeneous elastic plate. Then (2.2) gives
the system of equations

A (∂x)u = 0 (2.4)

for u = (u1, u2)T, where A(∂x) = A
(

∂
∂x1
, ∂
∂x2

)
,

A(ξ1, ξ2) =

(
µξ2 + (λ+ µ)ξ2

1 (λ+ µ)ξ1ξ2

(λ+ µ)ξ1ξ2 µξ2 + (λ+ µ)ξ2
2

)
, ξ2 = ξ2

1 + ξ2
2 .

We assume that shearing strain µ > 0, modulus of compression 3λ+ 2µ ≥ 0,
in which case it is easy to see that the operator A is elliptic. Moreover we

introduce the boundary stress operator T (∂x) = T
(

∂
∂x1
, ∂
∂x2

)
defined by

T (ξ1, ξ2) =

(
(λ+ 2µ)ν1ξ1 + µν2ξ2 µν2ξ1 + λν1ξ2

λν2ξ1 + µν1ξ2 µν1ξ1 + (λ+ 2µ)ν2ξ2

)
,

where ν = (ν1, ν2)T is the unit outward normal to ∂Ω. In the case of ν =
(0, 1)T

T (ξ1, ξ2) =

(
µξ2 µξ1

λξ1 (λ+ 2µ)ξ2

)
.

We denote by Γ = {(x1, 0) | −∞ < x1 ≤ 0} the crack in Ω. On the crack
we assume the free traction condition

σ+
ijνj = σ−ijνj = 0 on Γ±, (2.5)

where Γ± means both sides of Γ. Here for every x ∈ Γ σ±ij = σ±ij(x) means
the limit of (νx, σij(x̄)) as x̄ ∈ Ω \ Γ tends to x ∈ Γ along the normal νx,
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in this case νx = (0,∓1). The limit values σ+
ij and σ−ij may be different in

general, therefore σij may have a jump on Γ. At the end-point (0, 0) of Γ we
assume

lim
x1→−0

σ±ijνj
∣∣
x∈Γ±\{(0,0)} = 0.

On ∂Ω+ = {(x1, a) | x1 ∈ R}, ∂Ω− = {(x1,−a) | x1 ∈ R} (a > 0) the
boundary conditions

u = 0 on ∂Ω−, (2.6)

σijνj = pi on ∂Ω+ (2.7)

are imposed, where pi are given continuous functions on ∂Ω+.
We introduce the class K of functions u(x) with the properties (cf. [28]):

1) u ∈ C0(Ω \ Γ) ∩ C2(Ω \ Γ),

2) ∇u ∈ C0(Ω \ Γ \ {(0, 0)}),

3) in the neighborhood of (0, 0) there exist positive constant C and ε > −1
such that

| ∇u(x) |≤ C | x |ε as x→ 0, (2.8)

4) for every x ∈ ∂Ω± there exists a uniform limit of (νx,∇x̄u(x̄)) as x̄ ∈ Ω\Γ
tends to x ∈ ∂Ω± along the normal −νx.

We define the internal energy density by

E(u, u) =
1

2
σijεij =

1

2

{
λ(u1,1 + u2,2)2 + 2µ(u2

1,1 + u2
2,2) + µ(u1,2 + u2,1)2

}
.

Then it is easy to see that E(u, u) is a nonnegative quadratic form and that
E(u, u) = 0 if and only if u is a rigid displacement

u = (c1 + c0x2, c2 − c0x1)T (2.9)

with arbitrary constants c0, c1 and c2. It is easily seen that

F1 = (1, 0)T, F2 = (0, 1)T, F3 = (x2,−x1)T

consist of a basis of the space of such rigid displacements. For the matrix

F =
(
F1, F2, F3

)
10



it is clear that AF = 0 in R2, TF = 0 on ∂Ω± ∪ Γ, and a generic vector of
the form (2.9) can be written as Fk with an arbitrary constant vector k.

Furthermore, we introduce the class ℘ = {u | u → 0 as | x |→ ∞}. One
can easily verify for u ∈ C2(Ω \ Γ) ∩ C1(Ω \ Γ) ∩ ℘∫

Ω\Γ
FTAu da =

∫
∂Ω±

FTTu ds+ 2

∫
Γ

FTTu ds.

Also, if u ∈ C2(Ω \ Γ) ∩ C1(Ω \ Γ) ∩ ℘ is a solution of (2.4) in Ω \ Γ, then

2

∫
Ω\Γ

E(u, u) da =

∫
∂Ω±

uTTu ds+ 2

∫
Γ

uTTu ds. (2.10)

Indeed, Divergence Theorem and (2.4) yield that for any u ∈ C2(Ω \ Γ) ∩
C1(Ω \ Γ) ∩ ℘

0 =

∫
Ω\Γ

uTAu da = −2

∫
Ω\Γ

E(u, u) da+

∫
∂Ω±

uTTu ds+ 2

∫
Γ

uTTu ds.

2.2 Integral equations on the boundary

It is well known that the fundamental matrix of A(∂x) is given by

D(x, y) = A∗(∂x)t(x, y),

where A∗ is the adjoint operator of A and t(x, y) is a fundamental solution
of µ(λ+ 2µ)∆2,

t(x, y) = −{8πµ(λ+ 2µ)}−1 | x− y |2 ln | x− y | .

Hence, D(x, y) is given explicitly by

D(x, y) = − 1

4πµ(µ̃+ 1)

(
D11 D12

D21 D22

)
, (2.11)
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D11 = 2µ̃ ln | x− y | +2µ̃− 1 + 2
(x2 − y2)2

| x− y |2
,

D12 = D21 = −2
(x1 − y1)(x2 − y2)

| x− y |2
,

D22 = 2µ̃ ln | x− y | +2µ̃− 1 + 2
(x1 − y1)2

| x− y |2
,

µ̃ =
λ+ 3µ

λ+ µ
.

In view of (2.11), D(x, y) = D(y, x) = D(y, x)T.
Along with D(x, y) we consider the matrix of singular solutions

P (x, y) = (T (∂y)D(y, x))T,

which is written explicitly as

P (x, y) = − 1

2π

(
∂

∂νy
ln | x− y | I +

µ̃− 1

µ̃+ 1

∂

∂τy
ln | x− y | Ĩ

(2.12)

+
2

µ̃+ 1
Ĩ
∂

∂τy

(x− y)T(x− y)

| x− y |2

)

with I =

(
1 0
0 1

)
, Ĩ =

(
0 1
−1 0

)
and τ = (τ1, τ2)T a unit tangential

vector to ∂Ω± ∪ Γ.

It is easily verified that the columns of D(x, y) and P (x, y) are solutions
of equation (2.4) for any x ∈ R2, y ∈ ∂Ω± ∪ Γ, x 6= y, and that

D(x, y) = O(ln | x |), P (x, y) = O(| x |−1) as | x |→ ∞. (2.13)

Now we denote by D̃ and P̃ the reflection of D(x, y) and P (x, y) with
respect to ∂Ω− = {(x1,−a) | x1 ∈ R}

D̃ (x, y) = D

((
x1

x2

)
,

(
y1

y2

))
−D

((
x1

−2a− x2

)
,

(
y1

y2

))
, (2.14)

P̃ (x, y) = P

((
x1

x2

)
,

(
y1

y2

))
− P

((
x1

−2a− x2

)
,

(
y1

y2

))
. (2.15)
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Then it is obvious that the columns of D̃(x, y) and P̃ (x, y) vanish on ∂Ω−.
Using a potential theory, we will find a solution of problem (2.4)–(2.7) in

the form

u(x1, x2) = Ṽ∂Ω+(g) + ṼΓ(f) + W̃Γ(g), (2.16)

where

Ṽ∂Ω+(g) =

∫
∂Ω+

D̃(x, y)g(y) dy1,

ṼΓ(f) =

∫
Γ

D̃(x, y)f(y) dy1,

W̃Γ(g) =

∫
Γ

P̃ (x, y)g(y) dy1.

Now let us introduce function spaces. By C0,α(G) we denote a Hölder
space with exponent α ∈ (0, 1) of functions defined on a domain G and by
C1,β(G) the subspace of functions of C1-class whose first order derivatives
belong to C0,β(G), β ∈ (0, 1). If (f, g) ∈ C0,α(Γ) × (C0,α(∂Ω+) × C1,β(Γ)),
then it is easily seen that u defined by (2.16) is continuous on ∂Ω+ ∪Γ± and
satisfies (2.4) and (2.6). In order to see that u satisfies boundary conditions
(2.5) and (2.7) we substitute (2.16) into (2.5) and (2.7) so that we deduce
the integral equations for g (cf. [7], [40]). From (2.7) it follows

1

2
g

(
x1

a

)
+ v.p.

