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Chapter 1

Introduction

In this thesis, we develop several theorems around the second moments of multi-

variate distribution. Equivalence between partial and conditional correlations and

properties of multiplicative correlations are investigated.

Dependence

In multivariate analysis, pairwise dependence of variates is a main issue and various

measures have been proposed. Such dependence measures are classified into two

groups, one is a rank based measure like Kendall’s or Spearman’s rank correlation

coefficient and the other is a second moment based measure like Pearson’s correlation

coefficient,

ρ(X, Y ) = cov(X,Y )/
√

var(X)var(Y ).

Advantage of the rank based measure is in its robustness and it has a close link

to general idea of dependence called copula (see, for example, Nelsen, 1999). The

copula is a function C : [0, 1]2 → [0, 1] such that

F (x, y) = C(F1(x), F2(y))

where F1(x) and F2(y) are the marginal distribution functions of X and Y . Since the

independence of two variates is equivalent to C(u, v) = uv, we may derive various

measures of dependence from discrepancy of the copula from uv. In fact, Spearman’s

rank correlation coefficient is written as

ρs = 12

∫
[0,1]2

{C(u, v) − uv}dudv.

However, such a rank based correlation coefficient captures a specific aspect of de-

pendence and it is rather difficult to understand the exact meaning.
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One of the advantages of Pearson’s correlation coefficient is mathematically sim-

ple, considered to be a normalized inner product of two variates, so that it is easier

to understand the meaning. Another advantage of Pearson’s correlation coefficient

is considered when it is extended to a measure of conditional dependence. Condi-

tional correlation coefficient or partial correlation coefficient can be easily derived

from Pearson’s correlation coefficient, but similar measures are hard to be derived

from rank based measures. In this thesis, we will concentrate our attention on such

a Pearson-type correlation measure because of such advantages.

Partial correlation and conditional correlation

As we will give the exact definition in Section 2.1, the partial correlation of (X1, X2)

given Y is the residual correlation of the linear least squares predictor of (X1, X2) to

Y , and represent correlations without the effects of the other variables. The partial

correlation coefficient can be easily calculated from the inverse of the variance-

covariance matrices.

On the other hand, the conditional correlation of (X1, X2) given Y is the ordi-

nary correlation operator applied to (X1, X2) but evaluated with reference to the

conditional distribution of (X1, X2) given Y rather than the marginal distribution

of (X1, X2).

A purpose of this thesis is to seek the conditions for coincidence of the above

two correlations which seem similar at first sight but are entirely different, and to

search the multivariate distributions of which both correlations are equal. The moti-

vation is derived from the graphical modeling to search causalities. In the graphical

modeling, two vertexes are connected if and only if the corresponding variables are

not conditionally independent. In order to confirm the conditional independence,

particularly when the variables are continuous, it is a common practice to check

whether or not the partial correlation coefficient is close enough to zero. See, for

example, Whittaker (1990, Section 3.2) and Edwards (1995, Section 1.3). In the

background of this practice, it is assumed that zero partial correlation coefficient

suggests that the variables are conditionally independent, or nearly so.

One of the questions we ask is whether this assumption is true when we depart

from normal distributions. Our answer is negative. Other than normal distribution

there are distributions in which zero conditional correlation coefficient implies con-

ditional independence. At least, if the conditional distribution of (X1, X2) given

Y is bivariate normal distribution, then for any monotone increasing (decreas-

ing) transforms ψ1 and ψ2, zero conditional correlation coefficient of (Z1, Z2) =
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(ψ1(X1), ψ2(X2)) given Y is equivalent to the conditional independence of (Z1, Z2)

given Y (see, Corollary 3 in Baba, Shibata and Sibuya, 2004). Thus, for log-normal

distributions, zero conditional correlation coefficient implies conditional indepen-

dence. However, whether zero partial correlation coefficient implies conditional

independence for non-normal is doubtful. Actually, in the class of elliptical dis-

tributions which is a natural extension of normal distribution, the normal is only

one which zero partial correlation coefficient implies conditional independence (see,

Theorem 3 in Baba, Shibata and Sibuya, 2004), although in elliptical distributions

partial correlation is identical to conditional correlation as Example 2.2.1 in Section

2.2.

Conditional independence is rather restrictive as a relation between two random

variables, though it appeals to common sense and is based on probability theory. It

is more reasonable in practice to replace conditional independence with zero partial

correlation coefficient or zero conditional correlation coefficient. If it is replaced by

zero partial correlation coefficient, disconnected vertices in a graphical model can

be considered to be orthogonal to each other after the effects of other variables

are removed by projection. Partial correlation coefficient is calculated more easily

than conditional correlation coefficient which depends on the shape of the distri-

bution, but it may further depart from conditional independence. Therefore, zero

conditional correlation coefficient is preferable to zero partial correlation coefficient,

considering that conditional independence is more meaningful than the conditional

orthogonality.

Our next interest is equivalence of partial and conditional correlations apart from

conditional independence, and we investigate this problem in Chapter 2.

Multiplicative correlation

A simple example of multivariate distribution which has a multiplicative correlation

is the one led by so called reduction method (Mardia, 1970, p.74). For example, mul-

tivariate Poisson or gamma distribution is the case. Such distributions are derived

as a joint distribution of Xi = Z0 + Zi, i = 1, . . . , n. Here Z0, Z1, . . . , Zn are inde-

pendent Poisson or gamma distributed random variables (see, Johnson et al., 1997,

p.139; Kotz et al., 2000, p.454). If we denote E(Zi) = var(Zi) = θi (i = 0, 1, . . . , n),

then X = (X1, . . . , Xn) has a multiplicative correlation,

ρ(Xi, Xj) =
√
θ0/(θ0 + θi)

√
θ0/(θ0 + θj) (i �= j = 1, . . . , n).

This is a specific example for multiplicative correlations, since it is not only mul-

tiplicative, but also equi-covariance, where any pairs of variables share the same
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covariance. A correlation structure similar to the equi-covariance is equi-correlation

employed, for example in neuro science. Abbott and Dayan (1999) proposed, as a

model of covariance of firing activities of neurons i and j,

Qij = σ2{δij + c(1 − δij)}fi(x)fj(x),

where fi(x) is the mean firing rate of the neuron i for the input x, δij is Kronecker

delta, and c is a parameter. In fact, in this model the same correlation c is shared

by any pairs or variables and it is clearly multiplicative. However, multiplicative

correlation is not limited to such an equi-covariance or equi-correlation. Consider

multinomial distribution, then the correlation matrix is multiplicative,

ρ(Xi, Xj) = −
√
pipj/(1 − pi)(1 − pj),

but which is not equi-covariance nor equi-correlation. In Chapter 3, we will in-

vestigate the reason why such a multiplicative correlation or covariance appears so

frequently.

For the discussion of multiplicative correlations, it is better to distinguish two

types of matrices which are parameterized by δ = (δ1, . . . , δn), positive multiplicative

R+(δ) = diag(1− δ2) + δδT or negative multiplicative R−(δ) = diag(1 + δ2)− δδT.

Here diag(1− δ2) is a diagonal matrix with its diagonal elements 1− δ2
1, . . . , 1− δ2

n.

It is easily seen that those two types of multiplicative matrices are exclusive, as

far as δ has more than three non zero elements. Note that the parameterization

is unique except the sign of δ, in each class of positive or negative multiplicative

matrices, provided that δ has more than three non zero elements again. Royen (1991)

derived a multivariate gamma distribution so as to have multiplicative correlations,

where such a correlation structure is called one-factorial. The positive multiplicative

correlation is also called structure l in Khatri (1967). Apparently, the covariance

matrix corresponding to a multiplicative correlation is of the form diag(b) ± aaT.

We may discuss the multiplicative structure either through correlation or covariance,

but we first discuss it through correlation, which is simpler and less redundant.

Plan of this thesis

In Chapter 2, we will discuss equivalence of partial and conditional correlations. We

first prove a theorem which provides a necessary and sufficient condition for the co-

incidence of the partial covariance with the expectation of the conditional covariance

which is another measure of conditional independence in Section 2.1. The condition

is, essentially, linearity of the conditional expectation. A corollary of this theorem
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shows a necessary and sufficient condition for the partial variance-covariance be-

ing identical to the conditional variance-covariance. We show that this necessary

and sufficient condition holds true for the order statistics of a random sample from

exponential or geometric distribution which are memoryless distributions.

In Section 2.2, another corollary gives us that the partial correlation is identical

to the conditional correlation if the conditional correlation coefficient is indepen-

dent of the value of the condition, and also if the conditional expectation is linear.

We call these two conditions Condition C, and investigate multivariate distributions

satisfying Condition C. Simple examples satisfying Condition C are a family of ellip-

tical distributions, and the order statistics of a random sample from the generalized

Pareto distributions. A wider class satisfying Condition C is a family of the random

vectors of which components are independent and reproductive with sum constraint.

We also give a slight extension of the condition of this class, but its practical merit

may be minor.

In Chapter 3, we will discuss multiplicative correlations. In Section 3.1, we first

give a necessary and sufficient condition for the multiplicative matrix parameterized

by a δ to be a real correlation matrix, that is, non-negative (or positive) definite and

all elements are less or equal to one in absolute value. The condition is extended for

multiplicative covariance matrices, too.

In Section 3.2, we will investigate implications of multiplicative correlation to the

structure in the elements of random vector X = (X1, . . . , Xn). One is a factorization

theorem. Each Xi is factorized into the sum of a common variable and an individual

variable. The individual variables are uncorrelated but not always uncorrelated with

the common variable. The individual variables are always correlated with the com-

mon variable for the case when the correlation is negative multiplicative. Therefore,

the theorem is not strong enough to explain negative multiplicative correlations. We

will give another theorem which shows that a specific type of negative multiplicative

correlation implies an existence of a constraint such that
∑n

i=1Xi is almost surely

constant, and vice versa.

In Section 3.3, we will show that several interesting relations hold true among

various families of multivariate distributions with multiplicative correlation, through

the invariance property of multiplicative correlation structure by unconditioning.

Such families of multivariate distributions include homogeneous distribution or Li-

ouville distribution. We also show that partial correlations or covariances are mul-

tiplicative for multiplicative correlation or covariances, and a simple relation holds

true among the parameters.
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In Section 3.4, we show that whether the multivariate distributions which are

studied in Johnson it et al. (1997) and Kotz et al. (2000) have, or can have

multiplicative correlations with the reasons as the final settlement of accounts of

this chapter.

