セラミックス窒化物薄膜の創製および微細構造制御

平成 16 年度

長谷川 裕之

セラミックス窒化物薄膜の創製および微細構造制御

目次

第 1	章 序論	
1.1	はじめに	1
1.2	表面処理	2
1.3	硬質薄膜の歴史	3
1.4	本論文の目的	4
第 1	章に関する参考文献	6

第2章 薄膜評価方法

2.1	マイクロビッカース硬さ試験法	12
2.2	ナノインデンテーション法による機械的特性の評価	13
2.	.2.1 硬度計算方法	13
2.	.2.2 弾性率計算方法	14
2.3	X 線による物質同定	15
2.	.3.1 エネルギー分散型 X 線分光(EDX)法	15
2.	.3.2 X線回折(XRD)法	16
2.4	表面形態および断面組織の観察	16
2.5	透過型電子顕微鏡による微細構造解析	17

第3章 チタン系窒化物の微小硬度および微細構造解析

3.1	諸言		24
3.2	実験	食方法	26
3.	2.1	チタン系窒化物の作製	26
3.	2.2	窒素含有量の異なる $W_{1-X}N_X$ 薄膜の作製	26
3.	.2.3	Ti _{1-X} W _X N 薄膜の作製	26

3.3 結:	果および考察	27
3.3.1	TiN への異種元素の添加	27
3.3.2	Ti _{1-X} Al _X N,Ti _{1-X} Cr _X N,Ti _{1-X} Zr _X N の微小硬度および微細構造変化	28
3.3.3	窒素含有量が W _{1-X} N _X の相変態に与える影響	32
3.3.4	Ti _{1-X} W _X N 薄膜の創製	33
3.4 結		34
第3章に	第3章に関する参考文献	

第4章 クロムおよびジルコニウム系窒化物の NaCl 型から Wurtzite 型への相変態

4.1 緒		58
4.2 実	験方法	59
4.2.1	Cr _{1-x} Al _x N およびZr _{1-x} Al _x Nの作製	59
4.2.2	結晶軸の等方および異方性の評価評価	59
4.3 結	果および考察	60
4.3.1	Cr _{1-x} Al _x N およびZr _{1-x} Al _x Nの結晶構造変化	60
4.3.2	結晶軸の等方および異方変化	60
4.3.3	Al 含有量がCr およびZr 系の微細構造に及ぼす影響	61
4.3.4	Cr _{1-X} Al _X N およびZr _{1-X} Al _X Nの微小硬度変化	61
4.4 結		62
第4章に	第4章に関する参考文献	

第5章 (Ti,Al)N 薄膜の相変態および機械的性質に及ぼす Cr 添加効果

5.1 緒話		72
5.2 実際	験方法	73
5.2.1	Plasma enhanced cathode	73
5.2.2	試料作製方法	73
5.2.3	切削試験	73
5.2.4	熱処理	73
5.3 結約	果および考察	74
5.3.1	TiAlN の Al 固溶量に及ぼす Cr 添加効果	74
5.3.2	基板温度が結晶構造に及ぼす影響	74

5.3.3 Ti _x Cr _y Al _z N 薄膜の熱安定性	75
5.3.4 熱処理温度に対する微小硬度および組織構造の変化	76
5.4 結論	77
第5章に関する参考文献	

第6章 カソディックアークイオンプレーティング法による(Cr,Al,B)N薄膜の創製

6.1 緒	緒言	
6.2 実	験方法	101
6.2.1	Cr _X Al _Y B _Z N 薄膜の合成	101
6.2.2	グロー放電発光分光 (GDOES)法	101
6.2.3	酸化試験	101
6.2.4	熱重量および熱示差分析	101
6.3 結	果および考察	102
6.3.1	高温環境下における Cr _{1-X} Al _X N の薄膜重量変化	102
6.3.2	Cr _X Al _Y B _Z N 薄膜の機械特性	103
6.3.3	Cr _x Al _y B _z N の微細構造解析	103
6.3.4	B 添加が Cr _x Al _y B _z N の熱安定性に及ぼす影響	104
6.4 結		104
第6章に	こ関する参考文献	105
第7章	結論	117
謝辞		120
<u>_</u>		
(本論文)	「論文に関する発表論文 12	

第1章 序論

1.1 はじめに

材料表面に新しい機能や特性を付与し、新しい製品をつくりだすことが様々な産業分野 において強く期待されている.新しい機能性を母材に付与することにより、これまでにない特 性を得ることができるため表面処理技術が注目されるようになった.表面処理技術を用いる うえで重要なのは材料表面にどのような特性を与えるかであり、材料の表面性状・機械的特 性・電気磁気的特性・光学的特性・熱的特性・物理的特性・化学的特性・装飾特性があげら れる.セラミックス硬質薄膜は工具、金型、機械部品を対象とし耐磨耗性、耐酸化性といった 要求性能を付与してきた.実際に科学技術の進歩とともに被削材の難削化・高負荷・高 能率化に対応して、窒化チタニウム(TiN)⁽¹⁾⁻⁽²⁾・窒化クロミウム(CrN)⁽³⁾⁻⁽⁵⁾・窒化ジル コニウム(ZrN)⁽⁶⁾⁻⁽⁸⁾などの2元系薄膜からより複雑な組成であり、耐熱性に優れ、高硬 度である窒化チタンアルミニウム(Ti1-XAlxN)⁽⁹⁾⁻⁽¹¹⁾が現在では積極的に利用されてい る.実際にTi1-XAlxNをコーティングしたドリル・エンドミルの寿命は未処理のものと 比べ9倍、TiNをコーティングしたたりル・エンドミルの寿命は未処理のものと 比べ9倍、TiNをコーティングしたたりル・エンドミルの寿命は未処理のものと

環境問題,制御の容易さ,工業的プロセス化の要求からプラズマテクノロジーの応 用が着目されている.このプラズマ技術は熱平衡型,非平衡型を含め多種多様となり, これまで溶融法,粉末冶金等において作製しえなかった準安定相と称する物質が創製 可能となった.さらにX線,電子顕微鏡を代表とする表面分析技術は複雑組成の定性 および定量化そしてミクロンレベルからナノレベルへの観察を可能としている.セラ ミックス硬質薄膜の評価は従来のバルク材とは異なるため固溶形態,結晶構造,組織 といった微小構造の解析が材料科学的概念との対比を踏まえ重要な項目となる.

1.2 表面処理

Fig.1-1に示すように表面処理技術には基板の表面を変化させるプロセスと他の物質 を被覆するプロセスに大別できる、ショットピーニング・窒化・炭化などが前者に含 まれ,メッキ法, CVD(Chemical vapor deposition)法, PVD (Physical vapor deposition)法 が後者にあてはまる.異種物質を被覆する技術には湿式法(ウエットプロセス)と乾式 法(ドライプロセス)が挙げられ,セラミック系の硬質薄膜は反応性ガスを取り入れる ことの容易さからPVD法が用いられている.PVD法は真空蒸着,スパッタリング,イ オンプレーティングと技術の変遷をたどってきた.特にイオンプレーティングのなか でもアーク放電を利用したカソディックアークイオンプレーティグ法は熱力学的非 平衡状態を実現することができバルクでは作製不可能な化合物薄膜の創製が可能と なり,基板との密着性の改善を作製プロセスにおいて行うことができる.アーク放電を 利用した成膜技術は、1981年にDaalder⁽¹³⁾により考案され、蒸発粒子のイオン化率は 30~100%,イオン化した粒子のエネルギーは30~1000 eVと,真空蒸着やスパッタリングなど の方法と比べて非常に高く,他の方法にない数多くの特徴を有する.例えば,作製される薄 膜は緻密で密着性・均質性に優れている点が挙げられる.また,基材の熱変形の抑制の為, 低温でコーティングすることができ、成膜速度も高い、さらに、薄膜形成材は液体プールを作 らずに瞬時に局所的に蒸発するため,薄膜形成材を複数,自在に設置することができ,装置 の大型化や複雑異形品へのコーティングなども可能である.しかし特有の欠点として、ドロッ プレットと呼ばれる溶融粒子が薄膜表面に付着し,表面粗度を悪化させることが挙げられる.

Fig.1-2にカソディックアークイオンプレーティグ法の概略図を示す.装置は,真空 チャンバー・薄膜形成材であるターゲット・アーク電源・バイアス電源・真空排気系システム・ 制御系システム・冷却装置などから構成されている.金属または合金ターゲットを陰極,チャ ンバーを陽極としアーク電流を流すことでアーク放電を生じさせ,プラズマを発生させる.そ れにより,ターゲット表面には放電電流が集中した数µmのクレータ状のアークスポットが発生 する.アークスポットの物理的現象については解明されていない点も多いが,Fig.1-3に示す ようなモデルが提唱されている.金属や合金ターゲットの場合,このアークスポットはジュー ル熱などにより4000~10000 Kの高温になり,ターゲット表面を10 m/sオーダーの速さでラン ダムに移動し,ターゲット物質を瞬時に溶融,蒸発させる.このときの蒸発粒子としては,ター ゲット物質の蒸気・イオン・電子そしてドロップレットのもとになる溶融粒子などが含まれる.基 材に負のバイアスを印加することで,イオン化された粒子は加速され,基材表面に強固に付 着し薄膜を形成する.また,反応性ガスを流入すれば,ガスはプラズマ中で活性化され,蒸 発粒子と反応を起こし,その反応物質を薄膜として合成することをできる.ターゲットと反応性 ガスの組み合わせを選択することで,様々な種類の薄膜を作製することができる.

-2-

1.3 硬質薄膜の歴史

炭化チタン(TiC)や窒化チタン(TiN)などの硬質物質のコーティングは1950年代初頭 よりドイツのメタルゲゼルシャフト社 Ruppert⁽¹⁴⁾らによって開発され広く用いられる ようになった.また米国 Powellら⁽¹⁵⁾は Vapor Plating によって種々の硬質物質合成が 実証され,この開発により耐摩耗性膜が実用化されるにいたった.さらに1960年代 後半には Mattox ら⁽¹⁶⁾, Bushah⁽¹⁷⁾らによってイオンプレーティングを用いた硬質薄膜 の合成が実証された.

1986年, TiN を凌駕する薄膜として Ti_{1-X}Al_XN が登場し, その硬度値は 30 GPa 以上の硬度を有し, さらに 800°C 以上の耐酸化性を示すと Münz ら⁽¹⁸⁾により報告された. TiN, AlN の結晶構造は NaCl 型, Wurtzite 型をそれぞれ呈すことから Ti_{1-X}Al_XN の相転移について多くの議論がなされてきた.実際に Wahiströrm ら⁽¹⁹⁾は Ti_{1-X}Al_XN の結晶構造はX<0.52 では立方晶, 0.52<X<0.59 では立方晶および六方晶の混合相となり, そして X>0.59 において六方晶に変態すると報告している.これまで Ti_{1-X}Al_XN は様々な PVD 法によって成膜されその相転移点について議論されてきた. Ikeda ら⁽²⁰⁾は Ti_{1-X}Al_XN の Al 固溶限界をX=0.65 であることを示し, Makino ら⁽²¹⁻²²⁾はイオンビーム, マグネトロンスッパタリング法により合成した Ti_{1-X}Al_XN はそれぞれ X=0.8, X=0.6 において相転移を生じることを示した.このように準安定相である3元系窒化物の NaCl 型から Wurtzite 型への相転移点の解明は重要な研究課題といえる.

Ti_{1-x}Al_xN 薄膜の普及後, セラミックス硬質薄膜の開発は第2金属元素の TiN への添加 によって進められた.具体的には $Cr^{(23)}$ ·Zr⁽²⁴⁾·V⁽²⁵⁾·Si⁽²⁶⁾·Nb⁽²⁷⁾でありこれら元素の添加によ り優れた耐酸化性, 耐腐食性, そして高硬度を有する薄膜の創製を実現した.例えば, Randhawa ら⁽²⁸⁾は TiN を凌駕する工具性能を Ti_{0.5}Zr_{0.5}N を用いた実験により示した.また Vetter ら⁽²⁹⁾は Ti_{1-x}Cr_xN の最大硬さは X=0.3 において 39GPa を示すと報告した.これら実 験的アプローチからも分かるように異種元素添加による機械的性質の評価は重要といえよ う.

周囲に存在する物質は数多くの原子から成り立ち,これら機能および物性は化学結合によって決定されている.これまで材料設計法の中にも潜在的に化学結合に関する 情報が含まれている方法は数多くある.例えば,Pauling⁽³⁰⁾の電気陰性度は化合物の形 成エネルギーと関係づけられるため,熱力学的安定性が結合電子の移動方向性を示し ているといえる.しかしながら,この手法は外郭電子の結合を平均的に扱っているに すぎず,軌道の異なる電子の種類を考慮した表現が必要となる.Makino⁽³¹⁾はこのよう な問題点を踏まえ各電子に対する電気陰性度つまり軌道電気陰性度からバンドパラ メターと呼ばれる指標を導入し,このパラメターが結晶構造や材料設計に適用できる と提案した.Table 1-1 は B1(NaCl)型遷移金属窒化物に対する B4(Wurtzite)型の最大固

-3-

溶度を示したものであるが,特に着目すべきは $Ti_{1-x}Al_xN$ の Al 固溶限界が X=0.65 となり, これまで示されてきた結果と類似したものとなっている.この概念の導入は今後のセラッミク ス硬質薄膜の創製の一助となり,かつ $Cr_{1-x}Al_xN$ のような Ti を含まない 3 元系窒化物の相 転移点解明の重要性をも示唆している.さらに $Cr_{1-x}Al_xN$ における相転移点は X=0.77 にな り, $Ti_{1-x}Al_xN$ に比べ Al の固溶範囲が広いことが確認できる.この固溶範囲の差を踏まえ既 存の立方晶 $Ti_{1-x}Al_xN$ をベースとした新たな硬質薄膜の創製も重要な課題といえる.

さらに硬質薄膜創製の歴史にはダイヤモンドのような非金属元素からなる無機材 料の開発も含まれる.1954年,GE社は高温高圧合成法による人工ダイヤモンド製造 に成功した⁽³²⁾.その後 Derjaguin ら⁽³³⁾は CVD 法によるダイヤモンドウィスカーの成 長,UCC 社 Eversole ら⁽³⁴⁾による低圧法合成は特筆すべき開発として記録に残ってい る.さらに Aisenberg ら⁽³⁵⁾のイオンビーム蒸着法による合成をさきがけとして多くの 低圧下での合成技術が出現した.また時を同じくして立方晶ボロンナイトライド (c-BN)が 1957年,Wentorf⁽³⁶⁾によって発見された.この c-BN はダイヤモンドと同様 の硬度,優れた耐熱性,トライボロジー特性を有することが知られている.このよう な背景を踏まえ,薄膜特性向上をねらいとした窒化物への軽元素添加はハードコーテ ィング分野における新しい試みといえよう.

1.4 本論文の目的

近年,金属材料等の表面に数ミクロンのセラミックス系硬質膜を被覆する表面処理技術 が切削工具,摺動部材,精密金型をはじめとする工業分野で注目されている.カソディック アークイオンプレーティング法は物理蒸着法の1つであり,固体のアーク放電および高電圧 のバイアスを印加するため,作製した膜には準安定な結晶構造が出現し,また優れた物理 的特性を有することが知られている.これらの薄膜は,通常立方晶形のものが製品として使 用されているが,立方晶から六方晶に相転移する領域で,特に高硬度を示すとの報告があ る⁽¹⁸⁾.しかしながら,電子顕微鏡やX線回折を用いた詳細な研究は報告例がなく,統一的 に理解されていないのが現状である.そこで本論文では,金属原子を2種類以上含んだ多 元系窒化物薄膜を作製し,X線回折法や高分解能透過型電子顕微鏡を用い,第2金属元 素量および相転移に対する物性変化と微構造との関係を系統的に明らかにすることを目的 とした.本論文は以下の7章からなる.

第1章では,セラミックス硬質薄膜の歴史を述べ,膜の性質・機能について詳述した.さらに現在の表面処理技術についてまとめ,本研究全体で使用したカソディックアークイオンプレーティング法の特徴を記した.これらを踏まえ本論文の目的および概要を述べた.

-4-

第2章では微小硬度,X線および電子顕微鏡による薄膜の評価方法についてとりまと めた.

第3章ではAl, V, Cr, ZrをTiNに添加して3元系窒化物を作製し, 微構造および微小硬 度を調べた.これら解析からこれまで産業界において幅広く適用されているTi_{1-X}Al_xN との比較,検討を行い,第2金属元素の2元系窒化物への固溶形態に関する議論を行っ た.さらにこの知見を踏まえ,高融点元素のイオン化を実現しTi_{1-X}W_xNの固溶体薄膜 の作製を行った.

第4章では B1(NaCl)型金属窒化物と B4(Wurtzite)型金属窒化物の3元系窒化物固溶体の相変態を検討し,最大硬度との相関を議論した.具体的には A1 含有量の異なる Cr_{1-X}Al_xN および Zr_{1-X}Al_xN の作製および分析である.

第5章ではAIN-CrN系におけるAI固溶範囲がTiNのそれより広いことを踏まえ,Crを Ti_{1-x}Al_xNに添加しAI固溶限界の拡張を試みた.さらに熱処理による薄膜の高温安定性に ついて示し,熱拡散が薄膜構造に与える影響について議論した.

第6章では軽元素添加による新たな硬質薄膜を作製し,微小硬度,格子定数,結晶 構造,耐酸化性を評価し,既存の薄膜を凌駕する材料の創製を試みた.

第7章ではこれまで示した硬質薄膜特性の結果を踏まえ,準安定相材料の微小硬度 および微構造の相関についてとりまとめた.これら一連の研究を系統的に整理,把握 することにより今後の硬質薄膜創製への大きな指針となり得ると考える.