∫
∂Ω+

TD̃

((
x1

a

)
,

(
y1

a

))
g

(
y1

a

)
dy1

+

∫
Γ

TD̃

((
x1

a

)
,

(
y1

0

))
f

(
y1

0

)
dy1

+

∫
Γ

T P̃

((
x1

a

)
,

(
y1

0

))
g

(
y1

0

)
dy1 =

(
p1

p2

)
, (2.17)

where the integral on ∂Ω+ means a principal value. Let

Q(x, y) = − 2µ

π(µ̃+ 1)

(
ln | x− y | I − I +

(x− y)T(x− y)

| x− y |2

)
,

Q̃(x, y) = Q

((
x1

x2

)
,

(
y1

y2

))
−Q

((
x1

−2a− x2

)
,

(
y1

y2

))
.
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Then

T P̃ = − ∂2

∂τx∂τy
Q̃.

Substituting (2.16) with P̃ replaced by Q̃ into (2.5) yields

±1

2
f

(
x1

0

)
+

∫
∂Ω+

TD̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1

+v.p.

∫
Γ±
TD̃

((
x1

0

)
,

(
y1

0

))
f

(
y1

0

)
dy1

− ∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
g

(
y1

0

)∣∣∣∣0
y1=−∞

+v.p.

∫
Γ±

∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1

g

(
y1

0

)
dy1

=

(
0
0

)
, (2.18)

where the integrals on Γ are taken as principal values. The upper and lower
signs correspond to the integrals on Γ+ and Γ−, respectively. One can easily
check that the solution u of the form (2.16) satisfies condition (2.8) (cf. [27]).
Subtracting two equations in (2.18) implies

f

(
x1

0

)
=

(
0
0

)
on Γ. (2.19)

Therefore the integral equation (2.17) on ∂Ω+ becomes(
Z +

1

2
I

)
g = p on ∂Ω+ (2.20)
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with Z = T (Ṽ∂Ω+ + W̃Γ). And adding two equations in (2.18), we obtain∫
∂Ω+

TD̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1

− ∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
g

(
y1

0

)∣∣∣∣0
y1=−∞

+v.p.

∫
Γ±

∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1

g

(
y1

0

)
dy1

=

(
0
0

)
, (2.21)

hence

v.p.

∫
Γ

∂

∂y1

g

(
y1

0

)
1

x1 − y1

dy1

+v.p.

∫
Γ

{
∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
− 1

x1 − y1

}
∂

∂y1

g

(
y1

0

)
dy1

= −
∫
∂Ω+

TD̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1

+
∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
g

(
y1

0

)∣∣∣∣0
y1=−∞

. (2.22)

Now we introduce the new space C0,α
γ (G) defined by

C0,α
γ (G) = {f(x) ∈ C0,α(G) | f(x) = O(| x |−γ) as | x |→ ∞} (1 < γ)

equipped with the norm

‖ g ‖γ,α=‖ g ‖γ,∞ + | g |α, (2.23)

‖ g ‖γ,∞= sup
x∈G
| (1+ | x |γ)g(x) |, | g |α= sup

x,x̃∈G,x 6=x̃

| g(x)− g(x̃) |
| x− x̃ |α

.
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Let g ∈ C0,β
γ (Γ) and vanish at the end of crack. Inverting the singular integral

operator (2.22), we arrive at the integral equation of the second kind (cf.[33])

(I − Y1)
∂

∂x1

g(x) =
1

π2R(x)

∫ 0

−R

R(y) dy1

y − x

∫
∂Ω+

TD̃(y, z)g(z) dz1,

as R→∞, x ∈ Γ, (2.24)

where the integral on Γ is in the sense of principal value and

Y1(f(x)) =
1

π2R(x)

∫ 0

−R

R(y) dy1

y − x

∫
Γ

(
∂

∂τz
Q̃(z, y)− 1

z − y

)
f(z) dz1,

R(x) =
√

(x+R)x.

2.3 Uniqueness and existence of solution

In this section we prove that problem (2.4)–(2.7) has a unique solution.

THEOREM 1. Problem (2.4)–(2.7) has at most one solution of class K∩℘.

Proof. Let û be the difference of two solutions of class K ∩ ℘ to problem
(2.4)–(2.7). Then, û satisfies (2.4)–(2.7) with p = 0. Therefore, (2.10) implies

E(û, û) = 0 in Ω \ Γ.

Hence, û is of the form (2.9) in Ω \ Γ. Since û ∈ ℘, we conclude that
û(x) = 0, x ∈ Ω \ Γ.

From (2.11), (2.12), (2.14), (2.15) and straightforward calculation
one can easily obtain the following lemma. Similar result is proved in [8] in
the case of a compact boundary.

LEMMA 1. If f ∈ C0,α
γ (∂Ω± ∪ Γ), then

(i) W̃f ∈ ℘,

(ii) Ṽ f ∈ ℘.
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Next we will prove the existence of the solution. As shown in the previous
section, problem (2.4)–(2.7) is reduced to integral equation (2.20) for g on
∂Ω+. Since the kernels of Z are 1− singular kernels on ∂Ω+ defined below,
it is not so easy to solve it.
Here upon, following [7], we call a matrix function k(x, y) defined for all
x ∈ ∂Ω+ and y ∈ ∂Ω+, x 6= y, and continuous there an ω − singular kernel
on ∂Ω+, ω ∈ [0, 1] if there exists a positive constant m such that

| k(x, y) |≤ m | x− y |−ω for all x, y ∈ ∂Ω+, x 6= y.

If an ω − singular kernel k(x, y) on ∂Ω+ satisfies

| k(x, y)− k(x̃, y) |≤ m | x− x̃ || x− y |−ω−1

for all x, x̃ ∈ ∂Ω+ and y ∈ ∂Ω+, 0 <| x − x̃ |< 1
2
| x − y |, then k(x, y) is

called a proper ω − singular kernel on ∂Ω+.

THEOREM 2. If k(x, y) is a proper ω−singular kernel on ∂Ω+, ω ∈ [0, 1),
k(x, y) = k(y, x) and k(x, y) = O(| x |−1) as | x |→ ∞ for any y ∈ ∂Ω+,
then operator K defined on C0,α

γ by

(Kg)(x) =

∫
∂Ω+

k(x, y)g(y) dy, x ∈ ∂Ω+

is compact.

Proof. This theorem was proved in [7] in the case of a compact domain.
In the case where ∂Ω+ is unbounded, however, the compactness of K is not
a direct consequence of that in the compact domain. We prove here that K
as a mapping from C0,α

γ (∂Ω+) to C0,α
γ̃ (∂Ω+), γ > γ̃ > 1, with α = 1− ω for

ω ∈ (0, 1) and any α ∈ (0, 1) for ω = 0 is compact.
Let M1 be a bounded set in C0,α

γ (∂Ω+), that is, there exists a positive
constant c such that

‖ g ‖γ,α≤ c for all g ∈M1, (2.25)

and let {θn}∞n=1 ⊂ M2 = K(M1). Then there exists a sequence {gn}∞n=1 in
M1 such that θn = Kgn, n = 1, 2, 3, ... It is obvious that θn ∈ C0,α(∂Ω+).
(2.23), (2.25) imply that {gn}∞n=1 is uniformly bounded and equicontinuous
on C(∂Ω+). Thus by applying Ascoli − Arzelà’s theorem there exists a
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uniformly convergent subsequence of {gn}∞n=1, which is denoted by {gn}∞n=1

for simplicity, and a g ∈ C(∂Ω+) such that

‖ gn − g ‖γ,∞→ 0 as n→∞. (2.26)

Let θ = Kg. Then, θ ∈ C0,α
γ̃ (∂Ω+) for some constant γ̃, 1 < γ̃ < γ. Really,

we have

| θn(x)− θ(x) |≤
∫
∂Ω+

| k(x, y) || gn(y)− g(y) | dy1

≤ c1
1

| x |γ̃
sup
y∈∂Ω+

| gn(y)− g(y) |
| 1− y

x
|γ̃| x− y |−γ

∫
∂Ω+

| k(x, y) |
| x− y |γ−γ̃

dy1,

consequently,

| θn − θ | (x) ≤ c2 | x |−γ̃‖ gn − g ‖γ−γ̃,∞, n = 1, 2, 3, ... (2.27)

with some positive constants c1, c2. Since k(x, y) is a proper ω − singular
kernel,

| K(gn − g)(x)−K(gn − g)(x̃) |

=

∣∣∣∣∫
∂Ω+

[k(x, y)− k(x̃, y)](gn − g)(y) dy1

∣∣∣∣
≤ c3 | x− x̃ |α sup

y∈∂Ω+

| (1+ | y |γ)(gn − g)(y) | .

