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Chapter 1

Introduction

Stochastic processes are often considered as mathematical models of time

evolution of random phenomena. Brownian motion is the canonical example

of such stochastic processes because it is in the intersection of many funda-

mental and important classes of processes. Namely, it is a Gaussian process,

a Markov process, a Lévy process, and a selfsimilar process, and each of

them has been developed in the probability theory. Here a selfsimilar pro-

cess is the process whose finite dimensional distributions are invariant under

a suitable scaling of time and space. For example, if {X(t), t ≥ 0} is a Brow-
nian motion on Rd, then for any a > 0, the processes {X(at), t ≥ 0} and
{a1/2X(t), t ≥ 0} have the same finite dimensional distributions. There are
many selfsimilar processes other than Brownian motion, namely, α-stable

Lévy processes, fractional Brownian motions and so on. These processes

are considered suitable to describe models of random phenomena and many

applications of selfsimilar processes have been studied in the fields of proba-

bility theory, statistical physics and mathematical finance. See [EM02] and

its reference for more details.

As for an extension of selfsimilarity, a notion of semi-selfsimilarity was

introduced. Because of its weaker scaling property, semi-selfsimilar processes

are expected to offer higher flexibility in stochastic modeling than selfsimilar

ones. However, since semi-selfsimilarity is a new notion developed in [MS99],

little is known of semi-selfsimilar processes in spite of their importance. In

this thesis, we consider some problems of stochastic processes in random

environments whose limiting processes can be characterized by the semi-
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selfsimilarity.

For studying properties of a stochastic process {X(t), t ≥ 0}, it is impor-
tant to characterize the distributions of X(t) for fixed t (we call such distri-

butions marginal distributions of {X(t)}). If selfsimilar and semi-selfsimilar
processes are Lévy processes, then their distributions are completely deter-

mined. However, it seems to exist no simple characterization of marginal

distributions of selfsimilar and semi-selfsimilar processes with only station-

ary increments. On the other hand, for selfsimilar and semi-selfsimilar pro-

cesses with independent increments the situation is better. For this reason,

we also discuss some examples of selfsimilar and semi-selfsimilar processes

with independent increments in this thesis.

In the next chapter, we give a survey about selfsimilar and semi-selfsimilar

processes and their marginal distributions.

In Chapter 3, we construct a diffusion process on each of disconnected

fractal sets on R (typical example is a Cantor set) as a limit of a suitably

scaled random walk and show that the limiting process is semi-selfsimilar.

Such diffusion processes were introduced by Fujita [Fu87] and these diffusion

processes have been regarded as Brownian motions on disconnected fractal

sets. He obtained a growth order of the eigenvalues of generators of Brownian

motions. Analysis on fractal sets has shown that there exist some dimensions

and each of them has an important role. From the growth order, the spectral

dimensions of disconnected fractal sets are determined and we find a suitable

scaling which implies the “random walk dimension” of each of disconnected

fractal sets. This dimension shows how far a diffusion process spreads for a

long time. Finding random walk dimension, we have a relationship among

three dimension; random walk dimension, spectral dimension and Hausdorff

dimension (that is a geometrical characteristic). This relation is satisfied in

the cases of nested fractal sets (which are connected and finitely ramified

ones, see [Ba98]).

In Chapter 4, we consider homogenization problems on the disconnected

fractal sets discussed in Chapter 3. In the case of nested fractal sets, Kuma-

gai and Kusuoka [KK96] studied these problems. On a nested fractal set they

gave a sequence of independent and identically distributed positive random

variables with a finite mean (such a sequence is called an environment) and

showed that the influence of the environment implies that a stochastic pro-
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cess in a random environment converges weakly to a constant time-changed

Brownian motion on each of nested fractal sets. In the case of disconnected

fractal sets, we can treat an environment whose mean is infinite, which be-

longs to wider classes of environments than the cases of nested ones. We

show that in the case of an environment whose mean is finite, the limiting

process is a constant time-changed diffusion process obtained in Chapter 3,

and whose mean is infinite, the limiting process belongs to a new class of

semi-selfsimilar processes which are determined by environments.

In Chapter 5, we consider another type of stochastic processes in random

environments. We study limiting behaviors of diffusion processes in semi-

selfsimilar random environments {X(t)} described by a formal stochastic
differential equation

dX(t) = dB(t)− 1

2
W

′
(X(t))dt, X(0) = 0,

where {B(t)} is a one-dimensional Brownian motion and {W (x)} is a semi-
selfsimilar process which is independent of {B(t)}. It is known that the

suitable scaling for convergence of {X(t)} is not the same as that of homog-
enization problems and W has an influence for the scaling, and thus in this

chapter W is regarded as an environment. In the case where {W (x)} is a
Brownian motion, Brox [Br86] had studied this problem. This is a contin-

uous time analogue to the problem that Sinai [Si82] considered for the case

of a one-dimensional random walk. His results was extended to the case of

selfsimilar processes by Kawazu, Tamura and Tanaka [KTT88]. The selfsim-

ilarity of W has a very important role in studying the limiting behavior of

{X(t)}. We try to relax the selfsimilarity of the environments to a more
weaker scaling property: the semi-selfsimilarity, and see the difference be-

tween them. We show that the semi-selfsimilarity of environments implies

that the limit distribution of a suitably scaled process {X(t)} converges along
a subsequence. It should be noted that environments do not have selfsimilar-

ity in general, so that we cannot expect to have the limit distribution along

a full sequence. But considering some characteristics of the limit distribu-

tion, we can show that the difference between the scaled diffusion process

and the distribution (which is varying because of the semi-selfsimilarity of

environments) converges to 0 along a full sequence.
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In Chapter 6, we characterize the limit distributions obtained in Chap-

ter 5 for some environments. To see them, firstly we show that all finite

dimensional distributions of the suitably scaled process {X(t)} considered in
Chapter 5 converge to those of a semi-selfsimilar process which is determined

by an environment. Secondly, we consider a case of a reflecting Lévy environ-

ment and show that the limiting process has independent increments. Sato

[S91] studied some properties of marginal distributions of selfsimilar pro-

cesses with independent increments. His results were extended to the case

of semi-selfsimilar processes with independent increments by Maejima and

Sato [MS99], and some examples were given (see Example 2.2.6). Our process

obtained here is a new type of semi-selfsimilar processes with independent

increments.

In Chapter 7, we study the limiting behaviors of diffusion processes in

multi-dimensional random environments. It is well-known that d-dimensional

Brownian motion {B(t), t ≥ 0} (whose components are d independent copies
of one-dimensional Brownian motion {B(t)}) are recurrent for d = 1 or 2,

namely, for any open subset U ∈ Rd

P{B(t) ∈ U for some t > 0} = 1,

and this is no longer true otherwise, in which case Brownian motion is said

to be transient. We consider the same problem for {X(t)} considered in
Chapter 5, instead of {B(t)}. However, whether the diffusion processes in
semi-selfsimilar environments are recurrent or transient seems to be similar

to that in the case of selfsimilar ones except few singular semi-selfsimilar

ones, and thus we treat some selfsimilar environments to obtain the essence

of the problems about recurrence and transience.
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Chapter 2

Selfsimilar and semi-selfsimilar
processes

In this chapter, we give a brief survey about selfsimilar and semi-selfsimilar

processes. Most of the stochastic processes discussed in this chapter are Rd-

valued processes defined on a common probability space (Ω,F , P ). Hereafter
in this thesis, for stochastic processes {X(t), t ≥ 0} and {Y (t), t ≥ 0} we
denote by {X(t)} d

= {Y (t)} equality of all finite dimensional distributions
with respect to P and say that processes {X(t)} and {Y (t)} are identical in
law.

2.1 Selfsimilar and semi-selfsimilar processes

We give definitions of selfsimilarity and semi-selfsimilarity of processes.

Definition 2.1.1

(i) A stochastic process {X(t), t ≥ 0} is called “selfsimilar” if for any
a > 0, there exists b = b(a) > 0 such that

{X(at), t ≥ 0} d
= {bX(t), t ≥ 0}. (2.1.1)

(ii) A stochastic process {X(t), t ≥ 0} is called “semi-selfsimilar” if there
exist a ∈ (0, 1) ∪ (1,∞) and b > 0 satisfying (2.1.1). a > 1 and

corresponding b satisfying (2.1.1) are called an epoch and a span of

{X(t)}, respectively.
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In this thesis, for each of processes satisfying (i) and (ii) of Definition 2.1.1

we write that {X,P} is selfsimilar and semi-selfsimilar, respectively. We say
that a distribution µ on Rd is trivial if it is a δ-distribution and nontrivial

otherwise. We also say that {X(t), t ≥ 0} is trivial if the distribution of
{X(t)} is trivial for each t > 0 and nontrivial otherwise.
We give two examples of semi-selfsimilar processes.

Example 2.1.2 ([MS99], [M01]) A probability distribution µ is called

strictly semi-stable, if for some a ∈ (0, 1) ∪ (1,∞) there exists b > 0 such

that µ̂(θ)a = µ̂(bθ), where µ̂ is the characteristic function of µ and θ ∈ Rd. It

is known that a strictly semi-stable distribution can also be characterized as

certain subsequential limits of normalized partial sums of independent and

identically distributed random variables. Moreover, there exists a unique

α ∈ (0, 2] such that b = a1/α, so that we call such a distribution α-semi-stable.

2-semi-stable is nothing but Gaussian. Let {X(t), t ≥ 0} be a nontrivial
Lévy process (see Definition 2.2.1 below) such that the distribution of X(1)

is strictly α-semi-stable. Then {X,P} is semi-selfsimilar with b = a1/α. We

call such a process a strictly α-semi-stable Lévy process. This is an extension

of strictly α-stable Lévy processes defined below.

Example 2.1.3 ([Ku87]) Let a1 = (0, 0),a2 = (1, 0) and a3 = (1/2,
√
3/2).

Using these points, we define maps

ϕ1(x) =
x

2
,

ϕ2(x) =
x+ a2

2
,

ϕ3(x) =
x+ a3

2
.

Then there exists a compact set E such that

E =
3⋃
i=1

ϕi(E),

uniquely. Such a set E is called a two-dimensional Siérpinski Gasket. Let

G0 be a pre-Siérpinski Gasket (which is a graphical Siérpinski Gasket whose
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distance to the nearest point is one). Define a simple random walk {Rn : n =

0, 1, 2, . . .} on G0 with the transition probabilities

P{Rn+1 = y|Rn = x} =


1

N(x)
if |y − x| = 1,

0 otherwise,

where N(x) = �{y ∈ G0 : |y − x| = 1}. We set

X(n)(t) = 2−nR[5nt], t ≥ 0, n = 0, 1, 2, . . . , (2.1.2)

where [x] means the largest integer not larger than x. Then the scaled process

{X(n)(t)} converges weakly to the process {X(t)} such that {X,P} has the
following semi-selfsimilarity,

{X(5nt), t ≥ 0} d
= {2nX(t), t ≥ 0}.

