# Heavy Paths and Cycles in Weighted Graphs and Related Topics 

## Preface

This thesis is the result of almost three years of research on weighted graphs. After an introductory chapter, the reader will find eight chapters. In Chapter 2 I will present my work on heavy fans, which is useful when we discuss about heavy paths and cycles which contain some specified vertices. Through Chapters 3 to 7 , we will discuss about heavy cycles, and in Chapter 8 the results on heavy paths are shown. In Chapter 9 the topic changes to the weighted Ramsey problem. The reader may feel some difference between this topic and the topics discussed in Chapters 2 to 8 , however this topic is also important to investigate the difference between unweighted graphs and weighted graphs. The basis of Chapters 2 to 9 is formed by papers written during these three years. At the beginning of each chapter the readers can find out which paper in the reference is based on the chapter.

I would like to express my gratitude to the researchers and students who stimulated me to further work. First of all, I am deeply indebted to Professor Katsuhiro Ota. His willingness to share his wealth of knowledge and careful reading of my theses improved my research a great deal. I would never have completed this thesis without his help. I would also like to thank Professor Hikoe Enomoto, for his valuable suggestions and comments. Professor Hajo Broersma, Dr. Daniel Paulusma, Dr. Kiyoshi Yoshimoto and Prof. Shenngui Zhang, the seminars with them were great experience for me. I would like to thank them for the valuable discussions though my English talk is poor. I would also like to mention Dr. Tomoki Yamashita, Dr. Shinya Fujita and Dr. Hajime Matsumura. I was able to spent pleasant time with them, and their attitude toward Graph Theory affected me. Now I am not able to list all the names of the people who contributed to my work, but I am grateful to them; The members of Graph Seminar at Tokyo University of Science, the people who I met at the conference, and so on. Lastly, I would like to thank my parents, who continue to give themselves to me.

## Contents

Preface ..... $\mathfrak{i i i}$
1 Introduction ..... 1
2 Heavy fans in weighted graphs ..... 7
3 Heavy cycles passing through some specified vertices in 2-connected weighted graphs ..... 13
4 Heavy cycles passing through some specified vertices in 3-connected weighted graphs ..... 19
5 Heavy cycles in triangle-free weighted graphs ..... 31
6 Claw conditions for heavy cycles in weighted graphs ..... 35
$7 \sigma_{k}$ type condition for heavy cycles in weighted graphs ..... 49
8 Heavy paths in weighted graphs ..... 55
9 Weighed Ramsey problem ..... 67
Bibliography ..... 79

## Chapter 1

## Introduction

### 1.1 Problems studied in this thesis

It is told that the Graph Theory began its history with the problem of the Königsberg's bridge. In the ancient Prussian city Königsberg, there was the River Pregel and seven bridges over the river. Peoples guessed that there is a way to go once over each bridge and return back to the home. However, though they tried to find it several times, it always ended in failure, and in 1736 Leonhard Euler showed that this is impossible. To prove it he replaced the map of the city by a diagram (See Figure 1.1), and then he was able to give a general method for all the other problems of the same type. This diagram is a depiction of a graph; a graph $G$ is a pair of two sets $(V, E)$ such that every element of $E$ is a 2-element subset of $V$. We call $v \in V$ a vertex and $e \in E$ an edge (In the digram, the points represents vertices and lines represents edges). For a graph $G$, the vertex set of $G$ is denoted by $V(G)$ and the edge set of $G$ is denoted by $E(G)$. An edge $\{u, v\}$ is usually written as $u v$ or $v u$. If there is an edge $u v$, then we say it joins two vertices $u$ and $v, u$ and $v$ are adjacent, and $u$ is a neighbor of $v$ (also, $v$ is a neighbor of $u)$. In a graph $G, N_{G}(v)$ denotes the set, and $d_{G}(v)$ denotes the number, of neighbors of $v$. When no confusion occurs, we will denote $N_{G}(v)$ and $d_{G}(v)$ by $N(v)$ and $d(v)$, respectively. A graph $H$ is called a subgraph of a graph $G$, and written as $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. In this case we say $G$ contains $H$.

In the graph described as Figure 1.1, there exists two pairs of edges which join same two vertices. These pairs are called multiple edges. However, in this thesis, we deal with simple graphs: the graph in which there is no multiple edge.

As we can see in Königsberg's problem, to analyze a phenomenon, it is sometimes useful to consider an object as a graph. However, there are a lot of situations which need additional informations to a graph. Consider the cities in a country, in which some of the two cities


Figure 1.1:
are joined by the airline route. Now the cost of the journey between any joined two cities is known. Then, using simple graphs, we can explain the relations of any two cities whether they are joined or not. However, the cost between them cannot be illustrated; we must add the cost to every edge. Such graphs-the graphs in which every edge is assigned a nonnegative number-are called weighted graphs, which are studied in this thesis.

In a weighted graph $G$, the number assigned on each edge is called the weight of the edge, and we denote the weighting function by $w_{G}$. For a subgraph $H$ of $G$, the weight of $H$ is defined by

$$
w_{G}(H)=\sum_{e \in E(H)} w_{G}(e) .
$$

And, for a vertex $v$ in $G$, we define the weighted degree of $v$ in $G$ by

$$
d_{G}^{w}(v)=\sum_{u \in N_{G}(v)} w_{G}(u v) .
$$

When no confusion occurs, we will denote $w_{G}, w_{G}(H)$ and $d_{G}^{w}(v)$ by $w, w(H)$ and $d^{w}(v)$, respectively.

In this thesis, we mainly discuss about the sufficient condition for the weighted graphs to have heavy paths and cycles. A path $P$ is a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{p-1} v_{p}\right\}$, which is usually denoted by $v_{1} v_{2} \ldots v_{p}$. The vertices $v_{1}$ and $v_{p}$ are called endvertices of $P$, and we say $P$ joins $v_{1}$ and $v_{p}$. A cycle is a graph obtained by a path adding an edge joining two endvertices, and it is also denoted by its sequence of vertices, the
same as paths. A cycle is called a hamiltonian cycle of a graph if it contains all the vertices of the graph, and a graph is said to be hamiltonian if it contains a hamiltonian cycle.

In 1989, Bondy and Fan proved the following result, which is the cornerstone of the studies of heavy cycles in weighted graphs.

Theorem 1.1 (Bondy and Fan [4]). Let $G$ be a 2-connected weighted graph and $d$ a nonnegative real number. If $d^{v}(v) \geq d$ for every vertex $v$ in $G$, then either $G$ contains a cycle of weight at least $2 d$ or every heaviest cycle in $G$ is a hamiltonian cycle.

In a weighted graph $G$ with constant weight $1, d_{G}^{w}(v)=d_{G}(v)$ for every vertex $v \in V(G)$ and $w(H)=|E(H)|$ for every subgraph $H$ of $G$. Hence, we can regard an unweighted graph as a weighted graph with special property, and it is clear that Theorem 1.1 is a generalization of the following well-known result. The length of a path or a cycle is the number of the edges that it contains.

Theorem 1.2 (Dirac [8]). Let $G$ be a 2-connected graph and $d$ an integer. If $d(v) \geq d$ for every vertex $v$ in $G$, then $G$ contains either a cycle of length at least $2 d$ or a hamiltonian cycle.

Considering the heavy cycle passing through a specified vertex, Theorem 1.1 is extended as follows.

Theorem 1.3 (Zhang et al. [35]). Let $G$ be a 2-connected weighted graph and $d$ a nonnegative real number. If $d^{w}(v) \geq d$ for every vertex $v$ in $G$, then for every vertex $y$ in $G$, either $G$ contains a cycle of weight at least $2 d$ containing $y$ or every heaviest cycle in $G$ is a hamiltonian cycle.

In the proofs of Theorems 1.1 and 1.3, the existence of heavy paths is used to find heavy cycles. But in fact, the existence of heavy fan (a set of paths joining a vertex and a vertex set) is useful to show the existence of heavy cycles. In Chapter 2 we show the existence of heavy fan. Using this, in the first section of Chapter 3, we give alternative simple proofs of Theorems 1.1 and 1.3, and moreover, we show an extension of Theorem 1.3. All these theorems on heavy cycles are easily shown by using the existence of heavy fan.

The (weighted) degree condition in Theorem 1.2 (1.1) is on every one vertex. Such condition is called Dirac-type. There is another well-known weaker (weighted) degree condition,
called an Ore-type condition, the condition on the degree sum of every two non-adjacent vertices. Using Ore-type condition, Bondy et al. [3] extended a previous result in unweighted graphs to weighted graphs, and proved a theorem on the existence of heavy cycles. In the second section of Chapter 3, using the existence of heavy fan again, an extension of the theorem of Bondy et al. is obtained.

Most of the previous results in weighted graphs are on 2-connected weighted graphs. But in Chapter 4, we deal with 3-connected weighted graphs. In unweighted graphs, it is known that if we enlarge the connectivity, then we can enlarge the number of specified vertices contained in a long cycle. We obtain that the same is true in 3-connected weighted graphs, and the existence of heavy cycles passing through three specified vertices is shown.

There exists some weighted graphs which contain no cycle of weight at least $2 d$, though they satisfy the conditions of Theorem 1.1. In Chapter 5 it is shown that we are always be able to find a cycle of weight at least $2 d$ if a weighted graph has no cycle of length three and satisfies the conditions of Theorem 1.1.

Fan-type condition is more weaker condition than Ore-type one. There are several results which shows the existence of long cycle in unweighted graphs with Fan-type condition. However, to extend them to the weighted graphs, it is shown in [34] that some extra-condition on the weight of the edges is necessary. In Chapter 6 we weaken both of the weighted degree condition and the extra-condition used in [34] and show the the existence of heavy cycles. And in Chapter 7, using the same extra-condition as in [34] and another weighted degree condition, called $\sigma_{k}$-type condition, we show the existence of heavy cycles.

About the existence of heavy paths in weighted graphs, the following is known. A path joining $u$ and $v$ is denoted by a $(u, v)$-path.

Theorem 1.4 (Bondy and Fan [4]). Let G be a 2-connected weighted graph and d be a nonnegative real number. Let $x$ and $y$ be distinct vertices of $G$. If $d^{w}(v) \geq d$ for all $v \in V(G) \backslash\{x, y\}$, then $G$ contains an $(x, y)$-path of weight at least $d$.

In Chapter 8 we give an extension of Theorem 1.4 by using the existence of heavy fan. And also two Ore-type conditions for the existence of heavy paths are shown.

In Chapter 9, we turn our topic to the graphs in which each edge is colored by two colors, and introduce a weighted Ramsey problem (For the basic concepts of Ramsey Theory, I refer the reader to [29]). In this chapter we will discuss about heavy small subgraphs in which
every edge has the same color, and show some theorems on Ramsey problem in weighted graphs.

### 1.2 Terminology and Notation

In this section we give some basic terminology and notation used in this thesis. We call the number of vertices of a graph the order of the graph. An edge $e$ is called incident with a vertex $v$ if $v \in e$. Now if two edges $e_{1}$ and $e_{2}$ are incident with a common vertex $v$, we say $e_{1}$ and $e_{2}$ are adjacent. If every two vertices in a graph are joined by an edge, we call this graph a complete graph, and we denote a complete graph of order $n$ by $K_{n}$.

Let $H$ be a subgraph of a graph $G$ such that for every pair of vertices $u, v \in V(H), u v \in$ $E(H)$ if and only if $u v \in E(G)$, then $H$ is called an induced subgraph of $G$. In this case, $H$ is denoted by $G[V(H)]$ and we say $V(H)$ induces $H$ in $G$. For a graph $G$ and $U \subseteq V(G)$, we denote $G[V(G) \backslash U]$ by $G-U$. Let $E^{\prime}$ be a set of 2-element subsets of $V(G)$. The graph $G^{\prime}=\left(V(G), E(G) \backslash E^{\prime}\right)$ is denoted by $G-E^{\prime}$, and the graph $G^{\prime \prime}=\left(V(G), E(G) \cup E^{\prime}\right)$ is denoted by $G+E^{\prime}$. Moreover, for two graphs $G_{1}$ and $G_{2}$, we define $G_{1} \cup G_{2}=\left(V\left(G_{1}\right) \cup\right.$ $\left.V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$ and $G_{1}+G_{2}=G_{1} \cup G_{2}+\left\{u v \mid u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$.

Let $e=x y$ be an edge of a graph $G$. Sometimes we make a new graph regarding two vertices $x$ with $y$ as a new vertex $v_{e}$. We call this operation contraction of the edge $e$ and the new graph is denoted by $G / e$. Formally, $G / e$ is a graph such that

- $V(G / e)=\left\{V(G) \cup v_{e}\right\} \backslash\{x, y\}$
- $E(G / e)=E(G-\{x, y\}) \cup\left\{v_{e} v \mid x v \in E(G) \backslash\{e\}\right.$ or $\left.y v \in E(G) \backslash\{e\}\right\}$.

The vertex $v_{e}$ is called the contracted vertex.
We call a graph $G$ connected if, for any two vertices, there is a path joining them. And $G$ is called $k$-connected if $|V(G)|>k$ and $G-U$ is connected for any $U \subseteq V(G)$ of cardinality $k-1$. If $G$ is connected and $G-\{v\}$ is not connected for a vertex $v \in V(G)$, then we call $v$ a cutvertex of $G$.

A connected graph which contains no cycle is called a tree. A component of a graph $G$ is a maximal connected subgraph of $G$, and a block $B$ of $G$ is a maximal connected subgraph of $G$ which does not contain a cutvertex of $B$ itself (That is, if $B$ is a block of a graph, then $B$ is 2-connected or $K_{2}$ ). An endblock of $G$ is a block which contain only one cutvertex of $G$. For
an endblock $B$ in a graph, we denote the cutvertex of the graph in $B$ by $c_{B}$, and $V(B) \backslash\left\{c_{B}\right\}$ is denoted by $I_{B}$.

A $k$-partite graph, also called a multi-partite graph, is a graph which have partition $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ of $V(G)$ such that there is no edge in $G\left[V_{1}\right], G\left[V_{2}\right], \ldots, G\left[V_{k}\right]$. We call each $V_{i}$ a partite set. Especially, a 2-partite graph is called a bipartite graph. A complete multipartite graph is a multi-partite graph such that all two vertices in the different partite sets are adjacent. A complete $k$-partite graph whose partite sets contain $n_{1}, n_{2}, \ldots, n_{k}$ vertices is denoted by $K_{n_{1}, n_{2}, \ldots, n_{k}}$.

## Chapter 2

## Heavy fans in weighted graphs

(The main result of this chapter appears in [19], which is an extension of the result proved in [22].)

In [4] and [35], a heavy path in a weighted graph is used to show the existence of heavy cycles. But in fact, as we can see in the later chapters, the existence of heavy fan is useful to find heavy cycles passing through some specified vertices. In this chapter, we prove the existence of heavy fans in weighted graphs.

To describe the main theorem of this chapter, we need some terminology and notation. Let $X, Z$ be disjoint subsets of $V(G)$. A path $P$ is called an $(X, Z)$-path if
(i) $P$ is an ( $x, z$ )-path, where $x \in X$ and $z \in Z$, and
(ii) $V(P) \cap X=\{x\}$ and $V(P) \cap Z=\{z\}$.

Let $X, Z$ be subsets of $V(G)$ and $y \in V(G) \backslash\{X \cup Z\}$. If every ( $\{y\}, Z$ )-path contains at least one vertex of $X$, then we call $X$ separates $y$ from $Z$. A subgraph $F$ of $G$ is called a $(y, Z)$-fan of width $k$ if $F$ is a union of $(\{y\}, Z)$-paths $P_{1}, \ldots P_{k}$, where $P_{i} \cap P_{j}=\{y\}$ for $i \neq j$. The maximum number of the width of $(y, Z)$-fans in $G$ is denoted by $k(G ; y, Z)$. Note that $k(G ; y, Z)$ is equal to the minimum number of vertices separating $y$ from $Z$ in $G$.

Our main result in this chapter is the following.

Theorem 2.1. Let $G$ be a connected weighted graph, $L \subset V(G), M$ a component of $G-L$, and $y \in V(M)$. Now assume that, for all $v \in V(M)$,

- $d_{G}^{w}(v) \geq d$, and
- there is no vertex in $V(M) \backslash\{v\}$ which separates $v$ from $L$.

Then for every $(y, L)$-fan $F_{1}$, there exists a $(y, L)$-fan $F_{2}$ such that

- $w\left(F_{2}\right) \geq d$,
- $V\left(F_{1} \cap L\right) \subseteq V\left(F_{2} \cap L\right)$, and
- the width of $F_{2}=k(G ; y, L)$.

Theorem 2.1 is a weighted analogue of the following theorem due to Perfect.

Theorem 2.2 (Perfect [30]). Let $G$ be a connected graph, $L$ a subset of $V(G), y \in V(G) \backslash L$, and $l$ an integer such that $l<k(G ; y, L)$. Then for every $(y, L)$-fan $F_{1}$ of width $l$, there exists a $(y, L)$-fan $F_{2}$ of width $k(G ; y, L)$ such that $V\left(F_{1} \cap L\right) \subset V\left(F_{2} \cap L\right)$.

Again we need some terminology and notation used in the proof of Theorem 2.1. A component of a graph which contains a vertex $y$ is called a $y$-component. For two disjoint subsets $L$ and $M$ of $V(G)$, we denote $\bigcup_{v \in L}\left(N_{G}(v) \cap M\right)$ by $N_{M}(L)$. In this chapter, for a weighted graph $G$ with $u, v \in V(G)$, we define $w_{G}(u v)=0$ if $u v \notin E(G)$. Let $e=x y$ be an edge of $G$. When we contract an edge, there may occur some multiple edges. In this chapter we identify them as a simple edge whose weight is the sum of the two previous edges. So, $G / e$ is a weighted graph such that

- $V(G / e)=\left\{V(G) \cup\left\{v_{e}\right\}\right\} \backslash\{x, y\}$,
- $E(G / e)=E(G-\{x, y\}) \cup\left\{v_{e} v \mid x v \in E(G) \backslash\{e\}\right.$ or $\left.y v \in E(G) \backslash\{e\}\right\}$,
- if $u v \in E\left(G / e-\left\{v_{e}\right\}\right), w_{G / e}(u v)=w_{G}(u v)$, and
- if $v \in N_{G / e}\left(v_{e}\right), w_{G / e}\left(v v_{e}\right)=w_{G}(v x)+w_{G}(v y)$,

The vertex $v_{e}$ is called the contracted vertex.
We often identify a subgraph $H$ of $G$ and its vertex set $V(H)$. For example, $N_{G}(V(H))$ is often denoted by $N_{G}(H)$.

Proof of Theorem 2.1. Let $k=k(G ; y, L)$. If the width of $F_{1}$ is less than $k$, then Theorem 2.2 shows the existence of a $(y, L)$-fan $F_{1}{ }^{\prime}$ of width $k$ such that $V\left(F_{1} \cap L\right) \subseteq V\left(F_{1}{ }^{\prime} \cap L\right)$. The required fan $F_{2}$ for $F_{1}^{\prime}$ is also a required fan for $F_{1}$, hence we may assume that the width of $F_{1}$ is $k$.

We use induction on $|V(M)|$. If $M=\{y\}$, then it is obvious that $F_{2}=\bigcup_{v \in N(y)} v y$ is a required fan, since $d_{G}^{w}(y) \geq d$. Now suppose $|V(M)| \geq 2$.

Case 1 . Every $X \subseteq V(G)$ of cardinality $k$ separating $y$ from $L$ is contained in $L$.

In this case, we have $\left|N_{L}(M)\right|=k$, so $F \cap L=N_{L}(M)$ for any $(y, L)$-fan $F$ of width $k$. Hence it suffices to show the existence of a $(y, L)$-fan of width $k$ and weight $\geq d$.

Assume that there exists $x \in N_{M}(L) \backslash\{y\}$ and $t \in N_{L}(\{x\})$ such that $k(G / x t ; y, L)=k^{\prime}<k$. When we make $G / x t$ from $G$, we regard the contracted vertex as $t^{\prime}$. Let $X^{\prime}$ be a vertex set of cardinality $k^{\prime}$ which separates $y$ from $L$ in $G / x t$. If $t^{\prime} \notin X^{\prime}$, then $X^{\prime}$ separates $y$ from $L$ in $G$, which contradicts the fact $k(G ; y, L)=k$. Hence we have $t^{\prime} \in X^{\prime}$. Then $X^{\prime} \cup\{x, t\} \backslash\left\{t^{\prime}\right\}$ separates $y$ from $L$ in $G$. If $\left|X^{\prime}\right|<k-1,\left|X^{\prime} \cup\{x, t\} \backslash\left\{t^{\prime}\right\}\right|<k$, which contradicts the fact $k(G ; y, L)=k$. If $\left|X^{\prime}\right|=k-1,\left|X^{\prime} \cup\{x, t\} \backslash\left\{t^{\prime}\right\}\right|=k$ and $X^{\prime} \cup\{x, t\} \backslash\left\{t^{\prime}\right\} \nsubseteq L$. This contradicts the assumption of this case. Therefore, we have $k(G / x t ; y, L)=k$ for every $x \in N_{M}(L) \backslash\{y\}$ and $t \in N_{L}(\{x\})$.

Case 1.1. There exists $t \in N_{L}(M)$ such that $y t \notin E(G)$ or $w(x t)>w(y t)$ for some $x \in N_{M}(\{t\})$.

Take a vertex $x \in N_{M}(\{t\})$ such that $w(x t)$ is as large as possible. Now make a new graph $G^{\prime}=G / x t$, and regard the contracted vertex as $t$. Let $L^{\prime}=L$ and $M^{\prime}$ be the $y$-component of $G^{\prime}-L^{\prime}$. Then $V\left(M^{\prime}\right) \subseteq V(M) \backslash\{x\}$, and it is clear that, for all $v \in V\left(M^{\prime}\right)$,

- $d_{G^{\prime}}^{w}(v)=d_{G}^{w}(v) \geq d$ and
- there is no vertex in $V\left(M^{\prime}\right) \backslash\{v\}$ which separates $v$ from $L^{\prime}$.

Hence, by the induction hypothesis, we can find a $\left(y, L^{\prime}\right)$-fan $F^{\prime}$ of width $k(G / x t ; y, L)=k$ and weight at least $d$. Since $k(G / x t ; y, L)=k$ and $\left|N_{L^{\prime}}\left(M^{\prime}\right)\right| \leq\left|N_{L}(M)\right|=k$, we have $\left|N_{L^{\prime}}\left(M^{\prime}\right)\right|=k$, which implies $t \in F^{\prime}$. And the fact $t \neq y$ implies that there is a vertex $t^{-}$which is the only neighbor of $t$ in $F^{\prime}$. If $t^{-} x \notin E(G)$, then $t t^{-} \in E(G)$ and $w_{G^{\prime}}\left(t t^{-}\right)=w_{G}\left(t t^{-}\right)$. Therefore, $F=F^{\prime}$ is a required fan in $G$. If $t^{-} x \in E(G)$, let $F$ be a graph obtained by replacing an edge $t t^{-}$of $F^{\prime}$
with a path $t^{-} x t$. Then $F$ is a $(y, L)$-fan of width $k$ in $G$ such that

$$
\begin{aligned}
w(F) & =w\left(F^{\prime}\right)-w_{G^{\prime}}\left(t t^{-}\right)+w_{G}\left(t^{-} x\right)+w_{G}(x t) \\
& =w\left(F^{\prime}\right)-\left(w_{G}\left(t t^{-}\right)+w_{G}\left(x t^{-}\right)\right)+w_{G}\left(t^{-} x\right)+w_{G}(x t) \\
& =w\left(F^{\prime}\right)-w_{G}\left(t t^{-}\right)+w_{G}(x t) \\
& \geq w\left(F^{\prime}\right) \\
& \geq d .
\end{aligned}
$$

Hence $F$ is the required fan.

Case 1.2. For every vertex $t \in N_{L}(M), y t \in E(G)$ and $w(x t) \leq w(y t)$ for all $x \in N_{M}(\{t\})$.

First, we prove the following claim.

Claim 1. There exists $a(y, z)$-path $P$ in $M$ such that $z \in N_{M}(L)$ and the weight of $P$ is at least $\min \left\{d_{M}^{w}(z), d\right\}$.

Proof. If $|V(M)|=2$, let $z$ be the vertex of $V(M)$ other than $y$, then it is obvious that $y z$ is a required path. So assume $|V(M)| \geq 3$. Note that

$$
\begin{equation*}
d_{M}^{w}(v)=d_{G}^{w}(v) \geq d \text { for all } v \in V(M) \backslash N_{M}(L) \tag{2.1}
\end{equation*}
$$

In the case where $M$ is 2-connected, let $z$ be a vertex in $N_{M}(L) \backslash\{y\}$ such that $d_{M}^{w}(z) \leq d_{M}^{w}(v)$ for all $v \in N_{M}(L) \backslash\{y\}$. Then with (2.1), we have

$$
d_{M}^{w}(v) \geq \min \left\{d_{M}^{w}(z), d\right\} \text { for all } v \in V(M) \backslash\{y, z\}
$$

Hence, by the induction hypothesis, there exists an $(x,\{y, z\})$-fan $F$ of width $k(M ; x,\{y, z\})=2$ and weight at least $\min \left\{d_{M}^{w}(z), d\right\}$ for every $x \in V(M) \backslash\{y, z\}$. Since the width of $F$ is $2, F$ is a required path.

Assume that $M$ is not 2-connected, and choose an endblock $B$ such that $y \notin I_{B}=V(B) \backslash$ $\left\{c_{B}\right\}$. Then there exists a $\left(y, c_{B}\right)$-path $P_{1}$ which is internally disjoint with $B$. Now let $z$ be a vertex in $N_{I_{B}}(L)$ such that

$$
\begin{equation*}
d_{M}^{w}(z) \leq d_{M}^{w}(v) \text { for all } v \in N_{I_{B}}(L) \tag{2.2}
\end{equation*}
$$

If $\left|V\left(I_{B}\right)\right|=1$, we have $w\left(z c_{B}\right)=d_{M}^{w}(z)$, hence $P=z c_{B} P_{1} y$ is a required path. So we may assume that $\left|V\left(I_{B}\right)\right| \geq 2$, then $B$ is 2-connected. It follows from (2.1) and (2.2) that

$$
d_{M}^{w}(v) \geq \min \left\{d_{M}^{w}(z), d\right\} \text { for all } v \in V(B) \backslash\left\{c_{B}, z\right\}
$$

Then, by the induction hypothesis, there exists an $\left(x,\left\{c_{B}, z\right\}\right)$-fan $F$ of width $k\left(M ; x,\left\{c_{B}, z\right\}\right)=$ 2 and weight at least $\min \left\{d_{M}^{w}(z), d\right\}$ for every $x \in V(B) \backslash\left\{c_{B}, z\right\}$. Since the width of $F$ is $2, F$ is a path. Joining $P_{1}$ and $F$, we have a required path.

Now we are ready to complete the proof of Case 1.2. Choose a vertex $z$ and a path $P$ which satisfy the conditions of Claim 1 . Let $z^{\prime}$ be a neighbor of $z$ in $L$ and

$$
F=\bigcup_{v \in N_{L}(M) \backslash\left\{z^{\prime}\right\}} y v \cup P z z^{\prime} .
$$

Then $F$ is a $(y, L)$-fan such that

$$
\begin{aligned}
w(F) & =\sum_{v \in N_{L}(M) \backslash\left\{z^{\prime}\right\}} w(y v)+w(P)+w\left(z z^{\prime}\right) \\
& \geq \sum_{\left.v \in N_{L}(z) \backslash z^{\prime}\right\}} w(z v)+w(P)+w\left(z z^{\prime}\right) \\
& \geq d_{L}^{w}(z)+\min \left\{d, d_{M}^{w}(z)\right\} \\
& \geq \min \left\{d, d_{G}^{w}(z)\right\} \\
& =d
\end{aligned}
$$

Now the width of $F$ is $\left|N_{L}(M)\right|=k(G ; y, L)$, hence $F$ is the required fan. This completes the proof in Case 1.2 and the proof in Case 1.

