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Chapter 1

Introduction

1.1 Problems studied in this thesis

Itis told that the Graph Theory began its history with the problem of the Kdnigsberg’s bridge.
In the ancient Prussian city Kdnigsberg, there was the River Pregel and seven bridges over
the river. Peoples guessed that there is a way to go once over each bridge and return back to
the home. However, though they tried to find it several times, it always ended in failure, and
in 1736 Leonhard Euler showed that this is impossible. To prove it he replaced the map of
the city by a diagram (See Figure 1.1), and then he was able to give a general method for all
the other problems of the same type. This diagram is a depiction of a graph; a@iah
pair of two setsY, E) such that every element &is a 2-element subset ¥ We callv e V
avertexande € E anedge(In the digram, the points represents vertices and lines represents
edges). For a grapB, the vertex set of is denoted by/(G) and the edge set & is denoted
by E(G). An edge{u, v} is usually written asiv or vu. If there is an edgev, then we say it
joinstwo verticesu andv, u andv areadjacenf andu is aneighborof v (also,v is a neighbor
of u). In a graphG, Ng(v) denotes the set, artd(v) denotes the number, of neighborsvof
When no confusion occurs, we will dendig(v) anddg(v) by N(v) andd(v), respectively.
A graphH is called asubgraphof a graphG, and written aH ¢ G, if V(H) ¢ V(G) and
E(H) c E(G). In this case we sa§ contains H

In the graph described as Figure 1.1, there exists two pairs of edges which join same two
vertices. These pairs are callediltiple edgesHowever, in this thesis, we deal witlimple
graphs the graph in which there is no multiple edge.

As we can see in Kdnigsberg’s problem, to analyze a phenomenon, it is sometimes useful
to consider an object as a graph. However, there are a lot of situations which need additional

informations to a graph. Consider the cities in a country, in which some of the two cities
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Figure 1.1:

are joined by the airline route. Now the cost of the journey between any joined two cities is
known. Then, using simple graphs, we can explain the relations of any two cities whether
they are joined or not. However, the cost between them cannot be illustrated; we must add the
cost to every edge. Such graphs—the graphs in which every edge is assigned a nonnegative
number—are calledeighted graphswhich are studied in this thesis.

In a weighted grapl®, the number assigned on each edge is caledweightof the
edge, and we denote the weighting functiorigy. For a subgraph of G, theweightof H
is defined by

wo(H) = > we(e).

ecE(H)
And, for a vertexv in G, we define theveighted degreef vin G by
dg(v) = Z W (Uv).
ueNG(v)
When no confusion occurs, we will denotgs, wg(H) and d¥(v) by w, w(H) and d"(v),
respectively.

In this thesis, we mainly discuss about théfisient condition for the weighted graphs to
have heavy paths and cyclespéath Pis a graph with vertex sgv, vo, ... , vp} and edge set
{V1V2,VoV3, ..., Vp_1Vp}, Which is usually denoted byiv, ... vp. The vertices; andvp are
calledendverticeof P, and we sayP joins v; andv,. A cycleis a graph obtained by a path

adding an edge joining two endvertices, and it is also denoted by its sequence of vertices, the
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same as paths. A cycle is calledhamiltonian cycleof a graph if it contains all the vertices
of the graph, and a graph is said tolmmiltonianif it contains a hamiltonian cycle.
In 1989, Bondy and Fan proved the following result, which is the cornerstone of the

studies of heavy cycles in weighted graphs.

Theorem 1.1 (Bondy and Fan [4]).Let G be a2-connected weighted graph and d a non-
negative real number. If{v) > d for every vertex v in G, then either G contains a cycle of

weight at leas®d or every heaviest cycle in G is a hamiltonian cycle.

In a weighted grapke with constant weight 1¢¥(v) = dg(v) for every vertexv € V(G)
andw(H) = |E(H)| for every subgraphl of G. Hence, we can regard an unweighted graph as
a weighted graph with special property, and it is clear that Theorem 1.1 is a generalization of
the following well-known result. Théengthof a path or a cycle is the number of the edges

that it contains.

Theorem 1.2 (Dirac [8]). Let G be a2-connected graph and d an integer. Ifil > d for
every vertex v in G, then G contains either a cycle of length at [2asir a hamiltonian

cycle.

Considering the heavy cycle passing through a specified vertex, Theorem 1.1 is extended

as follows.

Theorem 1.3 (Zhang et al. [35]).Let G be a2-connected weighted graph and d a nonnega-
tive real number. If 8(v) > d for every vertex v in G, then for every vertex y in G, either G
contains a cycle of weight at lea2tl containing y or every heaviest cycle in G is a hamilto-

nian cycle.

In the proofs of Theorems 1.1 and 1.3, the existence of heavy paths is used to find heavy
cycles. But in fact, the existence of heavy fan (a set of paths joining a vertex and a vertex
set) is useful to show the existence of heavy cycles. In Chapter 2 we show the existence of
heavy fan. Using this, in the first section of Chapter 3, we give alternative simple proofs
of Theorems 1.1 and 1.3, and moreover, we show an extension of Theorem 1.3. All these
theorems on heavy cycles are easily shown by using the existence of heavy fan.

The (weighted) degree condition in Theorem 1.2 (1.1) is on every one vertex. Such con-

dition is calledDirac-type There is another well-known weaker (weighted) degree condition,
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called anOre-typecondition, the condition on the degree sum of every two non-adjacent ver-
tices. Using Ore-type condition, Bondy et al. [3] extended a previous result in unweighted
graphs to weighted graphs, and proved a theorem on the existence of heavy cycles. In the sec-
ond section of Chapter 3, using the existence of heavy fan again, an extension of the theorem
of Bondy et al. is obtained.

Most of the previous results in weighted graphs are on 2-connected weighted graphs. But
in Chapter 4, we deal with 3-connected weighted graphs. In unweighted graphs, it is known
that if we enlarge the connectivity, then we can enlarge the number of specified vertices
contained in a long cycle. We obtain that the same is true in 3-connected weighted graphs,
and the existence of heavy cycles passing through three specified vertices is shown.

There exists some weighted graphs which contain no cycle of weight at thasioRigh
they satisfy the conditions of Theorem 1.1. In Chapter 5 it is shown that we are always be
able to find a cycle of weight at leastl & a weighted graph has no cycle of length three and
satisfies the conditions of Theorem 1.1.

Fan-typecondition is more weaker condition than Ore-type one. There are several re-
sults which shows the existence of long cycle in unweighted graphs with Fan-type condition.
However, to extend them to the weighted graphs, it is shown in [34] that some extra-condition
on the weight of the edges is necessary. In Chapter 6 we weaken both of the weighted degree
condition and the extra-condition used in [34] and show the the existence of heavy cycles.
And in Chapter 7, using the same extra-condition as in [34] and another weighted degree
condition, calledry-type condition, we show the existence of heavy cycles.

About the existence of heavy paths in weighted graphs, the following is known. A path

joining u andv is denoted by ay v)-path.

Theorem 1.4 (Bondy and Fan [4]).Let G be a2-connected weighted graph and d be a non-
negative real number. Let x and y be distinct vertices of G¥(¥)> d for all v e V(G)\{x, y},

then G contains afix, y)-path of weight at least d.

In Chapter 8 we give an extension of Theorem 1.4 by using the existence of heavy fan. And
also two Ore-type conditions for the existence of heavy paths are shown.

In Chapter 9, we turn our topic to the graphs in which each edge is colored by two colors,
and introduce aveighted Ramsey problefiRor the basic concepts of Ramsey Theory, | refer

the reader to [29]). In this chapter we will discuss about heavy small subgraphs in which
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every edge has the same color, and show some theorems on Ramsey problem in weighted

graphs.

1.2 Terminology and Notation

In this section we give some basic terminology and notation used in this thesis. We call the
number of vertices of a graph tloeder of the graph. An edge is calledincidentwith a
vertexv if v € e. Now if two edgese; ande, are incident with a common vertexwe saye;
ande, areadjacent If every two vertices in a graph are joined by an edge, we call this graph
acomplete graphand we denote a complete graph of ordéry K.

Let H be a subgraph of a grajgh such that for every pair of verticasv € V(H), uv €
E(H) if and only if uv € E(G), thenH is called aninduced subgraplof G. In this caseH
is denoted by[V(H)] and we say/(H) induces Hin G. For a graplG andU ¢ V(G), we
denoteG[V(G) \ U] by G — U. Let E’ be a set of 2-element subsets\(fG). The graph
G = (V(G),E(G) \ ) is denoted byG — E’, and the grapls” = (V(G),E(G) U E') is
denoted byG + E’. Moreover, for two graph&; andG,, we defineG; U G, = (V(Gy) U
V(G3), E(G1) U E(G)) andGy + G, = Gy U Gy + {uv| u € V(Gy) andv € V(Gy)}.

Let e = xy be an edge of a grapB. Sometimes we make a new graph regarding two
verticesx with y as a new vertex.. We call this operatiogontractionof the edgees and the

new graph is denoted ly/e. Formally,G/eis a graph such that
e V(G/€) = {V(G) U Ve} \ {X.y}
e E(G/e) = E(G-{X,y)U{veV|xve E(G)\ {e} oryve E(G) \ {&}}.

The vertexve is called thecontracted vertex

We call a grapls connectedf, for any two vertices, there is a path joining them. A&d
is calledk-connectedf |[V(G)| > k andG — U is connected for any ¢ V(G) of cardinality
k — 1. If Gis connected an@® — {v} is not connected for a vertaxe V(G), then we callv a
cutvertexof G.

A connected graph which contains no cycle is callégta A componenof a graphG is
a maximal connected subgraph@fand ablock Bof G is a maximal connected subgraph of
G which does not contain a cutvertexBitself (That is, ifB is a block of a graph, theB is

2-connected oK3). An endblock ofG is a block which contain only one cutvertex®f For
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an endblockB in a graph, we denote the cutvertex of the grapB toy cg, andV(B) \ {cg} is
denoted byig.

A k-partite graph also called amulti-partite graph is a graph which have partition
(V1, Vo, ..., V) of V(G) such that there is no edge®@{V4], G[ V2], ... ,G[Vk]. We call each
V; apartite set Especially, a 2-partite graph is callediartite graph A complete multi-
partite graphis a multi-partite graph such that all two vertices in th&edent partite sets
are adjacent. A completepartite graph whose partite sets contajnn, ... , ng vertices is
denoted byKn, n,... ne-



Chapter 2
Heavy fans in weighted graphs

(The main result of this chapter appears in [19], which is an extension of the

result proved in [22].)

In [4] and [35], a heavy path in a weighted graph is used to show the existence of heavy
cycles. But in fact, as we can see in the later chapters, the existence of heavy fan is useful
to find heavy cycles passing through some specified vertices. In this chapter, we prove the
existence of heavy fans in weighted graphs.

To describe the main theorem of this chapter, we need some terminology and notation.
Let X, Z be disjoint subsets of (G). A pathP is called an X, Z)-path if

() Pisan  2-path, wherexe X andze Z, and
(i) VP)NnX={x}andV(P)nZ = {zZ.

Let X, Z be subsets d¥ (G) andy € V(G) \ {X U Z}. If every (y}, Z)-path contains at least one
vertex of X, then we callX separates y from ZA subgraphF of G is called a ¥, Z)-fan of
width kif F is a union of (y}, Z)-pathsPy, ... Pk, whereP;nP;j = {y} fori # j. The maximum
number of the width ofy, Z)-fans inG is denoted bk(G; y, Z). Note thatk(G; y, Z) is equal
to the minimum number of vertices separatinigom Z in G.

Our main result in this chapter is the following.

Theorem 2.1. Let G be a connected weighted graphcLV(G), M a component of G- L,
and ye V(M). Now assume that, for all& V(M),

e d¥(v) > d, and

o there is no vertex in ¥) \ {v} which separates v from L.



8 Chapter 2

Then for everyy, L)-fan Fy, there exists &y, L)-fan F, such that
e W(F>) >d,
e V(Fi1nL)CcV(Fo2nLl), and
e the width of K = k(G;y, L).
Theorem 2.1 is a weighted analogue of the following theorem due to Perfect.

Theorem 2.2 (Perfect [30]).Let G be a connected graph, L a subset ¢8Y, y € V(G) \ L,
and | an integer such that4 k(G;y, L). Then for everyy, L)-fan F; of width |, there exists a
(y, L)-fan F, of width KG;y, L) such that (F1 n'L) c V(F2 N L).

Again we need some terminology and notation used in the proof of Theorem 2.1. A
component of a graph which contains a veryes called ay-component For two disjoint
subsetd. and M of V(G), we denote ¢ (Nc(V) N M) by Nm(L). In this chapter, for a
weighted graplG with u,v € V(G), we definewg(uv) = 0 if uv ¢ E(G). Lete = xybe an
edge ofG. When we contract an edge, there may occur some multiple edges. In this chapter
we identify them as a simple edge whose weight is the sum of the two previous edges. So,

G/eis a weighted graph such that
o V(G/e) = {V(G) U fvel} \ {x. ¥},
» E(G/e) = E(G-{x y)Ufvev|xve E(G) \ {e} oryve E(G) \ {e}},
o if uve E(G/e— {Ve}), Wg/e(UV) = wg(uv), and
o if Ve Ng/e(Ve), Wi /e(VVe) = Wa(VX) + Wa(VY),

The vertexve is called thecontracted vertex
We often identify a subgrapH of G and its vertex se¥/(H). For exampleNg(V(H)) is
often denoted byNg(H).

Proof of Theorem 2.1. Letk = k(G;y, L). If the width of F is less thark, then Theorem
2.2 shows the existence ofw [)-fan F1” of width k such thatvv(Fy n L) € V(Fy’ nL). The
required fanF, for F,’ is also a required fan fdf1, hence we may assume that the width of
Fiisk
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We use induction ofvV(M)|. If M = {y}, then it is obvious thaF, = Uyengy) VY is @
required fan, since(y) > d. Now suppos¢V(M)| > 2.

Case 1 EveryX C V(G) of cardinalityk separating from L is contained irL.

In this case, we hav®l (M)| = k, soF n L = N_(M) for any {, L)-fan F of width k. Hence
it suffices to show the existence ofy I()-fan of widthk and weight> d.

Assume that there exiskse Ny (L) \ {y} andt € N_({x}) such thak(G/xt;y,L) = K" < k.
When we makés/xt from G, we regard the contracted vertextasLet X’ be a vertex set
of cardinalityk’” which separateg from L in G/xt. If ' ¢ X’, thenX’ separatey from L in
G, which contradicts the fad{(G;y,L) = k. Hence we hav¥ € X’. ThenX’ U {x,t} \ {t'}
separatey from L in G. If [X'| < k-1, |X U {xt}\ {t'}] < k, which contradicts the fact
KG;y,L) =k If X' =k=1, X U {xt}\{t'}] = kandX" U {x,t} \ {t'} £ L. This contradicts
the assumption of this case. Therefore, we Hg@ xt;y, L) = k for everyx € Ny(L) \ {y}
andt € Ni({x}).

Case 1.1There exists € N_ (M) such thayt ¢ E(G) or w(xt) > w(yt) for somex € Ny ({t}).

Take a vertexx € Ny ({t}) such thatw(xt) is as large as possible. Now make a new graph
G’ = G/xt, and regard the contracted vertextaket L’ = L andM’ be they-component of
G’ —L’. ThenV(M’) C V(M) \ {x}, and it is clear that, for alt € V(M’),

e df(v) =df(v)>dand

e there is no vertex ivV(M’) \ {v} which separategfrom L’.

Hence, by the induction hypothesis, we can fing,&()-fan F’ of width k(G/xt; y, L) = kand
weight at leastl. Sincek(G/xt;y, L) = kand|N/(M’)] < INL(M)| = k, we havaN_ (M’)| = k,
which impliest € F’. And the factt # y implies that there is a vertex which is the only
neighbor ot in F’. If t™x ¢ E(G), thentt™ € E(G) andwg (tt™) = wg(tt™). ThereforeF = F’
is a required fan irs. If t™x € E(G), let F be a graph obtained by replacing an etigeof F’
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with a patht™xt. ThenF is a {, L)-fan of widthk in G such that

w(F) W(F") — we (tt7) + wa(t™X) + wg(xt)

= W(F) — (Wa(tt?) + wg(xt?)) + wa(t™X) + wa(xt)

= W(F") —wg(tt™) + wa(xt)

\%

w(F")
d.

vV

HenceF is the required fan.
Case 1.2For every vertex € N (M), yt € E(G) andw(xt) < w(yt) for all x € Ny ({t}).

First, we prove the following claim.

Claim 1. There exists @y, 2)-path P in M such that 2 Ny, (L) and the weight of P is at least
min{dy; (2), d}.

Proof. If [V(M)| = 2, letzbe the vertex o¥/(M) other thary, then it is obvious thayzis a
required path. So assumgM)| > 3. Note that

diy(v) = d§(v) > dforall ve V(M) \ Nu(L). (2.1)

In the case wher# is 2-connected, let be a vertex ifNw (L) \ {y} such thady; (2) < d}(v)
for all ve Ny(L) \ {y}. Then with (2.1), we have

dyy (v) > min{dy;(2),d} for all ve V(M) \ {y, z.

Hence, by the induction hypothesis, there existsaty(z})-fan F of width k(M; x,{y,z}) = 2
and weight at least midy} (2), d} for everyx € V(M) \ {y, z}. Since the width ofF is 2,F is a
required path.