In Chapter 4, we will discuss two classes of multivariate distribution which is gen-

erated from independent samples from the natural exponential family (NEF). We

will separately treat equivalence of partial and conditional correlations (in Chapter

2) and multiplicative correlation (in Chapter 3). But, two classes discussed in this

chapter have same partial and conditional correlations, and also have multiplicative

correlations. One is a class of the conditional distributions of independent NEF sam-

ples given the sum. We will show in Section 4.1 that this class has six distributions

which include multinomial, hypergeometric, negative hypergeometric and Dirichlet

distributions. Another is a class of distributions of independent NEF with quadratic

variance function (NEF-QVF) samples when the parameter is randomized by the

conjugate prior distribution. We will explain in Section 4.2 that the six distributions

which include negative multinomial and multivariate beta type 2 distributions are

members of this class.
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Chapter 2

Partial Correlation and

Conditional Correlation

2.1 Partial and conditional covariance

Let X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq) be random vectors in R
p (p ≥ 2) and

in R
q (q ≥ 1). In this section, we are interested in the partial and conditional

correlations of Xi and Xj (i �= j = 1, . . . , p) given Y . The notation i �= j = 1, . . . , p

denotes that i = 1, . . . , p, j = 1, . . . , p and i �= j. We hereafter assume, for simplicity,

that the variance-covariance matrix of Y is positive definite. The partial variance-

covariance matrix for X is defined as

Σ��·� = (σij·� )i,j=1,...,p

which can be calculated as Σ��·� = Σ�� −Σ�� Σ� �
−1Σ� � by partitioning the

variance-covariance matrix of (X, Y ) into

V

((
X

Y

))
=

(
Σ�� Σ��

Σ� � Σ� �

)

where Σ�� is p × p, Σ�� is p × q, and Σ� � is q × q. The partial correlation

coefficient of Xi and Xj given Y is then

ρij·� =
σij·�√
σii·� σjj·�

.

The partial variance or covariance given Y can be considered as the variance

or covariance between residuals of projections of X on the linear space spanned by

elements of Y , that is

σij·� = cov
(
Xi − X̂i(Y ), Xj − X̂j(Y )

)
for i, j = 1, . . . , p
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where X̂(Y ) = E(X) + Σ��Σ−1
� � (Y − E(Y )).

In a similar way, the conditional covariance of Xi and Xj given Y is defined

through

cov(Xi, Xj|Y ) = E ((Xi − E(Xi|Y )) (Xj − E(Xj|Y )) |Y ) .

We use the following notation for the conditional covariance matrix

Σ��|� = (σij|� )i,j=1,...,p

and for the conditional correlation coefficient

ρij|� =
σij|�√
σii|� σjj|�

.

The expectation of the conditional covariance is not necessarily equal to the covari-

ance, that is, E(Σ��|� ) �≡ V(X). Notice that partial correlation coefficient, ρij·� ,

is deterministic, but conditional correlation coefficient, ρij|� , is random.

The following example illustrates a relationship between the partial covariance

and the conditional covariance.

Example 2.1.1. Consider a random 3 × 1 vector (X1, X2, Y ). To investigate con-

ditional correlation and partial correlation, it is sufficient for us to specify the con-

ditional distribution of (X1, X2) given Y = y as

H

(
x1 − µ1(y)

σ1(y)
,
x2 − µ2(y)

σ2(y)

)
, µ1(y) ∈ R, µ2(y) ∈ R, σ1(y), σ2(y) > 0

with a two-dimensional distribution function H . This type of specification is similar

to a copula introduced in Introduction. If we further assume that H has zero means,

unit variances and correlation coefficient θ, then the conditional expectations of X1

and X2 are µ1(y) and µ2(y), respectively, and the conditional covariance matrix is

written as (
σ1(y)

2 θσ1(y)σ2(y)

θσ1(y)σ2(y) σ2(y)
2

)
.

Hence, the conditional correlation coefficient is the constant θ but the conditional

covariance depends on y. To see how conditional covariance or correlation coeffi-

cient varies with y and when it coincides with the partial covariance or correlation

coefficient, consider the following three cases.

(i) If µi(y) = ai + biy and σi(y) = σi for i = 1, 2, then σ12|Y = θσ1σ2 = σ12·Y .
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(ii) If µi(y) = ai + biy for i = 1, 2, but σ1(y) = σ2(y) = σ(y) depends on y, then

σ12|Y = θσ(Y )2 and σ12·Y = θE
(
σ(Y )2) so that these two expressions are only

equal in the mean. Hence the conditional variance is not necessarily equal

to the partial covariance. However, the conditional and partial correlation

coefficients are equal; ρ12|Y = θ = ρ12·Y .

(iii) If µi(y) = y2 but σi(y) = σi for i = 1, 2, then σ12|Y = θσ1σ2 and σ12·Y =

(θ + var(Y 2) (1 − ρ(Y, Y 2)2))σ1σ2. Therefore, such variances or correlations

are equal to each other only if ρ(Y, Y 2) = ±1.

These examples suggest that the linearity of conditional expectation is a key to

the equivalence of the conditional covariance and the partial covariance.

The following theorem gives us a necessary and sufficient condition for the equiv-

alence of the partial variance-covariance matrix Σ��·� to the expectation of the

conditional variance-covariance matrix Σ�� |� . In fact, Corollary 2.1.1 is a general-

ization of Example 2.1.1 (i), and Corollary 2.2.1 is a generalization of Example 2.1.1

(ii).

Theorem 2.1.1. For any random vectors X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq),

the following two conditions are equivalent.

(i) E(X|Y ) = α + BY for a vector α and a matrix B,

(ii) Σ��·� = E
(
Σ��|�

)
.

Proof. Since Σ�� ·� = E
(
Σ��|�

)
+ V
(
E
(

X − X̂(Y )
∣∣∣Y )), it follows that

Σ��·� = E
(
Σ��|�

)
is equivalent to V

(
E
(

X − X̂(Y )
∣∣∣Y )) = O. This is further

equivalent to E
(

X − X̂(Y )
∣∣∣Y ) = β a.s. for a constant vector β. We get the result

by letting B = Σ�� Σ� �
−1 and α = β + E(X) − BE(Y ). �

Lawrance (1976, Results II) showed that (i) implies (ii) for the case when Y is

a scalar variable. Now, we have the following corollary as a direct consequence of

Theorem 2.1.1.

Corollary 2.1.1. For any random vectors X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq),

the following two conditions are equivalent.

(i) E(X|Y ) = α + BY for a vector α and a matrix B and Σ�� |� is

independent of Y ,

(ii) Σ��·� = Σ�� |� a.s.
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Kelker (1970, Theorem 6 and Theorem 7) showed that the multivariate normal

distribution is the only distribution that satisfies the condition (i) of Corollary 2.1.1

in the class of elliptical distributions.

Other than the normally distributed random vector we found a random vector for

which Corollary 2.1.1 holds true. It is the order statistics of a random sample from

exponential or geometric distribution, and we show that in the following example.

However, since we do not know any other vectors for which Corollary 2.1.1 hold

except these two, we consider Corollary 2.1.1 holds only in the restrictive cases.

Example 2.1.2. Assume that a random vector Z = (Z1, . . . , Zp+q) is the order

statistics of a random sample from exponential or geometric distribution such that

Z1 ≥ · · · ≥ Zp+q, and define p-dimensional random vector X and q-dimensional

random vector Y as X = (Z1, . . . , Zp) and Y = (Zp+1, . . . , Zp+q).

Since an exponential and a geometric distributions are memoryless, it holds true

P(X1 − y1 ≥ x1, · · · , Xp − y1 ≥ xp|Y1 = y1) = P(X1 ≥ x1, · · · , Xp ≥ xp)

for Y1 = y1. Since Y is order statistics, conditioning by Y = y = (y1, . . . , yq) is

equivalence to by Y1 = y1. Thus, we have

P(X1 − y1 ≥ x1, · · · , Xp − y1 ≥ xp|Y = y) = P(X1 ≥ x1, · · · , Xp ≥ xp),

and

E(X|Y = y) = y1 + E(X) and V(X|Y = y) = V(X).

From Corollary 2.1.1, it holds true Σ�� ·� = Σ��|� a.s.

2.2 Equivalence of partial and conditional corre-

lations

As a corollary of Theorem 2.1.1, we have the following.

Corollary 2.2.1. For any random vectors X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq),

if there exists a vector α and a matrix B such that

E(X|Y ) = α + BY and ρij|� does not depend on Y for i �= j = 1, . . . , p,

then ρij·� = ρij|� a.s.

Proof. From Theorem 2.1.1, if E(X|Y ) is a linear function of Y , then ρij·� =

E
(
ρij|�
)
. The assertion of the corollary holds true, since ρij|� is independent of Y .
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We investigate the classes of multivariate distributions for which Corollary 2.2.1

holds true. For convenience, we say the assumption of Corollary 2.2.1 Condition C

as follows:

Definition (Condition C). For random vectors X and Y ,

(i) there exists a vector α and a matrix B such that E(X|Y ) = α + BY

and

(ii) ρij|� does not depend on Y .

The following two examples satisfy the Condition C.

Example 2.2.1 (Elliptical distribution). Elliptical distribution is a family of

distributions whose characteristic function takes the form

Ψ(t) = exp
(
itTµ
)
φ
(
tTΣt
)

for some scalar function φ (see, for example, Fang et al., 1990 p.31). This family is

denoted by ECn(µ,Σ, φ). From Cambanis et al. (1981 Corollary 5), if (X,Y ) ∼
ECn(µ,Σ, φ), then

E(X|Y ) = E(X) + Σ��Σ� �
−1 (Y − E(Y )) and Σ��|� = s(Y )Σ∗,

where s is a function and the matrix Σ∗ is independent of the value of Y . Note

that the conditional distribution is also elliptical. This shows that the Condition C

is satisfied for the elliptical distributions.

The elliptical distribution is a natural generalization of the multivariate normal

distribution. However, other than normal distribution partial covariance is not equal

to conditional covariance as mentioned in Section 2.1, although partial correlation

coincides with conditional correlation. Moreover, Theorem 3 in Baba, Shibata and

Sibuya (2004) showed that zero partial correlation coefficient or zero conditional

correlation coefficient does not imply conditional independence except for normal

distribution.

Example 2.2.2 (Distribution generated from generalized Pareto distribution).

Generalized Pareto distribution is defined as

F̄ (x; γ, a) =

{
(1 + γx/a)−1/γ if γ �= 0

exp(−x/a) if γ = 0
(a > 0),
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where F̄ = 1 − F is the survival function (sf). The distribution is concentrated on

x > 0 if γ ≥ 0 and on 0 < x < −a/γ otherwise. The details of the distribution

can be found in, for example, Johnson et al. (1994), Embrechts et al. (1997) and

Coles (2001). The reason why this family of distribution is called generalized Pareto

distribution is that it covers wider range of distributions like exponential (γ = 0) or

uniform (γ = −1) distribution by allowing γ ≤ 0. It is known that the rth moment

is finite if and only if r < 1/γ.

If this distribution, denoted by GPrt(γ, a), is left truncated at u, the truncated

sf is

F̄ (x+ u; γ, a)/F̄ (u; γ, a) = (1 + γx/(a+ γu))−γI[x > 0 & a+ γ(x+ u) > 0],

which is GPrt(γ, a+ γu).