Case 2. There exists $X \subseteq V(G)$ of cardinality $k$ such that $X$ separates $y$ from $L$ and $X \nsubseteq L$.

Let $M^{*}$ be the $y$-component of $G-X$. Since $M^{*} \subseteq M, d_{G}^{w}(v) \geq d$ for every $v \in V\left(M^{*}\right)$. Now it is obvious that there is no vertex in $V\left(M^{*}\right) \backslash\{v\}$ which separates $v$ from $X$. Hence, by the induction hypothesis, we can find a $(y, X)$-fan such that $w\left(F^{*}\right) \geq d$ and the width of $F^{*}=k(G ; y, X)=k$. Now adding $\mathcal{P}=F_{1}-V\left(M^{*}\right)$ to $F^{*}$, we can find a $(y, L)$-fan $F_{2}$ such that $w\left(F_{2}\right)=w\left(F^{*}\right)+w(\mathcal{P}) \geq d$ and $F_{2} \cap L=\mathcal{P} \cap L=F_{1} \cap L$, which is a required fan. This completes the proof of Theorem 2.1.

Remark. Theorem 2.1 has the following corollary.

Corollary 2.3. Let $G$ be a connected weighted graph and $x, z \in V(G)$. Assume that, for all $v \in V(G) \backslash\{x\}$,

- $d_{G}^{w}(v) \geq d$, and
- there is no vertex in $V(G) \backslash\{v\}$ which separates $v$ from $x$.

Now if there exists $k$ disjoint $(x, z)$-paths in $G$, then there exists a set of $k^{\prime}$ disjoint $(x, z)$-paths $\mathcal{P}$ such that $k^{\prime} \geq k$ and $w(\mathcal{P}) \geq d$.

Proof. Apply Theorem 2.1 with $L=N_{G}(x) \backslash\{z\}$, then the assertion is obvious.

However, the following is false.

False statement. Let $G$ be a k-connected weighted graph and $X, Z \subset V(G)$. If $d_{G}^{w}(v) \geq d$ for all $v \in V(G)$, then there exists a set of $k$ disjoint $(X, Z)$-paths $\mathcal{P}$ such that $w(\mathcal{P}) \geq d$.

Let $G$ be a complete tripartite graph $K_{1, t, t}$, where $t \geq 2$, let $v$ be the vertex in the partite set of cardinality 1 , and let $X$ and $Z$ be the partite sets of cardinality $t$. If we assign weight $t /(2 t-1)$ to the edges incident to $v$ and weight 1 to all the other edges, then the minimum weighted degree of $G$ is $2 t^{2} /(2 t-1)$, while the maximum weight of the set of $k$ disjoint $(X, Z)$-paths is $t-1+2 \cdot t /(2 t-1)<2 t^{2} /(2 t-1)$.

## Chapter 3

# Heavy cycles passing through some specified vertices in 2-connected weighted graphs 

(This chapter is based on the paper [22].)

### 3.1 A Dirac-type condition for heavy cycles passing through two specified vertices

In 1989, Bondy and Fan began the study on the existence of heavy cycles in weighted graphs, and proved the following.

Theorem 3.1 (Bondy and Fan [4]). Let $G$ be a 2 -connected weighted graph and $d$ a nonnegative real number. If $d^{w}(v) \geq d$ for every vertex $v$ in $G$, then either $G$ contains a cycle of weight at least $2 d$ or every heaviest cycle in $G$ is a hamiltonian cycle.

And, in 2000, Zhang et al. proved that we can find a heavy cycle passing through a specified vertex with the same conditions as in Theorem 3.1.

Theorem 3.2 (Zhang et al. [35]). Let $G$ be a 2-connected weighted graph and $d$ a nonnegative real number. If $d^{w}(v) \geq d$ for every vertex $v$ in $G$, then for every vertex $y$ in $G$, either $G$ contains a cycle of weight at least $2 d$ containing $y$ or every heaviest cycle in $G$ is a hamiltonian cycle.

Theorems 3.1 and 3.2 are generalization of the following two theorems to weighted graphs, respectively.

Theorem 3.3 (Dirac [8]). Let $G$ be a 2-connected graph and $d$ an integer. If $d(v) \geq d$ for every vertex $v$ in $G$, then $G$ contains either a cycle of length at least $2 d$ or a hamiltonian cycle.

Theorem 3.4 (Grötschel [24]). Let $G$ be a 2 -connected graph and $d$ an integer. If $d(v) \geq d$ for every vertex $v$ in $G$, then for every vertex $y$ in $G, G$ contains either a cycle of length at least $2 d$ containing y or a hamiltonian cycle.

First we give alternative short proofs of Theorems 3.1 and 3.2, using Theorem 2.1. From now we use the following notation. Let $C=v_{1} v_{2} \ldots v_{p} v_{1}$ be a cycle with a fixed orientation. The segment $v_{i} v_{i+1} \cdots v_{j}$ is denoted by $C\left[v_{i}, v_{j}\right]$ or $v_{i} C v_{j}$. Let $R$ be a tree or a path and $u, v \in V(R)$ with $u \neq v$, then there is only one $(u, v)$-path in $R$. This path is also denoted by $R[u, v]$ or $u R v$. When $S$ is a cycle, a tree or a path, we denote $S\left[v_{i}, v_{j}\right]-\left\{v_{i}\right\}, S\left[v_{i}, v_{j}\right]-\left\{v_{j}\right\}$ and $S\left[v_{i}, v_{j}\right]-\left\{v_{i}, v_{j}\right\}$ by $S\left(v_{i}, v_{j}\right], S\left[v_{i}, v_{j}\right)$ and $S\left(v_{i}, v_{j}\right)$, respectively.

Proof of Theorem 3.1. Let $G$ be a weighted graph satisfying the conditions of Theorem 3.1. Assume that there exists a heaviest cycle $C$ in $G$ which is not a hamiltonian cycle and $w(C)<$ $2 d$. Now take a vertex $y \in V(G)-V(C)$. Then, from Theorem 2.1, we obtain a $(y, C)$-fan $F$ of width $=p \geq 2$ and weight $\geq d$. Let $F \cap C=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, where $v_{i}$ are in order around $C$, and regard the indices as modulo $p$. Then for all $i$ with $1 \leq i \leq p$, there exists a cycle $C_{i}=a_{i} F a_{i+1} C a_{i}$, hence we have $w\left(F\left[a_{i}, a_{i+1}\right]\right) \leq w\left(C\left[a_{i}, a_{i+1}\right]\right)$ since $C$ is a heaviest cycle in $G$. Now $w\left(C_{1}\right)=w\left(F\left[a_{1}, a_{2}\right]\right)+\sum_{2 \leq i \leq p} w\left(C\left[a_{i}, a_{i+1}\right]\right) \geq \sum_{i=1}^{p} w\left(F\left[a_{i}, a_{i+1}\right]\right) \geq 2 w(F) \geq 2 d$, contradicting that $C$ is a heaviest cycle in $G$.

Proof of Theorem 3.2. Let $G$ be a weighted graph satisfying the conditions of Theorem 3.2. Assume that there exists a heaviest cycle $C$ in $G$ which is not a hamiltonian cycle. Then from Theorem 3.1, $w(C) \geq 2 d$. If $y \in V(C)$, there is nothing to prove, so assume that $y \notin V(C)$. It follows from Theorem 2.1 that there is a $(y, C)$-fan $F$ of width $=p \geq 2$ and weight $\geq d$. Now take $C_{i}$ as in the proof of Theorem 3.1, then also we obtain $w\left(F\left[a_{i}, a_{i+1}\right]\right) \leq$ $w\left(C\left[a_{i}, a_{i+1}\right]\right)$ for all $i$ with $1 \leq i \leq p$. Hence $w\left(C_{1}\right)=w\left(F\left[a_{1}, a_{2}\right]\right)+\sum_{2 \leq i \leq p} w\left(C\left[a_{i}, a_{i+1}\right]\right) \geq$ $\sum_{i=1}^{p} w\left(F\left[a_{i}, a_{i+1}\right]\right) \geq 2 w(F) \geq 2 d$ and $C_{1}$ contains $y$, which is a required cycle.

Next, we prove the following theorem.

Theorem 3.5. Let $G$ be a 2-connected weighted graph and $d$ a nonnegative real number. If $d^{w}(v) \geq d$ for every vertex $v$ in $G$, then for every two vertices $y_{1}$ and $y_{2}$ in $G$, either $G$ contains a cycle of weight at least $2 d$ containing $y_{1}$ and $y_{2}$ or every heaviest cycle in $G$ is a hamiltonian cycle.

Theorem 3.5 is a generalization of Theorem 3.6 to weighted graphs.
Theorem 3.6 (Locke [28]). Let $G$ be a 2-connected graph and $d$ an integer. If $d(v) \geq d$ for every vertex $v$ in $G$, then for every two vertices $y_{1}$ and $y_{2}$ in $G, G$ contains either a cycle of length at least $2 d$ containing $y_{1}$ and $y_{2}$ or a hamiltonian cycle.

Proof of Theorem 3.5. Let $G$ be a weighted graph satisfying the conditions of Theorem 3.5. If there is a heaviest cycle which is not a hamiltonian cycle, then Theorem 3.2 implies that there exists a cycle of weight $\geq 2 d$ which contains either $y_{1}$ or $y_{2}$. Let $C$ be the heaviest one among these cycles. Without loss of generality, we may assume that $C$ contains $y_{1}$. If $y_{2} \in C$, there is nothing to prove, so assume that $y_{2} \notin C$. It follows from Theorem 2.1 that there is a $\left(y_{2}, C\right)$-fan $F$ of width $=p \geq 2$ and weight $\geq d$. Now take $C_{i}$ as in the proof of Theorem 3.1. Then, each $C_{i}$ contains $y_{2}$, hence we have $w\left(F\left[a_{i}, a_{i+1}\right]\right) \leq w\left(C\left[a_{i}, a_{i+1}\right]\right)$ since $C$ is a heaviest cycle which contains either $y_{1}$ or $y_{2}$. Now, since $p \geq 2$, there exists an index $j$ with $1 \leq j \leq p$ such that $V\left(C\left(a_{j} a_{j+1}\right)\right) \cap\left\{y_{1}\right\}=\emptyset$. Then $C_{j}$ contains $y_{1}$ and $y_{2}$, and $w\left(C_{j}\right)=w\left(F\left[a_{j}, a_{j+1}\right]\right)+\sum_{1 \leq i \leq p, i \neq j} w\left(C\left[a_{i}, a_{i+1}\right]\right) \geq \sum_{i=1}^{p} w\left(F\left[a_{i}, a_{i+1}\right]\right) \geq 2 w(F) \geq 2 d$, hence $C_{j}$ is a required cycle.

### 3.2 An Ore-type condition for heavy cycles passing through a specified vertex

The (weighted) degree condition we discussed in Section 3.1 is on every one vertex. In this section, we consider another weighted degree condition, called the Ore-type condition, the condition on the degree sum of every two non-adjacent vertices. The following result, which was shown by several authors independently, gives a generalization of Theorem 3.3 in unweighted graphs. For non-complete graph $G$, let

$$
\sigma_{2}(G)=\min \{d(u)+d(v) \mid u \text { and } v \text { are nonadjacent }\}
$$

and if $G$ is complete, let $\sigma_{2}(G)=\infty$.
Theorem 3.7 (Bermond [2], Linial [27], Pósa [31]). Let G be a 2-connected graph. Then $G$ contains either a cycle of length at least $\sigma_{2}(G)$ or a hamiltonian cycle.

Enomoto [10] gave a further generalization of Theorem 3.7 as follows.

Theorem 3.8 (Enomoto [10]). Let $G$ be a 2-connected graph and y a vertex of $G$. Then $G$ contains either a cycle of length at least $\sigma_{2}(G)$ containing y or a hamiltonian cycle.

And, the following result is due to Bondy et al. [3], which is a weighted generalization of Theorem 3.7. Similar to the notation of $\sigma_{2}$, we denote

$$
\sigma_{2}^{w}(G)=\min \left\{d^{w}(u)+d^{w}(v) \mid u \text { and } v \text { are nonadjacent }\right\}
$$

and if $G$ is complete, let $\sigma_{2}^{w}(G)=\infty$.
Theorem 3.9 (Bondy et al. [3]). Let G be a 2-connected weighted graph. Then $G$ contains either a cycle of weight at least $\sigma_{2}^{w}(G)$ or a hamiltonian cycle.

In this section, we prove the following, which is a weighted generalization of Theorem 3.8. Clearly this also generalizes Theorem 3.9.

Theorem 3.10. Let $G$ be a 2-connected weighted graph and $y$ a vertex of $G$. Then $G$ contains either a cycle of weight at least $\sigma_{2}^{w}(G)$ containing y or a hamiltonian cycle.

Now we prepare a lemma which is used in the proof of Theorem 3.10. Modifying the proof of Theorem 3.9, easily we can obtain the following. Let

$$
\delta^{w}(G-C)=\min _{v \in V(G) \backslash V(C)} d_{G}^{w}(v) .
$$

Lemma 3.11. If $G$ is a 2 -connected weighted graph, then there is a cycle $C$ of weight at least $\max \left\{\sigma_{2}^{w}(G), 2\left(\sigma_{2}^{w}(G)-\delta^{w}(G-C)\right)\right\}$ or a hamiltonian cycle.

In our proof of Lemma 3.11, we use the following theorem, which is another version of Theorem 2.2.

Theorem 3.12 (Perfect [30]). Let $G$ be a k-connected graph, $X, Z$ be disjoint subsets of $V(G)$ such that $|X|,|Z| \geq k$, and $l$ be an integer with $l<k$. If $\mathcal{P}_{1}$ is a set of $l(X, Z)$-paths in $G$, then there exists a set of $k(X, Z)$-paths $\mathcal{P}_{2}$ such that $\mathcal{P}_{1} \cap(X \cup Z) \subset \mathcal{P}_{2} \cap(X \cup Z)$.

Proof of Lemma 3.11. Let $P=u_{1} u_{2} \cdots u_{p}$ be a heaviest path in all longest paths in $G$. Let $e_{l}=u_{l-1} u_{l}$ and $e_{l}^{\prime}=u_{1} u_{l}$ for all $u_{l} \in N\left(u_{1}\right)$, and $f_{l}=u_{l} u_{l+1}$ and $f_{l}^{\prime}=u_{l} u_{p}$ for all $u_{l} \in N\left(u_{p}\right)$. Suppose $G$ is not hamiltonian. Then $\left\{u_{l} \mid u_{l+1} \in N\left(u_{1}\right)\right\} \cap N\left(u_{p}\right)=\emptyset$ and so $\left\{e_{l} \mid u_{l} \in N\left(u_{1}\right)\right\} \cap\left\{f_{k} \mid u_{k} \in N\left(u_{p}\right)\right\}=\emptyset$ as $P$ is longest. Because the weight of $P$ is at least the weights of the paths $P-e_{l}+e_{l}^{\prime}$ and $P-f_{l}+f_{l}^{\prime}$, we have $w\left(e_{l}\right) \geq w\left(e_{l}^{\prime}\right)$ and $w\left(f_{l}\right) \geq w\left(f_{l}^{\prime}\right)$.

Let $s=\max \left\{l \mid u_{l} \in N\left(u_{1}\right)\right\}$ and $t=\min \left\{l \mid u_{l} \in N\left(u_{p}\right)\right\}$. If $s>t$, then there exist $u_{i} \in N\left(u_{1}\right)$ and $u_{j} \in N\left(u_{p}\right)$ such that neither $u_{1}$ nor $u_{p}$ has neighbors in $P\left(u_{j}, u_{i}\right)$ (See Figure 3.1). Then
the cycle $C=u_{1} P u_{j} u_{p} P u_{i} u_{1}$ contains every edge in:

$$
\begin{equation*}
\left\{e_{l} \mid u_{l} \in N\left(u_{1}\right) \backslash u_{i}\right\} \cup\left\{f_{l} \mid u_{l} \in N\left(u_{p}\right) \backslash u_{j}\right\} \cup\left\{e_{i}^{\prime}, f_{j}^{\prime}\right\} \tag{3.1}
\end{equation*}
$$

and so $N\left(u_{1}\right) \cup N\left(u_{p}\right) \subset V(C)$. Therefore both of $d^{w}\left(u_{1}\right)$ and $d^{w}\left(u_{p}\right)$ are at least $\sigma_{2}^{w}(G)-$ $\delta^{w}(G-C)$ and the following inequalities hold because $\left\{e_{l}\right\}_{l} \cap\left\{f_{k}\right\}_{k}=\emptyset$.

$$
\begin{align*}
w(C) & \geq \sum_{u_{l} \in N\left(u_{1}\right) \backslash u_{i}} w\left(e_{l}\right)+w\left(e_{i}^{\prime}\right)+\sum_{u_{l} \in N\left(u_{p}\right) \backslash u_{j}} w\left(f_{l}\right)+w\left(f_{j}^{\prime}\right) \\
& \geq d^{w}\left(u_{1}\right)+d^{w}\left(u_{p}\right) \geq \max \left\{\sigma_{2}^{w}(G), 2\left(\sigma_{2}^{w}(G)-\delta^{w}(G-C)\right)\right\} . \tag{3.2}
\end{align*}
$$

If $s=t$, then there is a path $Q$ joining $u_{i^{\prime}} \in P\left(u_{1}, u_{s}\right)$ and $u_{j^{\prime}} \in P\left(u_{s}, u_{p}\right)$ which is internally disjoint to $P$ as $G$ is 2 -connected. Let $i=\min \left\{l>i^{\prime} \mid u_{l} \in N\left(u_{1}\right)\right\}$ and $j=\max \left\{l<j^{\prime} \mid u_{l} \in\right.$ $\left.N\left(u_{p}\right)\right\}$ (See Figure 3.2). Then the cycle $C=u_{1} P u_{i^{\prime}} Q u_{j^{\prime}} P u_{p} u_{j} P u_{i} u_{1}$ contains every edge in (3.1), and so the inequalities (3.2) hold.

Suppose $s<t$. By Theorem 3.12, there are two vertex disjoint paths $Q_{1}$ and $Q_{2}$ joining $P\left[u_{1}, u_{s}\right]$ and $P\left[u_{t}, u_{p}\right]$ such that $u_{s}$ and $u_{t}$ are ends of $Q_{1}$ or $Q_{2}$, and both of $Q_{1}$ and $Q_{2}$ are internally disjoint to $P\left[u_{1}, u_{s}\right] \cup P\left[u_{t}, u_{p}\right]$. Let $\left\{u_{i^{\prime}}, u_{s}, u_{t}, u_{j^{\prime}}\right\}$ be the set of all the ends of $Q_{1}$ and $Q_{2}$ such that $i^{\prime}<s$ and $j^{\prime}>t$. Let $i=\min \left\{l>i^{\prime} \mid u_{l} \in N\left(u_{1}\right)\right\}$ and $j=\max \left\{l<j^{\prime} \mid u_{l} \in N\left(u_{p}\right)\right\}$. Then the cycle

$$
C=P\left[u_{1}, u_{i^{\prime}}\right] \cup P\left[u_{i}, u_{s}\right] \cup P\left[u_{t}, u_{j}\right] \cup P\left[u_{j^{\prime}}, u_{p}\right] \cup Q_{1} \cup Q_{2} \cup\left\{e_{i}^{\prime}, f_{j}^{\prime}\right\}
$$

contains every edge in (3.1), and thus the inequalities (3.2) hold.

Now we are ready to prove Theorem 3.10.

Proof of Theorem 3.10. Assume that $G$ is not hamiltonian. Then by Lemma 3.11, there is a cycle $C$ of weight at least $\max \left\{\sigma_{2}^{w}(G), 2\left(\sigma_{2}^{w}(G)-\delta^{w}(G-C)\right)\right\}$. If $y \in C$, there is nothing to prove, so assume that $y \notin C$. Let $d=\delta^{w}(G-C)$. It follows from Theorem 2.1 that there


Figure 3.1:
Figure 3.2:
is a ( $y, C$ )-fan $F$ of weight $\geq d$. Now take $C_{i}$ as in the proof of Theorem 3.1. Then, each $C_{i}$ contains $y$ and

$$
\begin{aligned}
\sum_{i=1}^{k} w\left(C_{i}\right) & =(k-1) w(C)+2 w(F) \\
& \geq(k-1) w(C)+2 d \\
& =(k-2) w(C)+w(C)+2 d \\
& \geq(k-2) \sigma_{2}^{w}(G)+2\left(\sigma_{2}^{w}(G)-d\right)+2 d \\
& =k \sigma_{2}^{w}(G)
\end{aligned}
$$

Hence one of them is a cycle of weight at least $\sigma_{2}^{w}(G)$ containing $y$.

Remark. Let $\delta(G)=\min _{v \in V(G)} d(v)$ and $\delta^{w}(G)=\min _{v \in V(G)} d^{w}(v)$. Zhu [37] showed that a 2-connected graph $G$ contains a cycle of length at least $2\left(\sigma_{2}(G)-\delta(G)\right)$ or a hamiltonian cycle. However, we can not give its weighted generalization. Let $G$ be the complete bipartite graph $K_{k, k+1}$ with partite set $V_{1}$ of order $k$. Let $u \in V_{1}$, and we assign weight zero to every edge incident with $u$, and suppose other edges have weight one. Then $\sigma_{2}^{w}(G)=k+1$ and $\delta^{w}(G)=0$, and the weight of a heaviest cycle is $2 k-2<2\left(\sigma_{2}^{w}(G)-\delta^{w}(G)\right)$, though $G$ is not hamiltonian.

## Chapter 4

# Heavy cycles passing through some specified vertices in 3-connected weighted graphs 

(This chapter is based on the paper [19].)

In Chapter 3, some theorems on heavy cycles passing through at most two vertices are shown. What happens when the number of specified vertices becomes 3? In weighted graphs of connectivity 2 , there may be three vertices which cannot be contained in a common cycle. Let $G_{i}$ be a 2-connected graph with $y_{i} \in V\left(G_{i}\right)$ for $i=1,2$ and 3. Consider a graph $G=$ $\left(G_{1} \cup G_{2} \cup G_{3}\right)+K_{2}$, then $G$ is 2-connected and there exists no cycle containing all of $y_{1}, y_{2}$ and $y_{3}$. Hence, to obtain the similar result to Theorem 3.5, we must enlarge the connectivity of the graphs. Now we prove that it is enough to enlarge the connectivity to 3 , and no other extra-condition is necessary.

Theorem 4.1. Let $G$ be a 3-connected weighted graph and let d be a nonnegative real number. If $d^{w}(v) \geq d$ for every vertex $v$ in $G$, then for any given three vertices $y_{1}, y_{2}$ and $y_{3}$ in $G$, either $G$ has a cycle of weight at least $2 d$ containing all of $y_{1}, y_{2}$ and $y_{3}$ or every heaviest cycle in $G$ is a hamiltonian cycle.

Theorem 4.1 is a weighted generalization of the following theorem in case of $k=3$.

Theorem 4.2 (Egawa, Glas and Locke [9]). Let $G$ be a $k$-connected graph where $k \geq 2$, and let $d$ be an integer. If $d(v) \geq d$ for every vertex $v$ in $G$, then for any given vertex set $Y$ with $|Y|=k$, there exists either a cycle of length at least $2 d$ containing all the vertices of $Y$ or a hamiltonian cycle.

In our proof of Theorem 4.1, we call a cycle an $l$-cycle if it contains at least $l$ vertices of $\left\{y_{1}, y_{2}, y_{3}\right\}$, where $1 \leq l \leq 3$.

Proof of Theorem 4.1. Assume the contrary. Then, by Theorem 3.5, there exists a 2-cycle of weight at least $2 d$. Let $C$ be a heaviest one among these cycles. Without loss of generality, we may assume that $C$ contains $y_{1}$ and $y_{2}$. Since $w(C) \geq 2 d, y_{3} \notin V(C)$. By Theorem 2.1, we can find a $\left(y_{3}, C\right)$-fan $F$ of width $k\left(G ; y_{3}, C\right) \geq 3$ and weight at least $d$. Let $V(C) \cap V(F)=$ $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}(p \geq 3)$. We may assume $a_{1}, a_{2}, \ldots, a_{p}$ appear in the consecutive order along $C$.

Claim 1. There exists an index $l$ with $1 \leq l \leq p$ such that $\left\{y_{1}, y_{2}\right\} \subseteq C\left(a_{l}, a_{l+1}\right)$.
Proof. Assume the contrary. Then for all $i$ with $1 \leq i \leq p$, the cycle $a_{i} F a_{i+1} C a_{i}$ is a 2-cycle, hence $w\left(F\left[a_{i} a_{i+1}\right]\right) \leq w\left(C\left[a_{i} a_{i+1}\right]\right)$. Now, since $p \geq 3$, there exists $j$ with $1 \leq j \leq p$ such that $V\left(C\left(a_{j} a_{j+1}\right)\right) \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\emptyset$. Hence $C^{\prime}=a_{j} F a_{j+1} C a_{j}$ is a 3-cycle and

$$
\begin{aligned}
w\left(C^{\prime}\right) & =w\left(F\left[a_{j}, a_{j+1}\right]\right)+\sum_{1 \leq i \leq p, i \neq j} w\left(C\left[a_{i}, a_{i+1}\right]\right) \\
& \geq \sum_{i=1}^{p} w\left(F\left[a_{i}, a_{i+1}\right]\right) \\
& \geq 2 w(F) \\
& \geq 2 d
\end{aligned}
$$

which is a contradiction.

Note that Claim 1 holds for every $\left(y_{3}, C\right)$-fan $F$ of width $k(G ; y, C)$ and weight at least $d$. Now, among such fans, take $F_{1}$ such that $C\left[v_{l}, v_{l+1}\right]$ is as short as possible. Without loss of generality, we may assume that $l=p$ and $a_{p}, y_{1}, y_{2}, a_{1}$ appear in the consecutive order along $C$. Note that $w\left(F_{1}\left[a_{i}, a_{i+1}\right]\right) \leq w\left(C\left[a_{i}, a_{i+1}\right]\right)$ for all $i$ with $1 \leq i \leq p-1$, because the cycle $a_{i} F_{1} a_{i+1} C a_{i}$ is a 2-cycle.

Claim 2. $C\left[a_{1}, a_{p}\right]$ separates $y_{3}$ from $\left\{y_{1}, y_{2}\right\}$.

Proof. Let $H$ be a $y_{3}$-component of $G-C$. Assume that there exists $v \in C\left(a_{p}, a_{1}\right) \cap N(H)$. Let $P$ be a $\left(v, F_{1}\right)$-path in $G[V(H) \cup\{v\}]$ and $V(P) \cap V\left(F_{1}\right)=\left\{v^{\prime}\right\}$. Then, there exists $j$ with $1 \leq j \leq p$ such that $v^{\prime} \notin F_{1}\left(y_{3}, a_{j}\right]$. Now $F^{\prime}=a_{j} F_{1} v^{\prime} P v$ is a $\left(y_{3}, C\right)$-fan, hence Theorem 2.1 shows that there exists a $\left(y_{3}, C\right)$-fan of width $k\left(G ; y_{3}, C\right)$ and weight $\geq d$ which contains $v$ and $a_{j}$. By Claim 1, we have $v \notin C\left[y_{1}, y_{2}\right]$. Without loss of generality, we may assume $v \in C\left[y_{2}, a_{1}\right)$. Now we have $v^{\prime} \in F_{1}\left[y, a_{p}\right]$, for otherwise Theorem 2.1 shows that there exists


Figure 4.1:
a $\left(y_{3}, C\right)$-fan $F^{\prime}$ of width $k\left(G ; y_{3}, C\right)$ and weight $\geq d$ such that $v, a_{p} \in F^{\prime}$, which contradicts the choice of $F_{1}$.

Since $p=k\left(G ; y_{3}, C\right)$, there exists a vertex set $X$ in $V(H) \cup N_{C}(H) \backslash\left\{y_{3}\right\}$ such that $|X|=p$ and $X$ separates $y_{3}$ from $C$. Note that there is one vertex of $F\left[a_{i}, y_{3}\right] \cap X$ for each $i$ with $1 \leq i \leq p$. Let $x_{i}$ be such a vertex. Since $X$ separates $y_{3}$ from $C$, we have $x_{p} \in F\left[v^{\prime}, y_{3}\right]$.