第1章に関する参考文献

- (1) M. Wittmer, J. Noser, H. Melchior, J. Appl. Phys., 52 (1981), 6659.
- (2) A. J. Perry, J. Vac. Sci Technol., A4 (1986), 2140.
- (3) O. Knotek, F. Löffler, H. J. Scholl, Surf. Coat. Technol., 45 (1991), 53.
- (4) J. P. Terrat, A. Gaucher, H. Hadj-Rabah, R. Y. Fillit, Surf. Coat Technol., 45 (1991), 59.
- (5) J. Vetter, E. Lugscheider, S. S. Guerreio, Surf. Coat. Technol., 98 (1998), 1233.
- (6) P. C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987), 53.
- (7) W. D. Sproul, J. Vac. Sci Technol., A4 (1986), 2874.
- (8) O. Knotek, W. D. Münz, T. Leyendecker, J. Vac. Sci Technol., A6 (1986), 2173.
- (9) O. Knotek, M. Böhmber, T. Leyendecker, J. Vac. Sci Technol., A6 (1986), 2695.
- (10) O. Knotek, M. Atzor, F. Jungbult, H. G. Prengel, Surf. Coat. Technol., 39/40 (1989), 445.
- (11) T. Leyendecker, O. Lemmer, S. Esser, J. Ebberink, Surf. Coat. Technol., 48 (1991), 175.
- (12) Y. Tanaka, T. M. Gür, M. Kelly, S. B. Hagstrom, T. Ikeda, K. Wakihira, H. Satoh, J. Vac. Sci Technol., A10 (1992), 1749.
- (13) J.E. Daalder, Physica, C104 (1981), 91.
- (14) A. Münster, W. Ruppert, Z. Electronchem., 57 (1953), 564.
- (15) J. B. Powell, Vapor Plating, John Wiley & Sons Inc. (1955).
- (16) D. M. Mattox, J. Vac. Sci Technol., 10 (1973), 47.
- (17) R. F. Bunshah, A. C. Raghuram, J. Vac. Sci Technol., 9 (1972), 1385.
- (18) W. D. Münz, J. Vac. Sci. Technol., A 4, (1986), 2717.
- (19) U. Wahiström, L. Hultman, J. E. Sundgren, F. Adibi, I. Petrov, J. E. Greene, Thin Solid Films, 235 (1993), 62.
- (20) T. Ikeda, H. Satoh, Thin Solid Films, 195 (1991), 99.
- (21) Y. Setsuhara, T. Suzuki, Y. Makino, S. Miyake, T. Sakata, H. Mori, Nucl. Instr. and Meth in Phys. Res., B 106 (1995), 120.
- (22) M. Zhou, Y. Makino, M. Nose, K. Nogi, Thin Solid Films, 339 (1999), 203.
- (23) Y. Massiani, P. Gravier, L. Fedrizzi, F. Marchetti, Thin Solid Films, 261 (1995), 202.
- (24) O. Knotek, M. Atzor, A. Barimani, F. Jungblut, Surf. Coat. Technol., 42 (1990), 21.
- (25) C. Wiemer, F. Lévy, F. Bussy, Surf. Coat. Technol., 68-69 (1994), 181.
- (26) J. Musil, H. Jankovcova, V. Cibulka, Czech. J. Phys., 49 (1999), 359.
- (27) L. Hultman, M. Shinn, P. B. Mirkarimi, S.A. Barnett, J. Crystal Growth, 135 (1994), 309.
- (28) H. Randhawa, P. C. Johnson, R. Cunningham, J. Vac. Sci. Technol., A 6, (1988), 2136.
- (29) J. Vetter, H. J. Scholl, O. Knotek, Surf. Coat. Technol., 74-75 (1995), 286.
- (30) L. Pauling, The Nature of The Chemical Bond, Cornell Uni. Press, Ithaca, New York

(1960).

- (31) Y. Makino, ISIJ International, 38 (1998), 925.
- (32) F. P. Bundy, H. S. Hall, H. M. Strong, R. H. Wentrorf, Nature, 176 (1955), 51.
- (33) B. V. Derjaguin, D. V. Fedoseev, V. M. Lukyanovich, B. V. Spitzin, V. A. Ryabov, A. V. Lavrentyev, J. Crystal Growth, 2 (1968), 380.
- (34) W. G. Eversole, U. S. Patent, 3030187, 3030187 (1958).
- (35) A. Aisenberg, R. Chabot, J. Appl. Phy., 42 (1971), 2953.
- (36) Wentorf R. H. Jr, J. Chem. Phys., 26 (1957), 956.

Fig. 1-1 Classification of surface finishing.

Fig. 1-2 Schematic images of cathodic arc method.

-9-

Fig. 1-3 Model of cathode surface.

B1/B4	AlN (at%)	GaN (at%)	InN (at%)
TiN	65.3	87.6	74.3
VN	72.4	90.8	81.2
CrN	77.2	92.7	83.9
ZrN	33.4	65.4	43.6
NbN	52.9	80.8	63.3
HfN	21.2	50.2	29.2
WN	53.9	81.5	64.3

Table 1-1 Maximum Solubility of B4-type into B1-type transitions metal nitride ⁽³¹⁾.

第2章 薄膜評価方法

2.1 マイクロビッカース硬さ試験法

マイクロビッカース硬さ試験は押し込み硬さ試験法の一つであり,圧子を試料に打ち込み,それによる塑性変形に対する抵抗を測定する.マイクロビッカース硬さHは対面角 136 °のダイヤモンド正四角錐圧子を試料に打ち込み,その際の荷重F(N)をくぼみ表面 積S(m²)で除した値であり,測定するくぼみ対角線長さd(m)から次式で求められる.

$$H = \frac{F}{S} = 1.854 \frac{F}{d^2}$$
(2-1)

このビッカース硬さ試験では、均質材料に対して試験荷重に無関係に一定の硬さ値を 測定できるため、材料に応じて試験荷重を選択しながら同一尺度で硬さを求めることがで きるという特徴を有する.

本実験で用いた株式会社アカシ製のマイクロビッカース硬さ試験装置:「MVK-H2」は低 荷重で圧子を打ち込むことができ、微小硬さ試験と呼ばれ、微小部分の硬さ測定や薄膜の 硬さ測定にも使用されている、しかしながら、薄膜の硬さを測定する場合、圧子の打ち込み により形成されたくぼみの深さと薄膜の厚さとの関係を考慮する必要がある、本研究では薄 膜の硬さ測定における試験荷重の影響を調べるため,予備的測定として,試験荷重を25× 10⁻²~20Nと変化させて膜厚約5μmのTiN薄膜の硬さを測定した.Fig.2.1に試験荷重と微小 硬さ、膜厚に対するくぼみ深さの関係を示す.バルク材TiNの硬さは約20GPaであり、測定で は試験荷重25×10⁻²Nのときにバルク材と同等な値を示した.しかし,試験荷重が10×10⁻²N 以下では,測定された硬さ値は20GPa以上となり,さらに測定値のばらつきも大きくなった。 ビッカース硬さ試験の原理は塑性変形を利用するものであるが、試験荷重が小さい場合、く ぼみが弾性回復を起こし小さくなるため,硬さ値は真の硬さより大きくなった.また,試験荷 重が小さいほどくぼみの大きさは小さく,測定する対角線長さの測定誤差は大きくなり,硬さ 値にばらつきが生じやすくなる.一方,試験荷重が2Nより大きい場合,圧子は深く打ち込ま れ,基材の影響を受ける、本実験で用いた超硬合金基板の硬さは約17GPaでTiNの値よりも 小さいため、試験荷重が大きくなるにつれて薄膜の硬さは減少した、この結果から、測定さ れる薄膜の硬さ値は試験荷重により変化することを確認し、真の薄膜硬さを得るためにくぼ みの対角線長さが膜厚以下になるように試験荷重を選択した.

2.2 ナノインデンテーション法による機械的特性の評価

薄膜や材料の表面硬さは先端がダイアモンドチップからなる正三角錐(バーコビッチ型) の圧子を材料表面に押し込み,そのときの圧子にかかる荷重 P と圧子の下の射影面積 A から求める.Fig.2-2 に一般的な荷重-変位曲線を示す.荷重-変位曲線より最大負荷(P_{max}: Max Force)および最大変位(h_{max}: Max Depth)を読み取ることができる.S(Contact Stiffness)は(2-2)のように定義される.

$$S = \frac{dP}{dh} \mid h = h_{\max}$$
(2-2)

h_cは(2-3)により定義される.

$$h_c = h_{\max} - \varepsilon \frac{P_{\max}}{S}$$
(2-3)

εはバーコビッチ圧子においては 0.75 を用いる.

また S は序か除荷曲線における最大負荷時の接線の傾きを示している.除荷曲線は下記のべき乗則が成立する.

$$P = A(h - h_f)^m \tag{2-4}$$

(2-4)において A ·h_f ·m は定数であり,除荷曲線より最小自乗法を用い決定した.さらに (2-4)を微分することにより下記の式が得られる.

$$\frac{dP}{dh} = Am(h - h_f)^{m-1} \tag{2-5}$$

(2-5)式に A ·h_f ·m を代入し, h=h_{max} として S を算出した.

2.2.1 硬度計算方法

硬度(H)は(2-6)により定義され、ここで A_c(Projected contact area)は押し込み時の圧子の 試料への投影面積となる.

$$H = \frac{P_{\text{max}}}{A_c} \tag{2-6}$$

バーコビッチ圧子(対頂角 65°)の場合, A_c は(2-3)と以下の式で関係づけられる. $A_c = 3\sqrt{3}h_c^2 \tan^2 65 = 24.5h_c^2$ (2-7)

2.2.2 弾性率計算方法

弾性率は(Er)は(2-8)により定義される.

$$E_r = \frac{S}{2} \sqrt{\frac{\pi}{A_c}}$$
(2-8)

薄膜に対し平行および垂直方向をそれぞれ X,Y とする 2 次元座標を定める. そしてそれ ぞれの方向のひずみ ϵ_X および ϵ_Y によりポアソン比:vは(2-9)により定義される.

$$v = -\frac{\varepsilon_Y}{\varepsilon_X} \tag{2-9}$$

応力 σ ,ヤング率*E*により ε_X および ε_Y は以下の式により示される.

$$\varepsilon_X = \frac{\sigma}{E} \tag{2-10}$$

$$\varepsilon_{\gamma} = -\nu \frac{\sigma}{E} \tag{2-11}$$

(2-10)および(2-11)は1方向の応力が作用した場合のXおよびYのひずみとなる.この系に2方向の応力が作用した場合のそれぞれのひずみは重ね合せの原理により以下のように示される.

$$\mathcal{E}_X = \frac{\sigma_X}{E} - \nu \frac{\sigma_Y}{E} \tag{2-12}$$

$$\varepsilon_Y = -v \frac{\sigma_X}{E} + \frac{\sigma_Y}{E}$$
(2-13)

(2-12)および(2-13)を行列として表記すると以下のようになる.

$$\begin{cases} \varepsilon_{X} \\ \varepsilon_{Y} \end{cases} = \begin{bmatrix} l/ & -\nu/E \\ -\nu/E & l/E \end{bmatrix} \begin{cases} \sigma_{X} \\ \sigma_{Y} \end{cases}$$
(2-14)

(2-14)の式を応力について解くと以下のようになる.

$$\begin{cases} \sigma_{X} \\ \sigma_{Y} \end{cases} = \frac{E}{1 - v^{2}} \begin{bmatrix} 1 & v \\ v & l \end{bmatrix} \begin{cases} \varepsilon_{X} \\ \varepsilon_{Y} \end{cases}$$
(2-15)

ナノインデンテーション法による硬度値測定は Y 方向荷重に対する X 方向の変形により 評価する. 深さ方向の変形 $\epsilon_{Y}=0$ とし(2-15)の σ_{Y} は以下のように示される.

第2章

$$\sigma_Y = \frac{E}{1 - v^2} \varepsilon_X \tag{2-16}$$

(2-8)に示される弾性率は押し込み試験時の試料および圧子の複合弾性率となる。試料および圧子のヤング率をそれぞれ *E*₁, *E*₂とし,弾性率の複合則により以下のように示される.

$$\frac{1}{E_r} = \frac{1}{E_1} + \frac{1}{E_2}$$
(2-17)

ここで E1 および E2 は(2-16)によりポアソン比を用いて以下のように示される.

$$\frac{1}{E_r} = \frac{1 - v_s^2}{E_s} + \frac{1 - v_i^2}{E_i}$$
(2-18)

2.3 X線による物質同定

作製した薄膜の組成を調べるため,エネルギー分散型X線分光法およびX線回折法を用いた.前者は元素の定性・定量分析,後者は物質同定および結晶構造解析が可能であり, 薄膜のみならずバルク材の分析・評価にも一般的に用いられている.

2.3.1 エネルギー分散型X線分光(EDX)法

EDX法による測定では,試料に電子線を照射させ,放出してくる特性X線のエネルギー を半導体検出器で測定することにより元素分析を行う.特性X線の発生原理をFig.2-3に示 す.試料に電子線を照射させると,入射電子により試料構成元素の低エネルギー準位に ある電子が励起そして弾き跳ばされ,そこに空位が生じる.そして,その空位にエネルギ ー準位の高い電子が遷移する.この遷移前後のエネルギー準位の差に相当するエネル ギーが電磁波として放出されたものが特性X線である.エネルギー準位は物質固有であり, その差のエネルギーである特性X線のエネルギーを測定することにより元素が同定でき る.

EDX装置は電子線を用いる電子顕微鏡に付属的に設置されるため,試料を電子顕微鏡により観察しながら元素分析を行うことが可能である.本研究でも,電子線を絞ることにより局所的に元素を調べる点分析や元素の存在する位置を電子顕微鏡像に対応させる元素マッピングを行い,構成元素を同定した.また,エネルギー強度から各元素量を見積もった.しかしながら,原子番号10以下の元素から放出される特性X線の強度は原子番号が小さいほど弱くなるため,Nなどの軽元素の定量化には適用できなかった.

2.3.2 X線回折(XRD)法

結晶中では,原子は周期的に配列して空間格子を形成している.XRD法では,空間格子の間隔以下または同程度の長さの波長をもつX線を用いて,回折現象を生じさせる. Fig.2-4のように波長 λ のX線を結晶面に対して角度 θ で入射すると,各原子の軌道電子によりトムソン散乱を起こし,X線の球面波を生じさせる.このとき,ある特定方向の散乱波は回折現象を起こして強め合う.その方向は,次のBraggの条件を満たす方向である. 2 $d\sin\theta = n\lambda$ (2-19)

ここで, dは結晶の格子面間隔, nは整数である.XRD法では角度のを変化させながらX 線を試料に照射し, 回折X線の強度を測定する.正確なX線の波長が求められているため, 強度がピークを生じるBragg角度を式(2-2)に代入することで面間隔dを求めた.この各格子 面に対する面間隔を標準粉末物質のデータを集めたJCPDS(Joint Committee on Powder Diffraction Standards)カードの値と比較することにより,物質同定を行った.このようにXRD 法は結晶中の原子の周期的配列を調べる方法なので,非晶質物質には適用できない.

また,物質に固有な格子定数は格子面間隔から幾何学的な関係により計算で求めることができる.立方晶系の場合,格子定数*aと(h k l)*面の面間隔dの間には,

$$\frac{l}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} \tag{2-20}$$

関係がありこの関係から格子定数を求めた.さらに,各面間隔に対応した回折ピークの強度比から試料の結晶面の配向性も調べた.

本研究では理学電機株式会社製のX線回折装置:「RTP-300RC」を使用した.CuターゲットのX線管球に管電流100mA,管電圧50kVを印加してX線を発生させ,その中で波長 0.154nmのKα線を入射X線として用いた.また,回折角度はステップ幅0.02°,1ステップ当 たり0.5 sec間測定した.

2.4 表面形態および断面組織の観察

薄膜表面の摩擦係数や平滑性は摺動特性を大きく左右させる.平滑性に関して,AIP 法による作製では薄膜表面にドロップレットと呼ばれる溶融粒子が付着することが知られて いる.本研究ではターゲットの組成および融点が薄膜表面形態へもたらす影響を調べる ため,走査型電子顕微鏡(SEM)による観察を行った.SEMは,細く絞った電子線を偏向コ イルにより試料表面の微小領域に照射しながら走査し,放出される2次電子を検出すること により,試料表面の像を得る.用いたSEMは株式会社日立製作所製:「S-3100H型」であ る. また,一般に薄膜はその作製方法や条件にともなって特有な断面組織を形成すること は多くの研究からいわれている.特に,ガス圧力と温度の変化に対する薄膜の組織構造 変化についてはモデル化もされている.薄膜の表面形態の観察と同様に,ターゲットの組 成や微構造などに対する薄膜断面組織の変化についてもSEMを用いて調べた.

2.5 透過型電子顕微鏡による微細構造解析

SEMによる観察では試料表面に関する像・情報が得られる.それに対して,透過型電子 顕微鏡(TEM)は,SEM同様に電子線を用いるが,試料のミクロな内部構造を観察でき,試 料内部の情報が得られる.

TEMによる観察では,像観察モードと回折像モードの2つがある.TEMの構造と光路図を Fig.2-5に示す.電子源から放出された電子は高電圧で加速され,収束レンズで収束されて 電子線を形成する.分解能に寄与する電子線の波長は,加速電圧に依存するが,通常,X 線より2桁以上短い.単結晶試料に平行な電子線が照射されると,一部の電子線は散乱し, 結晶内を直進して結晶を通過する透過波とX線同様に結晶内で回折現象を起こして入射線 に対しBraggの角度で回折される回折波に分かれる.透過波は対物レンズの後焦点面に焦 点を結んだ後,中間レンズ・投影レンズで拡大され,蛍光板上に像を形成する.これが,顕 微鏡像である.

結晶試料をTEMにより観察すると顕微鏡像にはコントラストが現れる.Fig.2-6に示すように 結晶Aは入射電子線に対しBraggの条件を完全に満たすものとし,結晶Bは満たさないもの とする.すなわち,回折波の強度は結晶Aに対しては大きく,結晶Bに対しては小さくなる.し たがって,対物絞りを透過波に合わせると,透過波の強度は結晶Aよりも結晶Bのほうが大き くなる.つまり,像としては,結晶Aは暗く,結晶Bは明るくなり,コントラストが得られる.このよ うに透過波に絞りを合わせて観察する方法を明視野観察法という.それに対して,回折波に 対物絞りを合わせて,透過波を遮断する観察方法は,暗視野観察法という.明視野像・暗視 野観察のコントラストは,いずれも結晶がBraggの回折条件を満足するか否かによるものなの で,回折コントラストと呼ばれる.

電子線はX線に比べて波長が短く,試料原子との相互作用が強く,透過力が小さい.その ため,試料の厚さを0.1 µm以下にする必要がある.薄膜試料は,超硬合金基板から剥離さ せた薄膜を用いた.薄膜には内部応力が発生するため,製膜時間を長くして厚めに薄膜を 作製すると剥離しやすくなる.剥離させた薄膜はMoメッシュ上に接着し,Arイオンによりエッ チングし,試料の厚さを薄くした.

Microhardness

Fig.2-1 Changes in microhardness and indentation depth against load in TiN films on WC-Co substrate. The microhardness of substrate was 18GPa and the films thickness was 5µm.

Fig.2-2 The Schematic representation of load versus indenter displacement.

Fig.2-3 Schematic showing characteristic X-ray emitted from specimen.

Bragg's equation: $2dsin\theta = n\lambda$

Fig.2-4 Illustration of Bragg's law in X-ray diffraction.

第2章

Fig.2-5 Schematic of transmission electron microscopy.

Fig.2-6 Classification for bright and dark field technique.