Now, assume that a random vector Z = (Z1, . . . , Zp+q) is the order statistics of a

random sample from GPrt(γ, a) such that Z1 ≥ · · · ≥ Zp+q, and define p-dimensional

random vector X and q-dimensional random vector Y as X = (Z1, . . . , Zp) and

Y = (Zp+1, . . . , Zp+q). We have

(Xi|Y = y)
d
= (Xi|Y1 = y1)

d
= y1 + (1 + γy1/a)Xi (i = 1, . . . , p)

where
d
= is the symbol for equality in distribution. Thus, the conditional moments

of X given Y = y are

E(Xi|Y ) = y1 + (1 + γy1/a)E(Xi), var(Xi|Y ) = (1 + γy1/a)
2var(Xi),

cov(Xi, Xj|Y ) = (1 + γy1/a)
2cov(Xi, Xj), and ρ(Xi, Xj|Y ) = ρ(Xi, Xj),

where i �= j = 1, . . . , p. Hence, the Condition C is satisfied for the order statistics

of the generalized Pareto distribution, GPrt(γ, a), with γ < 1/2.

Next, we show a wider class of multivariate distributions satisfying the Condition

C rather than Example 2.2.1 and Example 2.2.2. The class is a family of random

vectors of which components are independent and reproductive with sum constraint,

and includes multinomial and multivariate hypergeometric distributions. At first,

we define the reproductive family of distributions, F , as follows:

Definition (A Family of Distributions F). F = {Fθ : θ ∈ Θ} is defined

as the family of distribution functions which have a semigroup property such that

Fθ1 ∗ Fθ2 = Fθ1+θ2 ∈ F for the convolution of any Fθ1 , Fθ2 ∈ F . Parameter space Θ

is assumed to be (0,∞) or the set of all natural numbers. (If Θ = (0,∞), F is a

class of infinitely divisible distributions.)
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A distribution of the natural exponential family (see, Chapter 4) with density

(4.2) is a member of F when we consider the convolution parameter ν as θ. Other

than the natural exponential family, Cauchy distribution is a member of F . If a

random variable X has density

f(x) = (πλ)−1

[
1 +

{
x− θ

λ

}2
]−1

, λ > 0,

X has Cauchy distribution and we denote X ∼ Ca(θ, λ). If X1, . . . , Xn are in-

dependent and are distributed Xi ∼ Ca(θi, λi), i = 1, . . . , n, then
∑

i=1Xi ∼
Ca(
∑n

i=1 θi,
∑n

i=1 λi) (see, Johnson et al., 1994, p. 301). Thus, Cauchy distribu-

tion Ca(θ, λ) is a member of F in terms of θ and λ.

We consider the class of random vectors of which components are independent,

distributed as Fθ ∈ F , and have sum constraint. The following lemma shows condi-

tional moments of the random vector given its total sum.

Lemma 2.2.1. If random variables Z = (Z1, . . . , Zn) are mutually independent

and Zi
d
= Fθi

∈ F (i = 1, . . . , n), then conditional expectations and correlation

coefficients of Z given T =
∑n

k=1Zk = t are

E(Zi|T = t) = tξi and ρ(Zi, Zj|T = t) = −
√

ξiξj
(1 − ξi)(1 − ξj)

(i �= j = 1, . . . , n)

where ξi = θi /
∑n

k=1 θk .

Proof. From the linearity of the expectation, we have

E(Zi|T = t) = E

(
t−

n∑
k �=i

Zk

∣∣∣∣∣T = t

)
= t−

n∑
k �=i

E(Zk|T = t) (i = 1, . . . , n).

It is sufficient to consider the case when θi (i = 1, 2, . . . , n) are rational numbers

since F is a continuous parametric family of distributions when Θ = (0,∞). Then

we can write θi = bi/a where a and the bi are positive integers. From the property

of F , there exist independent random variables (Zi1, Zi2, . . . , Zibi
) for each Zi such

that

Zi =

bi∑
j=1

Zij
d
= Fθi

∈ F and Zij
d
= F 1

a
∈ F (j = 1, 2, . . . , bi).

We have then

E(Zi|T = t) =

bi∑
j=1

E(Z1j|T = t) = t−
n∑

k �=i

bk∑
j=1

E(Zkj|T = t).
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Since the variables {Zij : j = 1, 2, . . . , bi} are exchangeable given T = t, i = 1, . . . , n,

we have

E(Zi|T = t) = biE(Zij|T = t) = tbi

/(
n∑

k=1

bk

)
= tθi

/(
n∑

k=1

θk

)
.

For the conditional second moments we can write

E
(
Zi

2
∣∣T = t) = E

(
Zi

(
t−

n∑
k �=i

Zk

)∣∣∣∣∣T = t

)
= b1t

2

/(
n∑

k=1

bk

)
− b1

(
n∑

k �=i

bk

)
η

and

E(ZiZj |T = t) = E

⎛
⎝( bi∑

k=1

Zik

)⎛⎝ bj∑
k=1

Zjk

⎞
⎠
∣∣∣∣∣∣T = t

⎞
⎠ = bibjη,

with η = E(Ziki
Zjkj

|T = t) (ki = 1, . . . , bi, kj = 1, . . . , bj). From these results, the

conditional variance-covariance matrix of Z given T is

V(Z|T = t) = (t2 − η′)
{
diag(ξ) − ξξT

}
ξ = (ξ1, . . . , ξn) (2.1)

where η′ = a2θ2η, and we have the latter part of the result. �

The following theorem shows that if Z in Lemma 2.2.1 is partitioned into (X,Y ),

the Condition C is satisfied for (X ,Y ) provided that T is given.

Theorem 2.2.1. Assume that random variables Z1, . . . , Zp+q are mutually indepen-

dent and distributed as Zi
d
= Fθi

∈ F (i = 1, . . . , p+ q), and define a p-dimensional

random vector X and a q-dimensional random vector Y as X = (Z1, . . . , Zp) and

Y = (Zp+1, . . . , Zp+q). The conditional expectations and correlation coefficients of

X given Y and T =
∑p

i=1Xi +
∑q

i=1 Yi are

E(Xi|Y = y, T = t) =

(
t−

q∑
k=1

yk

)
τi, τi = θi

/
p∑

k=1

θk ,

and

ρ(Xi, Xj|Y = y, T = t) = −
√

τiτj
(1 − τi)(1 − τj)

(i �= j = 1, . . . , n)

for y = (y1, . . . , yq), and the Condition C is satisfied for (X,Y ) provided that T is

given.
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Proof. Under the condition that T and Y are given, X has the same stochastic

structure as Lemma 2.2.1 with t and
∑p+q

k=1 θk replaced by t−∑q
i=1 yi and

∑p
k=1 θk,

respectively. Thus, we directly have the conditional expectations and correlation

coefficients of X given Y and T from Lemma 2.2.1. Hence, the Condition C is

satisfied provided that T is given. �

We will show the examples which are distributions satisfying this theorem in

Section 4.1. They are conditional distributions of independent samples distributed

the natural exponential family given the sum.

In the proofs of Lemma 2.2.1 and Theorem 2.2.1, we use the fact that to as-

sume that the independent variables have a distribution of F and that total sum

of them is given implies that they can be factorized into variables of minimal unit

({Zij}i=1,...,n,j=1,...,bi
in Lemma 2.2.1) which are conditionally exchangeable when Y

and T are given. However, for satisfying the Condition C, the assumption of con-

ditional exchangeability is too strong, and it is sufficient that conditional first and

second order moments of variables of minimal unit are assumed to be all same.

Hence to extend Theorem 2.2.1, let us introduce “partial sums of Z” by which

the property of the distribution family F is replaced, as follows:

Definition (Partial sums of Z). For a random vector Z = (Z1, . . . , Zn), par-

tition the index set {1, . . . , n} into (p + q) parts L1, L2, . . . , Lp+q where |Lj | = lj >

0 (
∑p+q

j=1 lj = n). Define a partial sums (X,Y ) = (X1, . . . , Xp, Y1, . . . , Yq) of Z as

Xj =
n∑

i=1

I[i ∈ Lj ]Zi (j = 1, . . . , p) and Yj =
n∑

i=1

I[i ∈ Lp+j]Zi (j = 1, . . . , q)

where I is the indicator function.

The following theorem is a slight extension of Theorem 2.2.1.

Theorem 2.2.2. Let a random vector (X,Y ) = (X1, . . . , Xp, Y1, . . . , Yq) be a par-

tial sums of a random vector Z = (Z1, . . . , Zn). If E(Zi|Y , T =
∑n

k=1 Zk), var(Zi|Y , T )

and cov(Zi, Zj|Y , T ) are constants for any i �= j = 1, . . . , n, then the Condition C

is satisfied for (X ,Y ) provided that T is given.

Proof. Give Y = y and T = t, and let the index subset ∪j∈{i,...,p}Lj denote L� .

Since
∑

i∈L�
E(Zi|Y , T ) = t − y where y =

∑q
j=1 yj, it holds true E(Zi|Y , T ) =

(t − y)/(n − ly) where ly =
∑p+q

j=p+1 for any i ∈ L� . Thus, we have E(Xj |Y , T ) =

lj(t− y)/(n− ly) (j = 1, . . . , p), and they are linear combination of y.
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Let var(Zi|Y , T ) and cov(Zi, Zj|Y , T ) for i �= j ∈ L� denote σ2
�,t and κ�,t,

respectively. Then we have

var(Xj|Y , T ) = ljσ
2
�,t + lj(lj − 1)κ�,t and cov(Xi, Xj|Y , T ) = liljκ�,t

for i �= j = 1, . . . , p. Since

E(Z2
j |Y , T ) = E

{
Zj

(
t− y −

∑
i�=j

Zi

)
|Y , T

}

= (t− y)E(Zj|Y , T ) − (n− ly − 1)E(ZiZj |Y , T ),

σ2
�,t and κ�,t have the restriction σ2

�,t = −(n− ly − 1)κ�,t. Therefore, we have

V(X|Y , T ) = −(n− ly)
2κ�,t

(
diag(υ) − υυT

)
(2.2)

where υj = lj/(n−ly) (j = 1, . . . , p), and ρ(Xi, Xj|Y , T ) = −√υiυj/(1 − υi)(1 − υj)

(i �= j = 1, . . . , p) is not dependent of y. Hence, Condition C is satisfied. �

There is one more class satisfying the Condition C, it is NEF-QVF-CP. However,

we will explain the class in Section 4.2.

Now, (2.1) in Lemma 2.2.1 and (2.2) in Theorem 2.2.2 shows that the variance-

covariance matrices are a special form, diag(b)−aaT. We say this form multiplicative

covariance matrix, and will discuss the structure in the following chapter.
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Chapter 3

Multiplicative Correlation

3.1 Feasible value of parameters

We give a necessary and sufficient condition for a multiplicative matrix to be a

correlation matrix, separately for the case of positive multiplicative matrix R+(δ)

and for negative multiplicative matrix R−(δ).

3.1.1 Positive multiplicative correlation

We need the following lemma for the proof of Theorem 3.1.1.

Lemma 3.1.1. The following inequality holds true for the eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn of positive multiplicative matrix R+(δ).