Two examples above give a motivation to study semi-selfsimilar processes.

These scaling properties are much weaker than selfsimilarity and expected

to offer higher flexibility in stochastic modelings. Furthermore, the semi-

selfsimilarity might also be important notion in analysis on fractal sets.

We say that {X(t), t ≥ 0} is stochastically continuous at t if

lim
h→0

P{|X(t+ h)−X(t)| > ε} = 0 (2.1.3)

for any ε > 0. The following relations between a and b in Definition 2.1.1

are known.

Theorem 2.1.4 ([La62], [MS99])

(i) If a selfsimilar process {X(t), t ≥ 0} is non-trivial and stochastically
continuous at t = 0, then there exists a unique exponent H ≥ 0 such

that b in (2.1.1) can be expressed as b = aH .

(ii) If a semi-selfsimilar process {X(t), t ≥ 0} is non-trivial and stochas-
tically continuous at each t ≥ 0, then there exists a unique exponent

H ≥ 0 such that b in (2.1.1) can be expressed as b = aH .

(iii) In both cases H > 0 if and only if X(0) = 0 almost surely.
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Considering the selfsimilar and semi-selfsimilar processes that each of which

has a unique exponent H > 0, we use notation H-selfsimilar and H-semi-

selfsimilar processes, respectively. The condition that a semi-selfsimilar pro-

cess is selfsimilar is the following.

Theorem 2.1.5 ([MS99], [MSW99])

(i) We put

λ0 = inf{a > 1 : a satisfies (2.1.1) for some b > 0}. (2.1.4)

If λ0 = 1, then {X,P} is selfsimilar.
(ii) If {X(t), t ≥ 0} is stochastically continuous at each t and satisfies

(2.1.1) for some a1 and a2 such that log a1/ log a2 is irrational, then

{X,P} is selfsimilar.

For stochastic processes, we denote by
f.d.
=⇒ the convergence of all finite-

dimensional distributions. Semi-selfsimilar processes are characterized as

limiting processes of geometric subsequences of the normalized processes as

follows.

Theorem 2.1.6 ([MS99])

(i) We assume the following conditions:

(1) {X(t), t ≥ 0} is stochastically continuous at t = 0.
(2) There exist another process {Y (t)} and sequences {an} and {bn}

with 0 < an ↗ ∞ and 0 < bn ↗ ∞ such that, for some a > 1,

limn→∞
an+1

an
= a,

1

bn
{Y (an+1t)− Y (a · ant)} → 0 in probability,{
1

bn
Y (ant), t ≥ 0

}
f.d.
=⇒ {X(t), t ≥ 0}.

(3) There exists t0 > 0 such that X(t0) and X(at0) are non-degenerated.
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Then {X,P} is H-semi-selfsimilar with some H > 0.

(ii) Conversely, if {X,P} is non-trivial, H-semi-selfsimilar with H > 0

and stochastically continuous at t = 0, then {X(t)} is such a limiting
process.

Remark 2.1.7 Maejima and Sato [MS99] showed that the theorem above

still holds for a wide-sense H-semi-selfsimilar process, namely,

{X(at), t ≥ 0} d
= {bX(t) + c(t), t ≥ 0}

for a non-random function c : [0,∞) → Rd. In this thesis, we consider the

case where (2.1.1) is satisfied.

2.2 Selfdecomposable and semi-selfdecomposable

distributions

In this section, we consider the relationship between (semi-)selfsimilar pro-

cesses and their marginal distributions. We give definitions of a Lévy process

and an additive process, which are very important classes of stochastic pro-

cesses.

Definition 2.2.1 A stochastic process {X(t), t ≥ 0} is called a Lévy process
if the following conditions are satisfied:

(1) For any choice of n ≥ 1 and 0 ≥ t0 < t1 < t2 < · · · < tn, random

variables X(t0), X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1) are

independent (called independent increment property).

(2) X(0) = 0 almost surely.

(3) The distribution of X(s+ t)−X(s) does not depend on s (called sta-
tionary increment property).

(4) It is stochastically continuous (see (2.1.3) for the definition).

(5) Its sample paths are right-continuous and have left limits almost surely.
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A stochastic process satisfying conditions (1), (2), (4) and (5) is called an

additive process.

For example, the Brownian motion (which is modeled for continuous random

motion) and the Poisson process (which is modeled for jumping random

motion) are Lévy processes. Selfsimilar Lévy processes other than Brownian

motion constitute an important class called strictly stable Lévy processes.

Definition 2.2.2 A probability measure µ is called strictly stable, if for any

a > 0, there exists b > 0 such that µ̂(θ)a = µ̂(bθ) for any θ ∈ Rd. Let

{X(t), t ≥ 0} be a Lévy process. It is called a strictly stable Lévy process if
the distribution of X(1) is strictly stable.

Strictly stable distributions can be characterized as certain limits of normal-

ized sums of independent and identically distributed random variables. The

following properties are known:

(i) If µ is strictly stable, there exists a unique α ∈ (0, 2]. We call such a
distribution µ α-stable (2-stable is nothing but Gaussian).

(ii) We assume {X(t)} is a Lévy process. Then the distribution of X(1)
is α-stable or α-semi-stable if and only if {X(t)} is 1/α-selfsimilar or
1/α-semi-selfsimilar, respectively.

This implies that marginal distributions of selfsimilar and semi-selfsimilar

Lévy processes are completely determined by the distribution at time 1.

We next consider selfsimilar and semi-selfsimilar additive processes, namely,

they do not necessarily have stationary increments but have independent

increments, due to Sato [S91] and Maejima and Sato [MS99], respectively.

We start with a notion of selfdecomposability and semi-selfdecomposability of

distributions.

Definition 2.2.3 A probability measure µ is called selfdecomposable, if for

any b > 1, there exists a probability measure ρb on Rd such that

µ̂(θ) = µ̂(bθ)ρ̂b(θ), θ ∈ Rd, (2.2.5)

and called semi-selfdecomposable if there exist a b > 1 and an infinitely

divisible probability measure ρb satisfying (2.2.5). Such a b is called a span

of µ.
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The selfdecomposable or semi-selfdecomposable distributions are obtained

as a limit distribution of normalized sum or normalized partial sum, re-

spectively. Refer to [S80] and [MN98] for more details. The following results

link selfsimilar and semi-selfsimilar processes to selfdecomposablity and semi-

selfdecomposablity of distributions, respectively.

Theorem 2.2.4 ([S91], [MS99])

(i) If {X(t), t ≥ 0} is a selfsimilar additive process, then the distribution
of X(t) is selfdecomposable for each t.

(ii) If µ is a non-trivial selfdecomposable probability measure, then for any

H > 0 there exists, identically in law, a non-trivial H-selfsimilar addi-

tive process {X(t), t ≥ 0} such that the distribution of X(1) equals to
µ.

(iii) If {X(t), t ≥ 0} is a semi-selfsimilar additive process having b as a
span, then the distribution of X(t) is semi-selfdecomposable having b

as a span for each t.

(iv) If µ is a non-trivial semi-selfdecomposable probability measure on Rd

having b as a span, then for any H > 0 there exists a non-trivial H-

semi-selfsimilar additive process {X(t), t ≥ 0} having b as a span such
that the distribution of X(1) equals to µ.

Remark 2.2.5 Maejima and Sato [MS99] showed the theorem above still

holds for a wide-sense H-semi-selfsimilar process.

Example 2.2.6 ([G79],[MS99])

(i) Let {B(t), t ≥ 0} be a Brownian motion on Rd with d = 3, 4, 5, . . ..

Define the last exit time from the ball {x : |x| ≤ r} by
L(r) = sup{t ≥ 0 : |B(t)| ≤ r}.

This process is a selfsimilar additive process such that

{L(ar), r ≥ 0} d
= {a2L(r), r ≥ 0}.

Therefore, the distribution of L(r) is selfdecomposable for each r > 0.
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(ii) Let a > 1 and H > 0. For t ∈ [1, a), let νt be zero on (−∞, 0) and
νt(B) =

∫
B
kt(x)gt(log x)x

−1dx on (0,∞), where gt(x) and kt(x) satisfy
the following conditions:

(1) For each t ∈ [1, a), gt(x) is non-negative, bounded, Borel measur-
able, periodic with period H log a and not identically zero.

(2) For each t ∈ [1, a), kt(x) is non-negative, decreasing with
∫∞
0
x(1+

x2)−1kt(x)dx <∞ and not identically zero.

(3) For each x > 0, the function kt(x)gt(log x) is continuous and in-

creasing in t ∈ [1, a) and tends to k1(a
−Hx)g1(log x) as t↗ a.

Then there exist stochastically continuous H-semi-selfsimilar processes

{X(t), t ≥ 0} having a as an epoch with independent increments.
Therefore, the distribution of X(t) is semi-selfdecomposable for each

t > 0.

Remark 2.2.7

(i) Getoor [G79] showed that for each r > 0 the distributions of L(r) is

given by

P{L(r) ∈ B} = 2−(d−2)/2(Γ( d−2
2
))−1rd−2

∫
B

s−d/2e−r
2/(2s)ds

for any Borel set B ∈ [0,∞). In the case where d = 3, Pitman [Pi75]
showed that {L(r)} is a strictly 1/2-stable increasing Lévy process, and
otherwise not a Lévy process.

(ii) Semi-selfsimilar processes {X(t), t ≥ 0} are not determined identically
in law by µ, b and H because they are not determined by the distribu-

tion of X(1) but of that of {X(t), 1 ≤ t < λ0}.
In Chapter 6, we give an example of the semi-selfsimilar process whose

marginal distributions are semi-selfdecomposable. That is constructed in

a different way from that of (ii) in Example 2.2.6.
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Chapter 3

Diffusion processes with
semi-selfsimilarity on
disconnected fractal sets

In this and the next chapter, we consider semi-selfsimilar processes which are

similar to that in Example 2.1.3, namely, the case where geometrical structure

induces the semi-selfsimilarity of processes. In this chapter, we construct

diffusion processes on disconnected fractal sets in R. The diffusion processes

on such fractal sets were introduced by Fujita [Fu87]. Fujita obtained the

growth order of the eigenvalues of the generators of diffusion processes. In

[Fu90], he also studied the estimates of transition probability densities for

diffusion processes with the generators. We construct such diffusion processes

as scaling limits of these random walks by using a general limit theorem for

one-dimensional generalized diffusion processes developed by Itô and Mckean

[IM65] and Stone [St63], and regard the diffusion process as Brownian motion

on each of disconnected fractal sets.

In Section 3.1, we give a setting for disconnected fractal sets on which

we are going to construct diffusion processes. In Section 3.2, we construct

diffusion processes as limits of scale-changed and time-changed random walks.

This implies “random walk dimension” of each of disconnected fractal sets. In

Section 3.3, we study the relationship among three dimensions, random walk

dimension dw, spectral dimension ds and Hausdorff dimension df . Analysis

on connected fractals has shown that there exist some dimensions and they
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are important to study the property of fractal sets. In connected ones’ cases,

it is known that the relationship among the three dimensions ds = 2df/dw.

