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Abstract 
System-on-Chip (SoC) is a Large Scale Integrated circuit (LSI) that integrates 

various functions into a chip. SoCs have been received attentions due to the wide 

range of applications, ability to integrate functions, cost reduction, and 

performance improvement. However, according to the increase of transistor 

density, a methodology to design SoCs becomes very complicated and 

time-consuming. For ease of chip designs, SoCs are designed by reusing 

Intellectual Property (IP) cores that have already been designed and verified. 

Another approach is to use a programmable device which does not require chip 

fabrication. A key to success in both approaches in terms of design time, 

performance, and chip cost is on-chip interconnection networks, or on-chip buses 

and Network-on-Chips (NoCs). In this thesis, how to design an on-chip bus and 

an NoC efficiently is discussed, especially taking both performance and hardware 

cost into account. 

Firstly, novel cost- and performance-efficient implementation techniques for the 

on-chip bus with bus wrappers are addressed. Four major features are included: 

(i) a wrapper interface for small latency cycles, (ii) a write buffer switching 

technique to optimize wrapper hardware cost and performance, (iii) a retry 

technique to connect fast and slow slaves to the same bus with small 

performance overhead and live lock avoidance, and (iv) a bit-width conversion 

technique to reduce hardware cost. Simulated results with a traffic assumed in an 

SoC show that the throughput is improved by 14 % and the Read and Write 

latency are reduced by 16 % and 11 %, respectively, compared with the 

conventional wrapper bus. Furthermore, 50 % hardware is reduced in the 

proposed bus for a 5-master and 7-slave configuration in a CPU-based SoC in 

0.15μm CMOS. It works at 200-MHz clock frequency and occupies 3.3-mm2 

area. 



Next, a novel data transfer scheme for NoCs in programmable devices is 

described. A novel routing technique for achieving smaller hardware cost and 

higher performance is discussed. Routing information is transferred in parallel to 

data, which is different from the conventional packet data-transfer. This removes 

cycle penalty for transferring header and hardware overhead for handling packet 

structure. The proposed routing technique uses static analysis results of 

communication patterns in applications and only assigns routing labels to the 

pairs of communicating nodes. For reducing the required number of bits for 

routing information, a local label which is only valid in a channel between 

neighboring routers, is addressed. Local labels allow reusing a label value inside 

a network and results in reduction of the number of label values. The presented 

results show that the hardware amount for a router is reduced by 46 % from the 

conventional distributed routing router using global addresses. 
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Chapter 1 Introduction 

 

Semiconductor process scaling enables larger number of transistors 

embedded on a chip. This realizes wider range of applications and even higher 

performance. However, using large number of transistors requires longer period 

for designing and verifying circuits. Also, the required cost for chip fabrication 

becomes high, and is considered as an even higher risk of chip reworking. 

Thus, an organized and standardized method to design System-on-Chips 

(SoCs) in shorter turn-around-time (TAT) and a design methodology with lower 

bug risks become much important, as well as with small chip cost which is 

always expected. 

There are two possible solutions to achieve shorter TAT and lower bug risks. A 

well-known way is reusing Intellectual Property (IP) cores, which were designed 

and verified already. IP cores are designed to meet a certain communication 

protocol so that they can be connected with an interconnection network. Then, 

SoCs can be constructed by simply connecting IP cores with the network. As 

on-chip interconnection networks for SoCs, on-chip buses [Arm99] [Ibm99] have 

been widely used to connect IP cores. This scheme results in shorter TAT and 

lower bug risks since IP cores which were designed and verified already are 

reused. 

Another solution is using programmable devices, such as Field Programmable 

Gate Array (FPGA) or processor-arrays. According to the progress of CMOS 

process technologies, these programmable devices are becoming more 

cost-effective approach than fabricating Application Specific Integration Circuits 

(ASICs) by users’ own expenses. The programmable devices have array-type 

architecture which embeds Configurable Logic Blocks (CLBs) or processing 

elements (PEs) in the shape of array and connects them by an interconnection 



 2

network. This network is called a Network-on-Chip (NoC), which is a 

programmable interconnection to realize any required connections within the 

array. 

In both these solutions, the on-chip interconnection networks are key factors 

for success. In SoCs, the interconnection network is required to provide shorter 

TAT as well as smaller hardware amount to suppress chip cost. On the other 

hand, in programmable devices, programmable switches have been used as an 

interconnection network. The programmable switches determine interconnect 

programmability between CLBs/PEs, and providing sufficient programmability 

requires large hardware amount of the chip, that is expensive chip cost. 

 
On-chip buses 
An on-chip bus has been widely used as an interconnection network on a chip 

because its structure is simple and the number of connected nodes is easy to 

scale, especially when it is small. Each core has bus protocol logic, such as 

arbitration logic, and logic for issuing commands or responding to commands. 

And thus, an SoC can be simply integrated by connecting these IP cores with 

an on-chip bus. However, there are two major obstacles against encouraging 

easy reuse of IP cores in bus-connected SoCs. One problem is that an on-chip 

bus protocol is not an explicit rule to connect IP cores each other, because it 

has optional functionalities, such as split transactions, burst transfers, etc. 

Multiple vendors and designers create different IP cores for the same on-chip 

bus, but they may support different options of the bus specification. So, IP cores 

cannot be connected directly, and they are required to be modified so that they 

can communicate each other properly with an on-chip bus. The other problem is 

that several powerful on-chip bus specifications exist, and thus reusing IP cores 

between these buses are not achievable. So, each IP core is required to 

support multiple interfaces according to on-chip bus protocols, and this could be 

a burden for IP core vendors. 
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Wrapper-based buses 
From the standpoint of IP core reusability, Virtual Socket Interface Association 

(VSIA) defined an interface protocol called Virtual Component Interface (VCI) 

[VSI01] which could be a satisfactory condition for IP cores to communicate 

each other, as an explicit rule for connecting cores. The idea is using bus 

wrappers, which bridge from the defined interface protocol to the physical 

on-chip bus protocol. The interface protocol is point-to-point and independent of 

any physical bus structures. The major motivation of using bus wrappers is 

separating bus protocol logic from IP cores. IP cores are designed to comply 

simply with a wrapper interface protocol to encapsulate complicated bus logic 

into bus wrappers. Bus wrappers are typically prepared in advance, and a 

wrapper-based bus can be generated by duplicating and connecting these 

wrappers. 

 

Network-on-Chips 
Programmable devices employ Network-on-Chips (NoCs) as their 

interconnection networks. There are various types of NoCs, such as 

programmable switches used in fine-grain architectures like FPGAs, or 

interconnection networks using network routers for processor-array type SoCs 

in future. There is no obvious definition of NoCs. Although in some published 

documents, this paper assumes NoCs do include interconnection network in 

FPGAs. 

The programmable switch is a programmable crossbar, where required 

communication paths can be configured by configuration data kept inside 

configuration memories in each CLB/PE. Each switch is used only for a logical 

single communication path from a source to a destination. In a programmable 

device, multiple switches are prepared in a boundary of neighboring CLBs or 

PEs to achieve sufficient flexibility. Thus, the programmable switches tend to 

consume large amount of hardware. 

An NoC using network routers is an interconnection for future generation of 

programmable devices. The targeted architecture is coarse grain, and each 

computation node can be microprocessors, FPGAs, processor-arrays, etc. This 
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NoC has borrowed interconnection schemes of System-Area-Networks (SANs) 

used in PC clusters or parallel computers. Routers used in this NoC handle 

network packets and route packets to a certain destination according to routing 

tags embedded in the packets or stored in routing tables. 

 

Difficulties in on-chip interconnection networks 
 As on-chip buses for SoCs, wrapper-based buses look a viable approach for 

common use. A challenge is achieving small cost, which is always expected and 

required in SoC designs. The conventional wrapper-based approach uses a bus 

wrapper which includes FIFOs for data buffers, and thus results in large amount 

of hardware. A design scheme of a wrapper-based bus which can achieve 

practically small hardware without sacrificing performance and connectivity, 

becomes important. 

 As an NoC for programmable devices, achieving small hardware is a primary 

requirement. Conventional programmable switches used in current 

programmable devices potentially become a dominant factor in overall 

hardware amount. Although conventional work on router-based NoCs can be 

considered as a replacement, they did not focused on achieving practical 

hardware amount. 

 

Overview of this research 
This research studies the challenges involved in design techniques for 

wrapper-based buses and Network-on-Chips, especially to achieve practical 

cost as well as good performance. 

Firstly, design techniques for wrapper-based buses are described. Novel 

wrapper interfaces are proposed to achieve better performance and lower cost. 

The interface is optimized so that entire bus protocol can be optimized for better 

performance. And several wrapper implementation techniques to minimize 

buffer resources in a wrapper-based bus are proposed. The effectiveness of 

these techniques is proved by simulation results and logic synthesis results. 

Furthermore, to show reliability and a practical example of the proposed 
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techniques, a CPU-based SoC which includes the designed bus is implemented 

in 0.15μm CMOS processes. 

Next, a data-transfer scheme targeted for programmable devices is shown. 

This includes a novel routing technique for router-based NoCs. This 

data-transfer approach does not use packet structure for avoiding hardware and 

performance overhead in handling packet structure. And, the routing scheme 

assumes static analysis of communication patterns and employs local labels for 

specifying destinations in networks, differently from the conventional distributed 

routing using a destination node address. The designed NoC router has simple 

structure, and thus smaller hardware as well as better performance. The 

effectiveness of these techniques is proved by application trace analysis, 

cycle-based simulation, and logic synthesis. 

This thesis is organized as follows. In Chapter 2, the backgrounds of this 

research are described. Chapter 3 summarizes previous work of this research 

regarding on-chip buses and network-on-chips, and clarifying the motivation 

and the positioning of this thesis are clarified. In Chapter 4, the design 

techniques for wrapper-based buses are proposed. Chapter 5 addresses the 

data-transfer scheme for NoCs. Then, future work is discussed in Chapter 6 and 

finally, Chapter 7 concludes this research. 
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Chapter 2 Backgrounds 

 

2.1. System-on-Chips (SoCs) 

2.1.1. SoC generation 
Advanced Complimentary Metal Oxide Semiconductor (CMOS) process 

technology has reached generation of sub-0.1μm gate-length transistors. 

According to a report of International Technology Roadmap for Semiconductors 

(ITRS) for 2004 [Itr04], the gate density becomes more than 100 M 

transistors/cm2 in sub-0.1μm CMOS technologies. A chip size ranges up to 

several hundred mm2, depending on chip costs required by users, and thus, 

embedded number of transistors is several hundred millions in a single chip. 

This large number of transistors allows many usable functions for consumers in 

a single chip, such as microprocessors, memories, circuits for 

application-specific functions like image processing, networking, etc. A chip 

which integrates multiple of these functions is called System-on-Chip (SoC) to 

differentiate from a legacy single-chip single-function device. 

 

2.1.2. Key criteria in designing SoCs 
In this subsection, key criteria in designing SoCs are summarized. The criteria 

listed here are turn-around-time (TAT), cost, performance and power. 
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2.1.2.1. Turn-around-time (TAT) 
 One of the important criteria in designing sub-0.1μm CMOS SoCs is 

turn-around-time (TAT). The TAT of a chip can be defined as a period from the 

time to start designing an architectural concept and to the time when chips are 

shipped. The period comprises phases of architectural concept design, coding, 

verification, layout, fabrication, testing, and assembly. In the era of SoCs, all 

these steps have been getting complicated and each period has been becoming 

longer. The issues in these steps are summarized here. 

 

Architectural design 
 While functions and requirements of an SoC range widely, an SoC architecture 

must be considered and verified from many aspects, such as throughput, 

latency, power consumption, cost etc. The architectural design is very important 

because direction and strategy of a chip are mostly defined. Once coding 

design starts, it requires lots of overhead to change the top-level strategy. In this 

phase, the detailed circuit-level operation is not really essential, where block 

diagrams and data-flows of the chip are more important. 

 

Coding and verification 
 Once the top-level functions are mostly defined, each IP core is actually coded 

by designers. Hardware description is typically coded with Register Transfer 

Level (RTL) hardware description language (HDL), and recently with C-level 

hardware description language for large-scale or algorithmic designs. 

 After functions are coded, the design is verified with testbench. As testbench, 

RTL verification environment has been used, or recently testbench generation 

tool using dedicated software language is used for effective generation of test 

patterns. Verification is a time-consuming work especially for a large-scale SoC, 

since combinations of multiple functions are also verified as well as each 

function. In sub-0.1μm CMOS generation, easing verification phase is a key 

issue to reduce TAT. 
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 Also, after coding and verifying the design, the design is synthesized with logic 

synthesis tool into gate level. This requires AC timing requirements as limitation 

for the synthesis, and the tool will synthesize the design to meet the 

requirements. 

 

Layout 
 After generating netlist in the coding phase, the design is actually laid out by 

place and route tools for back-end designs. The rough design flow includes 

power and ground wiring design, floor planning, placing cells, routing wires, and 

clock distribution design. Finally, the laid out data is statically analyzed using 

Static Timing Analyzer (STA) tool. If the timing does not meet, the coded design 

must be modified moving back to the coding phase. 

 This layout phase is also a time consuming phase for designing an SoC, 

because this requires complicated steps for each function block and top-level 

SoC layout. Since the sub-0.1μm CMOS device has many issues to consider, 

such as crosstalk, static and dynamic IR drops, long wiring delays, and etc. 

These device issues are all verified in Design Rule Checking (DRC) and STA 

tools. Once one of these checks is violated, the layout should be re-tried to 

solve the problem, and this iteration tends to spend long design time, especially 

in designing large-scale SoCs. 

 

Fabrication, chip testing, assembly 
The laid out design is then taped-out, and the fabrication phase starts. The 

fabrication period ranges from one to several months, depending on process 

generations. After fabrication, chips are tested with LSI testers. Typically, during 

chip fabrication, LSI test patterns are prepared reusing verification patterns. 

After the chips are confirmed for correct operations under various environmental 

conditions, they are assembled into a device package. 

In complicated sub-0.1μm CMOS processes require longer period for 

fabrication because process steps are increased. Also, the LSI testing requires 

longer time to confirm correct operations since the number of functions to 

confirm is increased. 
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2.1.2.2. Cost 
Another important criterion is cost. Cost is mostly classified into three types: 

design cost, Non-Recurring Engineering (NRE) cost and chip cost. 

 

Design cost 
Design cost is the cost which is spent in the design phase, such as human 

resource cost for designs and infrastructure cost. The human resource costs for 

coding, verification, logic synthesis, layout and chip testing must be increased to 

follow the increased functionalities of the device when the number of transistors 

is large. 

The infrastructure cost includes license fees for CAD tools to design chips and 

computer servers required for running these tools. The CAD tools range widely, 

and they are tools for RTL simulation, logic synthesis, design verification, 

placing and routing, clock-tree synthesis, static timing analyzer, etc. There exist 

various licensing styles, but in some cases they are shared within a company or 

some universities. In those cases, fees are split by each project according to the 

total time of spent licenses. The infrastructure cost is increased to suppress 

design time when the number of transistors increases and the chip design 

becomes complex. 