Assume thaM is not 2-connected, and choose an endbBauch thaty ¢ Ig = V(B) \
{ce}. Then there exists a,(cg)-path P; which is internally disjoint withB. Now letz be a

vertex inN;;(L) such that

d%(2) < d¥ (v) for all v e Nj(L). (2.2)
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If IV(Ig)l = 1, we havew(zes) = d{}(2), henceP = zgzP1y is a required path. So we may
assume thg¥/(lg)| > 2, thenB is 2-connected. It follows from (2.1) and (2.2) that

diy (v) = min{d{}(2), d} for all v e V(B) \ {cg, Z}.

Then, by the induction hypothesis, there existsxafcg, z})-fan F of width k(M; x, {cg, Z}) =
2 and weight at least mfdy; (2), d} for everyx € V(B) \ {cs, 2. Since the width of is 2, F

is a path. Joining?, andF, we have a required path. O

Now we are ready to complete the proof of Case 1.2. Choose a \&atek a pathP which

satisfy the conditions of Claim 1. Let be a neighbor oz in L and

F= U yvu PzZ.
VENL(M)\{Z'}

ThenF is a {y, L)-fan such that

w(F)

Z w(yv) + W(P) + w(zZ)
VeNL(M)\{Z)

DT w@) +W(P) + w(zZ)

veNL(2\{Z}
d‘f’(z) + min{d, d",& 2}

[\

vV

\%

min{d, df(2)}
d.

Now the width ofF is |[N_(M))|

proof in Case 1.2 and the proof in Case 1.

k(G;y, L), henceF is the required fan. This completes the

Case 2 There existX ¢ V(G) of cardinalityk such thatX separateg from L andX ¢ L.

Let M* be they-component ofG — X. SinceM* ¢ M, d¥(v) > d for everyv € V(M").
Now it is obvious that there is no vertex \WM*) \ {v} which separateg from X. Hence,
by the induction hypothesis, we can findyaX)-fan such thatv(F*) > d and the width of
F* = k(G;y, X) = k. Now adding” = F1 — V(M) to F*, we can find ay, L)-fan F, such
thatw(F2) = W(F*) + w(P) = dandF, nL =P N L =F;nL,whichis arequired fan. This

completes the proof of Theorem 2.1. O

Remark. Theorem 2.1 has the following corollary.
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Corollary 2.3. Let G be a connected weighted graph and & V(G). Assume that, for all
veV(G)\ {x},

e df(v) > d, and

e thereis no vertex in ¥G) \ {v} which separates v from x.

Now if there exists k disjoir{, 2)-paths in G, then there exists a set 6flisjoint (X, 2)-paths
% such that k > k and W) > d.

Proof. Apply Theorem 2.1 witi. = Ng(X) \ {z}, then the assertion is obvious. m|

However, the following is false.

False statement.Let G be a k-connected weighted graph an@ X V(G). If d¥(v) > d for
all v e V(G), then there exists a set of k disjo{i{, Z)-paths? such that WP) > d.

Let G be a complete tripartite gragfy ¢+, wheret > 2, letv be the vertex in the partite set of
cardinality 1, and leK andZ be the patrtite sets of cardinalitylf we assign weight/(2t — 1)

to the edges incident te and weight 1 to all the other edges, then the minimum weighted
degree ofG is 2t2/(2t — 1), while the maximum weight of the set bflisjoint (X, Z)-paths is
t—1+2-t/(2t - 1)< 2t?/(2t - 1).
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Heavy cycles passing through some specified vertices in
2-connected weighted graphs

(This chapter is based on the paper [22].)

3.1 A Dirac-type condition for heavy cycles passing through two specified vertices

In 1989, Bondy and Fan began the study on the existence of heavy cycles in weighted graphs,

and proved the following.

Theorem 3.1 (Bondy and Fan [4]).Let G be a2-connected weighted graph and d a non-
negative real number. IfY{v) > d for every vertex v in G, then either G contains a cycle of

weight at leas®d or every heaviest cycle in G is a hamiltonian cycle.

And, in 2000, Zhang et al. proved that we can find a heavy cycle passing through a specified

vertex with the same conditions as in Theorem 3.1.

Theorem 3.2 (Zhang et al. [35]).Let G be a2-connected weighted graph and d a nonneg-
ative real number. If §(v) > d for every vertex v in G, then for every vertex y in G, either G
contains a cycle of weight at lea2dl containing y or every heaviest cycle in G is a hamilto-

nian cycle.

Theorems 3.1 and 3.2 are generalization of the following two theorems to weighted graphs,

respectively.

Theorem 3.3 (Dirac [8]). Let G be a2-connected graph and d an integer. Il > d for
every vertex v in G, then G contains either a cycle of length at [2asir a hamiltonian

cycle.

13
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Theorem 3.4 (Gidtschel [24]). Let G be a2-connected graph and d an integer. i > d
for every vertex v in G, then for every vertex y in G, G contains either a cycle of length at

least2d containing y or a hamiltonian cycle.

First we give alternative short proofs of Theorems 3.1 and 3.2, using Theorem 2.1. From now
we use the following notation. L& = v;v»...vpvy be a cycle with a fixed orientation. The
segment;vi,1 - - - vj is denoted byC[v;, vj] or viCv;. LetR be a tree or a path angv € V(R)

with u # v, then there is only oneu(v)-path inR. This path is also denoted by{u, V]

or uRv. WhenS is a cycle, a tree or a path, we den&, vj] — {vi}, S[vi,vj] - {v;} and

S[vi, vj] = {Vi,vj} by S(vi, V], S[vi,Vj) andS(vi, vj), respectively.

Proof of Theorem 3.1 LetG be a weighted graph satisfying the conditions of Theorem 3.1.
Assume that there exists a heaviest cyZla G which is not a hamiltonian cycle andC) <

2d. Now take a vertey € V(G) — V(C). Then, from Theorem 2.1, we obtainyg C)-fan F

of width = p > 2 and weight> d. LetF N C = {vq,V»,...,Vp}, wherey; are in order around

C, and regard the indices as modylo Then for alli with 1 < i < p, there exists a cycle

Ci = aFg,1Ca;, hence we have(F[a;, a;,1]) < W(C[a;, a;,1]) sinceC is a heaviest cycle in

G. Now W(C1) = W(F[ay, 8]) + Toci<pW(Clai, ais1]) = X7, W(F[a, a11]) > 2w(F) > 2d,
contradicting thaC is a heaviest cycle ifs. m|

Proof of Theorem 3.2 Let G be a weighted graph satisfying the conditions of Theorem
3.2. Assume that there exists a heaviest cyelamn G which is not a hamiltonian cycle.
Then from Theorem 3..(C) > 2d. If y € V(C), there is nothing to prove, so assume that
y ¢ V(C). It follows from Theorem 2.1 that there is g C)-fan F of width = p > 2 and
weight> d. Now takeC; as in the proof of Theorem 3.1, then also we obt&iR[a;, a;,1]) <
W(Cl[a;, g11]) for all i with 1 < i < p. Hencew(Cy) = W(F[ay, &]) + Yo<i<p W(C[&, &41]) =
Zip:l w(F[a, a+1]) > 2w(F) > 2d andC; containsy, which is a required cycle. i

Next, we prove the following theorem.

Theorem 3.5. Let G be a2-connected weighted graph and d a nonnegative real number. If
d"(v) > d for every vertex vin G, then for every two verticeagd y in G, either G contains
a cycle of weight at leagd containing y and y or every heaviest cycle in G is a hamiltonian

cycle.
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Theorem 3.5 is a generalization of Theorem 3.6 to weighted graphs.

Theorem 3.6 (Locke [28]).Let G be a2-connected graph and d an integer. il > d for
every vertex v in G, then for every two verticesapd y in G, G contains either a cycle of

length at leasd containing y and y» or a hamiltonian cycle.

Proof of Theorem 3.5 LetG be a weighted graph satisfying the conditions of Theorem 3.5.
If there is a heaviest cycle which is not a hamiltonian cycle, then Theorem 3.2 implies that
there exists a cycle of weight 2d which contains eithey; or y,. Let C be the heaviest
one among these cycles. Without loss of generality, we may assumé trattainsy;. If

y» € C, there is nothing to prove, so assume that C. It follows from Theorem 2.1 that
there is a ¥, C)-fan F of width = p > 2 and weight> d. Now takeC; as in the proof

of Theorem 3.1. Then, eadh} containsy,, hence we havel(F[a;, aj;1]) < W(C[a;, ai11])
sinceC is a heaviest cycle which contains eithgror y,. Now, sincep > 2, there exists

an indexj with 1 < j < p such thatvV(C(ajaj+1)) N {y1} = 0. ThenC; containsy; andy,,
andw(Cj) = W(F[ay, aj41]) + Yicicp izj WC[a, &1a]) > X7 W(F[a, ai.1]) > 2w(F) > 2d,
henceC; is a required cycle. O

3.2 An Ore-type condition for heavy cycles passing through a specified vertex

The (weighted) degree condition we discussed in Section 3.1 is on every one vertex. In
this section, we consider another weighted degree condition, callgdrdigypecondition,

the condition on the degree sum of every two non-adjacent vertices. The following result,

which was shown by several authors independently, gives a generalization of Theorem 3.3 in

unweighted graphs. For non-complete gr&phiet
02(G) = min{d(u) + d(v) | uandv are nonadjaceht
and if G is complete, letry(G) = .

Theorem 3.7 (Bermond [2], Linial [27], Pbsa [31]). Let G be a2-connected graph. Then

G contains either a cycle of length at least(G) or a hamiltonian cycle.
Enomoto [10] gave a further generalization of Theorem 3.7 as follows.

Theorem 3.8 (Enomoto [10]).Let G be a2-connected graph and y a vertex of G. Then G

contains either a cycle of length at least(G) containing y or a hamiltonian cycle.
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And, the following result is due to Bondy et al. [3], which is a weighted generalization of

Theorem 3.7. Similar to the notation @b, we denote
0%(G) = min{d"(u) + d"(v) | uandv are nonadjaceht
and ifG is complete, letr?/(G) = co.

Theorem 3.9 (Bondy et al. [3]).Let G be a2-connected weighted graph. Then G contains

either a cycle of weight at least}(G) or a hamiltonian cycle.

In this section, we prove the following, which is a weighted generalization of Theorem

3.8. Clearly this also generalizes Theorem 3.9.

Theorem 3.10. Let G be &2-connected weighted graph and y a vertex of G. Then G contains

either a cycle of weight at least)(G) containing y or a hamiltonian cycle.

Now we prepare a lemma which is used in the proof of Theorem 3.10. Modifying the proof
of Theorem 3.9, easily we can obtain the following. Let

W — ; w
MG -0C) vev(rg)l\nv(c) dg(v).

Lemma 3.11. If G is a2-connected weighted graph, then there is a cycle C of weight at least
maxc’/(G), 2(c5(G) — 6¥(G - C))} or a hamiltonian cycle.

In our proof of Lemma 3.11, we use the following theorem, which is another version of
Theorem 2.2.

Theorem 3.12 (Perfect [30]).Let G be a k-connected graph, Zbe disjoint subsets of(@)
such thatX|, |Z| = k, and | be an integer with& k. If P, is a set of I(X, Z)-paths in G, then
there exists a set of K, Z)-pathsP, such thatP; N (XU Z) c PN (X U 2Z).

Proof of Lemma 3.11. Let P = uiu---up be a heaviest path in all longest pathsGn
Lete = u_iu and€ = upy for all u € N(up), and fi = yu,, and f| = uu, for all
U € N(up). Supposes is not hamiltonian. Therfu | u.1 € N(ui)} N N(up) = 0 and so
{&|u € N(up)} n{fx | uc € N(up)} = 0 asP is longest. Because the weight®fs at least the
weights of the pathB - g + € andP - f + f, we havew(e) > w(e/) andw(f) > w(f/).
Lets=max! | u € N(up)} andt = min{l | u € N(up)}. If s> t, then there exigt; € N(uz)

andu; € N(up) such that neithen; noru, has neighbors iP(uj, u;) (See Figure 3.1). Then
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the cycleC = u;PujupPuu; contains every edge in:
{& lu e N(u) \ ui} U {fi [u e N(up) \ uj} U {€, f{} (3.1)

and soN(ug) U N(up) < V(C). Therefore both oti”(u;) andd”(up) are at least}(G) —
6"(G - C) and the following inequalities hold becausg N { f}k = 0.

we) > > w@)+wE)+ DL w(f)+w(f)
ueN(u)\y ueN(up)\uj
> d"(up) + d"(up) = max{o(G), 2(c’y(G) - 6"(G - C))). (3.2)

If s=1t, thenthere is a patQ joining ui € P(u1, Us) anduj € P(us, up) which is internally
disjoint toP asG is 2-connected. Lat= min{l > i’ |u € N(up)}andj=maxl < j |u €
N(up)} (See Figure 3.2). Then the cyd = uiPu-Quj Pupu;Puyuy contains every edge
in (3.1), and so the inequalities (3.2) hold.

Supposes < t. By Theorem 3.12, there are two vertex disjoint pafhsand Q, joining
Pluz, us] and P[ut, up] such thatus andu; are ends ofQ; or Q., and both ofQ; andQ, are
internally disjoint toP[u, us]UP[ut, up]. Let{u;, us, U, uj } be the set of all the ends Qf, and
Q2 suchthat’ < sandj’ > t. Leti = min{l > i" |u € N(u1)} andj = max! < j | u € N(up)}.

Then the cycle

C = Plug, ur] U P[ui, us] U Plug, uj] U Pluj, up] U Q1 U Qo U (e, fj’}
contains every edge in (3.1), and thus the inequalities (3.2) hold. O
Now we are ready to prove Theorem 3.10.

Proof of Theorem 3.10. Assume thaG is not hamiltonian. Then by Lemma 3.11, there is
a cycleC of weight at least magx¥(G), 2(c5(G) — 6"(G - C))}. If y € C, there is nothing
to prove, so assume thatz C. Letd = 6%(G — C). It follows from Theorem 2.1 that there

Figure 3.2:

Figure 3.1:
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is a y, C)-fan F of weight> d. Now takeC; as in the proof of Theorem 3.1. Then, ed&h

containsy and

Zk: WC) = (K- 1)W(C) + 2w(F)

- > (k- 1)w(C) + 2d
= (k- 2wW(C) + W(C) + 2d
> (k=2)0%(G) + 2(c¥(G) - d) + 2d
= ka¥(G).

Hence one of them is a cycle of weight at lea$(G) containingy. o

Remark. Let 6(G) = minyey(g) d(v) ands”(G) = minyeyc) d¥(v). Zhu [37] showed that
a 2-connected grap® contains a cycle of length at leasi2(G) — 6(G)) or a hamiltonian
cycle. However, we can not give its weighted generalization G_beé the complete bipartite
graphKyk+1 with partite setv; of orderk. Letu € Vi, and we assign weight zero to every
edge incident withu, and suppose other edges have weight one. B) = k + 1 and
6"(G) = 0, and the weight of a heaviest cycle is22 < 2(c%(G) - 6"(G)), thoughG is not

hamiltonian.



Chapter 4

Heavy cycles passing through some specified vertices in
3-connected weighted graphs

(This chapter is based on the paper [19].)

In Chapter 3, some theorems on heavy cycles passing through at most two vertices are shown.
What happens when the number of specified vertices becomes 3? In weighted graphs of
connectivity 2, there may be three vertices which cannot be contained in a common cycle.
Let Gj be a 2-connected graph with € V(G;) fori = 1, 2 and 3. Consider a grajh =

(G1 U Gy U G3) + Ky, thenG is 2-connected and there exists no cycle containing ali of,

andys. Hence, to obtain the similar result to Theorem 3.5, we must enlarge the connectivity
of the graphs. Now we prove that it is enough to enlarge the connectivity to 3, and no other

extra-condition is necessary.

Theorem 4.1. Let G be a3-connected weighted graph and let d be a nonnegative real num-
ber. If d¥(v) > d for every vertex v in G, then for any given three verticesyy and ys in
G, either G has a cycle of weight at le&st containing all of y, y» and y; or every heaviest

cycle in G is a hamiltonian cycle.
Theorem 4.1 is a weighted generalization of the following theorem in case &.

Theorem 4.2 (Egawa, Glas and Locke [9])Let G be a k-connected graph where>k 2,
and let d be an integer. If(#) > d for every vertex v in G, then for any given vertex set Y
with |Y| = k, there exists either a cycle of length at le2dtcontaining all the vertices of Y or

a hamiltonian cycle.

In our proof of Theorem 4.1, we call a cycle &nycleif it contains at least vertices of

{Y1,¥2,Yy3}, where 1< | < 3.

19
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Proof of Theorem 4.1. Assume the contrary. Then, by Theorem 3.5, there exists a 2-cycle
of weight at least @ LetC be a heaviest one among these cycles. Without loss of generality,
we may assume th& containsy; andy,. Sincew(C) > 2d, y3 ¢ V(C). By Theorem 2.1, we

can find a ¥3, C)-fan F of width k(G; y3,C) > 3 and weight at least. LetV(C) nV(F) =
{ag,ap,... ,ap} (p > 3). We may assumay, ay, . .. , &, appear in the consecutive order along
C.

Claim 1. There exists an index | with< | < p such thafys, y»} € C(ay, a;1).

Proof. Assume the contrary. Then for alwith 1 < i < p, the cyclea;Fa;,1Cg is a 2-cycle,
hencew(F[aa11]) < W(C[aa;;1]). Now, sincep > 3, there existg with 1 < j < p such that
V(C(ajaj+1)) N {y1, Y2, y3} = 0. HenceC’ = ajFa;,1Cq; is a 3-cycle and

WC) = WF[a,aa)+ > W(Cla,aul)
1<i<p, i#]
p
> ) w(Fla.a.1])
i=1
> 2w(F)
> 2d,
which is a contradiction. O

Note that Claim 1 holds for every4, C)-fan F of width k(G;y, C) and weight at leasd.
Now, among such fans, takkg such thaiC[v,, vi,1] is as short as possible. Without loss of
generality, we may assume that p anday, y1, Y2, a1 appear in the consecutive order along
C. Note thatw(F1[a;, a;1]) < W(Cl[a;, a,1]) for all i with 1 <i < p- 1, because the cycle
aF1a,1Cq is a 2-cycle.