We show that this relation is also valid in disconnected ones’ cases.

3.1 Selfsimilar disconnected fractal sets on R.

Let r > 1 and let ϕ = {ϕ1, ϕ2, . . . , ϕN} be a family of r-similitudes on [0, 1],
namely, for i = 1, 2, . . . , N ,

ϕi(x) = r
−1x+ bi, 0 ≤ bi and r−1 + bi ≤ 1.

We set
ϕ1(x) = r

−1x,

ϕN(x) = r
−1x+ (1− r−1).

Then it is well-known that there exists a unique compact set C̃ ⊂ [0, 1] such

that

C̃ =
N⋃
i=1

ϕi(C̃).

We assume

Assumption 3.1.1 (Strong separating condition)

ϕi([0, 1]) ∩ ϕj([0, 1]) = ∅ for i �= j.
Without loss of generality, we can assume that for i = 1, 2, . . . , N − 1,

r−1 + bi < bi+1.

Then C̃ is a disconnected fractal set on [0, 1] associated with ϕ. Assumption

3.1.1 implies that C̃ satisfies the open set condition and that N < r. Let

m̃(A) =

N∑
i=1

N−1m̃(ϕ−1
i (A))

for any Borel set A ⊂ [0, 1]. This m̃ with support in [0, 1] is determined

uniquely and let m̃(C̃) = 2. Set

F̃0 = {0, 1},
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and define

F̃n+1 =
N⋃
i=1

ϕi(F̃n),

inductively. Let

F̃∞ =

∞⋃
n=0

F̃n.

Then C̃ coincides with Cl(F̃∞).
Next we define an unbounded disconnected fractal set on [0,∞). Let

F0 =
∞⋃
n=0

ϕ−n
1 (F̃n), Fn = ϕ

(n)
1 (F0), F∞ =

∞⋃
n=0

Fn, C = Cl(F∞).

Then C is an unbounded disconnected fractal set on [0,∞) associated with
ϕ and F0 is called a pre-fractal set. We denote points of any F0 and Fn
by {0 = a0, a1, a2, · · ·} and {0 = a

(n)
0 , a

(n)
1 , a

(n)
2 , · · ·} in the order from left,

respectively. We define a measure m on C by

m(A) = Nnm̃(ϕ
(n)
1 (A)) (3.1.1)

for any Borel set A ⊂ [0, rn] and m(x) = 0 for any x ≤ 0.

3.2 Construction of diffusion processes

Using the infinitely extended measure m defined by (3.1.1), we consider a

generalized one-dimensional diffusion process {X(t), t ≥ 0} with a generator
d

dm(x)

d

dx
. (3.2.2)

This m is often called a speed measure. See [KW82] for more details. Fu-

jita studied the estimates of transition probability densities for generalized

one-dimensional diffusion processes with the generator (3.2.2). The process

{X(t)} can be regarded as a Brownian motion on C. In order to see this,
we construct {X(t)} from a limit of a suitably scaled random walk on a

pre-fractal set F0 by a similar manner developed in [St63]. Let

2h = min
i=1,2,...,N−1

(ai − ai−1). (3.2.3)
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We define a random walk {Rhj , j = 0, 1, 2, . . .} starting from 0 on F0 whose

jumps occur at integral multiples of h as follows:

For i ∈ N,

P (Rh(j+1) = ai−1|Rhj = ai) =
h

ai − ai−1

,

P (Rh(j+1) = ai|Rhj = ai) = 1−
{

h

ai − ai−1
+

h

ai+1 − ai

}
,

P (Rh(j+1) = ai+1|Rhj = ai) =
h

ai+1 − ai ,

and at the origin,

P (Rh(j+1) = a1|Rhj = a0) =
h

a1

,

P (Rh(j+1) = a0|Rhj = a0) = 1− h

a1

.

Let σi be the waiting time of the random walk at the state ai. From the

definitions above, we see that h−1σi has a geometrical distribution with the

mean (
h

ai − ai−1
+

h

ai+1 − ai

)−1

and
a1

h

in the case where i �= 0 and i = 0, respectively.
We next consider the suitable scaling. For simplicity we consider a triadic

Cantor set, and thus h = 1/2. For any m,n, k ∈ N, there exist k0, k1, k2 ∈ N

such that

a
(n)
k−1 = a

(n)
k0
, a

(n)
k = a

(n+m)
k1

, a
(n)
k+1 = a

(n+m)
k2

.

In the same manner as that of {Rj/2}, we define a random walk {R(n)
j/2} and

{R(n+m)
j/2 } on Fn and Fn+m, respectively. Then we have the following relation:

6mE
[
min

{
j : R

(n)
(i+j)/2 hits a

(n)
k−1 or a

(n)
k+1

}
|R(n)

i/2 = a
(n)
k

]
(3.2.4)

= E
[
min

{
j : R

(n+m)
(i+j)/2 hits a

(n+m)
k−1 or a

(n+m)
k+1

}
|R(n+m)

i/2 = a
(n+m)
k

]
.
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For each disconnected fractal set, we put

R(t) = Rhj, hj ≤ t < h(j + 1).

From the relation (3.2.4), we should set 3−nR(6nt) and then expect to have
a non-trivial limiting process as n→ ∞. Let D = D([0,∞);R) be the space
of R-valued right continuous functions on (0,∞) with left limits with the
Skorohod topology. We have the following convergence of a scale-changed and

time-changed random walk to the generalized diffusion process {X(t), t ≥ 0}
with the generator (3.2.2) in D.

Theorem 3.2.1 A scale-changed and time-changed random walk{
r−nR ((rN)nt) , t ≥ 0

}
on F0 converges weakly in D to the process {X(t), t ≥ 0} on C starting from

0 with the generator (3.2.2) as n→ ∞.

Remark 3.2.2 In the case of a triadic Cantor set, r = 3, N = 2 and rN = 6.

This theorem can be proved in a similar way to that of Theorem 4.1.1 (i)

below.

3.3 Relationship among dimensions of discon-

nected fractal sets

Theorem 2.1.6 and Theorem 3.2.1 imply that {X,P} above has the following
semi-selfsimilar property,

{rX(t), t ≥ 0} d
= {X((rN)t), t ≥ 0}. (3.3.5)

Therefore, the random walk dimension dw of C is given by

dw = log(rN)/ log r.

Fujita [Fu87] obtained the growth order of the eigenvalues of (3.2.2). That

implied the spectral dimension of a disconnected fractal set as follows. Let
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{λn} be eigenvalues such that λ1 > λ2 ≥ λ3 ≥ · · · . He showed that there
exist positive constants C1, C2 and n0 such that

C1n
log(Nr)/ logN < −λn < C2n

log(Nr)/ logN

for any n ≥ n0. Let

ρ(x) = �{−λ ≥ x : λ′s are eigenvalues of (3.2.2)}.

This implies the existence of ds = 2 logN/ log(rN) such that

0 < lim inf
x→∞

ρ(x)

xds/2
< lim sup

x→∞

ρ(x)

xds/2
<∞,

and this ds is called a spectral dimension. By Assumption 3.1.1, the Haus-

dorff dimension df = logN/ log r, therefore the following relationship is also

satisfied in the case of disconnected fractal sets,

dsdw = 2df . (3.3.6)

It is known that this relation is valid in the case of connected fractal sets

(see [Ba98]).
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Chapter 4

Homogenization problems on
disconnected fractal sets

In this chapter, we consider the homogenization problems of diffusion pro-

cesses constructed in Chapter 3, and thus we use the same notation as those

of Chapter 3. The problem is as follows. Consider a sequence of independent

and identically distributed random variables α = {αi}∞i=1. We regard this α

as an environment. For a given realization of the environment α, we define

a Markov process on a pre-fractal set F0 which jumps to neighbors with a

rate determined by αi’s. Such a process is considered as a model for hopping

conduction in a disordered medium, see the book of Hughes [H96].

In Section 4.1, we construct a birth and death process {Y (t), t ≥ 0} on a
pre-fractal set whose jumping rate and waiting time are determined by αi’s.

Under some assumptions on αi, some limit theorems are proved for suitably

normalized and scaled processes {Y (t)}. In the case of nested fractal sets
(which are connected and finite ramified) the same problems were studied

by Kumagai and Kusuoka [KK96]. They dealt with an environment whose

mean is finite. In the present case, we can treat environments whose mean

is infinite and show that the limiting process is a semi-selfsimilar process

whose semi-selfsimilarity is not (3.3.5) but determined by the environment.

In Section 4.2, we consider the random walks’ case, namely, their jumps occur

at integral multiples of a unit time.
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4.1 Homogenization problems

Let α = {α1, α2, α3, . . .} be a sequence of independent and identically dis-
tributed random variables with values in (0,∞). For x ∈ [0,∞) and k =
0, 1, 2, . . ., we set

I(0) = 0 and I(x) = al + k, al + k < x ≤ {al + (k + 1)} ∧ al+1,

J0(0) = 0 and J0(l) =

l∑
i=1

�ai − ai−1�,

J1(x) = J0(l) + k, al + k < x ≤ {al + (k + 1)} ∧ al+1, (4.1.1)

where �x� denotes the function of rounding up to the integer and ai ∈ F0

(that is a pre-fractal set, see Section 3.1). For a given α, we set

S(x) =

{
0 for x ≤ 0,

S(I(x)) + αJ1(x)+1(x− I(x)) for x > 0.
(4.1.2)

Denote by A the σ-field generated by α. For a given A, we define a birth
and death process {Y (t), t ≥ 0} starting from 0 on a pre-fractal set F0 in the

random environment α by using this S(x) as follows:

For i ∈ N,

P{Y (t+ h) = ai−1|Y (t) = ai,A} = h

S(ai)− S(ai−1)
+ o(h),

P{Y (t+ h) = ai|Y (t) = ai,A} = 1−
{

h

S(ai)− S(ai−1)
+

h

S(ai+1)− S(ai)
}

+o(h),

P{Y (t+ h) = ai+1|Y (t) = ai,A} = h

S(ai+1)− S(ai) + o(h),

P{Y (t+ h) = aj |Y (t) = ai,A} = o(h) for j /∈ {i− 1, i, i+ 1},
and at the origin,

P{Y (t+ h) = a1|Y (t) = 0,A} = h

S(a1)
+ o(h),

P{Y (t+ h) = 0|Y (t) = 0,A} = 1− h

S(a1)
+ o(h),

P{Y (t+ h) = aj |Y (t) = 0,A} = o(h) for j ∈ {2, 3, 4, . . .},
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as h→ 0. Let D = D([0,∞);R). We have the following theorem.

Theorem 4.1.1 Let {X(t), t ≥ 0} be the diffusion process on C with the

generator (3.2.2).