 

NRE cost 
NRE cost is the required cost for producing Application Specific Integrated 

Circuits (ASICs). What is included in NRE varies up to chip vendors, but 

typically it includes costs for creating mask sets and fabrication processes, at 

least. The cost required for producing mask sets has been increasing while 

transistor size is getting smaller, and the required mask writing and defect 

inspection system become more and more complicated. 

 

Chip cost 
Chip cost is mainly determined by die cost and package cost. Die cost is 

mostly determined by die area, which is related with functions to embed into a 
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chip. The package cost is determined by number of I/Os and frequencies to 

achieve in these I/Os. Number of I/Os affects pin counts of a package, and data 

frequencies of I/Os determine package types, such as Flip-Chip BGA for 

high-speed data-rate or Tape BGA for average data-rate. 

 

2.1.2.3. Performance 
Performance is classified into throughput and latency cycles. Throughput is 

calculated by multiplying bit-widths of data and clock frequency in Hz. Thus, the 

throughput is expressed with the unit of bit/s or Byte/s. It is an index to show 

how much data is flowed in a certain boundary, such as internal boundary 

between function blocks or an off-chip interface. 

 Latency cycles are the latency required in certain accesses, such as Read or 

Write operations of a CPU or an I/O transaction. It is simply calculated by 

counting from the beginning cycle of a Read/Write command to the clock timing 

to complete access. The latency cycles affects CPU utilization which is 

degraded by the Read access latency. 

 

2.1.2.4. Power consumption 
 Power consumption consists of static and dynamic power dissipation. Static 

power dissipation is the product of device leakage current and supply voltage. In 

sub-0.1μm CMOS device, supply voltage becomes less than 1.0V, but device 

leakage current increases due to thin thickness of transistor gate oxide. 

Dynamic power dissipation is the consumed power by switching current of 

CMOS transistors. The average dissipated power is proportional to the energy 

required to charge and discharge the circuit capacitance, and the proportional 

factor is equal to switching frequency. In sub-0.1μm CMOS device, according 

to the increase of transistor operation frequencies and capacitive loads, the 

static power is increased. The source of power reduction is the transistor supply 

voltage, which is decreased less than or equal to 1.0V. How those factors affect 

depends on chip architectures. 
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Static power dissipation is more process dependent, since leakage currents of 

transistors are the dominant factor. Controlling back-bias voltage to change 

threshold of transistors is an example to suppress device leakage with 

circuit-level techniques. 

 

2.2. IP-core based SoC 

2.2.1. Concept 
According to the increase of number of transistors, an SoC consists of various 

functional blocks. These blocks have been naturally considered for reusing, 

once they are developed. They are called Intellectual Property (IP) cores, and 

play important roles in designing SoCs, especially in reducing design and 

verification time. 

An example block diagram of an IP-core based SoC is shown in Figure 2-1. It 

consists of various function blocks, such as a microprocessor, an MPEG 

decoder, internal memories, I/O interfaces etc. As shown in this diagram, IP 

cores are connected with an interconnection network that is an on-chip bus. 

Although the interconnection network can be certain dedicated interconnects 

between specific cores, the on-chip bus is more simple and easy to scale 

number of IP cores. 

Memory
Controller

MPEG
Decoder

Microprocessor

Video
I/O

Internal
Memory

Audio
I/O

Image
Filter

 
Figure 2-1 example of SoC architecture 
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2.2.2. Difficulties 
 Since the on-chip bus is a backbone of IP-based SoCs, its structure is very 

important to ensure IP core connectivity. Key criteria in IP-based SoCs vary up 

to requirements. 

- An important criterion is achieving shorter TAT by reusing IP cores than 

developing the device from the scratch. This results in reducing design 

cost. 

- Another is achieving good performance with small chip cost. Achieving 

small cost is always required in any types of designs. However, amount of 

hardware and degree of performance are tradeoff in most cases. Thus, the 

balance must be considered and chosen according to the requirement. 

 

2.3. Programmable device 

2.3.1. Concept 
 Chip developers design their own functions as ASICs to meet their own 

requirements. However, in sub-0.1μm CMOS process generations, required 

costs, especially design cost and NRE cost, become large and many 

developers give up designing ASICs since they desire cheaper and lower-risk 

approaches. Those developers start designing applications on programmable 

devices instead of ASICs. 

Programmable devices, which are Field Programmable Gate Array (FPGA), 

Complex Programmable Logic Device (CPLD), or processor-arrays, have been 

raising their market shares as alternative solutions against ASICs. Those 

programmable devices do not require any expensive NRE to be paid for chip 

fabrication vendors, and users just buy programmable devices and program the 

design to the chip by themselves. Furthermore, if the design includes any bugs 

and they are found after designing, they can change the design and re-program 

it to the chip. So, these programmable solutions have advantages against 

ASICs, from the standpoint of NRE cost. 
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Compared with conventional programmable solutions, such as 

microprocessors, Digital Signal Processors (DSPs), FPGA directly realizes 

hardware circuit itself. Thus, FPGA can achieve better performance than those 

processor-based approaches. 

 

2.3.2. Architecture 

2.3.2.1. FPGA architecture 
Figure 2-2 shows an architecture example of FPGA. This is the architecture of 

Xilinx Virtex II series [Xil04], which can realize 40K to 8M gates in a single 

device. FPGA consists of Configurable Logic Block (CLB) array, which includes 

Look Up Table (LUT) to realize programmable gates. LUT is a mechanism to 

emulate gate operation, and Virtex II series have 4-input LUTs. The 4-bit input 

data are converted to output as 1-bit data by looking up a table. This is the 

emulation of 4-input complex gates. How output data and 4-bit input data are 

related is programmed as table data by its configuration. 

Figure 2-3 shows an internal architecture of CLB. And I/Os and DLLs are not 

shown in this figure. CLB consists of a programmable interconnect and four 

Slices. The programmable interconnect is crossbar switches which can be 

configured to specify sets of a destination and a source CLB to communicate 

each other. Fast Interconnect allows fast data transmission to neighboring CLBs 

with low flexibility. Switch Matrix is an interconnection to communicate with other 

CLBs anywhere. Slice is complex of LUTs, multiplexers, and registers. Slices 

can be concatenated to realize cascaded operations with cascaded data input 

and output port, such as a shifter. 
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Figure 2-2 example of FPGA architecture 
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Figure 2-3 CLB architecture of Virtex II 
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2.3.2.2. Processor-array architecture 
Another programmable solution is processor-array, differently from the 

LUT-based approach. Figure 2-4 shows an example of the processor-array 

architecture, Dynamically Reconfigurable Processor (DRP) developed by NEC 

Electronics [Mot02]. The processor-array type programmable device consists of 

processing elements (PEs) and internal memories. The specific unit for DRP is 

State Transition Controller (STC) which controls an instruction pointer of each 

processing element. 

 Figure 2-5 shows an internal architecture of the PE. It includes Arithmetic Logic 

Unit (ALU) and Data Management Unit (DMU) as calculation engines, registers 

to latch outputs of ALU and DMU, and crossbar switches as programmable 

interconnection. The PE receives an instruction pointer from the STC, and gets 

an instruction to execute using the pointer as a memory address. The read 

instruction is decoded and the PE configures the operations of ALU and DMU, 

programmable switch connections, and other modes supported. 
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Figure 2-4 example of processor-array architecture 
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Figure 2-5 Processing element architecture 

2.3.3. Difficulties in programmable device 
 Programmable devices have two major advantages over SoCs, which are NRE 

cost reduction and lower bug risks. However, there are some difficulties in 

producing them.  

One major problem is large chip area, which results in expensive chip cost. In 

programmable devices, to emulate any types of hardware logic, they have 

flexible programmable switches as interconnection networks. And also, number 

of transistors required by programmable devices to emulate certain logic is 

more than 10 times than the raw logic used in ASICs. 

Another difficulty is performance. The operation frequency of a circuit in ASICs 

is several times faster than that in programmable devices. This is because 

circuits are realized by combination of raw cell logic gates, although they are 

emulated by LUTs in programmable devices. Especially in sub-0.1μm CMOS 

processes, wiring delay of CMOS devices become significant in overall delay in 

a chip, due to narrowed pitch and width of interconnects [Itr04]. 
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Chapter 3 Related work 

 

As described in the previous chapter, the key factor for IP-based SoCs and 

programmable devices is on-chip interconnection networks. In this chapter, 

related work of this research is summarized, from the standpoint of on-chip 

buses and Network-on-chips. 

 

3.1. On-chip buses 
Firstly, standard on-chip buses which have been used for System-on-Chip 

(SoC) designs are described in this section. There have been many buses, 

used in some companies’ internal SoC designs, or as globally standardized 

specifications. Here, bus specifications called AMBA and CoreConnect, which 

have been widely used in SoC designs, are shown, as representatives. 

 

3.1.1. AMBA 
Advanced Microcontroller Bus Architecture (AMBATM) [Fly97][Arm99] is a bus 

specification for a system interface of ARM processor cores, proposed in 1997. 

The bus specification so far had been a local bus of a microprocessor, which 

needed to be tightly coupled with its load-store pipeline structure [Arm94]. To 

use a processor local bus as a general purposed SoC bus, there had been 

several problems. 

1) In the era of SoCs, function blocks which had been already designed and 

verified should be reused to reduce design time. However, the processor 

local bus did not allow non-microprocessor designers who did not know 

microprocessor structure to integrate SoCs. 
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2) The processor local bus is very simple and flexible, thus the designers could 

enhance its specification. However, it is too simple and lack of practical 

functionality. Specifically, multiple bus masters had not been supported in 

the specification, thus integrating DMA controllers and memory controllers is 

problematic. 

3) All the circuits must have been synchronized with a CPU internal clock. This 

causes complexity of the circuits and too much power consumption. 

The motivations of AMBA were to solve these problems. 

1) Apart from the processor local bus, a bus specification is defined for the 

purpose of function block reuse. This improves design time. 

2) This specification allows multiple bus masters to issue transactions, for 

better performance. 

3) The clocking structure was defined and it consists of two buses which have 

higher and slower clock frequencies. This approach achieves reduced 

power compared with the SoCs with a processor local bus. This results in 

less power consumption. 

An SoC structure with AMBA is shown in Figure 3-1. It consists of Advanced 

High-performance Bus (AHB) and Advanced Peripheral Bus (APB). AHB is a 

multiple-master and multiple-slave bus for high performance data transfers. 

Slow function blocks are connected to APB, which is a single-master and 

multiple-slave bus. APB is connected to AHB with an AHB-APB bridge, which is 

the only master for APB. This bridge includes functions of an AHB slave and an 

APB master. An AHB master can access an APB slave through the bridge. 

ARM
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D/A

Bridge
AHB APB

 
Figure 3-1 SoC structure with AMBA 



 19

3.1.2. CoreConnect 
Another powerful on-chip bus is CoreConnect [Ibm99], developed by IBM 

Corporation and released in 1999. An SoC structure using CoreConnect is 

shown in Figure 3-2. This includes Processor Local Bus (PLB) for high 

performance transactions, and On-chip Peripheral Bus (OPB) for connecting 

slow function blocks. An OPB bridge connects PLB and OPB. The basic 

structures of PLB and OPB are similar to those of AMBA. The distinguished 

feature is that CoreConnect includes a Device Control Register (DCR) bus. 

Using the DCR bus, a microprocessor can set configurations and read status of 

function blocks. This is not performance critical, thus separated from PLB. 

Positioning of CoreConnect is almost the same as AMBA. It improves on 

design time, performance, and power consumption. 
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Figure 3-2 SoC structure with CoreConnect 

3.2. Wrapper-based buses 
Next, wrapper-based buses, started from an idea of “Interface-based design” 

[RS97], are described in this section. Wrapper-based buses are proposed for 

easing SoC designs, by reusing already developed function blocks, called 

Intellectual Property (IP) cores. This section shows the idea of “interface-based 

design” firstly, and then describes two conventional interfaces called Virtual 

Component Interface (VCI) and Open Core Protocol (OCP). Then, several 

implementations on bus wrappers and techniques for better performance are 

shown. 



 20

3.2.1. Interface-based design 
The idea of “Interface-based design” was proposed as a new methodology for 

designing SoCs in short time-to-market [RS97]. The goals of this methodology 

are to encourage reusing IP cores, to achieve short design time, and to ease 

system-level designs. This method separates communication behavior from 

Intellectual Property (IP) cores. The design process started from developing 

abstract system-level functionality first, and then is refined incrementally to 

design more detailed parts, like its signal transition. 

Figure 3-3 shows a refinement model of IP core designs from a system level 

down to an implementation level. Firstly, SoC designers connect IP cores with 

an abstract communication method, like send or receive functions. Then, this 

method is replaced with a behavioral block which includes communication 

wrappers to encapsulate detailed communication protocols. Finally, 

communication wrapper hardware is connected to each IP core, and the signals 

are visible to SoC designers. By using this methodology, the initial 

behavior-level design will be easier because designers do not have to consider 

detailed implementation information such as bus signals. 
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Master Slave

Repartition

 
Figure 3-3 Refinement model of an IP core 
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3.2.2. Wrapper interfaces 
Based on the idea of interface-based design, wrapper-based buses have been 

utilized instead of conventional on-chip buses to ease IP core development and 

increase its reusability. Wrapper-based buses separates complicated 

communication logic from IP cores, and bus wrappers are attached to IP cores 

for controlling bus protocols. There are two major wrapper interfaces, called 

Virtual Component Interface (VCI) and Open Core Protocol (OCP). 

 

3.2.2.1. Virtual Component Interface (VCI)  
Virtual Socket Interface Association (VSIA) defined a universal 

wrapper-interface called Virtual Component Interface (VCI) [VSI01]. The 

motivation of VCI is to define a general-purpose interface, such that IP cores in 

the shape of Virtual Components (VCs) of any origin, can be connected to SoCs 

developed by any chip integrator. In this manner, VCs are not limited to 

one-time usage by their designers, and can be reused over and over by other 

designers. They did not try to define a new standard bus, since removing 

conventional buses is not a practical strategy. 

Because designers typically stick to their own buses for a long time and going 

into a new specification is not easily accepted, VCI is defined. VCI is an 

interface, rather than a bus, which is a point-to-point connection between a bus 

wrapper and a VC. And also it allows direct connection of VCs. VCI includes 

three levels of specification, Peripheral VCI (PVCI), Basic VCI (BVCI), and 

Advanced VCI (AVCI). These specifications classify VCs by performance and 

functionalities. VCI reduces design time and improves connectivity compared 

with conventional on-chip buses. 

Figure 3-4 shows a block diagram of a VCI-based system. IP cores which 

initiate and receive transactions are called “Initiator VC” and “Target VC” 

respectively. VCI is used both in bus interfaces for Initiator VC and Target VC. 