Now Theorem 2.1 shows the existence of $\left(y_{3}, X\right)$-fan $F^{*}$ of width $k\left(G ; y_{3}, X\right)=p$ and $w\left(F^{*}\right) \geq d$ (See Figure 4.1). We have $w\left(C\left[a_{i}, a_{i+1}\right]\right) \geq w\left(F^{*}\left[x_{i}, x_{i+1}\right]\right)$ for every $i$ with $1 \leq$ $i \leq p-1$, since otherwise $a_{i} F_{1} x_{i} F^{*} x_{i+1} F_{1} a_{i+1} C a_{i}$ is a 2-cycle heavier than $C$. Let $C^{\prime}=$ $v P v^{\prime} F_{1} x_{p} F^{*} x_{1} F_{1} a_{1} C v$. Then $C^{\prime}$ is a 3-cycle and

$$
\begin{aligned}
w\left(C^{\prime}\right)= & w\left(v P v^{\prime} F_{1} x_{p} F^{*} y_{3}\right)+w\left(y_{3} F^{*} x_{1} F_{1} a_{1}\right) \\
& +\sum_{i=1}^{p-1} w\left(C\left[a_{i}, a_{i+1}\right]\right)+w\left(C\left[a_{p}, v\right]\right) \\
\geq & w\left(x_{p} F^{*} y_{3}\right)+w\left(y_{3} F^{*} x_{1}\right)+\sum_{i=1}^{p-1} w\left(F^{*}\left[x_{i}, x_{i+1}\right]\right) \\
\geq & 2 w\left(F^{*}\right) \\
\geq & 2 d
\end{aligned}
$$

which is a contradiction. Hence we have $N_{C}(H) \subseteq C\left[a_{1}, a_{p}\right]$, which implies the assertion.
Claim 3. $w\left(C\left[a_{p}, a_{1}\right]\right)<w\left(F_{1}\left[a_{p}, a_{1}\right]\right)$.
Proof. Let $C^{\prime}=a_{1} F_{1} a_{2} C a_{1}$. Since $w\left(C^{\prime}\right)$ is a 3-cycle, $w\left(C^{\prime}\right)<2 d$. Hence

$$
\begin{aligned}
w\left(C\left[a_{p}, a_{1}\right]\right) & =w\left(C^{\prime}\right)-\left(w\left(F_{1}\left[a_{1}, a_{2}\right]\right)+w\left(C\left[a_{2}, a_{p}\right]\right)\right) \\
& <2 d-\left(w\left(F_{1}\left[a_{1}, a_{2}\right]\right)+\sum_{i=2}^{p-1} w\left(F_{1}\left[a_{i}, a_{i+1}\right]\right)\right) \\
& =2 d-\left(2 w\left(F_{1}\right)-w\left(F_{1}\left[a_{p}, a_{1}\right]\right)\right) \\
& \leq w\left(F_{1}\left[a_{p}, a_{1}\right]\right) .
\end{aligned}
$$

Claim 4. For any 2-cycle $D, w(D)<w\left(C\left[a_{1}, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right)$.
Proof. Claim 3 shows $w(C)<w\left(C\left[a_{1}, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right)$. By the choice of $C$, we have $w(D) \leq w(C)$, which implies the assertion.

Claim 5. Let $v_{1}, v_{2}$ be two vertices in $C\left[a_{1}, a_{p}\right]$ such that $a_{1}, v_{1}, v_{2}, a_{p}$ appear in the consecutive order along $C$. If $P$ is $a\left(v_{1}, v_{2}\right)$-path which is internally disjoint with $C\left[a_{1}, a_{p}\right]$ and $V(P) \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$, then $w(P) \leq w\left(C\left[v_{1}, v_{2}\right]\right)$.

Proof. Let $C^{\prime}=v_{1} P v_{2} C a_{p} F_{1} a_{1} C v_{1}$. Since $C^{\prime}$ is a 2-cycle, by Claim 4, $w\left(C^{\prime}\right)<w\left(C\left[a_{1}, a_{p}\right]\right)+$ $w\left(F_{1}\left[a_{p}, a_{1}\right]\right)$. Hence $w(P) \leq w\left(C\left[v_{1}, v_{2}\right]\right)$.

Claim 6. Let $v_{1}, v_{2}$ be two vertices in $C\left[a_{1}, a_{p}\right]$ such that $a_{1}, v_{1}, v_{2}, a_{p}$ appear in the consecutive order along $C$. Let $P$ be a $\left(v_{1}, v_{2}\right)$-path which is internally disjoint with $C$ with $\left\{y_{1}, y_{2}\right\} \subset V(P)$, and $P^{\prime}=v_{2} C a_{p} F a_{1} C v_{1}$. Then $w(P)<w\left(P^{\prime}\right)$.

Proof. Let $C^{\prime}=v_{1} C v_{2} P v_{1}$, then $C^{\prime}$ is a 2-cycle. Hence Claim 4 shows that $w\left(C^{\prime}\right)<$ $w\left(C\left[a_{1}, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right)$, which implies the assertion.

Note that $C\left[a_{p}, a_{1}\right]$ is a $\left(y_{1}, C\left[a_{1}, a_{p}\right]\right)$-fan which includes $a_{1}$ and $a_{p}$. Hence, by Theorem 2.1, there exists a $\left(y_{1}, C\left[a_{1}, a_{p}\right]\right.$ )-fan $F_{2}$ such that $w\left(F_{2}\right) \geq d$ and $a_{1}, a_{p} \in F_{2}$. Note that Claim 2 implies that $V\left(F_{1}\right) \cap V\left(F_{2}\right) \subseteq C\left[a_{1}, a_{p}\right]$.

Case 1. $w\left(F_{1}\left[a_{1}, a_{p}\right]\right) \leq w\left(F_{2}\left[a_{1}, a_{p}\right]\right)$.

Let $P$ be a path which satisfies the followings;

- $P$ is an $\left(a_{1}, a_{p}\right)$-path which is internally disjoint with $F_{1} \cup C\left[a_{1}, a_{p}\right]$, and
- $V(P) \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$.

We may assume that such a path $P$ was chosen so that $w(P)$ is as large as possible, and without loss of generality, we may also assume that $y_{1} \in V(P)$. Let $C^{\prime}=a_{1} F_{1} a_{2} C a_{p} P a_{1}$. Then $y_{1}, y_{3} \in C^{\prime}$ and

$$
\begin{aligned}
w\left(C^{\prime}\right) & =w\left(F_{1}\left[a_{1}, a_{2}\right]\right)+w\left(C\left[a_{2}, a_{p}\right]\right)+w(P) \\
& \geq w\left(F_{1}\left[a_{1}, a_{2}\right]\right)+\sum_{i=2}^{p-1} w\left(F_{1}\left[a_{i}, a_{i+1}\right]\right)+w(P) \\
& \geq 2 w\left(F_{1}\right)-w\left(F_{1}\left[a_{1}, a_{p}\right]\right)+w\left(F_{2}\left[a_{p}, a_{1}\right]\right) \\
& \geq 2 w\left(F_{1}\right) \\
& \geq 2 d,
\end{aligned}
$$

hence $y_{2} \notin P$. Since $C\left[y_{1}, y_{2}\right]$ is a path disjoint with $C\left[a_{1}, a_{p}\right]$, Theorem 2.1 shows the existence of $\left(y_{2}, P \cup C\left[a_{1}, a_{p}\right]\right)$-fan $F_{3}$ of weight at least $d$, width at least 3 and $F_{3} \cap P \neq \emptyset$. By symmetry, we may assume that $F_{3} \cap P\left(a_{1}, y_{1}\right] \neq \emptyset$. Note that Claim 2 implies $V\left(F_{1}\right) \cap V\left(F_{3}\right) \subseteq$ $C\left[a_{1}, a_{p}\right]$. And if there exists two distinct vertices $u, v \in P \cap F_{3}$, then by the choice of $P$, $w(P[u, v]) \geq w\left(F_{3}[u, v]\right)$. Now we assume that $P$ has the orientation from $a_{1}$ to $a_{p}$.

Case 1.1. $F_{3} \cap C\left(a_{1}, a_{p}\right) \neq \emptyset$.

Let $C\left[a_{1}, a_{p}\right) \cap F_{3}=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ and $P\left(a_{1}, a_{p}\right] \cap F_{3}=\left\{b_{l+1}, b_{l+2}, \ldots, b_{m}\right\}$. We may assume $b_{1}, b_{2}, \ldots, b_{l}$ and $b_{l+1}, b_{l+2}, \ldots, b_{m}$ appear in the consecutive order along $C$ and $P$, respectively (See Figure 4.2). Now we consider three paths $P_{1}=b_{1} C b_{l} F_{3} y_{2}, P_{2}=y_{2} F_{3} b_{l+1} P a_{p}$ and $P_{3}=a_{p} F_{1} a_{1} C b_{1}$. Then by Claim 5,

$$
\begin{aligned}
w\left(P_{1}\right) & =\sum_{i=1}^{l-1} w\left(C\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{3}\left[b_{l}, y_{2}\right]\right) \\
& \geq \sum_{i=1}^{l-1} w\left(F_{3}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{3}\left[b_{l}, y_{2}\right]\right) \\
& =\sum_{i=1}^{l} 2 w\left(F_{3}\left[b_{i}, y_{2}\right]\right)-w\left(F_{3}\left[b_{1}, y_{2}\right]\right),
\end{aligned}
$$



Figure 4.2:
and by the maximality of $P$,

$$
\begin{aligned}
w\left(P_{2}\right) & \geq w\left(F_{3}\left[y_{2}, b_{l+1}\right]\right)+\sum_{i=l+1}^{m-1} w\left(P\left[b_{i}, b_{i+1}\right]\right) \\
& \geq w\left(F_{3}\left[y_{2}, b_{l+1}\right]\right)+\sum_{i=l+1}^{m-1} w\left(F_{3}\left[b_{i}, b_{i+1}\right]\right) \\
& =\sum_{i=l+1}^{m} 2 w\left(F_{3}\left[b_{i}, y_{2}\right]\right)-w\left(F_{3}\left[b_{m}, y_{2}\right]\right)
\end{aligned}
$$

Moreover, let $P^{\prime}=b_{1} F_{3} y_{2} P_{2} a_{p}$. Then $y_{1}, y_{2} \in P^{\prime}$, hence by Claim 6,

$$
\begin{aligned}
w\left(P_{3}\right) & \geq w\left(P^{\prime}\right) \\
& \geq w\left(F_{3}\left[b_{1}, y_{2}\right]\right)+w\left(P_{2}\right) \\
& \geq w\left(F_{3}\left[b_{1}, y_{2}\right]\right)+w\left(F_{3}\left[b_{m}, y_{2}\right]\right)
\end{aligned}
$$

Now $b_{1} P_{1} y_{2} P_{2} a_{p} P_{3} b_{1}$ is a 3-cycle of weight

$$
\begin{aligned}
w\left(P_{1}\right)+w\left(P_{2}\right)+w\left(P_{3}\right) \geq & \sum_{i=1}^{l} 2 w\left(F_{3}\left[b_{i}, y_{2}\right]\right)-w\left(F_{3}\left[b_{1}, y_{2}\right]\right) \\
& +\sum_{i=l+1}^{m} 2 w\left(F_{3}\left[b_{i}, y_{2}\right]\right)-w\left(F_{3}\left[b_{m}, y_{2}\right]\right) \\
& +w\left(F_{3}\left[b_{1}, y_{2}\right]\right)+w\left(F_{3}\left[b_{m}, y_{2}\right]\right) \\
= & 2 w\left(F_{3}\right) \\
\geq & 2 d
\end{aligned}
$$

a contradiction.

Case 1.2. $F_{3} \cap C\left(a_{1}, a_{p}\right)=\emptyset$.

Let $P \cap F_{3}=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. We may assume $b_{1}, b_{2}, \ldots, b_{m}$ appear in the consecutive order along $P$. Since $m \geq 3$, there exists $l$ with $1 \leq l \leq m-1$ such that $y_{1} \notin P\left(b_{l}, b_{l+1}\right)$. Now we consider two paths $P_{1}=a_{1} P b_{l} F_{3} b_{l+1} P a_{p}$ and $P_{2}=a_{1} F_{1} a_{2} C a_{p}$. Then

$$
\begin{aligned}
w\left(P_{1}\right) & \geq \sum_{1 \leq i \leq m-1, i \neq l} w\left(P\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{3}\left[b_{l}, b_{l+1}\right]\right) \\
& \geq \sum_{1 \leq i \leq m-1, i \neq l} w\left(F_{3}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{3}\left[b_{l}, b_{l+1}\right]\right) \\
& \geq w\left(F_{3}\right) \\
& \geq d
\end{aligned}
$$

and

$$
\begin{aligned}
w\left(P_{2}\right) & \geq w\left(F_{1}\left[a_{1}, a_{2}\right]\right)+\sum_{i=2}^{p-1} w\left(C\left[a_{i}, a_{i+1}\right]\right) \\
& \geq w\left(F_{1}\left[a_{1}, a_{2}\right]\right)+\sum_{i=2}^{p-1} w\left(F_{1}\left[a_{i}, a_{i+1}\right]\right) \\
& \geq w\left(F_{1}\right) \\
& \geq d .
\end{aligned}
$$

Hence $a_{1} P_{1} a_{p} P_{2} a_{1}$ is a 3-cycle of weight $w\left(P_{1}\right)+w\left(P_{2}\right) \geq 2 d$, which is a contradiction.

Case 2. $w\left(F_{1}\left[a_{1}, a_{p}\right]\right)>w\left(F_{2}\left[a_{1}, a_{p}\right]\right)$.

Let $V\left(C\left[a_{1}, a_{p}\right]\right) \cap V\left(F_{2}\right)=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{q}^{\prime}\right\}$. We may assume that $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{q}^{\prime}$ appear in the consecutive order along $C$. Note that $a_{1}^{\prime}=a_{1}$ and $a_{q}^{\prime}=a_{p}$. Now let $P=a_{1}^{\prime} F_{2} a_{2}^{\prime} C a_{p}$ and consider a cycle $C^{\prime}=a_{1}^{\prime} P a_{p} F_{1} a_{1}$. Then by Claim 5,

$$
\begin{aligned}
w\left(C^{\prime}\right) & =w\left(F_{2}\left[a_{1}^{\prime}, a_{2}^{\prime}\right]\right)+w\left(C\left[a_{2}^{\prime}, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
& \geq w\left(F_{2}\left[a_{1}^{\prime}, a_{2}^{\prime}\right]\right)+\sum_{i=2}^{q-1} w\left(F_{2}\left[a_{i}^{\prime}, a_{i+1}^{\prime}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
& \geq 2 w\left(F_{2}\right)-w\left(F_{2}\left[a_{1}^{\prime}, a_{p}^{\prime}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
& \geq 2 w\left(F_{2}\right) \\
& =2 d .
\end{aligned}
$$

Now let $Q$ be an $\left(a_{1}, a_{p}\right)$-path such that $Q=Q_{1} \cup Q_{2}$, where

- $Q_{1}$ is an $\left(a_{1}, t\right)$-path with $t \in C\left(a_{1}, a_{p}\right]$, which is internally disjoint with $F_{1} \cup C\left[a_{1}, a_{p}\right]$ and $Q_{1} \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$, and
- $Q_{2}=C\left[t, a_{p}\right]$.

Note that such $Q$ exists since $P$ satisfies the above conditions. Take $Q$ so that $w(Q)$ is as large as possible, and assume that $Q$ has an orientation from $a_{1}$ to $a_{p}$. Now consider a cycle $C^{*}=a_{1} Q a_{p} F_{1} a_{1}$, then $w\left(C^{*}\right) \geq w\left(C^{\prime}\right) \geq 2 d$ and $y_{3} \in C^{*}$. Hence $\left\{y_{1}, y_{2}\right\} \nsubseteq V(Q)$. Without loss of generality, we may assume that $y_{1} \in Q$ and $y_{2} \notin Q$. Since $C\left[y_{1}, y_{2}\right]$ is a path disjoint with $C\left[a_{1}, a_{p}\right]$, Theorem 2.1 shows that there exists a ( $y_{2}, Q \cup C\left[a_{1}, t\right]$ )-fan $F_{4}$ of weight at least $d$, width at least 3 and $F_{4} \cap Q\left(a_{1}, t\right) \neq \emptyset$.

Now assume that there exists a vertex $s_{1} \in F_{4} \cap C\left(a_{1}, t\right)$. If there exists $s_{2} \in F_{4} \cap Q\left(a_{1}, y_{1}\right]$, then $\tilde{C}=a_{1} C s_{1} F_{4} s_{2} Q a_{p} F_{1} a_{1}$ is a 3 -cycle and, by Claim 5,

$$
\begin{aligned}
w(\tilde{C})= & w\left(C\left[a_{1}, s_{1}\right]\right)+w\left(F_{4}\left[s_{1}, s_{2}\right]\right)+w\left(Q\left[s_{2}, t\right]\right) \\
& +w\left(Q\left[t, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
\geq & w\left(Q\left[a_{1}, s_{2}\right]\right)+w\left(F_{4}\left[s_{2}, s_{1}\right]\right)+w\left(F_{4}\left[s_{1}, s_{2}\right]\right) \\
& +w\left(Q\left[s_{2}, t\right]\right)+w\left(Q\left[t, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
\geq & w(Q)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
\geq & w\left(C^{*}\right) \\
\geq & 2 d,
\end{aligned}
$$



Figure 4.3:
which is a contradiction. Otherwise, there exists $s_{2} \in F_{4} \cap Q\left(y_{1}, t\right)$. Then $\hat{C}=a_{1} Q s_{2} F_{4} s_{1} C a_{p} F_{1} a_{1}$ is a 3-cycle and Claim 5 implies that

$$
\begin{aligned}
w(\hat{C})= & w\left(Q\left[a_{1}, s_{2}\right]\right)+w\left(F_{4}\left[s_{2}, s_{1}\right]\right)+w\left(C\left[s_{1}, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
\geq & w\left(Q\left[a_{1}, s_{2}\right]\right)+w\left(F_{4}\left[s_{2}, s_{1}\right]\right)+w\left(F_{4}\left[s_{1}, s_{2}\right]\right) \\
& +w\left(Q\left[s_{2}, t\right]\right)+w\left(Q\left[t, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
\geq & w(Q)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
\geq & w\left(C^{*}\right) \\
\geq & 2 d
\end{aligned}
$$

which is a contradiction. Hence we have $F_{4} \cap C\left(a_{1}, t\right)=\emptyset$, which shows $F_{4} \cap\left(Q \cup C\left[a_{1}, t\right]\right) \subseteq$ $Q$.

Let $F_{4} \cap Q=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. We may assume that $b_{1}, b_{2}, \ldots, b_{m}$ appear in the consecutive order along $Q$. It follows from the choice of $Q$ and Claim 5 that $w\left(Q\left[b_{i}, b_{j}\right]\right) \geq$ $w\left(F_{4}\left[b_{i}, b_{j}\right]\right)$ for every $i, j$ with $1 \leq i<j \leq m$.

Case 2.1. $F_{4} \cap Q\left(t, a_{p}\right]=\emptyset$.


Figure 4.4:

Since $m \geq 3$, there exists $l$ with $1 \leq l \leq m-1$ such that $y_{1} \notin Q\left(b_{l}, b_{l+1}\right)$ (See Figure 4.3). Now consider two paths $Q_{1}=a_{1} Q b_{l} F_{4} b_{l+1} Q t$ and $Q_{2}=t Q a_{p} F_{1} a_{1}$. Then

$$
\begin{aligned}
w\left(Q_{1}\right) & \geq \sum_{1 \leq i \leq m-1, i \neq l} w\left(Q\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{l}, b_{l+1}\right]\right) \\
& \geq \sum_{1 \leq i \leq m-1, i \neq l} w\left(F_{4}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{l}, b_{l+1}\right]\right) \\
& \geq w\left(F_{4}\right) \\
& \geq d
\end{aligned}
$$

And, by Claim 6 and the fact that $y_{1}, y_{2} \in Q_{1}$,

$$
w\left(Q_{2}\right) \geq w\left(Q_{1}\right) \geq d
$$

Hence $a_{1} Q_{1} t Q_{2} a_{1}$ is a 3-cycle of weight $w\left(Q_{1}\right)+w\left(Q_{2}\right) \geq 2 d$, which is a contradiction.

Case 2.2. $F_{4} \cap Q\left(t, a_{p}\right] \neq \emptyset$ and $P\left[y_{1}, t\right) \cap F_{4} \neq \emptyset$.

Let $b_{l} \in Q\left[y_{1}, t\right) \cap F_{4}$ and consider three paths $Q_{1}=a_{1} Q b_{m-1} F_{4} b_{m}, Q_{2}=a_{1} Q b_{l} F_{4} b_{m}$ and $Q_{3}=b_{m} Q a_{p} F_{1} a_{1}$ (See Figure 4.4). Note that both of $Q_{1}, Q_{2}$ contains $y_{1}$ and $y_{2}$. Now we
have

$$
\begin{aligned}
w\left(Q_{1}\right) & \geq \sum_{i=1}^{m-2} w\left(Q\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{m-1}, b_{m}\right]\right) \\
& \geq \sum_{i=1}^{m-2} w\left(F_{4}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{m-1}, b_{m}\right]\right) \\
& \geq 2 w\left(F_{4}\right)-w\left(F_{4}\left[b_{1}, b_{m}\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
w\left(Q_{2}\right) & \geq \sum_{i=1}^{l-1} w\left(Q\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{l}, b_{m}\right]\right) \\
& \geq \sum_{i=1}^{l-1} w\left(F_{4}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{l}, b_{m}\right]\right) \\
& \geq w\left(F_{4}\left[b_{1}, b_{m}\right]\right)
\end{aligned}
$$

Moreover, by Claim 6, we have $w\left(Q_{3}\right) \geq w\left(Q_{2}\right)$. Hence $a_{1} Q_{1} b_{m} Q_{3} a_{1}$ is a 3-cycle of weight $w\left(Q_{1}\right)+w\left(Q_{2}\right) \geq 2 w\left(F_{4}\right) \geq 2 d$, a contradiction.

Case 2.3. $F_{4} \cap Q\left(t, a_{p}\right] \neq \emptyset$ and $P\left[y_{1}, t\right) \cap F_{4}=\emptyset$.

Note that $Q\left(a_{1}, y_{1}\right) \cap F_{4} \neq \emptyset$ in this case. Let $l, l^{\prime}$ be integers with $1 \leq l, l^{\prime} \leq m$ such that $b_{l} \in Q\left(a_{1}, y_{1}\right], b_{l+1} \notin Q\left(a_{1}, y_{1}\right], b_{l^{\prime}} \in Q\left(t, a_{p}\right]$ and $b_{l^{\prime}-1} \notin Q\left(t, a_{p}\right)$ (See Figure 4.5). Now consider three cycles $C_{1}=a_{1} C t Q b_{l} F_{4} b_{l^{\prime}} Q a_{p} F_{1} a_{1}, C_{2}=b_{1} Q b_{m} F_{4} b_{1}$ and $C_{3}=a_{1} C a_{p} F_{1} a_{1}$. Note that $C_{1}$ is a 3-cycle and $C_{2}$ is a 2-cycle. By Claim 4, we have $w\left(C_{2}\right) \leq w\left(C_{3}\right)$. Hence,

$$
\begin{aligned}
w\left(C_{1}\right) \geq & w\left(C_{1}\right)+w\left(C_{2}\right)-w\left(C_{3}\right) \\
= & w\left(C\left[a_{1}, t\right]\right)+w\left(Q\left[t, b_{l}\right]\right)+w\left(F_{4}\left[b_{l}, b_{l^{\prime}}\right]\right)+w\left(Q\left[b_{l^{\prime}}, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
& +w\left(Q\left[b_{1}, b_{m}\right]\right)+w\left(F_{4}\left[b_{m}, b_{1}\right]\right)-w\left(C\left[a_{1}, a_{p}\right]\right)-w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
= & w\left(C\left[a_{1}, t\right]\right)+w\left(Q\left[t, b_{l}\right]\right)+w\left(F_{4}\left[b_{l}, b_{l^{\prime}}\right]\right)+w\left(Q\left[b_{l^{\prime}}, a_{p}\right]\right)+w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
& +w\left(Q\left[b_{1}, b_{l}\right]\right)+w\left(Q\left[b_{l}, t\right]\right)+w\left(Q\left[t, b_{l^{\prime}}\right]\right)+w\left(Q\left[b_{l^{\prime}}, b_{m}\right]\right)+w\left(F_{4}\left[b_{m}, b_{1}\right]\right) \\
& -w\left(C\left[a_{1}, t\right]\right)-w\left(C\left[t, b_{l^{\prime}}\right]\right)-w\left(C\left[b_{l^{\prime}}, a_{p}\right]\right)-w\left(F_{1}\left[a_{p}, a_{1}\right]\right) \\
= & w\left(Q\left[t, b_{l}\right]\right)+w\left(F_{4}\left[b_{l}, b_{l^{\prime}}\right]\right)+w\left(Q\left[b_{1}, b_{l}\right]\right)+w\left(Q\left[b_{l}, t\right]\right)+w\left(Q\left[b_{l^{\prime}}, b_{m}\right]\right) \\
& +w\left(F_{4}\left[b_{m}, b_{1}\right]\right) \\
= & w\left(Q\left[b_{1}, b_{l}\right]\right)+w\left(F_{4}\left[b_{1}, b_{l}\right]\right)+2 w\left(Q\left[b_{l}, t\right]\right)+w\left(Q\left[b_{l^{\prime}}, b_{m}\right]\right)+w\left(F_{4}\left[b_{l^{\prime}}, b_{m}\right]\right) .
\end{aligned}
$$



Figure 4.5:

In case of $t \notin F_{4}, l^{\prime}=l+1$. Hence,

$$
\begin{aligned}
& w\left(Q\left[b_{1}, b_{l}\right]\right)+w\left(F_{4}\left[b_{1}, b_{l}\right]\right)+2 w\left(Q\left[b_{l}, t\right]\right)+w\left(Q\left[b_{l^{\prime}}, b_{m}\right]\right)+w\left(F_{4}\left[b_{l^{\prime}}, b_{m}\right]\right) \\
& \quad \geq \sum_{i=1}^{l-1} w\left(F_{4}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{1}, b_{l}\right]\right)+\sum_{i=l+1}^{m-1} w\left(F_{4}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{l+1}, b_{m}\right]\right) \\
& \quad \geq 2 w\left(F_{4}\right) \\
& \quad \geq 2 d
\end{aligned}
$$

a contradiction. Otherwise, $l^{\prime}=l+2$ and $t=b_{l+1}$. Hence,

$$
\begin{aligned}
w\left(Q\left[b_{1}, b_{l}\right]\right) & +w\left(F_{4}\left[b_{1}, b_{l}\right]\right)+2 w\left(Q\left[b_{l}, t\right]\right)+w\left(Q\left[b_{l^{\prime}}, b_{m}\right]\right)+w\left(F_{4}\left[b_{l^{\prime}}, b_{m}\right]\right) \\
\geq & \sum_{i=1}^{l-1} w\left(F_{4}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{1}, b_{l}\right]\right)+2 w\left(F_{4}\left[b_{l}, b_{l+1}\right]\right) \\
& +\sum_{i=l+2}^{m-1} w\left(F_{4}\left[b_{i}, b_{i+1}\right]\right)+w\left(F_{4}\left[b_{l+2}, b_{m}\right]\right) \\
\geq & 2 w\left(F_{4}\right) \\
\geq & 2 d
\end{aligned}
$$

a contradiction. This completes the proof of Theorem 4.1.

## Chapter 5

# Heavy cycles in triangle-free weighted graphs 

## (This chapter is based on the paper [20].)

Again, Bondy and Fan proved the following theorem in [4].

Theorem 5.1 (Bondy and Fan [4]). Let $G$ be a 2-connected weighted graph and let $d$ be a nonnegative real number. If $d^{w}(v) \geq d$ for every vertex $v$ in $G$, then
(a) G has a cycle of weight at least $2 d$, or
(b) every heaviest cycle in $G$ is a hamiltonian cycle.