Hence,

| θn − θ |α≤ c3 ‖ gn − g ‖γ,∞, n = 1, 2, 3, ... (2.28)

The assertion now follows from the fact that the constants c1, c2, c3 are inde-
pendent of x and x̃. (2.27), (2.28), (2.23) and (2.26) yield

‖ θn − θ ‖γ̃,α→ 0 as n→∞,

which proves that K : C0,α
γ (∂Ω+)→ C0,α

γ̃ (∂Ω+) is compact.

THEOREM 3. Problem (2.4)–(2.7) has a unique solution u ∈ K ∩ ℘ for
any p ∈ C0,α

γ (∂Ω+) with any α ∈ (0, 1) and any γ > 1.
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Proof. In (2.20) Z is represented as Zg = Z1g + Z2g, where

Z1g = v.p.

∫
∂Ω+

1

x1 − y1

g

(
y1

a

)
dy1,

(2.29)

Z2g = (Z − Z1)g.

Then Z1 has a 1-singular kernel and Z2 is a non-singular operator. Applying
the operator (Z1 − 1

2
I) to both sides of (2.20) yields(

(Z1)2 + Z1Z2 −
1

2
Z2 −

1

4
I

)
g =

(
Z1 −

1

2
I

)
p. (2.30)

Here we claim that

((Z1)2g)(x)

=

∫
∂Ω+

1

x− y

[∫
∂Ω+

g(z)

y − z
dz1

]
dy1

= −π2g(x) +

∫
∂Ω+

[∫
∂Ω+

g(z)

(x− y)(y − z)
dy1

]
dz1. (2.31)

LEMMA 2. If g ∈ C0,α
γ (∂Ω+), then (2.31) holds.

Proof. In the case of a compact boundary (2.31) is well-known as a
Poincaré-Bertrand formula ([33], §23). For convenience we consider the func-
tions of a real variable x = (x1, x2) as the functions of a complex variable
x = x1 + ix2. Let x = x1 + ix2, y = y1 + iy2 and z = z1 + iz2. In the present
case where ∂Ω+ is unbounded first we prove the formula∫

∂Ω+

1

x− y

[∫
∂Ω+

φ(y, z)

y − z
dz1

]
dy1

= −π2φ(x, x) +

∫
∂Ω+

[∫
∂Ω+

φ(y, z)

(x− y)(y − z)
dy1

]
dz1

for φ ∈ C0,α
γ (∂Ω+ × ∂Ω+). Let

Φ(t) =

∫
∂Ω+

1

t− y

[∫
∂Ω+

φ(y, z)

y − z
dz1

]
dy1,

Ψ(t) =

∫
∂Ω+

[∫
∂Ω+

φ(y, z)

(t− y)(y − z)
dy1

]
dz1,
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where t = t1 + it2 is a point on the plane, not on ∂Ω+. Then,

Φ(t) = Ψ(t) (2.32)

holds. Indeed, it is sufficient to prove

I1 =

∫ ∞
−∞

1

t− y

[∫ y1+ε

y1−ε

φ(y, z)

y − z
dz1

]
dy1 → 0,

I2 =

∫ ∞
−∞

[∫ z1+ε

z1−ε

φ(y, z)

(t− y)(y − z)
dy1

]
dz1 → 0

as ε → 0+.

For I1, we divide the integral over (−∞,∞) three∫ ∞
−∞

=

∫ ∞
R

+

∫ −R
−∞

+

∫ R

−R
.

The above assertion for the third integral was proved in [33], so that it is
sufficient to consider them for the first and second integrals. Since φ(y, z) ∈
C0,α
γ (∂Ω+ × ∂Ω+), the first integral can be estimated as follows when R is

sufficiently large.∣∣∣∣∫ ∞
R

1

t− y

[∫ y1+ε

y1−ε

φ(y, z)

y − z
dz1

]
dy1

∣∣∣∣
=

∣∣∣∣∫ ∞
R

1

t− y

[∫ y1+ε

y1−ε

(
φ(y, z)− φ(y, y)

y − z
+
φ(y, y)

y − z

)
dz1

]
dy1

∣∣∣∣
≤

∣∣∣∣∫ ∞
R

1

t− y

[∫ y1+ε

y1−ε

(
C(| φ(y, z) | + | φ(y, y) |)α̃

| y − z |1−(1−α̃)α
+
φ(y, y)

y − z

)
dz1

]
dy1

∣∣∣∣
≤ ε(1−α̃)α sup

R−ε<y1<∞
|| y1 | φ(y, y)|α̃

→ 0 as ε → 0+,

where C is a constant and 1 > α > α̃ > 0. In the same way the second
integral tends to 0 as ε → 0+. Similarly one can show that I2 → 0 as
ε→ 0+.
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We denote by Φ+(x) and Φ−(x) the limits of Φ(t) as t→ x from the upper and
from the lower of ∂Ω+, respectively. By the Plemelj’s formula, the relation

Φ+(x) + Φ−(x) = 2

∫
∂Ω+

1

x− y

[∫
∂Ω+

φ(y, z)

y − z
dz1

]
dy1 (2.33)

holds. Furthermore, Ψ(t) is represented as

Ψ(t) =

∫
∂Ω+

ψ(z; t)

z − t
dz1, (2.34)

ψ(z; t) =

∫
∂Ω+

(
1

y − t
− 1

y − z

)
φ(y, z) dy1.

Denoting by ψ+(z; x) and ψ−(z;x) the limits of ψ(z; t) as t→ x from the up-
per and from the lower of ∂Ω+, respectively. Again by the Plemelj’s formula
we obtain

ψ+(z; x)− ψ−(z;x) = 2πiφ(x, z), (2.35)

ψ+(z; x) + ψ−(z;x) = 2

∫
∂Ω+

(
1

y − x
− 1

y − z

)
φ(y, z) dy1

= 2(z − x)

∫
∂Ω+

φ(y, z)

(x− y)(y − z)
dy1.

Put

ψ(z; t) = ψ+(z; x) + ε+ (if t is in the upper of ∂Ω+),

(2.36)

ψ(z; t) = ψ−(z; x) + ε− (if t is in the lower of ∂Ω+).

Then it is obvious that ε+ → 0, ε− → 0 as t→ x. Moreover, one can prove∫
∂Ω+

ε+

z − t
dz1 → 0,

∫
∂Ω+

ε−

z − t
dz1 → 0 (2.37)

as t→ x along ±νx. In fact,

| ε+ |=| ψ(z; t)− ψ+(z;x) |≤ Cδα(1−α̃) | ψ(z; t)− ψ+(z; x) |α̃,
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where C is a constant, δ =| t−x |, and α, α̃ are the same as above. Therefore∣∣∣∣∫
∂Ω+

ε+

z − t
dz1

∣∣∣∣ ≤ Cδα(1−α̃)

∫
∂Ω+

| ψ(z; t)− ψ+(z;x) |α̃

| z − t |
dz1 → 0

as δ → 0.

The case of ε− can be treated in exactly the same manner. Replacing ψ(z; t)
in (2.34) by expression (2.36) and using (2.37), we obtain

Ψ+(x) = πiψ+(x;x) +

∫
∂Ω+

ψ+(z; x)

z − x
dz1,

Ψ−(x) = −πiψ−(x; x) +

∫
∂Ω+

ψ−(z;x)

z − x
dz1,

hence by (2.35)

Ψ+(x) + Ψ−(x)

= −2π2φ(x, x) + 2

∫
∂Ω+

[∫
∂Ω+

φ(y, z)

(x− y)(y − z)
dy1

]
dz1. (2.38)

Since from (2.32) the left sides of (2.33) and (2.38) are equal, the formula is
proved. Hence, for any g ∈ C0,α

γ (∂Ω+) and x ∈ ∂Ω+ (2.31) holds.

Now we return to the proof of THEOREM 3. Using Cauchy’s integral
theorem to the integral in the right-hand side of (2.31) yields

((Z1)2g)(x) = −π2g(x)

+

∫
∂Ω+

[
1

x− z

(∫
∂Ω+

dy1

x− y
−
∫
∂Ω+

dy1

z − y

)
g(z)

]
dz1

= −π2g(x).