Claim 2. C[ay, ap] separates yfrom {yi, y»}.

Proof. Let H be ays-component of5s — C. Assume that there existse C(ap, a;) N N(H).
Let P be a ¢, F1)-path inG[V(H) U {v}] andV(P) n V(F1) = {V'}. Then, there exist§with

1 < j < psuchthay ¢ Fi(ys,a;]. Now F’ = a;F1v'Pvis a {3, C)-fan, hence Theorem
2.1 shows that there exists w(C)-fan of widthk(G; ys, C) and weight> d which contains
vandaj. By Claim 1, we haver ¢ C[ys,y»]. Without loss of generality, we may assume

v e C[y2,a;). Now we haves € F1[y, ay], for otherwise Theorem 2.1 shows that there exists
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Figure 4.1:

a (y3,C)-fan F’ of width k(G; ys, C) and weight> d such thatv,a, € F’, which contradicts
the choice of-;.

Sincep = k(G; y3, C), there exists a vertex sitin V(H) U Nc(H) \ {y3} such thatX| = p
and X separateys from C. Note that there is one vertex &fa;, y3] N X for eachi with
1<i < p. Letx be such a vertex. Sinceseparategs from C, we havex, € F[V', y3].

Now Theorem 2.1 shows the existence gf, K)-fan F* of width k(G;y3, X) = p and
W(F*) > d (See Figure 4.1). We hawg(C[a;, a+1]) > W(F*[x, X+1]) for everyi with 1 <
i < p-1, since otherwise;F1xF*x.1F1a8.1Cq is a 2-cycle heavier tha@. LetC’ =

VPVF1xpF*x F1a2;Cv. ThenC’ is a 3-cycle and

w(C") W(VPV F1XpFy3) + W(ysF*x1F1az)

p-1

+ > W(Cla, &;1]) + W(Clap, V)
i=1

p-1

> W(XpF"Ya) + W(ysF"a) + ) W(F"[x;, %:1])
i=1

> 2w(F*)

> 2d,
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which is a contradiction. Hence we haMg(H) c Clay, ap], which implies the assertiono
Claim 3. w(C[ayp, a1]) < W(F1[ap, &1]).
Proof. LetC’ = a;F1a,Ca. Sincew(C’) is a 3-cyclew(C’) < 2d. Hence

w(C[ap, &) W(C") — (W(F1[a1, a2]) + W(C[ag, ap]))
p-1
< 2d- W(Flas. al) + ) W(Fa[ai. ai.a)
i=2
= 2d - (2w(F1) — w(F1[ap, a1]))

IA

w(F1[ap, a1]).

Claim 4. For any2-cycle D, WD) < wW(C[ay, ap]) + W(F1[ap, &1]).

Proof. Claim 3 showsw(C) < w(C[ay, ap]) + W(F1[ap, a1]). By the choice ofC, we have

w(D) < w(C), which implies the assertion. m|

Claim 5. Letw, v, be two vertices in (&4, ap] such that a, v, v», ap appear in the consec-
utive order along C. If P is vy, vo)-path which is internally disjoint with {2y, a,] and
V(P) N {y1, Y2} # 0, then WP) < w(C[vy, V2]).

Proof. LetC’ = vyPwCayF12,Cvy. SinceC’ is a 2-cycle, by Claim 4v(C’") < w(Cl[ay, ap])+

w(F1[ap, a1]). Hencew(P) < w(C[vy, v2]). i

Claim 6. Let w, V> be two vertices in &, a,] such that a, vy, Vv»,ap appear in the con-
secutive order along C. Let P be (&1, v2)-path which is internally disjoint with C with
{y1,y2} € V(P), and P = v,CapFa;Cv;. Then WP) < w(P’).

Proof. Let C' = v;CwPw;, thenC’ is a 2-cycle. Hence Claim 4 shows thafC’) <

W(Cl[ay, ap]) + W(F1[ap, a1]), which implies the assertion. m|

Note thatC[ay, a1] is a (y1, C[as, ap])-fan which includes; anday. Hence, by Theorem 2.1,
there exists ayq, C[ay, ap])-fan F2 such thatwv(F) > d anday, a, € F2. Note that Claim 2
implies thatV(F1) N V(F2) < Clay, ap).

Case 1wW(F1[ay, ap]) <W(F2[ay, ap]).

Let P be a path which satisfies the followings;
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e Pis an @y, ap)-path which is internally disjoint witlir1 U C[ay, ap], and
e V(P) N {ys,y2} # 0.

We may assume that such a p®hvas chosen so that(P) is as large as possible, and
without loss of generality, we may also assume that V(P). LetC’ = a;Fia,CapPa;.

Thenyy, ys € C’ and
w(C’) W(F1[ay, az]) + W(C[az, ap]) + W(P)
p-1
W(F1[ar, a]) + > W(Fa[a, &sa]) +W(P)
i=2
2w(F1) — W(F1[ag, ap]) + W(F2[ap, a1])

\%

\%

v

2w(F1)

\%

2d,

hencey, ¢ P. SinceC[yi, y-] is a path disjoint withC[ay, ap], Theorem 2.1 shows the exis-
tence of {», P U C[ay, ap])-fan F3 of weight at leastl, width at least 3 anéfz3 N P # 0. By
symmetry, we may assume thagnP(ay, y1] # 0. Note that Claim 2 implie¥ (F1)nV(F3)
Clay,ap]. And if there exists two distinct verticagv € P N F3, then by the choice o,

wW(P[u,V]) > w(F3[u,V]). Now we assume tha& has the orientation frora to ap.

Case 1.1F3n C(ay, ap) # 0.

LetClag, ap)NF3 = {by, by, ... by} andP(ar, ap]NF3 = {b141, b2, . .. , bm}. We may assume
by, bo,...,b andb, 1, b2, ... , by appear in the consecutive order aldd@nd P, respec-
tively (See Figure 4.2). Now we consider three pa®as= b;CbFay,, P> = y>F3b,1Pa,
andP3 = apF1a2;Cby. Then by Claim 5,

-

w(P1)

wW(C[byi, bis1]) + W(F3[bi, y2])

[N

-

v

W(F3[bi, bi;1]) + w(F3[by, y2])

[N

2wW(F3[bi, y2]) — W(F3[ba, y2]),

i=1
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Y3

bI+l

brm

Y1

Figure 4.2:

and by the maximality oP,

m-1

W(F3[y2, bis1]) + Z w(P[bi, bi;1])
i=l+1
m-1

W(F3[y2, b 1]) + Z w(F3[bi, bi;1])

i=l+1

w(P2)

\%

\%

> 2w(Fs[bi, yo) — W(F3[bm, y2).

i=l+1

Moreover, letP’” = by Fay,P2a,. Theny,, y» € P, hence by Claim 6,

w(P3)

v

w(P’)
W(F3[by, y2]) + W(P>)
W(F3[by, y2]) + W(F3[bm, Y2]).

\%

vV
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Now b1 P1y>P,a,P3b, is a 3-cycle of weight

W(P1) + w(P2) + w(P3)

|
D 2w(Fs[bi, y2]) - w(Fs[bs, y2])

i=1

+ ), 2W(F[bi.y2) — w(Fs[bim, )

\%

i=l+1
+W(F3[by, y2]) + W(F3[bm, y2])
= 2w(F3)
> 2d,
a contradiction. O
Case 1.2F3 N C(ag, ap) = 0.
LetPNF3 ={by,by,...,bm}. We may assumiey, by, ... , by, appear in the consecutive order

alongP. Sincem > 3, there exist$ with 1 < | < m- 1 such thaly; ¢ P(b, b,1). Now we

consider two pathB; = a;PbF3by,1Pay andP, = a;F1a,Ca,. Then

wP) > > w(P[bi, bia]) + W(Fs[by, b))
1<ism-1, il
> Z W(F3[bi, bita]) + W(F3[br, bii1])
1<ism-1, il
> wW(F3)
> d
and
p-1
WP;) > W(Filas, a)) + ) W(Cla, 1))
i=2
p-1
> W(Fi[as, 82]) + Y W(Fa[ai, aisa))
i=2
> W(F1)
> d

Hencea; P1a,P-a; is a 3-cycle of weightv(P1) + w(P2) > 2d, which is a contradiction. o

Case 2w(F1[ay, ap]) > W(F2[ag, ap]).
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LetV(Clay, ap]) N V(F2) = {a;, &, ... ,a}. We may assume thaf, &, ... , &, appear in the
consecutive order along. Note thata) = a; andag = a,. Now letP = & F,a,Ca, and
consider a cycl€’ = & PapFia;. Then by Claim 5,

w(C) = w(Fa[a},a)]) + W(C[a), ap]) + W(F1[ap, a1])
g-1

W(F2[a), a]) + > W(Fa[&, 8,,]) + W(Fa[ap, a])
i=2
2W(F5) - W(Fa[a, &) + W(Fa[ap, aq])

2w(F2)

\%

\%

v

= 2d.

Now letQ be an @y, ap)-path such tha® = Q1 U Qz, where

e Qqis an @y, t)-path witht € C(ay, ap], which is internally disjoint withF1 U C[ay, ap]

andQq N {y1,y2} # 0, and

Note that suchQ exists sinceP satisfies the above conditions. Talgeso thatw(Q) is as
large as possible, and assume tQatas an orientation frora; to a,. Now consider a cycle
C* = a1QayF1ay, thenw(C*) > w(C’) > 2d andyz € C*. Hence{y,, Y-} ¢ V(Q). Without
loss of generality, we may assume thate Q andy, ¢ Q. SinceC[yy, y»] is a path disjoint
with Cl[ay, ap], Theorem 2.1 shows that there existsya Q U C[ay, t])-fan F4 of weight at
leastd, width at least 3 ané4 N Q(ay, t) # 0.

Now assume that there exists a versgx F4NC(ay, t). If there existss, € F4NQ(as, y1],

thenC = a1CsF45Qa,F1a; is a 3-cycle and, by Claim 5,

w(C) W(C[ay, s1]) + W(Fa[s1, S]) + W(Q[S2, t])

+W(QIt, ap]) + W(F1[ap, a1])

v

W(Q[a1, 2]) + W(Fa[s, s1]) + W(Fa[s1, 52])
+W(Q[ sz, t]) + W(Q[t, ap]) + W(F1[ap, a1])
w(Q) + W(F1[ap, a1])

w(C")

v

\%

vV

2d,
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Y3

bI+1 Y1

Y2

Figure 4.3:

which is a contradiction. Otherwise, there exste F4NQ(yy, t). ThenC = a1Q9F48CapF1ag

is a 3-cycle and Claim 5 implies that

wC) = W(Qlay, S2]) + W(Fa[S, s1) + W(C[S1, ap]) + W(F1[ap, a])

vV

wW(Q[a1, 2]) + W(Fa[s2, 1]) + W(Fa[s1, 2])
+W(Q[s2, t]) + W(QIt, ap]) + W(F1[ap, &)
w(Q) + wW(F1[ap, a1])

w(C")

v

\%

v

2d,

which is a contradiction. Hence we havgn C(ay, t) = 0, which showd=4N (QUC[ay, t]) C
Q.

Let F4 N Q = {by, by, ... by}, We may assume tha, by, ... , by, appear in the con-
secutive order alon@. It follows from the choice ofQ and Claim 5 thaw(Q[bi, b;]) >

W(F4[bi, b;]) for everyi, jwith1<i< j<m.

Case 2.1F4 N Q(t,ap] = 0.
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Y3

Figure 4.4

Sincem > 3, there exist$ with 1 < | < m— 1 such thaty; ¢ Q(bj, b.1) (See Figure 4.3).
Now consider two path@; = a;QbF4b1QtandQ, = tQay,F1a;. Then

w(Q1)

vV

> W(Qlbi, bia]) +W(Fa[by, bia])

1<ism-1, il

Z W(Fa[bi, bis1]) + W(Falby, brya])

1<ism-1, i#l

wW(Fa4)

\%

\%

d.

vV

And, by Claim 6 and the fact thai, y, € Qu,

W(Qz) = W(Qq) = d.

Hencea; Q1tQa; is a 3-cycle of weight(Q;) + w(Q>) > 2d, which is a contradiction. O
Case 2.2F;, N Q(t,ap] # 0 andP[y;,t) N F4 # 0.

Let b € Q[y1,t) N F4 and consider three patl@® = a;Qby1Fsbm, Q2 = a1QbF4by, and
Q3 = bnQapFi1a; (See Figure 4.4). Note that both Qk, Q. containsy; andy,. Now we
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have
m-2
WQ1) > > w(Qlb, bisa]) + W(Falbin 1, b))
i=1
m-2
> ) W(Fa[b;, bisa]) + WIF albr-1, b
i=1
> 2wW(F4) — W(Fa[by, bm])
and
-1
w(Q2) = W(QI[bi, bit1]) + W(Fa[br, bm])
1

1

> Z W(Fa4[bi, bis1]) + W(F4[br, b))
i=1
> W(F4[by, by]).

Moreover, by Claim 6, we hawe(Q3) > w(Q>). Hencea; Q:bmQ3a; is a 3-cycle of weight
w(Q1) + W(Q>) > 2w(F4) > 2d, a contradiction. O

Case 2.3F4 N Q(t,ap] # 0 andP[ys,t) N F4 = 0.

Note thatQ(az,y1) N F4 # 0 in this case. Let, |’ be integers with 1< |,I” < m such that
b € Qag, y1l, biv1 ¢ Q(ag, y1], by € Q(t,ap] andby_y1 ¢ Q(t, ap) (See Figure 4.5). Now
consider three cycleS; = a;CtQhF4br QapF1a;, Co = b1 QbyF4b; andCs = a;CagFia;.

Note thatC; is a 3-cycle ancC; is a 2-cycle. By Claim 4, we hawg(C,) < w(Cgz). Hence,

w(Cy)

\%

W(C1) +W(C2) — W(Cs)

= W(C[ay, t]) + W(Q[t, by]) + W(Fa4[ly, by]) + w(Q[by, ap]) + W(F1[ap, a1])
+W(Q[by, bm]) + W(F4[bm, b1]) — W(C[ay, ap]) — W(F1[ap, a1])

= W(C[ay, t]) + W(Q[t, by]) + W(Fa4[ly, by]) + w(Q[by, ap]) + W(F1[ap, a1])
+W(Q[by, bi]) +w(Q[by, t]) +W(Q[t, by]) +wW(Q[br, brm]) + W(Fa[bm, ba])
-W(Clay, t]) — W(C[t, by']) - Ww(C[by, ap]) — W(F[ap, a1])

= W(Q[t, bi]) +W(Fa[br, br]) + w(Q[by, bi]) +wW(Q[by, t]) +w(Q[by, bm])
+W(Fa[bm, b1])

= W(Q[by, bi]) + wW(Fa[by, bi]) + 2w(Q[by, t]) + W(Q[by, br]) + W(Fa[br, bm]).
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Y3

Figure 4.5:

Incase ot ¢ F4,I” =1+ 1. Hence,

W(Q[by, by]) + w(Fa[by, bi]) + 2w(Q[by. t]) + wW(Q[br, bin]) + W(Fa[by, bm])

2

2

=

-1 m-1

D W(Falbi, biaal) + W(Falby, b)) + > W(Falbi, bisa]) + W(Fa[brsa, bre])
i=1 i=l+1

2wW(F4)

2d,

a contradiction. Otherwis#, = | + 2 andt = by,;. Hence,

W(Q[by, by]) +w(Fa[by, bi]) + 2w(Q[by. t]) + wW(Q[by, bin]) + W(Fa[by, bm])

1-1
> W(F4[bi, biy1]) + W(F4[b1, b]) + 2W(F4[by, b1 1])
i=1
m-1
+ Z W(Fa[bi, bi1]) + W(F4[by2, bm])
i=l+2
2W(F4)

\%

[\

2d,

a contradiction. This completes the proof of Theorem 4.1.



Chapter 5
Heavy cycles in triangle-free weighted graphs

(This chapter is based on the paper [20].)

Again, Bondy and Fan proved the following theorem in [4].

Theorem 5.1 (Bondy and Fan [4]).Let G be a2-connected weighted graph and let d be a

nonnegative real number. I1f'gv) > d for every vertex v in G, then
(@) G has a cycle of weight at lea2d, or
(b) every heaviest cycle in G is a hamiltonian cycle.

If we consider the weighted complete graph in which every edge has weight 1, we know that
conclusion (b) of Theorem 5.1 cannot be dropped. However, there are a lot of graphs in which
both (a) and (b) of Theorem 5.1 hold. In such weighted graphs, though it contains a cycle
of weight at least @ we cannot guarantee the weight of a heaviest cycle of a graph by this
theorem. In this chapter, we prove the following theorem, by which we can always find a

heavy cycle. Atriangle-freegraph is one which contains no cycle of length 3.

Theorem 5.2. Let G be a2-connected triangle-free weighted graph and let d be a nonnega-
tive real number. If ¥(v) > d for every vertex v in G, then G has a cycle of weight at least
2d.

In our proof of Theorem 5.2, we call a pahalongest heaviest pathf G if
(i) w(P) is maximum, and
(i) Pis alongest path dB subject to (i).

Now we prepare the following lemma.

31
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Lemma 5.3. Let G be a weighted graph and let P be a longest heaviest path of G with

endvertices x and y. Assume that
d(x) + d(y) — e(xy) < [E(P)],

where

0 ifxy¢E(G)
&(xy) = _
1 if xye E(G).
Then
e if xy ¢ E(G), then P has weight at leasf@x) + di(y), and
o if xy € E(G), then the cycle xPyx has weight at lea§tx) + di(y).