Initiator VC is an initiator of VCI transaction, and Target VC is a target of VCI 

transaction, where both VCI is a point-to-point connection between VC and a 

bus wrapper. To convert transactions from VCI to an on-chip bus, wrappers 
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which bridging protocols are used. For Initiator VC, Initiator Wrapper which 

receives transactions from Initiator VC and initiates transactions on the bus is 

used. For Target VC, Target Wrapper is used. 
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Figure 3-4 Bus connection with VCI 

3.2.2.2. Open Core Protocol (OCP)  
SONICS Inc. has defined Open Core Protocol (OCP) [Son00] as a 

communication interface for IP cores. The motivation of this interface is 

encouraging reuse of IP cores without any chip reworks. The interface is 

independent of interconnect implementation details, such as bus bit-width or 

control timings. The distinguished features from VCI are as follows. 

1) The OCP definition is not classified as Peripheral, Basic, or Advanced, like 

VCI. Thus the single interface can be used for any purposes. 
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2) OCP supports control procedures and test interface signals for 

manufacturing. 

3) A practical design has been developed, with their proprietary bus, called 

Silicon Backplane [Son02]. Thus, development environment for OCP already 

exists, while VCI mainly focused on specification definition. 

Since VCI did not work well as a standardized interface, OCP was chosen as 

next version of VCI in 2003. 

Figure 3-5 shows a basic signal definitions and protocols of OCP. In Figure 3-5 

(a), signals required for communications between a master and a slave of OCP, 

are illustrated. The same clock signal is delivered to both the master and the 

slave. All the signals except for the clock signal are unidirectional from the 

master to the slave, or from the slave to the master. Figure 3-5 (b) shows basic 

protocol charts for Read and Write transactions of OCP. The master activates 

MCmd and MAddr signals for specifying requested commands. If a command is 

a Write request, Write data is also transmitted on MData. The slave responds to 

the request transmission by activating SCmdAccept. If a command is a Read 

request, SResp and SData signals are transmitted to send back the read data. 

Beyond this basic description, further advanced features, such as 

simultaneous and out-of-order data transmission by tagging command IDs to 

request and response, are supported. 
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Figure 3-5 Signal definition and protocol of OCP 
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3.3. Wrapper-based bus implementations 

3.3.1. Silicon Backplane 
SONICS Inc. developed Silicon Backplane, as an on-chip interconnect using 

OCP. To mainly focus on multimedia applications, Silicon Backplane is 

distinguished with a feature which guarantees performance, especially 

throughput, by employing a Time Division Multiplexed Access (TDMA) protocol. 

Figure 3-6 shows communication architecture of Silicon Backplane. Master 

and slave cores, designed with an OCP interface, are connected by Silicon 

Backplane and OCP wrappers. Silicon Backplane is generated automatically by 

the delivered toolkit. When generating Silicon Backplane between cores, the 

requirements for inter-core communication performance are specified as 

parameters. The time slots are statically assigned to these communications so 

that the given requirements are satisfied. Since the arbitration cycles are 

statically determined, no parts which have dynamic latency cycles exist in this 

interconnect. For removing dynamic latency cycles, an OCP wrapper splits a 

burst data from an OCP initiator into small chunk of data, called threads, and 

each thread is transmitted within one cycle. This requires FIFO buffers in 

wrappers, whose size should be a maximum length supported by the OCP 

specification. So, from the chip cost aspect, it requires large amount of 

hardware required by FIFO buffers in all the wrappers. 
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Figure 3-6 Communication architecture of Silicon Backplane 
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3.4. Techniques for improving wrapper-based 
buses 

Although the wrapper-based bus architectures can increase IP core reusability, 

conventional publications pointed out increase of access overhead, especially 

of latency cycles. Here two techniques for improving access latency cycles are 

summarized. 

3.4.1. Prefetching in slave wrappers 
Bus wrappers enable to retarget IP cores to different SoCs. However, it 

addresses longer Read latency cycles, because additional interactions between 

bus wrappers and IP cores are required. To achieve better performance with 

wrapper interfaces, an implementation technique which keeps local copies of 

accessed registers in bus wrappers, has been proposed [LV02]. By prefetching 

register data in a slave wrapper as shown in Figure 3-7, no interaction on a 

slave wrapper interface is needed for a Read operation. The latency to send 

back the Read data to the master becomes at least 2-cycle faster. 

This scheme improves specifically latency cycles of Read operations. 

However, creating data copies in bus wrappers requires additional hardware 

overhead, resulting in increase of chip cost. 

Bus wrapper
(Interface module)

IP Core

data address
read
enable

write
enable

System
bus

Internal
bus
(e.g. VCI)

Accessible registers

(a) No pre-fetching (b) pre-fetching

IP Core

data address
read
enable

write
enable

Accessible registers

Data Copies

 
Figure 3-7 Lysecky’s prefetching structure 
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3.4.2. Arbitration hiding mode of advanced VCI 
The Advanced VCI (AVCI) specification includes a technique called “arbitration 

hiding mode”. This is a feature of an interface protocol which allows to process  

a current data-transfer and a next request issue in a pipeline manner. Typically 

a request phase of a bus protocol includes an arbitration which consumes 

several latency cycles. Thus, this pipelining processing of issuing a next request 

and transferring current data results in better throughput by hiding arbitration 

cycles in a request. 

Figure 3-8 shows comparison of protocol charts when (a) without and (b) with 

the arbitration hiding mode, in Write transaction cases. Note that a VCI initiator 

and a VCI target of this figure correspond to the ones in Figure 3-4. 

As shown in Figure 3-8 (a), without the arbitration hiding mode, a Write 

transaction is initiated by the VCI initiator, which may be a master IP core. It 

issues a Write address and a command. Then, the VCI targets which may be a 

master bus wrapper, receives and processes the command. It requests 

arbitration and communicates with a slave. After establishing the communication 

path, the VCI target sends a command acknowledgement back to the initiator, 

and the initiator transfers Write data. Without the arbitration hiding mode, the 

VCI initiator must wait for an end of the previous Write data transaction to 

submit an address transfer of the next Write transaction. 

With the arbitration hiding mode described in Figure 3-8 (b), Arbitration 

Command Valid and Arbitration Address signals specify an advanced arbitration 

request for a next request, in the meantime when a current request is in 

process. Arbitration Command Acknowledge signals indicates that an 

acknowledgement for the next request issued after bus arbitration. This 

overlapped arbitration reduces latency cycles for a request. 
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Figure 3-8 Protocol chart comparison between cases with and without 

arbitration hiding mode, in Write cases. 

 

3.5. Advanced on-chip buses 
Before summarizing NoCs, several advanced on-chip bus architectures which 

triggered researches and developments for NoCs are described. The major 

limitation of conventional on-chip buses is that it can only process one 

transaction at a time, and thus several efforts to improve on-chip bus 

performance have been proposed. In this section, Multi-layer AHB and 

Lotterybus are shown. 

3.5.1. Multi-layer AHB 
Multi-layer AHB [Arm01] is an interconnection which has multiple AMBA AHB 

buses. This enables parallel data-transfers between multiple pairs of a master 

and the slave in a system. Figure 3-9 shows an example structure of the 

multi-layer AHB. Masters and slaves are connected to an interconnect matrix 

which includes multiple layers of the AHB buses. These AHB buses are 
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separate each other, and this structure allows multiple masters to issue 

transactions for different slaves at a time. When multiple masters try to access 

to the same slave, a master in higher priority completes transaction first and 

another next. Further variations can be constructed, such that local slaves are 

connected only to a specific layer, or only some slaves are shared by some 

layers. 
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Figure 3-9 Structure of multi-layer AHB 

3.5.2. Lotterybus 
Lahiri pointed out problems and limitations of the conventional static priority 

shared bus and TDMA bus [LRL02]. A shared bus with static priority has 

difficulties in controlling bandwidth allocation in fine grain, IP core by IP core. 

Thus, the TDMA architecture is not suitable for IP cores which require low 

latency cycles and high throughput. The proposed Lotterybus includes a 

dynamic arbitration control scheme. Differently from the TDMA bus, time slots 

are not assigned statically to each core, and Lotterybus arbitrates and assigns 

time slots dynamically to the cores. 

This work showed that many difficulties are included in conventional on-chip 

buses, and experiments through computer network architectures are useful to 

interconnection network designs in SoCs. 
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3.6. Network-on-Chips 
Network-on-Chips (NoCs) are communication architectures used in 

programmable devices, or router-based interconnection networks which could 

be used in future SoCs. NoCs used in programmable devices are 

programmable switches. Some proposals on NoC architectures for future 

array-type SoCs utilize routers which have been used in interconnection 

networks used in System Area Network (SAN) or parallel computers. In this 

section, several NoC architectures are described and summarized as below. 

 

3.6.1. Programmable switch 
 Most programmable devices such as FPGA, CPLD, and processor arrays, 

employ programmable switches [RB91] as interconnection networks. As an 

example, programmable switch architecture used in FPGA is shown in Figure 

3-10. CLBs are connected with communication box (CBOX) and switch box 

(SBOX). CBOX and SBOX are programmable crossbars, which consists of 

multiple of multiplexers and configuration memory to store configuration data for 

specifying connections. In CBOX and SBOX, the actual switch architecture is 

not a full crossbar, and they reduce switching flexibilities by removing 

multiplexer inputs. 
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CLB

CLB

SBOX

CBOX

CBOX

 
Figure 3-10 Programmable switches in FPGA 
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3.6.2. SPIN 
In [GG02], as a replacement of conventional shared bus structures, Scalable, 

Programmable, Integrated Network (SPIN) is proposed. SPIN employs a 

fat-tree topology because of its cost efficiency [Lai85], as shown in Figure 3-11  

(a). A simple packet structure is used for inter-core communication, and link and 

upper layers can be designed on top of it, such as stream data-flow 

communications or address-space accesses. The packet structure, presented in 

Figure 3-11 (b), includes a single-flit header, variable body flits and a tail flit. The 

header includes an 8-bit destination node number to indicate up to 256 nodes. 

By adding a tail flit, the end of a packet is specified and a variable-sized packet 

is provided. 

Figure 3-12 shows a router architecture designed for SPIN. Since a fat-tree 

topology for 16 nodes requires 8 input ports for child and parent paths, and it 

supports two shared output buffers, a 10x10 crossbar is necessary. 

 

32 bit

Head
Flit

Tail
Flit

Body

(a) (b)

 
Figure 3-11 Network topology and packet structure of SPIN 
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Figure 3-12 Router architecture of SPIN 

3.6.3. Dally’s proposal 
Dally and Towles showed design criteria for NoCs and showed an example 

NoC structure [DT01]. NoC is applied as an interconnection so that it can treat 

the increased number of IP cores on a chip as a replacement of on-chip wiring. 

Controlling electrical parameters such as crosstalk and parasitic capacitance is 

made easy, since the architecture is better-structured than the conventional 

global wirings. 

The described example includes same-sized IP cores connected by an 

interconnection network. Their proposed topology of this network is folded 2-D 

torus for 16 nodes, as shown in Figure 3-13 (a). This employs a variable-sized 

packet structure as shown in Figure 3-13 (b). Conventional virtual channel 

flow-control is applied, for removing packet blocking in channels. A large 

number of buffer spaces is consumed: 10K bits for each input controller in a 

router. 

Figure 2-1 shows router architecture in this proposal. A router in a node 

includes five input and five output controllers. One of the ports is used to 

connect internal core logic. This figure only shows a west input controller and 

paths from west for simplicity. The output controller only has an output 
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multiplexer and output buffers to store data coming from the inputs. This 

architecture is similar to a typical router which has been used in System Area 

Networks of PC clusters, or parallel computers [DYN02]. 

 
Figure 3-13 Network architecture and packet structure of Dally’s proposal 
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Figure 3-14 Router architecture of Dally’s proposal 
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3.6.4. Matrix Interconnection Network in ACM 
Adaptive Computing Machine (ACM) [Mas02] is a reconfigurable architecture 

proposed for processing mostly wireless applications. ACM has various types of 

computation nodes, which are prepared as libraries for ASIC development. 

Types of computation nodes and its combination are chosen by each user. The 

architecture framework using an NoC called Matrix Interconnection Network 

(MIN) to connect different kinds of nodes is prepared. 

Figure 3-15 (a) shows the architecture overview. Each computation node is 

connected by an NoC of H-tree topology. Four of the computation nodes are 

connected by a network router, and the router is connected to routers of 

different nodes through another router which is a non-blocking root. 

Figure 3-15 (b) is packet structure used in ACM. A single flit packet is used, 

and thus, a packet header is attached to data which is transferred in a single 

cycle. The packet header is 19 bits for each 32-bit data, which includes 

destination address, port number and task number as header fields. 
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Figure 3-15 Network topology and packet structure of MIN in ACM 
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3.6.5. Marescaux’s proposal 
A reconfigurable SoC for multimedia applications which integrates an NoC in 

the center, is shown in [MBV02]. For prototyping on FPGA, a 2-D torus topology 

is chosen due to its 2-D array architecture. The logical 2-D torus topology is 

shown in Figure 3-16 (a), and its implementation applied folded torus structure 

which had been used in [DT01]. Figure 3-16 (b) shows a packet structure of this 

network, which has two header flits, fix-sized body and a tail flit. 

The routing scheme used in this proposal is source routing [DYN02]. With the 

source routing, routers route data according to routing tags attached by a 

source node. These routing tags specify which port to forward data, to all the 

routers to pass. The source routing does not require routing tables in routers, 

but in nodes. Compared with a distributed routing which typically uses a global 

address as routing information to look up a routing table in routers, source 

nodes assign routing tags to each communication path, not to each destination 

node. Thus, it has flexibility to change routes according to types of 

communication paths. 

This work employed an e-cube routing [DS87] as routing algorithm, which 

calculates routing tags easily by only comparing a source node position and a 

destination node position in a source node. This e-cube routing is a sort of 

source routing only applicable to 2-D mesh or torus structures. The routing tags 

specify the number of hops to route along X- and Y-directions. A router transfers 

packets toward X-direction firstly until the number of X-hops becomes zero. 

Then it route toward Y-direction next. 

The router architecture is shown in Figure 3-17 (a). It does not have routing 

table, but has circuits to check routing tags. The network interface used in this 

work is shown in Figure 3-17 (b). The proposed network interface which is 

located between a task in a core, and a router has packet generation and 

reception logic. This interface faces the task with signals of a destination logical 

address, a port number and a message length. 
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Figure 3-16 Network topology and packet structure of Marescaux’s proposal 
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Figure 3-17 Router and network interface architecture of Marescaux’s proposal 
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3.6. Positioning of this research 
This section describes problem definitions of prior work to be solved, and 

clarifies the purposes and motivations of this research. 