Hence, equation (2.30) can be written as(
Z1Z2 −

1

2
Z2 − (

1

4
+ π2)I

)
g =

(
Z1 −

1

2
I

)
p. (2.39)

It is easily seen that Z2g satisfies the Lipschitz condition if g ∈ C0,α
γ (∂Ω+)

and the right-hand side of (2.39) also belongs to C0,α
γ̃ (∂Ω+) if p ∈ C0,α

γ (∂Ω+).
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Since Z1Z2 and Z2 have proper 0− singular kernels, by THEOREM 2, we
can apply Fredholm’s theorem to problem (2.39) in the dual system

〈
⋃
γ<γ0

C0,α
γ (∂Ω+),

⋃
γ̃<γ<γ0

C0,α
γ̃ (∂Ω+)〉

with a fixed γ0 > 1 (cf. [9]).
We can apply the same argument to (2.24). The operator Y1 can be de-

composed into

Y1 = Y11 + Y10,

where Y11 has a 1-singular kernel and Y10 is a non-singular operator. Simi-
larly, if ∂

∂x1
g ∈ C0,β

γ (Γ), then we can apply Fredholm’s theorem in the dual
system

〈
⋃
γ<γ0

C0,β
γ (Γ),

⋃
γ̃<γ<γ0

C0,β
γ̃ (Γ)〉.

It is not difficult to prove that u defined by (2.16) with g given above is a
desired solution to problem (2.4)–(2.7).

Moreover, we require stronger regularity of g.

THEOREM 4. If p ∈ C1,α
γ (∂Ω+), then g ∈ C1,α

γ (∂Ω+)×C2,β
γ (Γ) whose first

order derivative vanishes at the crack tip.

This THEOREM 4 can be proved in a similar way as in the proof of
THEOREM 2.
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Chapter 3

Propagation of cracks in an
infinite elastic strip with a
semi-infinite crack

In Chapter 3, we study a quasi-stationary model of crack propagation in
an infinite elastic strip with a semi-infinite crack and how to determine the
real crack propagation from virtual crack extension by applying maximum
energy release rate criterion at the crack tip. Then we prove that the crack
propagates the direction only given by a surface force.

3.1 The model of crack propagation

In this section we consider a quasi-stationary model of crack propagation.
To obtain an explicit formula we adopt the energy criterion given by Griffith
[19]. According to his theory, when a crack is extended, there is a flow of
energy from the stress field in the body to the crack tip. This energy is stored
on both faces of the newly enlarged crack. In the case of linear elasticity,
we call the released potential energy G as the crack increases a unit area the
energy release rate. Following [36], we represent G in the form

G = − lim
ε→0

Π(uε)− Π(u)

ε
, (3.1)
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where Π is the potential energy functional defined by

Π(u) =

∫
Ω\Γ

E(u, u) dx−
∫
∂Ω±

s · u dx1 (3.2)

and s = (si) = (σijνj) = Tu.
Now let us consider the virtual kinked crack extension

Γε = {xε | xε = x0 + εX, x0 ∈ Γ} (3.3)

with X = (cos θ0, sin θ0) and ε > 0. This means that the virtual crack
extension Γε shifts with an angle θ0 from Γ. Then we deduce the boundary
value problem with respect to the displacement uε

(∗)



Auε = 0 in Ω \ Γε,

Tuε = 0 on Γ±ε ,

uε = 0 on ∂Ω−,

Tuε = p on ∂Ω+,

where Γ±ε mean both sides of Γε. We seek a solution uε of problem (∗) in the
form

uε = u+ εû, (3.4)

where u is a solution of problem (2.4)–(2.7). Differentiation of Tuε on Γ±ε
with respect to ε yields

0 = T

(
∂uε
∂ε

+
∂uε
∂x1

∂

∂ε
ε cos θ0 +

∂uε
∂x2

∂

∂ε
ε sin θ0

)∣∣∣∣
Γ±ε

.

Letting ε→ 0, we get

T

(
û+

∂u

∂x1

cos θ0 +
∂u

∂x2

sin θ0

)∣∣∣∣
Γ±

= 0.

In view of (2.4)–(2.7), (3.4) and (∗) we obtain the boundary value problem
of û :

(∗∗)



Aû = 0 in Ω \ Γ,

T û = −T
(
∂u
∂x1

cos θ0 + ∂u
∂x2

sin θ0

)
on Γ±,

û = 0 on ∂Ω−,

T û = 0 on ∂Ω+.
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Similarly for u we can apply the potential theory to problem (∗∗), so that
the solution of (∗∗) is described in the form

û(x1, x2) = Ṽ∂Ω+(h1) + ṼΓ(h2) + W̃Γ(h1), (3.5)

where (h2, h1) ∈ C0,α
γ (Γ) × (C0,α

γ (∂Ω+) × C1,β
γ (Γ)), γ > 1, have the similar

properties as (f, g). In order for û in (3.5) to satisfy the boundary condition
in (∗∗) we substitute (3.5) into (∗∗) and derive the integral equations on ∂Ω+

and Γ.
It is easily obtained

1

2
h1

(
x1

a

)
+ v.p.

∫
∂Ω+

TD̃

((
x1

a

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+

∫
Γ

TD̃

((
x1

a

)
,

(
y1

0

))
h2

(
y1

0

)
dy1

+

∫
Γ

T P̃

((
x1

a

)
,

(
y1

0

))
h1

(
y1

0

)
dy1 =

(
0
0

)
on ∂Ω+. (3.6)

It yields

±1

2
h2

(
x1

0

)
+

∫
∂Ω+

TD̃

((
x1

0

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+v.p.

∫
Γ±
TD̃

((
x1

0

)
,

(
y1

0

))
h2

(
y1

0

)
dy1

− ∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
h1

(
y1

0

)∣∣∣∣0
y1=−∞

+v.p.

∫
Γ±

∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1

h1

(
y1

0

)
dy1

= −T
(
∂u

∂x1

cos θ0 +
∂u

∂x2

sin θ0

)
on Γ±, (3.7)
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since h1 vanishes at the crack tip. Note that

∂2

∂x2∂τx
ln | x− y | =

∂2

∂x1∂νx
ln | x− y |,

(3.8)

∂2

∂x2∂νx
ln | x− y | = − ∂2

∂x1∂τx
ln | x− y | .

Then using integration by parts and THEOREM 4, we can rewrite (3.7) to

±1

2
h2

(
x1

0

)
+

∫
∂Ω+

TD̃

((
x1

0

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+v.p.

∫
Γ±
TD̃

((
x1

0

)
,

(
y1

0

))
h2

(
y1

0

)
dy1

+v.p.

∫
Γ±

∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1

h1

(
y1

0

)
dy1

= −
{(∫

∂Ω+

∂

∂x1

TD̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1

+v.p.

∫
Γ±

∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g

(
y1

0

)
dy1

)
cos θ0

+

(∫
∂Ω+

∂

∂x2

TD̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1 ±

1

2

∂2

∂x2
1

g(x)

+v.p.

∫
Γ±

∂

∂νx
Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g

(
y1

0

)
dy1

)
sin θ0

}
.

(3.9)

Subtracting and adding two equations in (3.9) yield

h2(x) = − ∂2

∂x2
1

g(x), (3.10)
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∫
∂Ω+

TD̃

((
x1

0

)
,

(
y1

a

))
h1

(
y1

a

)
dy1

+v.p.

∫
Γ

TD̃

((
x1

0

)
,

(
y1

0

))
h2

(
y1

0

)
dy1

+v.p.

∫
Γ

∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
∂

∂y1

h1

(
y1

0

)
dy1

= −
{(∫

∂Ω+

∂

∂x1

TD̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1

+v.p.

∫
Γ

∂

∂τx
Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g

(
y1

0

)
dy1

)
cos θ0

+

(∫
∂Ω+

∂

∂x2

TD̃

((
x1

0

)
,

(
y1

a

))
g

(
y1

a

)
dy1

+v.p.

∫
Γ

∂

∂νx
Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

g

(
y1

0

)
dy1

)
sin θ0

}
.

(3.11)

Substituting (3.10) into (3.11) leads to the similar formula as (2.24)

(I − Y1)
∂

∂x1

h1(x) =
1

π2R(x)

∫ 0

−R

R(y)

y − x

{
T Ṽ∂Ω+h1 − T ṼΓ

∂2

∂x2
1

g

+ cos θ0

(
∂

∂x1

T Ṽ∂Ω+g +
∂

∂τx
Y2g

)
+ sin θ0

(
∂

∂x2

T Ṽ∂Ω+g +
∂

∂νx
Y2g

)}
dy1

as R→∞, x ∈ Γ, (3.12)

where

Y2(f) = v.p.