Proof. LetP = aja, ... ap be a longest heaviest path@fwherea; = x anda, = y. Then we
haveN(a;) € V(P) andN(ap) € V(P). Let

e N; ={a | a € Ng(a1), ai-1 ¢ Ng_o (ap)},

e N2 ={g | g € Ng(a1), ai-1 € No_a,(ap)},

e N3 ={g | g € Ng_a(ap), a1 ¢ Ns(a1)} and

o Ny ={g | g € Ng_a(ap), a1 € Ng(a1)}.
Moreover, let

Eir={arvive Ny}, Ex ={aqv|ve Np}, Ez = {vay | ve N3} andEs = {vay | v € Ny}
Now we define a mapping; of U?:l E; to E(P) such that

e fore=aya € E1 U Ep, ¢1(6) = a_14 and

o fore=aap € E3, ¢1(€) = aa11,

and letF; = {¢1(e) | e€ Ej} fori = 1,2,3. Now it is easy to see th&t; N F» = 0. And by the

definition of E3, a1 ¢ N(ay) if aa, € Ez, henceFy, F»> andF3 are disjoint.
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It follows from the factd(x) + d(y) — e(xy) < |E(P)| that

3
D IFil
i=1

|Ea| +|E2| + |E3|

= IN1f + [N2| + N3

= IN(aw)l + IN(ap) \ {aa}l — N4l
< |E(P)I - IN4|

= |E(P)I - |E4l.

Thus|E(P) \ U2, Fil > |E4l. Let; be an injection ofE4 to E(P) \ U2, Fi and letF4 =
{p2(€) | e € E4}. Note thatF4, F», F3 andF4 are disjoint.

Assume thatya; € E; andQq = g_18_2... 21,1 ... 8p. Then, sincev(Q1) < w(P),
w(a1a) < W(ei(a1d)). By the similar argument as above, we hav@) < w(p1(€e)) for
all e € E; U Es. Supposea; € Np. Then we haveaj_i1a, € E4. Let C be a cycle
ajaay...aj—18pap-1...a; ande = y(aj-1ap). Sincee € E(C), Q2 = C - {¢} is a path
in G. Then it follows from the facw(Q) < w(P) thatw(a;a;) + w(aj-1ap) < W(p1(a1a;)) +

W(p2(aj-1ap)) for all a; € Np. Therefore, ifajap ¢ E(G),

d"(ag) + d"(ap) = EN: w(azv) + ENZ w(agV) + zN: w(vap) + ZNL w(vap)
- ZE wW(e) + ZE: V\j(e) + ZN (w(gala,-) + W(aj—iap))
< eezl we) + eezs we) + aJZE Zvv(e) + )W)
s T

which implies the assertion. And in caseagfy, € E(G),

D Wany) + ) wiagv) + Y| w(vap) + > w(vap) + W(asap)

veN; veNy veN3 veNy

= Z w(e) + Z w(e) + Z (W(aza;) + w(aj-1ap)) + W(azap)

eck; ecks ajeN

< Y wE+ Y wE)+ > we)+ > w(e) +W(aap)

eckFq eck3 eck> ecky
< W(P) + w(ayap).

d"(as) + d"(ap)

Hence the cycleyPaya; has weight at least"(a;) + d"(ap), which implies the assertiomn

Now we prove Theorem 5.2 by using Lemma 5.3 and the following lemma.
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Lemma 5.4 (Bondy and Fan [5]). Let G be a2-connected weighted graph and let P be a
heaviest path in G with endvertices x and y. Then there exists a cycle C in G such that
w(C) > w(P) or w(C) > d"(x) + d"(y).

Proof of Theorem 5.2. Let P be a longest heaviest path@ and letx, y be endvertices of
P. SinceG is triangle-free andN(x), N(y) € V(P), IN(X)| < [V(P)|/2 and|N(y)| < [V(P)|/2.
Moreover, ifxy ¢ E(G), IN(X)| < (IV(P)| — 1)/2 and|N(y)| < (V(P)| — 1)/2. Hence, whether
x andy are adjacent or not, we haex) + d(y) — e(xy) < |E(P)|. In case ofxy € E(G),
Lemma 5.3 implies the existence of a cycle of weight at le$x) + d¥(y) > 2d, which
is a required cycle. Thus we may assurye¢z E(G), then Lemma 5.3 implies thai(P) >
d"¥(x)+d"(y) > 2d. Now it follows from Lemma 5.4 that there exists a cy€lén G such that

w(C) > w(P) > 2d orw(C) > d¥(x) + d"“(y) > 2d, which is a required cycle. i



Chapter 6
Claw conditions for heavy cycles in weighted graphs

(This chapter is based on the paper [18].)

6.1 Fan-type condition and Claw conditions

About the existence of long cycles in unweighted graphs, Fan introduced weaker degree con-
dition than Ore-type one. Thdistanceof two verticesu andv is a minimal length of (§, v)-
paths (if there is no such path, then we define the distance) aand we will denote it by

d(u, v). Fan’s theorem is the following.

Theorem 6.1 (Fan [16]). Let G be a2-connected graph. lnaXd(u), d(v)} > c/2 for each
pair of vertices u and v in ¥G) such that qu,v) = 2, then G contains either a hamiltonian

cycle or a cycle of length at least c.

And, Theorem 6.1 is weakened as the following theorem. We call the d¢aph claw, and
the graphKj 3 + e (eis an edge) anodified claw A modified claw can also be described as

the graph obtained by joining a pendant edge to some verteXef a

Theorem 6.2 (Bedrossian et al. [1]).Let G be a2-connected graph. Imaxd(u),d(v)} >
c¢/2 for each pair of non-adjacent vertices u and v, which are vertices of an induced claw of
G or an induced modified claw of G, then G contains either a hamiltonian cycle or a cycle of

length at least c.

In this chapter, we discuss about two weighted degree conditions of the same type as
above two theorems. To extend Theorem 6.1 to the weighted graphs, the following problem

may naturally be considered.

Problem 6.3. Let G be a2-connected weighted graph. mfaxd"(u), d¥(v)} > ¢/2 for each
pair of vertices u and v in {G) such that du,v) = 2, does G contain either a hamiltonian

cycle or a cycle of weight at least ¢c?

35
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However, in [34], Zhang et al. gave the negative answer to Problem 6.3, and alternatively they

suggested the following problem.

Problem 6.4. Let G be a3-connected weighted graph. ifaxd"(u), d¥(v)} > c/2 for each
pair of vertices u and v in ¥G) such that du,v) = 2, does G contain either a hamiltonian

cycle or a cycle of weight at least ¢?

Enomoto [11] proved that the answer to Problem 6.4 is also negative, even if we enlarge
the connectivity ofG more than 3. Lek, | andm be integers satisfying > 3,1 > k+ 1,
m>k?—kandkl-1>m LetVy={x|1<i<k,hbVW={yjll<i<l 1<j<k),
Vo={zjl1<i<l,1<j<m}, Ex={uv|uveVy}, Exy={uv|ueVyandve Vy}, Ey, =
yijzjyll<i<lbl<j<k 1<j<mhandE, ={zjz;|1<i<l,1<j<] <m}

Now we consider a grapB with V(G) = VU Vy UV, andE(G) = Ex U E,y U Ey, U E;, then

G is ak-connected non-hamiltonian graph (See Figure 6.1). However, if we assign weight
r > 0 to the edges ifEx U Eyy U Ey, and weight O to the edges Ky, G satisfies the condition

of Problem 6.4 witlrc = (m+K) - r, though the weight of a heaviest cycle®is 2k* - r < 2c.

X1 X2
Vy ® )

Ea

Kk

Y11 Yik Y21 Y2,k i
Vi R
’ Ke Re Ke
+ + +

11 IOm D Om 41 4 m
V. Ceee e eee > -t Ceee &>
Km Km Km

Figure 6.1:

Hence, to obtain a positive consequence to Problem 6.3, it is no use to add the condition
of the connectivity of graphs, and we must add the other condition. In [34], the following

theorem is shown.
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Theorem 6.5 (Zhang et al. [34]).Let G be a&2-connected weighted graph which satisfies the

following conditions:
(1) maxd"(u),d¥(v)} > c/2 for each pair of vertices u and v in(&) such that qu, v) = 2.
(2) w(x2) = w(y2) for every vertex £ N(X) N N(y) with d(x,y) = 2.

(3) Inevery triangle T of G, either all edges of T havgatent weights or all edges of T

have the same weight.
Then G contains either a hamiltonian cycle or a cycle of weight at least c.

Also it is shown that neither of the conditions (2) nor (3) of Theorem 6.5 can be dropped. The
aim of this chapter is to obtain a more general result for larger classes of weighted graphs,
extending Theorem 6.2 to weighted graphs. Corresponding to the conditions of Theorem 6.5,
we consider the following conditions, which are said to be Claw Conditions, for a weighted

graphG.

(CC1) For each induced claw and each induced modified cla®y afl its non-adjacent pairs

of verticesx andy satisfy maxd“(x), d“(y)} > c/2.

(CC2) For each induced claw and each induced modified cla@; afl of its edges have the

same weight.
Then we can prove the following theorem.

Theorem 6.6. Let G be &-connected weighted graph which satisfies Claw Conditions (CC1)

and (CC2). Then G contains either a hamiltonian cycle or a cycle of weight at least c.

Note that if a graph satisfies the condition (1) of Theorem 6.5, it satisfies (CC1). Also, if
a graph satisfies the conditions (2) and (3) of Theorem 6.5, it satisfies (CC2). Thus, Theorem
6.6 weakened the conditions of Theorem 6.5. An example is shown in Figure 6.B. hest
a complete graph with > 2 vertices such that all edges lihhave the same weighi, and
u,v € V(H). Now make a new grapB addingm paths of length 3ustiv|1 <i <mjtoH
and assigning weigl to the edges ifus |1 <i <mj U {tjv| 1 <i < m}, weightry # ry
to the edges ifsti | 1 < i < m}. ThenG does not satisfy the condition (2) of Theorem 6.5,
althoughG satisfies the condition (CC2) of Theorem 6.6.
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S1 h © ) Sm tm

K|

Figure 6.2:

(CC2) in Theorem 6.6 cannot be dropped even in the sense of only claw or only modified
claw. The examples are shown in Figures 6.3 and 6.4. In both graphs, we wéfing) =
w(Vsve) = W(v7vg) = W(Vgvg) = 4, and definen(e) = 5 for all the other edges and let
¢ = 38. Then, the resulting weighted graph in Figure 6.3 satisfies (CC1), and for each
induced modified claw, all of its edges have the same weight. But, this graph does not contain
a hamiltonian cycle and the weight of its heaviest cycle is<36. Similarly, the weighted
graph in Figure 6.4 satisfies (CC1), and for each induced claw, all of its edges have the same
weight. But, this graph also does not contain a hamiltonian cycle and the weight of its heaviest
cycle is 36< c.

In the proof of Theorem 6.6, we call a patha heaviest longest patifi P satisfies the

followings;
(a) Pis alongest path dB, and

(b) w(P) is maximum, subject to (a).

V1
V1
V2 V3
V2 V3
V4 Ve V7 Vo
Vg Ve V7 Vg
Vg Vg
Vg Vg
Figure 6.4:

Figure 6.3:
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6.2 KeyLemma

In our proof of Theorem 6.6, the following lemma is essential.

Lemma 6.7. Let G be a non-hamiltonia@-connected weighted graph satisfying Claw Con-
ditions (CC1) and (CC2). Suppose that v is an end vertex of a heaviest longest path in G.
Then, there exists a heaviest longest path with an end vertex v such that the other end vertex

has weighted degree at leastc

We prove this lemma in the next section. Theorem 6.6 can be proved by combining Lemma
6.7 and the following lemma. The proof of the lemma is implicit in [34] (Case 2 in the proof

of Theorem 1). See also [3, Lemma 5] and Lemma 5.4 [5, Lemma 2.1].

Lemma 6.8. Let G be a non-hamiltoniaR-connected weighted graph and=PvyVv; - - - vp be
a heaviest longest path in G. Then there is a cycle C in G of wei@D} w d"(v1) + d"(vp).

O

Proof of Theorem 6.6. Suppose thaG does not contain a hamiltonian cycle. By using
Lemma 6.7 twice, we obtain a heaviest longest path with both end vertices having weighted

degree> c/2. Then by Lemma 6.8, we can find a cycle of weight at least O

6.3 Proof of Lemma 6.7

Before proving Lemma 6.7, we prepare the following lemmas.

Lemma 6.9. Let G be a weighted graph satisfying (CC2). {f/x is an induced path with

w(X1y) # W(xay) in G, then each vertex x N(y) \ {x1, xo} is adjacent to both xand %.

Proof. By (CC2),{x,y, X1, X2} cannot induce a claw or a modified claw. Thus we obtain the

conclusion. O

Lemma 6.10. Let G be a weighted graph satisfying (CC2). Supposgeexis an induced
path such that w = w(xyy) and w = w(xpy) with wy # w», and yZz is a path such that
{z1, 22} N {X1, X2} = ¢ and %2z ¢ E(G). Then the following (i) and (ii) hold:

() {zx1, 1%, ZoX1} € E(G), and yz ¢ E(G). Moreover, all edges in the subgraph induced

by {x1, X2,V, z1, 2}, other than xy, have the same weight\See Figure 6.5).
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Figure 6.5:

(i) LetY be the component of &{xy, z1, o} with y € V(Y). For each vertex \& V(Y) \
{x1,Y}, vis adjacent to all of x X,y and z. Furthermore, iwx1) = W(vX) = w(vy) =

w(Vz) = wWo.

Proof. By Lemma 6.9, we have x; € E(G), z1% € E(G) andzy ¢ E(G). Thus,{z, 1, Y, X2}
induces a modified claw, and heneéz x;) = W(z1y) = W(z120) = Wo. Then, sincev(xyy) #
w(yz), {22, 21, ¥, X1} cannot induce a modified claw. This implies;; € E(G). Now, we have
a modified claw induced bixo, 1, X1, 2o}. Hencew(z; X1) = W(zx1) = Wo. This proves (i).

For the proof of (ii), suppose first thate V(Y)\ {x1, Y} is adjacent ty. Then, by Lemma
6.9, we haverx;,vx € E(G). Applying Lemma 6.9 again to the induced pathz and
v € N(xp), we havevz € E(G). The modified claw induced b§z,,v,y, xo} implies that
w(vxp) = w(vy) = w(vz) = ws. Also, the modified claw induced by, v, X1, 22} implies
thatw(vxy) = wp. This proves (ii) forv € N(y) N (V(Y) \ {x1,y}). Sincey and x; are
symmetric (by the structure obtained in (i)), the conclusion of (ii) holds also for each vertex
ve N(x) N (VY)\ {x1, ¥h).

In order to complete the proof of (ii), we shall show that every vevtexX/(Y) \ {xq, Y} is
adjacent tog ory. Assume not. Then there exists a venexV(Y) \ {x1, y} which is distance
two apart fromy andx;. LetVv € V(Y)\{x1,y} be a vertex such that € N(v)nN(y). Then,V
is adjacent to botly andxy, andw(v'y) = w(V' x1) = W,. Therefore{v, V', y, X1} cannot induce
a modified claw. This implies that, € E(G) or vy € E(G), which contradicts the choice of

v. This completes the proof of (ii). m|
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Proof of Lemma 6.7. Suppose that there is no heaviest longest path with end wesegh
that the other end vertex has weighted degree/2. LetP = vivo---vp(vp = V) be a
heaviest longest path. From the choicePpfve can see thadti(v1) € V(P). Next, letk(P) =
maxi | vivi € E(G)}. SinceG is 2-connectedy; is adjacent to at least one vertex Bn
other thanv,. Note that, sincé is a longest path in a non-hamiltonian graphG does not
contain a cycle of lengtip. Sok(P) satisfies & k(P) < p. Assume the heaviest longest path
P = viv2-- -V, is chosen among all heaviest longest paths endingsatch thak(P) is as
large as possible, and let= k(P).

SinceG is 2-connected, there exists a p&fsuch that
¢ Qhas end verticegs, andvs, such thats; < k < s, and
e V(P)NV(Q) = {vg, Vs, }-
We assume that such a pdphwas chosen so that
() sy is as large as possible;
(i) s is as large as possible, subject to (i).
Case 1vyv; € E(G) for everyi with s; <i < k.
Claim 1. vg Vs, € E(G).

Proof. Sinces; < k, we havevivs .1 € E(G). Recall that there exists a pa@from vg,
to vs, with V(Q) N V(P) = {vs, Vs,}. If there exists a vertey ¢ {vs,,Vs,} on Q, then a path
P’ = VgVs—1-" - ViVg+1Vs,+2 - - - Vp SatisfiesV(P)| > [V(P)|, contradicting the fact that

Pis a longest path. So we havgvs, € E(G). O
Claim 2. W(V1Vs,+1) # W(Vs, Vs, +1)-

Proof. If w(vs,Vs,+1) = W(V1Vs,+1), P* = Vg, Vs,—1- -+ V1Vs, +1Vs 42 - - - Vp IS @ heaviest longest
1 Vs S1 1 V'S) 1 1 p

path withk(P’) = s, > k, a contradiction. O

Letw; andw, denote the weight of1vs, .1 andvs, Vs, 41, respectively.
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Proof. Supposers, .1Vs, ¢ E(G). By the maximality ok, v1vs, ¢ E(G). So{Vs,, Vs, , Vs, +1, V1 }

induces a modified claw, and then we g&tvs, 1) = W(Vs, Vs, +1), CONtrary to Claim 2. O

By the maximality ofs;, Claim 3 implies thats; = k — 1 andwvs, € E(G). Note that

S # p. (Otherwiseys,vs,—1 - - - WViV2 - - - Vg Vs, becomes a cycle of length a contradiction.)