 

3.6.1. Problem definition of prior work 

3.6.1.1. Wrapper-based buses 
As described in the previous chapter, wrapper-based buses have been 

considered as a hopeful approach to encourage IP core reuses. However, VCI 

failed to be a major standard for wrapper-based buses, and some other counter 

proposals looked better solutions, like OCP. And finally OCP was chosen as a 

next version of VCI standard in 2003. The major difference between VCI and 

OCP is that the OCP interface is a single definition, where VCI classified three 

specifications according to performance ranges. Also the OCP interface 

specification is verified on silicon with SiliconBackplane-based implementation. 

So, interface based on the practical implementation is quite essential to acquire 

high credibility. 

Several publications discussed implementation techniques to improve 

performance in wrapper-based buses. In [LV02], a technique to accelerate 

Read latency cycles by prefetching data into a slave wrapper is proposed, as 

described in Section 3.4.1. Also, the Advanced VCI specification includes the 

arbitration hiding mode, as described in Section 3.4.2. The combination of OCP 

and SiliconBackplane does not accelerate latency cycles or throughput, but 

guarantees inter-core throughputs, as shown in Section 3.3.1. In summary, 

conventional approaches have mostly focused on solving latency overhead and 

guaranteeing throughput. 

Those prior work on wrapper-based bus implementations focused mostly only 

on performance improvement. However, improving performance without 

consuming further additional hardware is quite important in consumer market 

which is typically cost-sensitive. Thus, further considerations on wrapper-based 
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bus implementation from both aspects of cost and performance are quite 

essential. 

 

3.6.1.2. Network-on-Chips 
Table 3-1 shows a summarized table of conventional NoC proposals. To 

compare these NoCs, four criteria are listed, that are topology, packet length, 

size of header, and routing scheme. 

- Prior work show that network topology depends on application types, such 

that H-tree topology is good for Wireless application [Mas02], a 

cost-effective application should take fat-tree [GG02], and 2-D mesh or 

torus are good for FPGA-based application [MBV02]. Thus, in NoC 

researches, consideration on multiple topologies is important to apply 

various applications. 

- Conventional proposals use variable or fixed-length packets, and only ACM 

uses single-flit packet. So, most NoCs take the approaches like SANs, and 

the packet-based data-transfer is applied. Although ACM tried to explore 

another approach, that is a single-flit packet data-transfer, there is no 

obvious motivation revealed in their published papers. 

- The required header size is 19-38 bits and relatively large when 

transferring 32- or 64-bit data. Size of the headers affects hardware amount 

of multiplexers, data buffers, and the routing table entries. 

- All the routing schemes applied in these NoCs are the methods used in 

SANs. Routing function must be decided after considering communication 

patterns and cost requirements, since this has great impacts on them. 

 

 As summarized above, an NoC architecture must be discussed from the 

aspects of applications, hardware cost, and performance, all of which are quite 

important criteria in designing SoCs. 
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Table 3-1 Summarized table of conventional NoCs 

 Topology Packet 

Length 

Header Size Routing 

Dally’s 

proposal 

2-D torus Variable 38 bit Source routing 

(16 bit) 

SPIN Fat-tree Variable 32 bit 8 bit 

(Up/down routing) 

ACM H-tree 1 flit 19 bit Distributed routing 

with node addresses 

Marescaux’s 

proposal 

2-D torus 16 flit 32 bit Source routing 

(e-cube routing:6 bit) 

 

3.6.2. Purpose and motivation of this research 

3.6.2.1. Purpose 
The on-chip interconnection networks are in the generation of wrapper-based 

buses. And the next generation would be Network-on-Chips in sub-0.1μm 

CMOS process technologies. To both of these technical fields, this research 

focuses on how efficient the data transfer is, by considering both hardware 

amount and performance, differently from conventional approaches. 

In the technical field of wrapper-based buses for IP-based SoCs, 

considerations on hardware amount and functionality as well as performance, 

are very important to achieve practical quality and support general-purpose use 

with enough functionalities. This research focuses on also showing 

functionalities and achieved performance as well as a proposal of a novel 

wrapper interface and a bus implementation. Also, a real chip design is included 

in this research as well as proposals of novel design techniques. 

As for NoCs, conceptual proposals which simply applied conventional network 

architectures used in parallel computers or SANs, have been published already. 

The major purposes of this research on NoCs is to give an idea to transfer data 
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cost-efficiently and to show this scheme fits SoC environment which has wide 

range of IP cores, small or large, with practical applications. 

 

3.6.2.2. Motivation of research on efficient 
design techniques for wrapper-based buses 

As described in Section 3.6.1.1, implementations of wrapper-based buses are 

quite important for practical use. While conventional research and development 

of wrapper-based buses mostly focused only on performance improvement, this 

research tries to figure out its cost-efficiency by considering tradeoffs between 

performance and hardware cost. And as well as the performance and cost 

tradeoffs, connectivity of IP cores has been considered to solve potential 

obstacles in buses, such as livelock, retries and bit-width conversion. To show 

performance and cost-efficiency, impacts on these criteria of each proposed 

techniques are shown item by item. And finally, overall performance and 

hardware cost are shown, with a real chip implementation. 

 

3.6.2.3. Motivation of research on efficient 
data-transfer scheme for Network-on-Chip 

Although Network-on-Chips have been considered as a replacement of 

programmable switches, there are major three differences in networking 

environment, differently from SANs in PC clusters/parallel computers. The 

differences are described as bellows: 

1) An NoC is used to connect computation nodes in coarse-grained 

programmable devices. Once a chip is fabricated, the numbers of IP cores 

and their functionalities are not changed in most cases. In SANs, the ability 

to change the number of nodes is important for scalability. 

2) Although a SAN is based on chip-to-chip communication, an NoC is 

intra-chip communication. Thus, an NoC does not have pin count limitations 

between routers or nodes, and can take advantage of rich wires provided by 

semiconductor process scaling. 
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3) Cost of routers in SANs is important but not really too significant, because 

the node itself is typically made up of large amounts of hardware like 

microprocessors, north bridges, DRAMs, etc. In NoCs, the computation 

nodes vary from small to large. Thus, the router itself is expected to be 

small enough even with small IP cores. 

Taking those environmental differences into account, this research on NoC 

proposes a novel technique to transfer data cost-efficiently. Major claims of this 

research are that applying a data-transfer scheme using separate routing 

information apart from the conventional packet data transfer, and on this 

scheme, a novel routing technique using local labels is proposed. The results 

include analysis of communication patterns in real applications, and show its 

hardware-cost efficiency and performance improvement. 
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Chapter 4 Efficient data-transfer 
schemes for wrapper-based 

buses 

 

This chapter presents wrapper-based bus architecture for low-cost 

implementation and implementation techniques to improve performance. In 

Section 4.1, overview of this proposal is described, firstly. Next, conventional 

protocol charts with an existing wrapper interface are shown in Section 4.2. 

Section 4.3 describes the proposed wrapper interface and several design 

techniques which exploit this interface are described. The example SoC which 

uses the proposed bus is shown, and based on this architecture, evaluated 

results of performance and hardware amount are shown in Section 4.5. 

 

4.1. Overview 
This research has been done for the purpose of achieving cost and 

performance efficient implementations of wrapper-based buses, and solving 

some connectivity problems for better design TAT. In this research a 

general-purpose wrapper-based bus for better SoC performance that has less 

wrapper hardware [AOK02] is proposed. The goal is to develop wrapper-based 

bus architecture for a wide range of applications that require lower cost and 

better performance. To achieve this goal, unique wrapper interfaces including a 

flow-based slave interface are defined. Wrapper implementation techniques 

called Write buffer switching (WBS) and slave designated retry control (SDRC) 

with a livelock avoidance scheme are developed, under the proposed 

interfaces. Furthermore, to broaden the application range, a technique for 
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connecting cores that have different bit-widths by embedding converters in the 

physical bus have been developed. 

 

4.2. Protocols with existing wrapper interface 
In this section, previous work related to implementation techniques for 

wrapper-based buses is summarized. 

 

4.2.1. Standard on-chip bus protocols 
Using the on-chip bus protocols of AMBA [Arm99] or CoreConnect [Ibm99], we 

can connect an IP core including bus interface logic to a bus directly, and the 

core can communicate with another core also connected to the bus. However, 

IP cores complying with a standard bus protocol cannot be connected to 

another bus without changing their bus interface logic. For general purpose use, 

these protocols enable IP cores with a wide range of performance. Separate 

buses are defined for high- and low-performance and these buses are 

connected by a delivered bus bridge. 

 

4.2.2. Wrapper interface definitions 
To improve IP core reusability, wrapper interfaces have been defined to 

remove communication logic from the cores and put it into a bus wrapper. A 

standardized wrapper interface has been developed, and an interface called 

“Virtual Component Interface (VCI)” has been defined [VSI01]. The VCI has an 

interface protocol that can be bridged into any physical bus protocol with bus 

wrapper hardware. With this interface, IP cores can be retargeted into any 

physical bus protocol by replacing bus wrappers. The master and slave 

interface protocols are identical, so the master and slave cores can be viewed 

as directly connected. Another wrapper interface is called Open Core Protocol 

(OCP) [Son00], and it is similar to the advanced specification of VCI. 
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4.2.3. Wrapper-based bus implementations 
The operation of the basic wrapper-based bus protocol using an existing 

wrapper-based interface [VSI01] is illustrated in Figure 4-1. The bus comprises 

a master IP core, a slave IP core, a master wrapper, a slave wrapper, and a 

physical bus connection. The master core issues requests, and the slave core 

receives them. 

Figure 4-1 (a) shows the case when the slave core is ready to receive a 

request from the master core. The master and slave wrappers pass the request, 

and the slave core accepts it. Responses are sent back only for Read requests; 

Write transactions do not require responses. Write requests are sent with Write 

data as burst transfers. 

Figure 4-1 (b) shows the case in which the slave core is not ready. Because it 

does not have buffer space available for receiving more requests, the major 

difference here is that the response is a busy response. The master wrapper 

continues to send the request until the slave core returns to a ready state and it 

accepts the request. 

From the performance point of view, the slave-ready situation is the best case; 

the non-ready case degrades average performance. Some conventional 

wrapper-based bus implementations [Son02][YNL01] embed FIFOs to buffer 

request and Write data in the wrappers. This improves average performance 

because the retry transactions are accelerated. One proposed wrapper-based 

bus [Son02] improves performance by optimizing the size of the FIFO buffers in 

the master and slave wrappers, so that the retry accesses do not consume bus 

throughput and increase the number of access latency cycles. Another 

proposed wrapper-based bus [YNL01] can be implemented with 3K to 5K gates 

excluding those for FIFO buffers [LYB02]. 

A reported performance optimization technique [LV02] reduces the latency 

cycle overhead, which is one of the major drawbacks of wrapper-based buses. 

It specifically accelerates the Read latency cycles by placing accessible register 

copies inside the slave wrappers. Thus, interaction between a slave wrapper 

and the slave core for Read requests is unnecessary. Comparison of the 
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designed wrapper with a basic wrapper without embedded FIFO buffers and 

complying with the VCI protocol showed that the basic wrapper requires 

approximately 3K gates while the designed wrapper requires an additional 

number of gates, ranging from less than 1K to approximately 3K, depending on 

the size of the required register copies. 
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Figure 4-1 Bus protocol with conventional wrapper interface 

 

4.3. Developed bus architecture 

4.3.1. Interface definition 
The bus design strategy proposed in this research is focused on achieving 

better performance with minimum bus wrapper hardware so that it can be 

widely used in various applications. As discussed in Section 4.2, to achieve 

better performance with existing wrapper interfaces, buffer space for requests 



 45

and Write data are typically embedded inside the wrapper. Since this approach 

increases the hardware, this proposal does not take it.  

Figure 4-2 (a) and (b) show the operation of the proposed bus protocol for 

Read and Write transactions, with a no-buffer wrapper implementation. A 

flow-control protocol in the slave wrapper interface is used, rather than a 

handshaking interface with a request-response manner. The interface definition 

is shown in Figure 4-3 (a) and (b). It is basically the same as that in the 

conventional wrapper interface. Similar to the conventional one, the interface 

views advanced implementations using multiple-buses or crossbars as future 

possibilities. Thus, the protocol allows issuing simultaneous requests before 

waiting for completing corresponding data transfers to achieve non-blocking 

communications. The major difference is that the master and slave wrapper 

interfaces are not identical. For the slave interface, status signals are simply 

added to indicate busy or not busy for the request buffer and the Write data 

buffer in the slave core and retry interval signals for specifying the back-off 

interval for retrying. It is assumed that only a few latency cycles are required to 

transmit the status signals, and the slave wrapper can determine whether to 

accept or reject a request received from the master with these signals. 

Therefore, before passing a request to the slave core, the slave wrapper can 

determine whether the slave core has available buffer space, and thus there is 

no need for an interaction. This interface can potentially result in shorter latency 

cycles than those of the conventional wrapper-based interface. Furthermore, 

the proposed protocol decreases the hardware complexity of the slave core 

interface because it guarantees that all the transmitted requests are buffered 

and processed rather than being rejected due to a busy condition. The purpose 

of the retry interval signals is described in Section 4.4.2. 
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4.4. Bus architecture and protocol overview 
 In this research, a wrapper-based bus using the proposed interface is 

designed, to demonstrate that no-data-buffer wrappers with practical 

performance can be implemented at low cost. 

Figure 4-4 shows the architecture of the developed bus. The physical layer 

consists of a command and Write data (CWD) bus and a Read data (RD) bus. 

The separated CWD and RD buses enable split transactions to be naturally 

supported, in which each Read transaction releases the CWD bus to another 

bus before the Read data is made available. Furthermore, non-blocking 

communication, in which multiple Read requests are issued from a master core 

before the corresponding Read data reaches the master core, is supported 

simply by attaching an ID to each command. The CWD bus conveys requests, 

addresses, commands, sizes, command IDs, master IDs, Write data, 

acknowledgements (Acks), negative-acknowledgements (Nacks), and retry 

information. The RD bus conveys responses, Read data, command IDs, and 

master IDs. The CWD and RD arbiters resolve any bus access exclusivity 

problems. The arbitration algorithms are independent of the wrapper 

architecture and should be optimized to meet the requirements of the SoC. An 

example application is described in Section 4.5. 
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Figure 4-4 Developed wrapper architecture 

 

 The bus processing sequence is described below. 

1) A master wrapper (MW) receives the command, address, command ID and 

size from the master core through a master interface. The command ID is 

used to issue multiple simultaneous transaction requests. 

2) The MW requests arbitration from the arbiter and waits until it receives a 

grant signal. 

3) The MW transmits the received information to the CWD bus along with a 

unique master ID, which is originally programmed into the MW. 

4) A slave wrapper (SW) decodes the command to see if the request is a 

Read or Write one. For a Read request, the SW checks the command 

buffer status on the slave interface. If the status is not busy, the SW passes 

the request to the slave core. For a Write request, the SW checks the 

command buffer status and the Write data buffer status. If both are not 

busy, it accepts the request and returns an Ack to the MW. If either one of 
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the status is not an acceptable condition, it returns a Nack to the MW with 

retry information. No transaction occurs in the slave interface in this case, 

which is different from the conventional wrapper interface implementation. 