∫
Γ

Q̃

((
x1

0

)
,

(
y1

0

))
∂2

∂y2
1

f

(
y1

0

)
dy1.

Applying THEOREMs 3 and 4 to problem (∗∗), we can get a unique solution
û.
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3.2 The direction of crack extension

In this section we calculate G defined by (3.1). Taking into account (2.10),
if u is a solution of problem (∗), then Π(u) vanishes except on ∂Ω+. Then
from (3.2), (3.4) Π(uε) is written by

Π(uε) = −1

2

∫
∂Ω+

pT · uε dx1 = Π(u) + εΠ(û). (3.13)

In order to determine the crack direction θ0 we apply maximum energy release
rate criterion in 2-dimensional plane (cf. Wu [41]). Thus by virtue of (3.1),
(3.13) we seek the angle θ0 such that

max
−π<θ0<π

G = max
−π<θ0<π

(−Π(û)). (3.14)

From (2.24) it implies that

∂

∂x1

g(x) = Y3(T Ṽ∂Ω+g) on Γ, (3.15)

where

Y3g = lim
R→∞

(
(1 + π2)I − Y11Y10 − Y10

)−1{
(I + Y11)

(
lim
R→∞

1

π2R(z)

∫ 0

−R

R(y)g

y − z
dy1

)}
.

Substituting (3.15) into (2.39) yields that

g(x) =

(
Z1Z2 −

1

2
Z2 − (

1

4
+ π2)I

)−1{(
Z1 −

1

2
I

)
p

}
on ∂Ω+. (3.16)

Similarly, h1 is described by g and θ0. Indeed, from (3.12) it follows that

∂

∂x1

h1(x) = Y3

(
T Ṽ∂Ω+h1 − T ṼΓ

∂2

∂x2
1

g

)
+ A1 cos θ0 +B1 sin θ0 on Γ, (3.17)

where A1, B1 are functions defined by

A1 = Y3

(
∂

∂x1

T Ṽ∂Ω+g +
∂

∂τx
Y2g

)
,

B1 = Y3

(
∂

∂x2

T Ṽ∂Ω+g +
∂

∂νx
Y2g

)
.
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Substituting (3.10), (3.17) into (3.6), we have

h1(x) = C + A2 cos θ0 +B2 sin θ0 on ∂Ω+, (3.18)

where

C =

(
Z1Z2 −

1

2
Z2 − (

1

4
+ π2)I

)−1

{(
Z1 −

1

2
I

)(
I +

∫
Γ

∂

∂τx
Q̃(x, y)Y3

)(
T ṼΓ

∂2

∂x2
1

g

)}
,

A2 =

(
Z1Z2 −

1

2
Z2 − (

1

4
+ π2)I

)−1

{(
Z1 −

1

2
I

)(∫
Γ

∂

∂τx
Q̃(x, y)

)
(−A1)

}
,

B2 =

(
Z1Z2 −

1

2
Z2 − (

1

4
+ π2)I

)−1

{(
Z1 −

1

2
I

)(∫
Γ

∂

∂τx
Q̃(x, y)

)
(−B1)

}
.

Since Ai, Bi and C are functions depending on g, hi depends only on a surface
force p for i = 1, 2. Hence, substituting (3.10), (3.17), (3.18) into (3.5), we
have

û = Ṽ∂Ω+ (C + A2 cos θ0 +B2 sin θ0) + ṼΓ

(
− ∂2

∂x2
1

g

)

+Ṽ
′

Γ

(
Y3

(
T Ṽ∂Ω+ (C + A2 cos θ0 +B2 sin θ0)− T ṼΓ

∂2

∂x2
1

g

)
+A1 cos θ0 +B1 sin θ0

)
,

since (3.8) leads to

W̃Γ =
∂

∂x1

Ṽ
′

Γ.

Thus, from (3.13) Π(û) is written as

−2Π(û) = D + A3 cos θ0 +B3 sin θ0, (3.19)
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where

D =

∫
∂Ω+

pT ·
(
Ṽ∂Ω+C + ṼΓ

(
− ∂2

∂x2
1

g

)

+Ṽ
′

Γ

(
Y3

(
T Ṽ∂Ω+C − T ṼΓ

∂2

∂x2
1

g

)))
dx1,

A3 =

∫
∂Ω+

pT ·
(
Ṽ∂Ω+A2 + Ṽ

′

Γ

(
Y3

(
T Ṽ∂Ω+A2

)
+ A1

))
dx1,

B3 =

∫
∂Ω+

pT ·
(
Ṽ∂Ω+B2 + Ṽ

′

Γ

(
Y3

(
T Ṽ∂Ω+B2

)
+B1

))
dx1.

Formula (3.1) is equivalent to

G =
1

2
(D + A3 cos θ0 +B3 sin θ0).

From this it is easy to see that G attains the maximum value in (−π, π) at

θ0 = Tan−1

(
B3

A3

)
. (3.20)

Summing up the above, we have

THEOREM 5. Suppose a homogeneous elastic body Ω with a crack Γ is
loaded a surface force p. Then according to maximum energy release rate
criterion Γ propagates along the direction θ0 given by (3.20) dependent only
on a surface force p.
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Chapter 4

Existence of a weak solution in
an infinite viscoelastic strip
with a semi-infinite crack

In Chapter 4, we study an initial-boundary value problem in an infinite
viscoelastic strip with a semi-infinite fixed crack. For this problem we prove
the existence and uniqueness of a weak solution which is prescribed on each
side of the extended crack in Sobolev-type spaces.

4.1 The model equations of viscoelasticity

with crack

We consider that dissipative forces occur through processes of viscosity. The
expression for the dissipative forces can be described by the time derivatives
of the strain tensor (ε̇ij). In an isotropic body the dissipative stress tensor
(σ̂ij) can be written by the analogous of (2.1)

σ̂ij = 2ηε̇ij +

(
ζ − 2

3
η

)
ε̇kkδij, (4.1)

where ζ and η are two viscosities assumed to be positive constants. From the
balance law of momentum the equations of motion in the absence of body
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forces become

ρ
∂2ui
∂t2

=
∂σij
∂xj

, i, j = 1, 2, 3. (4.2)

Here t is a time variable, ρ is the density of the medium. The viscosity
effect can be taken into account in (4.2) by replacing σij in (4.2) by the sum
σij + σ̂ij. Hence in the state of a plane strain we obtain

ρ∂2
t u− Ã∂tu− Au = 0, (4.3)

where A is defined in section 2.1 and

Ã(ξ1, ξ2) =

(
ηξ2 + (ζ + 1

3
η)ξ2

1 (ζ + 1
3
η)ξ1ξ2

(ζ + 1
3
η)ξ1ξ2 ηξ2 + (ζ + 1

3
η)ξ2

2

)
.

Moreover, we introduce the boundary stress operator T̃ (∂x) defined by

T̃ (ξ1, ξ2) =

(
(ζ + 4

3
η)ν1ξ1 + ην2ξ2 ην2ξ1 + (ζ − 2

3
η)ν1ξ2

(ζ − 2
3
η)ν2ξ1 + ην1ξ2 ην1ξ1 + (ζ + 4

3
η)ν2ξ2

)
.

Particularly, in the case of ν = (0, 1)T

T̃ (ξ1, ξ2) =

(
ηξ2 ηξ1

(ζ − 2
3
η)ξ1 (ζ + 4

3
η)ξ2

)
.

Let Γ1 = {(x1, 0) | 0 < x1 <∞}. On the crack we assume the free traction
condition

(σ+
ij + σ̂+

ij)νj = (σ−ij + σ̂−ij)νj = 0 on Γ±, (4.4)

where Γ± mean both sides of Γ. Here for every x ∈ Γ σ±ij+σ̂
±
ij = σ±ij(x)+σ̂±ij(x)

mean the limits of (νx, (σij + σ̂ij)(x̄)) as x̄ ∈ Ω \ Γ tends to x ∈ Γ along the
normals νx = (0,∓1). At the end-point (0, 0) of Γ we assume

lim
x1→−0

(σ±ij + σ̂±ij)νj
∣∣
x∈Γ±\{(0,0)} = 0.

