
 

THE SUMMARY OF Pｈ．D．DISSERTATION 

Major 
School of Science 

for Open and 

Environmental 

Systems 

Student Identification Number SURNAME, Firstname 

CHIBA, Yuji 

 

 

Title 

 

A Study on Improving Performance of Java Applications 

through Translating to C Language 

 

 

 

Abstract 

 

Java is an object-oriented programming language with many advantages such as high 

productivity, but its performance is not always good. This is because general-purpose 

processors cannot execute a Java application directly. A Java application is written in 

intermediate code and needs software such as an interpreter for execution, but the 

performance of an interpreter is not good. 

 

Compilers for Java can improve the performance by compiling the intermediate code into 

machine code and have the processor execute Java applications directly. But development 

of compilers costs much more than development of interpreters. One cost-effective way is 

to develop a translator from Java to C language, which we call Java2C translator, and then 

apply an existing C compiler that can conduct many kinds of traditional optimizations.

 

This paper shows problems that lie in the development of Java2C translators, and proposes 

solutions for them. The most important problem is that the machine code generated using 

the Java2C translator may not be usable at runtime. Because a Java2C translator translates 

the intermediate code before execution of Java application, the machine code generated 

using a Java2C translator becomes invalid if the intermediate code is updated after the

translation. The invalid code must not be used for execution. 

 

Java2C translators so far have neglected this problem and used machine code even when they 

are invalid. Thus, some Java applications have not run correctly when translated using 

such Java2C translators. This paper proposes a solution for this problem. Our solution 

confirms the validity of machine code at runtime before using them. We use an interpreter 

for execution until the confirmation, but the overhead for interpreter execution is not 

small. Thus, we also propose two optimizing techniques to reduce the overhead. One of the 

optimizations removes class initialization tests and the other is an implementation 

technique for virtual calls. 

 

The result of applying SPECjvm98 benchmarks showed that removal of class initialization 

tests improve performance by 45% on average and the optimizing technique for virtual calls 

improves performance up to 9.8%. 

 

 

 

 