第3章 チタン系窒化物の微小硬度および微細構造解析

3.1 緒言

 $Ti_{1-X}Al_XN^{(1)}$ 薄膜は切削工具などの機械部品の保護膜として適用されている.この Ti_1-XAl_XN は Al 含有量に対応して興味深い物性挙動を示すことからその評価にも注 目が寄せられている.Ikeda ら⁽²⁾は Al 含有量に対応して立方晶,六方晶,そしてこ れら混合相の形成について示した.また Tanaka⁽³⁾らは薄膜硬度値に対する工具の寿 命の評価を報告した.耐摩耗性の改善の為 $Ti_{1-X}Al_XN$ の特性を凌駕する試みがなさ れている.それは TiN への異種元素の添加であり,この取り組みにより Ti 系硬質薄 膜の方向性が示唆された.

固体潤滑剤として用いられている材料には Au および Ag などの軟質金属, MoS₂ および WS₂のような層状の無機化合物, PTFE などのポリマーなどが挙げられる. これらは 材料自体がせん断変形しやすい性質があり高温環境において用いられる. MoS₂, WS₂およびグラファイトは層状構造を有し,その潤滑特性は層状間の結合強 さ,原子間の a および c 軸に比が関係することが知られている⁽⁴⁾.その他の金属元 素および潤滑特性の相関は Jamison⁽⁵⁾らによっても報告されている.その報告におい て周期表の,,族の金属元素は硫黄またはセレンと結合すると層状構造を持ち, 良好な潤滑特性を有することが示されている.さらに Al, Cr, Zr は高温および腐食環 境において Al₂O₃・Cr₂O₃・ZrO₂ などの酸化物を形成し,これら酸化物が実際のドラ イ切削において保護膜としての機能を果たすことが期待できる.このような各添加 金属元素の特徴を踏まえ Ti 系窒化物の開発は進められてきた.例えば,Randhawa ら⁽⁶⁾は Ti_{0.25}-Zr_{0.75}, Ti_{0.5}-Zr_{0.5}, Ti_{0.75}-Zr_{0.25} ターゲットにより組成比の異なる Ti_{1-X}Zr_XN 薄膜を作製し,その薄膜の工具評価から TiN よりも耐熱性が優れることを示した. また Vetter ら⁽⁷⁾は Ti_{1-X}Cr_XN の最高硬度が X=0.28 において得られることを示した.

高融点金属を含むナノコンポジット等に代表される薄膜は近年の硬質薄膜分野でのキーワードとなっており,Musil ら⁽⁸⁾は Ti,Zr,Y,Cr,Ni,Si,Wの組合せにより40GPa 以上の硬度を示すことを実証されてきた.このなかでも特にWをベースとした窒化物は半導体等の電子部品への保護膜として研究されている.この $W_{1-x}N_X$ はなりの困難さから1960年代、量子力学的アプローチによって結晶構造モデルが推定されてきた⁽⁹⁻¹¹⁾.その後 $W_{1-x}N_X$ はスパッタリング法により作製され物性の変化が示されてきた.Meunier ら⁽¹²⁾はアモルファスから微結晶への構造変化を示し,Shen ら⁽¹³⁾はアニール処理に伴う残留応力の変化を調べた.さらに $W_{1-x}N_X$ の特性を踏まえWのTiNへの添加も試みられた.しかしながら,TiNおよびWNの2元系窒化物の

- 24 -

相分離を示し,単一な固溶体薄膜は作製できなかった⁽¹⁴⁻¹⁶⁾.

またカソディックアークイオンプレーティング法では薄膜合成過程においてカソ ード近傍にイオン相および蒸気相が発生する.この蒸気相は表面粗度を悪化させる ドロップレット(マクロパーティクル)の形成と密接な関係があると知られている. 薄膜の平滑性およびカソード材料の融点との相関は Eruturk⁽¹⁷⁾らによって報告され ている.その報告では高融点金属元素を含有したカソードによるアーク放電はドロ プレット発生の低減を導くことが示されている.W の融点は 3773K であることから も平滑性が良好な薄膜作製が可能であると考えられる.

本章ではTi_{1-x}Al_xNとの対比を踏まえTi_{1-x}Cr_xN, Ti_{1-x}Zr_xN, Ti_{1-x}V_xNをカソディック アークイオンプレーティング法により作製し,第2金属元素添加に伴う,Ti系窒化物 の微小硬度および微構造変化を調べた.さらにこれまでイオン化が困難であるWをベ ースとした窒化物を創製し合成条件を検討した.この結果を踏まえTi_{1-x}W_xNの合成お よび評価を行った.

3.2 実験方法

3.2.1 チタン系窒化物の作製

Ti_{0.5}-Al_{0.5}, Ti_{0.5}-Cr_{0.5}, Ti_{0.5}-Zr_{0.5}, Ti_{0.5}-V_{0.5} 合金および金属ターゲットを用いて Ti_{0.5}Al_{0.5}N, Ti_{0.5}Cr_{0.5}N, Ti_{0.5}Zr_{0.5}N, Ti_{0.5}V_{0.5}N, TiN, CrN, ZrNを作製した.これら薄 膜の評価から第2金属元素のTiNへの添加効果を確認した.さらにTi_{1-X}-Al_X, Ti_{1-X}-Cr_X Ti_{1-X}-Zr_X (0<X<1.0)合金ターゲットを用いてTi_{1-X}Al_XN, Ti_{1-X}Cr_XN, Ti_{1-X}Zr_XN (0<X<1.0) を作製した.ターゲットと基板(WC-CoおよびSi)の距離は平行に150mmに配置した. 試料作製前に6.6Paのアルゴン雰囲気においてArエッチングを行い,そして2×10⁻²以 下においてイオンボンバード処理を行った.成膜条件は3.3Paの窒素雰囲気においてバ イアス電圧20V,アーク電流100Aとし,処理時間を1200sとした.試料作製後,微小 硬さ,物質同定,組織観察を行いAl,Cr,ZrがTi系窒化物薄膜の微小硬さおよび微構 造に及ぼす影響を調べた.

3.2.2 窒素含有量の異なる W_{1-x}N_x 薄膜の作製

タングステン(W)カソードを用いて窒素およびアルゴンの全圧を 8.7Pa とし,バイ アス電圧 20V,アーク電流 120A において W_{1-x}N_xを作製した.N₂/{Ar+N}のように 示される窒素流量比をそれぞれ0,0.1,0.2,0.35,0.4,0.5,0.8,1.0 とした.

3.2.3 Ti_{1-X}W_XN 薄膜の作製

W_{1-x}N_x合成結果を踏まえ合金カソードを用いてTi_{1-x}W_xNの合成および評価を行った.

3.3 結果および考察

3.3.1 TiNへの異種元素の添加

Ti_{0.5}-Al_{0.5}, Ti_{0.5}-Cr_{0.5}, Ti_{0.5}-Zr_{0.5}, Ti_{0.5}-V_{0.5} 合金および金属ターゲットを用いて Ti_{0.5}Al_{0.5}N, Ti_{0.5}Cr_{0.5}N, Ti_{0.5}Zr_{0.5}N, Ti_{0.5}V_{0.5}N, TiN, CrN, ZrN を作製した.作製し た TiN および 3 元系窒化物薄膜の X 線回折パターンを Fig.3-1 に示す.Ti_{0.5}Al_{0.5}N お よび Ti_{0.5}Cr_{0.5}N 薄膜のピークは TiN の各面と比較して高角度側に遷移し,一方 Ti_{0.5}Zr_{0.5}N は低角度側に遷移していることが確認できた.従来,3 元系薄膜の形成過 程において AI 原子が NaCl 型の結晶構造を持つ TiN 中の Ti 原子と置換し,置換型 固溶体を形成すると報告されてきた⁽¹⁸⁻¹⁹⁾.Fig.3-1 の結果からも同様な現象が確認さ れ,AI の固溶に伴い Ti と AI の原子半径の差から格子定数(面間隔)の減少が生じ, 回折角度が高角度側に遷移したと考えられる.Ti_{0.5}Cr_{0.5}N においても同様な解釈が できる.それに対し,Ti_{0.5}Zr_{0.5}N 薄膜においては Ti 原子に比べ Zr 原子の原子半径の 方が大きいため,格子定数の増加が生じ,回折角度が低角度に遷移したと考えられ る.本研究の結果はピークの遷移から固溶体形成が確認できるが,作製方法の違い が化合物形成に影響を及ぼす.一例としてはマグネトロンスパッタリング法で作製 した 3 元系薄膜の組成は Ti_{1-x}Cr_xN では TiN, CrN, Cr₂N で構成され, Ti_{1-x}Zr_xN で は TiN, ZrN で構成されるといったものである⁽²⁰⁾.

固溶体の形成により薄膜の物性は固有の値を持つようになる.そこで格子定数の 測定を行ったところ,Table 3-1 に示すように TiN の 0.423nm から Ti_{0.5}Al_{0.5}N は 0.418nm へと,Ti_{0.5}Cr_{0.5}N では 0.419nm へとそれぞれ減少し,Ti_{0.5}Zr_{0.5}N では 0.446nm へと増加していることが確認できた.また Ti_{0.5}V_{0.5}N においては回折角度の遷移は顕 著に現れなかった.Ti_{1-X}V_XN の形成相については(Ti,V)N, (Ti,V)₂N およびこれら混 合相のいずれかに分類されるとの報告がなされている⁽²¹⁾.Ti_{0.5}V_{0.5}N においては不純 物ピークが確認されなかったこと,そして TEM 観察の EDX 分析結果から偏析が見 られなかったことより固溶体が形成されたと考えられる.

Table3-1に示されるように2元系薄膜であるTiN, CrN, ZrNの硬度は14 GPa~20 GPa だった.3元系薄膜であるTi_{0.5}Al_{0.5}N, Ti_{0.5}Cr_{0.5}N, Ti_{0.5}Zr_{0.5}Nは30 GPa 前後であった. しかし, Ti_{0.5}V_{0.5}Nのみ24 GPaとなり3元系薄膜のうち最も低い硬度を示した.

また作製したすべての薄膜断面組織は柱状構造と呼ばれるPVD法特有の構造を有 し,顕著な違いは観察されなかった.しかし,表面観察の結果では2元系薄膜は3元系 薄膜に比べ平滑であり,ドロップレットは僅かであり大きさも最大で約4µmであった. しかし3元系薄膜において表面が粗く,ドロップレットの数が多かったのはTi_{0.5}Cr_{0.5}N およびTi_{0.5}V_{0.5}Nであり,ドロップレットの大きさは最大で約9µmであった.上述した ようにドロップレットの発生数はカソード融点との相関があるとされている.2元系 状態図⁽²²⁾に示される液相融点はTi_{0.5}-Al_{0.5}およびTi_{0.5}-Zr_{0.5}においては1600°C,そして Ti_{0.5}-Cr_{0.5}, Ti_{0.5}-V_{0.5}においてはそれぞれ1400°C, 1500°Cとなる.以上を踏まえ液相融 点の差が薄膜の表面形態に影響を及ぼしたと考えられる.

3.3.2 Ti_{1-X}Al_XN, Ti_{1-X}Cr_XN, Ti_{1-X}Zr_XNの微小硬度および微細構造変化

Fig.3-2にAl含有量Xに対するTi_{1-X}Al_XNのマイクロビッカース硬さ値の変化を示す. X=0のとき,すなわちTiN薄膜の硬さは約20GPaで,バルク材のTiNとほぼ同等な値で あった. $0\le X\le 0.6$ の範囲では,Xが増加するとともに硬さは徐々に増加し,X=0.6で最 大値32 GPaを示した.それに対して, $0.7\le X\le 1.0$ の範囲では,Xの増加にともない,硬 さは約30GPaから14GPaまで急激に減少した.X=1.0のAlN薄膜の硬さ値もバルク材の 値とほぼ同等であった.このように,X=0.6~0.7を境にして,Al含有量Xの増加にとも なう硬さの変化は増加から減少へと傾向が大きく変化することを確認した.

Al含有量Xに対するTi_{1-x}Al_xN薄膜硬さの変化の原因を調べるため,X線回折(XRD) 法により薄膜を構成する物質を同定した.Fig.3-3にAl含有量X=0,0.1,0.3,0.5,0.6, 0.7,0.8,0.9,1.0のTi_{1-x}Al_xNのXRDパターンを示す.X=0の回折パターンでは,NaCl 型結晶構造をなすTiNの(111)および(200)面に対応するピークが確認できた. $0 \le X \le 0.6$ の範囲においてこれらのピークはXの増加にともない,高角度側へ遷移していた.こ のピークの遷移は,NaCl型の結晶構造を維持しながら,TiN結晶中のTiが原子半径の 小さなAlと置換した構造をTi_{1-x}Al_xNがなすためであるといわれている⁽¹⁾.さらに,各 面に対応するピークの相対強度比から配向性について調べた結果,NaCl型結晶構造の Ti_{1-x}Al_xN薄膜に関して,Al含有量 $0 \le X \le 0.3$ の範囲では(111)面が配向していたが, $0.5 \le X \le 0.6$ では徐々に(100)面の配向性を示すようになったことを確認した.一方,Al

含有量が0.7≤X≤1の範囲ではAINと同様なウルツ鉱型結晶構造の(1010),(0002),(1011)

面に対応する新しいピークがみられた.これらもNaCl型結晶構造と同様に,Al含有量 Xが増加するにつれ高角度側へシフトしていた.Ti_{1-X}Al_XNの格子定数の変化をAl含有 量Xに対してFig.3-4に示す.TiN薄膜の格子定数は0.423nmであり,標準データである 0.424nmとほぼ一致した.Al含有量 $0 \le X \le 0.6$ におけるNaCl型結晶構造の格子定数はXと ともに徐々に減少し,X=0.6では0.415nmであった.二元系合金において,合金の格子 定数は成分の濃度に比例して変化することが知られており,Vegardの法則と呼ばれて いる⁽²³⁾.三元系Ti_{1-X}Al_XNの格子定数に関しても類似した傾向を示した.

PVD法により作製したTi_{1-X}Al_xN薄膜のAl含有量の増加にともなう結晶構造の変化 についていくつかの報告がなされている.イオンビーム支援蒸着法で作製した場合, Al含有量X=0.67まではNaCl型Ti_{1-X}Al_xNの単一相,X=0.71ではNaCl型とウルツ鉱型の 混合相,X=0.84ではウルツ鉱型の単一相であることを電子回折像の解析から示してい

- 28 -

る⁽²⁴⁾.マグネトロンスパッタリング法では,X=0.59まではNaCl型の単一相,それ以上 ではウルツ鉱型の単一相であったと報告している⁽²⁵⁾.さらにアークイオンプレーティ ング法によりTi_{1-X}Al_XNを作製し場合,XRDパターンからX=0.6まではNaCl型の単一相, X=0.85以上ではウルツ鉱型の単一相であったが,X=0.7では主成分はNaCl型によるピ ークとそれ以外の成分のピークがみられ,混合相であることが報告されている⁽²⁾.こ れらの報告をまとめると,立方晶Ti_{1-X}Al_XNはNaCl型の単一相になるという統一した結 果が得られているが,相変態後はその作製方法によりNaCl型とウルツ鉱型の混合相を 形成する場合,ウルツ鉱型の単一相になる場合が挙げられる.これら作製方法が異な ることによるAl固溶限界の違いは蒸発粒子のエネルギーの差が起因していると考え られる.気相からの薄膜合成は(1)原子の活性過程,(2)イオンまたはラジカルへの分 解過程,(3)周囲分子との反応および基板への堆積と過程により成立する.各PVD法に おいて蒸発粒子が有するエネルギーは真空蒸着法では0.3eV,スパッタリング法では 10eV,イオンプレーティング法では30~1keVそしてイオンビーム法では40~8MeVで あり,原子の励起状態を進行させる作製方法がよりAlの固溶限界を拡張すると考えら れる.

また Makino は合成実験ではなく,軌道電気陰性度を用いた計算により Ti_{1-X}Al_xN の Al 添加による NaCl 型からウルツ鉱型への結晶構造変化について説明している⁽²⁶⁾. 従来,化合物の化学結合を表現する原子パラメーターとして電気陰性度が用いられ ていたが,Makino は外殻電子の軌道角運動量の相違を考慮した軌道電気陰性度をバ ンドパラメータとして化合物の化学結合状態を計算している.Fig.3-5 に原子 A およ び B からなる化合物の結合モデルを示す.Harrison⁽²⁷⁾はこの結合モデルから s およ び p 電子からなる電子閃亜鉛型のバンドギャップエネルギーを(2-1)式のように提案 している. $\varepsilon_s(c) \cdot \varepsilon_s(a) \cdot \varepsilon_p(c) \cdot \varepsilon_p(a)$ は陽イオン性原子(c)および陰イオン性原子(a)の s 電子および p 電子のエネルギーを示す.

$$E_{g} = -\left[\left\{\varepsilon_{p}(c) - \varepsilon_{s}(c)\right\} + \left\{\varepsilon_{p}(a) - \varepsilon_{s}(c)\right\}\right]/2$$
(2-1)

(2-1)式と混成関数:*H* およびギャップ減少パラメーター:*S* には次式の相関が成立する.ここでα_sおよびα_pはs,p電子の軌道電気陰性度の差の絶対値,*n* は元素の平均 量子数を表している.

$$S = S(sp) = \left[\left\{ S_{sp}(A) + S_{sp}(B) \right\} / n_{av} \right]^{1/2}$$
(2-2)

$$H = H(sp) = (\alpha_s / n_{av})^{1/2} + (\alpha_p / n_{av})^{1/2}$$
(2-3)

ここで S_{sp}(i)は(2-4)式により定義される.

$$S_{sp}(i) = \left| \left(Z / r_s \right)_i^{1/2} - \left(Z / r_p \right)_i^{1/2} \right|$$
(2-4)

さらに phillips⁽²⁸⁾のモデルをベースに H および S により A-B 結合のイオン度は(2-5) 式のように示される.

$$F = \frac{H^2}{H^2 + 4S^2}$$
(2-5)

(2-5)式により NaCl(B1)型とウルツ鉱(B4)型の境界は *F=2S/H=0.5* を満たす領域により定義される.そして構成原子価電子 N および原子分率 X により(2-6)式に示す元素 A および B からなる組成関数 *f_{inv}*を導入する.

$$f_{inv} = \frac{4(X_A / N_A)(X_B / N_B)}{[(X_A / N_A) + (X_B / N_B)]^2}$$
(2-6)

(2.6)式を TiN・CrN・ZrN・AlN などの NaCl(B1)型またはウルツ鉱(B4)型を有する化 合物に具体的に適用し,結晶構造を生じる原子濃度が算出可能となる.

この計算から導かれた NaCl 型結晶構造をなす遷移金属窒化物 TiN に対するウル ツ鉱型窒化物 AlN の最大固溶度は X=0.653 である.本研究の結果では, NaCl 型か らウルツ鉱型へ結晶構造が遷移する Al 含有量 X, 言い換えれば, NaCl 型結晶構造 TiN への Al の最大固溶度は X=0.6~0.7 の間であり上述した結果と一致している.