Claim4. s, =k+ 1.

Proof. Supposes, > k+ 1. Thenviw, VW1, WVs, € E(G) and by the maximality of
K, viik1 ¢ E(G),vavs, ¢ E(G). So{v1, Vi, Vks1,Vs,} induces a claw or a modified claw.
From (CC2), we havev(wvs,) = W(vivk) = wi. On the other handw(vs k) = Wa, SO
{Vs,+1, Vs,, Vk, Vs, } cannot induce a modified claw. Sinegvs,,1 ¢ E(G) by the maximality of
S, we havewvs,,1 € E(G). But then{vs,.1, W, Vs,, 1} induces a modified claw, and we get

W(V1Vs, +1) = W(Vs, Vs +1). This contradicts Claim 2. m]

Now we haves; = k-1 ands, = k+1, and sok-1Viks1 € E(G). ThenwiviVo - - - Ve 1Vip1Vis2 - - Vp
is a longest path. Therefore, we dgéfv) c V(P). By the 2-connectedness &f and the
choice ofsp, there must be an edgRvs, € E(G) such thatss > k + 2. From the choice of
k andsy, we havevyvg,, Vs Vs, ¢ E(G), and sofvs,, Vi, Vs;, V1} induces a modified claw. This
impliesw(vs, Vs, +1) = W(V1Vs,11), contradicting Claim 2. This completes the proof of Case 1.

O
Case 2vyv; ¢ E(G) for somei with s; <i < k.

Choosev; ¢ N(v1) with s; < | < k so thatl is as large as possible. Itis clear that3 < k

andvyv; € E(G) for everyi with | <i < k.
Claim 5. d"“(v) > c/2.

Proof. Let j be the smallest index such that> | andv; ¢ N(vi) N N(v). Sincevi,1 €
N(v1) N N(v), we havej > | + 2. Also, it is obvious thaj < k+ 1. Then,{v,Vvj_1,Vj,Vi}

induces a claw or a modified claw. Sind¥(v;) < c/2, by (CC1), we have’(v)) > c/2. O

We have assumed that there exists no heaviest longest path with endyestiek that the

other end vertex has weighted degree at leatHence, by Claim 5, we have the following.
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Claim 6. There is no heaviest longest path with end vertigesd v,. O
Claim 7. w(vivi;1) # W(V1Vi11).

Proof. If w(iviz1) = W(v1vi41), thenvivi_i---viviaavio - - - Vp is @ heaviest longest path,

contradicting Claim 6. O

Let w; andw, denote the weights ofivi,1 andvyvi,1, respectively.
Claim 8. vw; € E(G) and vy € E(G) for all v € N(vi;1) \ {v1, vi}.

Proof. Now w(vivi;1) # W(vivi;1). Applying Lemma 6.9 to the induced pativ,1v; and

v e NWV41) \ {v1, v}, we obtain the conclusion. m]

Claim9. k#1+1.

Proof. If k =1 + 1, then by Claim 8y;v.1 must be inE(G). This contradicts the choice of
k. |

Claim 10. vi;1V ¢ E(G). In particular, k> | + 3.

Proof. Supposes.1vk € E(G). Now we haveviv,1 ¢ E(G). Applying Lemma 6.10 to the
induced pattvvi,1v1 and the pativi, 1ViVis 1, we getw(vivik) = W(VkVike1) = W(V1Vi41) = Wi.
Moreover, since|_1 is adjacent ta, we havev;_1Vik,1 € E(G) andw(vi_1V|) = W(V_1Vi:1) =
wy (See Figure 6.6). Then, the pati,q - - - VkV1Vo - - - Vi_1Vie1Vike2 - - - Vp DECOMES @ heaviest

longest path, contradicting Claim 6. O
Claim 11. If viw € E(G), then yv,1 ¢ E(G) foreachiwithl+ 1 <i <k- 1.

Proof. Supposesv € E(G). We assume that there exists an edge, for somet; andt;

with | + 1 <t; < k < t,. We may assume that andt, were chosen so that
() t1is as large as possible;

(i) tpis as large as possible, subject to (i).
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W1

Figure 6.6:

Note thatviw, +1 € E(G), sow, is an end vertex of a longest path
Viu V-1 - - ViV 41V +2 -+ - Vp.
Then, we have, v, € E(G), for otherwise there exists a path longer tian
Claim 11.1. W(V1Vi;+1) # W(Vi, Vi, +1)-
Proof. If W(vivi+1) = WV, W, 41), thenP” = Vg Vi —1 -+ - ViV 41V 42 - - - Vp becomes a heaviest
longest path withk(P’) = t, > k, which contradicts the choice & m|
Let wz andw, denote the weight ofiw;, +1 andw, i, .1, respectively.
Claim 11.2. w, 1w, € E(G).
Proof. Suppose that;, 1w, ¢ E(G). Then{w,, w,, W, +1, V1} induces a modified claw, and we

obtainw(w, v, +1) = W(V1\,+1). This contradicts Claim 11.1. O

By the maximality ot;, we have; = k—1 andwv;, € E(G). Note that, # p. (Otherwise,

Vi,Vi,—1 -+ - kViV2 - - - W Vi, Decomes a cycle of lengih a contradiction.)

Claim11.3. tb = k+ 1.

Proof. Suppose thath # k + 1. Sinceviv,1 ¢ E(G) andviw, ¢ E(G), {v1, Vk, Vk+1, Vi, } IN-
duces a claw or a modified claw, and we @étvi,) = W3 # Wa = W(V, V). SO{W,, Vi, Vit,, Vip+1}

cannot induce a modified claw. Now, by the maximality tof w,w,+1 ¢ E(G). This
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implies w\,+1 € E(G). But then,{w,+1, Vk, Wt,, 1} induces a modified claw, and we get

W(V1Vk) = W(W, V). This contradicts Claim 11.1. O

Using the above claims, we shall prove Claim 11.

Since{vi, Vi, W,, i} induces a claw or a modified claw(vii,) = W(ViVk) = W3 # Wy =
wW(w, V). This implies that{vi,,1, W,, Vk, 4, } cannot induce a modified claw. And, by the
maximality of tp, v, w,+1 ¢ E(G). Soww,+1 must be inE(G). But then{vi,,1, Vk, Wt,, V1}
induces a modified claw and we hawévivi) = W(w, V). Nowk = t; + 1, so this contradicts

Claim 11.1. This completes the proof of Claim 11. O

Now we continue the proof in Case 2.
Claim 12. For each iwith I+ 2 <i <k, vv; € E(G).

Proof. By Claim 8, we havesvi,» € E(G). Now suppose that there exists somavith
| + 3<i<ksuchthawy ¢ E(G). Letr =min{i || + 3<i <k vwv ¢ E(G)}.

Claim 12.1. vi;1vr_1 € E(G).

Proof. If r = | + 3, itis clear thaw,1v,_1 € E(G). So we can assume> | + 4. Now suppose
vis1Vr_1 € E(G). By the choice of and the fact > | + 4, we haveyv;_»,vvy_1 € E(G) and
vivy ¢ E(G). And Claim 8 shows 1V, ¢ E(G). Then{v,1, V1, Vi1, ¢} induces a modified
claw, and we gew(vivr_1) = W(viVv) = W(Vr_1V¢) = W(v1vi;1) = wi. On the other hand,
M, Vr_1, V¢, v1} also induces a modified claw. This implies thgtiv,_1) = W(Vi_1V;) = wi.
Now the factw(vivi;1) = w, shows thatvi,1, v, Vr_2, Vr_1} cannot induce a modified claw,
and we havey,1v;_» € E(G).

Next, we prove)_ov; ¢ E(G). If vi_ov, € E(G), each ofvi,1, Vr_2, Vr_1, Vi } @nd{V;, Vi 2, Vi1 1, Vi}
induces a modified claw. The first one implies tidt 1vi_2) = W(v;_1v;) = wy. But the
second one shows(v 1Vr_2) = W(VVi11) = W», a contradiction. Therefore;_,v, ¢ E(G).

Recall thatw(vivi-1) = w1 # Wo = W(VVi4+1). Applying Lemma 6.9 to the induced path
Vis1ViVi_1, We havevi_1Vi;1,Vi_1Vr_1 € E(G). Now we consider two caseg, 1v; € E(G) or
viiivr ¢ E(G).

If viiave € E(G), {Vr, Vi1, Vi, Vi+1} induces a modified claw. This showgv,_1v)) =
W(Vi—1Vr). Thenvivi,g -« Vr_1ViVe - - - VitV Vry1 - - - Vp becomes a heaviest longest path, con-

tradicting Claim 6.
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Figure 6.7:

If viiave ¢ E(G), {*,Vr_1,Vi,Vi_1} induces a modified claw. This showgv,_1vj) =
W(Vi—1Vr—1). ThenviViui---Vr_1Vi—1Vi—a - - ViVrVes1 - - - Vp becomes a heaviest longest path,

contradicting Claim 6. i

Now we shall complete the proof of Claim 12. Applying Lemma 6.10 to the induced path
vivi11vy and the pathv v 1V, we getw(vivi_1) = W(Vr_1V;) = W(VVi11) = Wo. Moreover,
sincevi_; andv; are in the same component@f- {v, v;_1, vy}, we havev,_;v; € E(G) and
W(Vi—1vi) = W(Vi_1Vy) = Wo. Then, the patiwVi, - - Vi_qViVo - - - Vi1VeVri1 - - - Vp bEecomes a

heaviest longest path, contradicting Claim 6. m|

By Claim 12, we have v andvivk_1 € E(G). And by Claim 11, we gefj;1Vk+1, Vk_1Vks+1 €
E(G). Now {vi:1, Vk, Vk-1, 1} induces a modified claw. Lets denote the weight of the
edges of this modified claw. Noyw1, Vi, Vk+1, Vi} induces a claw or a modified claw. So

w(vivk) = W(v1vk) = ws (See Figure 6.7).
Claim 13. vivk;1 ¢ E(G).

Proof. Suppose thatjvi,1 € E(G). Then{v,1,V, Vk, Vk+1} induces a modified claw. This im-
pliesws = W(ViVk) = W(ViVis1) = W(WVi41) = Wo. Hencew(viVi-1) = W(ViVk) = W(Vik-1Vk) =
W(ViVier1) = Wo.
Next, we remarkv(vivii1) = Wi # We = W(v1Vk). Applying Lemma 6.9 to the induced
pathvi,1v1vk andv, € N(v1), we havenvi, 1, ok € E(G). Then Claim 8 impliesnv, € E(G).
Now, we claim thatvow,1 ¢ E(G). If vow,1 € E(G), each of{v 1, Vo, Wk, Vk+1} and

{Vik+1, V2, V1, Vi11} induces a modified claw. The first one shom,vi 1) = W(VkViks1) = Wo.
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But on the other hand, the second one sha¥sv;. 1) = w(vivi;1) = Wy, a contradiction.
Thusvovky1 ¢ E(G). Then the modified claw induced B, 1, Vk, Vo, V1} Showsw(vivy) =
W(WVki1) = Wo. And the modified claw induced bl 1, Vi, Vi1, Vo} implies w(vovi,1) =

w(vivi11) = We. Consequently, the path
VIVi-1 - - VaVI4 V42 - - - Vik-1VIVkVk+1 - - - Vp

becomes a heaviest longest path, which contradicts Claim 6. O

Claim 14. vi_1vi;1 ¢ E(G).

Proof. Suppose that_1vi,1 € E(G). By Claim 8 we haven,vi_1 € E(G).

First, we provey_1vix € E(G). Suppose_1Vk ¢ E(G). Then each ofvg, v1, Vi1, vi+1} and
{Vk» Vi, Vi_1, Vi11} induces a modified claw. The first one shom(s_1viy1) = W(ViVii1) = W
But the other one shows(vi_1vi;1) = W(VVi11) = Wp, a contradiction. This showsg_1v €
E(G).

Next, we provey_1Viks1 € E(G). Otherwise, each @fi 1, Vi—1, Vi+1, 1} and{Vik,1, Vi1, Vi, Vi+1}
induces a modified claw. Then the first one showg_1vi 1) = W(v1Vi+1) = wy while the sec-
ond one impliesv(vi_1vi41) = W(ViVi;1) = W», a contradiction. This shows_1vk.1 ¢ E(G).

Then, we obtain thaii, 1, Vk, Vi, Vi_1} induces a modified claw. Sa(vi_1v|) = W(vi_1Vk) =

W(VkVk:1) = Wa. This means that the path
VIVI41 - - Vk-1V1V2 « - - VI—1VkVik+1 - - Vp

is a heaviest longest path, contradicting Claim 6. O

Using the above claims, we shall complete the proof of Case 2.

Claim 13 say® Vi1 ¢ E(G), and by Claim 14, we gef,1vi_1 ¢ E(G). Now {Vk:1, Vk, Vk_1, Vi}
induces a modified claw. This impli@gvivk_1) = W(Viwk) = W(Vk_1Vk) = W3. And{V,1, Vi, Vi_1, Vk}
induces a claw or a modified claw. It impliegs = wo,wz # w; andw(vi_1Vv|) = Wa.
Then, applying Lemma 6.9 to the induced p&glivi,; andvo, € N(v1), we havevov,
andw,w € E(G). If | — 1 = 2, this contradicts Claim 14. Hence we hdvel > 2. By Claim
8, we haveny, € E(G).

Next, we provevavi,1 ¢ E(G). Supposenvy,1 € E(G). Then each ofvi,1, Vo, V1, Vi 1}

and{Vi,1, V2, Vi, Vi;1} induces a modified claw. The first one implies thWétovi 1) = W(Viviy1) =
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w1, and the second one implies thvev,vi, 1) = W(Vivi;1) = Wo, a contradiction. Therefore,
VoVie1 € E(G).

Now each of{wk,1, Vk, V2, V1} and {Vi;1, Vk, Vi, V2} induces a modified claw. They im-
ply w(vivo) = w(vavk) = w(vivk) = ws, andw(vv) = W(vjv) = ws. Then, the path
Vi—1 - VoVIVie1 - - - Vike1VIViVie1 - - - Vp IS @ heaviest longest path with an end vergx So
we can see that another end venigx satisfiesd’(vi_1) < ¢/2. On the other hand, since
{M+1, VI, Vi_1, W} induces a claw or a modified claw with.1vi,1 ¢ E(G), we haved¥(v;1) >
c/2. Now, there is another heaviest longest pathvi,o - - - Vk-1VaVa - - ViViVi1 - - - Vp. This

is a contradiction. This completes the proof of Case 2 and the proof of Lemma 6.7. O



Chapter 7
ok type condition for heavy cycles in weighted graphs

(This chapter is based on the paper [12].)

7.1 Previous result and the new result

Using the degree condition on three independent vertices, and the condition on the weights of
edges which is the same as the condition appeared in Chapter 6, Zhang et al. proved the exis-
tence of heavy cycles in weighted graphs. Here, we say a vertekiséndependenif every

vertex inU has no neighbor itd. And the number of vertices in a maximum independent set

of a graphG is denoted byy(G). For a positive integek < a(G), o(G) ando(G) denotes

the minimum value of the degree sum of dnyndependent vertices and the minimum value

of the weighted degree sum of akyndependent vertices, respectively (for «(G), we

defineoy(G), 0/(G) asc.) The theorem of Zhang et al. is the following.

Theorem 7.1 (Zhang et al. [36]).Let G be a2-connected weighted graph which satisfies the

following conditions:
(1) o3(G) = m.
(2) WM(x2) = w(y2) for every vertex £ N(x) N N(y) with d(x,y) = 2.

(3) In every triangle T of G, either all edges of T havgatent weights or all edges of T

have the same weight.
Then G contains either a hamiltonian cycle or a cycle of weight at [2&g8.

Theorem 7.1 is an extension of the following theorem to the weighted graphs in the case
k=2.

49
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Theorem 7.2 (Fournier and Fraisse [17]).Let G be a k-connected graph whete< k <
a(G), such thatr,1(G) = m. Then G contains either a hamiltonian cycle or a cycle of length
at least2m/(k + 1).

In this chapter, we extend Theorem 7.2 to the weighted graphs fior all

Theorem 7.3. Let G be a k-connected weighted graph where X Suppose that G satisfies

the following conditions.
(1) o (G) = m.
(2) W(x2) = w(y2) for every vertex 2 N(x) N N(y) with d(x,y) = 2.

(3) In every triangle T of G, either all edges of T havgatent weights or all edges of T

have the same weight.

Then G contains either a hamiltonian cycle or a cycle of weight at [Bagtk + 1).

7.2 The conditions of Zhang et al. 's theorem

To prove Theorem 7.3, we need the following lemma, which shows that the class of weighted

graphs satisfying Conditions (2) and (3) of Theorem 7.3 is limited.

Lemma 7.4. Let G be a connected weighted graph satisfying Conditions (2) and (3) of The-

orem 7.3. Then G satisfies one of the following:
(a) all edges of G have the same weight, or
(b) G is a complete multi-partite graph.

Proof. Let G be a connected weighted graph satisfying Conditions (2) and (3) of Theorem
7.3. Suppose that there exigtse, € E(G) such thatwv(e;) # w(e;). Then what we need to
prove is thatG is a complete multi-partite graph.

SinceG is connected, we can choose a veriezo that there exist,v € N(x) such
thatw(ux) # w(vx). Let |, Vi be a partition ofN(x) such that foru € V; andv € Vj,
w(ux) = w(vx) if and only ifi = j. Now we denote the weight of the edges joinkgndV;

byw; for1<i<n.