On ∂Ω+, ∂Ω− the boundary conditions

u = 0 on ∂Ω−, (4.5)

(σij + σ̂ij)νj = fi on ∂Ω+ (4.6)
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are imposed, where fi are given continuous functions on ∂Ω+. Summing up,
our problem is to find u such that

(∗ ∗ ∗)



ρ∂2
t u(x, t)− Ã∂tu(x, t)− Au(x, t) = 0, (x, t) ∈ Υ,

Tu(x, t) + T̃ ∂tu(x, t) = 0, x ∈ Γ±,

u(x, t) = 0, x ∈ ∂Ω−,

Tu(x, t) + T̃ ∂tu(x, t) = f(x, t), x ∈ ∂Ω+,

u(x, 0) = ∂tu(x, 0) = 0, x ∈ Ω \ Γ,

where Υ ≡ Ω \ Γ× (0,∞) and T is defined in section 2.1.
For any m ∈ R and s ∈ C, let Hm,s(R

2) be the Sobolev space equipped
with the norm

‖ u ‖m,s=
{∫

R2

(1 + |s|+ |χ|)2m|ũ(χ)|2 dχ

} 1
2

,

where ũ is the Fourier transform of u. Let Hm,s(Ω±) be the space of the
restrictions to Ω± of all elements of Hm,s(R

2) equipped with norm

‖ u ‖m,s;Ω±= inf
v∈Hm,s(R2),v|Ω±=u

‖ v ‖m,s .

Clearly, for any fixed s ∈ C, the norms in Hm,s(Ω±) and in the standard
Sobolev space Hm(Ω±) are equivalent.

Let π0 and π1 be the operators of restriction from {x2 = 0} to Γ and
Γ1, and let γ+ and γ− be the continuous trace operators from H1(Ω+) and
H1(Ω−) to H1/2({x2 = 0}) along the normal. Also, let γ±i = πiγ

±, i = 0, 1.
Let Hm,s(Ω \Γ) be the space of all u = u+ + u− such that u+ ∈ Hm,s(Ω+),

u− ∈ Hm,s(Ω−) and γ+
1 u

+ = γ−1 u
−. The norm in Hm,s(Ω \ Γ) is defined by

‖ u ‖2
m,s;Ω\Γ=‖ u+ ‖2

m,s;Ω+
+ ‖ u− ‖2

m,s;Ω− .

Note that the traces of u ∈ Hm,s(Ω\Γ) on opposite sides of Γ may be distinct:
γ+

0 u
+ 6= γ−0 u

−.
By H−m,s(Ω \Γ) we denote the dual space of Ḣm,s(Ω \Γ) = {u ∈ Hm,s(Ω \

Γ) | u = 0 on ∂Ω−, suppu ⊂ Ω \ Γ}, with respect to the duality generated
by (·, ·)0,Ω\Γ in L2. Its norm is denoted by ‖ · ‖−m,s;Ω\Γ; the dual space of
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Hm,s(Ω \ Γ) is Ḣ−m,s(Ω \ Γ), which can be identified with the subspace of
H−m,s(R

2).
We denote by f̄ the Laplace transform of the function f(x, t) with respect

to t,

f̄(x, s) = L[f(x, t)] =

∫ ∞
0

e−stf(x, t) dt,

where s ∈ Cτ = {s = s1+is2 | s1 > τ}. We now fix τ > 0. For any m, k ∈ R,
we define the space HLm,k,τ (Ω\Γ) of all ū(x, s) regarded as functions of s with
values in Hm(Ω \ Γ), whose norm in HLm,k,τ (Ω \ Γ) is defined by

‖ ū ‖2
m,k,τ ;Ω\Γ= sup

s1>τ

∫ ∞
−∞

(1 + |s|)2k ‖ ū ‖2
m,s;Ω\Γ ds2.

Finally, for any m, k ∈ R, let HL
−1

m,k,τ (Υ) be the space of the inverse Laplace
transforms u of ū ∈ HLm,k,τ (Ω \ Γ) equipped with the norm

‖ u ‖m,k,τ ;Υ=‖ ū ‖m,k,τ ;Ω\Γ .

Let us introduce the sesquilinear forms

B[u±, v] = 2

∫
Ω±

E(u±, v) dx, B̃[u±, v] = 2

∫
Ω±

Ẽ(u±, v) dx,

where

E(u, v) =
1

2

{
(λ+ 2µ) (u1,1v

∗
1,1 + u2,2v

∗
2,2) + λ(u1,1v

∗
2,2 + u2,2v

∗
1,1)

+µ(u1,2 + u2,1)(v1,2 + v2,1)∗} ,

Ẽ(u, v) =
1

2

{(
ζ +

4

3
η

)
(u1,1v

∗
1,1 + u2,2v

∗
2,2) +

(
ζ − 2

3
η

)
(u1,1v

∗
2,2 + u2,2v

∗
1,1)

+η(u1,2 + u2,1)(v1,2 + v2,1)∗
}

and u∗ is a complex conjugate of u. Let u ∈ HL−1

m,k,τ (Υ) satisfy (∗ ∗ ∗). Then
taking the L2-inner product of both sides in (∗ ∗ ∗) with any v in the class
K0(Ῡ) defined by

K0(Ῡ) ≡ {v ∈ C∞0 (Ῡ) | γ+
1 v = γ−1 v, v|∂Ω− = 0}
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and integrating by parts since

(Au+ + Ã∂tu
+, v)0;Ω+

= −B[u+, v]− B̃[∂tu
+, v] + (Tu+ + T̃ ∂tu

+, γ+
1 v)0;Γ1 + (f, v)0;∂Ω+ ,

(Au− + Ã∂tu
−, v)0;Ω− = −B[u−, v]− B̃[∂tu

−, v]− (Tu− + T̃ ∂tu
−, γ−1 v)0;Γ1 ,

we arrive at∫ ∞
0

{
B̃[∂tu, v] +B[u, v]− (ρ

1
2∂tu, ρ

1
2∂tv)0;Ω\Γ

}
dt =

∫ ∞
0

(f, v)0;∂Ω+ dt.(4.7)

Conversely, integration by parts in (4.7) implies that if u ∈ C2(Υ) ∩ C1(Ῡ)
satisfying the initial and boundary conditions in (∗ ∗ ∗), then u is also a
solution of (∗ ∗ ∗). Therefore, we call u ∈ HL−1

1,0,τ (Υ) satisfying (4.7) a weak
solution of (∗ ∗ ∗).

4.2 Solvability of the transformed problem

In this section, we consider the transformed problem. Applying the Laplace
transform to (∗ ∗ ∗), we obtain the transformed problem

(∗ ∗ ∗∗)



ρs2ū− sÃū− Aū = 0 in Ω \ Γ,

(T + sT̃ )ū = 0 on Γ±,

ū = 0 on ∂Ω−,

(T + sT̃ )ū = f̄ on ∂Ω+.

We take the L2-inner product of both sides in (∗ ∗ ∗∗) with v ∈ K0(Ω \ Γ).
Then, for any v ∈ H1,s(Ω \ Γ) satisfying γ+

1 v = γ−1 v we have

s2(ρ
1
2 ū, ρ

1
2v)0;Ω\Γ + sB̃[ū, v] +B[ū, v] = (f̄ , v)0;∂Ω+ . (4.8)

Formally separating the real and imaginary parts in (4.8) yields

(s2
1 − s2

2)(ρ
1
2 ū, ρ

1
2v)0;Ω\Γ + s1B̃[ū, v] +B[ū, v] = Re{(f̄ , v)0;∂Ω+}, (4.9)

2s1s2(ρ
1
2 ū, ρ

1
2v)0;Ω\Γ + s2B̃[ū, v] = Im{(f̄ , ū)0;∂Ω+}. (4.10)
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Whenever s ∈ Cτ , s 6= 0. Hence we can divide both sides of (4.8) by s and
get

s(ρ
1
2 ū, ρ

1
2v)0;Ω\Γ + B̃[ū, v] +

1

s
B[ū, v] =

1

s
(f̄ , v)0;∂Ω+ .

If s ∈ Cτ , then we define a positive definite Hermitian form on H1(Ω \ Γ)

aRe
τ (ū, v) = (ρ

1
2 ū, ρ

1
2v)0;Ω\Γ +

1

s1

B̃[ū, v] +
1

s2
1 + s2

2

B[ū, v].

It is easily seen that this form defines a norm equivalent to that of H1(Ω\Γ).
Let H(Ω \ Γ) be a Hilbert space whose inner product is defined by this
Hermitian form (ū, v)H(Ω\Γ) = aRe

τ (ū, v).
Next, we introduce another Hermitian form on H(Ω \ Γ) defined by

aIm
τ (ū, v) = (ρ

1
2 ū, ρ

1
2v)0;Ω\Γ −

1

s2
1 + s2

2

B[ū, v].