走査型電子顕微鏡(SEM)により Ti_{1-X}Al_xN 薄膜の表面形態を観察した.Fig.3-6 に 示すように X が増加するにつれドロップレットが数多く観察され, X=0.7 以上にお いては薄膜の凹凸が見られた.Fig.3-7 にそれぞれ X=0,0.5,0.9 の Ti_{1-X}Al_xN 薄膜断 面組織の SEM 写真を示す. $0\le X\le 0.6$ の薄膜では,全ての薄膜から典型的な柱状構造 が観察され,Al 含有量 X に対する著しい差はみられなかった.しかしながら,X=0.7 で断面組織は急変し, $0.7\le X\le 1.0$ の薄膜では柱状構造は消失して結晶粒子は微細化 したことがわかった.微構造をより詳細に調べるため,透過型電子顕微鏡(TEM)に より Al 含有率 X=0.6,0.7,1.0 の Ti_{1-X}Al_xN 薄膜を観察した.Fig.3-8 に示すように, $0\le X\le 0.6$ の Ti_{1-X}Al_xN 薄膜では,大部分は 20nm 以下の微粒子からなるが, 100~200nm の粗大な結晶が点在しており,微粒子の粒界は明確ではなかった.さら に,X=1.0 の AlN は 20 nm 以下の微結晶であった. Fig.3-9 に Cr 含有量 X=0,0.2,0.4,0.5,0.6,0.8,1.0 における Ti_{1-X}Cr_XN の XRD パターンを示す.Ti_{1-X}Cr_XN は X の増加に伴い回折角度が高角度側に遷移している ことが確認できた.Ti_{1-X}Al_XN と同様に Ti と Cr の置換から生じた結果であると考え られる.Ti_{1-X}Al_XN と異なる点は X が 0~1.0 の全域にわたって立方晶を形成した点で あった.X 線回折法の結果から格子定数の測定を行ったところ,Fig.3-4 に示すよう に X=0 において 0.423nm から X=1.0 において 0.416nm を示し,Cr の増加に伴い格 子定数は減少した.Ti_{1-X}Cr_XN の組成に関しては Ti_{1-X}Cr_XN には Cr は 10at%しか固溶 せず組成は(Ti,Cr)N と(Ti,Cr)₂N の混合相になるといった報告がある⁽²⁸⁾.しかしなが ら本研究では異なった結果が得られ,単一相固溶体が形成された.さらに TiCr₂ 金 属間化合物が Ti_{0.4}-Cr_{0.6},Ti_{0.5}-Cr_{0.5} ターゲット内に含まれていたが,アーク放電によ り生じた熱非平衡状態により金属元素の活性化,励起が促され薄膜内に金属間化合 物が残留することはなく単一な固溶体薄膜が形成された.

Fig.3-2に示すようにTi_{1-x}Cr_xN最高硬度値におけるTiNの硬さ値20GPaから増加し, X=0.2で最高硬度値32GPaを示した.X=0.4以上では減少傾向を示し,X=1.0において 15GPaとなった.Ti_{1-x}Cr_xNの硬度値についてCrの含有量を変化させ測定を行った事 例があり,その報告ではCrが25~30at%で最高硬度37~39GPaが与えられると述べられ ている⁽²⁹⁾.Fig.3-10に示すように薄膜表面はX=0.4~0.5において9~10 μ mのドロップレ ットが確認され,表面が粗くなった.一方,Ti_{1-x}Cr_xNの断面組織はすべて柱状構造 を呈していた.これに対応してFig.3-11(a)に示すようにTi_{1-x}Al_xNで見られた結晶の 微細化は観察されず100~200nmの粒径が一様に分布していた.

Fig.3-12にZr含有量X=0,0.2,0.4,0.5,0.6,0.8,1.0のTi_{1-X}Zr_XNのXRDパターンを 示す.Ti_{1-X}Zr_XNはXの増加に伴い回折角度が低角度側に遷移していることが確認でき, さらにXが0~1.0の全域にわたって立方晶を形成した.格子定数の変化はFig.3-4が示す ように0.423nmから0.458nmへとZrの増加に伴い増加した.Donohueら⁽²⁹⁾は3種のPVD 法により作製したTi_{1-X}Zr_XNを格子定数の値を,それぞれXにおいて0.445nm (X=0.4), 0.453nm (X=0.6),0.459nm (X=0.8)と報告している.

Ti_{1-x}Zr_xNの微小硬度の変化をFig.3-2に示す.Ti_{1-x}Zr_xNの最高硬度値はTiNの硬さ値 20GPaから増加し,X=0.5で最高硬度値30GPaを示した.X=0.6以上では30GPaから減少 傾向を示し,X=1.0において16GPaとなった.Ti_{1-x}Zr_xNの硬度値についてZrの含有量を 変化させヌープ硬度の測定を行った報告があり,その報告ではZrがX=0.4~0.5で最高硬 度36GPaを示すとしている⁽³⁰⁾.さらにFig.3-13に示すように薄膜表面はX=0.4において 約5 μ mのドロップレットが確認され,表面が粗くなり,断面組織はすべて柱状構造を 呈していた.さらにTEMにより局所観察を行ったところ,Fig.3-11(b)に示すような Ti_{1-x}Al_xNにおいて見られた結晶の微細化は観察されず,100から200nmの粒径が一様 に分布していた.

- 31 -

これまで AI 元素添加に伴う TiN の結晶構造変化は AI 原子が Ti と置換により生じ ると Knotek⁽³¹⁾らによって述べられている.本章で示した 3 元系窒化物薄膜の XRD 法の結果から AI 原子と同様に Cr および Zr においても Ti と置換すると考えられ, この元素の置換は TiN の X 線回角度の遷移によって現れた.そして X 線回折角度 の遷移は格子定数の収縮または拡張を意味し,結晶構造の変化は Fig.3-14 ように模 式化できると考えられる.そして格子定数の変化は第2金属元素の原子半径が決定 すると考えられる.Table3-2 に示すように Ti の原子半径は 0.147nm となり Al,Cr, Zr の原子半径はそれぞれ 0.125nm, 0.143nm, 0.162nm である.以上のことから Ti に対する第2金属元素の原子半径の差が格子の収縮または拡張を導くと考えられる.

3元系窒化物薄膜の結晶構造は2元系薄膜の結晶構造が重要な要因となり,Ti_{1-X}Al_xN においてはTiNおよびAlN,Ti_{1-x}Cr_xNにおいてはTiNおよびCrN,Ti_{1-x}Zr_xNにおいては TiNおよびZrNの結晶構造がそれぞれ支配した.2種の金属比を変化させた時,始点 (TiN)と終点(AlN・CrN・ZrN)が同一の結晶構造である場合はXの値に関わらず立方晶 を形成した.それに対し,始点と終点の結晶構造が異なる場合,立方晶から六方晶へ と変化した.この変態点が第2金属元素の固溶限界となる.

TiNに第2金属元素を添加することにより硬度増加が確認できた.この増加は異種元 素添加に伴う欠陥の形成が一要因として挙げられる.微小硬度評価を塑性変形に対す る抵抗値と定義する場合,転位移動量がその硬度値を決定づける.本章において得ら れたTiNからの硬度上昇は固溶元素の寸法効果により欠陥が形成され,そしてこの欠 陥が転位移動量を抑制したことにより生じたと考えられる.

 $Ti_{1-x}Al_xN$, $Ti_{1-x}Cr_xN$, $Ti_{1-x}Zr_xN$ の最大硬度はそれぞれ固有なXにおいて得られた. Ti_xAl_xNの最大硬度は相変態に伴う母相の変化が起因して得られたと考えられる.そ してTi_xCr_xN, $Ti_{1-x}Zr_xN$ においては格子定数の変化を伴い, すべてのXにおいて立方 晶を示した.これら薄膜の最大硬度点は第2金属元素の固溶に伴う応力場が支配要因 となったと考えられる.この応力場は1次元, 2次元場などが挙げられるが共通してい るのは正弦波または余弦波による周期関数により表現されることである. $Ti_{1-x}Cr_xN$, $Ti_{1-x}Zr_xN$ の最大硬度はそれぞれX=0.2, X=0.5において得られ, この点において内在す る応力場が最大となり塑性変形を抑制したと考えられる.

3.3.3 窒素含有量がW_{1-X}N_Xの相変態に与える影響

タングステンをベースとした窒化物はその融点の高さから合成が困難とされていた、本研究では窒素およびアルゴンプラズマ中で W_{1-x}N_xを合成した.Fig.3-15 に示す XRD の結果から流量比が 0.1 以下においてはα-W が形成され,そのピーク位置は流量比の増加に伴い高角度へ移動することを確認した.流量比が 0.2 においては
$W_2N(100)$ および(200)面に対応するピークが現れた.流量比が 0.35 においては W_2N および WN の混合相を示したことから,窒素含有量が結晶構造を決定づけ,立方晶 から混合相への相変態を誘発することが確認できた.そして流量比 0.4 では六方晶 WN が支配的に形成された.これまで窒素含有量にたいする結晶構造変化について は多くの報告がなされている.例えば,スパッタリングにより作製した $W_{1-x}N_X$ は X \leq 0.08 において α -W を示し,0.12 \leq X \leq 0.28 においてアモルファスへの構造変化を示 し,最終的には W_2N へと変態すると報告している⁽³²⁾ Lai ら⁽³³⁾は W-rich および N-rich 条件において W_2N , WN が合成できることを示した.

Table3-3 は $W_{1-x}N_X$ 薄膜の硬度値を示したものであるが, α -W の硬度値は 13GPa そして W_2N は 24GPa を示した.さらに WN はこれら値よりも高い 28GPa を示した. $W_{1-x}N_X$ の硬度値は 6GPa から 30GPa までの変化を示すといった報告もあり⁽³⁴⁾, この ことからも窒素含有量の増加が硬度値と密接な相関があるといえよう.

Fig.3-16に示すように流量比0.35 および0.5 におけるW_{1-x}N_xの表面は平滑であり, ドロップレットも見受けられなかった.この結果に対応して原子間力顕微鏡の粗さ 測定においても 10nm の値を示した.これら結果は上述したターゲット融点がドロ ップレット発生の低減と密接な相関があるという報告⁽¹⁷⁾と一致した.

W₂N の微構造は Fig.3-17 に示すように 10nm 程度の粒子により構成され, 粒界も 不明瞭であった.同様な報告もあり, Shen ら⁽³⁵⁾は"salt and pepper"と形容している. さらに Fig.3-18 に示す Si 基板上の断面 TEM 像においては典型的な柱状構造は確認 されず,薄膜形成前にミキシング層と見られるアモルファス層が観察された.

3.3.4 Ti_{1-X}W_XN 薄膜の創製

カソディックアークイオンプレーティング法では成膜時のアーク放電の安定化が 必要不可欠となる.磁場の強化を図り $Ti_{1-X}W_X$ 合金のイオン化を実現した.得られ た XRD パターンを Fig.3-19 に示す.上述した様に $W_{1-X}N_X$ の結晶構造は窒素含有量 に依存する. $Ti_{1-X}W_XN$ のピーク位置は TiN の(111)および(200)面と比較して高角度 に遷移した.したがってこれまで述べてきた Ti 系窒化物の微構造と同様に NaCl 型 構造を持ち単相の固溶体薄膜を実現した.これまでの $Ti_{1-X}W_XN$ 相分離を生じた報告 がいくつかなされている.Moser ら⁽¹²⁾らは 300nm 以上の膜厚では TiN, W_2N の分離 を生じることを示し,また Musil ら⁽¹⁴⁾は窒素含有量が 36at.%以下になると W が析出 すると報告している.

 Table 3-4 に微小硬度および格子定数の測定結果を示す.Ti_{1-x}W_xN の硬度値は

 35GPa を示し,2元系であるTiN,W₂N,WNに比べ高い値となった.また硬度値の

 変化に対応してTi_{1-x}W_xNの格子定数はTiNの値である0.423nmから0.422nmへと

変化した.以上のことから W 添加が TiN の機械的性質の向上に結びついたといえる.さらに Fig.3-20(a)に示すように Ti_{1-X}W_XN の微構造は粒界が不明瞭であり,これまでの NaCl 型の Ti 系窒化物のそれとは異なるものであった.さらに電子回折像はXRD の結果に一致して析出のない薄膜であったことを示唆している.そしてFig.3-20(b)に示される断面 TEM 像から Ti_{1-X}W_XN は典型的柱状構造を持つことも確認できた.

3.4 結論

本章ではカソディックアークイオンプレーティング法により Ti 系窒化物薄膜を 作製し,第2金属元素がTi 系薄膜の微細構造および微小硬度におよぼす影響につい て解析した.得られた結果を以下に述べる.

- Ti_{1-x}Al_xNの結晶構造はX=0.7においてNaCl型からウルツ鉱型へと遷移し、 Ti_{1-x}Cr_xN, Ti_{1-x}Zr_xNはすべてのXにおいて立方晶を呈した.Ti_{1-x}Al_xN, Ti_{1-x}Cr_xN の格子は第2金属元素の増加に伴いそれぞれ収縮し、Ti_{1-x}Zr_xN においては格子 定数が増加した.
- (2) Ti_{1-X}Al_xN, Ti_{1-x}Cr_xN, Ti_{1-x}Zr_xNの最大硬度はそれぞれ X=0.6, X=0.2, X=0.5
 において得られた.
- (3) NaCl型 Ti_{1-X}Al_xN の結晶粒径は 100~300 nm であったが ,ウルツ鉱型への変態後
 において組織は微細化した .Ti_{1-x}Cr_xN ,Ti_{1-x}Zr_xN はすべての X において 100~300 nm の粒径を示した .
- (4) W_{1-x}N_x は窒素分圧に対応して立方晶および六方晶を示した.さらに Ti_{1-x}W_xN は相分離を示さず,平滑性の良好な薄膜が作製可能となった.そして微小硬度 値は W の添加により硬度値上昇した.

第3章に関する参考文献

- (1) W.D.Münz, J. Vac. Sci. Technol., A 4 (1986), 2717.
- (2) T.Ikeda, H.Satoh, Thin Solid Films, 195 (1991), 99.
- (3) Y.Tanaka, T.M.Gur, M.Kelly, S.B.Hagstrom, T.Ikeda, K.wakihira, H.Satoh, J. Vac. Sci. Technol., A 10 (1992), 1749.
- (4) P. D. Fleishauer, R. Bauer, ASLE Trans., 30 (1987), 164
- (5) W. E. Jamison, Tribologists, 31 (1986), 369.
- (6) H.Randhawa, P.C.Johnson, R.Cunningham, J. Vac. Sci. Technol., A 6 (1988), 2136.
- (7) J.Vetter, H.J.Scholl, O.Knotek, Surf. Coat. Technol., 74-75 (1995), 286.
- (8) J. Musil, Surf. Coat. Technol., 125 (2000), 322.
- (9) V. I. Khitrova, Soviet Physics-Crystallography 5 (1961), 679.
- (10) V. I. Khitrova, Soviet Physics-Crystallography 6 (1962), 439.
- (11) V. I. Khitrova, Soviet Physics-Crystallography 5 (1962), 712.
- (12) C. Meunier, C. Monteil, C. Savall, F. Palmino, J. Weber, R. Berjoan and J. Durand, Appl. Surf. Sci., 125 (1998), 313.
- (13) Y. G. Shen and Y. W. Mai, Mater. Sci. Eng. B 76 (2000), 107.
- (14) J. H. Moser, F. Tian, O. Haller, D. B. Bergstrom, I. Petrov, J. E. Greene, C.Wiemer, Thin Solid Films, 253 (1994), 445.
- (15) H. Ramarotafika, G. Lemperiere, Thin Solid Films 266 (1995), 267.
- (16) L. R. Shaginyan, M. Mišina, J. Zemek, J. Musil, F. Regent, V. F. Britun, Thin Solid Films, 266 (2002), 136.
- (17) E. Eruturk, H. J. Heuvel, H. G. Dederichs, Surf. Coat. Technol., 39-40 (1989), 455.
- (18) O. Knotek, M. Böhmer, T. Leyendecker, F. Jungblut, Mater. Sci. Eng., A105 (1993), 481.
- (19) Y. Tanaka, T. M. Gür, M. Kelly, S. B. Hagstrom, T. Ikeda, Thin Solid Films, 228 (1993), 238.
- (20) L. P. Ward, K. N. Strafford, C. Subramanian, T. P. Wilks, J. Process. Technol., 56 (1996), 375.
- (21) O. Knotek, W. Burgmer, C. Stoessel, Surf. Coat. Technol., 54-55 (1992), 249.
- (22) T. B. Massalski, Binary Alloy Phase Diagram, The Materials Information Society.
- (23) R. Cremer, M. Witthaut, A. Richthofen, D. Neuschütz, Fresenius, J. Anu. Chem., 361 (1998), 642.
- (24) Y. Setsuhara, T. Suzuki, Y. Makino, S. Miyake, T. Sakata, H. Mori, Nucl. Instr. and Meth in Phys. Res., B 106 (1995), 120.

- (25) U. Wahlström, L. Hultman, J. E. Sundgren, F. Adibi, I. Petrov, J. E. Greene, Thin Solid Films, 235 (1993), 62.
- (26) Y. Makino, ISIJ International, 38 (1998), 925.
- (27) C. D. J. Chadi, M. L. Cohen, Phys. Status Solid B, 68 (1975), 405.
- (28) J. C. Phillips, Rev. Mod. Phys., 42 (1970), 317.
- (29) J. Vetter, H. J. Scholl, O. Knotek, Surf. Coat. Technol., 74-75 (1995), 286.
- (30) L. A. Donohue, J. Cawley, J. S. Brooks, Surf. Coat. Technol., 72 (1995), 128.
- (31) O. Knotek, M. Böhmer, T. Leyendecker, J. Vac. Sci. Tecnol., A4, (1986), 2695.
- (32) Y. G. Shen and Y. W. Mai, J. Appl. Phys., 88, (2000), 1380.
- (33) K.K. Lai, A.W. Mak, T.P. H. F. Wendling, Ping Jian and Bill Hathcock, Thin Solid Films 332, (1998), 329.
- (34) K. K. Shih, D. B. Dove, J. Vac. Sci. Tecnol., A8, (1990), 1359.
- (35) Y. G. Shen, Y. W. Mai, Appl. Surf. Sci., 167, (2000), 59.

Fig.3-1 XRD patterns of binary and ternary nitride films.