Claim1. Letl<i,j<nandyeV,v; eV, Ifi £ |, vivj € E(G).
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Proof. Sincew(xv)) # w(xv;), Condition (2) of Theorem 7.3 implie(v;,v;) # 2. Hence
Vivj € E(G). O

Claim 2. If there exists a vertex y such thatxdy) = 2, then vye E(G) for all v € N(x).

Proof. The factd(x,y) = 2 shows that there is a neighborhogaf yin N(x). Without loss of
generality, we may assunvg € V3. And Condition (2) of Theorem 7.3 implieg(yvi) = wj.
Now suppose that there exists a venex | J{, Vi with yv ¢ E(G). Then Claim 1 implies
v1Vv € E(G), and Condition (2) of Theorem 7.3 showé/;v) = w(yvi) = wy. Hence, applying
Condition (3) of Theorem 7.3 to the triangt®,v, we havew(xv) = wy. This contradicts the
definition of the partition J Vi. So we must havgv € E(G) for all v e |, Vi.
Applying the same argument te € V> N N(y) andv € Vi, we haveyv € E(G) for every

Ve V. ]

If there exists a vertey such thatd(x,y) = 2, Condition (2) of Theorem 7.3 implies

w(viy) = w; for all v, € V.
Claim 3. There is no vertex z such thapdz) = 3.

Proof. Suppose that there exists a verzesuch thatl(x, 2) = 3. Thenz has a neighboy such
thatd(x,y) = 2. Now Claim 2 implies that we hawg € N(y) N V1 andv, € N(y) N V2 with
w(yvi) = wy andw(yvz) = wo.

Sinced(z v1) = d(z v2) = 2, Condition (2) of Theorem 7.3 showgzy) = w(yvi) = w;

andw(zy) = w(yw) = Wo. So we havev, = w», a contradiction. O
LetVo = {x} U{y|d(xy) = 2}. Then{J{, Vi is a partition ofV(G).
Claim4. LetO<i< j<nandyeV,vjeV;. Thenw; e EG).

Proof. If i # 0 andj # 0, Claim 1 impliesvv; € E(G). So we may assumie= 0. If v; = X,

the definition ofl JI; Vi showsvivj € E(G), and ifv; # x, Claim 2 impliesviv; € E(G). O

Note that for allvy € Vo, vo = xord(x,vp) = 2. Hence for allvy; € Vi(1 < i < n),

wW(VoVi) = W,.

Claim 5. vgvo’ ¢ E(G) for all vg, Vo’ € Vo.
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Proof. If vo = X, d(x, vo’) = 2 for all verticesvy’ € Vg \ {Vvo}. Hencevpvy’ ¢ E(G). So we
may assumep, Vo' # X. Now we supposepVpy’ € E(G). Claim 2 implies that there exists
Vi € V1, V2 € Vz such thawy, v, € N(Vo) N N(vp'). Now we havew(vovi) = W(Vvi) = Wy,
W(Vov2) = W(VV2) = Wa. So applying Condition (3) of Theorem 7.3 to the triangleg v,

andvov,Vz, we havew; = w», a contradiction. O
Claim6. LetO<i<nandtu,veV,. Iftu,uv¢ E(G), then tv¢ E(G).

Proof. If i = 0, Claim 5 implies thatv ¢ E(G). So we assume thatd i < n. Supposév €
E(G). Without loss of generality, we may assuime 1. Letv, € V,. Now, sincet, u,v € Vi,
w(xt) = w(xu) = w(xv) = wy. Then applying Condition (3) of Theorem 7.3 to the trianfie
we havew(tv) = w(xt) = wy. On the other hand, Claim 4 impliest, vou, vov € E(G). Since
tu anduv ¢ E(G), Condition (2) of Theorem 7.3 showgvot) = w(vou) = w(vov). Then
applying Condition (3) of Theorem 7.3 to the triangigv, we havew(tv) = w(v,t). Hence,
w(vot) = w(tv) = w(xt) = wi. So applying Condition (3) of Theorem 7.3 to the triangte,

we havew, = w(xw) = w(xt) = wy, a contradiction. ]

Now on everyV; (0 < i < n), nonadjacency is an equivalence relation. Vgt,...,Vim
be the equivalence classes\gf Then, for all verticess € V;j andv € Vi j,, uv € E(G)
if and only if (i, j) # (', j"). Hence,G is a complete multi-partite graph with partite sets

Vo, Vi j(1<i<n1<j<m). This completes the proof of Lemma 7.4. i

7.3 Proof of Theorem 7.3

Let G be a weighted graph satisfying the conditions of Theorem 7BzIfx(G), the follow-

ing theorem implies the assertion.

Theorem 7.5 (Ch\atal and Erdds [7]). Let G be a k-connected graph with at least three

vertices. If k> a(G), then G contains a hamiltonian cycle.

So we may assume 2 k < a(G). Now Lemma 7.4 implies that all edges@fhave the
same weight o6 is a complete multi-partite graph.

Assume that all edges & have the same weight;. If w; = 0, the assertion is obvious.
If wy # 0, d"(v) = wid(v) for all v € V(G). Henceoy,1(G) = o}, ,(G)/w1 > m/wy. Then
Theorem 7.2 implies th& contains either a hamiltonian cycle or a cy€lef length at least
2m/(k + L)wy. Noww(C) = w1|E(C)| = 2m/(k + 1).
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Therefore, we may assume ti@ts a complete multi-partite graph. Let= [V(G)| and
Vi, -+, V) be the partite sets @.

Claim 1. If x,y € V;, then Wx2) = w(y2) for every ze V(G)\Vi. In particular, d'(x) = d"(y).

Proof. Sincex andy are in the same partite s€t, xy ¢ E(G). Hence, Condition (2) implies

w(x2 = w(y2). And hence, the assertiaf(x) = d¥(y) is obvious. m|

Claim 2. If G is not hamiltonian, thefV;| > n/2 for some i suchthat <i <.

Proof. Suppose thavij| < n/2foralli (1<i<I). Thenforeaclve V; (1< j <),

dv) = > Vil =n- V| = n/2.

r#j

Hence, Theorem 7.2 implies th@thas a hamiltonian cycle, a contradiction. m]

Without loss of generality, we can assume that > n/2. Letp = Vil andg = n— p.
Then, sinceG is k-connected, it is obvious th&t< q < p. And letVy = {vi,Va,...,Vp},
V(G) \ V1 = {u, W, ... Ug}.

Claim 3. d"¥(v) > m/(k+ 1) for all v € V3.

Proof. Sincek < p, we can choosey, Va, ... , Vi1 in V1. Now, {Vi, Vo, ... , k1) IS indepen-
dent, hencg X1 d¥(vi) > m. Then Claim 1 implies"(vy) = d"(v2) = --- = d"(Vks1), SO
d"¥(v1) > m/(k + 1). Using Claim 1 again, we haw¥(v) > m/(k + 1) for all v € V;. ]

Now we consider the cycl€ = viuiVoUs - - - Vg-1Ug-1VqUqVv1. Then Claim 1 implies

w(C)

W(ViUz) + W(U1V2) + W(VUp) + - - -
+W(Vg-1Ug-1) + W(Ug-1Vg) + W(VgUg) + W(UgV1)
= W(v1U1) + W(UpVy) + W(V1U) + - -
+W(VqUg-1) + W(Ug-1V1) + W(V1Ug) + W(UgV1)
= 2 zq: w(vil;)
i=1

= 2d(vy).

Hence, by Claim 3w(C) > 2m/(k + 1). This completes the proof of Theorem 7.3.






Chapter 8
Heavy paths in weighted graphs

(The result in the first section appears in [19], and the other results in this chap-

ter appear in [13].)

The topic of this chapter is the existence of heavy paths joining two specified vertices. We

consider two weighted degree conditions, Dirac-type and Ore-type.

8.1 A Dirac-type condition

The following theorem shows the existence of heavy paths joining two specified vertices,

which is a motivation of the results in this section.

Theorem 8.1 (Bondy and Fan [4]).Let G be a2-connected weighted graph and d be a non-
negative real number. Let x and y be distinct vertices of GY(¥)d> d for all v € V(G)\{x, y},

then G contains afx, y)-path of weight at least d.

Zhang et al. extended Theorem 8.1 as follows. If arz)¢path contains all vertices i C
V(G), we call itan &, Y, 2)-path

Theorem 8.2 (Zhang, Li and Broersma [35]). Let G be a2-connected weighted graph, let
d be a nonnegative real number, and lezx V(G) such that x# z. If d¥(v) > d for every
vertex ve V(G) \ {x, z}, then for any given vertex y, G has @n{y}, 2)-path of weight at least
d.

Note that Theorem 2.1 immediately implies Theorem 8.2. In this section, we prove the fol-

lowing theorem, which is an extension of Theorem 8.2.
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Theorem 8.3. Let G be a2-connected weighted graph, let d be a nonnegative real number,
X,z € V(G) such that ¢ z, and y, y» € V(G). Now assume that there exists@n{y1, y»}, 2)-

path P in G. If d(v) > d for every vertex ¥ V(G) \ {X, z}, then there exists afx, {y1, y»}, 2)-

path of weight at least d.

Proof. In case ofy; = y» or{y1, Yo} N{x,z} # 0, Theorem 8.2 implies the assertion, so we may
assume thax, y,, y» andz are distinct vertices. We use induction pM(G)|. Let [V(G)| = 4,
then without loss of generality we may assume tat xy1y,z. If zy ¢ E(G) or xy, ¢ E(G),

itis obvious thatv(P) > d, henceP is a required path. ly andxy, € E(G), letP’ = xy,y1z
Thenw(P) + w(P’) > d"(y;) + d“(y2) > 2d, henceP or P’ is weight at leastl, which is a
required path. Now assume tHe(G)| > 5.

By Theorem 8.2, there exists am, £)-path Q of weight at leastd such thatV(Q) n
{yi,yo} # 0. TakeQ so thatw(Q) is as large as possible. {§1,y»} C Q, there is nothing
to prove, so without loss of generality we may assume ypat Q andy, ¢ Q. Then by
Theorem 2.1, there exists w(Q)-fan F of weight at leastl and widthk(G; y», Q).

Incase ok(G; y», Q) > 3, letFNQ = {ag, &y, ... , am}. We may assume thata;, ap, ... ,am, 2
appear in the consecutive order aldQgBy the choice ofQ, w(Q[a;, ai;1]) = W(F[a;, aj;1])

for everyi with 1 <i < m-1. Sincem > 3, there exist$ with 1 < | < m- 1 such that
y1 € Qa, a41). Let Q" = xQaFa,;1Qz Then{y,y2} € Q" and

W(Q'[a1, am])
> w(Qla, aal) + W(F[a, 1))

1<ism-1, il

w(Q)

v

\%

\%

m-1

> W(F[ai, a.1])
i=1

w(F)

d.

\%

v

HenceQ' is a required path.

If kK(G;y2, Q) = 2, there existdy, b, € V(G) \ {y2} such that{bs, by} separateg, from
Q. Note thatby, by also separates from {x, z}. SinceP is an {, y», 2)-path,{bs, b} ¢ V(P).
Without loss of generality, we may assume thab,, by, z appear in the consecutive order
alongP. LetH be they,-component oz — {by, by} andG’ = G[H U {by, bo}]. If bib, ¢ E(G),
we add the edgb, b, of weight zero toG’, thenG’ is 2-connected. &', by the induction
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hypothesis, there exists a1({y1, ¥}, b2)-path P’ of weight at leasd in case ofy; € H,
and otherwise there exists b ({y»}, bp)-path P’ of weight at leasd. In both casesQ) =
xPb P’b,Pz containsy; andy, andw(Q’) > d, henceQ’ is a required path. This completes

the proof of Theorem 8.3. O

8.2 An Ore-type condition

And the another aim of this chapter is to weaken the condition of Theorem 8.1 to Ore-type

degree condition. The following problem may naturally be suggested.

Problem 8.4. Let G be a2-connected weighted graph and d a nonnegative real number. Let
x and z be distinct vertices of G. I¥{l) + d¥(v) > 2d for every pair of nonadjacent vertices

uandvin MG) \ {x, 2}, is it true that G contains af, 2)-path of weight at least d?

However, the answer to Problem 8.4 is negative. &Gebe the weighted complete graph of
ordern such that all of its edges are assigned the same weigh, andx andz be any
distinct vertices of5;. ThenG; satisfies the condition of Problem 8.4 for dli> 0, but the
weight of the heaviest path i@ is (h — 1)r. Hence ifd > (n - 1)r, G; does not have any
(%, 2)-path of weightd or more.

There is another counterexample which is not a complete graplGJlie¢ the weighted
graph such that an edgmy is removed from a complete graph of oraer 7, and letx and
z be any distinct vertices iN(G2) \ {p.q}. Now we assign weight to all the edges incident
with p, and weight O to all the other edges. Th@&nsatisfies the condition of Problem 8.4 for
d = (n— 2)r/2, but the weight of the heaviest path@nis 2r. HenceG, does not have any
(X, 2)-path of weightd or more.

In each of the above examplesandz are not connected by a heavy path, but they are
connected by damiltonian path a path containing all the vertices in a graph. Considering

this fact, we prove the following theorem.

Theorem 8.5. Let G be a2-connected weighted graph and d a nonnegative real number. Let
x and z be distinct vertices of G. I¥{l) + d¥(v) > 2d for every pair of nonadjacent vertices
uand v in MG) \ {x,z}, then G contains afix, 2)-path of weight at least d or a hamiltonian

(%, 2)-path.
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Moreover, extending Theorem 8.5, we prove the following.

Theorem 8.6. Let G be a2-connected weighted graph and d a nonnegative real number. Let
x and z be distinct vertices of G, and W be a subse{(G) V{x, z}. Ifdf_,, (u)+d&_,, (V) > 2d
for every pair of nonadjacent vertices u and v i(G) \ (WU {x, z}), then G contains afK, 2)-

path of weight at least d or afx, 2)-path which contains all the vertices of®) \ W.

In our proofs of Theorems 8.5 and 8.6, we use the following notationUFoV(G), we
denotes¥(U) = min{d¥(v) | v e U}, and ForH ¢ G, we denot&s{(H) = 6§(V(H)).

8.3 Proof of Theorem 8.5

If d = 0, the assertion is obvious. Hence we may assdme0. Let|V(G)| = n. We use
induction onn.

If n= 3, lety be the third vertex other thaxyz. From the 2-connectedness®@fthere is
a pathxyz which is a hamiltonianx, z)-path. Suppose now that> 4 and the theorem is true

for all graphs ok vertices suchthat3 k<n-1. LetH =G - x.
Case 1H is 2-connected.

SinceG is 2-connected, we hawd(x) > 2. Choosex € N(X) \ {z} such thatw(xx) =

maxw(xv) | v € N(x) \ {z}}. Then for every € V(H) \ {z}, dj(v) > df(v) — w(xX). Hence
dyi(u) + di(v) = 2(d — w(xx)) for every pair of non-adjacent verticesv € V(H) \ {z}. By

the induction hypothesis, there is afi,@)-pathQ in H such thaiv(Q) > d — w(xx), or Q is

a hamiltonian path ofl. Then the path® = xXQ is a required path.

Case 2 H is separable.

In this caseH has at least two endblocks, s&y and B,. First we prove that there is a
required path in case dg, = {z. In this case, leG” = G[V(G) \ {z}]. If xcg, ¢ E(G"),

we add the edgecg, of weight zero toG”. Then, the resulting graph is 2-connected, and
d¥(u)+d"(v) > 2d for everyu, v € V(G”)\{x, cg,} such thauv ¢ E(G). Then by the induction
hypothesis, there is an,(Cg,)-pathQ such thatv(Q) > d or Q contains all the vertices iG”.

It is obvious thatQ is not the added edgecg, itself, hence we can take the pdh= Qcg,z

in G, which is a required path. By the same argument, we can obtain a required path in case

of Ig, = {z}. So we can assume thigt + {z} andlg, # {z}.
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Fori € {1,2}, letd; = 6{(Ig, \ {z}). Sincevyv> ¢ E(G) for any vertices/; € Ig, \ {z} and

Vo € |B2 \ {2z}, d; + dr > 2d.
Case 2.1z¢ Ig, U Ig,.

Sinced; +dy > 2d, maxd, dp} > d. Without loss of generality, we can suppake> d. Now,
let B] denote the graph obtained frad&jV(B1)U{x}] by adding the edggcs, of weight zero if
xcg, ¢ E(G). ThenB] is 2-connected and for evewe V(B]) \ {X, Cg,}, d‘g,i(v) =d&(v) > dy.
Hence, Theorem 8.1 implies thBf has an X, cg,)-pathQ; of weight at leastl; > d. Itis
obvious thatQ; is not the added edgecs, itself, soQq is a path inG. On the other hand,
there exists adg,, 2)-pathQz in H — Ig,. ThenP = Q1Q- is an &, 2)-path of weight at least
d. O

Case 2.2z€ lg, U lg,.

Without loss of generality, we can suppose that |g,. If there existsv € Ig, such that
w(xv) > d, we can obtain anx( 2)-path of weight at leasl by joining xvand any ¥, z)-path
in B;. So suppose that mam(xv) | v € lg,} < d. Then,d‘é"l(v) > d(v) -d > d; —dforall
v € V(B1) \ {z cg,}. Now we already havés, # {z}. This implies thatB; is 2-connected.
Hence, by Theorem 8.1, there existxg, (2)-pathQq in B; of weight at leastl; — d. Now
applying the same argument as used in Case Byfave can obtain anx(cg,)-pathQ, in
G[V(B) U {x}] of weight at leasth. It is easy to see that there existscg, (Cg,)-pathQs in
H—Ig, — Ig,, SOG has the , 2)-pathP = Q.Q3Q; of weight at leastl; —d+d, > 2d—-d = d.