(i) If E[α1] = a <∞, then the process

{r−nY (a(rN)nt), t ≥ 0}

converges weakly in D to the process {X(t)} as n→ ∞.
(ii) If there exists a slowly varying function L1(·) such that

1

nL1(n)

n∑
i=1

αi → 1

in probability, then the process

{r−nY ((rN)nL1(r
n)t), t ≥ 0}

converges weakly in D to the process {X(t)} as n→ ∞.
(iii) If αi’s belong to the domain of attraction of a one-sided positive strictly

stable distribution of index α ∈ (0, 1), namely, there exists a slowly

varying function L2(·) such that

1

nL2(n)

n∑
i=1

αi

converges in law to a one-sided positive strictly stable distribution of

index α. Then there exists a semi-selfsimilar process {X̃(t), t ≥ 0} on
C such that the process

{r−nY ({r1/αN}nL2(r
n)t), t ≥ 0}

converges weakly in D to the process {X̃(t)} as n → ∞. This {X̃, P}
has the following semi-selfsimilar property,

{X̃(t), t ≥ 0} d
= {r−1X̃(r1/αt)N, t ≥ 0}. (4.1.3)
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Proof of Theorem 4.1.1

We can construct the birth and death process {Y (t), t ≥ 0} on F0 as a

generalized one-dimensional diffusion process with a generator

d

dm(x)

d

dS(x)
,

where m(x) = 0 for x < 0 and m(x) = 2i for ai−1 ≤ x < ai. This S(x)

is often called a scale function. {Y (t)} is realized by a scale-changed and
a time-changed one-dimensional Brownian motion in the following manner.

Let

Ω0 = {ω ∈ C([0,∞);R) : ω(0) = 0} (4.1.4)

and let P0 be the Wiener measure on Ω0. For an element ω ∈ Ω0 we write

B(t) = B(t, ω) = ω(t) = the value of ω at time t. Then {B(t), t ≥ 0, P0} is a
Brownian motion starting from 0. We define α = {α1, α2, α3, . . .} on another
probability space (Ω1,F1, P1) and consider the homogenization problem on

(Ω0 × Ω1, P0 × P1). For a fixed α we set

M0(x) = m0 ◦ S−1(x),

l(t, x) = lim
ε→0

1

2ε

∫ t

0

1[x−ε,x+ε](Bs)ds,

A0(t) =

∫
R

l(t, x)M0(dx).

Then two processes {Y (t)} and {S−1(B(A−1
0 (t)))} are identical in law.

Proof of (i) of Theorem 4.1.1

From the definition of J1(x) (see (4.1.1) for the definition) and N < r (that

is induced by Assumption 3.1.1), we have

|J1(r
n)− rn| ≤ (N − 1)

n−1∑
k=0

rk ≤ Nn.

Hence, for any x ∈ [0, rm] we have

|J1(r
nx)− rnx| ≤ Nn+m. (4.1.5)
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The definition of S(x) implies∣∣∣∣∣∣S(I(x))−
J1(x)∑
i=1

αi

∣∣∣∣∣∣ ≤
∑

{i:ai−I(ai)<1}
αi. (4.1.6)

From (4.1.5), (4.1.6) and E[α1] = a <∞, we see
S(rnx)

arn
→ x (4.1.7)

uniformly on any compact set almost surely with respect to P1. Set

Y (n)(t) = r−nY (a(rN)nt), t ≥ 0, n = 1, 2, 3, . . . . (4.1.8)

Then the generator of {Y (n)(t)} is given by
d

dmn(x)

d

dSn(x)
,

where mn(x) = N
−nm0(r

nx) and Sn(x) = (ar
n)−1S(rnx). Put

Mn(x) = mn ◦ S−1
n (x),

Z(n)(t) = Sn(Y
(n)(t)).

Then the generator of {Z(n)(t)} is given by
d

dMn(x)

d

dx
.

Letting

An(t) =

∫
R

l(t, x)Mn(dx),

A(t) =

∫
R

l(t, x)m(dx),

we have

Lemma 4.1.2 {B(A−1
n (t)), t ≥ 0} converges to {B(A−1(t)), t ≥ 0} in the

J1-topology in D almost surely with respect to P1 as n→ ∞.
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Proof

It is enough to check that for P1-almost every ω1 ∈ Ω1, the measure Mn and

m satisfy conditions (i)-(viii) of Theorem 1 of [St63]. In our case, kn(x) ≡ 0,

a0 = 0 (reflecting boundary) and b0 = ∞, and we see that (4.1.7) implies
conditions (i)-(iii) and (v)-(viii). Hence, we have only to check condition

(iv). Assume that yn is the increasing point of Mn(n = 1, 2, 3, . . .) and that

yn converges to y0. Then there exists a
(n)
j ∈ Fn such that yn = Sn(a

(n)
j )

and a
(n)
j converges to c ∈ C, therefore Sn(a(n)

j ) converges to c which is the

increasing point of m. ✷

Lemma 4.1.2 and (4.1.7) imply that the scaled process {S−1
n (B(A

−1
n (t)))}

converges to {B(A−1(t))} in the J1-topology in D as n → ∞ almost surely,

which completes the proof of (i) of Theorem 4.1.1. ✷

Proof of (ii) of Theorem 4.1.1

Set Sn(x) = {rnL1(r
n)}−1S0(r

nx). Then Sn(x) converges to x uniformly on

each of compact sets in probability with respect to P1. Therefore, we can

prove (ii) of Theorem 4.1.1 by a repetition of the argument of proof of (i). ✷

Proof of (iii) of Theorem 4.1.1

Set Sn(x) = {rn/αL2(r
n)}−1S0(r

nx) with 0 < α < 1. Then noting αi > 0 for

any i ∈ N and 0 < α < 1, we can show that {Sn(x)} converges in law to

an increasing strictly α-stable Lévy process {ξ(x)} with 0 < α < 1 (we call
such a process a subordinator process) by a similar argument to that of proof

of (i). By Skorohod’s realization theorem of almost sure convergence, there

exist a probability space (Ω̂1, F̂1, P̂1) and D-valued random variables Ŝn, ξ̂

such that

(i) Ŝn converges to ξ̂ in D almost surely with respect to P̂1 as n→ ∞,
(ii) the distributions of Ŝn and ξ̂ are equal to those of Sn and ξ, respectively.
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We set
M̂n(x) = mn ◦ Ŝ−1

n (x),

M̂(x) = m ◦ ξ̂−1(x),

Ân(t) =

∫
R

l(t, x)M̂n(dx),

Â(t) =

∫
R

l(t, x)M̂(dx).

Then we have

Lemma 4.1.3 {B(Â−1
n (t)), t ≥ 0} converges to {B(Â−1(t)), t ≥ 0} in the

J1-topology in D almost surely with respect to P̂1 as n→ ∞.
From Lemma 4.1.3 and Skorohod’s realization theorem, we see that the scaled

process {Ŝ−1
n (B(Â

−1
n (t)))} converges to {ξ̂−1(B(Â−1(t)))} in the J1-topology

in D almost surely with respect to P̂1. Set

X̂ξ(t) = ξ̂−1(B(Â−1(t))), t ≥ 0. (4.1.9)

Then we have the following scaling property:

Lemma 4.1.4 {X̂ξ, t ≥ 0} has the semi-selfsimilar property such that

{X̂ξ(t), t ≥ 0} L
= {r−nX̂ξ((r1/αN)nt), t ≥ 0}

for any n ∈ Z, where
L
= denotes identity in law with respect to P0 × P1.

Proof

Since ξ̂ is a subordinator process, we have that {ξ̂(x)} D
= {r−n/αξ̂(rnx)} and

{M̂(x)} D
= {N−nM̂(rn/αx)} for any n ∈ Z, where

D
= denotes identity in law

with respect to P1. Hence, in the same way as that of Lemma 3 of [KK84]

we have the assertion. ✷

Therefore, Lemma 4.1.3 and Lemma 4.1.4 complete the proof of (iii) of The-

orem 4.1.1. ✷
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4.2 Random walks’ case

Next, we consider the homogenization problems for random walks. For any

θ > 0 we set αi,θ = αi ∨ θ. From αi,θ’s, we define Sθ(x) as

Sθ(x) =

{
0 for x ≤ 0,

Sθ(I(x)) + αJ1(x)+1,θ(x− I(x)) for x > 0.
(4.2.1)

Then we have Sθ(x)→ S(x) as θ → 0. Let θn > 0, n ∈ N satisfy θn ↘ 0 as

n→ ∞ and let

hn = hθn (4.2.2)

(see (3.2.3) for the definition of h). For n ∈ N we define a random walk

{Wn(t), t ≥ 0} starting from 0 on a pre-fractal set F0 in the random environ-

ment α whose jumps occur at integral multiples of hn as follows:

For i ∈ N and j = 0, 1, 2, . . . ,

P{Wn(hn(j + 1)) = ai−1|Wn(hnj) = ai,A} = hn
Sθn(ai)− Sθn(ai−1)

,

P{Wn(hn(j + 1)) = ai|Wn(hnj) = ai,A}
= 1−

{
hn

Sθn(ai)− Sθn(ai−1)
+

hn
Sθn(ai+1)− Sθn(ai)

}
,

P{Wn(hn(j + 1)) = ai+1|Wn(hnj) = ai,A} = hn
Sθn(ai+1)− Sθn(ai)

,

and at the origin,

P{Wn(hn(j + 1)) = a1|Wn(hnj) = 0,A} = hn
Sθn(a1)

,

P{Wn(hn(j + 1)) = 0|Wn(hnj) = 0,A} = 1− hn
Sθn(a1)

.

We set

Wn(t) =Wn(hnj), hnj ≤ t < hn(j + 1). (4.2.3)

Then we have the following.

Theorem 4.2.1 Let {X(t), t ≥ 0} be the diffusion process on C with the

generator (3.2.2).

26



(i) If E[α1] = a <∞, then the process {r−nWn(a(rN)
nt), t ≥ 0} converges

weakly in D to the process {X(t)} as n→ ∞.
(ii) If there exists a slowly varying function L1(·) such that

1

nL1(n)

n∑
i=1

αi → 1

in probability, then the process {r−nWn((rN)
nL1(r

n)t), t ≥ 0} con-
verges weakly in D to the process {X(t)} as n→ ∞.

(iii) If αi’s belong to the domain of attraction of a one-side positive strictly

stable distribution of index α ∈ (0, 1), then the process

{r−nWn((r
1/αN)nL2(r

n)t), t ≥ 0}

converges weakly in D to the semi-selfsimilar process {X̃(t)} as n→ ∞,
where L2(x) and X̃(t) were appeared in (iii) of Theorem 4.1.1.

Remark 4.2.2 If there exists θ1 > 0 such that αi > θ1 for any i ∈ N, then

we can take a constant time unit h1 = hθ1 instead of hn in the same manner

as that in Theorem 3.2.1.

Proof of Theorem 4.2.1

First we construct a random walk {Wn(t), t ≥ 0} on F0 from a birth and

death process in the following manner. Let {Yθn(t), t ≥ 0} be a generalized
one-dimensional diffusion process with a generator

d

dm(x)

d

dSθn(x)
.