Film	Microhardness (GPa)	Lattice Parameter (nm)
TiN	20	0.423
CrN	14	0.416
ZrN	15	0.458
$Ti_{0.5}Al_{0.5}N$	31	0.418
Ti _{0.5} Cr _{0.5} N	30	0.419
Ti _{0.5} Zr _{0.5} N	30	0.446
Ti _{0.5} V _{0.5} N	24	

Table3-1 Microhardness and lattice parameter of binary and ternary nitride films

Fig.3-2 Changes in micro-hardness of $Ti_{1-X}Al_XN$, $Ti_{1-X}Cr_XN$ and $Ti_{1-X}Zr_XN$ films.

Fig.3-3 X-ray diffraction patterns from $Ti_{1-X}Al_XN$ films with X ranging from 0 to 1.0. Here, *c*- and *h*- represent cubic and hexagonal structure, respectively.

Fig.3-4 Changes in lattice parameter of $Ti_{1-X}Al_XN$, $Ti_{1-X}Cr_XN$ and $Ti_{1-X}Zr_XN$ films, respectively.

Fig.3-5 Schematic of energy diagram for the compound between sp- bond atoms based on the bond orbital model⁽²⁶⁾.

Fig.3-6 Scanning micrographs of $Ti_{1-X}Al_XN$ films (a) X=0.1, (b) X=0.5 and (c) X=0.9.

Fig.3-7 Cross-sectional scanning micrographs of $Ti_{1-X}Al_XN$ films (a) X=0 (b) X=0.5 and (c) X=0.9.

Fig.3-8 Dark field plan-view TEM micrographs of $Ti_{1-X}Al_XN$ films (a) X=0.6, (b) X=0.7, and (c) X=1.0.

Fig.3-9 X-ray diffraction patterns from $Ti_{1-X}Cr_XN$ films with X ranging from 0 to 1.0.

Fig.3-10 Scanning micrographs of $Ti_{1-X}Cr_XN$ films (a) X=0.2, (b) X=0.5 and (c) X=1.0.

Fig.3-11 Dark field plan-view TEM micrographs of $Ti_{1-x}Cr_xN$ at X=0.4 and (b) $Ti_{1-x}Zr_xN$ films at X=0.5.

Fig.3-12 X-ray diffraction patterns from $Ti_{1-X}Zr_XN$ films with X ranging from 0 to 1.0.

Fig.3-13 Scanning micrographs of $Ti_{1-X}Zr_XN$ films (a) X=0.3, (b) X=0.4 and (c) X=0.6.

第3章

Fig.3-14 Changes in craystal structure of ternary nitride films against second metal contents.

Meatal atoms	Atomic radius(nm)
Ti	0.147
Al	0.143
Cr	0.125
Zr	0.162

Table2-2 Atomic radius of Ti, Cr, Zr, Al atoms

Fig.3-15 X-ray diffraction pattern of WN_X films differing with $N_2/Ar+N_2$ ratios ranging from 0 to 1.0. When the nitrogen-argon ratios is under 0.1, the a-W phase appeared and then the crystal structure changed from the *c*-W₂N to *h*-WN with increasing nitrogen contents.

Crystal Structure	Microhardness (GPa)
a-W	20
<i>c</i> -W ₂ N	24
<i>h-</i> WN	28

Table 3-3 Micro-hardness of WN_x films. With increasing nitrogen contents, the micro-hardness changed from 13 GPa to 28 GPa.

Fig.3-16 Scanning electron micrographs of WN_X films, synthesized with the mixture of gas flow ratio (a) 0.35 and (b) 0.5.

Fig.3-17 Dark field plan-view TEM micrographs of W_2N the film.

Fig.3-18 Cross-sectional TEM micrographs of *h*-WN film deposited on Si (100) substrate.

Fig.3-19 X-ray diffraction patterns from TiN, Ti_{0.5}W_{0.5}N, W₂N and WN. *c*- and *h*- represent cubic and hexagonal structure, respectively.

Table3-4 Micro-hardness and lattice	parameters of Ti	_{I-X} W _X N films.
-------------------------------------	------------------	--

Crystal Structure	Hardness (GPa)	Lattice Parameter (nm)
TiN	20	0.423
Ti _{0.5} W _{0.5} N	35	0.422
c-W ₂ N	24	0.424
<i>h</i> -WN	28	

Fig.3-20 TEM micrographs of $Ti_{0.5}W_{0.5}N$ films (a) plan-view images with diffraction pattern and (b) cross-sectional images.

第4章 クロムおよびジルコニウム系窒化物の NaCl 型から Wurtzite 型への相変態

4.1 緒言

TiN に代表される 2 元系室化物の耐摩耗性および耐酸化性の改善に AI 元素添加は 有用な役割を果たすと認識されている.これは Ti_{1-X}Al_XN が AI 含有量に応じて興味 深い機械的,化学的物性を示すためである.これら特性と微構造の相関は多くの議 論がなされてきた.Ikeda ら⁽¹⁾は Ti_{1-X}Al_XN の格子定数が 0<X<0.7 において 0.426nm から 0.416nm へと減少することを示し,さらに耐酸化性が TiN よりも優れているこ とを報告した.Musil ら⁽²⁾は Ti_{1-X}Al_XN の相転移点が X=0.6 近傍にあるのを踏まえ窒 素分圧に対する Ti_{1-X}Al_XN の結晶構造の変化を調べた.そして Hultman⁽³⁾は 773K の 高温雰囲気下で作製した Ti_{1-X}Al_XN の NaCl 型から Wurtzite 型への変態点は X=0.59 であることを示した.一方で,相変態に伴い微小硬度値は著しい変化を示すことが ん知られており⁽⁴⁻⁵⁾,これら報告は準安定相の立方晶から六方晶への不安定領域にお いて特筆すべき特性が得られることを示唆しているといえよう.

今日まで多層膜,ナノコンポジット等の様々な材料がセラミックス硬質薄膜の分野において作製,研究がなされてきた.特に Ti_{1-x}Al_xN の普及後,ナノ周期の薄膜を堆積させた超格子と呼ばれる薄膜の作製が試みられた.この超格子は剛性の異なる2種以上の薄膜を堆積させたものであり TiN/VN⁽⁶⁾, TiN/NbN⁽⁷⁾, TiN/AIN⁽⁸⁾, TiN/CrN⁽⁹⁾, AIN/AIN⁽¹⁰⁾などが知られている.しかしながらこれら薄膜は基板からの剥離が問題となり,実用上の問題点が残されている.

3元系窒化物のNaCl型からWurtzite型への変態点はバンドパラメターと呼ばれる 理論の導入により解析が試みられてきた.この理論にはTiN,CrN,ZrNに代表され る2元系窒化物のAl固溶限界を算出しており,これまで明らかにされていない準安 定相の相変態点を解明する上で意義深いといえよう.

本章では Cr_{1-x}Al_xN, Zr_{1-x}Al_xN をカソディックアークイオンプレーティング法に より作製し, Al 含有量に対する微小硬度, 微構造の変化を調べた. 前章において述 べた Ti_{1-x}Al_xN 薄膜の結果を踏まえ, 3 元系窒化物の相変態と薄膜特性の相関につ いて解析した.

4.2 実験方法

4.2.1 Cr_{1-X}Al_xN および Zr_{1-X}Al_xN の作製

 Cr_{1-X} -Al_X および Zr_{1-X} -Al_X(0<X<1.0)合金ターゲットを用いて Cr_{1-X} Al_XN, Zr_{1-X} Al_XN (0<X<1.0)を作製した.ターゲットと基板(WC-Co および Si)の距離は平行に 150mm に配置した.試料作製前に 6.6Pa のアルゴン雰囲気において Ar エッチングを行い, そして 2×10⁻² Pa 以下においてイオンボンバード処理を行った.成膜条件は 3.3Pa の窒素雰囲気においてバイアス電圧 20V,アーク電流 100A とし,処理時間を 1200s とした.試料作製後,微小硬さ,物質同定,組織観察を行った.

4.2.2 結晶軸の等方および異方性の評価

結晶中では,原子は周期的に配列して空間格子を形成している.XRD法では,空間格子の間隔以下または同程度の長さの波長をもつX線を用いて,回折現象を生じ させる.波長λのX線を結晶面に対して角度θで入射すると,各原子の軌道電子によ リトムソン散乱を起こし,X線の球面波を生じさせる.このとき,ある特定方向の 散乱波は回折現象を起こして強め合う.その方向は,次のBraggの条件を満たす方向 である.

 $2d\sin\theta = n\lambda\tag{4-1}$

ここで, dは結晶の格子面間隔, nは整数である.また,物質に固有な格子定数は格子面間隔から幾何学的な関係により計算で求めることができる.立方晶系の場合, 格子定数aと(h k l)面の面間隔dの間には次式で示される.

$$\frac{l}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} \tag{4-2}$$

六方晶のaおよびc軸と(h k l)面の面間隔dには次式の関係がある.

$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$
(4-3)

これらを踏まえ結晶軸の等方および異方性を評価した.

3元系および2元系(TiN, CrN, ZrN)の格子定数をそれぞれL_cおよびL_bとし立方晶窒化 物の格子定数の変化率 *L*を次式により求めた.

$$\Delta L = \frac{L_c - L_b}{L_b} \tag{4-4}$$

六方晶窒化物の a 軸および c 軸の変化率 a, c を求めた.

$$\Delta a = \frac{L_a - L_{aAIN}}{L_{aAIN}}$$

$$\Delta c = \frac{L_c - L_{cAIN}}{L_{cAIN}}$$

$$(4-5)$$

$$\Delta c = \frac{1}{L_{cAIN}}$$

ここで六方晶窒化物の軸長を $L_a, L_c, ウルツ鉱型$ AIN のそれぞれの軸長を L_{aAIN}, L_{cAIN} とした.

4.3 結果および考察

4.3.1 Cr_{1-X}Al_XN および Zr_{1-X}Al_XN の結晶構造変化

Fig.4-1 に Al 含有量の異なる Cr_{1-X}Al_XN の XRD パターンを示す. Cr_{1-X}Al_XN の結 晶構造は X=0 から 0.6 まで NaCl 構造を呈し X=0.7, 0.8, 0.9, 1.0 では Wurtzite 型へ と遷移した. Fig.4-2 に立方晶 Cr_{1-X}Al_XN の Al 含有量に対する格子定数変化を示す. 格子定数は X が 0.6 まで増加するに伴い 0.416nm から 0.413nm まで減少した. この 変化は Al 元素の Cr との置換によって生じたと推定され, この現象は Ti_{1-X}Al_XN の Al 元素の TiN への固溶と同様の傾向といえる⁽¹¹⁾. Fig.4-3 に Al 含有量の異なる Zr_{1-X}Al_XN の XRD パターンを示す. Zr_{1-X}Al_XN の回折ピークは X の増加に伴い ZrN のピーク位置に比べ高角度に遷移していることが確認でき,これは X=0.37 まで立 方晶を維持しながら Al が固溶したことを示唆している.これらを踏まえ格子定数の 測定を行ったところ Fig.4-4 に示すように 0.458nm (X=0) から 0.444nm (X=0.37)へと 減少した.そして X=0.5 においては NaCl から Wurtzite 型への相変態が生じ, Ti_{1-X}Al_XN と同様な傾向が確認できた.これまで 3 元系窒化物の結晶構造の変化は Al の固溶量 に依存することが知られている.例えば, Sugishima ら⁽¹²⁾ は NaCl 型 CrN および ZrN への Al 最大固溶量をそれぞれ X=0.77, X=0.33 と示している.

以上のことより Al 元素の CrN および ZrN への添加は立方晶から六方晶への相変態 を導き,さらに立方晶においては格子収縮を伴うことが明らかとなった.

4.3.2 結晶軸の等方および異方変化

Fig.4-1 および Fig.4-3 に示したように Cr_{1-X}Al_XN および Zr_{1-X}Al_XN はそれぞれ X=0.7 および X=0.5 において NaCl 型から Wurtzite 型へ変態した. Wurtzite 型のピー

クの遷移に着目した場合 AI含有量の増加に伴い(1010)および(1011)面は高角度へ,

(0002)面は低角度へ遷移したことが確認できる.つまりこれは六方晶の a 軸および c 軸が異方的に変化したことを示唆している.Ti_{1-X}Al_XNの結果も踏まえ,Fig.4-5 に Al 含有量に対する NaCl 型および Wurtzite 型の格子定数の変化率を示す.尚,この 値は(2-2)~(2-6)により算出した.

NaCl 型 Ti_{1-X}Al_xN の格子は TiN のそれに比べ X=0.6 において-1.3% 収縮し,同様に Cr_{1-x}Al_xN, Zr_{1-x}Al_xN の格子定数-1.2, -3.0% とそれぞれ減少した.このことから NaCl 型窒化物の格子収縮は等方性を示すといえる.Wurtzite 型 Ti_{1-x}Al_xN の a 軸は X=0.7 における 3.5% から減少, c 軸は X=0.8 における-0.7% から増加した.一方,六 方晶 Cr_{1-x}Al_xN および Zr_{1-x}Al_xN の a 軸は 1.7% (X=0.7), 3.7% (X=0.8) から X の増加 に伴い減少傾向を示し, c 軸は Ti_{1-x}Al_xN の結果と同様に AIN の形成に至るまで拡 張したことが確認できた.

以上のことより相変態後, Wurtzite 型 3 元系窒化物は Fig.4-6 に示される結晶構造 変化を生じると推定され, Al の増加に伴い結晶軸の a 軸および c 軸の異方変化を導 く,その変化は a 軸の収縮, c 軸の拡張変化である.

4.3.3 Al 含有量が Cr および Zr 系の微細構造に及ぼす影響

Fig.4-7 に Cr_{1-X}Al_XN の(a)X=0.6, (b)X=0.7, (c)X=0.9 の TEM 像を示す.上述して きたように Cr_{1-X}Al_XN は X>0.7 において NaCl 型から Wurtzite 型へ遷移した.しかし ながら TEM 像が示すように結晶粒径はすべての X において 100~300nm を示し, AIN の析出および混合相は確認できず,第2章で述べた Ti_{1-X}Al_XN の結晶粒の微細 化も見られなかった.

一方, Fig.4-8 に Zr_{1-x}Al_xN の X=0.2 における TEM 像を示すように多結晶であり,
 薄膜粒径は 100~200nm を示した.しかしながら, Fig.4-9 に示すように Zr_{1-x}Al_xN の X=0.6 の高分解能写真は Wurtzite 型への相変態後,薄膜は格子像とともにアモルファスの混合であることを確認できた.

4.3.4 Cr_{1-X}Al_XN および Zr_{1-X}Al_XN の微小硬度変化

XRD の結果に基づき微小硬度の測定を行った .Cr_{1-x}Al_xN の微小硬度は Fig.4-2 に 示すように X=0 において 15GPa であったが X=0.6 において 27GPa まで増加した . 六方晶への変態後,硬度値は 17GPa まで減少した . 一方, Zr_{1-x}Al_xN の最大硬度は 29GPa を示した .第 2 章において示したように Ti 系窒化物の最大硬度はそれぞれ固 有の金属比で得られ, Cr_{1-x}Al_xN, Zr_{1-x}Al_xN についても同様の知見が得られた . 特 に NaCl 型から Wurtzite 型への相変態に対応して最大硬度が得られることは Ti_{1-X}Al_XN と同様であった.Cr_{1-X}Al_XN の X=0.6 から X=0.7 における最大硬度値から の減少は薄膜粒形の約 200nm から 400nm 程度の粗大化が要因の一つと考えられる. そして Zr_{1-X}Al_XN においては六方晶への結晶構造の変化後,X 線相対強度減少およ び半値幅の広がりが確認できた.実際に TEM 観察においてもアモルファス相とみ られる組織が観察され,相変態に伴う硬度値変化の要因と考えられる.

以上のことから Ti_{1-x}Al_xN の結果も踏まえ,結晶構造が変化する不安定領域においては組織微細化,アモルファス相の析出などの特異な変化が生じると考えられる. そしてこの組織分散および析出が強化機構として作用し,硬度変化生じさせると考えられる.

4.4 結論

本章では Cr_{1-x}Al_xN, Zr_{1-x}Al_xN をカソディックアークイオンプレーティング法に より作製し, Al 含有量に対する微小硬度, 微構造の変化を調べ, 3元系窒化物の相 変態と薄膜特性の相関について解析した.

- Cr_{1-X}Al_xN および Zr_{1-x}Al_xN において NaCl 型から Wurtzite 型への相変態はそれ ぞれ X≥0.7, X≥0.5 において生じた. Cr_{1-x}Al_xN および Zr_{1-x}Al_xN の格子定数は 相変態に至るまで減少した.
- (2) Cr_{1-X}Al_xN および Zr_{1-X}Al_xN の最大硬度はそれぞれ NaCl 型から Wurtzite 型への
 変態点 X=0.6 および X=0.37 において得られた.
- (3) NaCl 型 Cr_{1-x}Al_xN および Zr_{1-x}Al_xN の結晶格子は等方収縮を示し, Wurtzite 型 においては a 軸が収縮および c 軸が拡張し, 異方的結晶構造変化を示した.
- (4) Cr_{1-X}Al_xN のすべての X において結晶粒径は相変態後,部分的に粗大化した.
 一方, Zr_{1-X}Al_xN の微構造は相変態後,微結晶とアモルファス構造を有することが明らかになった.

第4章に関する参考文献

- (1) T.Ikeda, H.Satoh, Thin Solid films, 195 (1991), 99.
- (2) J. Musil, H. Hrubý, Thin Solid films, 365 (2000), 104.
- (3) L. Hultman, Vacuum, 57 (2000), 1.
- (4) Y.Tanaka, T.M.Gur, M.Kelly, S.B.Hagstrom, T.Ikeda, K.wakihira, H.Satoh, Thin Solid Films, 228 (1993), 238.
- (5) T. Suzuki, D. Huang, Y. Ikuhara, Surf. Coat. Technol., 107 (1998), 41.
- (6) U. Helmerson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Market, J. E. Greene, J. Appl. Phys., 62 (1987), 481.

A. Madan, P. Yashar, M. Shinn, S. A. Barnett, Thin Solid Films, 302 (1997), 147.

- M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura, Surf. Coat. Technol., 86-87 (1996), 225.
- (8) P. Yashar, S. A. Barnett, J. Rechner, W. D. Sproul, J. Vac. Sci. Technol., A 16 (1998), 2913.
- (9) Ming-Show Wong, Gwo-Yih Hsiao, Sheng-Yu Yang, Surf. Coat. Technol., 133-134 (2000), 160.
- (10) W.D.Münz, J. Vac. Sci. Technol., A 4 (1986), 2717.
- (11) A. Sugishima, H. Kajioka, Y. Makino, Surf. Coat. Technol., 97 (1997), 590.

Fig.4-1 X-ray diffraction patterns from $Cr_{1-X}Al_XN$ films with X ranging from 0 to 1.0. Here, *c*- and *h*- represent cubic and hexagonal structure, respectively. $Cr_{1-X}Al_XN$ films with X \leq 0.6 had the NaCl structures and those with X \geq 0.7 had the Wurtzite structures.