1−δ2
k1

= λ1 = · · · = λn1−1 < λn1 < 1−δ2
k2

= λn1+1 = · · · = λn1+n2−1 < λn1+n2 < · · ·

· · · < λn−nm < 1 − δ2
km

= λn−nm+1 = · · · = λn−1 < λn, (3.1)

where δ2
k1
> δ2

k2
> · · · > δ2

km
are m distinct values in δ2

1, . . . , δ
2
n and n1, . . . , nm

(
∑m

i=1 ni = n) are the multiplicities of δ2
k1
, . . . , δ2

km
, respectively.

In Lemma 3.1.1, we have used a convention that the equation in (3.1) becomes

empty if the last suffix of λ is less than the first suffix in the equation. For example,

1 − δ2
k1

= λ1 = · · · = λn1−1 < λn1 reduces to a simple inequality 1 − δ2
k1
< λ1 if

n1 = 1.

Proof. The characteristic equation of R+(δ) is

m∏
i=1

(1 − δ2
ki
− λ)ni−1 det

(
diag(1 − δ2

k − λ) + diag(n)δkδ
T
k

)
= 0, (3.2)
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where δk = (δk1, . . . , δkm) and n = (n1, . . . , nm). As is easily seen, the trivial solu-

tions are λ = 1 − δ2
ki

for which ni > 1. Then it is enough to find other m solutions,

since each of the eigenvalues we found has the multiplicity ni −1. We seek for other

solutions, provided that they are different from any of 1 − δ2
ki
, i = 1, . . . , m. Then

the equation (3.2) is equivalent to

m∑
i=1

(niδ
2
ki

)/(1 − δ2
ki
− λ) = −1.

We have used here the formula det(A ± bbT) = det(A)(1 ± bTA−1b) for the non-

singular matrix A = diag(1−δ2
k−λ). Note that the function f(λ) =

∑m
i=1(niδ

2
ki

)/(1−
δ2
ki
− λ) is a strictly monotone increasing function of λ on each interval (1− δ2

ki
, 1−

δ2
ki+1

), and diverges to negative or positive infinity on the boundaries of each intervals

for i = 1, . . . , m−1. Then we found a solution on each interval. Furthermore, we can

find one more solution λn on the interval (1−δ2
km
,∞), since f(λ) is also a monotone

increasing function of λ on this interval and diverges to negative infinity on the

left boundary and zero for large enough λ. We have now found the remaining m

solutions such that 1− δ2
k1
< λn1 < 1− δ2

k2
< λn1+n2 < · · · < λn−nm < 1− δ2

km
< λn.

�

We note that (3.1) in Lemma 3.1.1 is not a direct consequence of the well known

inequality for eigenvalues of A and B such that A ≤ B nor of a more sophisticated

inequality in the framework of majorization (for example, Theorem 16.F.1 and The-

orem 9.G.1.c in Marshall and Olkin, 1979). In fact, (3.1) is much stronger because

Lemma 3.1.1 is specialized for the matrix like R+(δ) = diag(1 − δ2) + δδT.

We have now the following theorem.

Theorem 3.1.1. Assume that |δn| ≤ · · · ≤ |δ2| ≤ |δ1|. R+(δ) is a correlation

matrix if and only if

|δ1| ≤ 1 or |δ2| < 1 < |δ1| and

n∑
i=1

δ2
i /(1 − δ2

i ) ≤ −1.

Furthermore, it is proper if and only if

1 �= |δ2| ≤ |δ1| ≤ 1 or |δ2| < 1 < |δ1| and
n∑

i=1

δ2
i /(1 − δ2

i ) < −1.

Proof. From Lemma 3.1.1, non-negativeness of the smallest eigenvalue λ1 is equiv-

alent to 1 − δ2
1 ≥ 0 if δ1 = δ2 and λ1 ≥ 0 otherwise. For the latter case, since
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|δ2| < 1 < |δ1| and 1 − δ2
k1
< λ1 < 1 − δ2

k2
from Lemma 3.1.1, we see that λ1 ≥ 0 is

equivalent to

f(0) =

m∑
j=1

(njδ
2
kj

)/(1 − δ2
kj

) =

n∑
i=1

δ2
i /(1 − δ2

i ) ≤ −1.

By similar discussion, we have the necessary and sufficient condition for the posi-

tiveness of λ1. The condition |δiδj| ≤ 1 (i �= j = 1, . . . , n) is always satisfied when

either |δ1| ≤ 1, or |δ2| < 1 < |δ1| and
∑n

i=1 δ
2
i /(1 − δ2

i ) ≤ −1 holds true. For the

latter case, it is enough to note that the following inequality holds true:

0 ≥ 1 +

n∑
i=1

δ2
i /(1 − δ2

i ) = (1 − δ2
1δ

2
2)/{(1 − δ2

1)(1 − δ2
2)} +

n∑
i=3

δ2
i /(1 − δ2

i ). �

It is interesting to note that all |δi|’s are not necessarily less or equal to 1. The

largest δ1 can be greater than 1 in absolute value. However, |δ1| can not be far

away from 1 to satisfy the side condition
∑n

i=1 δ
2
i /(1 − δ2

i ) < −1 unless all other

parameters are very small in absolute value.

3.1.2 Negative multiplicative correlation

For negative multiplicative matrix, we need the following lemma for the proof of

Theorem 3.1.2. Lemma 3.1.2 looks similar to Lemma 3.1.1 but not the same.

Lemma 3.1.2. The following inequality holds true for the eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn of negative multiplicative matrix R−(δ).

λ1 < 1+δ2
k1

= λ2 = · · · = λn1 < λn1+1 < 1+δ2
k2

= λn1+2 = · · · = λn1+n2 < λn1+n2+1 < · · ·

· · · < λn−nm+1 < 1 + δ2
km

= λn−nm+2 = · · · = λn,

where δ2
k1
< δ2

k2
< · · · < δ2

km
are m distinct values in δ2

1, . . . , δ
2
n and n1, . . . , nm

(
∑m

i=1 ni = n) are multiplicities of δ2
k1
, . . . , δ2

km
, respectively.

Proof. Since the characteristic equation of R−(δ) is

m∏
i=1

(1 + δ2
ki
− λ)ni−1 det

(
diag(1 + δ2

k − λ) + diag(n)δkδ
T
k

)
= 0,

a similar discussion follows as in the proof of Lemma 3.1.1. To find m non-trivial so-

lutions, it is enough to note that the equation above is equivalent to
∑m

i=1(niδ
2
ki

)/(1+

δ2
ki
− λ) = 1 provided that λ is equal to none of 1 + δ2

ki
’s. We then find a so-

lution on each interval (1 + δ2
ki
, 1 + δ2

ki+1) for i = 1, . . . , m − 1 by noting that

g(λ) =
∑m

i=1(niδ
2
ki

)/(1+ δ2
ki
−λ) has the same properties as those of f(λ) in Lemma
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3.1.1. A remaining solution can be found on (−∞, 1+δ2
k1

) since g(λ) is strictly mono-

tone increasing, converges to zero as λ tends to negative infinity and g(1 + δ2
k1

) = 0.

�

Theorem 3.1.2. R−(δ) is a correlation matrix if and only if
∑n

i=1 δ
2
i /(1+δ2

i ) ≤ 1.

It is proper if and only if the strict inequality holds true.

Proof. From the proof of Lemma 3.1.2, non-negativeness of the minimum eigen-

value λ1 is equivalent to

g(0) =
m∑

j=1

(njδ
2
kj

)/(1 + δ2
kj

) =
n∑

i=1

δ2
i /(1 + δ2

i ) ≤ 1.

And the condition |δ1δ2| ≤ 1 follows from

1 ≥
n∑

i=1

δ2
i /(1 + δ2

i ) ≥
2∑

i=1

δ2
i /(1 + δ2

i ). �

Compared with the condition in Theorem 3.1.1 for positive multiplicative corre-

lation matrix, the condition in Theorem 3.1.2 for negative multiplicative correlation

matrix looks simpler. However, it seems more restrictive, because even though there

is no explicit restriction to any values of |δi|’s like most of them should be less than

1, the total contribution through the formula δ2
i /(1 + δ2

i ) should not exceed 1.

Example 3.1.1 (Equi-correlation). From Theorem 3.1.1 and Theorem 3.1.2,

we can easily see that the choice of parameter c for the equi-correlation model Qij

in the Introduction is limited to the range −1/(n− 1) ≤ c ≤ 1.

3.1.3 Multiplicative covariance

Although multiplicative correlation structure can be identified through the corre-

lation, there are cases where it would be simpler to discuss it through the corre-

sponding covariance. A multiplicative covariance can be derived from multiplicative

correlation matrix by giving the variances, var(Xi) = σ2
i , i = 1, . . . , n. We hereafter

write such a covariance matrix as Σ+(a, b) = diag(b) + aaT in case of R+(δ), and

as Σ−(a, b) = diag(b) − aaT in case of R−(δ). Here a = (a1, . . . , an) is a vector of

ai = σiδi, i = 1, . . . , n and b = (b1 . . . , bn) is a vector of bi = σ2
i (1 − δ2

i ) i = 1, . . . , n

for R+(δ) and bi = σ2
i (1 + δ2

i ) for R−(δ). Of course, the converse does not always

hold true since we allow any of σ2
i to be 0.
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Theorem 3.1.3. Assume that b1 ≤ b2 ≤ · · · ≤ bn. The matrix Σ+(a, b) is a covari-

ance matrix if and only if

0 ≤ b1 or b1 < 0 < b2 and 1 +
n∑

i=1

a2
i /bi ≤ 0 .

It is proper covariance if and only if

0 ≤ b1 ≤ b2 �= 0 or b1 < 0 < b2 and 1 +
n∑

i=1

a2
i /bi < 0.

The matrix Σ−(a, b) is a covariance matrix if and only if 0 < b1 and
∑n

i=1 a
2
i /bi ≤

1. It is proper if the strict inequality holds true.

Theorem 3.1.3 is a direct consequence of Theorem 3.1.1 and Theorem 3.1.2.

However, it is worthy of giving here the distribution of the eigenvalues, too. Provided

that a has no zero elements, the following inequalities are rather trivial in view of

Lemma 3.1.1 and Lemma 3.1.2.

For the eigenvalues of Σ+(a, b)

bk1 = λ1 = · · · = λn1−1 < λn1 < bk2 = λn1+1 = · · · = λn1+n2−1 < λn1+n2 < · · ·

· · · < λn−nm < bkm = λn−nm+1 = · · · = λn−1 < λn,

and for the eigenvalues of Σ−(a, b)

λ1 < bk1 = λ2 = · · · = λn1 < λn1+1 < bk2 = λn1+2 = · · · = λn1+n2 < λn1+n2+1 < · · ·

· · · < λn−nm+1 < bkm = λn−nm+2 = · · · = λn.