The retry sequence is described in Section 4.4.2. 

5) If the MW receives an Ack, it transmits a command acknowledgement 

signal to the master core, indicating an available condition for the next 

command. The next command can be fetched during simultaneous 

processing of the current command or Write data so that the next 

command can be issued instantaneously. If it receives Nack, the MW starts 

the retry sequence and releases the bus to another master awaiting 

arbitration. 

6) If the transmitted command is Write and the MW receives an Ack, it 

transmits the Write data. It receives the Write data from the interface and 

transmits it to the CWD bus. The SW also receives the Write data and 

passes it to the slave interface. If the Write data buffer is embedded in the 

MW, the master core can transmit the Write data before the MW receives 

an Ack. 

  The Read data response sequence is described here.  

7) If Read data is prepared in the slave core, a response request and a 

master ID received with the request command are issued to the slave 

interface. 

8) The SW sends an arbitration request to the RD arbiter. Arbitration hiding 

mode is used to reduce the number of Read latency cycles as it is in the 

conventional wrapper interface [VSI01]. The arbitration request is called an 

early bus request (EBR) and can be asserted several cycles before the 

Read response request is initiated. 

9) If the SW receives a grant signal from the arbiter, it receives the Read data 

from the slave interface and passes it to the RD bus along with the master 

and command IDs. 

10) The MW compares the received master ID with the unique ID for each 

master wrapper. Only the matching wrapper receives the command ID and 

the response data from the RD bus; it passes them to the master interface. 
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4.4.1. Write-buffer switching according to write 
data length 

 Deep FIFO buffers which are included in the conventional wrapper 

implementations [Son02][YNL01], may not be necessary since some IP cores 

may have redundant FIFOs or memories for buffering. To reduce cost for any 

case, the bus wrapper should include a minimized data buffer to achieve the 

required performance. Firstly, the tradeoff between sizes of the buffer in the 

master wrapper is evaluated. 

Considering the number of bits that needs to be stored, a request buffer 

requires 67 bits for the proposed interface, and the Write data buffer requires 

128 bytes at the maximum burst size. Since the request buffer is considered as 

a negligible offset, and thus only the impact of the Write-data buffer is 

evaluated. Table 4-1 shows the amount of hardware required for a master 

wrapper for various buffer sizes. This wrapper handles 64-bit data, and the 

circuit design is optimized for 200-MHz operation with 0.15µm CMOS 

processes. The hardware amount is shown in NAND-equivalent gate counts, 

and the Write data buffer was designed as an array of flip-flops. Compared with 

a method that does not use a Write-data buffer, the hardware increase ranges 

from about 20 % to 326 % and depends on the size of the embedded buffer. 

 Next, the performance impact of using a Write data buffer is examined. As 

shown in Figure 4-5, the major difference is that latency and throughput of the 

CWD bus are consumed when the Write data buffer is not used, since the bus 

has been reserved for the upcoming Write data transfer after an Ack is detected. 

With a Write-data buffer, the master wrapper can output the buffered Write data 

onto the CWD bus as soon as it receives an Ack. Table 4-2 shows the 

performance impact of embedding the Write-data buffer as evaluated using RTL 

simulation for the case in which sustained Write transactions with the same 

burst size were issued. The master core could issue a command simultaneously 

with the transmission of the previous Write data. Since the bus assumed one 

master and one slave for simplicity, there were no arbitration latency. As shown 

in the table, the Write latency was lower and the throughputs were higher with 
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the embedded Write data buffer because of the instantaneous Write-data 

transmission following Ack reception. The Write latency was improved by about 

10 % - 33 % depending on the size of the transmitted burst. The throughput was 

increased by about 9 % - 33 %. 

Figure 4-6 shows the evaluated results of the latency and throughput increase 

per gate. As shown in the figure, the latency and throughput increase per gate 

degraded as the burst size was increased. In the implementation of a 

CPU-based SoC described in Section 4.5, a 16-byte buffer is used to keep the 

latency and throughput increase per gate fewer than 50 % degradation. 

As described above, the master wrapper implementation impacts performance 

and has a cost tradeoff. Therefore, the Write buffer switching (WBS) technique 

is used in the master wrapper. As shown in Figure 4-4, the master wrapper has 

embedded Write-data buffers for handling two-beat bursts. With WBS, 

Write-data transactions shorter than or equal to the buffer size use this buffer, 

and longer transactions do not. The master wrapper determines whether to 

store the Write data in the buffer, by comparing the requested command size to 

the buffer size. To the best of our knowledge, conventional techniques simply 

embed a FIFO buffer in a wrapper or do not include any buffers. 
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Table 4-1 Master wrapper hardware required by Write-data buffer size 

Buffer Size 

(byte) 

Amount of master 

wrapper hardware

(gates) 

Increase 

(%) 

0 2976 –  

8 3579 20.3 

16 4275 43.7 

32 5535 86.0 

64 7622 156.1 

128 12683 326.3 

 

Table 4-2 Performance impact of Write data-buffer in master wrapper 

Write Latency 

(cycles) 

Bus Throughput 

(MB/s) 

 

Burst 

Size 

(bytes) 
Without 

Buffer 

With 

Buffer

Improvement 

(%) 

Without

Buffer 

With 

Buffer 

Improvement 

(%) 

8 9 6 33.3 199 266 33.2 

16 11 8 27.3 353 452 27.9 

32 15 12 20.0 581 708 21.9 

64 23 19 17.4 853 984 15.4 

128 39 35 10.3 1112 1219 9.6 

 

4.4.2. Slave designated retry control scheme 
 For the bus to be widely applicable, it must be able to connect to both fast and 

slow IP cores. Conventional standard buses can be categorized as high- and 

low-performance buses. Using the two types together requires complicated bus 

bridges, which can potentially suffer from deadlock [Pci01]. The wrapper-based 

approach eliminates this requirement, but communication between fast and 

slow cores is problematic, especially for retry sequences. 
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In conventional implementations [Son02][ZC02], a retry sequence is controlled 

by a master wrapper, and the intervals for retry requests are determined master 

by master, independently. The length of the interval after receiving a Nack from 

a slave wrapper affects performance [ZC02]. When fast and slow slaves are 

connected to the same bus, the interval before the slaves become available for 

another command differs. Therefore, using a constant interval for retry could 

degrade bus throughput when using a short interval or lengthen the access 

latency when using a long interval. To handle this problem with existing physical 

buses, the master wrappers must decode the addresses to determine the 

destination before transmitting requests to slaves and change the interval slave 

by slave. This requires dedicated wrappers that support different address maps 

in each SoC. 

In this research, a retry control technique called slave designated retry control 

(SDRC) is proposed, which is illustrated in Figure 4-7. With this mechanism, 

when a retry occurs, the slave wrapper specifies the number of retry interval 

cycles which is used for the master wrapper to wait before re-issuing the 

request. The slave wrapper interface includes a retry interval signal that 

specifies the number of interval cycles which is based on the slave’s speed. The 

physical bus layer is designed to convey the retry interval information over a 

retry information signal. 

Consider two cases: a master wrapper communicates with fast slaves and with 

slow slaves. Shown in Figure 4-7 (a) is an example of when a slave wrapper 

can process one command within a few clock cycles. With this slave, an 

eight-cycle interval is specified as a core attribute of the slave. The slave 

wrapper returns a Nack with the retry information, including the specified retry 

interval of eight cycles. The master wrapper sets eight cycles for the retry 

interval and counts down to zero. It then re-sends the rejected request and 

address to the slave wrapper. By this time, the slave is not busy and accepts it. 

Figure 4-7 (b) shows an example of when the slave wrapper has a longer 

latency, 64 cycles, or a slower clock frequency. In this case, a longer retry 

interval is specified, which reduces the number of unnecessary retries. In this 
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example, our scheme removes 7 unnecessary retries by using an interval of 64 

cycles. 

Another complicated problem regarding retry is livelock. Livelock is the case in 

which one master wrapper cannot access a slave while another can. Livelock is 

also referred to as the “starvation problem” [Son02]. In an Ethernet network, this 

is the well-known “Capture Effect” [RY94]. Ethernet does not arbitrate before 

transmitting, so a master may not be able to achieve good performance due to 

frequent collisions. A scheme similar to Ethernet has been applied to a bus 

[DG98]. Each master wrapper has a random number generator, and if a master 

receives a retry response from an accessed slave, it waits for the interval 

specified by the generated random number. As specified in the Ethernet 

standard, the master should generate the random number based on the number 

of rejected requests to avoid synchronizing the retry timing. Another possible 

solution to avoid livelock is having access queues in slave wrappers to remove 

back-off retry accesses [Arm99]. However, controlling the queue in the slave 

wrapper requires complicated logic and area overhead for the buffer. Our 

approach is to take the back-off retry sequence and extend this structure with 

small hardware to avoid livelock. 

In the livelock example shown in Figure 4-8 (a), two master wrappers are 

trying to send Read requests to a slave core. The requests are serialized by the 

CWD bus. The request from Master 1 arrives first. It is accepted by the slave, 

and the slave enters a busy state. Therefore, when the request from Master 2 

arrives, it is rejected. A rejection response is sent to Master 2, and a retry 

sequence is initiated. In the meantime, a Read response is sent to Master 1, 

and Master 1 sends the next command to the slave. Master 2 re-sends the retry 

Read request to the slave, and it is again rejected. This sequence continues 

until the retry trial counter overflows in Master 2, which may be reported as a 

bus error. In this example, only Master 1 can access the slave, and this is a 

livelock. 

Our solution is to use a pseudo random number generated in the target slave. 

By generating the number in the slave, randomness for all accessing masters is 

ensured and synchronization of the retry timings is avoided. In addition, this 
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random number is used as an additional offset for the retry interval. Our SDRC 

can be easily implemented with only a small adaptation. As Figure 4-4 shows, 

the slave wrapper includes a random number generator. The number is sent to 

a master wrapper by using the retry information signal of the CWD bus. The 

master wrapper adds this number to the retry interval number specified by the 

slave. By using this technique, we can avoid the livelock problem, as shown in 

Figure 4-8 (b). The proposed livelock avoidance technique issues no throughput 

degradation, but small latency overhead due to the latency increase by a 

random offset for retry interval cycles. However, low-cost implementation is 

achieved by simply extending the back-off retry structure with a random number 

generator which requires only a few shift registers and exclusive-OR gates. 
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4.4.3. Converter-based multiple-bit-width core 
connection 

 Data-width conversion should be supported for connecting various bit-width 

cores because changing the bus width of an IP core and re-verifying it are 

burdens for SoC designers. Therefore, the ability to enhance the bus bit-width is 

needed to be retained as well as a low-cost implementation. 

 Two conventional data-width conversion techniques are illustrated in Figure 

4-9. Figure 4-9 (a) shows the one used for a PCI bus [Pci01]. This bus requires 

different acknowledgement signals that indicate the supported data width of a 

slave for reporting this to the master, and the bit-width is converted in a master. 

Therefore, for supporting further bit-widths, this technique requires modifying 

the physical bus specification and the master core logic for communicating with 

the slave. Figure 4-9 (b) shows the technique used in the conventional 

wrapper-based bus [Son02]. The strategy is for a wrapper to convert the 

bit-widths when necessary. When converting the bit-width, it must handle the 

bandwidth gap between the interface and the bus. Thus, it requires a FIFO 

buffer to absorb the gap, where a large amount of hardware is needed. To be 

able to enhance the supported bit-width, different wrappers must be developed. 

 To convert the data-width while keeping the ability to expand it and to achieve 

a low-cost bus implementation, a data-width converter is embedded in the 

physical bus. As illustrated in Figure 4-10, two 64-bit master wrappers and two 

64-bit slave wrappers are connected using a 64-bit CWD bus and a 64-bit RD 

bus, while two 32-bit master wrappers and two 32-bit slave wrappers are 

connected using a 32-bit CWD bus and a 32-bit RD bus. The 32-bit and 64-bit 

CWD buses are connected using a CWD bit-width converter, and the 32-bit and 

64-bit RD buses are connected using a RD bit-width converter. The CWD and 

RD bit-width converters monitor the bus traffic, detect cases that require 

data-width conversion, and convert the data as required. With our approach, the 

master and slave wrappers do not need to recognize the bit-width capability of 

the destination. Thus, bit-width enhancement is easier than with the 

conventional techniques, and data buffers are not needed inside the wrappers 
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for bit-width conversion. Thus, the total bus system requires less hardware 

compared with existing approaches. 

Figure 4-11 (a) shows the CWD converter architecture. The RD converter is 

not shown, as it is similar to that of the CWD. It receives request, command, 

size, Write data, ack, and nack signals from both the 32- and 64-bit CWD 

buses. The request, command, size, ack, and nack signals of each bus are 

passed to the other bus to share the same bus cycle in these buses. The 

required condition for data-width conversion is detected in the conversion 

condition detector (CCD). When the CCD detects a bus cycle in which data 

needs to be converted, the Write data is input into a FIFO buffer. This buffer 

supports data packing and unpacking, such as 32-bit input and 64-bit output, or 

64-bit input and 32-bit output. The converted Write data is then transmitted to 

the other bus from the one where the original data came. Figure 4-11 (b) shows 

the CCD sequencer for the CWD converter. The detect condition is a Write 

command received from either the 32- or 64-bit bus that is acknowledged from 

the other bus. When this particular condition occurs, the converter translates the 

Write data from 32 to 64 bits, or from 64 to 32 bits. Additional bit-widths can be 

supported by enhancing the architecture. 
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4.5. SoC implementation and evaluation 

4.5.1.  SoC architecture 
The developed wrapper-based bus is applied to a CPU-based SoC [Oka02]. 

As shown in Figure 4-12, this SoC has a 400-MHz 64-bit 2-issue out-of-order 

superscalar processor core, 256-KB level-2 cache, and a DDR-SDRAM 

interface. The SDRAM is accessible through the L2 cache from an on-chip bus. 

Along with the on-chip bus, a CPU core, a PCI-X interface, two 10/100-base 

Ethernet MACs, a local bus interface, and a performance monitor are connected 

as five masters and seven slaves. This SoC is targeted for use as a network 

packet controller in various systems. All the function blocks except the Ethernet 

ones have 64-bit data width; and the Ethernet blocks have 32-bit width. Thus, 

the on-chip bus requires an internal data-width converter. The bus operates at 

200 MHz, and its targeted maximum throughput is 800 MB/s. It is fabricated 

using 0.15µm CMOS processes. 