Fig.4-2 Changes in micro-Vickers hardness and lattice parameter of $Cr_{1-X}Al_XN$ films. For $Cr_{1-X}Al_XN$ films with X \leq 0.6, the hardness gradually increased up to ~27GPa with decreasing lattice parameter, above which the hardness abruptly decreased to ~17GPa for X=1.0.

Fig.4-3 X-ray diffraction patterns from Zr_{1-X}Al_xN film. The peak of Zr_{1-X}Al_xN films showed cubic structure between X=0 and X=0.37. With increasing Al contents Zr_{1-X}Al_xN films had hexagonal structure.

Fig.4-4 Changes in lattice parameter and micro-Vickers hardness of $Zr_{1-X}Al_XN$ films. For $Zr_{1-X}Al_XN$ films with X \leq 0.37, the hardness increased up to ~29GPa. On the other hand, the lattice parameter of these films continuously decreased from 0.458nm (X=0) to 0.444nm (X=0.37).

Fig.4-6 Anisotropic behavior of Wurtzite structure in $Ti_{1\text{-}X}Al_XN$, $Cr_{1\text{-}X}Al_XN$ and $Zr_{1\text{-}X}Al_XN$ films.

Fig.4-7 Bright fields of TEM images of Cr_{1-X}Al_xN films (a) X=0.6, (b) X=0.7 and (c) X=0.9.

Fig.4-8 Plan-view TEM micrographs of Zr_{1-X}Al_XN films at X=0.2.

Fig.4-9 High-resolution TEM micrographs of $Zr_{1-X}Al_XN$ at X=0.6. The HRTEM images showed lattice images and the open circle area indicate amorphous structure.

第5章 (Ti,Al)N薄膜の相変態および機械的性質に及ぼす Cr 添加効果

5.1 緒言

Ti_{1-x}Al_xN および Cr_{1-x}Al_xN に代表される 3 元系窒化物の立方晶から六方晶への 相変態は TiN および CrN に対する AIN 含有量に依存することが知られている⁽¹⁾.特 に, Ti_{1-x}Al_xN の AI 含有量に対する相変態には多くの研究がなされてきた.Hultman ら⁽²⁾は Ti_{1-x}Al_xN の立方晶から六方晶への変態は X=0.59 において生じると X 線分析に より示した.またマグネトロンスパッタリング法,アークイオンプレーティング法に より作製した Ti_{1-x}Al_xN は X=0.6 ~ 0.7 において Wurtzite 型に遷移するとの知見も得ら れている⁽³⁻⁴⁾.一方, Cr_{1-x}Al_xN は NaCl 型を維持しつつ X=0.77 まで AI 原子が固溶す るとの報告がなされている⁽⁵⁻⁶⁾.CrN における AI 固溶限界が TiN のそれに比べ著しく 高いことは興味深い.

1986年以降, $Ti_{1-X}Al_XN$ をベースとした新しい硬質薄膜の創製も試みられてきた. 具体的には $V^{(7)}$, $B^{(8)}$, $Zr^{(9)}$, $Si^{(10)}$ の添加による創製である. Knotek $S^{(7)}$ は逃げ面磨耗 の低減を V 添加により実証し, Niederhofer $S^{(10)}$ は Si 添加により耐酸化性の改善を報 告した.以上のことからも異種元素の添加による $Ti_{1-X}Al_XN$ 特性の改善は有益な試み といえよう.

PVD 硬質薄膜は切削工具の保護膜として適用されているが,機械特性のみならず耐酸化性についても議論がなされてきた.例えば TiN は 500°C から酸化が始まり, TiO₂ の酸化層が 650°C から著しく成長するとの報告がなされている⁽¹¹⁾. CrN においては 700°C 以上からβ-Cr₂N の析出が示されている⁽¹²⁾.さらに AIN においては 900°C におい て酸化層が形成され, Al₂O₃ が酸化進行を抑制するとの知見も得られている⁽¹³⁾.

焼入れ,焼きなましに代表される熱処理は物質の相転移を踏まえた技術であり,熱 力学的平衡状態における準安定相の微構造変化について有益な知見が得られている. Menzel ら⁽¹⁴⁾は立方晶 Ti_{1-x}Al_xN の六方晶への変態は 900°C において生じると報告し, Hörling ら⁽¹⁵⁾は 1100°C において TiN および AlN に分解することを示した.

本章では Ti_xCr_yAl_zN をアークイオンプレーティング法により作製し, Cr 添加に伴う Al 固溶量に及ぼす影響,相変態に伴う微小硬度および微構造変化について解析した.

5.2 実験方法

5.2.1 Plasma enhanced cathode

Fig.5-1 に Plasma enhanced cathode の模式図を示す.アーク放電による成膜はターゲット表面に放電電流が集中した数μm のクレータ状のアークスポットを発生させることにより行う.このアークスポットの周回運動は磁場と密接な関係がある.磁場のかけ方は永久磁石によりカソード表面にパルス状の磁場をかけるものそして励磁コイルによるカソード中心から基板ホルダーまで磁場をかけるものに大別できる.本章ではカソード裏側より垂直方向に基板ホルダーまで50Gの磁束密度をかけた.これによりアークスポットの周回運動速度を改善し,この改善により高イオン化およびドロップレット発生の抑制を実現した.Fig.5-2 は(Ti,Cr,Al)Nの表面写真であるが,これまでのカソードに比べ平滑な薄膜が実現可能となり,対応して表面粗さにおいても 0.16から 0.08μm へ減少した.

5.2.2 試料作製方法

Ti_{0.14}Cr_{0.21}Al_{0.65}, Ti_{0.25}Cr_{0.1}Al_{0.65}, Ti_{0.1}Cr_{0.2}Al_{0.7}, Ti_{0.1}Cr_{0.19}Al_{0.71}, Ti_{0.08}Cr_{0.18}Al_{0.74} 合金タ ーゲットを用いて, Ti_xCr_YAl_ZN (X+Y+Z=1)をアークイオンプレーティング(AIP-SS002, Kobe Steel)法により作製した.ターゲットと基板(WC-Co および Si)を試料台に設置し た成膜条件は 2.66 Pa の窒素雰囲気においてバイアス電圧 0~150V, アーク電流 150A とし,処理時間を 1200s とした.成膜温度は 400~650°C とし熱電対により測定した. 試料作製後,微小硬さ,物質同定,組織観察を行った.

5.2.3 切削試験

Ball-nose エンドミルに被覆した Ti_xCr_YAl_ZN の切削性能を評価した.ワークを AISI H13 とし,切削速度:220m/min,送り:0.06mm,軸方向切込(Ad):5mm,径方向切込 (Rd):0.6mm,Air-blow による切削試験を行った.

5.2.4 熱処理

10⁻³ Pa 以下の真空環境下において熱処理を行った.処理温度は 700~1000°C とし時間を 5h とした.

5.3 結果および考察

5.3.1 TiAIN の AI 固溶量に及ぼす Cr 添加効果

 $Ti_{0.1}Cr_{0.19}Al_{0.71}$ ターゲットを用いてバイアス電圧を 0~200V まで変化させ作製した $Ti_XCr_YAl_ZN$ 薄膜の各元素含有量を EDX により測定した.Fig.5-3 に示すように AI 含 有量はバイアス電圧が 200V まで増加するに伴い Z=0.70 から 0.68 まで減少し,それ に対し Ti の含有量も X=0.12 まで増加した.また Cr 含有量に変化は見られなかった. この EDX の結果に対応して Fig.5-4 に示すように XRD 回折パターンは 25V まで立方 晶,六方晶の混合相を示した.また 50V 以上では立方晶の単一相を形成していること が確認できた.この組成および結晶構造変化に対応した硬度値を Fig.5-5 に旧型カソ ードとの対比を踏まえ示す.旧型カソードにおいては 50V から立方晶および六方晶の 混合相を形成し,硬度値は 25GPa を示した.しかしながら Plasma enhanced cathode を 用いて作製した Ti_XCr_YAl_ZN は 50V から相分離を示すことなく立方晶を呈し,硬度値 においては最大 35GPa を示した.

また Ti_{0.14}Cr_{0.21}Al_{0.65}, Ti_{0.1}Cr_{0.19}Al_{0.71}, Ti_{0.08}Cr_{0.18}Al_{0.74}を用いてバイアス電圧 150V にお いて作製した Ti_xCr_YAl_ZN の XRD パターンを Fig.5-6 に示す .Cr 含有量が減少するに伴 い Ti_{0.53}Al_{0.47}N の回折位置と比べ高角度に遷移し,六方晶の析出がなく最大で Z=0.73 まで Al が固溶したことは着目すべき点である.

さらに Ti_xCr_YAl_ZN および Ti_{1-x}Al_xN の切削試験を行った.加工長さに対する逃げ面 磨耗量を Fig.5-7 に示す.Ti_{1-x}Al_xN においては 50m の加工長さに対し逃げ面磨耗が 80µm となり,工具が欠損した.しかしながら Ti_xCr_YAl_ZN においては 70m の加工長 さに対し 40µm となり,工具寿命も Ti_{1-x}Al_xN に対し長くなった.Fig.5-7(b)および(c) に示す光学顕微鏡による観察結果からも Ti_{1-x}Al_xN の被覆に比べ,Ti_xCr_YAl_ZN の被覆 は膜損傷,基板の欠損を抑制したことが明らかになった.この抑制の要因として Cr の添加により耐熱性の改善がなされたことが考えられる.

5.3.2 基板温度が結晶構造に及ぼす影響

Ti_{0.25}Cr_{0.1}Al_{0.65} および Ti_{0.1}Cr_{0.2}Al_{0.7} ターゲットにより Ti_XCr_YAl_ZN を作製し,異なる基 板温度に対する Ti_XCr_YAl_ZN の結晶構造変化を調べた.Fig.5-8 に Ti_{0.1}Cr_{0.2}Al_{0.7} ターゲ ットから作製した Ti_XCr_YAl_ZN の基板温度に対する XRD パターンを示す.XRD パタ ーンより 410 ~ 520°C まで NaCl 型を呈し,回折角度も 520°C まで増加するに伴い高角 度へ遷移することが明らかになった.580°C において薄膜は NaCl 型から Wurtzite 型 へ変態し,混合相を形成した.また Fig.5-9 に Ti_{0.25}Cr_{0.1}Al_{0.65} ターゲットにより作製し た Ti_XCr_YAl_ZN 薄膜の XRD パターンを示す.600°C まで結晶構造は立方晶を維持し, 立方晶から六方晶への相変態は 650°C で生じた.これまで基板温度が Ti_{1-X}Al_XN の結 晶構造に及ぼす影響について多くの知見が得られてきた.例えば Adibi ら⁽¹⁶⁾は MgO 単結晶基板に堆積させた Ti_{0.5}Al_{0.5}N は 540°C まで立方晶を維持し, 560°C 以上におい て NaCl 型および Wurtzite 型の混合相を示し,さらに 750°C においては TiN, AIN の 2 相の結晶構造を薄膜が呈することを報告している.また Cremer ら⁽¹⁷⁾は合成実験によ り Ti_{1-x}Al_xN 状態図の作成を行った.その報告では Ti_{0.37}Al_{0.63}N の結晶構造は 100~ 500°C までは立方晶,600°C において一部が六方晶に変態することを示している.

Fig.5-10 に Ti_{0.1}Cr_{0.2}Al_{0.7} ターゲットから作製した Ti_xCr_YAl_ZN の基板温度に対する微小硬度値,ヤング率変化を示す.成膜温度が 520°C 以下において微小硬度値は 27~30GPa を示し,580°C における六方晶の析出に伴い 24GPa まで減少した.さらにこの 微小硬度値の変化に伴い,ヤング率においても 470GP から 410GPa まで減少した.この硬度値およびヤング率の相関は Musil ら⁽¹⁸⁾ によって報告されているナノコンポジットの物性と類似したものである.

相変態に伴う薄膜組織の変化を TEM 観察により調べた.Fig.5-11 に Ti_{0.1}Cr_{0.2}Al_{0.7} ターゲットから作製した Ti_xCr_YAl_ZN 薄膜の TEM 写真を示す.520°C において薄膜粒 径は約 100nm あったが,580°C における六方晶の析出により 20-30nm に変化した.さ らに 650°C において粒はより微細となり均質なものとなった.そして Fig.5-12 に示す ように Ti_{0.14}Cr_{0.21}Al_{0.65}ターゲットから作製した Ti_xCr_YAl_ZN 薄膜組織においても同様に 650°C における相変態に伴う組織変化が確認できた.

以上のことから基板温度が NaCl 型から Wurtzite 型への相変態の支配因子となり, それに伴う薄膜物性の変化を明らかにした.

5.3.3 Ti_xCr_yAl_zN 薄膜の熱安定性

Ti_xCr_yAl_ZN の熱安定性比較検討のため, Ti_{0.4}Al_{0.6}N および Cr_{0.4}Al_{0.6}N の真空下にお いて 800~1000°C の熱処理を行った.Fig.5-13 に(a)Ti_{0.4}Al_{0.6}N および(b)Cr_{0.4}Al_{0.6}N の熱 処理温度に対する X 線回折パターンを示す.Ti_{0.4}Al_{0.6}N は熱処理温度が 800°C 以下

においては立方晶を呈し,900°C から六方晶が析出し,(1010)および(1011)面の X 線 強度が増加していることが確認できた.同様に Cri_{0.4}Al_{0.6}N における Wurtzite 型の析 出も 900°C において確認できた.これら 3 元系窒化物の相転移を踏まえ,熱処理と Ti_xCr_YAl_ZN の相転移について調べた.

処理を行った試料の組成,結晶構造,微小硬度値,格子定数を Table5-1 に示す. Ti_{0.10}Cr_{0.24}Al_{0.66}N および Ti_{0.11}Cr_{0.22}Al_{0.67}N は Ti_{0.1}Cr_{0.2}Al_{0.7}を用いてそれぞれ 520,650 ℃ において作製し,Ti_{0.27}Cr_{0.11}Al_{0.62}N, Ti_{0.26}Cr_{0.10}Al_{0.64}N は Ti_{0.25}Cr_{0.10}Al_{0.65} から 480 およ び 650 ℃ において作製した.Fig.5-14 に熱処理温度に対する(a) Ti_{0.10}Cr_{0.24}Al_{0.66}N,(b)

- 75 -

Ti_{0.11}Cr_{0.22}Al_{0.67}Nの XRD パターンを示す.Ti_{0.10}Cr_{0.24}Al_{0.66}N は 800 まで NaCl 型を維持し,900°C において Wurtzite 型に変態した.Ti_{0.11}Cr_{0.22}Al_{0.67}N は 1000 まで結晶構造の変化は見られなかった.また Ti_{0.27}Cr_{0.11}Al_{0.62}N および Ti_{0.26}Cr_{0.10}Al_{0.64}N においても同様な傾向が確認でき,六方晶の析出が高温環境において生じることが明らかになった.さらに Fig.5-13~14を比較することにより,900°C における六方晶ピークの半値幅拡張および相対 X 線強度の減衰が確認でき,Cr の TiAlN への添加は相変態を抑制しかつ耐熱性向上に大きな役割を果たすといえよう.

Fig.5-14(a)および(b)の両者に共通して,立方晶 Ti_xCr_YAl_ZNのピーク位置はアニール 温度の上昇に伴い低角度に遷移していることが確認できる.この現象はこれまで示し た3元系窒化物と同様のものであり,格子収縮を示唆している.それぞれの試料の格 子定数を測定したところ Fig.5-15 に示すように立方晶 Ti_{0.10}Cr_{0.24}Al_{0.66}N および Ti_{0.27}Cr_{0.11}Al_{0.62}N は 800°C においてそれぞれ 0.4,0.2%減少した.成膜において形成さ れるドロップレトは未窒化の金属または合金と定義されている⁽¹⁹⁾.そしてこのドロプ レットは Al 金属などの低融点の場合がより形成されやすい.800°C における格子収 縮は熱拡散により Al 原子が立方晶 Ti_xCr_YAl_ZN に取り込まれ,固溶されたと考えられ る.さら相転移後の 1000°C において格子定数は 0.417,0.421nm まで増加した.また 混合相 Ti_{0.11}Cr_{0.22}Al_{0.67}N および Ti_{0.26}Cr_{0.10}Al_{0.64}N における立方晶においても同様な傾向 を示し,それぞれ 0.416 および 0.420nm まで増加した.

以上を踏まえ Fig.5-16 に熱処理後の微構造変化を模式的に示す.Ti_xCr_YAl_ZN の結晶 構造は 800°C まで NaCl 型を維持し,900°C において立方晶相の格子拡張を伴いなが ら Wurtzite 型へ変化し,その後 Wurtzite 型が支配的に成長した.この現象は混合相 Ti_xCr_YAl_ZN においても確認でき,立方晶中の Al 元素の拡散が Wurtzite 型窒化物形成 に寄与していると考えられる.

さらに相分離後の Wurtzite 型の支配成長を Fig.5-17 示す状態図により模式化する. ここで Al 含有量 Z なる混合相 Ti_xCr_YAl_ZN を考える.この系の T₁における立方晶お よび六方晶の Al 含有量はそれぞれ Z₁, Z₂ となる.そして熱処理温度 T₂の六方晶の Al 含有量は Z₃であり, Z₃>Z₂ なる関係が成立する.Fig.5-16 と同様に熱平衡状態の視 点においても Wurtzite 型の支配成長および Al 元素の拡散現象の相関が説明づけられ る.

5.3.4 熱処理温度に対する微小硬度および組織構造の変化

上述してきたようにアニールにより立方晶から六方晶への相変態が確認できた.そ こで Ti_{0.10}Cr_{0.24}Al_{0.66}N および Ti_{0.27}Cr_{0.11}Al_{0.62}N の硬度値をマイクロビッカース硬さ試験 により測定した.Fig.5-18 に示されるように最大硬度値 31GPa が 800°C において得ら れた.この硬度上昇は上述した AI の固溶が熱拡散により促進されたことそして時効 効果が要因として考えられる.そして 900°C 以上においては立方晶から混合相への 相転移に伴いそれぞれ微小硬度値は 24GPa, 27GPa まで減少した.アニールによる硬 度値変化は Mayrhofer ら⁽²⁰⁾ により議論されており,600~1000°C の Ti_{0.34}Al_{0.66}N の硬 度値増加を示している.また Fig.5-19 に 1000°C 熱処理後の Ti_{0.10}Cr_{0.24}Al_{0.66}N の TEM 観察結果を示す.Fig.5-11 と比較して熱拡散により,部分的に 300nm 程度の粒成長が 確認できた.しかしながら Fig.5-20 に示すように断面組織は密な構造を呈し,偏析は 確認できなかった.