Here bk1 < bk2 < · · · < bkm arem distinct elements of b and n1, . . . , nm (
∑m

i=1 ni = n)

are the multiplicities of bk1 , . . . , bkm , as same as in Lemma 3.1.1 or Lemma 3.1.2. It

is interesting to note that either of the inequalities depends only on the values of

b. This can be easily understood, if we note that the characteristic equation here

is
∏m

i=1(bki
− λ)ni−1 det

{
diag(bk − λ) ± γγT

}
= 0, where bk = (bk1 , . . . , bkm) and

γ = (γk1 , . . . , γkm) with γ2
ki

=
∑

j: bj=bki
a2

j .

If there is a zero element ai in a, the inequalities above should be modified by

noting that the corresponding bi becomes an eigenvalue. Ronning (1982) proved a

similar inequality in case of multinomial, Dirichlet or multivariate hypergeometric

distributions. In case of multinomial distribution, Watson (1996) independently

noted that such an inequality holds true for multinomial distribution. However, our

result above is not restricted to such multiplicative covariance matrices but also for

any multiplicative matrices in general.
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Example 3.1.2 (Equi-covariance). From Theorem 3.1.3, we can easily see that

the covariance r for the equi-covariance model, which any pairs of variables share,

should satisfy

0 ≤ r ≤ σ2
1 , σ

2
1 < r < σ2

2 and
n∑

i=1

r/(σ2
i −r) ≤ −1, or r < 0 and

n∑
i=1

r/(σ2
i −r) ≥ −1,

where σ2
1 and σ2

2 are the minimum and the second minimum of the variances of X ′
is,

respectively.

3.2 Implications of multiplicative correlations or

covariances

In this section, we investigate implications of multiplicative correlations or covari-

ances. In Section 3.2.1, we will give a factorization theorem. The meaning of the

multiplicative correlation becomes clearer through the factorization of variables, at

least for the case of positive multiplicative correlations. However, this factoriza-

tion is not powerful enough for understanding negative multiplicative correlations.

Another theorem given in Section 3.2.2 will explain the reason why such negative

multiplicative correlation matrices arise so frequently, although they are not exhaus-

tive.

3.2.1 Factorization

In view of the reduction method mentioned in the Introduction, we may expect that

Xi’s can be represented as a common variable plus individual variables if the corre-

lation is multiplicative. For multivariate normal distribution, such a factorization is

almost trivial, and by making use of the factorization, Curnow and Dunnett (1962)

or Gupta (1963) showed that a simple calculation of the distribution is possible

when the correlation is positive multiplicative. Six (1981) extended their results for

the case of negative multiplicative correlation. The factorization as in the following

Corollary 3.2.1 is known as fundamental theorem of factor analysis, but it is only

for the case of positive multiplicative correlations (see, for example, Steiger, 1979,

p.158). The following theorem gives us a general factorization theorem for positive

and negative multiplicative correlations.

Theorem 3.2.1. A random vector X = (X1, . . . , Xn) with zero means has a

non-singular multiplicative covariance V(X) = diag(b) ± aaT with b > 0 if and
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only if each element of X is written as

Xi = γaiZ0 +
√
biZi i = 1, . . . , n, (3.3)

where Z0, Z1, . . . , Zn are random variables with zero means and unit variances, in

which Z1, . . . , Zn are uncorrelated each other but correlated with Z0 as

ρ(Z0, Zi) = cai/
√
bi i = 1, . . . , n,

where |c| ≤ 1/κ for Σ+(a, b) and 1 ≤ |c| ≤ 1/κ for Σ−(a, b) with κ2 =
∑n

i=1(a
2
i /bi).

The constants γ and c satisfy the equation,

γ2 + 2γc =

{
1 for Σ+(a, b)

−1 for Σ−(a, b)
.

Proof. If X is represented as in (3.3), then a direct calculation yields the multi-

plicative covariance V(X) = diag(b) ± aaT. On the other hand, if the X has the

desired covariance, define a random variable

Z0 =
{
(1 − c2κ2)/(1 + σκ2)

}1/2
X0 ± (c2 + σ)1/2aTΣ−1X

by introducing a new random variable X0 with mean zero and unit variance but

independent of any Xi’s. Here the σ is 1 for Σ+(a, b) or is −1 for Σ−(a, b), and

the sign ± shows alternative definitions. It can be easily seen that the Z0 and

Zi = [Xi − {±(c2 + σ)1/2 − c}aiZ0]/
√
bi satisfy the desired properties from the non-

negative definiteness of the covariance of Z and Theorem 3.1.3. �

If γ = 1, then c = 0 for Σ+(a, b), and c = −1 for Σ−(a, b), so that we have the

following corollary.

Corollary 3.2.1. A random vector X = (X1, . . . , Xn) with zero means has a non-

singular multiplicative covariance V(X) = diag(b) ± aaT with b > 0 if and only if

each element of X is written as

Xi = aiZ0 +
√
biZi, i = 1, . . . , n,

where Z0, Z1, . . . , Zn are random variables with zero means and unit variances, in

which Z1, . . . , Zn are uncorrelated each other but it can be correlated with Z0 as

ρ(Z0, Zi) =

{
0 for Σ+(a, b)

−ai/
√
bi for Σ−(a, b)

i = 1, . . . , n.
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The factorization of Σ+(a, b) in Corollary 3.2.1 is well-known (Steiger, 1979) but

Theorem 3.2.1 is much more general. It is interesting to note that no uncorrelated

factorization is possible in case of negative multiplicative covariances, but the com-

mon variable is orthogonal to the original variable Xis. The following corollary is a

direct consequence of Corollary 3.2.1 for multiplicative correlations.

Corollary 3.2.2. A random vector X = (X1, . . . , Xn) with zero means and

variances σ2
i = var(Xi), i = 1, . . . , n has a proper multiplicative correlation matrix

R±(δ) if and only if each element of X is written as

Xi/σi =

{
δiZ0 + (1 − δ2

i )
1/2
Zi for R+(δ)

δiZ0 + (1 + δ2
i )

1/2
Zi for R−(δ)

, i = 1, . . . , n,

where Z0, Z1, . . . , Zn are random variables with zero means and unit variances, in

which Z1, . . . , Zn are uncorrelated each other but it can be correlated with Z0 as

ρ(Z0, Zi) =

{
0 for R+(δ)

−δi/(1 + δ2
i )

1/2
for R−(δ)

, i = 1, . . . , n.

Recently Kelderman (2004) shows that positive multiplicative covariance V(X) =

diag(b) + aaT with a > 0 and b > 0 is equivalent to the fact that the condi-

tional density f(yM |Y Mc = yMc) for any partition Y = (Y M ,Y Mc) is invariant

with respect to permutation of the values yMc after a scale and location transform

Y = α + diag(β)X has been applied. However, this equivalence is proved only for

the case of multivariate normal distribution. This is considered to be a characteriza-

tion of positive multiplicative correlation, but its applicativity to other distributions

is unknown.

3.2.2 A characterization of negative multiplicative covari-

ance

The following theorem characterizes an interesting class of negative covariance ma-

trices.

Theorem 3.2.2. Assume that an n-dimensional random vector X has a negative

multiplicative covariance Σ−(a, b). Then, b = (
∑n

i=1 ai)a if and only if
∑n

i=1Xi is

almost surely constant.

Proof. The fact that
∑n

i=1Xi is almost surely constant is equivalent to

var

(∑
i

Xi

)
= 1T

{
diag(b) − aaT

}
1 =
∑

i

bi −
(∑

i

ai

)2

= 0.
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Noting the Schwarz’s inequality, we have

∑
i

bi =

(∑
i

ai

)2

=

(∑
i

ai√
bi

√
bi

)2

≤
(∑

i

bi

)(∑
i

a2
i

bi

)
.

Then, it is clear that bi is proportional to ai since
∑n

i=1 a
2
i /bi ≤ 1. �

This theorem says that the negative multiplicative covariance matrix takes the

form of

V(X) =

(
n∑

i=1

ai

)
diag(a) − aaT,

as far as there is a sum constraint
∑n

i=1Xi = const a.s. An example of family of dis-

tributions which have such a negative covariance matrix is the following Multivariate

Pólya-Eggenberger distribution.

Example 3.2.1. The joint probability function of multivariate Pólya-Eggenberger

distribution is given by

p(x1, . . . , xn) =

(
t

x1, . . . , xn

) { n∏
i=1

α
[xi,c]
i

}/
α[t,c],

where xi and αi, i = 1, . . . , n are non-negative integers, c is an integer, t =
∑n

i=1 xi,

α =
∑n

i=1 αi, and α[x,c] = α(α+c) · · · {α+(x−1)c} with α[0,c] = 1 (see Johnson el al.,

1997, p. 201). Multivariate Pólya-Eggenberger distribution is a wide class of multi-

variate discrete distributions, which becomes a family of multinomial distributions,

multivariate hypergeometric distributions, or multivariate negative hypergeometric

distributions by respectively taking c = 0, −1, or 1. It has a negative multiplicative

covariance since

E(X) = t
α

α
and V(X) =

t(α+ tc)

α2(α + c)

{
αdiag(α) − ααT

}
,

with α = (α1, . . . , αn). Since Dirichlet distribution is a limit of multivariate Pólya-

Eggenberger distribution when t tends to infinity in such a way that yi = limt→∞ xi/t,

i = 1, . . . , n for the fixed νi = αi/c , i = 1, . . . , n, it has the negative multiplicative

covariance as in Theorem 3.2.2. In fact, the density function is

f(y) =

(
Γ(ν)/

n∏
i=1

Γ(νi)

)
n∏

i=1

yνi−1
i where

n∑
i=1

yi = 1 and
n∑

i=1

νi = ν,

and the covariance matrix is

V(Y ) =
(
νdiag(ν) − ννT

)
/
{
ν2(ν + 1)

}
.
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3.3 Invariance of multiplicative covariance

We can understand from Theorem 3.2.2 that the conditional and unconditional

covariances are both negative multiplicative as far as the given condition takes a

form of
∑n

i=1Xi = const. We will investigate, in this section, if such a multiplicative

property is preserved or not by unconditioning. The following theorem gives us a

condition for that.

Theorem 3.3.1. Let (X, T ) be an (n+ 1)-dimensional random vector and assume

that the conditional variance of X given T is

V(X| T = t) = σ(t)
(
diag(b) ± aaT

)
for a σ(t) > 0. If the conditional expectation is written as

E(X| T = t) = µ(t)a + c

for an n-dimensional constant vector c, then the unconditional covariance is again

multiplicative,

V(X) = E (σ(T )) diag(b) + {var(µ(T )) ± E (σ(T ))}aaT.

Proof. It is almost clear since

E(Xi| T = t) = aiµ(t) + ci, E(X2
i | T = t) = (bi ± a2

i )σ(t) + (aiµ(t) + ci)
2,

and

E(XiXj| T = t) = ±aiajσ(t) + (aiµ(t) + ci) (ajµ(t) + cj) . �

It is worthy of noting that the unconditional covariance can be positive and

negative multiplicative irrespective of positiveness or negativeness of the conditional

covariance.