If we consider the weighted complete graph in which every edge has weight 1 , we know that conclusion (b) of Theorem 5.1 cannot be dropped. However, there are a lot of graphs in which both (a) and (b) of Theorem 5.1 hold. In such weighted graphs, though it contains a cycle of weight at least $2 d$, we cannot guarantee the weight of a heaviest cycle of a graph by this theorem. In this chapter, we prove the following theorem, by which we can always find a heavy cycle. A triangle-free graph is one which contains no cycle of length 3.

Theorem 5.2. Let G be a 2-connected triangle-free weighted graph and let d be a nonnegative real number. If $d^{w}(v) \geq d$ for every vertex $v$ in $G$, then $G$ has a cycle of weight at least $2 d$.

In our proof of Theorem 5.2, we call a path $P$ a longest heaviest path of $G$ if
(i) $w(P)$ is maximum, and
(ii) $P$ is a longest path of $G$ subject to (i).

Now we prepare the following lemma.

Lemma 5.3. Let $G$ be a weighted graph and let $P$ be a longest heaviest path of $G$ with endvertices $x$ and $y$. Assume that

$$
d(x)+d(y)-\varepsilon(x y) \leq|E(P)|,
$$

where

$$
\varepsilon(x y)= \begin{cases}0 & \text { if } x y \notin E(G) \\ 1 & \text { if } x y \in E(G)\end{cases}
$$

Then

- if $x y \notin E(G)$, then $P$ has weight at least $d_{G}^{w}(x)+d_{G}^{w}(y)$, and
- if $x y \in E(G)$, then the cycle $x P y x$ has weight at least $d_{G}^{w}(x)+d_{G}^{w}(y)$.

Proof. Let $P=a_{1} a_{2} \ldots a_{p}$ be a longest heaviest path of $G$ where $a_{1}=x$ and $a_{p}=y$. Then we have $N\left(a_{1}\right) \subseteq V(P)$ and $N\left(a_{p}\right) \subseteq V(P)$. Let

- $N_{1}=\left\{a_{i} \mid a_{i} \in N_{G}\left(a_{1}\right), a_{i-1} \notin N_{G-a_{1}}\left(a_{p}\right)\right\}$,
- $N_{2}=\left\{a_{i} \mid a_{i} \in N_{G}\left(a_{1}\right), a_{i-1} \in N_{G-a_{1}}\left(a_{p}\right)\right\}$,
- $N_{3}=\left\{a_{i} \mid a_{i} \in N_{G-a_{1}}\left(a_{p}\right), a_{i+1} \notin N_{G}\left(a_{1}\right)\right\}$ and
- $N_{4}=\left\{a_{i} \mid a_{i} \in N_{G-a_{1}}\left(a_{p}\right), a_{i+1} \in N_{G}\left(a_{1}\right)\right\}$.

Moreover, let
$E_{1}=\left\{a_{1} v \mid v \in N_{1}\right\}, E_{2}=\left\{a_{1} v \mid v \in N_{2}\right\}, E_{3}=\left\{v a_{p} \mid v \in N_{3}\right\}$ and $E_{4}=\left\{v a_{p} \mid v \in N_{4}\right\}$.

Now we define a mapping $\varphi_{1}$ of $\bigcup_{i=1}^{3} E_{i}$ to $E(P)$ such that

- for $e=a_{1} a_{i} \in E_{1} \cup E_{2}, \varphi_{1}(e)=a_{i-1} a_{i}$ and
- for $e=a_{i} a_{p} \in E_{3}, \varphi_{1}(e)=a_{i} a_{i+1}$,
and let $F_{i}=\left\{\varphi_{1}(e) \mid e \in E_{i}\right\}$ for $i=1,2,3$. Now it is easy to see that $F_{1} \cap F_{2}=\emptyset$. And by the definition of $E_{3}, a_{i+1} \notin N\left(a_{1}\right)$ if $a_{i} a_{p} \in E_{3}$, hence $F_{1}, F_{2}$ and $F_{3}$ are disjoint.

It follows from the fact $d(x)+d(y)-\varepsilon(x y) \leq|E(P)|$ that

$$
\begin{aligned}
\sum_{i=1}^{3}\left|F_{i}\right| & =\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| \\
& =\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right| \\
& =\left|N\left(a_{1}\right)\right|+\left|N\left(a_{p}\right) \backslash\left\{a_{1}\right\}\right|-\left|N_{4}\right| \\
& \leq|E(P)|-\left|N_{4}\right| \\
& =|E(P)|-\left|E_{4}\right| .
\end{aligned}
$$

Thus $\left|E(P) \backslash \bigcup_{i=1}^{3} F_{i}\right| \geq\left|E_{4}\right|$. Let $\varphi_{2}$ be an injection of $E_{4}$ to $E(P) \backslash \bigcup_{i=1}^{3} F_{i}$ and let $F_{4}=$ $\left\{\varphi_{2}(e) \mid e \in E_{4}\right\}$. Note that $F_{1}, F_{2}, F_{3}$ and $F_{4}$ are disjoint.

Assume that $a_{1} a_{i} \in E_{1}$ and $Q_{1}=a_{i-1} a_{i-2} \ldots a_{1} a_{i} a_{i+1} \ldots a_{p}$. Then, since $w\left(Q_{1}\right) \leq w(P)$, $w\left(a_{1} a_{i}\right) \leq w\left(\varphi_{1}\left(a_{1} a_{i}\right)\right)$. By the similar argument as above, we have $w(e) \leq w\left(\varphi_{1}(e)\right)$ for all $e \in E_{1} \cup E_{3}$. Suppose $a_{j} \in N_{2}$. Then we have $a_{j-1} a_{p} \in E_{4}$. Let $C$ be a cycle $a_{j} a_{1} a_{2} \ldots a_{j-1} a_{p} a_{p-1} \ldots a_{j}$ and $e=\varphi_{2}\left(a_{j-1} a_{p}\right)$. Since $e \in E(C), Q_{2}=C-\{e\}$ is a path in $G$. Then it follows from the fact $w\left(Q_{2}\right) \leq w(P)$ that $w\left(a_{1} a_{j}\right)+w\left(a_{j-1} a_{p}\right) \leq w\left(\varphi_{1}\left(a_{1} a_{j}\right)\right)+$ $w\left(\varphi_{2}\left(a_{j-1} a_{p}\right)\right)$ for all $a_{j} \in N_{2}$. Therefore, if $a_{1} a_{p} \notin E(G)$,

$$
\begin{aligned}
d^{w}\left(a_{1}\right)+d^{w}\left(a_{p}\right) & =\sum_{v \in N_{1}} w\left(a_{1} v\right)+\sum_{v \in N_{2}} w\left(a_{1} v\right)+\sum_{v \in N_{3}} w\left(v a_{p}\right)+\sum_{v \in N_{4}} w\left(v a_{p}\right) \\
& =\sum_{e \in E_{1}} w(e)+\sum_{e \in E_{3}} w(e)+\sum_{a_{j} \in N_{2}}\left(w\left(a_{1} a_{j}\right)+w\left(a_{j-1} a_{p}\right)\right) \\
& \leq \sum_{e \in F_{1}} w(e)+\sum_{e \in F_{3}} w(e)+\sum_{e \in F_{2}} w(e)+\sum_{e \in F_{4}} w(e) \\
& \leq w(P),
\end{aligned}
$$

which implies the assertion. And in case of $a_{1} a_{p} \in E(G)$,

$$
\begin{aligned}
d^{w}\left(a_{1}\right)+d^{w}\left(a_{p}\right) & =\sum_{v \in N_{1}} w\left(a_{1} v\right)+\sum_{v \in N_{2}} w\left(a_{1} v\right)+\sum_{v \in N_{3}} w\left(v a_{p}\right)+\sum_{v \in N_{4}} w\left(v a_{p}\right)+w\left(a_{1} a_{p}\right) \\
& =\sum_{e \in E_{1}} w(e)+\sum_{e \in E_{3}} w(e)+\sum_{a_{j} \in N_{2}}\left(w\left(a_{1} a_{j}\right)+w\left(a_{j-1} a_{p}\right)\right)+w\left(a_{1} a_{p}\right) \\
& \leq \sum_{e \in F_{1}} w(e)+\sum_{e \in F_{3}} w(e)+\sum_{e \in F_{2}} w(e)+\sum_{e \in F_{4}} w(e)+w\left(a_{1} a_{p}\right) \\
& \leq w(P)+w\left(a_{1} a_{p}\right)
\end{aligned}
$$

Hence the cycle $a_{1} P a_{p} a_{1}$ has weight at least $d^{w}\left(a_{1}\right)+d^{w}\left(a_{p}\right)$, which implies the assertion.

Now we prove Theorem 5.2 by using Lemma 5.3 and the following lemma.

Lemma 5.4 (Bondy and Fan [5]). Let $G$ be a 2-connected weighted graph and let $P$ be a heaviest path in $G$ with endvertices $x$ and $y$. Then there exists a cycle $C$ in $G$ such that $w(C)>w(P)$ or $w(C) \geq d^{w}(x)+d^{w}(y)$.

Proof of Theorem 5.2. Let $P$ be a longest heaviest path in $G$, and let $x, y$ be endvertices of $P$. Since $G$ is triangle-free and $N(x), N(y) \subseteq V(P),|N(x)| \leq|V(P)| / 2$ and $|N(y)| \leq|V(P)| / 2$. Moreover, if $x y \notin E(G),|N(x)| \leq(|V(P)|-1) / 2$ and $|N(y)| \leq(|V(P)|-1) / 2$. Hence, whether $x$ and $y$ are adjacent or not, we have $d(x)+d(y)-\varepsilon(x y) \leq|E(P)|$. In case of $x y \in E(G)$, Lemma 5.3 implies the existence of a cycle of weight at least $d^{w}(x)+d^{w}(y) \geq 2 d$, which is a required cycle. Thus we may assume $x y \notin E(G)$, then Lemma 5.3 implies that $w(P) \geq$ $d^{w}(x)+d^{w}(y) \geq 2 d$. Now it follows from Lemma 5.4 that there exists a cycle $C$ in $G$ such that $w(C)>w(P) \geq 2 d$ or $w(C) \geq d^{w}(x)+d^{w}(y) \geq 2 d$, which is a required cycle.

## Chapter 6

## Claw conditions for heavy cycles in weighted graphs

(This chapter is based on the paper [18].)

### 6.1 Fan-type condition and Claw conditions

About the existence of long cycles in unweighted graphs, Fan introduced weaker degree condition than Ore-type one. The distance of two vertices $u$ and $v$ is a minimal length of $(u, v)$ paths (if there is no such path, then we define the distance as $\infty$ ), and we will denote it by $d(u, v)$. Fan's theorem is the following.

Theorem 6.1 (Fan [16]). Let $G$ be a 2-connected graph. If $\max \{d(u), d(v)\} \geq c / 2$ for each pair of vertices $u$ and $v$ in $V(G)$ such that $d(u, v)=2$, then $G$ contains either a hamiltonian cycle or a cycle of length at least $c$.

And, Theorem 6.1 is weakened as the following theorem. We call the graph $K_{1,3}$ a claw, and the graph $K_{1,3}+e$ ( $e$ is an edge) a modified claw. A modified claw can also be described as the graph obtained by joining a pendant edge to some vertex of a $K_{3}$.

Theorem 6.2 (Bedrossian et al. [1]). Let $G$ be a 2-connected graph. If $\max \{d(u), d(v)\} \geq$ $c / 2$ for each pair of non-adjacent vertices $u$ and $v$, which are vertices of an induced claw of $G$ or an induced modified claw of $G$, then $G$ contains either a hamiltonian cycle or a cycle of length at least $c$.

In this chapter, we discuss about two weighted degree conditions of the same type as above two theorems. To extend Theorem 6.1 to the weighted graphs, the following problem may naturally be considered.

Problem 6.3. Let $G$ be a 2 -connected weighted graph. If $\max \left\{d^{w}(u), d^{w}(v)\right\} \geq c / 2$ for each pair of vertices $u$ and $v$ in $V(G)$ such that $d(u, v)=2$, does $G$ contain either a hamiltonian cycle or a cycle of weight at least $c$ ?

However, in [34], Zhang et al. gave the negative answer to Problem 6.3, and alternatively they suggested the following problem.

Problem 6.4. Let $G$ be a 3-connected weighted graph. If $\max \left\{d^{w}(u), d^{w}(v)\right\} \geq c / 2$ for each pair of vertices $u$ and $v$ in $V(G)$ such that $d(u, v)=2$, does $G$ contain either a hamiltonian cycle or a cycle of weight at least $c$ ?

Enomoto [11] proved that the answer to Problem 6.4 is also negative, even if we enlarge the connectivity of $G$ more than 3 . Let $k, l$ and $m$ be integers satisfying $k \geq 3, l \geq k+1$, $m>k^{2}-k$ and $k l-1 \geq m$. Let $V_{x}=\left\{x_{i} \mid 1 \leq i \leq k\right\}, V_{y}=\left\{y_{i, j} \mid 1 \leq i \leq l, 1 \leq j \leq k\right\}$, $V_{z}=\left\{z_{i, j} \mid 1 \leq i \leq l, 1 \leq j \leq m\right\}, E_{x}=\left\{u v \mid u, v \in V_{x}\right\}, E_{x y}=\left\{u v \mid u \in V_{x}\right.$ and $\left.v \in V_{y}\right\}, E_{y z}=$ $\left\{y_{i, j} z_{i, j^{\prime}} \mid 1 \leq i \leq l, 1 \leq j \leq k, 1 \leq j^{\prime} \leq m\right\}$, and $E_{z}=\left\{z_{i, j} z_{i, j^{\prime}} \mid 1 \leq i \leq l, 1 \leq j<j^{\prime} \leq m\right\}$. Now we consider a graph $G$ with $V(G)=V_{x} \cup V_{y} \cup V_{z}$ and $E(G)=E_{x} \cup E_{x y} \cup E_{y z} \cup E_{z}$, then $G$ is a $k$-connected non-hamiltonian graph (See Figure 6.1). However, if we assign weight $r>0$ to the edges in $E_{x} \cup E_{x y} \cup E_{y z}$ and weight 0 to the edges in $E_{z}, G$ satisfies the condition of Problem 6.4 with $c=(m+k) \cdot r$, though the weight of a heaviest cycle of $G$ is $2 k^{2} \cdot r<2 c$.


Figure 6.1:

Hence, to obtain a positive consequence to Problem 6.3, it is no use to add the condition of the connectivity of graphs, and we must add the other condition. In [34], the following theorem is shown.

Theorem 6.5 (Zhang et al. [34]). Let G be a 2 -connected weighted graph which satisfies the following conditions:
(1) $\max \left\{d^{w}(u), d^{w}(v)\right\} \geq c / 2$ for each pair of vertices $u$ and $v$ in $V(G)$ such that $d(u, v)=2$.
(2) $w(x z)=w(y z)$ for every vertex $z \in N(x) \cap N(y)$ with $d(x, y)=2$.
(3) In every triangle $T$ of $G$, either all edges of $T$ have different weights or all edges of $T$ have the same weight.

Then $G$ contains either a hamiltonian cycle or a cycle of weight at least $c$.

Also it is shown that neither of the conditions (2) nor (3) of Theorem 6.5 can be dropped. The aim of this chapter is to obtain a more general result for larger classes of weighted graphs, extending Theorem 6.2 to weighted graphs. Corresponding to the conditions of Theorem 6.5, we consider the following conditions, which are said to be Claw Conditions, for a weighted graph $G$.
(CC1) For each induced claw and each induced modified claw of $G$, all its non-adjacent pairs of vertices $x$ and $y$ satisfy $\max \left\{d^{w}(x), d^{w}(y)\right\} \geq c / 2$.
(CC2) For each induced claw and each induced modified claw of $G$, all of its edges have the same weight.

Then we can prove the following theorem.

Theorem 6.6. Let $G$ be a 2-connected weighted graph which satisfies Claw Conditions (CC1) and (CC2). Then $G$ contains either a hamiltonian cycle or a cycle of weight at least $c$.

Note that if a graph satisfies the condition (1) of Theorem 6.5, it satisfies (CC1). Also, if a graph satisfies the conditions (2) and (3) of Theorem 6.5, it satisfies (CC2). Thus, Theorem 6.6 weakened the conditions of Theorem 6.5. An example is shown in Figure 6.2. Let $H$ be a complete graph with $l \geq 2$ vertices such that all edges in $H$ have the same weight $r_{1}$, and $u, v \in V(H)$. Now make a new graph $G$ adding $m$ paths of length $3\left\{u s_{i} t_{i} v \mid 1 \leq i \leq m\right\}$ to $H$ and assigning weight $r_{1}$ to the edges in $\left\{u s_{i} \mid 1 \leq i \leq m\right\} \cup\left\{t_{i} v \mid 1 \leq i \leq m\right\}$, weight $r_{2} \neq r_{1}$ to the edges in $\left\{s_{i} t_{i} \mid 1 \leq i \leq m\right\}$. Then $G$ does not satisfy the condition (2) of Theorem 6.5, although $G$ satisfies the condition (CC2) of Theorem 6.6.


Figure 6.2:
(CC2) in Theorem 6.6 cannot be dropped even in the sense of only claw or only modified claw. The examples are shown in Figures 6.3 and 6.4. In both graphs, we define $w\left(v_{4} v_{5}\right)=$ $w\left(v_{5} v_{6}\right)=w\left(v_{7} v_{8}\right)=w\left(v_{8} v_{9}\right)=4$, and define $w(e)=5$ for all the other edges and let $c=38$. Then, the resulting weighted graph in Figure 6.3 satisfies (CC1), and for each induced modified claw, all of its edges have the same weight. But, this graph does not contain a hamiltonian cycle and the weight of its heaviest cycle is $36<c$. Similarly, the weighted graph in Figure 6.4 satisfies (CC1), and for each induced claw, all of its edges have the same weight. But, this graph also does not contain a hamiltonian cycle and the weight of its heaviest cycle is $36<c$.

In the proof of Theorem 6.6, we call a path $P$ a heaviest longest path if $P$ satisfies the followings;
(a) $P$ is a longest path of $G$, and
(b) $w(P)$ is maximum, subject to (a).


Figure 6.3:


Figure 6.4:

### 6.2 Key Lemma

In our proof of Theorem 6.6, the following lemma is essential.

Lemma 6.7. Let G be a non-hamiltonian 2-connected weighted graph satisfying Claw Conditions (CC1) and (CC2). Suppose that $v$ is an end vertex of a heaviest longest path in $G$. Then, there exists a heaviest longest path with an end vertex $v$ such that the other end vertex has weighted degree at least $c / 2$.

We prove this lemma in the next section. Theorem 6.6 can be proved by combining Lemma 6.7 and the following lemma. The proof of the lemma is implicit in [34] (Case 2 in the proof of Theorem 1). See also [3, Lemma 5] and Lemma 5.4 [5, Lemma 2.1].

Lemma 6.8. Let $G$ be a non-hamiltonian 2-connected weighted graph and $P=v_{1} v_{2} \cdots v_{p}$ be a heaviest longest path in $G$. Then there is a cycle $C$ in $G$ of weight $w(C) \geq d^{w}\left(v_{1}\right)+d^{w}\left(v_{p}\right)$.

Proof of Theorem 6.6. Suppose that $G$ does not contain a hamiltonian cycle. By using Lemma 6.7 twice, we obtain a heaviest longest path with both end vertices having weighted degree $\geq c / 2$. Then by Lemma 6.8, we can find a cycle of weight at least $c$.

### 6.3 Proof of Lemma 6.7

Before proving Lemma 6.7, we prepare the following lemmas.

Lemma 6.9. Let $G$ be a weighted graph satisfying (CC2). If $x_{1} y x_{2}$ is an induced path with $w\left(x_{1} y\right) \neq w\left(x_{2} y\right)$ in $G$, then each vertex $x \in N(y) \backslash\left\{x_{1}, x_{2}\right\}$ is adjacent to both $x_{1}$ and $x_{2}$.

Proof. By (CC2), $\left\{x, y, x_{1}, x_{2}\right\}$ cannot induce a claw or a modified claw. Thus we obtain the conclusion.

Lemma 6.10. Let $G$ be a weighted graph satisfying (CC2). Suppose $x_{1} y x_{2}$ is an induced path such that $w_{1}=w\left(x_{1} y\right)$ and $w_{2}=w\left(x_{2} y\right)$ with $w_{1} \neq w_{2}$, and $y z_{1} z_{2}$ is a path such that $\left\{z_{1}, z_{2}\right\} \cap\left\{x_{1}, x_{2}\right\}=\phi$ and $x_{2} z_{2} \notin E(G)$. Then the following (i) and (ii) hold:
(i) $\left\{z_{1} x_{1}, z_{1} x_{2}, z_{2} x_{1}\right\} \subseteq E(G)$, and $y z_{2} \notin E(G)$. Moreover, all edges in the subgraph induced by $\left\{x_{1}, x_{2}, y, z_{1}, z_{2}\right\}$, other than $x_{1} y$, have the same weight $w_{2}$ (See Figure 6.5).


Figure 6.5:
(ii) Let $Y$ be the component of $G-\left\{x_{2}, z_{1}, z_{2}\right\}$ with $y \in V(Y)$. For each vertex $v \in V(Y) \backslash$ $\left\{x_{1}, y\right\}, v$ is adjacent to all of $x_{1}, x_{2}, y$ and $z_{2}$. Furthermore, $w\left(v x_{1}\right)=w\left(v x_{2}\right)=w(v y)=$ $w\left(v z_{2}\right)=w_{2}$.

Proof. By Lemma 6.9, we have $z_{1} x_{1} \in E(G), z_{1} x_{2} \in E(G)$ and $z_{2} y \notin E(G)$. Thus, $\left\{z_{2}, z_{1}, y, x_{2}\right\}$ induces a modified claw, and hence $w\left(z_{1} x_{2}\right)=w\left(z_{1} y\right)=w\left(z_{1} z_{2}\right)=w_{2}$. Then, since $w\left(x_{1} y\right) \neq$ $w\left(y z_{1}\right),\left\{z_{2}, z_{1}, y, x_{1}\right\}$ cannot induce a modified claw. This implies $z_{2} x_{1} \in E(G)$. Now, we have a modified claw induced by $\left\{x_{2}, z_{1}, x_{1}, z_{2}\right\}$. Hence $w\left(z_{1} x_{1}\right)=w\left(z_{2} x_{1}\right)=w_{2}$. This proves (i).

For the proof of (ii), suppose first that $v \in V(Y) \backslash\left\{x_{1}, y\right\}$ is adjacent to $y$. Then, by Lemma 6.9, we have $v x_{1}, v x_{2} \in E(G)$. Applying Lemma 6.9 again to the induced path $y x_{1} z_{2}$ and $v \in N\left(x_{1}\right)$, we have $v z_{2} \in E(G)$. The modified claw induced by $\left\{z_{2}, v, y, x_{2}\right\}$ implies that $w\left(v x_{2}\right)=w(v y)=w\left(v z_{2}\right)=w_{2}$. Also, the modified claw induced by $\left\{x_{2}, v, x_{1}, z_{2}\right\}$ implies that $w\left(v x_{1}\right)=w_{2}$. This proves (ii) for $v \in N(y) \cap\left(V(Y) \backslash\left\{x_{1}, y\right\}\right)$. Since $y$ and $x_{1}$ are symmetric (by the structure obtained in (i)), the conclusion of (ii) holds also for each vertex $v \in N\left(x_{1}\right) \cap\left(V(Y) \backslash\left\{x_{1}, y\right\}\right)$.

In order to complete the proof of (ii), we shall show that every vertex $v \in V(Y) \backslash\left\{x_{1}, y\right\}$ is adjacent to $x_{1}$ or $y$. Assume not. Then there exists a vertex $v \in V(Y) \backslash\left\{x_{1}, y\right\}$ which is distance two apart from $y$ and $x_{1}$. Let $v^{\prime} \in V(Y) \backslash\left\{x_{1}, y\right\}$ be a vertex such that $v^{\prime} \in N(v) \cap N(y)$. Then, $v^{\prime}$ is adjacent to both $y$ and $x_{1}$, and $w\left(v^{\prime} y\right)=w\left(v^{\prime} x_{1}\right)=w_{2}$. Therefore, $\left\{v, v^{\prime}, y, x_{1}\right\}$ cannot induce a modified claw. This implies that $v x_{1} \in E(G)$ or $v y \in E(G)$, which contradicts the choice of $v$. This completes the proof of (ii).

Proof of Lemma 6.7. Suppose that there is no heaviest longest path with end vertex $v$ such that the other end vertex has weighted degree $\geq c / 2$. Let $P=v_{1} v_{2} \cdots v_{p}\left(v_{p}=v\right)$ be a heaviest longest path. From the choice of $P$, we can see that $N\left(v_{1}\right) \subseteq V(P)$. Next, let $k(P)=$ $\max \left\{i \mid v_{1} v_{i} \in E(G)\right\}$. Since $G$ is 2 -connected, $v_{1}$ is adjacent to at least one vertex on $P$ other than $v_{2}$. Note that, since $P$ is a longest path in a non-hamiltonian graph $G, G$ does not contain a cycle of length $p$. So $k(P)$ satisfies $3 \leq k(P)<p$. Assume the heaviest longest path $P=v_{1} v_{2} \cdots v_{p}$ is chosen among all heaviest longest paths ending at $v$ such that $k(P)$ is as large as possible, and let $k=k(P)$.

Since $G$ is 2-connected, there exists a path $Q$ such that

- $Q$ has end vertices $v_{s_{1}}$ and $v_{s_{2}}$ such that $s_{1}<k<s_{2}$, and
- $V(P) \cap V(Q)=\left\{v_{s_{1}}, v_{s_{2}}\right\}$.

We assume that such a path $Q$ was chosen so that
(i) $s_{2}$ is as large as possible;
(ii) $s_{1}$ is as large as possible, subject to (i).

Case 1. $v_{1} v_{i} \in E(G)$ for every $i$ with $s_{1} \leq i \leq k$.

Claim 1. $v_{s_{1}} v_{s_{2}} \in E(G)$.
Proof. Since $s_{1}<k$, we have $v_{1} v_{s_{1}+1} \in E(G)$. Recall that there exists a path $Q$ from $v_{s_{1}}$ to $v_{s_{2}}$ with $V(Q) \cap V(P)=\left\{v_{s_{1}}, v_{s_{2}}\right\}$. If there exists a vertex $q \notin\left\{v_{s_{1}}, v_{s_{2}}\right\}$ on $Q$, then a path $P^{\prime}=q \cdots v_{s_{1}} v_{s_{1}-1} \cdots v_{1} v_{s_{1}+1} v_{s_{1}+2} \cdots v_{p}$ satisfies $\left|V\left(P^{\prime}\right)\right|>|V(P)|$, contradicting the fact that $P$ is a longest path. So we have $v_{s_{1}} v_{s_{2}} \in E(G)$.

Claim 2. $w\left(v_{1} v_{s_{1}+1}\right) \neq w\left(v_{s_{1}} v_{s_{1}+1}\right)$.

Proof. If $w\left(v_{s_{1}} v_{s_{1}+1}\right)=w\left(v_{1} v_{s_{1}+1}\right), P^{\prime}=v_{s_{1}} v_{s_{1}-1} \cdots v_{1} v_{s_{1}+1} v_{s_{1}+2} \cdots v_{p}$ is a heaviest longest path with $k\left(P^{\prime}\right)=s_{2}>k$, a contradiction.

Let $w_{1}$ and $w_{2}$ denote the weight of $v_{1} v_{s_{1}+1}$ and $v_{s_{1}} v_{s_{1}+1}$, respectively.

Claim 3. $v_{s_{1}+1} v_{s_{2}} \in E(G)$.

Proof. Suppose $v_{s_{1}+1} v_{s_{2}} \notin E(G)$. By the maximality of $k, v_{1} v_{s_{2}} \notin E(G)$. So $\left\{v_{s_{2}}, v_{s_{1}}, v_{s_{1}+1}, v_{1}\right\}$ induces a modified claw, and then we get $w\left(v_{1} v_{s_{1}+1}\right)=w\left(v_{s_{1}} v_{s_{1}+1}\right)$, contrary to Claim 2.