From {Yθn(t)}, we define τn,j and Tn,j inductively as

Tn,0 = 0,

Tn,j+1 = Tn,j + τn,j+1,

τn,j+1 = inf{t > 0 : Yθn(Tn,j + t) �= Yθn(Tn,j)}.
(4.2.4)
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For ai ∈ F0 we set

wn,i =

(
1

Sθn(ai+1)− Sθn(ai)
+

1

Sθn(ai)− Sθn(ai−1)

)
hn.

Then we have wn,i ∈ (0, 1]. Let θn,i be the unique solution of

1− wn,i = exp
{
−wn,iθn,i

hn

}
.

In the case where Yθn(Tj) = ai, using this θn,i, we set

σn,j+1 =

{
hn if wn,i = 1,

mhn if 0 < wn,i < 1 and (m− 1)θn,i ≤ Tj < mθn,i,
(4.2.5)

and
Un,0 = 0,

Un,j+1 = Un,j + σn,j+1.
(4.2.6)

If wn,i ∈ (0, 1), then the value of h−1
n σn,j is geometrically distributed with

the mean w−1
n,i . By using notation above, we can express the random walk

{Wn(t)} by
Wn(t) = Yθn(Tn,j), Un,j ≤ t < Un,j+1. (4.2.7)

In the case where the state space is Fn, we take θn ↘ 0 and set

Y
(n)
θn
(t) =


r−nYθn(a(rN)

nt) in case (i),

r−nYθn((rN)
nL1(r

n)t) in case (ii),

r−nYθn((r
1/αN)nL2(r

n)t) in case (iii).

for n ∈ N. Let

S
(n)
θn
(x) =


(arn)−1Sθn(r

nx) in case (i),

{rnL1(r
n)}−1Sθn(r

nx) in case (ii),

{rn/αL2(r
n)}−1Sθn(r

nx) in case (iii).

Then the generator of {Y (n)
θn
(t)} is given by

d

dmn(x)

d

S
(n)
θn
(x)
.
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We see
S

(n)
θn

→ x almost surely in case (i),

S
(n)
θn

→ x in probability in case (ii),

S
(n)
θn

→ ξ(x) in law in case (iii),

as n → ∞. Hence, the birth and death process {Y (n)
θn
(t)} also converges

weakly to each of the limiting processes in Theorem 4.1.1 respectively as

n→ ∞.
From the scaled birth and death process {Y (n)

θn
(t)}, we define T (n)

n,j and

τ
(n)
n,j in the same way as (4.2.4). We set

h(n)
n =


{a(rN)n}−1hn in case (i),

{(rN)nL1(r
n)}−1hn in case (ii),

{(r1/αN)nL2(r
n)}−1hn in case (iii).

Using hn, we define σ
(n)
n,j and U

(n)
n,j in the same way as (4.2.5) and (4.2.6),

respectively. By a similar argument to that in Section 4 of [St63], we have

Lemma 4.2.3 for each t > 0 and any ε > 0,

P

 sup
1≤l≤k
T

(n)
n,k≤t

|T (n)
n,l − U (n)

n,l | > ε

 ≤ 14

ε2
(h(n)

n )2. (4.2.8)

Since
∑∞

n=1((rN)
−nhn)2 <∞, we have

Proposition 4.2.4 for each t > 0,

max
1≤l≤k
T

(n)
n,k≤t

∣∣∣T (n)
n,l − U (n)

n,l

∣∣∣→ 0

uniformly almost surely as n→ ∞.
This and Theorem 4.1.1 imply Theorem 4.2.1. ✷
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Chapter 5

One-dimensional diffusion
processes in semi-selfsimilar
random environments

In this and the next chapter, we consider semi-selfsimilar processes which

are similar to that in Example 2.1.2, namely, the case where a distribution

converges along a subsequence and the distribution is wandering along a full

sequence.

In this chapter, we consider a different type of stochastic processes in

random environments from those of Chapter 4, and thus we use different

notation. Let {X(t), t ≥ 0} be a one-dimensional diffusion process described
by a formal stochastic differential equation

dX(t) = dB(t)− 1

2
W

′
(X(t))dt, t > 0, X(0) = 0, (5.0.1)

where {B(t), t ≥ 0} is a one-dimensional Brownian motion starting at 0,
{W (x), x ∈ R} is a stochastic process which is independent of {B(t)} and
W

′
(x) denotes the formal derivative of W (x).

In the case where {W (x)} is a Brownian motion, Brox [Br86] had showed
that the distribution of (log t)−2X(t) converges as t→ ∞. This is a contin-
uous time analogue to the problem that Sinai [Si82] had considered for the

case of a one-dimensional random walk. That is a Markov process on Z which

jumps from i to i+1 and from i+1 to i with a different rate determined by

an environment. Using Brox’s idea, Kawazu, Tamura and Tanaka [KTT88]
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extended to the case of selfsimilar processes. In this chapter, we study the

limiting behaviors of one-dimensional diffusion processes in the case of semi-

selfsimilar processes, which do not belong to the class of selfsimilar ones in

general. In Section 5.1, we explain the models and the results. In Section

5.2, we show that the distribution of a suitably scaled one-dimensional dif-

fusion process in a semi-selfsimilar environment satisfying some conditions

converges along a subsequence. It should be noted that environments do not

have the selfsimilarity in general, hence we cannot expect to have the limit

distribution along a full sequence. But concidering the characteristics of the

limit distribution, we can show that the difference between the scaled diffu-

sion process and some distribution (it is varying as t → ∞ because of the

semi-selfsimilarity of environments) converges to 0 along a full sequence.

5.1 The model and the result

Since W (x) is not differentiable in general, the meaning of a solution (5.0.1)

is not clear. Hence, we give another description of {X(t)} in (5.0.1). Let
W = {W ∈ D(R;R) :W (0) = 0}, (5.1.2)

namely, W is the space of R-valued right continuous functions on R with

left limits and vanishing at 0. Let Q be the probability measure on W with

respect to which {W (x), x ≥ 0} and {W (x), x ≤ 0} are independent and
H-semi-selfsimilar,

{W (ax), x ∈ R} D
= {aHW (x), x ∈ R}, (5.1.3)

where
D
= denotes identity in law with respect to Q. In this and the next

chapter, for each process satisfying (5.1.3) we write that {W,Q} is H-semi-
selfsimilar and we regard {W,Q} as an environment.
For a fixed W ∈ W we deal with a diffusion process with a generator

LW =
1

2
eW (x) d

dx

(
e−W (x) d

dx

)
. (5.1.4)

We construct the diffusion process above in the same way as that in [Br86].

Let

Ω = {ω ∈ C ([0,∞);R) : ω(0) = 0}

31



and let P be the Wiener measure on Ω. For an element ω ∈ Ω we write

B(t) = B(t, ω) = ω(t) =the value of ω at time t. Then {B(t), t ≥ 0, P} is a
Brownian motion starting from 0. In the same manner as those in Chapter

4, we set

S(x) =

∫ x

0

exp{W (y)}dy,

A(t) =

∫ t

0

exp
{−2W (

S−1(B(s))
)}
ds.

Then the process

X(t,W ) = S−1
(
B(A−1(t))

)
, t ≥ 0, (5.1.5)

defined on the probability space (Ω, P ) is a diffusion process with the gener-

ator (5.1.4). We define a probability measure P on W × Ω by P = Q × P
and denote by E the expectation with respect to P. We assume that {W,Q}
and {B,P} are independent. Then {X(t), t ≥ 0} is regarded as a process
defined on the probability space (W×Ω,P) and we call it a diffusion process
in a semi-selfsimilar random environment. If the environment is fixed, then

{X(t,W ), t ≥ 0} is governed by P .
We restrict the class of environments. Let W0 be the set of elements

W ∈ W which satisfy the following conditions:

(i) lim sup
x→∞

{
W (x)− inf

[0,x]
W

}
= lim sup

x→−∞

{
W (x)− inf

[x,0]
W

}
=∞.

(ii) W does not take the same local maximum (minimum) value of W at

different points of local maximum (minimum). Here W is said to take

a local maximum at x if sup{W (y) : y ∈ I(x)} = W (x) ∨W (x−) for
some ε, where I(x) = (x− ε, x+ ε) and a ∨ b = max{a, b}.

(iii) inf{x > 0 :W (x) > 0} = sup{x < 0 : W (x) > 0} = 0.
(iv) If W is discontinuous at x, then sup{W (y) : y ∈ I±} > W (x±) and

inf{W (y) : y ∈ I±} < W (x±) for any ε > 0, where I+ = (x, x+ ε) and
I− = (x− ε, x).

We next explain the notion of a valley of W introduced by [KTT88]. Let

W ∈ W0. If the following are satisfied, then V = (a, b, c) is called a valley of

W ;
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(1) a ≤ b ≤ c,
(2) W (a) > W (x) > W (b) for all x ∈ (a, b),
(3) W (b) < W (x) < W (c) for all x ∈ (b, c).
For a valley V = (a, b, c), D = (W (c)−W (b))∧ (W (a)−W (b)) is called the
depth of V . A valley V = (a, b, c) is said to be proper if

Ha,b < W (c)−W (b), Hc,b < W (a)−W (b),
where

Hx,y =


sup

x≤x′≤y′≤y
{W (y′

)−W (x′
)} for x < y,

sup
y≤y′≤x′≤x

{W (y′
)−W (x′

)} for y < x.

A = Ha,b∨Hc,b is called the inner directed ascent of V . A valley V = (a, b, c)

is said to contain 0 if a < 0 < c. The following proposition is shown in

[KTT88].

Proposition 5.1.1 Let r > 0 and W ∈ W0. Then there exists a proper

valley V of W containing 0 such that A < r ≤ D.
For a fixedW ∈ W0 the bottom of such a proper valley is uniquely determined

by r, and thus it is denoted by br(W ). For all λ > 0 we define the scaled

environment Wλ by

Wλ(x) = λ
−1W (λ1/Hx), (5.1.6)

where H is the exponent of {W,Q}. If environments are selfsimilar, then the
distribution of b1(Wλ) is the same as that of b1(W ) for any λ > 0. However,

in the case of semi-selfsimilar environments this is not true in general. Using

the notation above, we state our main result.

Theorem 5.1.2 Let {W,Q} be an H-semi-selfsimilar environment such that
Q(W0) = 1. We assume that almost all sample functions of {W,Q} have
proper valleys of W containing 0 with A < 1 < D. Then we have the

following:

(i) (1) If λ0 = 1 (see (2.1.4) for the definition of λ0), then the distribution

of λ−1/HX(eλ) converges to that of b1(W ) as λ→ ∞.
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(2) If λ0 > 1, then the distribution of λ−1/HX(eλ) converges to that

of b1(Wξ) as λ → ∞ along a subsequence {λn0ξ, n = 0, 1, 2, . . .},
for any ξ ∈ [1, λ0).