Example 3.3.1 (Homogeneous Distribution). It is known that X is dis-

tributed as a multivariate homogeneous distribution if and only if the conditional

distribution of X given the sum
∑n

i=1Xi, is multinomial (see, Johnson el al., 1997,

p. 20). Since the conditional expectation and covariance matrix are written as

E(X |T = t) = tp and V(X|T = t) = t
(
diag(p) − ppT

)
, the conditions in Theorem

3.3.1 are satisfied by taking σ(t) = µ(t) = t and c = 0. Therefore, we see that

homogeneous distribution always has a multiplicative covariance such as

V(X) = E(T )diag(p) + (var(T ) − E(T ))ppT.
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The sign of var(T )−E(T ) depends on the distribution of T . For example, it is always

negative multiplicative if the distribution of T is binomial and positive multiplicative

if it is negative binomial. Although it can be seen from the fact that the resulting

distribution of X is multinomial or negative multinomial respectively, it can be

shown by a direct calculation of var(T ) − E(T ) as −kξ2 < 0 for Bn(k, ξ) and k(1 −
ξ)2/ξ2 > 0 for NgBn(k, ξ). It is trivial but interesting to note that X is a vector

of orthogonal variable if T is Poisson distributed because var(T ) = E(T ). Let us

back to the multivariate Pólya-Eggenberger distributions in Example 3.2.1. The t

there is a parameter and can be replaced by a non-negative integer valued random

variable T . Then it is clear from Theorem 3.3.1 that the covariance matrix of X is

again multiplicative for any randomization T .

Example 3.3.2 (Random Scaling). It is clear from Theorem 3.3.1 that the

randomly scaled X = TY has a multiplicative covariance, as far as

E(Y ) = ka for a constant k, V(Y ) = diag(b) ± aaT,

and T is independent of Y . Several multivariate continuous distributions are de-

rived by such a random scaling. For example, multivariate Liouville distribution or

multivariate second kind beta (or inverted Dirichlet) distribution are derived from

Dirichlet distribution by taking respectively Liouville distributed T or second kind

beta distributed T (see, Kotz et al., 2000, p.491, 530; Gupta and Richards, 2001).

In view of Theorem 6, multiplicative covariance structures are preserved through

such a derivation of multivariate distribution. It is a good contrast to the reduction

method for multivariate discrete distributions.

Unfortunately the converse of Theorem 3.3.1 is not so simple. It heavily depends

on the shape of distribution. We leave this problem for future investigation. We end

up this section by giving another invariance property. It is about partial correlations

or covariances. Although X = (X1, . . . , Xn) is partitioned as X = (X1,X2) with

m-dimensional vector X1 and (n − m)-dimensional vector X2 and its parameter

vectors are also partitioned as a = (a1,a2) and b = (b1, b2) in the theorem, but it

is only for the convenience. The result holds true for any partial covariances.

Theorem 3.3.2. Assume that X has a multiplicative covariance Σ±(a, b). If V(X2)

is non-singular and all elements of b2 are positive, then the partial covariance of X1

given X2 is also multiplicative and

diag(b1) ± a1a
T
1 /{1 ± aT

2 diag(b2)
−1a2}.
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Proof. Partition Σ±(a, b) into(
Σ11 Σ12

Σ21 Σ22

)
=

(
diag(b1) ± a1a

T
1 ±a1a

T
2

±a2a
T
1 diag(b2) ± a2a

T
2

)
.

Then the partial covariance matrix of X1 given X2 is written as

Σ11 − Σ12Σ
−1
22 Σ21 = diag(b1) ± a1a

T
1 − a1a

T
2 (diag(b2) ± a2a

T
2 )

−1
a2a

T
1

= diag(b1) ± a1a
T
1 /{1 ± aT

2 diag(b2)
−1a2},

since

(diag(b2)+a2a
T
2 )−1 = diag(b2)

−1−diag(b2)
−1a2a

T
2 diag(b2)

−1/(1+aT
2 diag(b2)

−1a2).�

For multiplicative correlations, the following corollary holds true, which is a

direct consequence of Theorem 3.3.2.

Corollary 3.3.1. If X has a multiplicative correlation R±(δ), then the partial cor-

relation of X1 given X2 is also multiplicative and R±(δ̃) with

δ̃i =
δi

{1 ± c(1 ∓ δ2
i )}1/2

, i = 1, . . . , m,

where c =
∑n

j=m+1 δ
2
j /(1 ∓ δ2

j ).

We see that the partial covariance is proportional to the original covariance but

the partial correlation coefficient is not so, although the multiplicative property is

preserved. An important implication of Theorem 3.3.2 or Corollary 3.3.1 is that

it is enough to check if the zero correlation coefficient for the check of zero partial

correlation coefficient. This is due to the multiplicative parameterization of the

correlation or covariances, and it is not always true without such a parameterization.

A simplest example is for the case of n = 3. The partial covariance between X1 and

X2 is σ12 − σ13σ23/σ33, which is not necessarily zero even if the original covariance

σ12 = 0. However, σ13 or σ23 becomes zero if σ12 = 0 under the multiplicative

parameterization of the covariance, so that the zero covariance implies the zero

partial covariance.

3.4 Family of distributions which have multiplica-

tive correlation

In this section, we show that various known multivariate distributions have mul-

tiplicative correlation or covariances. It is explained by one of the reasons in the

previous sections.
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In Johnson et al. (1997), eight families of discrete distributions have been intro-

duced as in Table 3.1. This table shows if each family of distributions has multiplica-

tive correlation or not with the reason. As has been discussed before, multinomial,

negative multinomial, Poisson, hypergeometric and Pólya-Eggenberger distribution

have multiplicative correlations. Although power series distributions or multivari-

ate distributions of order s have no multiplicative correlation as a whole family

of distributions, subfamilies like logarithmic series distributions (Johnson et al.,

1997, p.157), multivariate negative multinomial of order s (p.255) or multivariate

logarithmic series distributions of order s (p.260) have multiplicative correlations.

However, at this stage, we do not know the exact reason why such subfamilies have

multiplicative correlations. Apparently, Ewens distributions have no multiplicative

correlations.

Table 3.1: Discrete Multivariate Distributions in Johnson et al. (1997).

Family Subfamily Positive or Negative Reason

35 Multinomial Negative Example 3.2.1

36 Negative multinomial Positive Example 3.3.1

37 Poisson Positive Reduction method

38 Power series Logarithmic series Positive ?

39 Hypergeometric Negative Example 3.2.1

40 Pólya-Eggenberger Negative Example 3.2.1

41 Ewens — — —

42 Distributions of Negative binomial of order s Positive ?

order s Logarithmic distr. of order s Negative ?

In terms of continuous distributions, eight families of continuous distributions

have been introduced in Kotz et al. (2000). Table 3.2 shows if each family has

multiplicative correlation or not in the same manner as in Table 3.1. For multi-

variate normal distributions, that is, no explicit restriction to the correlations, we

may define a subfamily of the distribution so that the correlation is multiplica-

tive. We call it as multiplicatively correlated normal. Although multivariate expo-

nential, multivariate gamma, multivariate logistic or multivariate Pareto distribu-

tions have no multiplicative correlations as a whole family, subfamilies like Moran

and Downton’s multivariate exponential distributions (Kotz et al., 2000, p.400),

Cheriyan and Ramabhadran’s multivariate gamma distributions (p.454), Gumbel-

Malik-Abraham’s(p.552) and Farlie-Gumbel-Morgenstern’s (p.561) multivariate lo-
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Table 3.2: Continuous Multivariate Distributions in Kotz et al. (2000).

Family Subfamily Positive or Negative Reason

45 Normal Multiplicatively correlated normal Both

47 Exponential Moran and Downton’s Positive Equi-correlation

48 Gamma Cheriyan and Ramabhadran’s Positive Reduction Method

49 Dirichlet Positive Example 3.2.1

49 Inverted Dirichlet Negative Example 3.3.2

50 Liouvill Both Example 3.3.2

51 Logistic Gumbel-Malik-Abraham Positive Equi-correlation

Farlie-Gumbel-Morgenstern Negative Equi-correlation

52 Pareto The first kind Positive Equi-correlation

53 Extreme value — — —

gistic distributions, or multivariate Pareto distributions of the first kind (p.599) have

equi-covariance or equi-correlation which is multiplicative. It has already shown in

Example 3.2.1 or Example 3.3.2 that Dirichlet, inverted Dirichlet or multivariate

Liouville distributions have multiplicative correlations. Apparently, the correlations

of multivariate extreme value distributions are not multiplicative.

In this chapter, we could clarify several reasons why such a multiplicative corre-

lation or covariance appears so frequently. One of reasons is that equi-covariance is

a special case of multiplicative correlation or covariance. This typically arises in an

introduction of new family of multivariate distributions by reduction method. Its

generalization is so called “common variable plus individual variables model”. The

equi-correlation is another source of multiplicative correlation. A different reasons

are “sum constraint” or “random scaling or mixing”. However, we could discuss

such different sources and reasons simultaneously from the view point of the multi-

plicative property of the correlation or the covariance.

A practical importance of multiplicative correlation or covariances is in its sim-

plicity as a statistical model. It models only the covariance matrix but has several

nice properties, so that it would be a quite powerful vehicle for analyzing compli-

cated large scale phenomena. Inference of the parameter δ or a and b is an open

problem and left for future investigation.
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Chapter 4

Multivariate Distribution

Generated from Natural

Exponential Family

In this chapter, we discuss two classes of multivariate distribution which is gener-

ated from independent samples from the natural exponential family (NEF). Both

classes have two common features: satisfying the Condition C, that is, coincidence

with partial and conditional correlations (see Chapter 2), and having multiplicative

correlations (see Chapter 3).

One is the class of conditional distribution of independent NEF samples given

the sum. Another is the class of distribution of independent NEF with quadratic

variance function (NEF-QVF) samples when the parameter is randomized by the

conjugate prior distributions. Representative distributions of the former are multi-

nomial and Dirichlet distributions, and ones of the latter are negative multinomial

and multivariate beta type two distributions. We treat the former in Section 4.1,

and the latter in Section 4.2.

At first, we introduce NEF. When a random variable Z has a pdf or a pmf

p(z; θ) = a(z) exp(θz − ψ(θ)), (4.1)

it is said that Z is distributed as a univariate natural exponential family (NEF) with

the cumulant function ψ(θ). (see, for example, Letac and Mora, 1990; Jørgensen,

1997; and Kotz et al., 2000, Chapter 54). The θ is called the natural parameter and

the natural parameter space Θ is the largest subset of R for which p(z; θ) is well

defined. The mean and variance are

µ := E(Z) = ψ′(θ) and V (µ) := var(Z) = ψ′′(θ),
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and µ and V (µ) are called mean parameter and variance function, respectively. Since

a distribution of NEF is specified by µ and V (µ), we think of (4.1) as a distribution

on µ, and the distribution with the density

p(z;µ) = a(z) exp(θ(µ)z − ψ(θ(µ)))

where θ(µ) is the inverse function of µ = ψ′(θ).

Now, if Z has the density

p(z;µ, ν) = b(z; ν) exp(θ(µ)z − νψ(θ(µ))), (4.2)

we denote as Z ∼ NEF(νµ, νV (µ)). This is only a notational generalization of the

above model when ν �= 1.