The unique features of the bus for this SoC are its arbitration algorithms and 

the Write-data buffer size. The arbitration algorithms are determined by taking 

the expected traffic patterns into account. For the CWD arbiter, a simple 

round-robin algorithm is used, and the parking master is chosen as the same 

master which used the bus last time. For the RD arbiter, the same algorithm is 

used, but the parking master is always an L2 cache because the outgoing and 

incoming packets of network routing applications are always from or to the L2 

cache or SDRAM. The size of the Write-data buffer in a master wrapper is 

two-beat bursts, considering the cost-performance tradeoff, as described in 

Section 4.4.1. Also, in these applications, the CPU frequently issues two-beat 

burst Write transactions to the interfaces to maintain the registers for the 

purpose of DMA control, status monitoring, etc. Longer burst Write traffic is not 

latency sensitive, but is throughput sensitive. 

 Taking this SoC as an application example, its bus performance and the 

efficiency of the developed techniques are evaluated. Here, the evaluated 

impact of the SDRC and WBS techniques, the integrated bus performance, and 

the cost of the designed bus are presented. Using an evaluation method similar 
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to the one used previously [ZC02][LRL02], a simulation environment is 

established by using the RTL design of the developed bus. The environment 

consisted of the bus RTL design, a master model that could generate a 

maximum of eight simultaneous non-blocking Read requests, and a slave model 

that could receive one command at a time. In addition, the interval is set for 

receiving the next available command as a parameter in the slave model. The 

constructed platform was based on the five-master seven-slave bus system. 
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Figure 4-12 CPU-based SoC with developed wrapper-based bus 

4.5.2. SDRC evaluation 
 Figure 4-13 shows the performance impact of the retry interval when using the 

SDRC mechanism. The modeled traffic is for a case when a master core 

accesses a fast and a slow slave, at the same time another master accesses 

the same fast slave core. This model is similar to that of a CPU accessing a 

slow I/O device while traffic flows into the SoC from the network interfaces. 75% 
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of the traffic from the master operating as a CPU was for the slow slave core 

and 25% was for the fast one. The traffic of the other master was randomly 

generated, and the ratio of Read and Write commands was even. Each slave 

core could handle one request at a time. All the master and slave cores were 

designed as 64-bit units for simplicity. Figure 4-13 (a) shows the throughput for 

four intervals to wait for the next available buffer, and five retry intervals. When 

slaves became available in 1 and 16 cycles, the throughput decreased as the 

retry interval was increased. When they became available in 32 and 64 cycles, 

the tendency changed. When slaves became available in 64 cycles, the bus 

with a 64-cycle retry interval had the highest throughput. Figure 4-13 (b) shows 

the corresponding Nack message ratio. The ratio difference increased with the 

slave available interval due to the increased number of Nack messages 

resulting from the too short retry interval. The differences between 0- and 

64-cycle retry intervals were 3.9% and 15.9% in the 1-cycle and 64-cycle 

available intervals. 
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Figure 4-13 Performance impact of retry interval 
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4.5.3. WBS evaluation 
The throughput is evaluated for three sizes of the Write buffer in a master 

wrapper for four traffic patterns. Traffic pattern A was the average case in which 

all five masters accessed the slaves using bursts with random sizes from five 

supported sizes up to 128 bytes. In pattern B, one high-performance master 

required mostly longer burst transfers, while the other masters required shorter 

burst transfers. In pattern C, one master generated the same transactions which 

are used in the SDRC evaluation as a CPU model, while the other masters 

generated shorter burst transfers with request intervals up to 20 - 30 cycles. 

Pattern D was the modeled traffic of the targeted SoC. One master was 

modeled as a CPU, as in pattern C; another master was modeled as a PCI-X 

interface that required frequent DMA transactions from off-chip I/O devices. The 

other masters required shorter burst transfers corresponding to those of 

Ethernet interfaces.  

All the master and slave cores were connected as 64-bit units to exclude the 

effect of converters and to focus on the WBS effects. With the developed WBS 

technique, using a 16-byte buffer improved the performance by about 1% to 

9%, while a 128-byte buffer improved it by about 6% to 12%. The improvement 

was good for pattern C because the traffic was mostly short-burst transactions. 

There was little improvement for the pattern B due to the frequent long-burst 

transactions. 

The hardware cost is estimated for a bus system comprising five 64-bit master 

wrappers, seven 64-bit slave wrappers, two decoders, multiplexers, and two 

arbiters. As shown in Figure 4-14 (b), the required hardware cost was 

approximately 60K gates for the master wrappers with 0- and 16-byte buffers, 

while the wrapper with a 128-byte buffer required 102K gates. With a 16-byte 

buffer, the WBS technique only imposed a hardware overhead of only 9%, while 

with a 128-byte buffer it imposed an 89% overhead. The WBS technique 

achieved better performance than one with no buffer wrapper, and it required a 

smaller hardware cost than a wrapper with a 128-byte buffer. 
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Figure 4-14 Performance and cost impact of Write-data buffer in master 

wrapper 
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4.5.4. Total bus evaluation 
 Table 4-3 shows the evaluated throughput of a bus system developed for the 

SoC. The system had two 32-bit masters, two 32-bit slaves, three 64-bit 

masters, three 64-bit slaves, a CWD data-width converter, and an RD 

data-width converter, with a conventional arbitration hiding technique, early bus 

request (EBR), using our WBS technique and a flow-controlled interface (I/F). 

The traffic patterns were the same as for the WBS-only evaluation (Section IV 

A). As Table 4-3 shows, applying all three techniques increased throughput by 

about 12 % to 16 %. With EBR alone, throughput was reduced in two cases. 

This was because advance arbitration requests unnecessarily occupied the RD 

bus, blocking the other transactions. In this application, most transactions were 

destined for the L2 cache, which could respond more quickly, so the impact of 

EBR was quite small. Table 4-4 and Table 4-5 show the Write and Read latency 

in cycles/word, similarly to a previous publication [LRL02]. The Write latency 

improved by about 14 % to 20 %, while the Read latency improved by about 

8 % to 15 %. 

 The network application performance of the designed chip using the evaluation 

board is measured, where a gigabit Ethernet interface card is connected to a 

133-MHz PCI-X bus of it. The photo of the evaluation system is shown in Figure 

4-17. Linux runs on the CPU as routing software, and it achieved 500 MIPS 

when running a performance measurement tool of Linux. As routing operation, 

the CPU receives packets coming through the PCI-X bus and transmits them to 

the card through the PCI-X bus. For comparison, the same application has been 

evaluated on a personal computer which has 600-MIPS processor and a 

33-MHz 32-bit PCI bus for connecting gigabit Ethernet interface card. As shown 

in Figure 4-16, the routing throughput result of the 500-MIPS processor linearly 

grows when the packet size increases. The 500-MIPS processor routes almost 

the same number of packets per seconds as the 600-MIPS processor does in 

small-sized packet cases. However, when the packet size increases, the PCI 

bus becomes a performance bottleneck. The designed on-chip bus used in the 

designed 500-MIPS CPU-based SoC is not performance critical in the gigabit 
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Ethernet routing application, due to its enough performance budget for this 

application range. 

Table 4-3 Throughput of designed bus 

Traffic 

Pattern 
Base 

Early 

Bus 

Request 

(EBR) 

EBR 

+ I/F 

EBR 

+ I/F 

+ WBS 

Improvement 

(%) 

A 600 601 653 672 12.0 

B 785 781 849 887 13.0 

C 487 489 542 565 16.0 

D 579 575 633 660 14.0 

 

Table 4-4 Write Latency of designed bus 

Traffic 

Pattern 
Base 

Early 

Bus 

Request 

(EBR) 

EBR 

+ I/F 

EBR 

+ I/F 

+ WBS

Improvement 

(%) 

A 9.0 8.9 8.0 7.5 16.7 

B 9.9 9.5 8.8 8.5 14.1 

C 9.8 10.0 8.5 7.9 19.4 

D 9.2 9.3 7.9 7.7 16.3 

 

Table 4-5 Read Latency of designed bus 

Traffic 

Pattern 
Base 

Early 

Bus 

Request 

(EBR) 

EBR 

+ I/F 

EBR 

+ I/F 

+ WBS

Improvement 

(%) 

A 9.2 9.5 8.6 8.3 9.8 

B 10.0 9.9 9.5 9.2 8.0 

C 9.9 9.8 8.7 8.5 14.1 

D 9.2 9.2 8.7 8.2 10.9 
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4.5.5. Cost evaluation 
Figure 4-15 shows the hardware cost in gates of three data conversion 

methods for a total bus system comprising two 32-bit masters, two 32-bit 

slaves, three 64-bit masters, and five 64-bit slaves. The conventional technique 

requires data buffers in either the 32-bit or 64-bit wrappers. The 32-bit and 

64-bit wrapper-based conversion methods required 85K gates and 122K gates. 

Our converter-based method required only 61K gates, so it decreased the 

hardware cost by 28 % and 50 % compared to two existing methods. 

A die photograph of the designed SoC is shown in Figure 4-18, and the layout 

plot of the developed wrapper-based bus is shown in Figure 4-19. Our 

wrapper-based bus occupies a 3.3-mm2 L-shaped area, and all the bus 

connections are contained in this area. The CWD and RD converters consume 

large part of this area due to their embedded buffer for data conversion. The 

wrappers require a smaller area due to our no-data-buffer implementation. This 

chip is fabricated using 0.15µm CMOS processes and has six metal layers. The 

chip package is a 500-pin Advanced BGA. The power voltage is 1.5 V for the 

core transistors and 2.5/3.3 V for the I/O transistors.  
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Figure 4-15 Hardware cost of three data-conversion methods 
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Figure 4-16 Measured throughput of 1Gb/s Ethernet routing function 
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Figure 4-17 Photo of routing evaluation system 
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Figure 4-18 Die photograph of the designed SoC 
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Figure 4-19 Layout plot of the on-chip bus in the SoC 

4.6. Conclusion of this chapter 
This chapter described a wrapper-based bus implementation that has practical 

performance with low hardware cost. The wrappers do not require a data buffer, 

and our wrapper interface supports the status signals of the request and Write 

data buffers, and the retry interval signals in each slave IP core. 
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Three novel wrapper-based bus implementation techniques are also 

described. The Write buffer switching technique increases throughput and 

reduces Write latency. There is a tradeoff between the master wrapper 

hardware cost, throughput, and Write latency for sustained Write transactions, 

so a guideline for determining the optimal buffer size by evaluating throughput 

and latency per gate, is developed. The second technique is called “slave 

designated retry control”. With this technique, the retry interval before a master 

wrapper re-issues a request is determined slave by slave according to the 

response speed. The number of retry intervals affects the overall throughput 

and negative-acknowledgement ratio. Furthermore, a livelock avoidance 

scheme that can be easily implemented by simply adding pseudo random 

number generator, has been developed. The third technique converts the 

data-width to enable IP cores with different bit-widths to be connected at a small 

hardware cost. 

These techniques for a CPU-based SoC designed for networking applications 

are evaluated. For a bus system with two 32-bit masters, two 32-bit slaves, 

three 64-bit masters, and five 64-bit slaves, using our WBS technique and the 

proposed flow-based interface increased throughput by about 14 % compared 

to using a conventional wrapper-based implementation for the traffic pattern 

modeled for the targeted network application. It also reduced the Read and 

Write latency by about 16 % and 11 %. A hardware cost evaluation showed that 

our converter-based technique can reduce hardware costs in terms of gates by 

28 % or 50 % compared with two conventional conversion techniques. A chip 

based on these techniques was implemented in 0.15µm CMOS process 

technologies; the area for the on-chip bus is 3.3 mm2, and the operation 

frequency is 200 MHz. 
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Chapter 5 Efficient data-transfer 
schemes for Network-on-Chip 

 

This chapter describes a novel data-transfer technique using local labels in 

NoCs for programmable devices. In Section 5.1, overview of this proposal is 

described. Next, in Section 5.2, a data transfer scheme using separate routing 

information is shown. Then, in Section 5.3, a novel routing scheme using local 

labels is proposed. In Section 5.4, evaluation results are shown, and Section 

5.5 concludes this chapter. 

 

5.1. Overview 
 In sub-0.1 μ m CMOS generations, SoCs hit difficulties for design 

methodologies due to large number of transistors. Apart from the SoCs, 

programmable devices seem better solution instead of developing ASICs from 

the aspect of design and NRE costs. Thus, programmable devices in current 

generation such as FPGA and CPLD raise its market shares. Also, as future 

technologies, dynamically reconfigurable processors such as ACM, DRP, 

DAP/DNA, appear for better logic gate density than the current generation. 

 By those programmable devices and reconfigurable processors, design and 

fabrication costs are greatly reduced compared with the case when developing 

ASICs. However, hardware logic gate is emulated in those programmable 

approaches, while raw cell-based gates are used in ASICs. This difference of 

gate densities will affect the chip cost. So, in programmable devices, reducing 

chip area becomes a critical issue to achieve high credibility. 

As described in Section 2.3, the key factor for reducing chip cost in 

programmable devices is an on-chip interconnection network, called 
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Network-on-Chip (NoC). The programmable devices in current generation 

employ the programmable switch as NoC. Its structure is basically a 

programmable crossbar, and it consumes large amount of hardware [DR04]. 

 Another structure of NoC is using network routers [DT01][MBV02][GG02]. 

Although the programmable switch is an architecture which allows a single 

switch to be used by a single logical connection between a source and a 

destination. Here, by acquiring a scheme to transfer data used in network 

routers, which has been used in System Area Networks [SH96][BCF95][Ita01] in 

parallel computers or clusters, the required hardware amount is expected for 

reduction. 

 Although conventional NoCs simply applied SANs to SoCs as described in 

Section 3.6.2.3, environmental requirements of SoCs must be considered for 

less hardware amount. Three major environmental differences are that 1) 

environment is application oriented, 2) wire resources are rich and flexible, and 

3) cost sensitivity. Taking these requirements into account, this research 

presents a novel data-transfer scheme for low-cost NoC implementation and 

improving performance as an interconnection network of programmable devices. 

First, a data-transfer scheme using separate routing information which takes 

advantage of rich wiring resources on chip, is presented for cost-efficient 

implementation. Then, a novel local labeling scheme for specifying destination 

in a fewer bits than the conventional global addressing scheme is proposed to 

reduce hardware amount of routers. Comparison between required hardware 

amount for the programmable switch and the router-based NoC is also shown. 

 

5.2. Data-transfer using separate routing 
information 

An example of a NoC structure in 2-D mesh topology is shown in Figure 5-1. It 

consists of network routers and IP cores. Each connection between neighboring 

routers and node/router is uni-directional, and it includes data and control lines. 

A set of data and control signals are called “channel” in this thesis. As an IP 

core (node), a microprocessor, a reconfigurable unit such as programmable 
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logic or processor arrays, a memory or hardware logic can be placed, and these 

nodes communicate each other. 

  

Figure 5-2 shows a timing diagram of a data-transfer with packet structure used 

in conventional NoCs. On a channel, a packet header which includes fields at 

least for routing information and data length is transferred first, and then data 

itself and a packet tail follow. Packets are transferred in the unit of “flit” which 

corresponds to the data size equal to the bit-width of data signal in routers and 

nodes. This data-transfer scheme requires composing and decomposing 

packets in nodes and handling the packet structure in routers. 