以上を踏まえ熱処理に伴う Ti_xCr_YAl_ZN の微小硬度,微構造変化を示し,800°C における,硬度増加はドロップレットに含まれる Al 原子が NaCl 型窒化物に熱拡散により 固溶したことが起因していると考えられる.さらに 1000°C の相変態後における格子 定数および薄膜組織の変化が明らかになった.

5.4 結論

Ti_xCr_yAl_zNをアークイオンプレーティング法により作製し, Cr 添加による Al 固溶 量に及ぼす影響,相変態に伴う微小硬度および微構造変化について解析した.得られ た結論を以下に要約する.

- Ti_xCr_yAl_zN におけるAl固溶量はCr添加に伴い立方晶を維持しながらZ=0.73まで 増加し,Ti_xCr_yAl_zNを被覆することによりTi_{1-x}Al_xNに比べ工具寿命を延長しさら に逃げ面磨耗の抑制が確認できた.
- (2) Ti_xCr_yAl_zNは基板温度の違いにより相変態を生じ,この相変態に対応した硬度値 およびヤング率変化を示した.
- (3) NaCl型Ti_xCr_yAl_zNはアニール温度900°CにおいてWurtzite型へ転移し,転移後の格
 子定数の増加を明らかにした.
- (4) 熱処理温度,微小硬度,組織との相関を示し,800°Cにおける硬度値増加を示し た.さらに結晶構造変化に対応した硬度値減少,部分的な粒成長を明らかにした.

第5章に関する参考文献

- (1) Y. Makino, ISIJ International, 38 (1998), 925.
- (2) L. Hultman, Vacuum, 57 (2000), 1.
- (3) M. Zhou, Y. Makino, M. Nose, K. Nogi, Thin Solid Films, 339 (1999) 203.
- (4) T. Ikeda, H. Satoh, Thin Solid Films, 195 (1991) 99.
- (5) A. Sugishima, H. Kajioka, Y. Makino, Surf. Coat. Technol., 97 (1997), 590.
- (6) Y. Makino, K. Nogi, Surf. Coat. Technol., 98 (1998), 1008.
- (7) O. Knotek, M. Böhmer, T. Leyendecker, J. Vac. Sci. Technol., A 4 (1986), 2695.
- (8) C. Mitterer, P. Rödhammer, H.Störi, F. Jeglitsch, J. Vac. Sci. Technol., A7 (1989), 2646.
- (9) L. A. Donohue, J. Cawley, J. S. Brooks, W. D. Münz, Surf. Coat. Technol., 74-75 (1995), 123.
- (10) A. Niederhofer, P. Nesládek, H. D. Männling, K. Moto, S. Vepřek, M. Jílek, Surf. Coat. Technol., 120-121 (1999), 173.
- (11) M. Wittmer, J. Noser, H. Melchior, J. Appl. Phys., 52, (1981), 6659.
- (12) F. H. Lu, H. Y. Chen, Thin Solid Films, 398-399 (2001), 368.
- (13) F. Ansart, H. Ganda, R. Saporte, J. P. Traverse, Thin Solid Films., 260 (1995), 38.
- (14) S. Menzel, Th. Göbel, K. Bartsch, K. Wetzig, Surf. Coat. Technol., 124 (2000), 190.
- (15) A. Hörling, L. Hultmun, M. Odén, J. Sjölén, L. Karlsson, J. Vac. Sci. Technol., A 20 (2002), 1815.
- (16) F. Adibi, I. Petrov, L. Hultman, U. Wahlström, T, Shimizu, D. McIntyre, J. Appl. Phys., 69 (1991), 6437.
- (17) R. Cremer, M. Witthaut, D. Neuschütz, Value-Addition Metallurgy, The Minerals, Metals & Materials Society, (1998), 249.
- (18) J. Musil, Surf. Coat. Technol., 125 (2000), 322.
- (19) J.E. Daalder, Physica, C104 (1981), 91.
- (20) P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, L. Hultman, Appl. Phys. Lett., 83, (2003), 2049.

Permanent magnet

Fig.5-1 Schematic drawing of plasma enhanced cathode.

Fig. 5-2 $Ti_x Cr_y Al_z$ films synthesized by (a) conventional cathode and (b) plasma enhanced cathode. The surface roughness was (a) 0.16 μ m and (b) 0.08 μ m, respectively.

Fig.5-3 Compositions of (Ti,Cr,Al)N films from Ti_{0.1}Cr_{0.19}Al_{0.71} cathode against substrate bias from 0 to 200V.

Fig.5-4 XRD patterns of $Ti_x Cr_y Al_z$ films from $Ti_{0.1} Cr_{0.19} Al_{0.71}$ cathode under substrate bias from 0 to 200V. Here, C, H and * indicate cubic, hexagonal and substrate, respectively

-81-

Fig.5-5 Chnages in micro-hardness of $Ti_x Cr_y Al_z$ films from $Ti_{0.11} Cr_{0.2} Al_{0.69}$ cathode under substrate bias from 0 to 200V.

Fig.5-6 XRD patterns of $\text{Ti}_{X}\text{Cr}_{Y}\text{Al}_{Z}$ films with various levels of Al contents.

-83-

Fig.5-7 Result of high-speed milling test: (a) changes in frank wear and optical images of boundary wear (b) (Ti,Al)N after 50m and (c) (Ti,Cr,Al)N after 70m.

Diffaction Angle.20 (degrees)

Fig.5-8 X-ray diffraction patterns of $Ti_x Cr_y Al_z N$ films synthesized from $Ti_{0.1} Cr_{0.2} Al_{0.7}$ targets under difference deposition temperatures. Here, *c*- and *h*- represent cubic and hexagonal structure, respectively. Films from $Ti_{0.1} Cr_{0.2} Al_{0.7}$ targets had a NaCl structure from 410 °C to 520 °C. Beyond the deposition temperature of 580 °C, the peaks indicated that the films contained both of NaCl and wurtzite phase.

Fig.5-9 XRD patterns of Ti_{0.25}Cr_{0.1}Al_{0.65}N films with different deposition temperatures from 480 to 650 °C. The films had cubic structure between 480 and 600 °C. Finally, the crystal structure of films changed from the cubic structure to a mixture phase at 650 °C.

Fig.5-10 Changes in micro-Vickers hardness and Young's modulus of Ti_{0.1}Cr_{0.2}Al_{0.7}N films with different deposition temperatures. The micro-hardness decreased from 30 to 24 GPa with increasing the deposition temperature from 410 °C to 650 °C. The Young's modulus decreased from 470 GPa to 320 GPa, which corresponded with the phase transformation from NaCl to mixture phase.

Fig.5-11 Transmission electron micrographs with electron diffraction patterns of Ti_{0.1}Cr_{0.2}Al_{0.7}N films at deposition temperature of (a) 520 °C, (b) 580 °C and (c) 650 °C, respectively. The grain sizes changed from 100-200 nm to 20-30 nm, corresponding with the phase transitions.

Fig.5-12 Transmission electron micrographs with electron diffraction patterns of Ti_{0.25}Cr_{0.1}Al_{0.65}N films at deposition temperature of (a) 480 °C, (b) 650 °C, respectively. The films had a cubic structure at 480 °C and changed to the mixture structure as the deposition temperature was increased up to 650 °C. The micro-structural changes of these films were similar to those of Ti_{0.1}Cr_{0.2}Al_{0.7}N films.

Fig.5-13(a) XRD patterns of $Ti_{0.4}Al_{0.6}N$ and films before and after the post-annealing. With increasing the annealing temperature over 900 °C, the films transformed to a hexagonal structure. Here, "S" indicates substrate peaks.

第5章

Fig.5-13(b) XRD patterns of $Cr_{0.4}Al_{0.6}N$ films before and after the post-annealing. Here, "S" indicates substrate peaks.

Films Compositions	Crystal Structure	MicroHardness (GPa)	Lattice Parameter (nm)
Ti _{0.10} Cr _{0.24} Al _{0.66} N	cubic	29	0.412
Ti _{0.11} Cr _{0.22} Al _{0.67} N	cubic hexagonal	27	0.412
Ti _{0.27} Cr _{0.11} Al _{0.62} N	cubic	29	0.415
Ti _{0.26} Cr _{0.10} Al _{0.64} N	cubic hexagonal	27	0.415

Table5-1 Chemical compositions, crystal structures, microhardness, and lattice parameter of $Ti_x Cr_y Al_z N$ films. Sample 1 and 2 were prepared from $Ti_{0.1}Cr_{0.2}Al_{0.7}$ target at 520 and 650 °C. Sample 3 and 4 were synthesized from $Ti_{0.25}Cr_{0.10}Al_{0.65}$ target at 480 and 650 °C.

Fig.5-14(a) XRD patterns of $Ti_{0.10}Cr_{0.24}Al_{0.66}N$ films before and after the post-annealing. With increasing the annealing temperature over 900 °C, the films partially transformed to a hexagonal structure. Here, "S" indicates substrate peaks.

Fig.5-14(b) XRD patterns of $Ti_{0.11}Cr_{0.22}Al_{0.67}N$ films before and after the post-annealing. With increasing the annealing temperature over, the peaks of cubic phase shifted to lower angles. Here, "S" indicates substrate peaks.

Fig.5-15 Changes in lattice parameter of $Ti_x Cr_y Al_z N$ films against the annealing temperatures. With increasing the annealing temperature up to 1000°C, the lattice parameter of c-Ti_{0.10}Cr_{0.24}Al_{0.66}N and c-Ti_{0.27}Cr_{0.11}Al_{0.62}N films increased up to 0.417 and 0.421 nm. Here, c- and (c,h)- indicate cubic and mixture phase of cubic and hexagonal types.

Fig.5-16 Changes in crystal strucute of c-Ti_XCr_YAl_ZN films after the post-thermal annealing.

Fig.5-17 The phase diagram of (c,h)-Ti_xCr_yAl_zN films after 900 °C thermal annealing.

Fig.5-18 Changes in microhardness of $Ti_{0.10}Cr_{0.24}Al_{0.66}N$ and $Ti_{0.27}Cr_{0.11}Al_{0.62}N$ films against the annealing temperatures. The micro-hardness changed from 30 to ca. 24GPa corresponding with the phase transitions.

Fig.5-19 Plan-view transmission electron micrographs of $Ti_{0.10}Cr_{0.24}Al_{0.66}N$ films after the annealing 1000°C.

 $Fig. 5-20\ Cross-sectional\ TEM\ micrographs\ of\ Ti_{0.10}Cr_{0.24}Al_{0.66}N\ films\ after\ the\ post-thermal\ annealing\ 1000^{\circ}C.$

第6章 カソディックアークイオンプレーティング法による(Cr,Al,B)N薄膜の創製

6.1 緒言

摺動特性,耐酸化性の改善および高硬度の実現の為,ホウ素(B)を含有したセラミックス薄膜は着目されている.これまで2元系窒化物にBを添加した硬質薄膜は CVD法,PVD法により作製されその物性について議論されてきた.Héauら⁽¹⁾は (Ti,B)Nの硬度値はB含有量に対応して20~70GPaを示すと報告している.また Hammerら⁽²⁾はTiNおよびTiB₂の混合相における硬度値は55GPaを示し,これは分 散化強化およびB添加効果によるものといえる.

さらに BN は B および N の比率に対応して立方晶または六方晶を形成する.立方 晶 BN はダイヤモンドに類似した高硬度値を有し,また六方晶 BN は低摩擦係数を 有することからドライ切削加工に適用されている.これら特性を踏まえ,金属元素 を添加した立方晶(Cr, B)N⁽³⁾そして六方晶(Al, B)N⁽⁴⁾の作製も試みられている.

Ti_{1-x}Al_xN および Cr_{1-x}Al_xN などの 3 元系窒化物硬質薄膜は X=0.7 以上において NaCl 型から Wurtzite 型へ変態し,固溶限界近傍において最大硬度が得られる.具体 的には Ti_{1-x}Al_xN および Cr_{1-x}Al_xN の最大硬度は両者共に X=0.6 で 32,27GPa を示 した.以上のことからも Cr_{0.4}Al_{0.6}N をベースとし,これまでにない新たな硬質薄膜 の創製は意義深いといえよう.

本章ではカソディックアークイオンプレーティング法により作製した Cr_{1-x}Al_xN の耐酸化性を評価し,さらに3章において述べた特性を踏まえ,Cr_{1-x}Al_xN を凌駕す る薄膜創製を試みた.作製した薄膜の微小硬度,結晶構造および大気アニール処理 後の酸化物の同定を行った.以上の解析から薄膜特性に及ぼす B 添加効果について 明らかにした.

6.2 実験方法

6.2.1 Cr_xAl_yB_zN 薄膜の合成

 $Cr_XAl_YB_Z(0.36\leq X\leq 0.40, 0.54\leq Y\leq 0.60, 0\leq Z\leq 0.10)$ 合金ターゲットを用いて $Cr_XAl_YB_ZN$ を作製した.ターゲットと基板(WC-Co, SuS 304, Si)の距離は平行に 150mm に配置した.試料作製前に 6.6Pa のアルゴン雰囲気において Ar エッチング を行い,そして 2×10^{-2} 以下においてイオンボンバード処理を行った.成膜条件は 3.3Pa の窒素雰囲気においてバイアス電圧 20V,アーク電流 100A とし,処理時間を 1200s とした.試料作製後,微小硬さ,物質同定,組織観察を行った.

6.2.2 グロー放電発光分光 (GDOES)法

グロー放電発光分光法はアルゴン雰囲気中において試料表面の元素をエッチング しそしてプラズマ中において励起された元素のスペクトルを検出する手法である. この手法は深さ方向の分析を可能としおよび軽元素も高感度で検出する.本章では 堀場製作所製の GDOES を用いて分析を行った.

6.2.3 酸化試験

大気中において処理温度を 800~1000°C,処理時間を 0~20h として試料の熱処理 を行った.高温環境における酸化物生成を確認するため物質同定を行った.CrN⁽⁵⁾ および AIN⁽⁶⁾の 1100K における酸化反応は以下のように示される.

 $AlN + 3/2O_2 = 1/2Al_2O_3 + 1/2N_2$ (6-1) 1100K における自由エネルギーの変化 ΔG = - 470KJ/mol

 $CrN + 3/2O_2 = 1/2Cr_2O_3 + 1/2N_2$ (6-2) 1100K における自由エネルギーの変化 ΔG = - 390KJ/mol

6.2.4 熱重量および熱示差分析

熱重量分析(TG)は温度を変化させながら,または一定温度にした状態で生じる試料の重量変化を試料の温度または時間に対して熱天秤により連続的に検出記録する 手法である.固体,液体のあらゆる物質が測定対象となり,試料の酸化,還元,分 解挙軌耐熱性の評価,付着水や結晶水の定量,灰分量など様々な目的に用いられて いる.試料に重量変化が起こると,天秤系のバランスに変化が生じ,この変化を光 学センサー(光電変換素子)で検出し,検出信号はバランス回路に送られる.バラン ス回路は駆動コイルにフィードバック電流を流し,変位がゼロとなるようにコント ロールする.サンプル側とリファレンス側の駆動コイルに流れる電流差が検出され, 重量信号に変換される.TG 装置は示差熱分析(DTA)と組み合わせた装置であり,重 量変化に伴う現象が吸熱又は発熱反応であるか,また(DTA)曲線の変化が質量変化 を伴うか否かの判別が可能となる.試料の雰囲気を空気,酸素,不活性ガスなど各 種ガス雰囲気にて測定ができ,試料とガスとの反応などについても知ることができ る.本章の測定にはセイコー電子工業社製の熱示差分析装置を用い,大気中で加熱 温度(800~1000°C)を一定に保ち,Cr_{1-X}Al_XN(X=0.4,0.6,0.7)の質量増加を 20 時間 測定した.

6.3 結果および考察

6.3.1 高温環境下における Cr_{1-X}Al_XN の薄膜重量変化

Fig.6-1に800°C熱処理後の $Cr_{0.4}Al_{0.6}N$ 薄膜の XRDパターンを示す. $Cr_{1-x}Al_{x}N$ の X=0.4において14時間以上800°C熱処理後 $Cr_{2}O_{3}$ ピークが確認できたが,X=0.6 お よび0.7においては確認できなかった.処理時間の増加に伴う, $Cr_{1-x}Al_{x}N$ ピーク強 度の減少は見られなかった.さらに $Al_{2}O_{3}$ の形成が確認されないことから Cr が選択 的に酸化されていると考えられ,(5-1)および(5-2)に示される $Cr_{2}O_{3}$ の自由エネルギ ーが $Al_{2}O_{3}$ に比べ小さいことが影響していると考えられる.

900°C においては Fig.6-2 に示すように Cr₂O₃, Al₂O₃の形成が確認された.特に, X=0.6 および 0.7 においては処理時間に対応した急激な窒化物ピーク強度の減少は見られず,このことから Al₂O₃は初期酸化抑制の役割を果たしていると推定される.

1000°C においても 900°C と同様の傾向が確認できた.さらに Fig.6-3 に示すよう に X=0.6 の窒化物のピークは 10h において確認されず酸化物が支配的に成長し,10h 以上においては全ての薄膜は剥離した.

耐酸化性をより定量的に評価するため薄膜の熱重量を測定した.Fig.6-4 に 800~1000°C における Cr_{1-X}Al_XN (X=0.4,0.6,0.7)の時間に対する質量変化を示す.800°C においてはいずれのアルミニウム含有量においても,質量増加が1.5/m²を示し,質量増加は認められなかった.900°C においては X=0.4 および 0.6 は徐々に質量増加が見られるが,X=0.7 では400分で急激に増加し放物線を示すことがわかった.

1000°C においては X=0.4 および 0.6 においてそれぞれ 100 分,150 分で質量増加 曲線が立ち上がっていることが確認できた.また X=0.7 においては 900°C と同様の 形状の曲線を示し,150 分で急激な質量の増加が認められた.Hermann ら⁽⁷⁾は急激な 質量増加は Al₂O₃ 微結晶と窒素物に介在する微小なクラックから酸素拡散により促 進されると報告している.

酸化物の形成およびその結晶化は質量増加と密接な因果関係にあり,酸化はある 時間を境に急激に進行する.硬質窒化物の耐酸化性向上をねらいとする上で初期酸

6.3.2 Cr_xAl_yB_zN 薄膜の機械特性

Fig.6-5 に B 含有量に対する Cr_xAl_yB_zN の微小硬度変化を示す. Cr_xAl_yB_zN の硬 度値は B 含有量が 0 から 0.1 まで増加するに伴い, 27 から 33GPa まで増加した.こ れまで B 添加に伴う微小硬度変化についてはいくつかの報告があり,その中で B 添 加に伴い TiN および CrN の硬度はそれぞれ 40, 22GPa まで増加したことが示され ている⁽³⁾⁽⁸⁾.