Especially, when the variance function is quadratic in µ as V (µ) = v0+v1µ+v2µ
2,

we say that Z is distributed natural exponential family with quadratic variance func-

tion (NEF-QVF, or Morris class). If Z has the density (4.2) and V (µ) is quadratic,

we denote as Z ∼ NEF-QVF (νµ, νV (µ)). It is known that only six distributions

are members of univariate NEF-QVF (see, Morris, 1982). They are summarized in

Table 4.1.

Table 4.1: Members of NEF-QVF.

distribution NEF(νµ, νV (µ)) θ ψ(θ) µ V (µ) b(z; ν)

Normal N(νµ, ν) µ θ2/2 µ 1 1√
2πν

e−
z2
2ν

Poisson Po(νλ) log λ eθ λ µ νz

z!

Binomial Bn(ν, p) log(p/1 − p) log(1 + eθ) p µ(1 − µ)
(

ν
z

)
, ν ∈ N

Negative binomial NgBn(ν, p) log(1 − p) − log(1 − eθ) (1 − p)/p µ(1 + µ)
(
z+ν−1

z

)
Gamma Ga(ν, 1/a) −a − log(−θ) 1/a µ2 zν−1

Γ(ν)

Hyperbolic secant NEF-GHS(ν, µ) tan−1 µ − log cos θ µ 1 + µ2 ∗

* = 2ν−2

πΓ(ν) |Γ(ν
2 + i z

2 )|2 = 2ν−2(Γ(ν/2))2

πΓ(ν)

∏∞
k=0

(
1 +
(

z
ν+2k

)2)−1
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4.1 Conditional distribution of independent NEF

samples given the sum

Let Z = (Z1, . . . , Zn) be independent and Zj ∼NEF(νjµ, νjV (µ)). T =
∑n

j=1 Zj is a

sufficient statistic, and T ∼NEF(νµ, νV (µ)), ν =
∑n

j=1 νj . The conditional density

of Z given T = t is
n∏

j=1

b(zj ; νj)/b(t; ν). (4.3)

The following theorem shows that (Z|T ) has a multiplicative correlation.

Theorem 4.1.1 (Multiplicative correlation). If Z = (Z1, . . . , Zn) are indepen-

dent and Zj ∼NEF(νjµ, νjV (µ)), then the conditional variance-covariance matrix of

Z given T =
∑n

j=1Zj is multiplicative.

Proof. Since NEF(νjµ, νjV (µ)) ∈ F where F was defined in Section 2.3 and θi is

replaced with νi, then Lemma 2.2.1 holds true. From (2.1) in the proof of Lemma

2.2.1, we yield the conclusion. �

Next, partition Z as Z = (X,Y ) = (X1, . . . , Xp, Y1, . . . , Yq) where p + q = n.

The conditional density of X given T = t and Y = (y1, . . . , yq) is

p∏
j=1

b(zj ; νj)/b(t− y; ν − νy)

(
y =

q∑
j=1

yj, νy =

p+q∑
j=p+1

νj

)
.

The following theorem is a direct consequence of Theorem 2.2.1.

Theorem 4.1.2 (Condition C). Suppose that Z = (Z1, . . . , Zn) are random vari-

ables in Theorem 4.1.1. If the distribution of (X,Y ) = (X1, . . . , Xp, Y1, . . . , Yq) (p+

q = n) is equal to the distribution of Z, then (X,Y ) satisfies the Condition C pro-

vided that T =
∑p

i=1Xi +
∑q

i=1 Yi is given.

So far the variance function is not restricted, and η′ in (2.1) can not be ex-

pressed explicitly. Now, we assume that the variance function is quadratic as V (µ) =

v0 + v1µ + v2µ
2, the conditional variance-covariance matrix is explicitly obtained.

That is, if Z = (Z1, . . . , Zn) are independent and Zj ∼NEF-QVF(νjµ, νjV (µ)), the

conditional variance-covariance matrix of Z given
∑n

j=1Zj = t is

V(Z|t) = c(t, ν)(diag(ξ) − ξξT), ν =

n∑
j=1

νj; ξj = νj/ν, j = 1, . . . , n; (4.4)

c(t, ν) =
ν2

ν + v2
V

(
t

ν

)
.
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The result is an extension of Morris (1983; Section 4).

Six conditional distributions of independent NEF-QVF samples given the sum

are familiar, and listed in Table 4.2. The concrete expression of the multiplier c(t, ν)

in (4.4) is shown in the last column.

Table 4.2: Conditional distribution of independent NEF-QVF samples given sum.

Zi (Z|T = t) conditional c(t, ν)

N(νiµ, ν) N
(
tξ, ν(diag(ξ) − ξξT)

)∗
ν

Po(νiλ) Mn(t, ξ) t

Bn(νi, p) MvHg(t,ν) t(ν−t)
ν−1

NgBn(νi, p) MvNgHg(t,ν) t(ν+t)
ν+1

Ga(νi, 1/a) x/t|t ∼ Dir(ν) t2

ν+1

NEF-GHS(νi, µ) Morris(1983) ν(1+t2)
ν+1

* diag(1/ν) is a generalized inverse of ν(diag(ξ) − ξξT)

4.2 Distribution of independent NEF-QVF sam-

ples when the parameter is randomized

In this section, we discuss the distributions generated from independent NEF-QVF

samples when the mean parameter is randomized. We discuss the cases where the

parameter is randomized by the conjugate prior in Section 4.2.1 and by other priors

in Section 4.2.2. For the former case, we will show that the distributions generated

from independent NEF-QVF samples have multiplicative correlations, and that they

satisfy the Condition C, that is, their partial correlations are equal to conditional

correlations. On the other hand, we will give an example in which the distribution

has multiplicative correlation but do not satisfy the Condition C for the latter case.

At first, we introduce the conjugate prior distributions of NEF and the mixture

of distributions.

Conjugate prior of NEF

For the NEF(νµ, νV (µ)) with the density

p(z;µ, ν) = b(z; ν) exp(θ(µ)z − νψ(θ(µ))), (4.5)
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the conjugate prior distribution on θ mimics (4.5), being

π∗(θ; η, ζ) = K(η, ζ) exp(ηθ − ζ ψ(θ)),

where K is the normalization constant. Here π∗(θ; η, ζ) is a two parameter family

on densities for θ having NEF with natural parameter η and convolution parameter

ζ . We think of π∗ as a distribution on µ = ψ′(θ), and not on θ. This usually is a

non-linear transformation of the NEF for θ and therefore is an exponential family

that is not a NEF except in the case of the normal distribution. The density of µ is

π(µ; η, ζ) = K(η, ζ) exp(η θ(µ) − ζ ψ(θ(µ))) V −1(µ), V (µ) = ψ′′(θ(µ)), (4.6)

and is called the conjugate prior distribution of NEF(µ, V (µ)). We describe it as

CP(η, ζ). For a member of NEF, its conjugate prior has appropriate properties (See,

Morris, 1983; Consonni and Veronese, 1992).

Mixture of distributions

Let Z = (Z1, . . . , Zn) be independent variables and Zi has the distribution function

Fi(zi;µ) (i = 1, . . . , n). Suppose that the real parameter µ is a random variable

with the distribution function G(µ) which is independent of Z, and Z has the joint

distribution function

F (z1, . . . , zn) =

∫
F1(z1;µ) · · ·Fn(zn;µ) dG(µ). (4.7)

The distribution F or the random vector Z is called mixture by the mixing distri-

bution G, denoted by Gurland’s notation (Gurland, 1957)

n∏
i=1

Fi(zi; µ)
∧
µ

G(µ).

In the following subsection, we consider the case where Fi(zi;µ) is NEF-QVF(νiµ, νiV (µ))

and G(µ) is the conjugate prior distribution CP(η, ζ).

4.2.1 Randomized by the conjugate prior

In this subsection, we show that the distributions generated from independent NEF-

QVF samples mixed by the conjugate prior (NEF-QVF-CP) have multiplicative

correlations and satisfy the Condition C, and list six concrete distributions of NEF-

QVF-CP.
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If Z is distributed NEF-QVF(νµ, νV (µ)) with the density (4.5) and µ is dis-

tributed CP(η, ζ) with the density (4.6), then the product pπ is

b(z; ν)K(η, ζ) exp((z + η) θ(µ) − (ν + ζ)ψ(θ(µ))) V −1(µ),

being integrated, the density of mixture Z becomes

p(z; ν, η, ζ) := b(z; ν)K(η, ζ) /K(η + z, ζ + ν). (4.8)

Now, if each component of an n-dimensional random vector is distributed

NEF(νjµ, νjV (µ)) and µ is distributed CP(η, ζ), then the mixture Z = (Z1, . . . , Zn),

n∏
j=1

NEF(νjµ, νjV (µ))
∧
µ

π(µ; η, ζ),

has density

p(z; ν; η, ζ) =

(
n∏

j=1

b(zj ; νj)

)
K(η, ζ)

/
K(η + t, ζ + ν) (4.9)

=p(t; ν, η, ζ)
n∏

j=1

b(zj ; νj) / b(t; ν) where t =
n∑

j=1

zj and ν =
n∑

j=1

νj.

(4.10)

The following theorem gives the first and second order moments of NEF-QVF-

CP, and shows that the variance-covariance matrices are multiplicative. The follow-

ing will be also used in the proof of Theorem 4.2.2.

Theorem 4.2.1 (Multiplicative correlation). If the components of an n-

dimensional random vector are independent and are distributed NEF-QVF(νjµ, νjV (µ))

(j = 1, . . . , n) and µ is distributed the conjugate prior CP(η, ζ) of NEF-QVF(µ, V (µ)),

then the mixture Z has

E(Z) = ην/ζ, V(Z) =
V (η/ζ)

ζ − v2
(ζdiag(ν) + ννT),

and ρ(Zi, Zj) =

√
νiνj

(ζ + νi)(ζ + νj)
(i �= j = 1, . . . , n). (4.11)

Proof. Let V (µ) = v0+v1µ+v2µ
2 denote the variance function of NEF-QVF(µ, V (µ)).

Its CP(η, ζ) has the moments

E(µ) = µ0 and var(µ) = V (µ0)/(ζ − v2), µ0 = η/ζ,
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from Theorem 5.3 in Morris (1983). Since

E(Zj|µ) = νjµ, E(Z2
j |µ) = νjV (µ) + (νjµ)2, and E(ZiZj|µ) = νiνjµ

2,

the moments of Z are E(Zj) = νjµ0,

E(Z2
j ) = νjV (µ0)

(
1 +

νj + v2

ζ − v2

)
+ (νjµ0)

2, and E(ZiZj) = νiνj

(
V (µ0)

ζ − v2

+ µ2
0

)
.

Hence V(Z) is obtained. �

Remark. Correlation coefficients of Z are always positive. The mixture of distri-

butions, (4.7), is known to have positively dependence (see, Shaked, 1971; Marshall

and Olkin, 1979).