By the maximality of $s_{1}$, Claim 3 implies that $s_{1}=k-1$ and $v_{k} v_{s_{2}} \in E(G)$. Note that $s_{2} \neq p$. (Otherwise, $v_{s_{2}} v_{s_{2}-1} \cdots v_{k} v_{1} v_{2} \cdots v_{s_{1}} v_{s_{2}}$ becomes a cycle of length $p$, a contradiction.)

Claim 4. $s_{2}=k+1$.
Proof. Suppose $s_{2}>k+1$. Then $v_{1} v_{k}, v_{k} v_{k+1}, v_{k} v_{s_{2}} \in E(G)$ and by the maximality of $k, v_{1} v_{k+1} \notin E(G), v_{1} v_{s_{2}} \notin E(G)$. So $\left\{v_{1}, v_{k}, v_{k+1}, v_{s_{2}}\right\}$ induces a claw or a modified claw. From (CC2), we have $w\left(v_{k} v_{s_{2}}\right)=w\left(v_{1} v_{k}\right)=w_{1}$. On the other hand, $w\left(v_{s_{1}} v_{k}\right)=w_{2}$, so $\left\{v_{s_{2}+1}, v_{s_{2}}, v_{k}, v_{s_{1}}\right\}$ cannot induce a modified claw. Since $v_{s_{1}} v_{s_{2}+1} \notin E(G)$ by the maximality of $s_{2}$, we have $v_{k} v_{s_{2}+1} \in E(G)$. But then $\left\{v_{s_{2}+1}, v_{k}, v_{s_{1}}, v_{1}\right\}$ induces a modified claw, and we get $w\left(v_{1} v_{s_{1}+1}\right)=w\left(v_{s_{1}} v_{s_{1}+1}\right)$. This contradicts Claim 2.

Now we have $s_{1}=k-1$ and $s_{2}=k+1$, and so $v_{k-1} v_{k+1} \in E(G)$. Then $v_{k} v_{1} v_{2} \cdots v_{k-1} v_{k+1} v_{k+2} \cdots v_{p}$ is a longest path. Therefore, we get $N\left(v_{k}\right) \subset V(P)$. By the 2 -connectedness of $G$ and the choice of $s_{2}$, there must be an edge $v_{k} v_{s_{3}} \in E(G)$ such that $s_{3}>k+2$. From the choice of $k$ and $s_{2}$, we have $v_{1} v_{s_{3}}, v_{s_{1}} v_{s_{3}} \notin E(G)$, and so $\left\{v_{s_{3}}, v_{k}, v_{s_{1}}, v_{1}\right\}$ induces a modified claw. This implies $w\left(v_{s_{1}} v_{s_{1}+1}\right)=w\left(v_{1} v_{s_{1}+1}\right)$, contradicting Claim 2. This completes the proof of Case 1 .

Case 2. $v_{1} v_{i} \notin E(G)$ for some $i$ with $s_{1} \leq i \leq k$.
Choose $v_{l} \notin N\left(v_{1}\right)$ with $s_{1} \leq l \leq k$ so that $l$ is as large as possible. It is clear that $3 \leq l<k$ and $v_{1} v_{i} \in E(G)$ for every $i$ with $l<i \leq k$.

Claim 5. $d^{w}\left(v_{l}\right) \geq c / 2$.
Proof. Let $j$ be the smallest index such that $j>l$ and $v_{j} \notin N\left(v_{1}\right) \cap N\left(v_{l}\right)$. Since $v_{l+1} \in$ $N\left(v_{1}\right) \cap N\left(v_{l}\right)$, we have $j \geq l+2$. Also, it is obvious that $j \leq k+1$. Then, $\left\{v_{l}, v_{j-1}, v_{j}, v_{1}\right\}$ induces a claw or a modified claw. Since $d^{w}\left(v_{1}\right)<c / 2$, by (CC1), we have $d^{w}\left(v_{l}\right) \geq c / 2$.

We have assumed that there exists no heaviest longest path with end vertex $v_{p}$ such that the other end vertex has weighted degree at least $c / 2$. Hence, by Claim 5 , we have the following.

Claim 6. There is no heaviest longest path with end vertices $v_{l}$ and $v_{p}$.

Claim 7. $w\left(v_{l} v_{l+1}\right) \neq w\left(v_{1} v_{l+1}\right)$.

Proof. If $w\left(v_{l} v_{l+1}\right)=w\left(v_{1} v_{l+1}\right)$, then $v_{l} v_{l-1} \cdots v_{1} v_{l+1} v_{l+2} \cdots v_{p}$ is a heaviest longest path, contradicting Claim 6.

Let $w_{1}$ and $w_{2}$ denote the weights of $v_{1} v_{l+1}$ and $v_{l} v_{l+1}$, respectively.

Claim 8. $v v_{1} \in E(G)$ and $v v_{l} \in E(G)$ for all $v \in N\left(v_{l+1}\right) \backslash\left\{v_{1}, v_{l}\right\}$.

Proof. Now $w\left(v_{1} v_{l+1}\right) \neq w\left(v_{l} v_{l+1}\right)$. Applying Lemma 6.9 to the induced path $v_{1} v_{l+1} v_{l}$ and $v \in N\left(v_{l+1}\right) \backslash\left\{v_{1}, v_{l}\right\}$, we obtain the conclusion.

Claim 9. $k \neq l+1$.

Proof. If $k=l+1$, then by Claim $8, v_{1} v_{k+1}$ must be in $E(G)$. This contradicts the choice of $k$.

Claim 10. $v_{l+1} v_{k} \notin E(G)$. In particular, $k \geq l+3$.

Proof. Suppose $v_{l+1} v_{k} \in E(G)$. Now we have $v_{1} v_{k+1} \notin E(G)$. Applying Lemma 6.10 to the induced path $v_{l} v_{l+1} v_{1}$ and the path $v_{l+1} v_{k} v_{k+1}$, we get $w\left(v_{1} v_{k}\right)=w\left(v_{k} v_{k+1}\right)=w\left(v_{1} v_{l+1}\right)=w_{1}$. Moreover, since $v_{l-1}$ is adjacent to $v_{l}$, we have $v_{l-1} v_{k+1} \in E(G)$ and $w\left(v_{l-1} v_{l}\right)=w\left(v_{l-1} v_{k+1}\right)=$ $w_{1}$ (See Figure 6.6). Then, the path $v_{l} v_{l+1} \cdots v_{k} v_{1} v_{2} \cdots v_{l-1} v_{k+1} v_{k+2} \cdots v_{p}$ becomes a heaviest longest path, contradicting Claim 6.

Claim 11. If $v_{l} v_{k} \in E(G)$, then $v_{i} v_{k+1} \notin E(G)$ for each $i$ with $l+1 \leq i \leq k-1$.

Proof. Suppose $v_{l} v_{k} \in E(G)$. We assume that there exists an edge $v_{t_{1}} v_{t_{2}}$ for some $t_{1}$ and $t_{2}$ with $l+1 \leq t_{1}<k<t_{2}$. We may assume that $t_{1}$ and $t_{2}$ were chosen so that
(i) $t_{1}$ is as large as possible;
(ii) $t_{2}$ is as large as possible, subject to (i).


Figure 6.6:

Note that $v_{1} v_{t_{1}+1} \in E(G)$, so $v_{t_{1}}$ is an end vertex of a longest path

$$
v_{t_{1}} v_{t_{1}-1} \cdots v_{1} v_{t_{1}+1} v_{t_{1}+2} \cdots v_{p}
$$

Then, we have $v_{t_{1}} v_{t_{2}} \in E(G)$, for otherwise there exists a path longer than $P$.

Claim 11.1. $w\left(v_{1} v_{t_{1}+1}\right) \neq w\left(v_{t_{1}} v_{t_{1}+1}\right)$.
Proof. If $w\left(v_{1} v_{t_{1}+1}\right)=w\left(v_{t_{1}} v_{t_{1}+1}\right)$, then $P^{\prime}=v_{t_{1}} v_{t_{1}-1} \cdots v_{1} v_{t_{1}+1} v_{t_{1}+2} \cdots v_{p}$ becomes a heaviest longest path with $k\left(P^{\prime}\right)=t_{2}>k$, which contradicts the choice of $P$.

Let $w_{3}$ and $w_{4}$ denote the weight of $v_{1} v_{t_{1}+1}$ and $v_{t_{1}} v_{t_{1}+1}$, respectively.
Claim 11.2. $v_{t_{1}+1} v_{t_{2}} \in E(G)$.
Proof. Suppose that $v_{t_{1}+1} v_{t_{2}} \notin E(G)$. Then $\left\{v_{t_{2}}, v_{t_{1}}, v_{t_{1}+1}, v_{1}\right\}$ induces a modified claw, and we obtain $w\left(v_{t_{1}} v_{t_{1}+1}\right)=w\left(v_{1} v_{t_{1}+1}\right)$. This contradicts Claim 11.1.

By the maximality of $t_{1}$, we have $t_{1}=k-1$ and $v_{k} v_{t_{2}} \in E(G)$. Note that $t_{2} \neq p$. (Otherwise, $v_{t_{2}} v_{t_{2}-1} \cdots v_{k} v_{1} v_{2} \cdots v_{t_{1}} v_{t_{2}}$ becomes a cycle of length $p$, a contradiction.)

Claim 11.3. $t_{2}=k+1$.
Proof. Suppose that $t_{2} \neq k+1$. Since $v_{1} v_{k+1} \notin E(G)$ and $v_{1} v_{t_{2}} \notin E(G),\left\{v_{1}, v_{k}, v_{k+1}, v_{t_{2}}\right\}$ induces a claw or a modified claw, and we get $w\left(v_{k} v_{t_{2}}\right)=w_{3} \neq w_{4}=w\left(v_{t_{1}} v_{k}\right)$. $\operatorname{So}\left\{v_{t_{1}}, v_{k}, v_{t_{2}}, v_{t_{2}+1}\right\}$ cannot induce a modified claw. Now, by the maximality of $t_{2}, v_{t_{1}} v_{t_{2}+1} \notin E(G)$. This
implies $v_{k} v_{t_{2}+1} \in E(G)$. But then, $\left\{v_{t_{2}+1}, v_{k}, v_{t_{1}}, v_{1}\right\}$ induces a modified claw, and we get $w\left(v_{1} v_{k}\right)=w\left(v_{t_{1}} v_{k}\right)$. This contradicts Claim 11.1.

Using the above claims, we shall prove Claim 11.
Since $\left\{v_{1}, v_{k}, v_{t_{2}}, v_{l}\right\}$ induces a claw or a modified claw, $w\left(v_{k} v_{t_{2}}\right)=w\left(v_{1} v_{k}\right)=w_{3} \neq w_{4}=$ $w\left(v_{t_{1}} v_{k}\right)$. This implies that $\left\{v_{t_{2}+1}, v_{t_{2}}, v_{k}, v_{t_{1}}\right\}$ cannot induce a modified claw. And, by the maximality of $t_{2}, v_{t_{1}} v_{t_{2}+1} \notin E(G)$. So $v_{k} v_{t_{2}+1}$ must be in $E(G)$. But then $\left\{v_{t_{2}+1}, v_{k}, v_{t_{1}}, v_{1}\right\}$ induces a modified claw and we have $w\left(v_{1} v_{k}\right)=w\left(v_{t_{1}} v_{k}\right)$. Now $k=t_{1}+1$, so this contradicts Claim 11.1. This completes the proof of Claim 11.

Now we continue the proof in Case 2.
Claim 12. For each $i$ with $l+2 \leq i \leq k, v_{l} v_{i} \in E(G)$.
Proof. By Claim 8, we have $v_{l} v_{l+2} \in E(G)$. Now suppose that there exists some $v_{i}$ with $l+3 \leq i \leq k$ such that $v_{l} v_{i} \notin E(G)$. Let $r=\min \left\{i \mid l+3 \leq i \leq k, v_{l} v_{i} \notin E(G)\right\}$.

Claim 12.1. $v_{l+1} v_{r-1} \in E(G)$.
Proof. If $r=l+3$, it is clear that $v_{l+1} v_{r-1} \in E(G)$. So we can assume $r \geq l+4$. Now suppose $v_{l+1} v_{r-1} \notin E(G)$. By the choice of $r$ and the fact $r \geq l+4$, we have $v_{l} v_{r-2}, v_{l} v_{r-1} \in E(G)$ and $v_{l} v_{r} \notin E(G)$. And Claim 8 shows $v_{l+1} v_{r} \notin E(G)$. Then $\left\{v_{l+1}, v_{1}, v_{r-1}, v_{r}\right\}$ induces a modified claw, and we get $w\left(v_{1} v_{r-1}\right)=w\left(v_{1} v_{r}\right)=w\left(v_{r-1} v_{r}\right)=w\left(v_{1} v_{l+1}\right)=w_{1}$. On the other hand, $\left\{v_{l}, v_{r-1}, v_{r}, v_{1}\right\}$ also induces a modified claw. This implies that $w\left(v_{l} v_{r-1}\right)=w\left(v_{r-1} v_{r}\right)=w_{1}$. Now the fact $w\left(v_{l} v_{l+1}\right)=w_{2}$ shows that $\left\{v_{l+1}, v_{l}, v_{r-2}, v_{r-1}\right\}$ cannot induce a modified claw, and we have $v_{l+1} v_{r-2} \in E(G)$.

Next, we prove $v_{r-2} v_{r} \notin E(G)$. If $v_{r-2} v_{r} \in E(G)$, each of $\left\{v_{l+1}, v_{r-2}, v_{r-1}, v_{r}\right\}$ and $\left\{v_{r}, v_{r-2}, v_{l+1}, v_{l}\right\}$ induces a modified claw. The first one implies that $w\left(v_{l+1} v_{r-2}\right)=w\left(v_{r-1} v_{r}\right)=w_{1}$. But the second one shows $w\left(v_{l+1} v_{r-2}\right)=w\left(v_{l} v_{l+1}\right)=w_{2}$, a contradiction. Therefore, $v_{r-2} v_{r} \notin E(G)$.

Recall that $w\left(v_{l} v_{r-1}\right)=w_{1} \neq w_{2}=w\left(v_{l} v_{l+1}\right)$. Applying Lemma 6.9 to the induced path $v_{l+1} v_{l} v_{r-1}$, we have $v_{l-1} v_{l+1}, v_{l-1} v_{r-1} \in E(G)$. Now we consider two cases, $v_{l-1} v_{r} \in E(G)$ or $v_{l-1} v_{r} \notin E(G)$.

If $v_{l-1} v_{r} \in E(G),\left\{v_{r}, v_{l-1}, v_{l}, v_{l+1}\right\}$ induces a modified claw. This shows $w\left(v_{l-1} v_{l}\right)=$ $w\left(v_{l-1} v_{r}\right)$. Then $v_{l} v_{l+1} \cdots v_{r-1} v_{1} v_{2} \cdots v_{l-1} v_{r} v_{r+1} \cdots v_{p}$ becomes a heaviest longest path, contradicting Claim 6.


Figure 6.7:

If $v_{l-1} v_{r} \notin E(G),\left\{v_{r}, v_{r-1}, v_{l}, v_{l-1}\right\}$ induces a modified claw. This shows $w\left(v_{l-1} v_{l}\right)=$ $w\left(v_{l-1} v_{r-1}\right)$. Then $v_{l} v_{l+1} \cdots v_{r-1} v_{l-1} v_{l-2} \cdots v_{1} v_{r} v_{r+1} \cdots v_{p}$ becomes a heaviest longest path, contradicting Claim 6.

Now we shall complete the proof of Claim 12. Applying Lemma 6.10 to the induced path $v_{1} v_{l+1} v_{l}$ and the path $v_{l+1} v_{r-1} v_{r}$, we get $w\left(v_{1} v_{r-1}\right)=w\left(v_{r-1} v_{r}\right)=w\left(v_{l} v_{l+1}\right)=w_{2}$. Moreover, since $v_{l-1}$ and $v_{1}$ are in the same component of $G-\left\{v_{l}, v_{r-1}, v_{r}\right\}$, we have $v_{l-1} v_{r} \in E(G)$ and $w\left(v_{l-1} v_{l}\right)=w\left(v_{l-1} v_{r}\right)=w_{2}$. Then, the path $v_{l} v_{l+1} \cdots v_{r-1} v_{1} v_{2} \cdots v_{l-1} v_{r} v_{r+1} \cdots v_{p}$ becomes a heaviest longest path, contradicting Claim 6.

By Claim 12, we have $v_{l} v_{k}$ and $v_{l} v_{k-1} \in E(G)$. And by Claim 11, we get $v_{l+1} v_{k+1}, v_{k-1} v_{k+1} \notin$ $E(G)$. Now $\left\{v_{k+1}, v_{k}, v_{k-1}, v_{1}\right\}$ induces a modified claw. Let $w_{3}$ denote the weight of the edges of this modified claw. Now $\left\{v_{1}, v_{k}, v_{k+1}, v_{l}\right\}$ induces a claw or a modified claw. So $w\left(v_{l} v_{k}\right)=w\left(v_{1} v_{k}\right)=w_{3}$ (See Figure 6.7).

Claim 13. $v_{l} v_{k+1} \notin E(G)$.
Proof. Suppose that $v_{l} v_{k+1} \in E(G)$. Then $\left\{v_{l+1}, v_{l}, v_{k}, v_{k+1}\right\}$ induces a modified claw. This implies $w_{3}=w\left(v_{l} v_{k}\right)=w\left(v_{l} v_{k+1}\right)=w\left(v_{l} v_{l+1}\right)=w_{2}$. Hence $w\left(v_{1} v_{k-1}\right)=w\left(v_{1} v_{k}\right)=w\left(v_{k-1} v_{k}\right)=$ $w\left(v_{k} v_{k+1}\right)=w_{2}$.

Next, we remark $w\left(v_{1} v_{l+1}\right)=w_{1} \neq w_{2}=w\left(v_{1} v_{k}\right)$. Applying Lemma 6.9 to the induced path $v_{l+1} v_{1} v_{k}$ and $v_{2} \in N\left(v_{1}\right)$, we have $v_{2} v_{l+1}, v_{2} v_{k} \in E(G)$. Then Claim 8 implies $v_{2} v_{l} \in E(G)$.

Now, we claim that $v_{2} v_{k+1} \notin E(G)$. If $v_{2} v_{k+1} \in E(G)$, each of $\left\{v_{l+1}, v_{2}, v_{k}, v_{k+1}\right\}$ and $\left\{v_{k+1}, v_{2}, v_{1}, v_{l+1}\right\}$ induces a modified claw. The first one shows $w\left(v_{2} v_{l+1}\right)=w\left(v_{k} v_{k+1}\right)=w_{2}$.

But on the other hand, the second one shows $w\left(v_{2} v_{l+1}\right)=w\left(v_{1} v_{l+1}\right)=w_{1}$, a contradiction.
Thus $v_{2} v_{k+1} \notin E(G)$. Then the modified claw induced by $\left\{v_{k+1}, v_{k}, v_{2}, v_{1}\right\}$ shows $w\left(v_{1} v_{2}\right)=$ $w\left(v_{k} v_{k+1}\right)=w_{2}$. And the modified claw induced by $\left\{v_{k+1}, v_{l}, v_{l+1}, v_{2}\right\}$ implies $w\left(v_{2} v_{l+1}\right)=$ $w\left(v_{l} v_{l+1}\right)=w_{2}$. Consequently, the path

$$
v_{l} v_{l-1} \cdots v_{2} v_{l+1} v_{l+2} \cdots v_{k-1} v_{1} v_{k} v_{k+1} \cdots v_{p}
$$

becomes a heaviest longest path, which contradicts Claim 6.

Claim 14. $v_{l-1} v_{l+1} \notin E(G)$.
Proof. Suppose that $v_{l-1} v_{l+1} \in E(G)$. By Claim 8 we have $v_{1} v_{l-1} \in E(G)$.
First, we prove $v_{l-1} v_{k} \in E(G)$. Suppose $v_{l-1} v_{k} \notin E(G)$. Then each of $\left\{v_{k}, v_{1}, v_{l-1}, v_{l+1}\right\}$ and $\left\{v_{k}, v_{l}, v_{l-1}, v_{l+1}\right\}$ induces a modified claw. The first one shows $w\left(v_{l-1} v_{l+1}\right)=w\left(v_{1} v_{l+1}\right)=w_{1}$. But the other one shows $w\left(v_{l-1} v_{l+1}\right)=w\left(v_{l} v_{l+1}\right)=w_{2}$, a contradiction. This shows $v_{l-1} v_{k} \in$ $E(G)$.

Next, we prove $v_{l-1} v_{k+1} \notin E(G)$. Otherwise, each of $\left\{v_{k+1}, v_{l-1}, v_{l+1}, v_{1}\right\}$ and $\left\{v_{k+1}, v_{l-1}, v_{l}, v_{l+1}\right\}$ induces a modified claw. Then the first one shows $w\left(v_{l-1} v_{l+1}\right)=w\left(v_{1} v_{l+1}\right)=w_{1}$ while the second one implies $w\left(v_{l-1} v_{l+1}\right)=w\left(v_{l} v_{l+1}\right)=w_{2}$, a contradiction. This shows $v_{l-1} v_{k+1} \notin E(G)$.

Then, we obtain that $\left\{v_{k+1}, v_{k}, v_{l}, v_{l-1}\right\}$ induces a modified claw. So $w\left(v_{l-1} v_{l}\right)=w\left(v_{l-1} v_{k}\right)=$ $w\left(v_{k} v_{k+1}\right)=w_{3}$. This means that the path

$$
v_{l} v_{l+1} \cdots v_{k-1} v_{1} v_{2} \cdots v_{l-1} v_{k} v_{k+1} \cdots v_{p}
$$

is a heaviest longest path, contradicting Claim 6.

Using the above claims, we shall complete the proof of Case 2.
Claim 13 says $v_{l} v_{k+1} \notin E(G)$, and by Claim 14 , we get $v_{l+1} v_{l-1} \notin E(G)$. Now $\left\{v_{k+1}, v_{k}, v_{k-1}, v_{l}\right\}$ induces a modified claw. This implies $w\left(v_{l} v_{k-1}\right)=w\left(v_{l} v_{k}\right)=w\left(v_{k-1} v_{k}\right)=w_{3}$. And $\left\{v_{l+1}, v_{l}, v_{l-1}, v_{k}\right\}$ induces a claw or a modified claw. It implies $w_{3}=w_{2}, w_{3} \neq w_{1}$ and $w\left(v_{l-1} v_{l}\right)=w_{3}$. Then, applying Lemma 6.9 to the induced path $v_{k} v_{1} v_{l+1}$ and $v_{2} \in N\left(v_{1}\right)$, we have $v_{2} v_{l+1}$ and $v_{2} v_{k} \in E(G)$. If $l-1=2$, this contradicts Claim 14. Hence we have $l-1>2$. By Claim 8 , we have $v_{2} v_{l} \in E(G)$.

Next, we prove $v_{2} v_{k+1} \notin E(G)$. Suppose $v_{2} v_{k+1} \in E(G)$. Then each of $\left\{v_{k+1}, v_{2}, v_{1}, v_{l+1}\right\}$ and $\left\{v_{k+1}, v_{2}, v_{l}, v_{l+1}\right\}$ induces a modified claw. The first one implies that $w\left(v_{2} v_{k+1}\right)=w\left(v_{1} v_{l+1}\right)=$
$w_{1}$, and the second one implies that $w\left(v_{2} v_{k+1}\right)=w\left(v_{l} v_{l+1}\right)=w_{2}$, a contradiction. Therefore, $v_{2} v_{k+1} \notin E(G)$.

Now each of $\left\{v_{k+1}, v_{k}, v_{2}, v_{1}\right\}$ and $\left\{v_{k+1}, v_{k}, v_{l}, v_{2}\right\}$ induces a modified claw. They imply $w\left(v_{1} v_{2}\right)=w\left(v_{2} v_{k}\right)=w\left(v_{1} v_{k}\right)=w_{3}$, and $w\left(v_{2} v_{l}\right)=w\left(v_{l} v_{k}\right)=w_{3}$. Then, the path $v_{l-1} \cdots v_{2} v_{l} v_{l+1} \cdots v_{k-1} v_{1} v_{k} v_{k+1} \cdots v_{p}$ is a heaviest longest path with an end vertex $v_{p}$. So we can see that another end vertex $v_{l-1}$ satisfies $d^{w}\left(v_{l-1}\right)<c / 2$. On the other hand, since $\left\{v_{l+1}, v_{l}, v_{l-1}, v_{k}\right\}$ induces a claw or a modified claw with $v_{l-1} v_{l+1} \notin E(G)$, we have $d^{w}\left(v_{l+1}\right) \geq$ $c / 2$. Now, there is another heaviest longest path $v_{l+1} v_{l+2} \cdots v_{k-1} v_{1} v_{2} \cdots v_{l} v_{k} v_{k+1} \cdots v_{p}$. This is a contradiction. This completes the proof of Case 2 and the proof of Lemma 6.7.

## Chapter 7

## $\sigma_{k}$ type condition for heavy cycles in weighted graphs

## (This chapter is based on the paper [12].)

### 7.1 Previous result and the new result

Using the degree condition on three independent vertices, and the condition on the weights of edges which is the same as the condition appeared in Chapter 6, Zhang et al. proved the existence of heavy cycles in weighted graphs. Here, we say a vertex set $U$ is independent if every vertex in $U$ has no neighbor in $U$. And the number of vertices in a maximum independent set of a graph $G$ is denoted by $\alpha(G)$. For a positive integer $k \leq \alpha(G), \sigma_{k}(G)$ and $\sigma_{k}^{w}(G)$ denotes the minimum value of the degree sum of any $k$ independent vertices and the minimum value of the weighted degree sum of any $k$ independent vertices, respectively (For $k>\alpha(G)$, we define $\sigma_{k}(G), \sigma_{k}^{w}(G)$ as $\infty$.) The theorem of Zhang et al. is the following.

Theorem 7.1 (Zhang et al. [36]). Let G be a 2-connected weighted graph which satisfies the following conditions.
(1) $\sigma_{3}^{w}(G) \geq m$.
(2) $w(x z)=w(y z)$ for every vertex $z \in N(x) \cap N(y)$ with $d(x, y)=2$.
(3) In every triangle $T$ of $G$, either all edges of $T$ have different weights or all edges of $T$ have the same weight.

Then $G$ contains either a hamiltonian cycle or a cycle of weight at least $2 m / 3$.

Theorem 7.1 is an extension of the following theorem to the weighted graphs in the case $k=2$.

Theorem 7.2 (Fournier and Fraisse [17]). Let $G$ be a $k$-connected graph where $2 \leq k<$ $\alpha(G)$, such that $\sigma_{k+1}(G) \geq m$. Then $G$ contains either a hamiltonian cycle or a cycle of length at least $2 m /(k+1)$.

In this chapter, we extend Theorem 7.2 to the weighted graphs for all $k$.
Theorem 7.3. Let $G$ be a $k$-connected weighted graph where $k \geq 2$. Suppose that $G$ satisfies the following conditions.
(1) $\sigma_{k+1}^{w}(G) \geq m$.
(2) $w(x z)=w(y z)$ for every vertex $z \in N(x) \cap N(y)$ with $d(x, y)=2$.
(3) In every triangle $T$ of $G$, either all edges of $T$ have different weights or all edges of $T$ have the same weight.

Then $G$ contains either a hamiltonian cycle or a cycle of weight at least $2 m /(k+1)$.

### 7.2 The conditions of Zhang et al. 's theorem

To prove Theorem 7.3, we need the following lemma, which shows that the class of weighted graphs satisfying Conditions (2) and (3) of Theorem 7.3 is limited.

Lemma 7.4. Let $G$ be a connected weighted graph satisfying Conditions (2) and (3) of Theorem 7.3. Then G satisfies one of the following:
(a) all edges of $G$ have the same weight, or
(b) G is a complete multi-partite graph.

Proof. Let $G$ be a connected weighted graph satisfying Conditions (2) and (3) of Theorem 7.3. Suppose that there exists $e_{1}, e_{2} \in E(G)$ such that $w\left(e_{1}\right) \neq w\left(e_{2}\right)$. Then what we need to prove is that $G$ is a complete multi-partite graph.