Then, for any s ∈ Cτ

|aIm
τ (ū, ū)| ≤ c ‖ ū ‖2

H(Ω\Γ) .

Hence, by Riesz theorem one can see that there exists a bounded Hermitian
operator H and aIm

τ (ū, v) = (Hū, v)H(Ω\Γ) holds for arbitrary ū, v ∈ H(Ω\Γ).

Also there exists a continuous operator Ĥ from H− 1
2
(∂Ω+) to H 1

2
(∂Ω+) =

H(∂Ω+) such that

(f̄ , v)0;∂Ω+ = (Ĥf̄ , v)H(∂Ω+).

Therefore, we can rewrite (4.8) as follows:

s ((s1I + s2iH)ū, v)H(Ω\Γ) = (Ĥf̄ , v)H(∂Ω+),

where I is the identity matrix. From [32] we see:

PROPOSITION 1. Let H be a bounded Hermitian operator defined on a
Hilbert space H, and let

m = inf
‖g‖=1

(Hg, g), M = sup
‖g‖=1

(Hg, g).

If λ̃ /∈ [m,M ], then the inverse operator (λ̃I −H)−1 exists.
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Now we only need to remark that s1
s2
i /∈ [m,M ] for any s ∈ Cτ . Indeed, as

|s2| → ∞

(Hū, ū)H(Ω\Γ) = ρ ‖ ū ‖2
0> 0.

Therefore as in Theorem 2 in [5], (4.8) has a unique solution ū ∈ H1,s(Ω \Γ)
for every f̄ ∈ H− 1

2
,s(∂Ω+). Then, we call this solution ū ∈ H1,s(Ω \ Γ) of

(4.8) a weak solution of (∗ ∗ ∗∗).
Moreover, adding (4.10) multiplied by s−1

1 s2 to (4.9) with v = ū, we obtain

|s|2 ‖ ρ
1
2 ū ‖2

0;Ω\Γ +
|s|2

s1

B̃[ū, ū] +B[ū, ū]

= Re{(f̄ , ū)0;∂Ω+}+
s2

s1

Im{(f̄ , ū)0;∂Ω+} =
1

s1

Re{s∗(f̄ , ū)0;∂Ω+}.

From this it follows that ‖ ū ‖2
1,s;Ω\Γ≤ c|s||(f̄ , ū)0;∂Ω+|, hence

‖ ū ‖1,s;Ω\Γ≤ c|s| ‖ f̄ ‖− 1
2
,s;∂Ω+

(4.11)

by the trace theorem.

4.3 Weak solvability of the time-dependent

problem

In this section we will establish the existence of a unique solution to problem
(4.7) with initial conditions in (∗ ∗ ∗).

THEOREM 6. Let for any f ∈ HL−1

− 1
2
,1,τ

(∂Υ+), ∂Υ+ ≡ ∂Ω+ × (0,∞) and

τ > 0. Problem (4.7) with initial conditions in (∗ ∗ ∗) has a unique weak
solution u ∈ HL−1

1,0,τ (Υ). Moreover, if f ∈ HL−1

− 1
2
,k,τ

(∂Υ+) with any k ∈ R, then

u ∈ HL−1

1,k−1,τ (Υ) and

‖ u ‖1,k−1,τ ;Υ≤ c ‖ f ‖− 1
2
,k,τ ;∂Υ+

.

Proof. Let ū(·, s) ∈ H1,s(Ω \ Γ) be the weak solution of (∗ ∗ ∗∗). Now,
we regard U(s) = U+(s) + U−(s) = ū+(·, s) + ū−(·, s) and F (s) = f̄(·, s) as
functions with values in H1(Ω\Γ) and H− 1

2
(∂Ω+), respectively. One can find

the following result in [32]:
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PROPOSITION 2. If a holomorphic function f̄(s) is at most of the same
increasing degree as polynomials of | s |, then there exists a unique distribu-
tion F which satisfies the condition: f̄(s) = L[F ].

Firstly, we will prove that U is holomorphic. Let s0 ∈ Cτ and KR(s0) be a
circle with a centre s0 and a radius R such that KR(s0) ⊂ Cτ . And let U(s0)
be the solution of the problem

ρs2
0U(s0)− s0ÃU(s0)− AU(s0) = 0,

(T + s0T̃ )U(s0)|∂Ω+ = F (s0),

which satisfies

‖ U(s0) ‖1;Ω\Γ ≤ c|s0| ‖ F (s0) ‖− 1
2
,s0;∂Ω+

≤ c ‖ F (s0) ‖− 1
2

;∂Ω+
.

Rewriting (∗ ∗ ∗∗) with (T + sT̃ )U(s)|∂Ω+ = F (s) in the form

ρs2
0U(s)− s0ÃU(s)− AU(s)

= −ρ(s2 − s2
0)U(s) + (s− s0)ÃU(s), (4.12)

we find from (4.11) and the result in [5] that

‖ U(s) ‖1;Ω\Γ ≤ c(‖ F (s) ‖− 1
2

;∂Ω+
+|s2 − s2

0| ‖ U(s) ‖−1;Ω\Γ

+ ‖ (sÃ+ A)U(s)− (s0Ã+ A)U(s) ‖−1;Ω\Γ).

Since

‖ (sÃ+ A)U(s)− (s0Ã+ A)U(s) ‖−1;Ω\Γ

=
|((sÃ+ A)U(s)− (s0Ã+ A)U(s), v)0;Ω\Γ|

‖ v ‖1;Ω\Γ

≤ c
| − (s− s0)B̃[U(s), v]− (1− 1)B[U(s), v] + (F, v)0;∂Ω+|

‖ v ‖1;Ω\Γ

≤ c (‖ F (s) ‖− 1
2

;∂Ω+
+|s− s0| ‖ U(s) ‖1;Ω\Γ), ∀v ∈ Ḣ1(Ω \ Γ),
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by choosing R > 0 such that c|s2 − s2
0| < 1

4
and c|s− s0| < 1

4
for s ∈ KR(s0)

one can get

‖ U(s) ‖1;Ω\Γ≤ c ‖ F (s) ‖− 1
2

;∂Ω+
. (4.13)

Since F is holomorphic, U(s) is bounded in H1(Ω \ Γ) for s ∈ KR(s0). From
(4.12) it follows that

ρs2
0[U(s)− U(s0)]− s0Ã[U(s)− U(s0)]− A[U(s)− U(s0)]

= −ρ(s2 − s2
0)U(s) + (s− s0)ÃU(s),

((T + sT̃ )U(s)− (T + s0T̃ )U(s0))|∂Ω+ = F (s)− F (s0).

Hence, for s ∈ KR(s0)

‖ U(s)− U(s0) ‖1;Ω\Γ

≤ c
{
‖ F (s)− F (s0) ‖− 1

2
;∂Ω+

+|s2 − s2
0| ‖ U(s) ‖−1;Ω\Γ

+ ‖ (sÃ+ A)U(s)− (s0Ã+ A)U(s) ‖−1;Ω\Γ

}
. (4.14)

Since U(s) is bounded in H−1(Ω \ Γ), as s tends to s0 the right-hand side of
(4.14) tends to 0, which means U is continuous at s0.

Finally, let V ∈ H1(Ω \ Γ) be the solution of the problem

ρs2
0V − s0ÃV − AV = −2ρs0U(s0) + ÃU(s0),

γ+
1 V = γ−1 V , (T + s0T̃ )V|∂Ω+ = F ′(s0)− T̃U(s0)|∂Ω+ .

Then

W(s) ≡ U(s)− U(s0)

s− s0

− V(s) ∈ H1(Ω \ Γ)

satisfies γ+
1W = γ−1W and

s2
0ρW(s)− s0ÃW(s)− AW(s)

= −ρ[(s+ s0)U(s)− 2s0U(s0)] + ÃU(s)− ÃU(s0),
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{
(T + sT̃ )U(s)− (T + s0T̃ )U(s0)

s− s0

− (T + s0T̃ )V

}∣∣∣∣∣
∂Ω+

=
F (s)− F (s0)

s− s0

− F ′(s0) + T̃ (U(s)− U(s0))|∂Ω+ .