Finally, partition Z as Z = (X,Y ) = (X1, . . . , Xp, Y1, . . . , Yq) (p + q = n), and

let us obtain the conditional density of X given Y = (y1, . . . , yq).

In (4.7), the conditional distribution of (Z1, . . . , Zn−1) given Zn is

F (z1, . . . , zn−1|zn) =

∫ (n−1∏
j=1

Fj(zj ;µ)

)
dG(µ|zn), dG(µ|zn) =

Fn(zn;µ) dG(µ)∫
Fn(zn;µ) dG(µ)

,

that is, the conditional distribution is obtained by changing the prior distribution

G(µ) to its posterior distribution G(µ|zn). From (4.8), when the prior is the conju-

gate, the posterior is

π(µ; η + z, ζ + ν).

This simple form is a merit of conjugate prior.

Now, when Y = (y1, . . . , yq) are given, conditional distribution of X given Y

is obtained by changing the prior CP(η, ζ) to posterior CP(η + y, ζ + νy) where

y =
∑p

j=1 yj and νy =
∑p+q

j=p+1 νj . Hence the conditional distribution of X given Y

is
p∏

j=1

NEF(νjµ, νjV (µ))
∧
µ

π(µ; η + y, ζ + νy),

with the density(
p∏

j=1

b(xj ; νj)

)
K(η + y, ζ + νy)

/
K(η + t, ζ + ν).

The following theorem shows that partial and conditional correlations coincide

for NEF-QVF-CP.
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Theorem 4.2.2 (Condition C). Suppose that Z = (Z1, . . . , Zn) are random vari-

ables in Theorem 4.2.1. If the distribution of (X,Y ) = (X1, . . . , Xp, Y1, . . . , Yq) (p+

q = n) is equal to the distribution of Z, then (X,Y ) satisfies the Condition C.

Proof. Since the conditional distribution of X given Y is obtained by changing

the prior CP(η, ζ) to posterior CP(η + y, ζ + νy), we have

E(Xj |Y ) = νj(η+y)/(ζ+νy) and ρ(Xi, Xj|Y ) =
√
νiνj/(ζ + νy + νi)(ζ + νy + νj)

where i �= j = 1, . . . , p from Theorem 4.2.1. Hence, the Condition C is satisfied.

Six classes of mixtures, NEF-QVF-CP are shown in Table 4.3. The first two

columns of Table 4.3 shows multisample mixtures with density, (4.9). The third

column shows the non-exponential constant part K of conjugate prior CP(η, ζ),

(4.6), which also appears in (4.9). The fourth column shows the expectation of

c(t, ν) which is the last column of Table 4.2. The last column shows the distribution

of the total size, following the univariate mixture distribution, appearing in (4.10).

Table 4.3: Members of NEF-QVF-CP.

Mixed and mixing distrb.

Mixture distribution

p(�); x =
�m

j=1 xj = t, ν =
�m

j=1 νj

K(η, ζ) E(c(t, ν)) distrb. of t

m�
j=1

N(νjµ, νj)
�
µ

N(η/ζ, 1/ζ)

N

�
η

ζ
�, Λ

�
Λ = diag(�) +

1

ζ
��

T

Λ
−1

= diag

�
1

�

�
− ζ2

ζ + ν
11

T

�
ζ

2π
exp

�
− η2

2ζ

�
1

ζ
N

�
νη

ζ
,

ν(ν + ζ)

ζ

�

m�
j=1

Po(νjλ)
�
λ

Ga(η, 1/ζ)

NgMn
�

m, η,
�

ζ
ζ+ν

,
νj

ζ+ν

		
Γ(η + x)

Γ(η)



m
j=1 xj !

�
ζ

ζ + ν

�η �
j

�
νj

ζ + ν

�xj
ζη

Γ(η)

η

ζ2
NgBn

�
η, ζ

ζ+ν

	

m�
j=1

Bn(νj , p)
�
p

Be(η, ζ − η)

MsNgHg(m,�, η, ζ − η)

B(η + x, ζ − η + ν − x)

B(η, ζ − η)

m�
j=1

�
νj

xj

� 1

B(η, ζ − η)

η(ζ − η)

ζ2(ζ + 1)
NgHg(ν; η, ζ − η)

m�
j=1

NgBn(νj , p)
�
p

Be(ζ + 1, η)

MsGHgB3(m,�, η, ζ + 1)

B(ζ + ν + 1, η + x)

B(ζ + 1, η)

m�
j=1

�
νj + xj − 1

xj

� 1

B(ζ + 1, η)

η(ζ + η)

ζ2(ζ − 1)
GHgB3(η, ν; ζ + 1)

m�
j=1

Ga(νj , a)
�
a

Ga(ζ + 1, 1/η)

MsBe2(ζ + 1, �)

Γ(ζ + ν + 1)ηζ+1

Γ(ζ + 1)

m

j=1 Γ(νj)


m
j=1 x

νj−1
j

(η + x)ζ+ν+1

ηζ+1

Γ(ζ + 1)

η2

ζ2(ζ − 1)
Be2(ζ + 1, ν; η)

mixed: NEF-GHS

mixing: Morris’ t

MsMorrisMixture(�; η, ζ)

H(η + x, ζ + ν)

H(η, ζ)

m�
j=1

b(xj ; νj)

1

H(η, ζ)

η2 + ζ2

ζ2(ζ − 1)
MorrisMixture(ν; η, ζ)
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4.2.2 Randomized by other priors

This subsection shows that when the parameter is randomized by a non-conjugate

prior a distribution of independent NEF-QVF samples has a multiplicative correla-

tion but do not satisfy the Condition C in Example 4.2.1, and that when the location

parameter is randomized a distribution of independent non-NEF-QVF samples do

not satisfy the Condition C in Remark.

Example 4.2.1. Neyman type A distribution is the mixture Z ∼ Po(νk)
∧
k

Po(λ),

with the pmf

p(z) = Ek(p(z|k)) =
νz

z!
Ek(e−νkkz),

and the factorial moments

E(Zr) = Ek(Zr|k) = Ek((νk)r) = νr

r∑
l=1

{
r

l

}
λl,

where
{

r
l

}
is the Stirling number of the second kind.

A definition of multivariate Neyman type A distributions is the mixture Z =

(Z1, . . . , Zn) ∼ ∏n
j=1 Po(νjk)

∧
k

Po(λ), with the factorial moments

E

(
n∏

j=1

Z
rj

j

)
= Ek

(
n∏

j=1

(νjk)
rj

)
=

(
n∏

j=1

ν
rj

j

)
r∑

l=1

{
r

l

}
λl, r =

n∑
j=1

rj .

Hence, its variance-covariance matrix is

V(Z) = λ(diag(ν) + ννT), ν = (ν1, . . . , νn).

To find conditional moments E(Z
r
i |Zn), E(Z

r
1 |Z2 = z2) is calculated without loss

of generality.

E(Zr
1 |z2) = Ek (E(Zr

1 |k) p(z2|k))
/

Ek(p(z2|k))
=Ek
(
(ν1k

r) e−ν2kkz2
) /

Ek(e−ν2k kz2)

=

z2+r∑
l=1

{
z2 + r

l

}
(λ e−ν2)l

/
z2∑
l=1

{
z2
l

}
(λ e−ν2)l,

where the numerator is 1 if z2 = 0. Hence

E(Z1|Z2 = 0) =ν1 λ e
−ν2,

E(Z1|Z2 = 1) =ν1 (1 + λ e−ν2),

E(Z1|Z2 = 2) = ν1 (1 + 3λ e−ν2 + (λ e−ν2)2)
/

(1 + λ e−ν2),

and so on. E(Z1|Z2) is not linear in Z2, and Z does not satisfy the Condition C.
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Remark. We consider a distribution of independent discrete uniform, not NEF,

samples when the location parameter is randomized as follows.

In the expression (4.7) , if Fi(zi; µ) = Fi(zi −µ), the components of the mixture

Z is written as Zi = Wi +W0, Wi ∼ Fi(·), W0 ∼ G(·), i = 1, . . . , n, where (Wi)
n
i=0

are independent.

Let (Wi)
n
i=1 be iid random variables with a pmf p1, and W0 be independent of

(Wi)
n
i=1 with a pmf p2. Define Zi = Wi + W0, i = 1, . . . , n, and the conditional

pmf of (Z1, Z2) given Z3 = z3, . . . , Zm = zn, is

p(z1, z2|z3, . . . , zn) =
∑

w

(

n∏
j=1

p1(zj − w))p0(w)

/∑
w

(

n∏
j=3

p1(zj − w))p0(w).

Now, if p1 and p0 are discrete uniform distributions on {0, 1, . . . , a} and {0, 1, . . . , b},
a > b, respectively,

p(z1, . . . , zn) = (a+ 1)−n(b+ 1)−1
∑

w

I[0 ≤ z1 − w ≤ a, . . . , 0 ≤ zn − w ≤ a, 0 ≤ w ≤ b]

= (a+ 1)−n(b+ 1)−1(n∗∗ − n∗ + 1)I [n∗ ≤ n∗∗],

n∗∗ = min(z1, . . . , zn, b), n
∗ = max(z1 − a, zn − a, 0),

and

p(z1, z2|z3, . . . , zn) =
(a + 1)n−2(b+ 1)

(a+ 1)n(b+ 1)

(n∗∗ − n∗ + 1)I [n∗ ≤ n∗∗]
(l∗∗ − l∗ + 1)

=
1

(a + 1)2(l∗∗ − l∗ + 1)
(min(z1, z2, l

∗∗ − max(z1 − a, z2 − a, l∗)),

l∗∗ = min(z3, . . . , zn, b), l
∗ = max(z3 − a, . . . , zn − a, 0), 0 ≤ l∗ ≤ l∗∗ ≤ b.

For a = 2, b = 1, n ≥ 3, the conditional distributions given (l∗∗, l∗), 1 ≥ l∗∗ ≥
l∗ ≥ 0, are shown in Table 4.4 with correlations. The conditional correlations

depend on the statistics (l∗∗, l∗) which are not constant. Hence the Condition C is

not satisfied.
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Table 4.4: Conditional distributions and correlations.

(l∗∗, l∗) = (0, 0)

probabilities×9

Z1/Z2 0 1 2 3

0 1 1 1 0

1 1 1 1 0

2 1 1 1 0

3 0 0 0 0

ρ(Z1, Z2|l∗, l∗∗) = 0,

E(Zi|l∗, l∗∗) = 1

(l∗∗, l∗) = (1, 0)

probabilities×18

Z1/Z2 0 1 2 3

0 1 1 1 0

1 1 2 2 1

2 1 2 2 1

3 0 1 1 1

ρ(Z1, Z2|l∗, l∗∗) = 3/11,

E(Zi|l∗, l∗∗) = 1.5

(l∗∗, l∗) = (1, 1)

probabilities×9

Z1/Z2 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 1 1

3 0 1 1 1

ρ(Z1, Z2|l∗, l∗∗) = 0,

E(Zi|l∗, l∗∗) = 2
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