Since $G$ is connected, we can choose a vertex $x$ so that there exist $u, v \in N(x)$ such that $w(u x) \neq w(v x)$. Let $\bigcup_{i=1}^{n} V_{i}$ be a partition of $N(x)$ such that for $u \in V_{i}$ and $v \in V_{j}$, $w(u x)=w(v x)$ if and only if $i=j$. Now we denote the weight of the edges joining $x$ and $V_{i}$ by $w_{i}$ for $1 \leq i \leq n$.

Claim 1. Let $1 \leq i, j \leq n$ and $v_{i} \in V_{i}, v_{j} \in V_{j}$. If $i \neq j, v_{i} v_{j} \in E(G)$.

Proof. Since $w\left(x v_{i}\right) \neq w\left(x v_{j}\right)$, Condition (2) of Theorem 7.3 implies $d\left(v_{i}, v_{j}\right) \neq 2$. Hence $v_{i} v_{j} \in E(G)$.

Claim 2. If there exists a vertex $y$ such that $d(x, y)=2$, then $v y \in E(G)$ for all $v \in N(x)$.
Proof. The fact $d(x, y)=2$ shows that there is a neighborhood $v_{1}$ of $y$ in $N(x)$. Without loss of generality, we may assume $v_{1} \in V_{1}$. And Condition (2) of Theorem 7.3 implies $w\left(y v_{1}\right)=w_{1}$.

Now suppose that there exists a vertex $v \in \bigcup_{i=2}^{n} V_{i}$ with $y v \notin E(G)$. Then Claim 1 implies $v_{1} v \in E(G)$, and Condition (2) of Theorem 7.3 shows $w\left(v_{1} v\right)=w\left(y v_{1}\right)=w_{1}$. Hence, applying Condition (3) of Theorem 7.3 to the triangle $x v_{1} v$, we have $w(x v)=w_{1}$. This contradicts the definition of the partition $\cup V_{i}$. So we must have $y v \in E(G)$ for all $v \in \bigcup_{i=2}^{n} V_{i}$.

Applying the same argument to $v_{2} \in V_{2} \cap N(y)$ and $v \in V_{1}$, we have $y v \in E(G)$ for every $v \in V_{1}$.

If there exists a vertex $y$ such that $d(x, y)=2$, Condition (2) of Theorem 7.3 implies $w\left(v_{i} y\right)=w_{i}$ for all $v_{i} \in V_{i}$.

Claim 3. There is no vertex $z$ such that $d(x, z)=3$.
Proof. Suppose that there exists a vertex $z$ such that $d(x, z)=3$. Then $z$ has a neighbor $y$ such that $d(x, y)=2$. Now Claim 2 implies that we have $v_{1} \in N(y) \cap V_{1}$ and $v_{2} \in N(y) \cap V_{2}$ with $w\left(y v_{1}\right)=w_{1}$ and $w\left(y v_{2}\right)=w_{2}$.

Since $d\left(z, v_{1}\right)=d\left(z, v_{2}\right)=2$, Condition (2) of Theorem 7.3 shows $w(z y)=w\left(y v_{1}\right)=w_{1}$ and $w(z y)=w\left(y v_{2}\right)=w_{2}$. So we have $w_{1}=w_{2}$, a contradiction.

Let $V_{0}=\{x\} \cup\{y \mid d(x, y)=2\}$. Then $\bigcup_{i=0}^{n} V_{i}$ is a partition of $V(G)$.
Claim 4. Let $0 \leq i<j \leq n$ and $v_{i} \in V_{i}, v_{j} \in V_{j}$. Then $v_{i} v_{j} \in E(G)$.
Proof. If $i \neq 0$ and $j \neq 0$, Claim 1 implies $v_{i} v_{j} \in E(G)$. So we may assume $i=0$. If $v_{i}=x$, the definition of $\bigcup_{i=1}^{n} V_{i}$ shows $v_{i} v_{j} \in E(G)$, and if $v_{i} \neq x$, Claim 2 implies $v_{i} v_{j} \in E(G)$.

Note that for all $v_{0} \in V_{0}, v_{0}=x$ or $d\left(x, v_{0}\right)=2$. Hence for all $v_{i} \in V_{i}(1 \leq i \leq n)$, $w\left(v_{0} v_{i}\right)=w_{i}$.

Claim 5. $v_{0} v_{0}{ }^{\prime} \notin E(G)$ for all $v_{0}, v_{0}{ }^{\prime} \in V_{0}$.

Proof. If $v_{0}=x, d\left(x, v_{0}{ }^{\prime}\right)=2$ for all vertices $v_{0}{ }^{\prime} \in V_{0} \backslash\left\{v_{0}\right\}$. Hence $v_{0} v_{0}{ }^{\prime} \notin E(G)$. So we may assume $v_{0}, v_{0}^{\prime} \neq x$. Now we suppose $v_{0} v_{0}^{\prime} \in E(G)$. Claim 2 implies that there exists $v_{1} \in V_{1}, v_{2} \in V_{2}$ such that $v_{1}, v_{2} \in N\left(v_{0}\right) \cap N\left(v_{0}{ }^{\prime}\right)$. Now we have $w\left(v_{0} v_{1}\right)=w\left(v_{0}^{\prime} v_{1}\right)=w_{1}$, $w\left(v_{0} v_{2}\right)=w\left(v_{0}^{\prime} v_{2}\right)=w_{2}$. So applying Condition (3) of Theorem 7.3 to the triangles $v_{0} v_{0}^{\prime} v_{1}$ and $v_{0} v_{0}^{\prime} v_{2}$, we have $w_{1}=w_{2}$, a contradiction.

Claim 6. Let $0 \leq i \leq n$ and $t, u, v \in V_{i}$. If $t u, u v \notin E(G)$, then $t v \notin E(G)$.
Proof. If $i=0$, Claim 5 implies that $t v \notin E(G)$. So we assume that $1 \leq i \leq n$. Suppose $t v \in$ $E(G)$. Without loss of generality, we may assume $i=1$. Let $v_{2} \in V_{2}$. Now, since $t, u, v \in V_{1}$, $w(x t)=w(x u)=w(x v)=w_{1}$. Then applying Condition (3) of Theorem 7.3 to the triangle $x t v$, we have $w(t v)=w(x t)=w_{1}$. On the other hand, Claim 4 implies $v_{2} t, v_{2} u, v_{2} v \in E(G)$. Since $t u$ and $u v \notin E(G)$, Condition (2) of Theorem 7.3 shows $w\left(v_{2} t\right)=w\left(v_{2} u\right)=w\left(v_{2} v\right)$. Then applying Condition (3) of Theorem 7.3 to the triangle $v_{2} t v$, we have $w(t v)=w\left(v_{2} t\right)$. Hence, $w\left(v_{2} t\right)=w(t v)=w(x t)=w_{1}$. So applying Condition (3) of Theorem 7.3 to the triangle $x t v_{2}$, we have $w_{2}=w\left(x v_{2}\right)=w(x t)=w_{1}$, a contradiction.

Now on every $V_{i}(0 \leq i \leq n)$, nonadjacency is an equivalence relation. Let $V_{i, 1}, \ldots, V_{i, m_{i}}$ be the equivalence classes of $V_{i}$. Then, for all vertices $u \in V_{i, j}$ and $v \in V_{i^{\prime}, j^{\prime}}, u v \in E(G)$ if and only if $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. Hence, $G$ is a complete multi-partite graph with partite sets $V_{0}, V_{i, j}\left(1 \leq i \leq n, 1 \leq j \leq m_{i}\right)$. This completes the proof of Lemma 7.4.

### 7.3 Proof of Theorem 7.3

Let $G$ be a weighted graph satisfying the conditions of Theorem 7.3. If $k \geq \alpha(G)$, the following theorem implies the assertion.

Theorem 7.5 (Chvátal and Erdốs [7]). Let $G$ be a $k$-connected graph with at least three vertices. If $k \geq \alpha(G)$, then $G$ contains a hamiltonian cycle.

So we may assume $2 \leq k<\alpha(G)$. Now Lemma 7.4 implies that all edges of $G$ have the same weight or $G$ is a complete multi-partite graph.

Assume that all edges of $G$ have the same weight $w_{1}$. If $w_{1}=0$, the assertion is obvious. If $w_{1} \neq 0, d^{w}(v)=w_{1} d(v)$ for all $v \in V(G)$. Hence $\sigma_{k+1}(G)=\sigma_{k+1}^{w}(G) / w_{1} \geq m / w_{1}$. Then Theorem 7.2 implies that $G$ contains either a hamiltonian cycle or a cycle $C$ of length at least $2 m /(k+1) w_{1}$. Now $w(C)=w_{1}|E(C)| \geq 2 m /(k+1)$.

Therefore, we may assume that $G$ is a complete multi-partite graph. Let $n=|V(G)|$ and $V_{1}, \cdots, V_{l}$ be the partite sets of $G$.

Claim 1. If $x, y \in V_{i}$, then $w(x z)=w(y z)$ for every $z \in V(G) \backslash V_{i}$. In particular, $d^{w}(x)=d^{w}(y)$.

Proof. Since $x$ and $y$ are in the same partite set $V_{i}, x y \notin E(G)$. Hence, Condition (2) implies $w(x z)=w(y z)$. And hence, the assertion $d^{w}(x)=d^{w}(y)$ is obvious.

Claim 2. If $G$ is not hamiltonian, then $\left|V_{i}\right|>n / 2$ for some $i$ such that $1 \leq i \leq l$.
Proof. Suppose that $\left|V_{i}\right| \leq n / 2$ for all $i(1 \leq i \leq l)$. Then for each $v \in V_{j}(1 \leq j \leq l)$,

$$
d(v)=\sum_{r \neq j}\left|V_{r}\right|=n-\left|V_{r}\right| \geq n / 2
$$

Hence, Theorem 7.2 implies that $G$ has a hamiltonian cycle, a contradiction.

Without loss of generality, we can assume that $\left|V_{1}\right|>n / 2$. Let $p=\left|V_{1}\right|$ and $q=n-p$. Then, since $G$ is $k$-connected, it is obvious that $k \leq q<p$. And let $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, $V(G) \backslash V_{1}=\left\{u_{1}, u_{2}, \ldots u_{q}\right\}$.

Claim 3. $d^{w}(v) \geq m /(k+1)$ for all $v \in V_{1}$.
Proof. Since $k<p$, we can choose $v_{1}, v_{2}, \ldots, v_{k+1}$ in $V_{1}$. Now, $\left\{v_{1}, v_{2}, \ldots, v_{k+1}\right\}$ is independent, hence $\sum_{i=1}^{k+1} d^{w}\left(v_{i}\right) \geq m$. Then Claim 1 implies $d^{w}\left(v_{1}\right)=d^{w}\left(v_{2}\right)=\cdots=d^{w}\left(v_{k+1}\right)$, so $d^{w}\left(v_{1}\right) \geq m /(k+1)$. Using Claim 1 again, we have $d^{w}(v) \geq m /(k+1)$ for all $v \in V_{1}$.

Now we consider the cycle $C=v_{1} u_{1} v_{2} u_{2} \cdots v_{q-1} u_{q-1} v_{q} u_{q} v_{1}$. Then Claim 1 implies

$$
\begin{aligned}
w(C)= & w\left(v_{1} u_{1}\right)+w\left(u_{1} v_{2}\right)+w\left(v_{2} u_{2}\right)+\cdots \\
& +w\left(v_{q-1} u_{q-1}\right)+w\left(u_{q-1} v_{q}\right)+w\left(v_{q} u_{q}\right)+w\left(u_{q} v_{1}\right) \\
= & w\left(v_{1} u_{1}\right)+w\left(u_{1} v_{1}\right)+w\left(v_{1} u_{2}\right)+\cdots \\
& +w\left(v_{1} u_{q-1}\right)+w\left(u_{q-1} v_{1}\right)+w\left(v_{1} u_{q}\right)+w\left(u_{q} v_{1}\right) \\
= & 2 \sum_{i=1}^{q} w\left(v_{1} u_{i}\right) \\
= & 2 d^{w}\left(v_{1}\right) .
\end{aligned}
$$

Hence, by Claim 3, $w(C) \geq 2 m /(k+1)$. This completes the proof of Theorem 7.3.

## Chapter 8

## Heavy paths in weighted graphs

(The result in the first section appears in [19], and the other results in this chapter appear in [13].)

The topic of this chapter is the existence of heavy paths joining two specified vertices. We consider two weighted degree conditions, Dirac-type and Ore-type.

### 8.1 A Dirac-type condition

The following theorem shows the existence of heavy paths joining two specified vertices, which is a motivation of the results in this section.

Theorem 8.1 (Bondy and Fan [4]). Let G be a 2 -connected weighted graph and d be a nonnegative real number. Let $x$ and $y$ be distinct vertices of $G$. If $d^{w}(v) \geq d$ for all $v \in V(G) \backslash\{x, y\}$, then $G$ contains an $(x, y)$-path of weight at least $d$.

Zhang et al. extended Theorem 8.1 as follows. If an $(x, z)$-path contains all vertices in $Y \subseteq$ $V(G)$, we call it an $(x, Y, z)$-path.

Theorem 8.2 (Zhang, Li and Broersma [35]). Let G be a 2-connected weighted graph, let $d$ be a nonnegative real number, and let $x, z \in V(G)$ such that $x \neq z$. If $d^{w}(v) \geq d$ for every vertex $v \in V(G) \backslash\{x, z\}$, then for any given vertex $y, G$ has an $(x,\{y\}, z)$-path of weight at least $d$.

Note that Theorem 2.1 immediately implies Theorem 8.2. In this section, we prove the following theorem, which is an extension of Theorem 8.2.

Theorem 8.3. Let $G$ be a 2-connected weighted graph, let d be a nonnegative real number, $x, z \in V(G)$ such that $x \neq z$, and $y_{1}, y_{2} \in V(G)$. Now assume that there exists an $\left(x,\left\{y_{1}, y_{2}\right\}, z\right)$ path $P$ in $G$. If $d^{w}(v) \geq d$ for every vertex $v \in V(G) \backslash\{x, z\}$, then there exists an $\left(x,\left\{y_{1}, y_{2}\right\}, z\right)$ path of weight at least $d$.

Proof. In case of $y_{1}=y_{2}$ or $\left\{y_{1}, y_{2}\right\} \cap\{x, z\} \neq \emptyset$, Theorem 8.2 implies the assertion, so we may assume that $x, y_{1}, y_{2}$ and $z$ are distinct vertices. We use induction on $|V(G)|$ Let $|V(G)|=4$, then without loss of generality we may assume that $P=x y_{1} y_{2} z$. If $z y_{1} \notin E(G)$ or $x y_{2} \notin E(G)$, it is obvious that $w(P) \geq d$, hence $P$ is a required path. If $z y_{1}$ and $x y_{2} \in E(G)$, let $P^{\prime}=x y_{2} y_{1} z$. Then $w(P)+w\left(P^{\prime}\right) \geq d^{w}\left(y_{1}\right)+d^{w}\left(y_{2}\right) \geq 2 d$, hence $P$ or $P^{\prime}$ is weight at least $d$, which is a required path. Now assume that $|V(G)| \geq 5$.

By Theorem 8.2, there exists an $(x, z)$-path $Q$ of weight at least $d$ such that $V(Q) \cap$ $\left\{y_{1}, y_{2}\right\} \neq \emptyset$. Take $Q$ so that $w(Q)$ is as large as possible. If $\left\{y_{1}, y_{2}\right\} \subseteq Q$, there is nothing to prove, so without loss of generality we may assume that $y_{1} \in Q$ and $y_{2} \notin Q$. Then by Theorem 2.1, there exists a $\left(y_{2}, Q\right)$-fan $F$ of weight at least $d$ and width $k\left(G ; y_{2}, Q\right)$.

In case of $k\left(G ; y_{2}, Q\right) \geq 3$, let $F \cap Q=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. We may assume that $x, a_{1}, a_{2}, \ldots, a_{m}, z$ appear in the consecutive order along $Q$. By the choice of $Q, w\left(Q\left[a_{i}, a_{i+1}\right]\right) \geq w\left(F\left[a_{i}, a_{i+1}\right]\right)$ for every $i$ with $1 \leq i \leq m-1$. Since $m \geq 3$, there exists $l$ with $1 \leq l \leq m-1$ such that $y_{1} \notin Q\left(a_{l}, a_{l+1}\right)$. Let $Q^{\prime}=x Q a_{l} F a_{l+1} Q z$. Then $\left\{y_{1}, y_{2}\right\} \subseteq Q^{\prime}$ and

$$
\begin{aligned}
w\left(Q^{\prime}\right) & \geq w\left(Q^{\prime}\left[a_{1}, a_{m}\right]\right) \\
& \geq \sum_{1 \leq i \leq m-1, i \neq l} w\left(Q\left[a_{i}, a_{i+1}\right]\right)+w\left(F\left[a_{l}, a_{l+1}\right]\right) \\
& \geq \sum_{i=1}^{m-1} w\left(F\left[a_{i}, a_{i+1}\right]\right) \\
& \geq w(F) \\
& \geq d
\end{aligned}
$$

Hence $Q^{\prime}$ is a required path.
If $k\left(G ; y_{2}, Q\right)=2$, there exists $b_{1}, b_{2} \in V(G) \backslash\left\{y_{2}\right\}$ such that $\left\{b_{1}, b_{2}\right\}$ separates $y_{2}$ from $Q$. Note that $b_{1}, b_{2}$ also separates $y_{2}$ from $\{x, z\}$. Since $P$ is an $\left(x, y_{2}, z\right)$-path, $\left\{b_{1}, b_{2}\right\} \subset V(P)$. Without loss of generality, we may assume that $x, b_{1}, b_{2}, z$ appear in the consecutive order along $P$. Let $H$ be the $y_{2}$-component of $G-\left\{b_{1}, b_{2}\right\}$ and $G^{\prime}=G\left[H \cup\left\{b_{1}, b_{2}\right\}\right]$. If $b_{1} b_{2} \notin E(G)$, we add the edge $b_{1} b_{2}$ of weight zero to $G^{\prime}$, then $G^{\prime}$ is 2 -connected. In $G^{\prime}$, by the induction
hypothesis, there exists a $\left(b_{1},\left\{y_{1}, y_{2}\right\}, b_{2}\right)$-path $P^{\prime}$ of weight at least $d$ in case of $y_{1} \in H$, and otherwise there exists a $\left(b_{1},\left\{y_{2}\right\}, b_{2}\right)$-path $P^{\prime}$ of weight at least $d$. In both cases, $Q^{\prime}=$ $x P b_{1} P^{\prime} b_{2} P z$ contains $y_{1}$ and $y_{2}$ and $w\left(Q^{\prime}\right) \geq d$, hence $Q^{\prime}$ is a required path. This completes the proof of Theorem 8.3.

### 8.2 An Ore-type condition

And the another aim of this chapter is to weaken the condition of Theorem 8.1 to Ore-type degree condition. The following problem may naturally be suggested.

Problem 8.4. Let $G$ be a 2-connected weighted graph and $d$ a nonnegative real number. Let $x$ and $z$ be distinct vertices of $G$. If $d^{w}(u)+d^{w}(v) \geq 2 d$ for every pair of nonadjacent vertices $u$ and $v$ in $V(G) \backslash\{x, z\}$, is it true that $G$ contains an $(x, z)$-path of weight at least $d$ ?

However, the answer to Problem 8.4 is negative. Let $G_{1}$ be the weighted complete graph of order $n$ such that all of its edges are assigned the same weight $r>0$, and $x$ and $z$ be any distinct vertices of $G_{1}$. Then $G_{1}$ satisfies the condition of Problem 8.4 for all $d>0$, but the weight of the heaviest path in $G$ is $(n-1) r$. Hence if $d>(n-1) r, G_{1}$ does not have any $(x, z)$-path of weight $d$ or more.

There is another counterexample which is not a complete graph. Let $G_{2}$ be the weighted graph such that an edge $p q$ is removed from a complete graph of order $n \geq 7$, and let $x$ and $z$ be any distinct vertices in $V\left(G_{2}\right) \backslash\{p . q\}$. Now we assign weight $r$ to all the edges incident with $p$, and weight 0 to all the other edges. Then $G_{2}$ satisfies the condition of Problem 8.4 for $d=(n-2) r / 2$, but the weight of the heaviest path in $G$ is $2 r$. Hence $G_{2}$ does not have any $(x, z)$-path of weight $d$ or more.

In each of the above examples, $x$ and $z$ are not connected by a heavy path, but they are connected by a hamiltonian path, a path containing all the vertices in a graph. Considering this fact, we prove the following theorem.

Theorem 8.5. Let G be a 2-connected weighted graph and d a nonnegative real number. Let $x$ and $z$ be distinct vertices of $G$. If $d^{w}(u)+d^{w}(v) \geq 2 d$ for every pair of nonadjacent vertices $u$ and $v$ in $V(G) \backslash\{x, z\}$, then $G$ contains an $(x, z)$-path of weight at least $d$ or a hamiltonian ( $x, z$ )-path.

Moreover, extending Theorem 8.5, we prove the following.
Theorem 8.6. Let $G$ be a 2 -connected weighted graph and $d$ a nonnegative real number. Let $x$ and $z$ be distinct vertices of $G$, and $W$ be a subset of $V(G) \backslash\{x, z\}$. If $d_{G-W}^{w}(u)+d_{G-W}^{w}(v) \geq 2 d$ for every pair of nonadjacent vertices $u$ and $v$ in $V(G) \backslash(W \cup\{x, z\})$, then $G$ contains an $(x, z)$ path of weight at least $d$ or an $(x, z)$-path which contains all the vertices of $V(G) \backslash W$.

In our proofs of Theorems 8.5 and 8.6, we use the following notation: For $U \subseteq V(G)$, we denote $\delta_{G}^{w}(U)=\min \left\{d_{G}^{w}(v) \mid v \in U\right\}$, and For $H \subseteq G$, we denote $\delta_{G}^{w}(H)=\delta_{G}^{w}(V(H))$.

### 8.3 Proof of Theorem 8.5

If $d=0$, the assertion is obvious. Hence we may assume $d>0$. Let $|V(G)|=n$. We use induction on $n$.

If $n=3$, let $y$ be the third vertex other than $x, z$. From the 2 -connectedness of $G$, there is a path $x y z$, which is a hamiltonian $(x, z)$-path. Suppose now that $n \geq 4$ and the theorem is true for all graphs of $k$ vertices such that $3 \leq k \leq n-1$. Let $H=G-x$.

Case 1. H is 2-connected.
Since $G$ is 2-connected, we have $d(x) \geq 2$. Choose $x^{\prime} \in N(x) \backslash\{z\}$ such that $w\left(x x^{\prime}\right)=$ $\max \{w(x v) \mid v \in N(x) \backslash\{z\}\}$. Then for every $v \in V(H) \backslash\{z\}, d_{H}^{w}(v) \geq d_{G}^{w}(v)-w\left(x x^{\prime}\right)$. Hence $d_{H}^{w}(u)+d_{H}^{w}(v) \geq 2\left(d-w\left(x x^{\prime}\right)\right)$ for every pair of non-adjacent vertices $u, v \in V(H) \backslash\{z\}$. By the induction hypothesis, there is an $\left(x^{\prime}, z\right)$-path $Q$ in $H$ such that $w(Q) \geq d-w\left(x x^{\prime}\right)$, or $Q$ is a hamiltonian path of $H$. Then the path $P=x x^{\prime} Q$ is a required path.

Case 2. $H$ is separable.
In this case, $H$ has at least two endblocks, say $B_{1}$ and $B_{2}$. First we prove that there is a required path in case of $I_{B_{1}}=\{z\}$. In this case, let $G^{\prime \prime}=G[V(G) \backslash\{z\}]$. If $x c_{B_{1}} \notin E\left(G^{\prime \prime}\right)$, we add the edge $x c_{B_{1}}$ of weight zero to $G^{\prime \prime}$. Then, the resulting graph is 2-connected, and $d^{w}(u)+d^{w}(v) \geq 2 d$ for every $u, v \in V\left(G^{\prime \prime}\right) \backslash\left\{x, c_{B_{1}}\right\}$ such that $u v \notin E(G)$. Then by the induction hypothesis, there is an $\left(x, c_{B_{1}}\right)$-path $Q$ such that $w(Q) \geq d$ or $Q$ contains all the vertices in $G^{\prime \prime}$. It is obvious that $Q$ is not the added edge $x c_{B_{1}}$ itself, hence we can take the path $P=Q c_{B_{1}} z$ in $G$, which is a required path. By the same argument, we can obtain a required path in case of $I_{B_{2}}=\{z\}$. So we can assume that $I_{B_{1}} \neq\{z\}$ and $I_{B_{2}} \neq\{z\}$.

For $i \in\{1,2\}$, let $d_{i}=\delta_{G}^{w}\left(I_{B_{i}} \backslash\{z\}\right)$. Since $v_{1} v_{2} \notin E(G)$ for any vertices $v_{1} \in I_{B_{1}} \backslash\{z\}$ and $v_{2} \in I_{B_{2}} \backslash\{z\}, d_{1}+d_{2} \geq 2 d$.

Case 2.1. $z \notin I_{B_{1}} \cup I_{B_{2}}$.
Since $d_{1}+d_{2} \geq 2 d, \max \left\{d_{1}, d_{2}\right\} \geq d$. Without loss of generality, we can suppose $d_{1} \geq d$. Now, let $B_{1}^{*}$ denote the graph obtained from $G\left[V\left(B_{1}\right) \cup\{x\}\right]$ by adding the edge $x c_{B_{1}}$ of weight zero if $x c_{B_{1}} \notin E(G)$. Then $B_{1}^{*}$ is 2-connected and for every $v \in V\left(B_{1}^{*}\right) \backslash\left\{x, c_{B_{1}}\right\}, d_{B_{1}^{*}}^{w}(v)=d_{G}^{w}(v) \geq d_{1}$. Hence, Theorem 8.1 implies that $B_{1}^{*}$ has an $\left(x, c_{B_{1}}\right)$-path $Q_{1}$ of weight at least $d_{1} \geq d$. It is obvious that $Q_{1}$ is not the added edge $x c_{B_{1}}$ itself, so $Q_{1}$ is a path in $G$. On the other hand, there exists a $\left(c_{B_{1}}, z\right)$-path $Q_{2}$ in $H-I_{B_{1}}$. Then $P=Q_{1} Q_{2}$ is an $(x, z)$-path of weight at least $d$.

Case 2.2. $z \in I_{B_{1}} \cup I_{B_{2}}$.

Without loss of generality, we can suppose that $z \in I_{B_{1}}$. If there exists $v \in I_{B_{1}}$ such that $w(x v) \geq d$, we can obtain an $(x, z)$-path of weight at least $d$ by joining $x v$ and any $(v, z)$-path in $B_{1}$. So suppose that $\max \left\{w(x v) \mid v \in I_{B_{1}}\right\}<d$. Then, $d_{B_{1}}^{w}(v)>d_{G}^{w}(v)-d \geq d_{1}-d$ for all $v \in V\left(B_{1}\right) \backslash\left\{z, c_{B_{1}}\right\}$. Now we already have $I_{B_{1}} \neq\{z\}$. This implies that $B_{1}$ is 2-connected. Hence, by Theorem 8.1, there exists a $\left(c_{B_{1}}, z\right)$-path $Q_{1}$ in $B_{1}$ of weight at least $d_{1}-d$. Now applying the same argument as used in Case 1 to $B_{2}$, we can obtain an $\left(x, c_{B_{2}}\right)$-path $Q_{2}$ in $G\left[V\left(B_{2}\right) \cup\{x\}\right]$ of weight at least $d_{2}$. It is easy to see that there exists a $\left(c_{B_{1}}, c_{B_{2}}\right)$-path $Q_{3}$ in $H-I_{B_{1}}-I_{B_{2}}$, so $G$ has the $(x, z)$-path $P=Q_{2} Q_{3} Q_{1}$ of weight at least $d_{1}-d+d_{2} \geq 2 d-d=d$.