In the same way as (4.13) we obtain

‖ W(s) ‖1;Ω\Γ

≤ c

(∥∥∥∥F (s)− F (s0)

s− s0

− F ′(s0)

∥∥∥∥
− 1

2
;∂Ω+

+ ‖ T̃ (U(s)− U(s0)) ‖− 1
2

;∂Ω+

+ ‖ (s+ s0)U(s)− 2s0U(s0) ‖−1;Ω\Γ

+ ‖ (s− s0)ÃW + (s− s0)ÃV ‖−1;Ω\Γ

)

≤ c

(∥∥∥∥F (s)− F (s0)

s− s0

− F ′(s0)

∥∥∥∥
− 1

2
;∂Ω+

+ ‖ (s+ s0)U(s)− 2s0U(s0) ‖−1;Ω\Γ

+|s− s0| ‖ W ‖1;Ω\Γ +|s− s0| ‖ V ‖1;Ω\Γ

+ ‖ U(s)− U(s0) ‖1;Ω\Γ

)
.

Since U is continuous at s0, ‖ W(s) ‖1;Ω\Γ tends to 0 as s tends to s0. This
means that U ′(s0) exists, U ′(s0) = V and the mapping U is holomorphic from
Cτ to H1(Ω \ Γ).

Moreover, noting that

‖ U(s) ‖1,s;Ω\Γ≤ c|s| ‖ F (s) ‖− 1
2
,s;∂Ω+

,
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we have for k ∈ R

‖ u ‖2
1,k−1,τ ;Υ

= sup
s1>τ

∫ ∞
−∞

(1 + |s|)2(k−1) ‖ U(s) ‖2
1,s;Ω\Γ ds2

≤ c sup
s1>τ

∫ ∞
−∞

(1 + |s|)2(k−1)|s|2 ‖ F (s) ‖2
− 1

2
,s;∂Ω+

ds2

≤ c ‖ f ‖2
− 1

2
,k,τ ;∂Υ+

.

Secondly, we shall prove that u satisfies (4.7). We recall that if ϕ1 and ϕ2

satisfy ∫ ∞
0

e−2τit|ϕi(t)|2 dt <∞, i = 1, 2,

then Parseval’s equality holds :∫ ∞
0

e−(τ1+τ2)tϕ1(t)(ϕ2(t))∗ dt =
1

2π

∫ ∞
−∞

ϕ1(τ1 + is2)(ϕ2(τ2 + is2))∗ ds2.

For any u ∈ HL−1

1,k,τ (Υ), k = 0, 1, 2, · · · , u = 0 for t < 0 and∫ ∫
Υ

e−2τt
∑

|α|≤1,αt≤1

|∂αx∂αt+kt u(x, t)|2 dx dt <∞, (4.15)

where α is a two-component multi-index and αt is a non-negative integer.
Then, the norm in HL

−1

1,k,τ (Υ) defined by (4.15) is equivalent to ‖ · ‖1,k,τ ;Υ.

Let v ∈ K0(Ῡ). We write v(·, t) = V(s) and v(·, 0) = v0 = V0 ∈ Ḣ1(Ω \ Γ),
and set s ∈ Cτ . Using Parseval’s equality with τ1 = s1 and τ2 = −s1 and
the fact that the Laplace transform of ∂tv at −s∗ is −s∗V(−s∗)−V0, we find
that ∫ ∞

0

{B̃[∂tu, v] +B[u, v]− (ρ
1
2∂tu, ρ

1
2∂tv)0;Ω\Γ − (f, v)0;∂Ω+} dt

=
1

2π

∫ ∞
−∞

{
B̃[sU(s),V(−s∗)] +B[U(s),V(−s∗)]

+(ρ
1
2 sU(s), ρ

1
2 (s∗V(−s∗) + V0))0;Ω\Γ

−(F (s),V(−s∗))0;∂Ω+

}
ds2. (4.16)
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Since U(s) is a weak solution of (∗ ∗ ∗∗), W ∈ Ḣ1(Ω \ Γ) satisfies

s2(ρ
1
2U(s), ρ

1
2W)0;Ω\Γ + sB̃[U(s),W ] +B[U(s),W ] = (F (s),W)0;∂Ω+ .

Taking W = V(−s∗), we arrive at

(ρ
1
2 sU(s), ρ

1
2 (s∗V(−s∗) + V0))0;Ω\Γ + sB̃[U(s),V(−s∗)]

+B[U(s),V(−s∗)]− (F (s),V(−s∗))0;∂Ω+ = (ρ
1
2 sU(s), ρ

1
2V0)0;Ω\Γ.

Therefore, (4.16) can be written as∫ ∞
0

{B̃[∂tu, v] +B[u, v] − (ρ
1
2∂tu, ρ

1
2∂tv)0;Ω\Γ − (f, v)0;∂Ω+} dt

=
1

2π

∫ ∞
−∞

(ρ
1
2 sU(s), ρ

1
2V0)0;Ω\Γ ds2. (4.17)

Now let us show that the right-hand side of (4.17) vanishes. Since∫ ∞
−∞
|(ρ

1
2U(s), ρ

1
2V0)0;Ω\Γ|2 ds2 ≤ ρ ‖ V0 ‖2

1

∫ ∞
−∞
‖ U(s) ‖2

1,s;Ω\Γ ds2

≤ c ‖ V0 ‖2
1‖ u ‖2

1,0,τ ;Υ<∞,

the function (u, v0)0;Ω\Γ = φ(t) satisfies
∫∞

0
e−2δt|φ(t)|2 dt < ∞ for any δ.

Let ψ(t) = d
dt
φ(t). Then the initial condition of ∂tu implies ψ(0) = 0. Hence,

we obtain that 0 = ψ(0) = 1
2π

∫∞
−∞(sU(s),V0)0;Ω\Γ ds2. From (4.17) it follows

that u satisfies (4.7).
For the uniqueness, suppose that u ∈ HL−1

1,0,τ (Υ) satisfies∫ ∞
0

{
B̃[∂tu, v] +B[u, v]− (ρ

1
2∂tu, ρ

1
2∂tv)0;Ω\Γ

}
dt = 0 (4.18)

for all v ∈ K0(Ῡ). Fix an arbitrary T > 0. It is obvious that u(·, t) = U(t)
can be regarded as a function in H1(0, T ) with values in H1(Ω \Γ). Then we
see that every u has a finite norm ‖ u ‖2

1,0;ΥT
which is defined by (4.15) with

k = 0 and Υ replaced by ΥT ≡ Ω \ Γ× (0, T ).
We now define the function

Z(t) = z(·, t) =

 −
∫ T

t

u(·, ω) dω if t ≤ T,

0 if t > T.

(4.19)
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and

Z ′(t) = (∂tz)(·, t) =

{
u(·, t) if t < T,

0 if t > T.
(4.20)

Clearly, the restriction of the function Z(t) to (0, T ) belongs to
H1(0, T ;H1(Ω \ Γ)) and z(x, t) can be approximated in the norm ‖ · ‖1,0;ΥT

by elements v ∈ K(Ῡ). We can set v = z in (4.18), so that∫ T

0

{
B̃[∂tu, z] +B[u, z]− (ρ

1
2∂tu, ρ

1
2∂tz)0;Ω\Γ

}
dt = 0.

From this, (4.19) and (4.20) we can derive∫ T

0

{
B̃[∂tu, z] +B[∂tz, z]− (ρ

1
2∂tu, ρ

1
2u)0;Ω\Γ

}
dt = 0,

or ∫ T

0

(
d

dt

{
B̃[u, z] +B[z, z]− ‖ ρ

1
2u ‖2

0;Ω\Γ

}
− B̃[u, u]

)
dt = 0. (4.21)

Since U ∈ H1(0, T ;H1(Ω \ Γ)),∫ T

0

d

dt
‖ ρ

1
2u ‖2

0;Ω\Γ dt = ‖ ρ
1
2U(T ) ‖2

0;Ω\Γ − ‖ ρ
1
2U(0) ‖2

0;Ω\Γ

= ‖ ρ
1
2U(T ) ‖2

0;Ω\Γ . (4.22)

From (4.19) and (4.20) it follows that Z ∈ H1(0, T ;H1(Ω \ Γ)). Hence,∫ T

0

d

dt
B[z, z] dt = B[Z(T ),Z(T )]−B[Z(0),Z(0)] = −B[Z(0),Z(0)],(4.23)

and ∫ T

0

d

dt
B̃[u, z] dt = B̃[U(T ),Z(T )]− B̃[U(0),Z(0)] = 0. (4.24)

Equalities (4.21)–(4.24) imply that

B[Z(0),Z(0)]+ ‖ ρ
1
2U(T ) ‖2

0;Ω\Γ +

∫ T

0

B̃[u, u] dt = 0.

Since B and B̃ are non-negative, U(T ) = u(·, T ) = 0 for any T > 0, which
completes the proof of the theorem.
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