O

8.4 Proof of Theorem 8.6

Before we prove Theorem 8.6, we prepare some terminology and lemmas. From a given
graphG, we can make a new graphwhose vertices are the blocks and cutverticeS,adnd
two vertices oH is adjacent if and only if one is a cutvertex®fand the other is a block &
containing the cutvertex. By the definitiod,contains no cycle. We cal ablock-cutvertex
treeof G.

Now we define an operation, which is edge contraction of weighted graphs, but the weight

function for the resulting graph isfiiérent from the one appeared in Chapter 2. Gdie a
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weighed graph andb € E(G). The graptGy_,, is equal to the grap@/ab, but the contracted
vertex is regarded a& To assign weights to every edge®f_.,, we consider a mapping
of E(Gp_.3) to E(G) such that

e foru,ve V(Gpoa) \ {a}, o(uv) = uy;
e forve V(Gy_a) \ {a}, if ave E(G) theng(av) = av,
e forve V(Gpa) \ {8}, if ave E(G) theng(av) = bv.

Note thaty is an injection. For every edgee E(Gp_a), We assignng, ,(€) = we(e(€)).

Next, we prepare some lemmas.

Lemma 8.7. Let G be a weighted graph and ab be an edge of G. Then for any path P in

Gb_.a, there exists a path Q in G such that
(&) WP) <w(Q);
(b) P and Q have the same endvertices.

Moreover, if @&(b) = 2, we can find Q which also satisfies the following.
(c) V(P) € V(Q).

Proof. We give an orientation t@. If ais an endvertex oP, we regardh as the first vertex.
For a vertexv € V(P), vt denotes the next vertex ofon P, andv- denotes the last vertex
beforevonP.

Now we define a patf in G. We distinguish four cases.
(i) ais an endvertex dP anda* ¢ Ng(a).
(i) ais anendvertex oP anda*® € Ng(a).
(iii) ais a vertex ofP which is not an endvertex, ari\ﬂa*, a } N Ng(a)| = 1.
(iv) Otherwise.

In case of (i) or (iii), let

Q= (e uabi.
ecP
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And, in case of (ii) or (iv), let

Q= Je®.
ecP

ThenQ induces a path satisfying (a) and (b). AlsoVifP) ¢ V(Q), thena lies onP and
{a*,a”} N Ng(a) = ¢. In this case, we hawdg(b) 2 {a*,a", a}, and henca&g(b) > 3. This

shows (c). O

Lemma 8.8. Let G be a weighted graph, ab be an edge of G, and L be a subs€¢Gyf W
b ¢ L, then for every ¢ L, dg[L] (v) = d"G"bqa[L] (V).

Proof. Letv € L. For everyu € Ng(v) N L, sinceu # b, we haveuv € E(Gp_3) and
Wg(uv) = wg,_,,(uv). Hence we obtaid"G"[L] (v) = d"G"bqa[L] (V). O
And, the following two lemmas are obvious.

Lemma 8.9. Let G be a weighted graph and ab be an edge of G. For any path P-rb&,

there exists a path Q in G such that
(&) W(P) <w(Q);
(b) V(P) < V(Q);
(c) P and Q have the same endvertices. O

Lemma 8.10. Let G be a weighted graph, ab be an edge of G, and L be a subs¢Gyf N
b¢L,then qg’[L] v) = dg_ba[L] (v) for every ve L. O

Next, we define theelimination of uve E(G) keeping weights in L Let G be a 2-
connected graph of order at least 4 asvE E(G) such thau ¢ L. By the following theorem,

we obtain thaG — uvor G/uvis 2-connected.

Theorem 8.11 (Tutte [33]). Let G be a2-connected graph of order at leadt and e be an

edge of G. Then either G e or G/e is2-connected.

If G —uvis 2-connected, we make a new grdgh= G — uv. If G — uvis not 2-connected,
we make a new grapi’ = G,_,y. We call this operation fron®s to G’ the elimination of uv

keeping the weight of.LINote that the resulting grapg¥ is still 2-connected.
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Proof of Theorem 8.6.Let G be a weighted graph satisfying the conditions of Theorem 8.6.
If W = ¢, the assertion follows from Theorem 8.5. So we may assWmg ¢. Also in
case ofV(G) \ (WU {x,2}) = ¢ ord = 0, the assertion is obvious. So we can assume that
V(G)\ (WU ({x,2)) # ¢ andd > 0. Hence|V(G)| is at least 4.

Next, if xz ¢ E(G), letG* = G + xzand assign weight 0 tsz ThenG* also satisfies
the conditions of Theorem 8.6. &* has a required patR, P is not xz itself (note that
V(G) \ (WU {x,2}) # ¢ andd > 0). Hence we can obtain a required p&im G. So we can
assume thatze E(G).

Let H be a component d& — W. We callH trivial if V(H) C {X, z}. Now letH be the set

of all the non-trivial components @& — W.
Case 1|H| > 2.

SupposeHy, Hx € H. Fori € {1,2}, letd; = 68 _,,(Hi — {x,2)). If vi € Hy andvz € Hp, v1
andv, are non-adjacent. Henck + d, > 2d. In particular, majd;, d>} > d. Without loss

of generality, we may assume thdlit> d. LetL = V(H1) U {X, Z}. Now we eliminate all the
edges incident with vertices M(G) \ L keeping weights irL. Then the resulting grapG*

is 2-connected, and Lemmas 8.8 and 8.10 intf#ly(v) > d for everyvin V(G*) \ {x, Z} (note
thatdf (V) = dﬁl(v) for every vertexv € Hy). Hence Theorem 8.1 implies that there is an
(x, 2)-path of weight at least in G*. And by Lemmas 8.7 and 8.9, we obtain anzj-path of

weight at least in G. m|
Case 2|H| = 1.

SupposéH be the unique non-trivial component. Note that for every vertiexH, df_, (v) =
dyi(v).

Case 2.1H is 2-connected.

If {x,z2 € V(H), Letx = xandZ =z If {x,z} £ V(H), from the 2-connectedness Gf we
can take two disjoint path®; andQ, such thatQ, is an , H)-path andQ- is a (¢ H)-path.
We denote the endvertex Qf in H by X, and the endvertex @@, in H by Z. In each case,
Theorem 8.5 implies that there is axi,(z)-pathP in H such thaw(P) > d, or P contains all

the vertices oH. If necessary, addin@; andQ, to P, we obtain a required path. m|
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Case 2.2H is not 2-connected.

Case 2.2.1H has three or more endblocks.

If {x,z} € V(H), there are at least two endblockshdfsuch that their internal vertices don't
containx or z (note thatxz € E(G) implies thatx andz are in the same block dfl). Let

B; and B, be such endblocks and let = x. If {x,z} ¢ V(H), take an X, H)-path Q;
and letx’ be the endvertex of this path . Then there are at least two blocks such that
their internal vertices don't contaixi, and letB; and B, be such endblocks. In each case,
max(¢y;(Is,), 6\i(Ig,)} = d. Without loss of generality, we can assume #{atis,) > d. Now
there is an X, cg,)-path inG — Ig,, hence Theorem 3.12 implies that there are two disjoint
pathsQ, and Q3 such thatQ, is an ’, By)-path, Qs is a  B1)-path, and an endvertex of
Q2 or Qs iscg,. Letzbe another endvertex €, andQs in B;. Then Theorem 8.1 implies
that there is adg,, 2)-path P of weight at least}}(B1) > d in B;. Now letP” = Q,PQs. If

necessary, addinQ; to P’, we obtain a required path. O

Case 2.2.2H has only two endblocks.

We denotel. = V(H) U {x,z. First, we eliminate all the edges @iv| uv € E(G), u,v €
V(G) \ L}. Next, we remove all the edgesf

(a) eis incident with a vertex iV(G) \ L;
(b) G —eis 2-connected.

We denote the resulting graj@i. Since the block-cutvertex tree bf is a path,dg (v) = 2

for everyv € V(G’) \ L. Then for everyw € V(G’) \ L, choose an edge incident with
and eliminate it keeping weights in. Now we obtain a grapks” which is 2-connected
andV(G”) = L. Moreover, Lemmas 8.8 and 8.10 imply that for all non-adjacent vertices
u,ve V(G")\ {x 2, d¥, () +d§, (v) > d. Hence, Theorem 8.5 implies that there exists an
(%, 2-pathP in G” such thaw(P) > d or P is a hamiltonian path i&”. Then, Lemmas 8.7
and 8.9 imply that there exists ar £)-pathQ in G such thaw(Q) > d or Q contains all the
vertices ofV(G”’) 2 V(H), which is a required path. O
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8.5 Remarks

Theorem 8.5 is sharp in the following sense. Gabe a complete 3-partite graph with partite
setsVi, Vo andV3 such thatVs| > V4] + V2| and|Vy| = 2. And letV; = {X, Z} (See Figure
8.1). Now assign weight/2 to all the edges incident witkor z, and assign weight 0 to all
the other edges. Thai{'(u) + d¥(v) > 2d for every pair of nonadjacent verticasandyv, but

G contains noX, 2)-path of weight more thad or hamiltonan , 2)-path.

V3

- weightd/2 b
,,,,,,,,, --- weight 0

Figure 8.1: Figure 8.2:

Theorem 8.2 suggests the following problem.

Problem 8.12. Let G be a2-connected weighted graph and d a nonnegative real number. Let
x and z be distinct vertices of G. I¥¢l) + d¥(v) > 2d for every pair of nonadjacent vertices
uandvin M G)\({x, z}, isittrue that for any given vertex z of G, G contains(any}, z)-path

of weight at least d or a hamiltoniafx, {y}, 2)-path?

The answer to this problem is negative. Eet K, (r > 3) such thaty, v1, vo} € V(H). Now
let G be a graph such th&(G) = V(H) U {X, z v, v4}, and

E(G) = E(H) U {V1X, V1V3, V2Z V2Va, XY, V3Va}

Now we assign weight to all the edges incident withy or v4, d’ to all the edges incident with
y, and 0 to all the other edges (See Figure 8.2). TReatisfies the conditions of Problem
8.12, but ifd > 2d’, G contains noX, {y}, 2)-path of weight> d or hamiltonan X, {y}, 2)-path.
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In this example, we can enlarge the weighted degrgebgfadding séiciently many vertices
to H. Hence it is no use for Problem 8.12 to add weighted degree conditign for

We conclude this chapter with the following open problem.

Problem 8.13. Let G be a3-connected weighted graph and d a nonnegative real number. Let
x and z be distinct vertices of G. I¥{l) + d¥(v) > 2d for every pair of nonadjacent vertices
uandvin(G)\({x, z, isittrue that for any given vertex y of G, G contains(an{y}, 2)-path

of weight at least d?






Chapter 9
Weighed Ramsey problem

(This chapter is based on the paper [21].)

9.1 Introduction

In 2-edge-colored complete graph, by using Ramsey-type theorems, we obtain the existence
of monochromatic subgraph which have many edges compared with its order. In this chapter,
we extend the concept of Ramsey problem to the weighted graphs, and we show the existence
of a heavy monochromatic subgraph in 2-edge-colored graph with small order.

We say that a grap® can bedecomposeihto graphsHi, Ho, ... , H; if and only if there
is a set{G1, Gy, ... ,G} of subgraphs 06 such that eaclks; is isomorphic toH; and each
edge ofG is contained in exactly one of the graphg@y, G, ... ,G;}. In this case we also
say that{Hq, Ho, ... , H} is adecompositiorof G. Especially, we call a decomposition of a
graphG into two weighted graphR andB a 2-edge-coloringof G, so that the edges Rare
colored red, and the edges Bare colored blue. For any subgraphof a 2-edge-colored

weighted graplt, we define

We(H)= > w(e), we(H)= > we).
ecE(RNE(H) ecE(B)NE(H)

In [15], some Turan-Ramsey theorems for weighted graphs in which every edge has
weight 0, ¥2 or 1, are considered. And in [6] and [23], there are some results of Turan
problems for weighted graphs, in which the weight of every edge is rational number. In this
chapter we deal with more general weighted graphs, i.e. every nonnegative real number is
allowed for the weights of the edges. And, the aim is to introduce the Weighted Ramsey

Problem, the extension of the Ramsey Problem to the weighted graphs.

67
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Definition 9.1. Let n and s be two integers witha s > 3. We define WE; n) to be the
supremum value ¢ such that for any weighting function wfakd for any2-edge-coloring
R and B of K, there exists an induced subgraph H of order s satisfgiag{wgr(H), wg(H)} >
c - W(Kp).

The following proposition shows the relation between the Ramsey nuR(ses) and the

weighted Ramsey numbg/R(s; n).

Proposition 9.2. R(s, s) < n if

s(s-1)-2
nin-1)

Proof. Consider a weighted complete gra@tof ordern such thaiv(e) = 1 for every edge
in G. By (9.1) and the factv(G) = n(n — 1)/2, we can findH ~ Kg such that

s(s-1)-2 _§(s-1)-2 s(s-1) 1
nn-1) N 2 -2 T

Sincew(e) = 1 for every edge i3, H is a monochromati&s, which impliesR(s) <n. o

WRs; n) > (9.1)

maxwgr(H), wg(H)} > w(G)

Since maw(R), w(B)} > w(G)/2 for any 2-edge-coloring of weighted complete gr&ph
with ordern, we easily obtain the following proposition from the straightforward averaging

argument.

Proposition 9.3.

On the other hand, the Turan graph and its complement give an upper bowion).

Proposition 9.4.

-1 s(s-1)
£+1 nn-1)

WRs, n) <

Proof. Let T;(n) be theTuran graph the complete-partite graph withn vertices whose
partite sets dfer in size by at most 1. Consider the 2-edge-coloringpivhereR ~ T_1(n)

andB is the complement dR. Now we assign weight
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for every red edge and weight
1

®

for every blue edge. Then maax(H), wg(H)} < 1 for every induced subgrapt of orders

and there are
1 n
(1— =1 + f(s, n)) (2)

(=3 ren)e

blue edges, wheré(s, n) is a function such that(s,n) > 0 for everys,nandf(s,n) —» 0 as

n — co. Hence
WG) = s(s—21)—2'(1_ 3}1 +f(s n))(2)+ S(Sz_ 5 (3%1 - f(s n)) (g)

[erara) =0

f+1 n(n—1)
(s-1)(s+1) s(s-1)

red edges and

\%

Therefore,

1
w(G)
£-1 s(s-1)
£+1 nn-1)

WRs;n) <

In this chapter, we determine exact value/R3;n) for n=5 and 6.
Theorem 9.5. WR3;5) = 1/5.
Theorem 9.6. WR3;6) = 1/7.

We prove Theorems 9.5 and 9.6 in the later section. By Proposition 9.2, we obtain that
Theorem 9.6 implies the fa&(3, 3) < 6. Note that Theorem 9.5 implies that the equality
s(s—-1)-2

nin-1)
holds fors = 3 andn = 5. In this sense, we can say that the fa(3, 3) > 5 is optimal even
for weighted graphs.

WR(s, n) =

By using Theorem 9.6, we can improve the lower bounW&{3;n) in Proposition 9.3.
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Proposition 9.7. If n > 6, then

30 1
WR3;n) > 7 : n(n—l)'

Proof. Let G be a weighted complete graph of order By the straightforward averaging
argument, we obtain the existence of a subgi@pk Kg in G such that

30

w(G’) > -1

Then, it follows from Theorem 9.6 that there exists an induced subdfapiKs satisfying

N30 1
maxwg(H), wg(H)} > w(G)/7 > = - n(n-1)

which implies the assertion. ]

We shall discuss the valWR3; n) further in Section 9.5.

9.2 Lemmas

For a graphB, we sayE(B) is connectedf E(B) induces a connected graph. A path with
r vertices is denoted bl,, and the grapliK,, is called astar. In a starKy,, the vertex of
degreer is called itscenter and degree 1 itkeaf. The star with the centar and the leaves
Vi, Vo,...,V; is denoted by-vivs ... v;. A graph is callectlaw-freeif it contains noKj 3 as
an induced subgraph.
To prove Theorems 9.5 and 9.6, for the technical reason, we consider the following

weighting functions for a given grabt
W(B) = {w: E(B) —» R* | w(B") < 6 for any subgrap®’ of B with |B’| < 3},
and investigate the following invariant.
W(B) = sugw(B) | w e ‘W(B)}.

Now we prepare some facts and lemmas, which determine the valud4Bf for several

graphsB. The following fact is obvious, so we omit the proof.

Fact 9.1. Let B be a graph with at mog vertices. [If|[E(B)| > 8, then EB) induces a

connected graph. m|
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Lemma 9.8. Let B be a subgraph of B, then {B’) < W(B).

Proof. Assume thatv'(B’) > W(B) for somew’ € ‘W(B’). Consider the weighting function
wsuch thatv(e) = w'(e) if ee B’andw(e) = 0if e¢ B’. Thenitis clear that(B) = w'(B’) >
W(B) andw € ‘W(B), which contradicts the definition &¥(B). O

Lemma 9.9. If B is an edge-disjoint union of the graphs Bnd B, then WB) < W(B,) +
W(By).

Proof. If w e W(B) andw(B) > W(B1) + W(By), thenw(B;) > W(B;) fori = 1 or 2, which
contradicts the definition oiV(B;). m|

Lemma 9.10. If B is a star Ky, with r > 2, then WB) = 3r.

Proof. Let u be the center oB, letvy, vo, ...,V be the leaves dB and letv; .1 = v1. For any

w € W(B), we haven(viuvi,1) < 6 for everyi, where the indexis taken as modulo. Hence

1< 1
w(B) = E ZW(ViUVHl) < E -6r = 3r.
i=1

The constant weight wittv(e) = 3 shows thaw/(B) = 3r. O
Lemma 9.11. If B is a cycle with length at leagl, then WB) = 3|E(B)|.