### 8.4 Proof of Theorem 8.6

Before we prove Theorem 8.6, we prepare some terminology and lemmas. From a given graph $G$, we can make a new graph $H$ whose vertices are the blocks and cutvertices of $G$, and two vertices of $H$ is adjacent if and only if one is a cutvertex of $G$ and the other is a block of $G$ containing the cutvertex. By the definition, $H$ contains no cycle. We call $H$ a block-cutvertex tree of $G$.

Now we define an operation, which is edge contraction of weighted graphs, but the weight function for the resulting graph is different from the one appeared in Chapter 2. Let $G$ be a
weighed graph and $a b \in E(G)$. The graph $G_{b \rightarrow a}$ is equal to the graph $G / a b$, but the contracted vertex is regarded as $a$. To assign weights to every edge of $G_{b \rightarrow a}$, we consider a mapping $\varphi$ of $E\left(G_{b \rightarrow a}\right)$ to $E(G)$ such that

- for $u, v \in V\left(G_{b \rightarrow a}\right) \backslash\{a\}, \varphi(u v)=u v$;
- for $v \in V\left(G_{b \rightarrow a}\right) \backslash\{a\}$, if $a v \in E(G)$ then $\varphi(a v)=a v$;
- for $v \in V\left(G_{b \rightarrow a}\right) \backslash\{a\}$, if $a v \notin E(G)$ then $\varphi(a v)=b v$.

Note that $\varphi$ is an injection. For every edge $e \in E\left(G_{b \rightarrow a}\right)$, we assign $w_{G_{b \rightarrow a}}(e)=w_{G}(\varphi(e))$. Next, we prepare some lemmas.

Lemma 8.7. Let $G$ be a weighted graph and $a b$ be an edge of $G$. Then for any path $P$ in $G_{b \rightarrow a}$, there exists a path $Q$ in $G$ such that
(a) $w(P) \leq w(Q)$;
(b) $P$ and $Q$ have the same endvertices.

Moreover, if $d_{G}(b)=2$, we can find $Q$ which also satisfies the following.
(c) $V(P) \subseteq V(Q)$.

Proof. We give an orientation to $P$. If $a$ is an endvertex of $P$, we regard $a$ as the first vertex. For a vertex $v \in V(P), v^{+}$denotes the next vertex of $v$ on $P$, and $v^{-}$denotes the last vertex before $v$ on $P$.

Now we define a path $Q$ in $G$. We distinguish four cases.
(i) $a$ is an endvertex of $P$ and $a^{+} \notin N_{G}(a)$.
(ii) $a$ is an endvertex of $P$ and $a^{+} \in N_{G}(a)$.
(iii) $a$ is a vertex of $P$ which is not an endvertex, and $\left|\left\{a^{+}, a^{-}\right\} \cap N_{G}(a)\right|=1$.
(iv) Otherwise.

In case of (i) or (iii), let

$$
Q=\bigcup_{e \in P} \varphi(e) \cup\{a b\} .
$$

And, in case of (ii) or (iv), let

$$
Q=\bigcup_{e \in P} \varphi(e)
$$

Then $Q$ induces a path satisfying (a) and (b). Also, if $V(P) \nsubseteq V(Q)$, then $a$ lies on $P$ and $\left\{a^{+}, a^{-}\right\} \cap N_{G}(a)=\phi$. In this case, we have $N_{G}(b) \supseteq\left\{a^{+}, a^{-}, a\right\}$, and hence $d_{G}(b) \geq 3$. This shows (c).

Lemma 8.8. Let $G$ be a weighted graph, ab be an edge of $G$, and $L$ be a subset of $V(G)$. If $b \notin L$, then for every $v \in L, d_{G[L]}^{w}(v)=d_{G_{b \rightarrow a}[L]}^{w}(v)$.

Proof. Let $v \in L$. For every $u \in N_{G}(v) \cap L$, since $u \neq b$, we have $u v \in E\left(G_{b \rightarrow a}\right)$ and $w_{G}(u v)=w_{G_{b \rightarrow a}}(u v)$. Hence we obtain $d_{G[L]}^{w}(v)=d_{G_{b \rightarrow a}[L]}^{w}(v)$.

And, the following two lemmas are obvious.
Lemma 8.9. Let $G$ be a weighted graph and ab be an edge of $G$. For any path $P$ in $G-b a$, there exists a path $Q$ in $G$ such that
(a) $w(P) \leq w(Q)$;
(b) $V(P) \subseteq V(Q)$;
(c) $P$ and $Q$ have the same endvertices.

Lemma 8.10. Let $G$ be a weighted graph, ab be an edge of $G$, and $L$ be a subset of $V(G)$. If $b \notin L$, then $d_{G[L]}^{w}(v)=d_{G-b a[L]}^{w}(v)$ for every $v \in L$.

Next, we define the elimination of $u v \in E(G)$ keeping weights in $L$. Let $G$ be a 2connected graph of order at least 4 and $u v \in E(G)$ such that $u \notin L$. By the following theorem, we obtain that $G-u v$ or $G / u v$ is 2 -connected.

Theorem 8.11 (Tutte [33]). Let $G$ be a 2-connected graph of order at least 4, and e be an edge of $G$. Then either $G-e$ or $G / e$ is 2-connected.

If $G-u v$ is 2-connected, we make a new graph $G^{\prime}=G-u v$. If $G-u v$ is not 2-connected, we make a new graph $G^{\prime}=G_{u \rightarrow v}$. We call this operation from $G$ to $G^{\prime}$ the elimination of $u v$ keeping the weight of $L$. Note that the resulting graph $G^{\prime}$ is still 2-connected.

Proof of Theorem 8.6. Let $G$ be a weighted graph satisfying the conditions of Theorem 8.6. If $W=\phi$, the assertion follows from Theorem 8.5. So we may assume $W \neq \phi$. Also in case of $V(G) \backslash(W \cup\{x, z\})=\phi$ or $d=0$, the assertion is obvious. So we can assume that $V(G) \backslash(W \cup\{x, z\}) \neq \phi$ and $d>0$. Hence, $|V(G)|$ is at least 4.

Next, if $x z \notin E(G)$, let $G^{*}=G+x z$ and assign weight 0 to $x z$. Then $G^{*}$ also satisfies the conditions of Theorem 8.6. If $G^{*}$ has a required path $P, P$ is not $x z$ itself (note that $V(G) \backslash(W \cup\{x, z\}) \neq \phi$ and $d>0)$. Hence we can obtain a required path $P$ in $G$. So we can assume that $x z \in E(G)$.

Let $H$ be a component of $G-W$. We call $H$ trivial if $V(H) \subseteq\{x, z\}$. Now let $\mathcal{H}$ be the set of all the non-trivial components of $G-W$.

Case 1. $|\mathcal{H}| \geq 2$.

Suppose $H_{1}, H_{2} \in \mathcal{H}$. For $i \in\{1,2\}$, let $d_{i}=\delta_{G-W}^{w}\left(H_{i}-\{x, z\}\right)$. If $v_{1} \in H_{1}$ and $v_{2} \in H_{2}, v_{1}$ and $v_{2}$ are non-adjacent. Hence $d_{1}+d_{2} \geq 2 d$. In particular, $\max \left\{d_{1}, d_{2}\right\} \geq d$. Without loss of generality, we may assume that $d_{1} \geq d$. Let $L=V\left(H_{1}\right) \cup\{x, z\}$. Now we eliminate all the edges incident with vertices in $V(G) \backslash L$ keeping weights in $L$. Then the resulting graph $G^{*}$ is 2-connected, and Lemmas 8.8 and 8.10 imply $d_{G^{*}}^{w}(v) \geq d$ for every $v$ in $V\left(G^{*}\right) \backslash\{x, z\}$ (note that $d_{G-W}^{w}(v)=d_{H_{1}}^{w}(v)$ for every vertex $\left.v \in H_{1}\right)$. Hence Theorem 8.1 implies that there is an $(x, z)$-path of weight at least $d$ in $G^{*}$. And by Lemmas 8.7 and 8.9 , we obtain an $(x, z)$-path of weight at least $d$ in $G$.

Case 2. $|\mathcal{H}|=1$.

Suppose $H$ be the unique non-trivial component. Note that for every vertex $v$ in $H, d_{G-W}^{w}(v)=$ $d_{H}^{w}(v)$.

Case 2.1. H is 2-connected.

If $\{x, z\} \subseteq V(H)$, Let $x^{\prime}=x$ and $z^{\prime}=z$. If $\{x, z\} \nsubseteq V(H)$, from the 2 -connectedness of $G$, we can take two disjoint paths $Q_{1}$ and $Q_{2}$ such that $Q_{1}$ is an $(x, H)$-path and $Q_{2}$ is a $(z, H)$-path. We denote the endvertex of $Q_{1}$ in $H$ by $x^{\prime}$, and the endvertex of $Q_{2}$ in $H$ by $z^{\prime}$. In each case, Theorem 8.5 implies that there is an $\left(x^{\prime}, z^{\prime}\right)$-path $P$ in $H$ such that $w(P) \geq d$, or $P$ contains all the vertices of $H$. If necessary, adding $Q_{1}$ and $Q_{2}$ to $P$, we obtain a required path.

Case 2.2. $H$ is not 2-connected.

Case 2.2.1. $H$ has three or more endblocks.

If $\{x, z\} \subseteq V(H)$, there are at least two endblocks of $H$ such that their internal vertices don't contain $x$ or $z$ (note that $x z \in E(G)$ implies that $x$ and $z$ are in the same block of $H$ ). Let $B_{1}$ and $B_{2}$ be such endblocks and let $x^{\prime}=x$. If $\{x, z\} \nsubseteq V(H)$, take an $(x, H)$-path $Q_{1}$ and let $x^{\prime}$ be the endvertex of this path in $H$. Then there are at least two blocks such that their internal vertices don't contain $x^{\prime}$, and let $B_{1}$ and $B_{2}$ be such endblocks. In each case, $\max \left\{\delta_{H}^{w}\left(I_{B_{1}}\right), \delta_{H}^{w}\left(I_{B_{2}}\right)\right\} \geq d$. Without loss of generality, we can assume that $\delta_{H}^{w}\left(I_{B_{1}}\right) \geq d$. Now there is an $\left(x^{\prime}, c_{B_{1}}\right)$-path in $G-I_{B_{1}}$, hence Theorem 3.12 implies that there are two disjoint paths $Q_{2}$ and $Q_{3}$ such that $Q_{2}$ is an $\left(x^{\prime}, B_{1}\right)$-path, $Q_{3}$ is a $\left(z, B_{1}\right)$-path, and an endvertex of $Q_{2}$ or $Q_{3}$ is $c_{B_{1}}$. Let $z$ be another endvertex of $Q_{2}$ and $Q_{3}$ in $B_{1}$. Then Theorem 8.1 implies that there is a $\left(c_{B_{1}}, z\right)$-path $P$ of weight at least $\delta_{H}^{w}\left(B_{1}\right) \geq d$ in $B_{1}$. Now let $P^{\prime}=Q_{2} P Q_{3}$. If necessary, adding $Q_{1}$ to $P^{\prime}$, we obtain a required path.

Case 2.2.2. $H$ has only two endblocks.

We denote $L=V(H) \cup\{x, z\}$. First, we eliminate all the edges of $\{u v \mid u v \in E(G), u, v \in$ $V(G) \backslash L\}$. Next, we remove all the edges $e$ if
(a) $e$ is incident with a vertex in $V(G) \backslash L$;
(b) $G-e$ is 2-connected.

We denote the resulting graph $G^{\prime}$. Since the block-cutvertex tree of $H$ is a path, $d_{G^{\prime}}(v)=2$ for every $v \in V\left(G^{\prime}\right) \backslash L$. Then for every $v \in V\left(G^{\prime}\right) \backslash L$, choose an edge incident with $v$ and eliminate it keeping weights in $L$. Now we obtain a graph $G^{\prime \prime}$ which is 2 -connected and $V\left(G^{\prime \prime}\right)=L$. Moreover, Lemmas 8.8 and 8.10 imply that for all non-adjacent vertices $u, v \in V\left(G^{\prime \prime}\right) \backslash\{x, z\}, d_{G^{\prime \prime}}^{w}(u)+d_{G^{\prime \prime}}^{w}(v) \geq d$. Hence, Theorem 8.5 implies that there exists an $(x, z)$-path $P$ in $G^{\prime \prime}$ such that $w(P) \geq d$ or $P$ is a hamiltonian path in $G^{\prime \prime}$. Then, Lemmas 8.7 and 8.9 imply that there exists an $(x, z)$-path $Q$ in $G$ such that $w(Q) \geq d$ or $Q$ contains all the vertices of $V\left(G^{\prime \prime}\right) \supseteq V(H)$, which is a required path.

### 8.5 Remarks

Theorem 8.5 is sharp in the following sense. Let $G$ be a complete 3-partite graph with partite sets $V_{1}, V_{2}$ and $V_{3}$ such that $\left|V_{3}\right|>\left|V_{1}\right|+\left|V_{2}\right|$ and $\left|V_{1}\right|=2$. And let $V_{1}=\{x, z\}$ (See Figure 8.1). Now assign weight $d / 2$ to all the edges incident with $x$ or $z$, and assign weight 0 to all the other edges. Then $d^{w}(u)+d^{w}(v) \geq 2 d$ for every pair of nonadjacent vertices $u$ and $v$, but $G$ contains no $(x, z)$-path of weight more than $d$ or hamiltonan $(x, z)$-path.


Figure 8.1:


Figure 8.2:

Theorem 8.2 suggests the following problem.

Problem 8.12. Let $G$ be a 2-connected weighted graph and d a nonnegative real number. Let $x$ and $z$ be distinct vertices of $G$. If $d^{w}(u)+d^{w}(v) \geq 2 d$ for every pair of nonadjacent vertices $u$ and $v$ in $V(G) \backslash\{x, z\}$, is it true that for any given vertex $z$ of $G, G$ contains an $(x,\{y\}, z)$-path of weight at least $d$ or a hamiltonian $(x,\{y\}, z)$-path?

The answer to this problem is negative. Let $H=K_{r}(r \geq 3)$ such that $\left\{y, v_{1}, v_{2}\right\} \subseteq V(H)$. Now let $G$ be a graph such that $V(G)=V(H) \cup\left\{x, z, v_{3}, v_{4}\right\}$, and

$$
E(G)=E(H) \cup\left\{v_{1} x, v_{1} v_{3}, v_{2} z, v_{2} v_{4}, x y, v_{3} v_{4}\right\}
$$

Now we assign weight $d$ to all the edges incident with $v_{3}$ or $v_{4}, d^{\prime}$ to all the edges incident with $y$, and 0 to all the other edges (See Figure 8.2). Then $G$ satisfies the conditions of Problem 8.12, but if $d>2 d^{\prime}, G$ contains no ( $x,\{y\}, z$ )-path of weight $\geq d$ or hamiltonan ( $x,\{y\}, z$ )-path.

In this example, we can enlarge the weighted degree of $y$ by adding sufficiently many vertices to $H$. Hence it is no use for Problem 8.12 to add weighted degree condition for $y$.

We conclude this chapter with the following open problem.

Problem 8.13. Let $G$ be a 3-connected weighted graph and d a nonnegative real number. Let $x$ and $z$ be distinct vertices of $G$. If $d^{w}(u)+d^{w}(v) \geq 2 d$ for every pair of nonadjacent vertices $u$ and $v$ in $V(G) \backslash\{x, z\}$, is it true that for any given vertex $y$ of $G, G$ contains an $(x,\{y\}, z)$-path of weight at least d?

## Chapter 9

## Weighed Ramsey problem

(This chapter is based on the paper [21].)

### 9.1 Introduction

In 2-edge-colored complete graph, by using Ramsey-type theorems, we obtain the existence of monochromatic subgraph which have many edges compared with its order. In this chapter, we extend the concept of Ramsey problem to the weighted graphs, and we show the existence of a heavy monochromatic subgraph in 2-edge-colored graph with small order.

We say that a graph $G$ can be decomposed into graphs $H_{1}, H_{2}, \ldots, H_{l}$ if and only if there is a set $\left\{G_{1}, G_{2}, \ldots, G_{l}\right\}$ of subgraphs of $G$ such that each $G_{i}$ is isomorphic to $H_{i}$ and each edge of $G$ is contained in exactly one of the graphs in $\left\{G_{1}, G_{2}, \ldots, G_{l}\right\}$. In this case we also say that $\left\{H_{1}, H_{2}, \ldots, H_{l}\right\}$ is a decomposition of $G$. Especially, we call a decomposition of a graph $G$ into two weighted graphs $R$ and $B$ a 2 -edge-coloring of $G$, so that the edges in $R$ are colored red, and the edges in $B$ are colored blue. For any subgraph $H$ of a 2-edge-colored weighted graph $G$, we define

$$
w_{R}(H)=\sum_{e \in E(R) \cap E(H)} w(e), w_{B}(H)=\sum_{e \in E(B) \cap E(H)} w(e) .
$$

In [15], some Turán-Ramsey theorems for weighted graphs in which every edge has weight $0,1 / 2$ or 1 , are considered. And in [6] and [23], there are some results of Turán problems for weighted graphs, in which the weight of every edge is rational number. In this chapter we deal with more general weighted graphs, i.e. every nonnegative real number is allowed for the weights of the edges. And, the aim is to introduce the Weighted Ramsey Problem, the extension of the Ramsey Problem to the weighted graphs.

Definition 9.1. Let $n$ and $s$ be two integers with $n>s \geq 3$. We define $W R(s ; n)$ to be the supremum value $c$ such that for any weighting function $w$ of $K_{n}$, and for any 2-edge-coloring $R$ and $B$ of $K_{n}$, there exists an induced subgraph $H$ of order s satisfying $\max \left\{w_{R}(H), w_{B}(H)\right\} \geq$ $c \cdot w\left(K_{n}\right)$.

The following proposition shows the relation between the Ramsey number $R(s, s)$ and the weighted Ramsey number $W R(s ; n)$.

Proposition 9.2. $R(s, s) \leq n$ if

$$
\begin{equation*}
W R(s ; n)>\frac{s(s-1)-2}{n(n-1)} . \tag{9.1}
\end{equation*}
$$

Proof. Consider a weighted complete graph $G$ of order $n$ such that $w(e)=1$ for every edge $e$ in $G$. By (9.1) and the fact $w(G)=n(n-1) / 2$, we can find $H \simeq K_{s}$ such that

$$
\max \left\{w_{R}(H), w_{B}(H)\right\}>\frac{s(s-1)-2}{n(n-1)} \cdot w(G)=\frac{s(s-1)-2}{2}=\frac{s(s-1)}{2}-1
$$

Since $w(e)=1$ for every edge in $G, H$ is a monochromatic $K_{s}$, which implies $R(s) \leq n$.

Since $\max \{w(R), w(B)\} \geq w(G) / 2$ for any 2-edge-coloring of weighted complete graph $G$ with order $n$, we easily obtain the following proposition from the straightforward averaging argument.

## Proposition 9.3.

$$
W R(s ; n) \geq \frac{1}{2} \cdot \frac{s(s-1)}{n(n-1)}
$$

On the other hand, the Turán graph and its complement give an upper bound of $W R(s, n)$.

## Proposition 9.4.

$$
W R(s ; n)<\frac{s^{2}-1}{s^{2}+1} \cdot \frac{s(s-1)}{n(n-1)}
$$

Proof. Let $T_{r}(n)$ be the Turán graph, the complete $r$-partite graph with $n$ vertices whose partite sets differ in size by at most 1 . Consider the 2-edge-coloring of $K_{n}$ where $R \simeq T_{s-1}(n)$ and $B$ is the complement of $R$. Now we assign weight

$$
\frac{1}{\binom{s}{2}-1}
$$

for every red edge and weight

$$
\frac{1}{\binom{s}{2}}
$$

for every blue edge. Then $\max \left\{w_{R}(H), w_{B}(H)\right\} \leq 1$ for every induced subgraph $H$ of order $s$ and there are

$$
\left(1-\frac{1}{s-1}+f(s, n)\right)\binom{n}{2}
$$

red edges and

$$
\left(\frac{1}{s-1}-f(s, n)\right)\binom{n}{2}
$$

blue edges, where $f(s, n)$ is a function such that $f(s, n)>0$ for every $s, n$ and $f(s, n) \rightarrow 0$ as $n \rightarrow \infty$. Hence

$$
\begin{aligned}
w(G) & =\frac{2}{s(s-1)-2} \cdot\left(1-\frac{1}{s-1}+f(s, n)\right)\binom{n}{2}+\frac{2}{s(s-1)} \cdot\left(\frac{1}{s-1}-f(s, n)\right)\binom{n}{2} \\
& >\left(\frac{s^{2}+1}{(s-1)^{2} s(s+1)}\right) \cdot 2 \cdot\binom{n}{2} \\
& =\frac{s^{2}+1}{(s-1)(s+1)} \cdot \frac{n(n-1)}{s(s-1)} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
W R(s ; n) & \leq \frac{1}{w(G)} \\
& <\frac{s^{2}-1}{s^{2}+1} \cdot \frac{s(s-1)}{n(n-1)}
\end{aligned}
$$

In this chapter, we determine exact value of $W R(3 ; n)$ for $n=5$ and 6.
Theorem 9.5. $W R(3 ; 5)=1 / 5$.
Theorem 9.6. $W R(3 ; 6)=1 / 7$.
We prove Theorems 9.5 and 9.6 in the later section. By Proposition 9.2, we obtain that Theorem 9.6 implies the fact $R(3,3) \leq 6$. Note that Theorem 9.5 implies that the equality

$$
W R(s ; n)=\frac{s(s-1)-2}{n(n-1)}
$$

holds for $s=3$ and $n=5$. In this sense, we can say that the fact $R(3,3)>5$ is optimal even for weighted graphs.

By using Theorem 9.6, we can improve the lower bound of $W R(3 ; n)$ in Proposition 9.3.

Proposition 9.7. If $n \geq 6$, then

$$
W R(3 ; n) \geq \frac{30}{7} \cdot \frac{1}{n(n-1)}
$$

Proof. Let $G$ be a weighted complete graph of order $n$. By the straightforward averaging argument, we obtain the existence of a subgraph $G^{\prime} \simeq K_{6}$ in $G$ such that

$$
w\left(G^{\prime}\right) \geq \frac{30}{n(n-1)}
$$

Then, it follows from Theorem 9.6 that there exists an induced subgraph $H \simeq K_{3}$ satisfying

$$
\max \left\{w_{R}(H), w_{B}(H)\right\} \geq w\left(G^{\prime}\right) / 7 \geq \frac{30}{7} \cdot \frac{1}{n(n-1)}
$$

which implies the assertion.

We shall discuss the value $W R(3 ; n)$ further in Section 9.5.

### 9.2 Lemmas

For a graph $B$, we say $E(B)$ is connected if $E(B)$ induces a connected graph. A path with $r$ vertices is denoted by $P_{r}$, and the graph $K_{1, r}$ is called a star. In a star $K_{1, r}$, the vertex of degree $r$ is called its center, and degree 1 its leaf. The star with the center $u$ and the leaves $v_{1}, v_{2}, \ldots, v_{r}$ is denoted by $u-v_{1} v_{2} \ldots v_{r}$. A graph is called claw-free if it contains no $K_{1,3}$ as an induced subgraph.

To prove Theorems 9.5 and 9.6 , for the technical reason, we consider the following weighting functions for a given graph $B$;

$$
\mathcal{W}(B)=\left\{w: E(B) \rightarrow \mathbb{R}^{+} \mid w\left(B^{\prime}\right) \leq 6 \text { for any subgraph } B^{\prime} \text { of } B \text { with }\left|B^{\prime}\right| \leq 3\right\}
$$

and investigate the following invariant.

$$
W(B)=\sup \{w(B) \mid w \in \mathcal{W}(B)\} .
$$

Now we prepare some facts and lemmas, which determine the values of $\mathcal{W}(B)$ for several graphs $B$. The following fact is obvious, so we omit the proof.

Fact 9.1. Let $B$ be a graph with at most 6 vertices. If $|E(B)| \geq 8$, then $E(B)$ induces a connected graph.

Lemma 9.8. Let $B^{\prime}$ be a subgraph of $B$, then $W\left(B^{\prime}\right) \leq W(B)$.
Proof. Assume that $w^{\prime}\left(B^{\prime}\right)>W(B)$ for some $w^{\prime} \in \mathcal{W}\left(B^{\prime}\right)$. Consider the weighting function $w$ such that $w(e)=w^{\prime}(e)$ if $e \in B^{\prime}$ and $w(e)=0$ if $e \notin B^{\prime}$. Then it is clear that $w(B)=w^{\prime}\left(B^{\prime}\right)>$ $W(B)$ and $w \in \mathcal{W}(B)$, which contradicts the definition of $W(B)$.

Lemma 9.9. If $B$ is an edge-disjoint union of the graphs $B_{1}$ and $B_{2}$, then $W(B) \leq W\left(B_{1}\right)+$ $W\left(B_{2}\right)$.

Proof. If $w \in \mathcal{W}(B)$ and $w(B)>W\left(B_{1}\right)+W\left(B_{2}\right)$, then $w\left(B_{i}\right)>W\left(B_{i}\right)$ for $i=1$ or 2, which contradicts the definition of $W\left(B_{i}\right)$.

Lemma 9.10. If $B$ is a star $K_{1, r}$ with $r \geq 2$, then $W(B)=3 r$.
Proof. Let $u$ be the center of $B$, let $v_{1}, v_{2}, \ldots, v_{r}$ be the leaves of $B$ and let $v_{r+1}=v_{1}$. For any $w \in \mathcal{W}(B)$, we have $w\left(v_{i} u v_{i+1}\right) \leq 6$ for every $i$, where the index $i$ is taken as modulo $r$. Hence

$$
w(B)=\frac{1}{2} \sum_{i=1}^{r} w\left(v_{i} u v_{i+1}\right) \leq \frac{1}{2} \cdot 6 r=3 r .
$$

The constant weight with $w(e) \equiv 3$ shows that $W(B)=3 r$.
Lemma 9.11. If $B$ is a cycle with length at least 4 , then $W(B)=3|E(B)|$.
Proof. Let $B=v_{1} v_{2} \ldots v_{r}$. For any $w \in \mathcal{W}(B)$, we have $w\left(v_{i} v_{i+1} v_{i+2}\right) \leq 6$ for every $i$, where the index $i$ is taken as modulo $r$. Hence

$$
w(B)=\frac{1}{2} \sum_{i=1}^{r} w\left(v_{i} v_{i+1} v_{i+2}\right) \leq \frac{1}{2} \cdot 6 r=3|E(B)| .
$$

The constant weight with $w(e) \equiv 3$ shows that $W(B)=3|E(B)|$.
Lemma 9.12. If $B$ is a complete graph of order $n \geq 3$, then $W(B)=n(n-1)$.
Proof. Let $\mathcal{T}=\{T \mid T$ is a triangle in $B\}$ and let $w \in \mathcal{W}(B)$. Then $w(T) \leq 6$ for all $T \in \mathcal{T}$. Hence

$$
\begin{aligned}
w(B) & =\frac{1}{n-2} \sum_{T \in \mathcal{T}} w(T) \\
& \leq \frac{1}{n-2} \cdot\binom{n}{3} \cdot 6 \\
& =n(n-1)
\end{aligned}
$$

The constant weight with $w(e) \equiv 2$ shows that $W(B)=n(n-1)$.

Lemma 9.13. If $C$ is a cycle of length $r \geq 4$ and $B=K_{1}+C$, then $W(B)=9 r / 2$.
Proof. Let $C=v_{1} v_{2} \ldots v_{r}$ and let $u$ be the vertex of $V(B) \backslash V(C)$. Moreover, let $T_{i}$ be the triangle $u v_{i} v_{i+1}$, where the indices $i$ and $j$ are taken as modulo $r$. If $w \in \mathcal{W}(B)$, then by Lemma 9.11, we have $w(C) \leq 3 r$. Hence,

$$
\begin{aligned}
W(B) & \leq w(B) \\
& =\frac{1}{2}\left(\sum_{i=1}^{r} w\left(T_{i}\right)+w(C)\right) \\
& \leq \frac{1}{2} \cdot(6 r+3 r) \\
& \leq \frac{9}{2} r .
\end{aligned}
$$

On the other hand, there is $w \in \mathcal{W}(B)$ such that $w(e)=3$ for every $e \in E(C)$ and $w(e)=3 / 2$ for all the other edges. This shows $W(B)=9 r / 2$.