(ii) If {W,Q} is stochastically continuous for any x ∈ R (see (2.1.3) for

the definition of stochastically continuous), then for any ε > 0,

P
{∣∣λ−1/HX

(
eλ,W

)− b1(Wλ)
∣∣ > ε}→ 0 (5.1.7)

in probability with respect to Q as λ→ ∞.

Remark 5.1.3 In the case of selfsimilar environments it was shown that

if Q(W0) = 1, then for each r > 0 almost all sample functions of {W,Q}
have proper valleys containing 0 with A < r < D. On the other hand,

as mentioned in Remark 2.2.7 (ii), in order to construct a semi-selfsimilar

environment we need to determine the law of {W (x), 1 ≤ x < λ0}, and we
can construct a semi-selfsimilar environment {W,Q} such that almost all
sample functions of {W,Q} have proper valleys containing 0 with D = 1

even though Q(W0) = 1. Hence, we need the assumption that almost all

environments have ‘good’ valleys. We give some examples satisfying such an

assumption in the next section.

LetR be a random variable defined on (W×Ω,P) with density (x log λ0)
−1

in [1, λ0) and be independent of {X(t)}. Then the assertion (2) above is ex-
pressed as follows.

Corollary 5.1.4 The distribution of (λR)−1/HX(eλR) converges to that of

b1(WR) as λ→ ∞.
Proof

For a fixed λ > 1 we have λ = λn0ξ, where n ∈ {0, 1, 2, . . .} and ξ = ξ(λ) ∈
[1, λ0). We set c = (log λ0)

−1. Then for every bounded Borel function f we

have

E [f ((λR)−1/HX(eλR,W )
)]

=

∫ λ0

1

E [f ((λr)−1/HX(eλr,W )
)] cdr

r
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=

∫ λ0ξ

ξ

E [f ((λn0ρ)−1/HX(eλ
n
0 ρ,W )

)] cdρ
ρ

(by changing the variables λ = λn0ξ and ξr = ρ)

=

∫ λ0

ξ

E [f ((λn0ρ)−1/HX(eλ
n
0 ρ,W )

)] cdρ
ρ

+

∫ λ0ξ

λ0

E [f ((λn0ρ)−1/HX(eλ
n
0 ρ,W )

)] cdρ
ρ

=

∫ λ0

ξ

E [f ((λn0ρ)−1/HX(eλ
n
0 ρ,W )

)] cdρ
ρ

+

∫ ξ

1

E
[
f
(
(λn+1

0 ρ̃)−1/HX(eλ
n+1
0 eρ,W )

)] cdρ̃
ρ̃

(by changing the variable ρ = λ0ρ̃ in second term)

−→
∫ λ0

1

E [f (b1(Wρ))]
cdρ

ρ

(by the assertion (b) in (II) of Theorem 2.2)

= E [f(b1(WR))] .

✷

5.2 Proof of Theorem 5.1.2

Proof of (i) of Theorem 5.1.2

If λ0 = 1, then environments are selfsimilar and nothing is left to be proved.

We consider the case where λ0 > 1. For a fixed ξ ∈ [1, λ0) we set

λn = λn(ξ) = λ
n
0ξ, n = 0, 1, 2, . . . .

Then {Wλn , Q} and {Wξ, Q} are identical in law. Denote by µλ the distribu-
tion of b1(Wλ), and the identity in law above implies that µλn = µξ. Using

Skorohod’s realization theorem of almost sure convergence, we can find W-

valued random variablesW λn andW ξ defined on a suitable probability space

(W, Q) with the following properties;
(a) {Wλn, Q} and {W λn , Q} are identical in law, {Wξ, Q} and {W ξ, Q}

identical in law,
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(b) W λn → W ξ in the Skorohod topology almost surely with respect to Q

as n→ ∞.
Using the same method as that in the proof of Theorem I-A-1 of [KTT88],

for any ε > 0 and sequence {rn} satisfying rn → 1 as n→ ∞ we have

P{|X(eλnrn, λnW λn)− b1(W ξ)| > ε} → 0 (5.2.8)

almost surely with respect to Q. It is known that for a fixed W ∈ W0 and

r > 0

Br(W ) = {b ∈ R | (the depth of the valley V = (a, b, c) containing 0) ≤ r}
is a locally finite set and br, r > 0 is a step function, which has only finitely

many jumps in each bounded interval away from 0. Hence, (b) and the

assumption that A < 1 < D imply

b1(W λn)→ b1(W ξ)

almost surely with respect to Q. Using this convergence, we have

P{|X(eλnrn, λnW λn)− b1(W λn)| > ε} → 0

almost surely with respect to Q as n→ ∞, and (a) implies
P{|X(eλnrn , λnWλn)− b1(Wλn)| > ε} → 0

in probability with respect to Q.

For a fixed W and each λ > 0 we have the following scaling property (c.f.

Lemma 5.3 of [KTT89] for the proof);

{X(t, λWλ), t ≥ 0} d
= {λ−1/HX(λ2/Ht,W ), t ≥ 0}, (5.2.9)

where
d
= denotes identity in law with respect to P . Using the above scaling

with setting

rn = 1− (2/H) logλn/λn, (5.2.10)

we have

P{|λ−1/H
n X(eλn,W )− b1(Wλn)| > ε} → 0 (5.2.11)
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for any ε > 0 in probability with respect to Q as n → ∞. Since µλn = µξ,

the proof is finished. ✷

Proof of (ii) of Theorem 5.1.2

For each λ > 1, there exists θ(λ) ∈ [1, λ0) such that

{Wλ(x), x ∈ R} D
= {Wθ(λ)(x), x ∈ R}, (5.2.12)

which implies that µλ = µθ(λ). Using (5.2.9) and (5.2.12), we have

{λ−1/HX(λ2/Ht,W ), t ≥ 0} d
= {X(t, λWλ), t ≥ 0}
L
= {X(t, λWθ(λ)), t ≥ 0}, (5.2.13)

where
L
= denotes identity in law with respect to P. Since θ(λ) is varying on

[1, λ0) as λ → ∞, we cannot use the same method as that in the proof of
Theorem I-A-1 of [KTT88] for semi-selfsimilar environments in general. But

we can show that {Wλ}λ>1 is tight as follows:

The stochastic continuity property implies that for each M > 0

Wλ(M) = Wλ(M−)
almost surely with respect to Q. Hence, we need to show that for eachM > 0

and any ε > 0

lim
a→∞

lim sup
λ→∞

Q

{
sup

0≤x≤M
|Wλ(x)| > a

}
= 0, (5.2.14)

lim
δ→0

lim sup
λ→∞

Q
{
wδ(Wλ,M) > ε

}
= 0, (5.2.15)

where wδ(Wλ,M) = sup{|Wλ(x) −Wλ(y)| : 0 ≤ x ≤ y ≤ M, y − x ≤ δ}.
(5.2.12) implies

lim
a→∞

lim sup
λ→∞

Q

{
sup

0≤x≤M
|Wλ(x)| > a

}
= lim

a→∞
sup

λ∈[1,λ0)

Q

{
sup

0≤x≤M
|Wλ(x)| > a

}
≤ lim

a→∞
Q

{
sup

0≤x≤M
|W (λ1/H

0 x)| > a
}
= 0,
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and the stochastic continuity property of environments implies

lim
δ→0

lim sup
λ→∞

Q
{
wδ(Wλ,M) > ε

}
= lim

δ→0
sup

λ∈[1,λ0)

Q
{
wλ1/Hδ(W1, λ

1/HM) > λε
}

≤ lim
δ→0

Q
{
wλ

1/H
0 δ(W1, λ

1/H
0 M) > ε

}
= 0.

Therefore, for any subsequence of {λn} we can take a further subsequence
{λ′

n} such that Wλ′n −Wθ(λ′n) → 0 in the Skorohod topology as n → ∞. In
the same way as that in the case of (i) we can show that for any ε > 0

P{|λ′
n

−1/H
X(eλ

′
n ,W )− b1(Wλ′n)| > ε} → 0

in probability with respect to Q as n→ ∞. ✷
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Chapter 6

Remarks on the limiting
processes of diffusion processes
in semi-selfsimilar random
environments

In this chapter, we construct semi-selfsimilar processes as the limiting pro-

cesses of suitably scaled diffusion processes discussed in Chapter 5 and study

some properties of the limiting processes. Hence, we use the same notations

as those in Chapter 5. To see properties, firstly we show that the limiting

process of a suitably scaled diffusion process along a subsequence is semi-

selfsimilar. Secondly we consider the case of a reflecting diffusion process

in a Lévy environment. Reflecting at x = 0 is needed to show the inde-

pendence of increments of the limiting process. Moreover in the case of the

semi-selfsimilar Lévy environment, we show that marginal distributions of

the limiting process are semi-selfdecomposable. Maejima and Sato [MS99]

discussed properties of semi-selfdecomposable distributions and showed the

way to construct a semi-selfsimilar process whose marginal distributions are

semi-selfdecomposable (see Example 2.2.6). Our process is constructed in a

different way from theirs.
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6.1 Semi-selfsimilarity of the limiting processes

The following theorem implies that any finite dimensional distribution of the

process {X(t), t ≥ 0} with the generator (5.1.4) converges to that of a semi-
selfsimilar process whose exponent is determined by an environment under a

suitable scaling.

Theorem 6.1.1 Let {W,Q} be an H-semi-selfsimilar environment such that
Q(W0) = 1. Assume that for each r > 0 almost all sample functions of

{W,Q} have proper valleys containing 0 with A < r < D. Then we have the
following:

(i) If λ0 = 1 (see (2.1.4) for the definition of λ0), then any finite dimen-

sional distribution of the process

{λ−1/HX(eλt,W ), t > 0,P}

converges to that of the 1/H-selfsimilar process

{bt(W ), t > 0, Q}

as λ → ∞, where bt(W ) is a bottom of a valley of W whose depth

equals to t (see Section 5.1).

(ii) If λ0 > 1, then any finite dimensional distribution of the process

{(λn0ξ)−1/HX(e(λ
n
0 ξ)t,W ), t > 0,P}

converges to that of the 1/H-semi-selfsimilar process

{bt(Wξ), t > 0, Q}

as n→ ∞ for any ξ ∈ [1, λ0).

We give some examples satisfying the assumptions above.

Example 6.1.2 Let Q be a probability measure onW with respect to which

{W (x), x ≥ 0} and {W (−x), x ≥ 0} are independent strictly α-semi-stable
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Lévy processes. As mentioned in Example 2.1.2, we have the following scaling

property,

{W (ax), x ∈ R} D
= {a1/αW (x), x ∈ R}

for some a ∈ (0, 1)∪ (1,∞) and 0 < α ≤ 2. We assume that neither {W (x)}
nor {−W (x)} is a subordinator process. Then for each r > 0 almost all

sample functions of {W,Q} have proper valleys containing 0 with A < r < D.
If a Lévy process {W (x)} is a strictly α-stable Lévy process, then it is also
a strictly α-semi-stable Lévy process. Hence, this example is an extension of

that in p.175 of [KTT88].