Proof. Let B = viV»...V,. For anyw € W(B), we havew(vivi,1Vi.2) < 6 for everyi, where

the indexi is taken as modulp. Hence
1« 1
W) = 5 0 WiaVis2) < 5 -6 = 3E@)]
The constant weight wittwv(e) = 3 shows thatW(B) = 3|E(B)|. O

Lemma 9.12. If B is a complete graph of ordern 3, then WB) = n(n - 1).

Proof. Let7 = {T | T is atriangle inB} and letw € ‘W(B). Thenw(T) < 6forall T € 7.

Hence

w(B)

> wm)

TeT

1 n
n—2'(3)'6

= n(n-1).

IA

The constant weight wittv(e) = 2 shows thaW/(B) = n(n - 1). O
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Lemma 9.13. If C is a cycle of length = 4 and B= K3 + C, then WB) = 9r/2.

Proof. LetC = viV»...V; and letu be the vertex oW (B) \ V(C). Moreover, letT; be the
triangle uvvi,1, where the indices and j are taken as modulo. If w € ‘W(B), then by

Lemma 9.11, we hawe(C) < 3r. Hence,

IA

W(B) w(B)

= 2> wm) +w(©)
i=1

1
< E-(6r+3r)

< 2
= 5b

On the other hand, therewse “W(B) such thatv(e) = 3 for everye € E(C) andw(e) = 3/2
for all the other edges. This showgB) = 9r/2. m|

Lemma 9.14. If B ~ Kg — E(3K?), then WB) = 24.

Proof. Let E(B) = {a1by, asby, azbs}. ThenB can be decomposed into four triangisyas,
a1bybs, byaybz andbibyas. For anyw € ‘W(B), each of them has weight at most 6, hence we
havew(B) < 24. The constant weight with(e) = 2 shows thatV/(B) = 24. i

Las Vergnas [26] and Sumner [32] proved that every connected claw-free graph of even
order has a 1-factor. Since the line graph of any graph is claw-free, we obtain Bt &
connected graph witle(B)| even, then its line graph has a 1-factor. This implies the following

fact.

Fact 9.2. Let B be a connected graph witk(B)| even. Then B can be partitioned into

|E(B)|/2 pairs of adjacent edges. m|
And, the following fact is easily obtained from Fact 9.2.

Fact 9.3. Let B be a connected graph witB(B)| odd. Then B can be partitioned into an
edge and|E(B)| — 1)/2 pairs of adjacent edges. m|

Using these facts, we obtain the following lemma.

Lemma 9.15. Suppose that B is a connected graph. If B is a tree with a perfect matching,
then WB) = 3|E(B)| + 3. Otherwise, WB) < 3|E(B)|.
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Proof. If |E(B)| is even, therB can be decomposed ing(B)|/2 edge-disjoinP3s. Hence,
by Lemma 9.9W(B) < (IE(B)|/2)W(P3) = 3/E(B)|.

Suppose thaE(B)| is odd. SinceB can be decomposed intfie(B)| — 1)/2 edge-disjoint
P3s and on&j, then by Lemma 9.9 again, we haWéB) < ((|[E(B)|-1)/2)W(P3) + W(K>) =
3(E(B)|-1)+6 = 3 E(B)|+3. In fact, wherB s a tree with a perfect matchirg, if we assign
w(e) = 6 foree M andw(e) = O fore ¢ M, thenw € “W(B) andw(B) = 3|V(B)| = 3 E(B)|+3,
which shows that¥V(B) = 3|E(B)| + 3.

Suppose next tha& is a tree without perfect matchings. Recall théB)| = |[E(B)| + 1 is
even. Then, there exists a vertegzuch thatB — v contains at least three odd componeBis
B, andBs. Letv; be the neighbor of in B; fori = 1, 2, 3. Itis easy to see that each component
of B — {vvi, V\», vz} has even number of edges. This implies tAaian be decomposed into
(IE(B)| — 3)/2 edge-disjoinPss and on&; 3. By Lemmas 9.9 and 9.10, we have

W(B) < ((IE(B)I - 3)/2)W(P3) + W(Ky3) = 3(E(B) - 3) + 9 = 3E(B)I.

Suppose thaB contains a cycle. We use induction |&¢B)| to prove thatV(B) < 3|E(B)|.
Let C be a cycle imB. If B = C itself, then by Lemma 9.11, we haV&é(B) < 3|E(B)|. LetT
be a unicyclic spanning subgraphB®tuch thalC C T. SinceB # C, we can take a leaf of
T which is farthest fronC in T. If there are two edgesu; anduw, in E(B) \ E(T), then let
B’ = B - {uu, u}. SinceB’ is connected an@ < B’, by the induction hypothesis, we have
W(B’) < 3|E(B’)|. Then, it follows thatW(B) < W(B’) + W(P3) < 3|E(B’)| + 6 = 3|E(B)|.
Similarly, if we can take & ~ P3 containingu such thate(P) N E(C) = ® andE(B) \ E(P)
induces a connected subgraph, then by induction, we W{& < W(B — E(P)) + W(P) <
3(E(B)| — 2) + 6 = 3IE(B)|. This is the case unlesig(u) = 1 and the unique neighberof u
in Bis in C anddr(v) = 3. In this case, let; andv, be the neighbor of in C. It is easy to see
thatB —{vu, vv1, v\»} is connected. This implies thBtcan be decomposed intd(B)| — 3)/2

edge-disjoinP3s and on&; 3. By Lemmas 9.9 and 9.10, we have

W(B) < ((IE(B)I - 3)/2)W(P3) + W(Ky3) = 3(E(B) - 3) + 9 = 3E(B)I.
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9.3 Proof of Theorem 9.5

Let G be a 2-edge-colored complete graph with 5 vertices. If each ed@ehafs weight
3 andR =~ B = Cs, thenw(G) = 30 and majwgr(H),wg(H)} < 6 = w(G)/5 for every
triangleH in G, hence we hav®VR3;5) < 1/5. To prove the lower bound, we assume
maxwgr(T), ws(T)} < 6 for every triangleT in G. Namely, the restricted weightingggr
andw|gg) are contained iftV(R) andW(B), respectively. Then it sfices to prove that(G) <
30. If G has no monochromatiks, It is easy to see tha&® ~ B ~ Cs. Then Lemma 9.11
implies thatw(R) < 15 andw(B) < 15, hence we obtaiw(G) = w(R) + w(B) < 30. So we
may assume that there exists a monochromatic triandke in

Now we consider the case whe@&has a monochromatickd + K;. Without loss of
generality we may assume th&2+ K; C B. Note thatR c Cy4. If R ~ K, or P3, we have
W(R) < 6, and Lemmas 9.8 and 9.12 impl(B) < 20. Hencew(G) = w(R) + w(B) < 30.
Otherwise, K, € R. ThenB ¢ C4 + Ky, so Lemmas 9.8 and 9.13 imply tha(B) < 18.
On the other hand, sind® ¢ C4, we havew(R) < 12 by Lemmas 9.8 and 9.11. Thus
w(G) = w(R) + w(B) < 30.

Therefore, we may assume tltahas a monochromati€; but no monochromatick, +
Ki. Without loss of generality we may assume tKatc B. Since X, + K1 ¢ B, we have
[E(R)| > 3.

In case of E(R)| = 3, R =~ P4, Ky 3,Kz or P; U Kz, By Lemmas 9.9 and 9.15, we obtain
W(R) < 12 in each case. L&’ be a graph obtained frol by deleting the edges of a triangle
in B. Then|E(B')| = 4 andE(B’) must be connected, hence Lemma 9.15 sho{®) < 12,
which impliesw(B) < 18. Thusw(G) = W(R) + w(B) < 30. In case ofE(R)| = 4, E(R)
must be connected, hence Lemma 9.15 implieswW{&) < 12. Since|E(B)| = 6, E(B)
is also connected, hence it follows from Lemma 9.15 th@) < 18. Therefore, we have
w(G) = w(R) + w(B) < 30.

If [E(R)| = 5, then X» ¢ Rand X, ¢ B. Hence Lemma 9.15 implieg(R), w(B) < 15,
thus we havev(G) = w(R) + w(B) < 30. If |[E(R)| = 6, sinceE(R) is connected, we have
wW(R) < 18 by Lemma 9.15. IE(B) is connected, Lemma 9.15 impli@gB) < 12, and
otherwiseB =~ K, U K3, sow(B) < 12. Thus we have(G) < 30. And if|[E(R)| = 7, Lemma
9.15 impliesw(R) < 21. Now the facB ~ Kz showsw(B) < 6, hence we have(G) < 30.

This completes the proof of Theorem 9.5. m|
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9.4 Proof of Theorem 9.6

Let G be a 2-edge-colored complete graph with 6 verticesRnd3K,. If each edge oR
has weight 6 and each edge Bhas weight 2, them(G) = 42 and majwgr(H), wg(H)} <

6 = w(G)/7 for every triangleH in G. Hence we hav&VR3;5) < 1/7. To prove the
lower bound, as in the proof of Theorem 9.5, we asswiggz) € W(R) andw|gg) € W(B),
and then it sffices to provem(G) < 42. Without loss of generality, we may assume that
IE(R)| < 8 < |E(B)!.

Case 1|[E(R)| < 2.

In this case it is obvious that(R) < 12, and Lemmas 9.8 and 9.12 imply the{B) < 30,
hencew(G) < 42.

Case 2 |[E(R)| = 3.

In this caseR =~ P4, K13, K3, P3 U Kz or 3Kz. If R # 3Kj, then we obtaiw(R) < 12 by
Lemmas 9.9 and 9.15. On the other hand, Lemmas 9.8 and 9.12 imply(8ga& 30, thus
we havew(G) < 42. If R = 3K,, thenw(R) < 18. Since Lemma 9.14 impliag(B) < 24, we
obtainw(G) < 42.

Case 3|E(R)| = 4.

Since|E(B)| = 11, there exists a triangle iB, sayT. Let B = B — E(T), then it follows
from Fact 9.1 thaE(B’) is connected. Hence Lemma 9.15 imphg®’) < 24. Thus we have
w(B) = w(B’) + w(T) < 30.

Now suppose thaE(R) is connected. Then by Lemma 9.15, we ha(®) < 12, which
impliesw(G) < 42. Hence we may assume tiigR) is not connected, theR ~ 2P3, K, UK3,
Ko U Ky3, or Ko U Pa. If R~ 2P3 or Ky U K3, then Lemmas 9.9 and 9.15 imply(R) < 12,
hencew(G) < 42. If R ~ Ky U Ky 3, we havew(R) < 15 by Lemma 9.10. Let; andv, be the
vertices ofKy, letv; be the center oKy 3, and letva, s, Vg be leaves oK1 3 in R. ThenB can
be decomposed into two triangles/sve, Vovsvg and a cyclevivavovavs. Hence by Lemma
9.11, we obtainw(B) < 27, which impliesw(G) < 42. If R ~ Ky U P4, by Lemma 9.15,
we havew(R) < 18. SinceB C Kg — E(3K3), we havew(B) < 24 by Lemmas 9.8 and 9.14,
thereforew(G) < 42. m|



76 Chapter 9

Case 4 |E(R)| = 5.

Since|E(B)| = 10, there exists a triangle B, sayT. LetB’ = B— E(T). SincelE(B)| =7
andB’ is a graph obtained by deleting a triangle fr@nB’ is connected. Hence we have
w(B’) < 21 by Lemma 9.15. Thua(B) = w(B") + w(T) < 27. If w(R) < 15, we are done,
so we assume that(R) > 15. Now Lemma 9.15 implies that one of the componeri i

a tree with a perfect matching. ConsideriggR)| = 5, we havemR) < 18 and X, € Rby
Lemma 9.15. TheB ¢ Kz — E(3K>), hence by Lemmas 9.8 and 9.14 we ha{8) < 24,
which impliesw(G) < 42. m|

Case 5|E(R)| = 6.

First assume the(R) is not connected, theR ~ K, U K (K is the graph obtained from
K4 by deleting just one edge) oK3. If R ~ K, U K}, then the facK, ¢ K4 and Lemmas
9.8 and 9.12 imply tham(R) < 6 + 12 = 18. Letv; andv, be vertices oK, andvs, V4, V5, Vg
be vertices oK in R such thatvav4 ¢ E(R). ThenB has a trianglél’ = vivavy. Let B’ =
B — E(T), thenE(B’) is connected an{E(B’)| = 6, hence Lemma 9.15 impliegB’) < 18.
Thusw(B) < 24, which impliesw(G) < 42. In case oR ~ 2K3, we havew(R) < 12. Now
B ~ K33, hence Lemma 9.15 implieg(B) < 27. Therefore we hawe(G) < 42.

In the case wherE(R) is connected, by Lemma 9.15, we hav@) < 18. SinceB # K33
and|E(B)| = 9, there exists a triangl€ in B. Let B’ = B — E(T), then|E(B’)| = 6. So if
we changeB’ into R and use the same argument as above, we ohigi) < 18. Hence
w(B) < 24, this impliesw(G) < 42. m|

Case6|E(R)| =7.

In case ofR is not connectedR ~ K, U K4. Hence Lemmas 9.9 and 9.15 implyR) < 18.
And if Ris connected, Lemma 9.15 implies tigR) < 21. Now suppose th& has a triangle
T and letB” = B - E(T). If w(B’) < 15, we havewv(B) < 21, this impliesmG) < 42. Hence
we may assume thai(B’) > 15, then Lemma 9.15 implies tha{B’) < 18 andB’ contains
3K,. Let F1, F» andF3 be the components ofk3 in B, then each of them must contain
just one vertex off. Let F1 = aiby, Fo = aphy, F3 = agbs. Without loss of generality,
we may assume thdt = ajaraz. Let H be a graph such that(H) = {a1, ay, ag, by, by, b3}
andE(H) = E(T) U E(F1) U E(F2) U E(F3), thenR c H. SinceH can be decomposed
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into three trianglesybobs, byasbs andbybyaz, we havew(R) < 18 by Lemma 9.8. Now
w(B) = w(B) + W(T) < 18+ 6 = 24. Hencen(G) < 42, therefore we may assume tliais
triangle-free.

Next, suppose thaB has aCs, sayC. SinceB is triangle-free, there is no chord @.
Hence the vertex which is not i@ must adjacent to three vertices of e however this
makes triangle i, a contradiction.

Therefore, we may assume thats bipartite. It follows from the facE(B) is connected
and Lemma 9.15 that(B) < 24. If B € K33, thenR can be decomposed into two triangles
and aKy. Hencew(R) < 18, which impliesn(G) < 42. OtherwiseB ~ Ky 4. ThenR can be
decomposed into K4 and aK,. Hence by Lemma 9.12 we hawéR) < 18, which implies

wW(G) < 42. This completes the proof of Theorem 9.6. O

9.5 Weighted Ramsey number for large graphs

In this section, we observe the relation between the VAIRES; n) and the number of edge-
disjoint monochromatic triangles in 2-edge-colored graphs witlertices, for sfficiently
largen. Let N(n, k) be the minimum number of pairwise edge-disjoint monochromatic com-

plete subgraphky in any 2-edge-coloring of K.

Proposition 9.16.

4

WR3;n) > .
R3; )_nZ—ZN(n,3)+n

Proof of Proposition 9.16. Let G be a 2-colored graph with vertices and sah = N(n, 3).
As in the proofs of Theorems 9.5 and 9.6, we assume{wmdX), wg(T)} < 6 for every

triangleT in G and prove that
W(G) < 3n?/2 - 3m+ 3n/2.

Let7 be a set of edge-disjoint monochromatic triangles of cardinali(7") = Urtes E(T),
R’ be the graph induced (R) \ E(7") andB’ be the graph induced t&(B) \ E(7"). Since
both of R andB’ have at mosh/2 components, using Facts 9.2 and 9.3, we can fiE(@R()|+
|[E(B")|—-1)/2 pairwise edge-disjoint monochromatic paths of length twi in B’, wherel <
2:-n/2 = n. Let® be the set of such path&(P) = Upep E(P), andl = E(G) \ (E(7T) UE(P)).
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Then|l| =1 <nand
[E(G)| - |E(T) - Il
p = EQIZED)
nn-1) _ g4 _
, 2 3m-|
2
n? — 6m-3n
> —.
4
Therefore,
WG) = > W)+ > wP)+ > w(e)
TeT PeP ecl
< 67+ 6P+ 6]l
2 _ —
< 6m+6-%+6n
3, 3
= En —3m+§n.
Then,
WRE:n) = — 4

WG) M -2NMm3)+n

O

In [14], considering the Turan graph(n) and its complement, the following conjecture is

given.
Conjecture 9.17 (Erdbs).
N(n, 3) = 1 +0o(1)| n?
12 '

If this conjecture is true, then Proposition 9.16 implies

4
2 - 2(75 + o(1)) 2

24 1

The codficient ofn=2 in this lower bound is the same as the ffiméent of n~2 in the upper

WR3;n)

v

bound of Proposition 9.4 fas = 3. Considering this, we state the following conjecture.

Conjecture 9.18.

WR3;n) = (2—; + 0(1)) n_12
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Recently, about the lower bound bf(n, 3), Keevash and Sudakov showed the following

result.

Theorem 9.19 (Keevash and Sudakov [25]).

1 2
N(n,3) > (1289 + o(l)) n°.
By using Proposition 9.16, we have

4
M2 — 2( g5 + O(1)) 12

5156 1
297 1] =
(10.89 ol )) 2

WR(3;n)

[\

\%

(4.73+ o(1)) n—12

which improves the lower bound in Proposition 9.7.
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