Lemma 9.14. If $B \simeq K_{6}-E\left(3 K_{2}\right)$, then $W(B)=24$.
Proof. Let $E(\bar{B})=\left\{a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}\right\}$. Then $B$ can be decomposed into four triangles $a_{1} a_{2} a_{3}$, $a_{1} b_{2} b_{3}, b_{1} a_{2} b_{3}$ and $b_{1} b_{2} a_{3}$. For any $w \in \mathcal{W}(B)$, each of them has weight at most 6 , hence we have $w(B) \leq 24$. The constant weight with $w(e) \equiv 2$ shows that $W(B)=24$.

Las Vergnas [26] and Sumner [32] proved that every connected claw-free graph of even order has a 1 -factor. Since the line graph of any graph is claw-free, we obtain that if $B$ is a connected graph with $|E(B)|$ even, then its line graph has a 1 -factor. This implies the following fact.

Fact 9.2. Let B be a connected graph with $|E(B)|$ even. Then $B$ can be partitioned into $|E(B)| / 2$ pairs of adjacent edges.

And, the following fact is easily obtained from Fact 9.2.
Fact 9.3. Let $B$ be a connected graph with $|E(B)|$ odd. Then $B$ can be partitioned into an edge and $(|E(B)|-1) / 2$ pairs of adjacent edges.

Using these facts, we obtain the following lemma.
Lemma 9.15. Suppose that $B$ is a connected graph. If $B$ is a tree with a perfect matching, then $W(B)=3|E(B)|+3$. Otherwise, $W(B) \leq 3|E(B)|$.

Proof. If $|E(B)|$ is even, then $B$ can be decomposed into $|E(B)| / 2$ edge-disjoint $P_{3}$ s. Hence, by Lemma $9.9, W(B) \leq(|E(B)| / 2) W\left(P_{3}\right)=3|E(B)|$.

Suppose that $|E(B)|$ is odd. Since $B$ can be decomposed into $(|E(B)|-1) / 2$ edge-disjoint $P_{3}$ s and one $K_{2}$, then by Lemma 9.9 again, we have $W(B) \leq((|E(B)|-1) / 2) W\left(P_{3}\right)+W\left(K_{2}\right)=$ $3(|E(B)|-1)+6=3|E(B)|+3$. In fact, when $B$ is a tree with a perfect matching $M$, if we assign $w(e)=6$ for $e \in M$ and $w(e)=0$ for $e \notin M$, then $w \in \mathcal{W}(B)$ and $w(B)=3|V(B)|=3|E(B)|+3$, which shows that $W(B)=3|E(B)|+3$.

Suppose next that $B$ is a tree without perfect matchings. Recall that $|V(B)|=|E(B)|+1$ is even. Then, there exists a vertex $v$ such that $B-v$ contains at least three odd components $B_{1}$, $B_{2}$ and $B_{3}$. Let $v_{i}$ be the neighbor of $v$ in $B_{i}$ for $i=1,2,3$. It is easy to see that each component of $B-\left\{v v_{1}, v v_{2}, v v_{3}\right\}$ has even number of edges. This implies that $B$ can be decomposed into $(|E(B)|-3) / 2$ edge-disjoint $P_{3}$ s and one $K_{1,3}$. By Lemmas 9.9 and 9.10 , we have

$$
W(B) \leq((|E(B)|-3) / 2) W\left(P_{3}\right)+W\left(K_{1,3}\right)=3(|E(B)|-3)+9=3|E(B)| .
$$

Suppose that $B$ contains a cycle. We use induction on $|E(B)|$ to prove that $W(B) \leq 3|E(B)|$. Let $C$ be a cycle in $B$. If $B=C$ itself, then by Lemma 9.11 , we have $W(B) \leq 3|E(B)|$. Let $T$ be a unicyclic spanning subgraph of $B$ such that $C \subseteq T$. Since $B \neq C$, we can take a leaf $u$ of $T$ which is farthest from $C$ in $T$. If there are two edges $u u_{1}$ and $u u_{2}$ in $E(B) \backslash E(T)$, then let $B^{\prime}=B-\left\{u u_{1}, u u_{2}\right\}$. Since $B^{\prime}$ is connected and $C \subseteq B^{\prime}$, by the induction hypothesis, we have $W\left(B^{\prime}\right) \leq 3\left|E\left(B^{\prime}\right)\right|$. Then, it follows that $W(B) \leq W\left(B^{\prime}\right)+W\left(P_{3}\right) \leq 3\left|E\left(B^{\prime}\right)\right|+6=3|E(B)|$. Similarly, if we can take a $P \simeq P_{3}$ containing $u$ such that $E(P) \cap E(C)=\emptyset$ and $E(B) \backslash E(P)$ induces a connected subgraph, then by induction, we have $W(B) \leq W(B-E(P))+W(P) \leq$ $3(|E(B)|-2)+6=3|E(B)|$. This is the case unless $d_{B}(u)=1$ and the unique neighbor $v$ of $u$ in $B$ is in $C$ and $d_{T}(v)=3$. In this case, let $v_{1}$ and $v_{2}$ be the neighbor of $v$ in $C$. It is easy to see that $B-\left\{v u, v v_{1}, v v_{2}\right\}$ is connected. This implies that $B$ can be decomposed into $(|E(B)|-3) / 2$ edge-disjoint $P_{3}$ s and one $K_{1,3}$. By Lemmas 9.9 and 9.10, we have

$$
W(B) \leq((|E(B)|-3) / 2) W\left(P_{3}\right)+W\left(K_{1,3}\right)=3(|E(B)|-3)+9=3|E(B)| .
$$

### 9.3 Proof of Theorem 9.5

Let $G$ be a 2 -edge-colored complete graph with 5 vertices. If each edge of $G$ has weight 3 and $R \simeq B \simeq C_{5}$, then $w(G)=30$ and $\max \left\{w_{R}(H), w_{B}(H)\right\} \leq 6=w(G) / 5$ for every triangle $H$ in $G$, hence we have $W R(3 ; 5) \leq 1 / 5$. To prove the lower bound, we assume $\max \left\{w_{R}(T), w_{B}(T)\right\} \leq 6$ for every triangle $T$ in $G$. Namely, the restricted weightings $w_{E(R)}$ and $\left.w\right|_{E(B)}$ are contained in $W(R)$ and $W(B)$, respectively. Then it suffices to prove that $w(G) \leq$ 30. If $G$ has no monochromatic $K_{3}$, It is easy to see that $R \simeq B \simeq C_{5}$. Then Lemma 9.11 implies that $w(R) \leq 15$ and $w(B) \leq 15$, hence we obtain $w(G)=w(R)+w(B) \leq 30$. So we may assume that there exists a monochromatic triangle in $G$.

Now we consider the case where $G$ has a monochromatic $2 K_{2}+K_{1}$. Without loss of generality we may assume that $2 K_{2}+K_{1} \subseteq B$. Note that $R \subseteq C_{4}$. If $R \simeq K_{2}$ or $P_{3}$, we have $w(R) \leq 6$, and Lemmas 9.8 and 9.12 imply $w(B) \leq 20$. Hence $w(G)=w(R)+w(B) \leq 30$. Otherwise, $2 K_{2} \subseteq R$. Then $B \subseteq C_{4}+K_{1}$, so Lemmas 9.8 and 9.13 imply that $w(B) \leq 18$. On the other hand, since $R \subseteq C_{4}$, we have $w(R) \leq 12$ by Lemmas 9.8 and 9.11. Thus $w(G)=w(R)+w(B) \leq 30$.

Therefore, we may assume that $G$ has a monochromatic $K_{3}$ but no monochromatic $2 K_{2}+$ $K_{1}$. Without loss of generality we may assume that $K_{3} \subseteq B$. Since $2 K_{2}+K_{1} \nsubseteq B$, we have $|E(R)| \geq 3$.

In case of $|E(R)|=3, R \simeq P_{4}, K_{1,3}, K_{3}$ or $P_{3} \cup K_{2}$. By Lemmas 9.9 and 9.15 , we obtain $w(R) \leq 12$ in each case. Let $B^{\prime}$ be a graph obtained from $B$ by deleting the edges of a triangle in $B$. Then $\left|E\left(B^{\prime}\right)\right|=4$ and $E\left(B^{\prime}\right)$ must be connected, hence Lemma 9.15 shows $w\left(B^{\prime}\right) \leq 12$, which implies $w(B) \leq 18$. Thus $w(G)=w(R)+w(B) \leq 30$. In case of $|E(R)|=4, E(R)$ must be connected, hence Lemma 9.15 implies that $w(R) \leq 12$. Since $|E(B)|=6, E(B)$ is also connected, hence it follows from Lemma 9.15 that $w(B) \leq 18$. Therefore, we have $w(G)=w(R)+w(B) \leq 30$.

If $|E(R)|=5$, then $3 K_{2} \nsubseteq R$ and $3 K_{2} \nsubseteq B$. Hence Lemma 9.15 implies $w(R), w(B) \leq 15$, thus we have $w(G)=w(R)+w(B) \leq 30$. If $|E(R)|=6$, since $E(R)$ is connected, we have $w(R) \leq 18$ by Lemma 9.15. If $E(B)$ is connected, Lemma 9.15 implies $w(B) \leq 12$, and otherwise $B \simeq K_{2} \cup K_{3}$, so $w(B) \leq 12$. Thus we have $w(G) \leq 30$. And if $|E(R)|=7$, Lemma 9.15 implies $w(R) \leq 21$. Now the fact $B \simeq K_{3}$ shows $w(B) \leq 6$, hence we have $w(G) \leq 30$. This completes the proof of Theorem 9.5.

### 9.4 Proof of Theorem 9.6

Let $G$ be a 2-edge-colored complete graph with 6 vertices and $R \simeq 3 K_{2}$. If each edge of $R$ has weight 6 and each edge of $B$ has weight 2 , then $w(G)=42$ and $\max \left\{w_{R}(H), w_{B}(H)\right\} \leq$ $6=w(G) / 7$ for every triangle $H$ in $G$. Hence we have $W R(3 ; 5) \leq 1 / 7$. To prove the lower bound, as in the proof of Theorem 9.5, we assume $\left.w\right|_{E(R)} \in W(R)$ and $\left.w\right|_{E(B)} \in W(B)$, and then it suffices to prove $w(G) \leq 42$. Without loss of generality, we may assume that $|E(R)|<8 \leq|E(B)|$.

Case $1 .|E(R)| \leq 2$.

In this case it is obvious that $w(R) \leq 12$, and Lemmas 9.8 and 9.12 imply that $w(B) \leq 30$, hence $w(G) \leq 42$.

Case 2. $|E(R)|=3$.

In this case, $R \simeq P_{4}, K_{1,3}, K_{3}, P_{3} \cup K_{2}$ or $3 K_{2}$. If $R \not \approx 3 K_{2}$, then we obtain $w(R) \leq 12$ by Lemmas 9.9 and 9.15. On the other hand, Lemmas 9.8 and 9.12 imply that $w(B) \leq 30$, thus we have $w(G) \leq 42$. If $R \simeq 3 K_{2}$, then $w(R) \leq 18$. Since Lemma 9.14 implies $w(B) \leq 24$, we obtain $w(G) \leq 42$.

Case 3. $|E(R)|=4$.

Since $|E(B)|=11$, there exists a triangle in $B$, say $T$. Let $B^{\prime}=B-E(T)$, then it follows from Fact 9.1 that $E\left(B^{\prime}\right)$ is connected. Hence Lemma 9.15 implies $w\left(B^{\prime}\right) \leq 24$. Thus we have $w(B)=w\left(B^{\prime}\right)+w(T) \leq 30$.

Now suppose that $E(R)$ is connected. Then by Lemma 9.15, we have $w(R) \leq 12$, which implies $w(G) \leq 42$. Hence we may assume that $E(R)$ is not connected, then $R \simeq 2 P_{3}, K_{2} \cup K_{3}$, $K_{2} \cup K_{1,3}$, or $K_{2} \cup P_{4}$. If $R \simeq 2 P_{3}$ or $K_{2} \cup K_{3}$, then Lemmas 9.9 and 9.15 imply $w(R) \leq 12$, hence $w(G) \leq 42$. If $R \simeq K_{2} \cup K_{1,3}$, we have $w(R) \leq 15$ by Lemma 9.10. Let $v_{1}$ and $v_{2}$ be the vertices of $K_{2}$, let $v_{3}$ be the center of $K_{1,3}$, and let $v_{4}, v_{5}, v_{6}$ be leaves of $K_{1,3}$ in $R$. Then $B$ can be decomposed into two triangles $v_{1} v_{4} v_{6}, v_{2} v_{5} v_{6}$ and a cycle $v_{1} v_{3} v_{2} v_{4} v_{5}$. Hence by Lemma 9.11, we obtain $w(B) \leq 27$, which implies $w(G) \leq 42$. If $R \simeq K_{2} \cup P_{4}$, by Lemma 9.15, we have $w(R) \leq 18$. Since $B \subseteq K_{6}-E\left(3 K_{2}\right)$, we have $w(B) \leq 24$ by Lemmas 9.8 and 9.14, therefore $w(G) \leq 42$.

Case 4. $|E(R)|=5$.

Since $|E(B)|=10$, there exists a triangle in $B$, say $T$. Let $B^{\prime}=B-E(T)$. Since $\left|E\left(B^{\prime}\right)\right|=7$ and $B^{\prime}$ is a graph obtained by deleting a triangle from $B, B^{\prime}$ is connected. Hence we have $w\left(B^{\prime}\right) \leq 21$ by Lemma 9.15. Thus $w(B)=w\left(B^{\prime}\right)+w(T) \leq 27$. If $w(R) \leq 15$, we are done, so we assume that $w(R)>15$. Now Lemma 9.15 implies that one of the component of $R$ is a tree with a perfect matching. Considering $|E(R)|=5$, we have $w(R) \leq 18$ and $3 K_{2} \subseteq R$ by Lemma 9.15. Then $B \subseteq K_{6}-E\left(3 K_{2}\right)$, hence by Lemmas 9.8 and 9.14 we have $w(B) \leq 24$, which implies $w(G) \leq 42$.

Case 5. $|E(R)|=6$.

First assume that $E(R)$ is not connected, then $R \simeq K_{2} \cup K_{4}^{-}$( $K_{4}^{-}$is the graph obtained from $K_{4}$ by deleting just one edge) or $2 K_{3}$. If $R \simeq K_{2} \cup K_{4}^{-}$, then the fact $K_{4}^{-} \subseteq K_{4}$ and Lemmas 9.8 and 9.12 imply that $w(R) \leq 6+12=18$. Let $v_{1}$ and $v_{2}$ be vertices of $K_{2}$, and $v_{3}, v_{4}, v_{5}, v_{6}$ be vertices of $K_{4}^{-}$in $R$ such that $v_{3} v_{4} \notin E(R)$. Then $B$ has a triangle $T=v_{1} v_{3} v_{4}$. Let $B^{\prime}=$ $B-E(T)$, then $E\left(B^{\prime}\right)$ is connected and $\left|E\left(B^{\prime}\right)\right|=6$, hence Lemma 9.15 implies $w\left(B^{\prime}\right) \leq 18$. Thus $w(B) \leq 24$, which implies $w(G) \leq 42$. In case of $R \simeq 2 K_{3}$, we have $w(R) \leq 12$. Now $B \simeq K_{3,3}$, hence Lemma 9.15 implies $w(B) \leq 27$. Therefore we have $w(G) \leq 42$.

In the case where $E(R)$ is connected, by Lemma 9.15, we have $w(R) \leq 18$. Since $B \neq K_{3,3}$ and $|E(B)|=9$, there exists a triangle $T$ in $B$. Let $B^{\prime}=B-E(T)$, then $\left|E\left(B^{\prime}\right)\right|=6$. So if we change $B^{\prime}$ into $R$ and use the same argument as above, we obtain $w\left(B^{\prime}\right) \leq 18$. Hence $w(B) \leq 24$, this implies $w(G) \leq 42$.

Case 6. $|E(R)|=7$.

In case of $R$ is not connected, $R \simeq K_{2} \cup K_{4}$. Hence Lemmas 9.9 and 9.15 imply $w(R) \leq 18$. And if $R$ is connected, Lemma 9.15 implies that $w(R) \leq 21$. Now suppose that $B$ has a triangle $T$ and let $B^{\prime}=B-E(T)$. If $w\left(B^{\prime}\right) \leq 15$, we have $w(B) \leq 21$, this implies $w(G) \leq 42$. Hence we may assume that $w\left(B^{\prime}\right)>15$, then Lemma 9.15 implies that $w\left(B^{\prime}\right) \leq 18$ and $B^{\prime}$ contains $3 K_{2}$. Let $F_{1}, F_{2}$ and $F_{3}$ be the components of $3 K_{2}$ in $B^{\prime}$, then each of them must contain just one vertex of $T$. Let $F_{1}=a_{1} b_{1}, F_{2}=a_{2} b_{2}, F_{3}=a_{3} b_{3}$. Without loss of generality, we may assume that $T=a_{1} a_{2} a_{3}$. Let $H$ be a graph such that $V(H)=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ and $E(H)=E(T) \cup E\left(F_{1}\right) \cup E\left(F_{2}\right) \cup E\left(F_{3}\right)$, then $R \subseteq \bar{H}$. Since $\bar{H}$ can be decomposed
into three triangles $a_{1} b_{2} b_{3}, b_{1} a_{2} b_{3}$ and $b_{1} b_{2} a_{3}$, we have $w(R) \leq 18$ by Lemma 9.8. Now $w(B)=w\left(B^{\prime}\right)+w(T) \leq 18+6=24$. Hence $w(G) \leq 42$, therefore we may assume that $B$ is triangle-free.

Next, suppose that $B$ has a $C_{5}$, say $C$. Since $B$ is triangle-free, there is no chord in $C$. Hence the vertex which is not in $C$ must adjacent to three vertices of the $C$, however this makes triangle in $B$, a contradiction.

Therefore, we may assume that $B$ is bipartite. It follows from the fact $E(B)$ is connected and Lemma 9.15 that $w(B) \leq 24$. If $B \subseteq K_{3,3}$, then $R$ can be decomposed into two triangles and a $K_{2}$. Hence $w(R) \leq 18$, which implies $w(G) \leq 42$. Otherwise, $B \simeq K_{2,4}$. Then $R$ can be decomposed into a $K_{4}$ and a $K_{2}$. Hence by Lemma 9.12 we have $w(R) \leq 18$, which implies $w(G) \leq 42$. This completes the proof of Theorem 9.6.

### 9.5 Weighted Ramsey number for large graphs

In this section, we observe the relation between the value $W R(3 ; n)$ and the number of edgedisjoint monochromatic triangles in 2-edge-colored graphs with $n$ vertices, for sufficiently large $n$. Let $N(n, k)$ be the minimum number of pairwise edge-disjoint monochromatic complete subgraphs $K_{k}$ in any 2-edge-coloring of a $K_{n}$.

## Proposition 9.16.

$$
W R(3 ; n) \geq \frac{4}{n^{2}-2 N(n, 3)+n}
$$

Proof of Proposition 9.16. Let $G$ be a 2-colored graph with $n$ vertices and set $m=N(n, 3)$. As in the proofs of Theorems 9.5 and 9.6 , we assume $\max \left\{w_{R}(T), w_{B}(T)\right\} \leq 6$ for every triangle $T$ in $G$ and prove that

$$
w(G) \leq 3 n^{2} / 2-3 m+3 n / 2
$$

Let $\mathcal{T}$ be a set of edge-disjoint monochromatic triangles of cardinality $m, E(\mathcal{T})=\bigcup_{T \in \mathcal{T}} E(T)$, $R^{\prime}$ be the graph induced by $E(R) \backslash E(\mathcal{T})$ and $B^{\prime}$ be the graph induced by $E(B) \backslash E(\mathcal{T})$. Since both of $R^{\prime}$ and $B^{\prime}$ have at most $n / 2$ components, using Facts 9.2 and 9.3 , we can find $\left(\left|E\left(R^{\prime}\right)\right|+\right.$ $\left.\left|E\left(B^{\prime}\right)\right|-l\right) / 2$ pairwise edge-disjoint monochromatic paths of length two in $R^{\prime} \cup B^{\prime}$, where $l \leq$ $2 \cdot n / 2=n$. Let $\mathcal{P}$ be the set of such paths, $E(\mathcal{P})=\bigcup_{P \in \mathcal{P}} E(P)$, and $I=E(G) \backslash(E(\mathcal{T}) \cup E(\mathcal{P}))$.

Then $|I|=l \leq n$ and

$$
\begin{aligned}
|\mathcal{P}| & =\frac{|E(G)|-|E(\mathcal{T})|-|I|}{2} \\
& \geq \frac{\frac{n(n-1)}{2}-3 m-l}{2} \\
& \geq \frac{n^{2}-6 m-3 n}{4} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
w(G) & =\sum_{T \in \mathcal{T}} w(T)+\sum_{P \in \mathcal{P}} w(P)+\sum_{e \in I} w(e) \\
& \leq 6|\mathcal{T}|+6|\mathcal{P}|+6|I| \\
& \leq 6 m+6 \cdot \frac{n^{2}-6 m-3 n}{4}+6 n \\
& =\frac{3}{2} n^{2}-3 m+\frac{3}{2} n .
\end{aligned}
$$

Then,

$$
W R(3 ; n) \geq \frac{6}{w(G)}=\frac{4}{n^{2}-2 N(n ; 3)+n}
$$

In [14], considering the Turán graph $T_{2}(n)$ and its complement, the following conjecture is given.

## Conjecture 9.17 (Erdős).

$$
N(n, 3)=\left(\frac{1}{12}+o(1)\right) n^{2}
$$

If this conjecture is true, then Proposition 9.16 implies

$$
\begin{aligned}
W R(3 ; n) & \geq \frac{4}{n^{2}-2\left(\frac{1}{12}+o(1)\right) n^{2}} \\
& =\left(\frac{24}{5}+o(1)\right) \frac{1}{n^{2}} .
\end{aligned}
$$

The coefficient of $n^{-2}$ in this lower bound is the same as the coefficient of $n^{-2}$ in the upper bound of Proposition 9.4 for $s=3$. Considering this, we state the following conjecture.

Conjecture 9.18.

$$
W R(3 ; n)=\left(\frac{24}{5}+o(1)\right) \frac{1}{n^{2}}
$$

Recently, about the lower bound of $N(n, 3)$, Keevash and Sudakov showed the following result.

Theorem 9.19 (Keevash and Sudakov [25]).

$$
N(n, 3) \geq\left(\frac{1}{12.89}+o(1)\right) n^{2} .
$$

By using Proposition 9.16, we have

$$
\begin{aligned}
W R(3 ; n) & \geq \frac{4}{n^{2}-2\left(\frac{1}{12.89}+o(1)\right) n^{2}} \\
& =\left(\frac{51.56}{10.89}+o(1)\right) \frac{1}{n^{2}} \\
& \geq(4.73+o(1)) \frac{1}{n^{2}} .
\end{aligned}
$$

which improves the lower bound in Proposition 9.7.

## Bibliography

[1] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan's condition for Hamiltonicity, pancyclicity, and Hamiltonian connectedness, Discrete Math. 115 (1993), 3950.
[2] J. -C. Bermond, On hamiltonian walks, Congr. Numer. 15 (1976), 41-51
[3] J.A. Bondy, H.J. Broersma, J. van den Heuvel and H.J. Veldman, Heavy cycles in weighted graphs, Discuss. Math. Graph Theory 22 (2002), 7-15.
[4] J.A. Bondy and G. Fan, Optimal paths and cycles in weighted graphs, Ann. Discrete Math. 41 (1989), 53-69.
[5] J.A. Bondy and G. Fan, Cycles in weighted graphs, Combinatorica 11 (1991), 191-205.
[6] J.A. Bondy and Z. Tuza, A weighted generalization of Turán's theorem, J. Graph Theory 25 (1997), 267-275.
[7] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111113.
[8] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
[9] Y. Egawa, R. Glas and S.C. Locke, Cycles and paths through specified vertices in $k$ connected graphs, J. Combin. Theory Ser. B 52 (1991), no. 1, 20-29.
[10] H. Enomoto, Long paths and large cycles in finite graphs, J. Graph Theory 8 (1984), 287-301.
[11] H. Enomoto, Personal communication.
[12] H. Enomoto, J. Fujisawa and K. Ota, A $\sigma_{k}$ type condition for heavy cycles in weighted graphs, to appear in Ars Combin.
[13] H. Enomoto, J. Fujisawa and K. Ota, Ore-type degree condition for heavy paths in weighted graphs, preprint.
[14] P. Erdős, R.J. Faudree, R.J. Gould, M.S. Jacobson and J. Lehel, Edge disjoint monochromatic triangles in 2-colored graphs, Discrete Math. 231 (2001), 135-141.
[15] P. Erdős, A. Hajnal, M. Simonovits, V. T. Sós and E. Szemerédi, Turán-Ramsey theorems and simple asymptotically extremal structures, Combinatorica 13 (1993), no. 1, 31-56.
[16] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984), 221-227.
[17] I. Fournier and P. Fraisse, On a conjecture of Bondy, J. Combin. Theory Ser. B 39 (1985), 17-26.
[18] J. Fujisawa, Claw conditions for heavy cycles in weighted graphs, to appear in Graphs Combin.
[19] J. Fujisawa, Heavy fans, cycles and paths in weighted graphs of large connectivity, preprint.
[20] J. Fujisawa, S. Fujita and T. Yamashita, Heavy cycles in hamiltonian weighted graphs, to appear in AKCE Int. J. Graphs Comb.
[21] J. Fujisawa and K. Ota, Weighted Ramsey problem, preprint.
[22] J. Fujisawa, K. Yoshimoto and S. Zhang, Heavy cycles passing through some specified vertices in weighted graphs, to appear in J. Graph Theory.
[23] Z. Füredi and A. Kündgen, Turán problems for integer-weighted graphs, J. Graph Theory 40 (2002), 195-225.
[24] M. Grötschel, Graphs with cycles containing given paths, Ann. Discrete Math. 1 (1977), 233-245.
[25] P. Keevash and B. Sudakov, Packing triangles in a graph and its complement, J. Graph Theory 47 (2004), 203-216.
[26] M. Las Vergnas, A note on matchings in graphs, Cahiers Centre Etudes Recherche Oper. 17 (1975), 257-260.
[27] N. Linial, A lower bound for the circumference of a graph, Discrete Math. 15 (1976), 297-300
[28] S.C. Locke, A generalization of Dirac's theorem, Combinatorica (2) 5 (1985), 149-159.
[29] T. Nakamigawa, Some Ramsey-type problems in combinatorics, Ph.D Thesis, Keio University, 1998.
[30] H. Perfect, Applications of Menger's graph theorem, J. Math. Anal. Appl. 22 (1968), 96-111.
[31] L. Pósa, On the circuits of finite graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl 8 (1963), 335-361.
[32] D.P. Sumner, 1-factors and antifactor sets, J. London. Math. Soc. (2) 13 (1976), 351359.
[33] W.T. Tutte, Graph theory. Encyclopedia of Mathematics and its Applications, 21. Addison-Wesley Publishing Company, 1984.
[34] S. Zhang, H.J. Broersma, X. Li, and L. Wang, A Fan type condition for heavy cycles in weighted graphs, Graphs Combin. 18 (2002), 193-200.
[35] S. Zhang, X. Li, and H.J. Broersma, Heavy paths and cycles in weighted graphs, Discrete Math. 223 (2000), 327-336.
[36] S. Zhang, X. Li and H.J. Broersma, A $\sigma_{3}$ type condition for heavy cycles in weighted graphs, Discuss. Math. Graph Theory 21 (2001), 159-166.
[37] R. Zhu, On maximal circuits in 2-connected graphs, Qufu Shiyuan Xuebao 4 (1983) 8-9.