6.3.3 Cr_xAl_yB_zN の微細構造解析

微小硬度および微構造の相関を調べるため GDOES,XRD,TEM により解析を行った.Fig.6-6 に GDOES による各元素の定性分析結果を示す.Cr_XAl_YB_ZN に含有する B スペクトルは Z 増加に伴い確認された.この定性分析結果に対応して Fig.6-7 に示す XRD パターンから B 含有量の増加に伴い,Cr_{1-X}Al_XN の(111)および(200)の各面に対して Cr_XAl_YB_ZN のピークが高角度に遷移していることが確認でき,さらに相分離はみられなかった.これまで TiN,CrN,AlN への B 添加に伴う形成相については様々な報告がなされてきた (Ti,B)N においては B の含有量に対応して TiB₂, BN の析出を生じ⁽⁸⁾,(Cr,B)N においては Cr₂B,CrB₂,BN の相分離を生じる⁽³⁾と報告されている.さらに(Al,B)N においては B 含有量 0.01 以上において Wurtzite 型(Al,B)N および BN の 2 相からなることが示されている⁽⁴⁾.

上述した XRD ピークの遷移は格子の収縮を示唆している.この収縮は Cr および Al に比べ B 元素の原子半径が 0.09nm と小さいことによるものと考えられる.そこ で格子定数の測定を行ったところ, Fig.6-8 に示すように B 含有量が増加するに伴 い Cr_xAl_yB_zN の格子定数は 0.411~0.409nm まで減少した.

さらに B 添加に伴う薄膜組織の変化を調べた.Fig.6-9 に Z=0,0.4,1.0 における Cr_xAl_yB_ZN の TEM 像を示す.Z=0 における薄膜の粒径は約100~200nm の粒径から なり粒界も明確に現れた.しかしながら,Z=0.4 においては粒とともに針状,柱状 の組織が見られ,Z=0.1 においては一様な柱状組織が確認できた.この結果はこれ まで述べてきた組織の微細化とは異なる意義深い現象といえよう.

以上のことから B 含有量が 0.1 以下においては相分離を示すことなく NaCl 型準 安定相となることが明らかとなった.

6.3.4 B 添加が Cr_xAl_yB_zN の熱安定性に及ぼす影響

 $Cr_XAl_YB_ZN$ の初期酸化挙動を調べるため 2hの大気アニール処理を行った. Fig.6-10にアニール処理後の $Cr_{0.4}Al_{0.56}B_{0.04}N$ のXRDパターンを示す. $Cr_{0.4}Al_{0.56}B_{0.04}N$ は800~1000°Cの熱処理後もNaCl型を維持し,酸化物形成を示すピークの相対強度が微弱であった.さらにFig.6-11に $Cr_{0.4}Al_{0.5}B_{0.1}N$ においては1000°Cにおいて半値幅の広い Cr_2O_3 の形成が確認できた B添加による熱安定性向上についてはBalzerら⁽⁹⁾により報告されており,本研究でも同様な傾向を示したと考えられる.そしてこのB元素添加に伴う酸化抑制の原因としてB元素の酸化挙動も挙げられる.B元素は酸化の進行と伴に400°C以上において B_2O_3 の酸化物を形成する.この B_2O_3 は温度の上昇とともに軟化および非晶質化し流動性をおびる⁽¹⁰⁾.本章で示した酸化抑制効果はこの B_2O_3 が窒素物に介在する微小クラックに浸透するとことにより生じると考えられる.

6.4 結論

Cr_xAl_yB_zN をアークイオンプレーティング法により作製し, B 添加に伴う微小硬 度および微構造変化および酸化挙動について解析した.得られた結論を以下に要約 する.

- Cr_xAl_yB_zNの最大硬度はZ=0.1において33GPaを示し,B添加に伴いCr_{0.4}Al_{0.6}Nの硬 度値を凌駕する値となった.
- (2) Cr_xAl_yB_zNはB含有量0~0.1においてNaCl型の単一相を形成し,格子定数もZの増加に伴い0.411~0.409nmまで減少した.
第6章に関する参考文献

- (1) C. Héau, J. P. Terrat, Surf. Coat. Technol., 108 (1998), 332.
- (2) P. Hammer, A.Steiner, R. Villa, M. A. Baker, P. N. Gibson, J. Haupt, W. Gissler, Surf. Coat. Technol., 68 (1994), 194.
- (3) S. M. Aouadi, F. Namavar, E. Tobin, N. Finnegan, R. T. Haasch, R. Nilchiani, J. A. Turner, S. L. Rohde, J. Appl. Phys., 91 (2002), 1040.
- (4) A. Y. Polyakov, M. Shin, W. Qian, M. Skowronski, D. W. Greve, R. G. Wilson, J. Appl. Phys., 81 (1997), 1715.
- (5) F. Ansart, H. Ganda, R. Saporte, J. P. Travers, Thin Solid Films, 260 (1995), 38.
- (6) H. Ichimura, A. Kawana, J. Mater. Res., 9 (1994), 151.
- (7) A. Hermann, J. S. Hofmann, W. D. Münz, Thin Solid Films, 153 (1987), 113.
- (8) C. Rebholz, H. Ziegele, A. Leyland, A. Matthews, J. Vac. Sci. Technol., A 4 (1998), 2851.
- (9) M. Balzer, H. Kappl, H. A. Jehn, V. Güther, Surf. Coat. Technol., 116 (1998), 766.
- (10) Y. Enomoto, The proceedings of symposium on solid lubrication, (1990), 55.

Fig.6-1 XRD patterns of $Cr_{0.4}Al_{0.6}N$ films after atmospheric annealing at 800 °C.

Fig.6-2 XRD patterns of $Cr_{0.4}Al_{0.6}N$ films after atmospheric annealing at 900 °C.

Fig.6-3 XRD patterns of $Cr_{0.4}Al_{0.6}N$ films after atmospheric annealing at 1000 °C from 0 to 10 hours.

Time (min)

Fig.6-4 The weight gain of $Cr_{1-X}Al_XN$ films as a function of annealing time.

Fig.6-5 Changes in micro-hardness of $Cr_XAl_YB_zN$ films as a function of B contents.

第6章

Sputtering time (s)

Fig.6-7 X-ray diffraction patterns of $Cr_XAl_YB_zN$ films with different B content from 0 to 0.1.

Fig.6-8 Changes in lattice parameter of $Cr_xAl_yB_zN$ films with different Z values from 0 to 0.1.

Fig.6-9 Plan-view TEM micrographs of $Cr_XAl_YB_zN$ films (a) Z=0, (b) Z=0.4 and (c) Z=1.0.

Fig.6-10 XRD Patterns of $Cr_{0.4}Al_{0.56}B_{0.04}N$ films after atmospheric annealing from 800 to 1000 °C.

Fig.6-11 XRD Patterns of $Cr_{0.4}Al_{0.5}B_{0.1}N$ films after annealing from 800 to 1000 °C under atmosphere. Oxidization started after 2 hours annealing with keeping the cubic phase.

第7章 結論

近年,金属材料等の表面に数ミクロンのセラミックス系硬質膜を被覆する表面 処理技術が切削工具,摺動部材,精密金型をはじめとする工業分野で注目されて いる.カソディックアークイオンプレーティング法は物理蒸着法の1つであり, 固体のアーク放電および高電圧のバイアスを印加するため,作製した膜には準安 定な結晶構造が出現し,また優れた物理的特性を有することが知られている.こ れらの薄膜は,通常立方晶形のものが製品として使用されているが,立方晶から 六方晶に相転移する領域で,特に高硬度を示すとの報告がある.しかしながら, 電子顕微鏡やX線回折を用いた詳細な研究は報告例がなく,統一的に理解されて いないのが現状である.そこで本論文では,金属原子を2種類以上含んだ多元系 窒化物薄膜を作製し,X線回折法や高分解能透過型電子顕微鏡を用い,第2金属 元素量および相変態に対する物性変化と微構造との関係を系統的に明らかにする ことを目的とした.以下得られた結果を総括する.

第3章では,Al,V,Cr,ZrをそれぞれTiNに添加し,3元系窒化物を作製し,微構 造および微小硬度を調べた.従来産業界で幅広く使用されているTi_{1-x}Al_xNと比較 し,第2金属元素の固溶形態に関し,格子定数変化の結果をもとに議論した.さら に,装置の磁場部分を改良し,従来イオン化が困難であり合成が不可能であった Ti_{1-x}W_xN薄膜の作製に成功した.

Ti_{1-x}Al_xN の結晶構造は X=0.7 において NaCl 型からウルツ鉱型へと遷移し, Ti_{1-x}Cr_xN, Ti_{1-x}Zr_xN はすべての X において立方晶を呈した.さらに第2金属元素 の含有量増加に伴い, Ti_{1-x}Al_xN, Ti_{1-x}Cr_xN の格子は収縮, Ti_{1-x}Zr_xN においては格 子が拡張した.Ti 系窒化物は第2金属添加量により,固有の最高硬度を示し,特に Ti_{1-x}Al_xN の場合は NaCl 型から Wurtzite 型への遷移点において得られた.そしてこ の相転移に対応して Ti_{1-x}Al_xN の結晶粒径は微細化した.

W_{1-x}N_x 薄膜は,合成時の窒素分圧に対応し,立方晶または六方晶を示し,さら に Ti_{1-x}W_xN は相分離せず,単一な固溶体となり,微小硬度は増加した.

以上のことから Ti 系系窒化物の最大硬度を詳細な実験から求め,これまで不明瞭 だった第2金属元素添加による微構造の変化を透過型電子顕微鏡観察から明らかに した. 第4章では,3元系窒化物の B1(NaCl)型から B4(Wurtzite)型の相変態について, 主にX線回折法を用い解析し,硬度との相関関係を調べた.

Cr_{1-X}Al_xN およびZr_{1-X}Al_xNのNaCl型からWurtzite型への相転移はそれぞれX>0.7, X>0.5 において起こった.NaCl型 Cr_{1-X}Al_xN および Zr_{1-X}Al_xN の結晶格子は等方収 縮を示し,Wurtzite型においては a 軸が収縮および c 軸が拡張し,異方性を示した. Cr_{1-X}Al_xN に関しては,すべての X において,結晶粒径は数百ナノであり,Zr_{1-X}Al_xN では相転移後,微結晶とアモルファス構造になることがわかった.

以上より,境界相近傍においてクロムおよびジルコン系の最大硬度が得られ,この遷移点では薄膜組織はアモルファス,微結晶など特異な微構造を示すことを明らかにした.

第5章では, CrNへの AI 固溶範囲が TiN より広いことを踏まえ, Crを Ti_{1-x}Al_xN に添加し AI 固溶限界の拡張を試みた.さらに熱処理による薄膜の高温安定性につい て示し,熱拡散が薄膜構造に与える影響について述べた.

Ti_xCr_YAl_ZN における Al 固溶量は, Cr 添加に伴い立方晶を維持しながら Z=0.73 まで増加した.また, Ti_xCr_YAl_ZN の被覆により工具寿命が延長し, 逃げ面磨耗の抑 制が可能となった.

さらに Ti_xCr_yAl_zN の熱安定性解析において 900℃ において NaCl 型から Wurtzite 型への相転移が認められ,1000℃ では格子定数の増加が確認できた.

以上より, Cr 添加に伴う Ti_{1-x}Al_xN の Al 固溶限界の拡張,機械特性および切削性 能の向上を示した.さらに熱拡散により立方晶から六方晶の相転移が生じること, 結晶格子および薄膜組織の微細構造変化を明らかにした.

第6章では,既存の薄膜を凌駕する材料開発を目的として,ボロン(B)元素添加 による新たな硬質薄膜を作製した.具体的には Cr_{1-x}Al_xN をベースに B 元素を添 加し,微小硬度,微構造,耐酸化性を評価した.その結果,B 元素を 10at.%添加 することにより Cr_xAl_yB_zN の硬度は 27GPa から 33GPa まで増加した.さらに B 含有量の増加に伴い,格子定数は 0.411nm から 0.409nm まで減少した.そして耐 酸化性については Cr_{1-x}Al_xN と同様の特性を示した.

以上より Cr_xAl_yB_zN は NaCl 型の単一相として合成され,既存の Cr_{1-x}Al_xN より 高い硬度を有した.さらに格子収縮および薄膜組織変化に及ぼす B 添加効果を明ら かにした. 以上の結論から今日まで,タングステン系薄膜は放電安定化が困難なため有用材料でありながら合成不可能であった.しかしながら磁場部分強化により装置改良を 重ね,窒素分圧を詳細に制御し,高硬度かつ平滑性の優れた薄膜を創製した.

また Ti_{1-x}Al_xN は産業界において主流でありながら, Cr_{1-x}Al_xN を世界に先駆けて 着目し,その特性は前者をしのぐ耐酸化性を有することを確認した.

さらに Ti_{1-x}Al_xN の Al 固溶限界の拡張は優れた薄膜特性を得るため常に議論され てきた.本研究では Cr 添加により 73at.%まで Al 含有量の増加を可能にし,その薄 膜の切削性能も良好なものとなった.

謝辞

本研究は著者が慶應義塾大学大学院理工学研究科において行ったもの であり,指導教官である鈴木哲也助教授に賜りました御指導,御鞭撻に対 し,深甚の謝意を表すとともに厚く御礼を申し上げます.

本塾理工学部,山田邦博教授には日頃より適切なる御助言,御討論を頂 き厚く御礼申し上げます.

本塾理工学部,平島碩教授,本塾理工学部,清水真佐男教授,本塾理工 学部 栄長泰明助教授には,本論文の作成にあたり,御査読と貴重な御助 言を頂き厚く御礼申し上げます.

独立行政法人産業技術総合研究所ナノカーボン研究センター,橋本綾子 氏には研究室配属時より表面解析技術の指導して頂きました.在学中の研 究生活における基礎を御指導頂いたこと深く感謝の意を表します.

株式会社神戸製鋼所,山本兼司氏には近年の硬質薄膜技術動向を御教示 頂きました.産業界における見識を得られたことは私にとり有意義であり ました.深く感謝の意を表します.

本研究において多大なる御助言を頂いた本塾理工学部中央試験所職員, 三谷智明氏,加藤祐一氏,品川左知子氏,押川浩之氏,本田真人氏,河野 佳世子氏に深く感謝の意を表します.

また同時期研究室にて過ごした河手昌大氏(株式会社キャノン),児玉英 之氏,河原林薫氏,今泉潔人氏,松岡義明氏,山本友也氏,山中秀人氏(株 式会社メイテック),木村英司氏,斉藤俊哉氏,山本慎也氏に深く御礼申し 上げます.

最後にこのような研究の機会を与え,常に温かく見守ってくれた家族に 対して心より感謝いたします.

本研究は文部科学省日本学術振興会特別研究員奨励費,財団法人ホソカ ワ粉体工学振興会助成により遂行されたものである.

> 平成 17 年 2月 著者

- 120 -

本論文に関する発表論文

原著論文

- <u>Hiroyuki Hasegawa</u>, Tomonari Yamamoto, Kenji Yamamoto, Tetsuya Suzuki, " The effects of deposition temperature and post-annealing on the crystal structure and mechanical property of TiCrAlN films with high Al contents", Surface & Coatings Technology, (2005), (in press).
- Tomonari Yamamoto, <u>Hiroyuki Hasegawa</u>, Kenji Yamamoto, Tetsuya Suzuki, "Effects of thermal annealing on phase transformation and microhardness of (Ti_xCr_yAl_z)N films", Surface & Coatings Technology, (2005), (in press).
- <u>Hiroyuki Hasegawa</u>, Masahiro Kawate, Tetsuya Suzuki, "Effects of Al contents microstructures of Cr_{1-X}Al_xN and Zr_{1-X}Al_xN films synthesized by cathodic arc method", Surface & Coatings Technology, (2005), (in press).
- Tomonari Yamamoto, Masahiro Kawate, <u>Hiroyuki Hasegawa</u>, Tetsuya Suzuki, "Effects of nitrogen concentration on microstructures of WN_x films by cathodic arc method", Surface & Coatings Technology, Vol.193 (2005), pp. 372-374.
- 5. <u>Hiroyuki Hasegawa</u>, Tetsuya Suzuki, "Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method", Surface & Coatings Technology, Vol.188-189 (2004), pp.234-240.
- Ayako Kimura, Masahiro Kawate, <u>Hiroyuki Hasegawa</u>, Tetsuya Suzuki, "Anisotropic lattice expansion and Shrinkage of Hexagonal TiAlN and CrAlN films", Surface & Coatings Technology, Vol.169-170 (2003), pp.367-370.
- <u>Hiroyuki Hasegawa</u>, Ayako Kimura, Tetsuya Suzuki, "Ti_{1-X}Al_XN, Ti_{1-X}Cr_XN and Ti_{1-X}Zr_XN films synthesized by the AIP method", Surface & Coatings Technology, Vol.132 (2000), pp.76-79.
- 8. <u>Hiroyuki Hasegawa</u>, Ayako Kimura, Tetsuya Suzuki, "Micro-hardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and (Ti,V)N films", Journal of

Vacuum Science and Technology A, Vol.18 (2000), pp.1038-1040.

- Ayako Kimura, <u>Hiroyuki Hasegawa</u>, Kunihiro Yamada, Tetsuya Suzuki, "Metastable Ti_{1-X}Al_XN films with different Al Content", Journal of Materials Science Letters, Vol.19 (2000), pp.601-602.
- Ayako Kimura, <u>Hiroyuki Hasegawa</u>, Kunihiro Yamada, Tetsuya Suzuki, "Effects of Al content on hardness, lattice parameter and microstructure of Ti_{1-X}Al_xN films", Surface & Coatings Technology, Vol.120/121 (1999), pp.438-441.

国際会議録

- <u>Hiroyuki Hasegawa</u>, Masahiro Kawate, Ayako Kimura Hashimoto, Tetsuya Suzuki, "Ternary nitride films synthesized by cathodic arc method", International Symposium on Novel Materials Processing by Advanced Electromagnetic Energy Sources, Japan, (2005), (in press).
- <u>Hiroyuki Hasegawa</u>, Masahiro Kawate, Ayako Kimura Hashimoto, Tetsuya Suzuki, "Effects of phase transition on micro-hardness and lattice parameter in ternary nitride films" Proceeding of 4th International Conference on The Coatings in Manufacturing Engineering, Germany, (2004), pp.243-252.
- Masahiro Kawate, <u>Hiroyuki Hasegawa</u>, Ayako Kimura Hashimoto, Tetsuya Suzuki, "Effects of Al content on mechanical Properties in ternary nitride films", Proceedings of 3rd International Conference on The Coatings in Manufacturing Engineering, Greece, (2002), pp.343-348.
- Ayako Kimura, <u>Hiroyuki Hasegawa</u>, Tetsuya Suzuki, "Ternary nitride films synthesized by the arc ion plating method", Proceeding of 2nd International Conference on The Coatings in Manufacturing Engineering, Germany, (2001), pp.C11/1-6.