Example 6.1.3 For a fixed λ0 > 1 we consider the case where almost all

of the sample functions of {W,Q} have bottoms on {±λn0 , n ∈ Z}. Let

{Ai}∞i=−∞ be a sequence of finite, independent and identically distributed ran-
dom variables. We assume that the distribution of Ai is continuous (namely,

Q(Ai = a) = 0 for any a ∈ R) and Q(Ai > 0) > 0. We set W (λ
n
0) = λ

nH
0 An

and define W (x) for λn0 < x < λ
n+1
0 by the linear interpolation

W (x) = W (λn0) +
W (λn+1

0 )−W (λn0)
λn0 (λ0 − 1) (x− λn0 ).

We also construct {W (x), x ≤ 0} by setting W (−λn0 ) = λnH0 Ãn, where Ãn

and An are independent and identically distributed random variables. Then

the law of large numbers implies that W (0) = 0 almost surely with respect

to Q. This environment {W,Q} is H-semi-selfsimilar and the continuity of
the distribution implies that for each r > 0 almost all sample functions of

{W,Q} have proper valleys containing 0 with A < r < D.
Proof of Theorem 6.1.1

We give a proof in the case of semi-selfsimilar environments. The proof of

the selfsimilar case also works in this case. For a fixed t > 0 we set λn = λ
n
0ξt

in (5.2.11). Then we have

P{|(λn0ξt)−1/HX(eλ
n
0 ξt,W )− b1(Wλn

0 ξt
)| > ε} → 0 (6.1.1)

as n→ ∞. The semi-selfsimilarity of environments implies

{b1(Wλn
0 ξt
), t > 0} D

= {b1(Wξt), t > 0}.
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The definition of the valley and (5.1.6) imply

b1(Wλn
0 ξt
) = b1

(
1

ξt
W

(
(ξt)1/H

))
= bt

(
1

ξ
W

(
(ξt)1/Hx

))
= t−1/Hbt

(
1

ξ
W

(
ξ1/Hx

))
= t−1/Hbt(Wξ).

Therefore we conclude that{
(λn0ξ)

−1/HX(e(λ
n
0 ξ)t,W ), t > 0,P} f.d.

=⇒ {bt(Wξ), t > 0, Q}

as n → ∞, where f.d.
=⇒ denotes the convergence all finite dimensional distri-

butions.

In order to see the semi-selfsimilarity of the process {bt(W ), t > 0, Q}, we
give another description of bt(W ) which was given in [T87]. For simplicity,

we consider the case where ξ = 1. For W ∈ W0 and t > 0, let

W *(x) =

{
W (x)− inf{W (y) : 0 ≤ y ≤ x} for x ≥ 0,

W (x)− inf{W (y) : x ≤ y ≤ 0} for x < 0,

c+t = c
+
t (W ) = inf{x > 0 : W *(x) ≥ t}, (6.1.2)

c−t = c
−
t (W ) = sup{x < 0 : W *(x) ≥ t},

V +
t = V +

t (W ) = inf{W (x) : 0 ≤ x ≤ c+t }, (6.1.3)

V −
t = V −

t (W ) = inf{W (x) : c−t ≤ x ≤ 0}.

We define b+t = b
+
t (W ) in (0, c

+
t ) by W (b

+
t ) = V

+
t and b−t = b

−
t (W ) in (c

−
t , 0)

by W (b−t ) = V −
t . The definition of W0 implies that such b

±
t are uniquely

determined for almost all sample functions of {W,Q}. Let

M+
t =M

+
t (W ) = sup{W (x) : 0 ≤ x ≤ b+t },

M−
t =M

−
t (W ) = sup{W (x) : b−t ≤ x ≤ 0}.
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By using the notation above, bt(W ) is given as

bt(W ) =

{
b+t if M+

t ∨ (V +
t + t) < M−

t ∨ (V −
t + t),

b−t if M+
t ∨ (V +

t + t) > M−
t ∨ (V −

t + t).

For stochastic processes {X(t)} and {Y (t)} and each t > 0, we denote by

X(t)
D∼ Y (t) equality of the marginal distribution with respect to Q. The

semi-selfsimilarity of environments implies for each t > 0

c+λn
0
t = inf{x > 0 : W *(x) ≥ λn0 t}
= inf{x > 0 : λ−n0 W *(x) ≥ t}
D∼ inf{x > 0 : W *(λ

−n/H
0 x) ≥ t}

= λ
n/H
0 c+t ,

V +
λn
0 t

= inf
{
W (x) : 0 ≤ x ≤ c+λn

0 t

}
D∼ inf{W (x) : 0 ≤ x ≤ λn/H0 c+t }
= inf{W (λn/H0 x) : 0 ≤ x ≤ c+t }
D∼ λn0V

+
t .

Hence, we have

b+λn
0 t

= inf{x > 0 :W (x) = V +
λn
0 t
}

D∼ inf{x > 0 :W (x) = λn0V +
t }

D∼ inf{x > 0 :W (λ−n/H0 x) = V +
t }

= λ
n/H
0 b+t ,

and similarly we have c−λn
0
t

D∼ λ
n/H
0 c−t , V

−
λn
0 t

D∼ λn0V −
t , b

−
λn
0 t

D∼ λ
n/H
0 b−t for each

t > 0. These equalities imply that for any choice of distinct t1, t2, . . . , tn(
bλn

0 t1
, bλn

0 t2
, . . . , bλn

0 tn

) D∼
(
λ
n/H
0 bt1 , λ

n/H
0 bt2 , . . . , λ

n/H
0 btn

)
,

and this proves the semi-selfsimilarity of the process {bt(W ), t > 0, Q}. ✷
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6.2 The case of a reflecting Lévy environment

We next study some properties of the marginal distributions of {bt(W )} in
the case of a reflecting diffusion process {X(t), t ≥ 0} on [0,∞) in a Lévy
environment. Let

W̃ = {W ∈ D([0,∞);R) : W (0) = 0}

and let Q̃ be a probability measure on W̃ such that {W (x), x ≥ 0} is a Lévy
process. Let

Ω̃ = {ω̃ ∈ C([0,∞); [0,∞)) : ω̃(0) = 0}.
For ω̃ ∈ Ω̃ we write X̃(t) = X̃(t, ω̃) = ω̃(t) = the value of ω̃ at time t. For

a fixed W , we consider a probability measure P̃W on Ω̃ such that {X̃(t), t ≥
0, P̃W} is a reflecting diffusion process on [0,∞) with the generator (5.1.4)
and starting from 0. We can construct a version of {X̃(t), t ≥ 0, P̃W} from
a one-dimensional Brownian motion by a scale-change and a time-change in

a similar way to that in Chapter 5. We define a probability measure P̃ on

W̃ × Ω̃ by P̃(dWdω̃) = Q̃(dW )P̃W (dω̃). Then {X̃(t), t ≥, P̃} is regarded as
a process defined on the probability space (W̃ × Ω̃, P̃) and called a reflecting
diffusion process in a Lévy environment.

Let W̃0 be the set of elements W ∈ W̃ which satisfy the following condi-

tions:

(i
′
) lim supx→∞W (x) = − lim infx→∞W (x) = +∞.

(ii
′
) W does not take the same local maximum (minimum) value of W at

different points of local maximum (minimum).

(iii
′
) inf{x > 0 :W (x) > 0} = inf{x > 0 : W (x) < 0} = 0.

(iv
′
) If W is discontinuous at x, then sup{W (y) : y ∈ I±} > W (x±) and
inf{W (y) : y ∈ I±} < W (x±) for any ε > 0.

Then we have the following.

Lemma 6.2.1 If almost all sample functions of {W, Q̃} satisfy conditions
(i

′
) and (iii

′
), then conditions (ii

′
) and (iv

′
) are satisfied almost surely, namely,

Q̃(W̃0) = 1.
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Proof

From the assumption that condition (iii
′
) holds almost surely, it follows that

the distribution of W (x) is continuous for every x > 0 (see Theorem 27.4

and Theorem 47.5 of [S99]). Using this fact, we can prove the assertion in

the same way as that in showing Lemma 3.1 of [KTT92]. ✷

For W ∈ W̃0 and t > 0 let W
*(x) = W (x)− inf{W (y) : 0 ≤ y ≤ x}, ct =

c+t as (6.1.2) and Vt = V +
t as (6.1.3). We define bt = bt(W ) in (0, ct) by

W (bt) = Vt. We have the following theorem.

Theorem 6.2.2

(i) Let {W, Q̃} be a Lévy environment such that Q̃(W̃0) = 1. Then the

process {bt, t > 0, Q̃} has independent increments.
(ii) Let {W, Q̃} be a strictly 1/H-semi-stable Lévy environment satisfying

Q̃(W̃0) = 1 with λ0 > 1 (see (2.1.4) for the definition of λ0). Then

(1) {bt, t > 0, Q̃} is a 1/H-semi-selfsimilar process with independent
increments, hence the distribution of bt is semi-selfdecomposable

for each t > 0,

(2) any finite dimensional distribution of the process

{λ−n/H0 X(eλ
n
0 t), t > 0, P̃}

converges to that of the process {bt(W ), t > 0, Q̃} as n→ ∞.

Remark 6.2.3 It is known that the limit distribution of the reflecting dif-

fusion process in a Brownian environment is selfdecomposable (see Kawazu’s

example: Example 3.3 of [S91]).

Example 6.2.4 Let {W, Q̃} be a strictly α-semi-stable Lévy process such
that neither {W (x)} nor {−W (x)} is a subordinator process. Then condi-
tions (i

′
) and (iii

′
) are satisfied almost surely, hence Q̃(W̃0) = 1 by Lemma

6.2.1.

Proof of (i) of Theorem 6.2.2

Let t > 0 be fixed. SinceW *(bt) = 0, we have the independence of {W *
ct(x), 0 ≤

x ≤ bt} and {W *
ct(x), bt ≤ x} by an application of the result due to Millar
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[Mi78] for the stopped process W *
ct(x) = W

*(x ∧ ct) with life time ∞. Since
{W *(x)} is the strong Markov process, the process {W *(ct + x), x ≥ 0} is a
Markov process starting at W *(ct). From the independence above, the value

of W *(ct) is independent of the process {W *(x), 0 ≤ x ≤ bt}, hence the pro-
cess {W *(bt+x), x ≥ 0} is also independent of the process before bt. Since the
increments bu − bt, u > t, are functionals of the process {W *(bt + x), x ≥ 0},
{bs, s ≤ t} and bu−bt, u > t are independent. This implies that {bt, t > 0, Q̃}
has independent increments. ✷

Proof of (ii) of Theorem 6.2.2

We can show the semi-selfsimilarity of the process {bt, t > 0, Q̃} in the same
way as that in the case of both-sided environments. Assertion (2) is shown

in the same way as Theorem 1 of [T00] as follows:

Subtracting some negligible set from W̃0 if necessary, we may assume that

for any W ∈ W̃0 and for any small ε > 0, there exists c
′
t = c

′
t(W ) satisfying

the following conditions;

• ct < c′t < ct + ε,
• W is continuous at c

′
t,

• W (ct)− ε < W (x) < W (c′t) for any x ∈ [ct, c′t).