 However, as described in the previous section, flexible wire resources can be 

used in NoCs, differently from SANs which have pin count limitation of chip 

packages. So, we can leave from the packet structure and this research utilizes 

a data-transfer scheme using separate routing information. As shown in Section 

5.3, this scheme uses a dedicated signal for transmitting routing information in 

parallel to data. This apparently results in removing the cycle overhead for 

sending headers, and also simplifies router and node hardware from those for 

conventional packet data-transfer. 

Figure 5-4 (a) and (b) show packet formats used in the packet data-transfer 

and the data-transfer using separate routing information. As shown in Figure 5-4 

(a), a header is sent as a first flit of the packet and it consists of at least routing 

information and length field for specifying payload size. And, the tail flit is 

transmitted if necessary. As shown in Figure 5-4 (b), data which is transferred 

by a node is split into multiple of data to be transmitted in a cycle, and routing 

information which specifies destination is transmitted in parallel. In this scheme, 

length is not necessary in routers, and the upper layer logic in IP cores may or 

may not need it. Thus, this is meant to be the field in payload. 
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Figure 5-3 Data transfer scheme using separate routing information 
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Figure 5-4 Packet structure comparison (a) packet data transfer (b) separate 

routing information transfer 

5.3. Proposal of local labeling scheme 

5.3.1. Conventional distributed routing using 
global addresses 

Global addresses have been typically used to specify destination in 

conventional NoCs [PW04]. This conventional global addressing scheme simply 

attaches a global node number of a destination to transmitted data. In routers, 

each packet looks up routing tables and gets a port number to forward. 

A routing function for the conventional distributed routing using node 

addresses is expressed with C, as a set of channels, and N as a set of nodes: 

C x N  C 

This function receives a set of input channel and a set of global node number as 

inputs, and outputs a set of cannel number as a result [DS87]. The bit amount 

required in this algorithm is ⌈ log2N⌉ , where N is a number of nodes. 
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 This global addressing scheme is quite general purposed, since any of nodes 

can transmit packet to any other nodes. However, although this scheme is 

simple and flexible, it requires number of bits according to the number of nodes 

depending on a number of nodes in SoC. For example, the 4-bit routing 

information is required in 16 nodes, and 6 bits in 64 nodes. 

 

5.3.2. Local labeling scheme 
In many SoCs, applications are pre-determined and specified before chips are 

fabricated. So, we can take advantage of static analysis results of 

communication patterns in applications. This research proposes a method to 

utilize static analysis to reduce hardware cost by optimizing routing information 

field in the data-transfer scheme using separate routing information. 

The proposed method for reducing routing information is applying a local 

labeling scheme. The local labeling scheme utilizes static analysis results of 

communication patterns to reduce a required number of bits for routing tags and 

routing table entries. As an identifier for specifying a destination, a local label 

which is only valid in a channel between a certain pair of neighboring routers or 

node/router, is used instead of global node addresses. Since the local label is a 

value which is only valid in a single channel, the same value can be used in a 

different channel for specifying a different destination. And thus, this local 

labeling scheme can reduce the required number of bits for specifying 

destination nodes. Compared with a conventional distributed routing, hardware 

cost becomes fewer when the maximum number of required local labels in 

channels is less than the number of nodes. 

Here, algorithms to calculate the number of required local labels are shown in 

the following sections. Overall in an NoC, the maximum number of local labels 

required in all the channels is called “Crossing Path (CP)”, in this research. One 

algorithm shown is constant labeling scheme, and the other is renewable local 

labeling scheme [AYK04]. 
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5.3.3. Static analysis of communication pattern 
First of all, an algorithm to extract communication paths from an application 

traffic pattern is shown. A communication path is defined as a set of channels 

from a source node to a destination node. Before the analysis, an application 

must be split into multiple of tasks and each of them is mapped onto a certain 

node, by any mapping algorithm. Below is the static analysis algorithm to 

extract communication paths. 

1) A logical counter is associated to each channel. All the counters are 

initialized 0. 

2) A set of communication pairs of nodes is prepared. Choose one from the set 

of communication pairs which are not analyzed yet. 

3) Any routing algorithm is applied to the chosen pair, and the communication 

path is established by being routed on a sequence of channels determined 

by the algorithm. 

4) Increment all the counters which the communication path has. 

5) Repeat from 2) to 4), before completing the analysis of all the 

communication pairs. 

 

Each counter value after this analysis shows the number of communication 

paths routed on each channel, and thus, equals to the required number of local 

labels in each channel. So, the maximum number of the entire counters after 

the analysis becomes theoretical Crossing Path (CP). 

 An example of analyzed communication paths in a 3x3 2-D mesh network is 

shown in Figure 5-5. Each circle shows a router and unidirectional channels are 

connected between neighboring nodes. Nodes are not shown for simplicity. As 

shown in this figure, the theoretical CP here is 4, extracted by this static 

analysis. 
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Figure 5-5 Static analysis result of an example pattern 

5.3.4. Constant local labeling scheme 
This section presents an algorithm to assign local labels to a set of 

communication paths derived by the static analysis algorithm described in the 

previous section. The constant labeling scheme proposed in this section 

assigns a single local label to a communication path. As constant local labeling 

schemes, the Low Port First algorithm is shown first, and the Crossing Paths 

Order algorithm, next. 

 

5.3.4.1. Low Port First (LPF) algorithm 
This subsection shows the Low Port First (LPF) algorithm as below. This is an 

algorithm which simply assigns constant local labels without any effort to reduce 

the number of required local labels. 

 

1) First, a set of communication paths of applications is extracted by the static 

analysis algorithm. A unique node number is assigned to each node. And, a 

logical counter is assigned to an entire network as a label counter for local 

label values. This counter is initialized to 0. 
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2) A set of nodes which are not analyzed yet is derived. Choose a node which 

has the minimum node number in the set of nodes which is not analyzed yet, 

and remove the selected node from the set. When the set becomes empty, 

the algorithm terminates. 

3) Extract all the communication paths which start from the selected node. 

4) From the set of the extracted communication paths, pick all the independent 

communication paths any of which do not share any channel each other. 

Assign the current label counter value to the communication paths as their 

local labels, and increment the label counter. This procedure is repeated 

until the set of paths finishes. 

5) Return to 2) for a next communication path. 

 

Figure 5-6 is the result of applying the LPF algorithm to the static analysis 

result shown in Figure 5-5. This example pattern requires 5 local labels. 
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Figure 5-6 Label assignment result of Low Port First algorithm 
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5.3.4.2. Crossing Paths Order (CPO) algorithm 
Although the LPF algorithm is simple, there is no effort for reducing required 

number of labels. The number of required local labels in the example shown in  

Figure 5-6 is 5, and it has a gap between its result and the theoretical Crossing 

Path, 4. This is because the LPF algorithm does not assign appropriate label 

values to the communication paths in the busiest channel C(5,8), where C(x, y) 

is a channel between node x and y, and x/y are global node numbers. Thus, 

assigning labels to the busiest channel should be done prior to the others for 

achieving a minimized number of local labels. Here, the Crossing Paths Order 

(CPO) algorithm is proposed as below. 

 

1) First, a set of communication paths is derived by the static analysis 

algorithm. 

2) Choose a channel which has a maximum label counter value as a result of 

the static analysis algorithm, from the set of channels which are not 

analyzed yet. If this set is empty, the algorithm terminates. 

3) A set of communication paths which are routed on the selected channel in 2) 

is derived. And if any of these communication paths already have local 

labels, remove them from the set. Also, a set of local label values in the 

communication paths is prepared for the channel, so that the values of the 

communication paths which already have local labels are assigned as initial 

values for the set. 

4) Prepare a logical label counter for the channel and initialized to a value 

which does not match any of the values in the set of local label values 

prepared in 3). 

5) Pick a communication path from the set of communication paths prepared in 

3). Assign the current label counter value as a local label to the selected 

communication path. Add the value to the set of local label values. 

6) Set the counter value to the next larger value than the current which does 

not match any of the values in the set of local label values. If the set of 
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communication paths becomes empty after the removal of the 

communication path in 5), return to 2), otherwise go to 5). 

 

Figure 5-7 shows the result of label assignment to the static analysis result 

presented in Figure 5-5, by the CPO algorithm. Crossing Path becomes 4, and 

it is fewer than the result of the LPF algorithm. This is because the CPO 

algorithm assigns a local label value to the communication path which has the 

largest number of local labels from the set of communication paths not analyzed 

yet. Thus, the CPO algorithm can reduce the number of required local labels. 
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Figure 5-7 Label assignment result of Crossing Paths Order algorithm 

5.3.5. Renewable Local Labels 
The constant local labeling scheme assigns a single local label value to each 

communication path, and tries to minimize the required number of local labels. 

On the other hand, a renewable local labeling scheme presented in this section 
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is the algorithm which assigns a single local label to each channel, not to each 

communication path. This increases flexibility of label assignment and the 

required number of labels can be more reduced so that it becomes equal to the 

same value with the static analysis result. Below is the procedure of the 

renewable local labeling algorithm. 

 

1) Assign a logical counter to each channel, and initialize them to 0. 

2) Choose a single channel from the set of communication paths to which local 

labels are not assigned. 

3) Assign logical counter values of the channels where the communication path 

is routed, to the communication path. Sequence of the local labels express 

the communication path itself. 

4) Increment the counters used in 3). 

5) Repeat 2) to 4) 

 

The renewable local labeling algorithm assigns local labels so that the derived 

Crossing Path is equal to the Crossing Path of the static analysis result, thus 

this Crossing Path is theoretically minimized. 
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Figure 5-8 Required renewable local labels in complement pattern 
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Figure 5-8 shows the required number of local labels when using complement 

pattern [DYN02] and e-cube routing [DS87] on a 4x4 2-D mesh network. In this 

figure, the numbers assigned to all the channels present required local label 

numbers. This pattern consists of 16 communication paths that are P(0,15), 

P(1,14), P(2,13) … P(15,0), where P(x,y) is the communication path from a 

node x to a node y. 

 Figure 5-8 also shows examples of assigning labels. A local label sequence, 

“1000” is assigned to the communication path P(1,14) on C(1,2), C(2,6), C(6,10) 

and C(10,14). In the same manner, to the communication path P(0,15), a 

sequence “000000” is assigned to C(0,1), C(1,2), C(2,3), C(3,7), C(7,11) and 

C(11,15). 

 A key feature of the renewable local labeling scheme is that it allows different 

local labels to channels in a communication path. Thus, the derived number of 

Crossing Paths is minimized and equal to the theoretical CP derived by the 

static analysis algorithm. 

 However, the renewable local labeling scheme requires a function for updating 

local labels in routers, differently from the constant local labeling scheme. For 

example, in Figure 5-8, P(1,14) and P(0,15) have different local labels in the 

same channel C(7,11), where P(0,15) and P(4,11) have different labels in 

C(1,2), and P(1,14) and P(5,10) in C(6,10). And as another example, P(1,14) 

has different local labels in C(1,2) and C(2,6). This updating function is 

implemented in a router architecture described in Section 5.4.3.1. 

 Figure 5-9 shows the result of applying the renewable local labeling scheme to 

the static analysis result in Figure 5-5. The resulted Crossing Paths is 4, and 

this is the same result as the static analysis result.  

 The CPO algorithm assigns local labels so that the required number of labels 

in the busiest channel is minimized. However, the result of the CPO algorithm is 

not the minimum number for all possible cases, since it allocates a larger local 

label value in a case when a communication path not traversing the busiest path 

conflicts in other channels with all the communication paths in the busiest 

channel. On the other hand, the renewable local labeling can allocate the 



 88

minimized Crossing Path in the communication pattern which is equal to the 

result of the static analysis algorithm. 

 The routing function for the renewable local labeling scheme is described as 

follows, where C is channel and P is local label. 

C x P  C x P 
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Figure 5-9 Renewable local labeling result of an example pattern 

5.4. Evaluation 
In this section, the performance results and the hardware cost of the proposed 

scheme are shown. First, the performance evaluation data when using the 

data-transfer with separate routing information is described. Then, evaluation 

data on the required number of local labels used in the proposed local labeling 

scheme is shown, to compare it with the conventional global addressing 

scheme. 

 



 89

5.4.1. Performance evaluation 
First, this section shows the performance advantage in applying a data transfer 

scheme using separate routing information. 

5.4.1.1. Environment 
Performances for the cases using the data-transfer scheme with separate 

routing information and using the packet data-transfer are evaluated with 

flit-level simulator written in C++. The traffic patterns used for the evaluation are 

Uniform and Bit-reversal traffic patterns [DYN02]. The Uniform traffic is a pattern 

where a destination is chosen randomly data by data. And the Bit-reversal traffic 

is a pattern where each source node has its own fixed destination node. 

Table 5-1 shows the simulation parameters. The simulated network topology is 

4x4 2-D mesh, and a data-transfer scheme implemented in the router is 

wormhole routing without virtual channel. Size of the data buffer in the router is 

1-flit length. And the header length is 1 flit for the packet transfer case, where 

the data transfer using separate routing information does not issue this 

overhead. Simulation was run for 50000 cycles, and initial 5000 cycles are 

ignored to remove the initialization phase. The data size of a flit is 32 bits. 

Table 5-1 simulation parameters 

Simulation time 50000 cycles 

Topology 4x4 2-D mesh 

Routing algorithm e-cube routing 

The number of VC 1 

Data-transfer scheme Wormhole 

 

5.4.1.2. Performance result 
Figure 5-10 and Figure 5-11 show the simulated throughput and latency results 

for the Bit-reversal and the Uniform traffic patterns. The unit of throughput is 

bytes/cycle/node which shows throughput per node. The unit of latency is the 
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number of cycles and it shows average number of cycles for each flit to stay in 

the network per each cycle data.  

 As shown in Figure 5-10 (a), the throughput for the data-transfer using 

separate routing information in the Bit-reversal traffic is constant, independently 

of the data size. When data size is larger than the data size for a single cycle in 

using separate routing information, data is split into each cycle data and each of 

them has its own routing information. Thus, no cycle overhead for transferring 

routing information or headers is required. On the other hand, when using the 

packet data-transfer scheme, the header requires 1-cycle overhead. Thus, 

when the data size is small, the packet data-transfer cannot achieve that much 

performance as the data-size is large. In a case for the 4-byte data, the 

data-transfer using separate routing information doubled the throughput from 

that of the packet data-transfer. 

 On the other hand, as shown in Figure 5-10 (b), when using the Uniform traffic 

pattern, the throughput for the data-transfer using separate routing information 

degrades when increasing the data size. This is because the destination is 

picked randomly, and the opportunity to conflict in a router becomes more 

frequent in using separate routing information. 