Hence, for each t > 0 the definition of bt and c
′
t implies

W (c
′
t)−W (bt) > t, (6.2.4)

sup{W (y)−W (x) : 0 ≤ x < y ≤ bt} < t. (6.2.5)

For each W ∈ W̃0 we denote by Ŵ the function defined for all x ∈ R in such

a way that

Ŵ (x) =

{
W (x) for x ≥ 0,

W (−x) for x < 0,

and let Q̂ be the probability measure onW induced by the mappingW $→ Ŵ

under Q̃. Let P̂ = Q̂×P and consider the diffusion process {X(t), t > 0, P̂}
on W × Ω. Then the process {|X(t)|, t > 0, P̂} is identical in law to the
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process {X̃(t), t > 0, P̃}. We consider the convergence of {X, P̂} instead of
that with {X̃, P̃}.
Almost all sample functions of {Ŵ , Q̂} do not satisfy condition (ii) ofW0,

hence we need to change the notion of a valley according to [KTT89]. For

W ∈ W̃0 and t > 0, let Mt = Mt(W ) = sup{W (x) : 0 ≤ x ≤ bt} and define
at = at(W ) in (0, bt) by W (at) =Mt. Then we have the following cases:

(a) IfMt < W (ct), then {Ŵ (x),−ct ≤ x ≤ ct} is a valley with two bottoms
of the same level (see [II-2] in p.512 of [KTT89]).

(b) If Mt > W (ct), then {Ŵ (x),−at ≤ x ≤ ct} and {Ŵ (x),−ct ≤ x ≤ at}
are two valleys that are connected at 0 (see [II-4] in p.512 of [KTT89]).

(6.2.4) and (6.2.5) imply that for any Ŵ and each t > 0 there exists a valley

(exist valleys) with A < t < D for almost all environments. Since Ŵ /∈ W0,

Theorem 6.1.1 must be slightly modified. In either case, by using Theorem 1

of [KTT89] instead of Theorem I-A-I of [KTT88], we can show that for a fixed

W ∈ W̃0 and any ε-neighborhood U of the two point set {−bt(W ), bt(W )},

P̂
{
λ
−n/H
0 X̂(eλ

n
0 t,W ) /∈ U

}
→ 0 (6.2.6)

as n→ ∞. If we replace {X, P̂} by {X̃, P̃}, then the relation (6.2.6) yields

P̃
{∣∣∣λ−n/H0 X(eλ

n
0 t,W )− bt(W )

∣∣∣ > ε}→ 0 (6.2.7)

as n→ ∞. ✷
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Chapter 7

Recurrence of a diffusion
process in a multi-dimensional
random environment

In this chapter, we consider multi-dimensional diffusion processes whose

components are d independent diffusion processes in random environments

considered in Chapter 5 and study their recurrence or transience problem.

Hence, we use similar notation to those of Chapter 5. However, we treat

selfsimilar environments in this chapter, because (i) recurrence or transience

of diffusion processes in semi-selfsimilar environments seems to be similar

to those in selfsimilar ones except few singular semi-selfsimilar environments

and (ii) such a problem is seemed unsettled and for a preparation for semi-

selfsimilar environments’ case, at first we consider selfsimilar cases to grasp

the essence of this problem. The environments we treat are (1) d independent

non-negative reflecting Brownian environments, (2) d non-positive reflecting

Brownian environments and (3) d selfsimilar environments determined by

the distance from the origin. The third case is an extension of a Brown-

ian environment discussed by Fukushima, Nakao and Takeda [FNT87] to

d-dimensional selfsimilar ones. In all cases above we use the criterion for

recurrence or transience of diffusion processes developed by Ichihara [I78].
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7.1 The models and the results

In this chapter, we regard {W,Q} as an environment. For a fixed W we

consider a multi-dimensional diffusion process XW with a generator

d∑
k=1

1

2
eWk(xk) ∂

∂xk

{
e−Wk(xk) ∂

∂xk

}
, (7.1.1)

where W1,W2, . . . ,Wd are d independent copies of {W (x), x ∈ R} and W =

(W1,W2, . . . ,Wd). The process XW is constructed by d independent scale-

changed and time-changed Brownian motions. A diffusion process {X(t)} is
said to be recurrent if for any open subset U ∈ Rd

P (X(t) ∈ U for some t > 0) = 1,

and transient otherwise. In the case of reflecting Brownian environments, we

have the following theorem.

Theorem 7.1.1

(i) If {W,Q} is a non-negative reflecting Brownian environment, then XW

is recurrent for almost all environments and any dimension d.

(ii) If {W,Q} is a non-positive reflecting Brownian environment, then XW

is transient for almost all environments and d = 2, 3, 4, . . ..

These behaviors are quite different from those of d-dimensional Brownian

motion. In one-dimensional case Tanaka [T87] studied diffusion processes

in a non-negative and non-positive reflecting Brownian environments. He

showed that they are recurrent, (log t)−2X(t) converges weakly as n → ∞
and calculated their limit distributions.

We next give a brief survey about multi-dimensional diffusion processes

in random environments. We set x = (x1, x2, . . . , xd) ∈ Rd. Fukushima,

Nakao and Takeda [FNT87] obtained recurrence of the diffusion process XW

with a generator

1

2
eW (|x|)

d∑
k=1

∂

∂xk

(
e−W (|x|) ∂

∂xk

)
, (7.1.2)
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where |x| = √
x2

1 + x
2
2 + · · ·+ x2

d and {W,Q} is a one-dimensional Brow-
nian environment. In the case of a diffusion process in a multi-parameter

Brownian environment, namely, {W,Q} is a Lévy’s Brownian motion with
multi-dimensional time and the diffusion process XW corresponds to a gen-

erator
1

2
eW (x)

d∑
k=1

∂

∂xk

{
e−W (x) ∂

∂xk

}
,

Mathieu [M94] obtained some results of the long time behavior of XW , and

Tanaka [T93] proved that XW is recurrent for almost all environments.

These environments are functions of the distance from the origin. We

next consider a similar environment to those. LetW ∈ W (see (5.1.2) for the

definition of W) and let Q be the probability measure on W with respect to

which {W (x), x ≥ 0} and {W (x), x ≤ 0} are independent and H-selfsimilar
process, namely, for any λ > 0 there exists H > 0 such that

{W (λx), x ∈ R} D
= {λHW (x), x ∈ R}. (7.1.3)

In the present case, we consider a multi-dimensional diffusion process X̂W

with a generator

n∑
k=1

1

2
eWk(|x|) ∂

∂xk

{
e−Wk(|x|) ∂

∂xk

}
. (7.1.4)

For each t ∈ R and W ∈ W we define a scaling transformation Tt as

Tt(W (x)) = e
−HtW (etx), x ∈ R.

We have the following.

Theorem 7.1.2 Let {W,Q} be an H-selfsimilar environment. Assume that
{W,Q} satisfies
(1) W (1) > 0 with positive probability,

(2) any scaling transformation Tt, t > 0 is ergodic.

Then X̂W is recurrent for almost all environments.
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Remark 7.1.3 If {W,Q} is a Brownian (also strictly symmetric α-stable
Lévy) environment, then the conditions above are satisfied. See [Ta89] for

other examples of Gaussian and stable selfsimilar processes with ergodic scal-

ing transformations.

7.2 Proofs of theorems

Proof of (i) of Theorem 7.1.1

From a result in [I78] we need to study recurrence or transience of the diffu-

sion process with a generator

d∑
k=1

∂

∂xk

{
e−Wk(xk) ∂

∂xk

}
. (7.2.5)

According to Ichihara’s recurrent test, it is enough to show that for almost

all environments∫ ∞

1

r1−d
{∫

Sd−1

d∑
k=1

σ2
ke

−|Wk(rσk)|dσ

}−1

dr =∞, (7.2.6)

where dσ is the normalized uniform measure on Sd−1. Hence, it suffices to

show

E[meas
{
x ∈ [0, 1] : x2e−|W1(rx)| ≥ r2−d}]→ 0, (7.2.7)

as r → ∞. For any ε ∈ (0, 1) we have
E
[
meas

{
x ∈ [0, 1] : x2e−|W1(rx)| ≥ r2−d}]

= E
[
meas

{
x ∈ [r1−2/d, 1] : log x2 −√

r|W1(x)| ≥ log r2−d
}]

≤ E
[
meas

{
x ∈ [r1−2/d, 1] : |W1(x)| ≤ r−1/2 log rd−2

}]
=

∫ 1

r1−d/2

Q
(|W1(x)| ≤ r−1/2 log rd−2

)
dx

≤
∫ r−1+ε

r1−d/2

dx+

√
2

π

∫ 1

r−1+ε

dx

∫ log rd−2
√

xr

0

e−u
2/2du

→ 0
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as n→ ∞, which proves (7.2.7). ✷

Proof of (ii) of Theorem 7.1.1

From Ichihara’s transient test it is enough to show that there exists σ̄ ⊂ Sd−1

with a positive uniform measure such that

∫ ∞

1

r1−d


∫
σ̄

{
d∑

k=1

σ2
ke

|Wk(rσk)|
}−1

dσ


−1

dr <∞ (7.2.8)

for almost all environments. Hence, it suffice to show

E
[
meas

{
x ∈ [0, 1] : e|W (rx)| < r2−d

}]→ 0

as r → ∞. This convergence is shown in the same manner as in the proof of
(i), hence (7.2.8) is shown. ✷

Proof of Theorem 7.1.2

For almost allW ∈ W the Dirichlet space theory guarantees that there exists

a diffusion process X̂0
W with a generator

d∑
k=1

δ

δxk

{
e−Wk(|x|) δ

δxk

}
,

and X̂W is constructed from X̂0
W by a scale-changed and a time-change.

From Ichihara’s recurrence test, it is enough to show that for almost all

environments

∫ ∞

1

r1−d
{

d∑
k=1

e−Wk(r)

}−1

dr =∞. (7.2.9)

We show the above in the same way as [T93] as follows:

Let M(t) = min{Tt(Wk(1)) : k = 1, 2, . . . , d}. We have∫ ∞

1

r1−d
{

d∑
k=1

e−Wk(r)

}−1

dr
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=

∫ ∞

0

(et)2−d
{

d∑
k=1

exp
{−eHtTt(Wk(1))

}}−1

dt

≥
∫ ∞

0

(et)2−d exp
{
eHtM(t)

}
dt

≥
∫ ∞

0

1(a,∞) (M(t)) dt,

where a satisfies eHta− (d− 2)t ≥ 0 for any t ≥ 0. The ergordicity implies

lim
T→∞

T−1

∫ T

0

1(a,∞)(M(t))dt = E[1(a,∞)(M(0))]

almost surely with respect to Q. Hence, Q(W (1) > 0) > 0 implies (7.2.9). ✷
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