 Thus, using separate routing information results in good performance 

especially using the traffic pattern is fixed like the Uniform traffic pattern. 
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Figure 5-10 Simulated throughput results 

(a) Bit-reversal traffic (b) Uniform traffic
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Figure 5-11 Simulated latency results 
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5.4.2. Required number of local labels 

5.4.2.1. Method and environment 
 As evaluation, communication patterns of typical applications are analyzed to 

evaluate required numbers of local labels in the constant and the renewable 

local labeling schemes. As applications, some of multimedia and 

communication applications are chosen as practical stream data processing. 

And as other applications, NAS parallel benchmarks (NPB) 2.3 

[BHS95][SWW97] are analyzed for reference, where NPB cannot be realistic 

applications for SoCs. 

 First, an algorithm of each application is analyzed and each application is split 

into multiple functional tasks. A task-flow graph is drawn by the analysis result. 

The number of nodes is assumed to be less than 16, the same as [DT02]. Each 

application is mapped onto three topologies for 16 nodes, in 2-D mesh, 2-D 

torus and H-tree topologies. For the evaluation of a 64-node NoC, NPB is 

mapped onto a 64-node NoC. In this evaluation, a required number of local 

labels for each application is derived by applying the static analysis, the 

constant and the renewable local labeling algorithms to the mapping results of 

applications. 

 As network topologies to evaluate, three major topologies, 2-D mesh, 2-D 

torus and H-tree are evaluated, as shown in Figure 5-12. As routing algorithms, 

an e-cube (X/Y) routing is used in 2-D torus (mesh), and up/down routing in 

H-tree. Only in 2-D torus virtual channels are implemented in routers. 
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Figure 5-12 Topologies used in evaluation 

 

5.4.2.2. Applications 
 Two types of applications are selected: stream data processing applications 

and NAS parallel benchmarks. 

As stream processing applications, JPEG codec, Viterbi decoder, 4x4 network 

switch, OFDM (Orthogonal Frequency Division Multiplexing) and MPEG-2 

encoder are analyzed. These applications are analyzed statically and task-flow 

graphs are created from the algorithms. The detailed descriptions of these 

applications are shown below. 

 

JPEG Codec 
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JPEG codec is a set of JPEG decoder and encoder. The task flow graph is 

shown in Figure 5-13. This application compresses and decompresses static 

images. The decoder receives JPEG byte-stream as input and outputs raw 

image data in RGB (R: Red, G:Green and B:Blue) format. The encoder flow is 

opposite and outputs JPEG byte-stream data. Figure 5-13 (a) shows its task 

flow and Figure 5-13 (b) shows the task mapping result on 16-node 2-D mesh 

topology. Each square shows a node and the line between nodes correspond to 

channels. The arrow beside the channel is the data-flow of image data, and the 

dotted line shows the control data-flow, such as header information and table 

data. In this evaluation, different local labels are assigned to the communication 

paths between the same source node and the same destination node which 

convey different types of data. 
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Figure 5-13 Task mapping result of JPEG codec for 2-D mesh topology 

Viterbi Decoder 
Figure 5-14 (a) shows a task-flow of the Viterbi decoder which is an error 

correction code widely used in many applications. This Viterbi decoder is a 
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Soft-In Soft-Out (SISO) Viterbi decoder [Kan03]. This firstly processes 

Add-Compare-Select (ACS) calculation, and then buffers the history of the 

calculated results in the FIFO buffer. In Delta, the difference between the 

histories is extracted, and Trace-Back (TB) phase processes the difference in a 

pipelined manner. The FIFO buffer consists of 64-bank memory macoros, but 

this task mapping tries to distribute and average the amount of hardware for 

each node, and use 4 nodes to process FIFO buffering history data. 

 

4x4 Network Switch 
Figure 5-14 (b) shows a task-flow of the 4-input 4-output network switch 

[AJA03]. In a Link module, an input header of data is analyzed, virtual channel 

operation is done, and arbitration cycles are issued. In 4x4 Crossbar (CB), it 

switches and transfers the output packet from the link modules. 

 

MPEG-2 Encoder 
Figure 5-14 (c) is a task flow of MPEG-2 encoder [LLS04]. A function block of a 

frame data is input to an Input Buffer module, and the reference data stored in 

Reference Buffer is used to search a motion vector for the input frame data in a 

Motion Estimation module. 

 

OFDM 
Figure 5-14 (d) shows a task-flow of OFDM which is a wireless communication 

protocol [LLS04]. Each processing core from Core 0 to Core 7 executes 

2048-point Inverse-FFT (Fast Fourier Transform). The output complex numbers 

are calculated and normalized in MAC (Multiply-and Accumulate) units. 
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Figure 5-14 Task partition of applications (a) Viterbi decoder (b) 4x4 network 

switch (c) MPEG-2 encoder (d) OFDM 

 

NAS parallel benchmarks 2.3 
From NAS Parallel Benchmarks [BHS95][SWW97] which consist of typical 

numerical parallel application programs described with the MPI library [GLD96], 

six matrix computation programs are analyzed: BT (Block Tridiagonal solver), 

CG (Conjugate Gradient), LU (LU-decomposition), MG (Multi-Grid solver) and 

SP (Scalar Pentadiagonal solver). These are implemented and executed on the 

RHiNET-2 cluster with 64 nodes [WOT03], and the communication traces were 

obtained using MPI profiling libraries [GLD96]. Using obtained results, these 

communication paths are calculated under the X/Y and e-cube routing on the 

two-dimensional mesh and torus. 

 

The task-flows of stream applications described above are simple, such that 

data is input to a node and output from it. In this research, however, for cases 

that other possible task mapping with complex communication pattern is 
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required, NPB 2.3 is also used for analysis as a prior research in [HP03]. NPB 

2.3 is scientific calculation benchmarks, and thus it is not a realistic benchmark 

set for NoC, but typically used in PC clusters or parallel computers. It has 

characteristics to include broadcast communication and communication 

between neighboring nodes, differently from stream applications.  

 

5.4.2.3. Comparison of local label numbers 
The stream applications in the previous section are mapped onto a 16-node 

NoC. The mapping and static analysis results of the applications are shown in 

Table 5-2, and the average number of hops and the number of total 

communication paths are shown in Table 5-4. Table 5-3 is the table to show the 

Crossing Paths of NPB 2.3 and the average number of hops and the number of 

communication paths in Table 5-5. Some of the NPB applications are analyzed 

also on 64-node NoC. In Table 5-2 and Table 5-3, the number of bits required 

for local labels is calculated as ⌈ log2m⌉  when the number of CP is m. 

The total communication paths of the stream applications are approximately 

from 20 to 30, where 16-node applications of NPB result in more than 60 

communication paths. This is because the analyzed stream applications simply 

receive input data and transmit output data, and every task operates as 

pipelined manner. In some applications, performance is improved by parallel 

processing like FIFO buffering after ACS calculation in the Viterbi decoder. 

However, no synchronization communication occurs in the system, and the total 

number of communication paths is not increased to that large number in NPB. 

In NPB, broadcast communication is required to synchronize timings between 

nodes, and IS requires 240 communication paths which are all-to-all 

combination of 16 nodes, for instance. 

 As shown in Table 5-2, the resulted CPs for the stream applications are less 

than 8 in 16-node NoC for all the topologies. Thus, the required number of bits 

for local labels in these applications is bit, where the conventional global 

addressing scheme requires 4 bits in 16-node NoC. Thus, the local labeling 

scheme reduced by 1 bit from the conventional global addressing scheme. The 
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source routing described in [DT02] requires 16 bits in 2-D mesh and torus 

topologies, and 8 bits for H-tree topology, and thus the local labeling scheme 

reduced by 13 bits and 5 bits from them. 

 In NPB, IS which includes the largest number of the communication paths 

results in the largest number of Crossing Paths, as shown in Table 5-3. Its CP is 

16 in 2-D mesh topology and 15 in 2-D torus topology, and thus the 4-bit local 

labels are required. So, the local labeling scheme does not improve it from the 

global addressing scheme. However, in the other applications except for IS, 

they do not include all-to-all communication, and are less CPs than that of IS. In 

these applications, the renewable local labeling scheme results in 8 local labels 

which are 3 bits, at most, and the constant local labeling scheme requires 10 

local labels, which are 4 bits. So, the renewable local labeling scheme reduced 

by 1 bit from the constant local labeling scheme in 2-D mesh and torus 

topologies. Also in the 64-node NoC, applications except for IS require 14 local 

labels which are 4 bits. So, it reduced by 2 bits compared with the global 

addressing scheme which requires 6 bits for 64-node NoC. 

 On the other hand in the H-tree topology, the required numbers of local labels 

for NPB are less than 48, which is 6 bits, including IS, and less than 20, which is 

5 bits, excluding IS. They are larger numbers than that of the global addressing 

scheme. In the H-tree topology, all the communication paths traverse the vertex 

on top of the tree and those upward links require larger numbers of local labels. 

This implies that further research on appropriate topologies for local labels like 

in [YAK04] is necessary for achieving appropriate tree-based topology. 

 Next, discussion is given to the comparison between the renewable local 

labeling scheme and the CPO labeling scheme. As shown in Table 5-2, there is 

no difference between the numbers of CPs for stream applications for these 

algorithms. However, as shown in Table 5-3, applications except for LU result in 

smaller numbers of local labels using the renewable labeling algorithm. This is 

caused when any communication paths not in the busiest path conflicts in other 

channels with all the communication paths in the busiest channel. However, 

according to the analysis results of stream applications, there are no such 

cases in these stream applications. 
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Table 5-2 Crossing Path of stream applications in 16-node NoC 

 2-D mesh 2-D torus H-tree 

 Ren. LPF CPO Ren. LPF CPO Ren. LPF CPO

VITERBI 5 5 5 4 4 4 6 6 6 

4x4 switch 4 5 5 4 4 4 4 4 4 

JPEG 8 8 8 8 8 8 8 8 8 

MPEG-2 5 5 5 3 3 3 6 6 6 

OFDM 4 5 4 4 4 4 6 6 6 

  Ren.: Renewable local labeling 

 

Table 5-3 Crossing Path in NPB 2.3 in 16- and 64-node NoC 

 2-D mesh 2-D torus H-tree 

 Ren. LPF CPO Ren. LPF CPO Ren. LPF CPO

BT.16 8 11 10 8 10 9 20 22 20 

CG.16 5 8 6 5 7 6 11 14 12 

IS.16 16 22 20 15 20 20 48 60 60 

LU.16 6 6 6 6 6 6 12 14 12 

MG.16 5 6 6 5 5 5 12 13 12 

SP.16 8 11 10 8 11 10 20 22 20 

CG.64 10 13 11 9 11 11 11 14 12 

MG.64 9 14 14 9 13 13 48 58 48 

  Ren.: Renewable local labeling 
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Table 5-4 Number of communication paths and average hops in stream 

applications 

 Number of hops 

Number of 

Communication 

Paths 

 2-D mesh 2-D torus H-tree  

VITERBI 2.78 2.67 2.44 18 

4x4 switch 2.83 2.67 2.00 24 

JPEG 2.36 2.27 1.36 22 

MPEG-2 2.84 2.53 2.37 19 

OFDM 2.47 2.34 2.19 32 

 

Table 5-5 Number of communication paths and average hops in NPB 2.3 

 Number of hops 

Number of 

Communication 

Paths 

BT.16 3.00 2.50 2.25 128 

CG.16 2.79 2.68 1.58 76 

IS.16 3.67 3.13 2.60 240 

LU.16 2.40 2.40 2.00 80 

MG.16 2.60 2.40 2.20 80 

SP.16 3.00 3.00 2.25 128 

CG.64 3.80 3.58 2.16 440 

MG.64 3.78 3.55 3.00 576 

 

 

5.4.3. Evaluation of hardware amounts 
 This section describes the evaluation results using the required number of 

local labels derived in the previous section. 
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5.4.3.1. Designed router architecture 
 The purpose of the proposed local labeling scheme is to reduce the required 

hardware amount of a router by reducing required numbers of local labels. 

Thus, as well as the algorithms to reduce numbers of local labels, evaluation of 

router architectures to achieve small hardware amount is also important. 

 Figure 5-15 (a) and (b) show the designed router architecture using the 

renewable and the constant local labeling schemes for the 2-D mesh topology. 

These routers distribute routing tables to all the input ports for parallel lookups, 

and do not take centralized approach. And since communication patterns 

assumed to be statically analyzed by the proposed algorithms, each input port 

does not have virtual channels for the purpose of avoiding deadlocks. Inputs to 

the router are from the four directions and one node output, and the same for 

outputs. Thus, the crossbar is 5x5. And there is a simple I/O interface to 

initialize routing tables, which is not shown in the figure. 

An input port controller of the renewable local labeling router shown in Figure 

5-15 (a) looks up the routing table using an input local label as a table address. 

The table entry includes an output channel number and a local label at the 

output channel. So, the input port controller uses the output channel number as 

a select signal for the crossbar and replace the local label in the entry with the 

input local label. On the other hand in the constant labeling router architecture 

shown in Figure 5-15 (b), the input local label is simply transferred to the output 

port and there is no need for replacement. The entry for this router is simply an 

output channel number, and does not need the local label for replacement. 

 As described above, the routers for the renewable and constant local labeling 

schemes have almost the same structure, and the difference is the table format. 
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Figure 5-15 Router architectures for 2-D mesh topologies using (a) updated 

local labels and (b) non-updated local labels 

 
5.4.3.2. Evaluation environment 
 To compare the required hardware amounts for the routers shown in Figure 

5-15 (a) and (b), both these routers were designed in HDL and synthesized with 

Synopsys DesignCompiler using 0.15μm CMOS cell libraries. The result is 

expressed in 2-input NAND equivalent gate. 

 

5.4.3.3. Evaluated amount of router hardware 
Table 5-6 shows required hardware amount for the renewable and constant 

local labeling routers for the 2-D mesh topology. The results are shown in 

2-input NAND-equivalent gates. As shown in this table, the required hardware 



 103

amount of the router increases according to the number of local labels, due to 

the increase of routing table entries. 

 According to the result of required local labels for stream applications 

described in Section 5.4.2, 3-bit local labels are required in the 16-node NoC. 

Thus, the renewable and constant local labeling routers result in 5062 and 4049 

gates, respectively. Since a router for the conventional global addressing 

scheme corresponds to the one with the constant local labeling router with 4 bit 

labels, it requires 5220 gates. Thus, using the constant local labeling router 

reduces 22 % gate counts than it, and the renewable local labeling router only 

reduces 3 %. So, in the case when the renewable local labeling algorithm does 

not reduce the required number of local labels from the constant local labeling 

algorithm, the constant labeling scheme resulted in a simpler router. 

 In the 64-node NoC, the required gate counts for the renewable and constant 

routers for NPB applications resulted in 4 bits for both cases, and 7863 and 

5220 gates. When using the global addressing scheme, 6 bits are required for a 

routing tag and the router results in 11015 gates. Thus, the renewable labeling 

scheme reduced by 28 % and 46 % from the renewable and constant labeling 

routers. For the stream applications which require fewer communication paths 

than NPB, more hardware amount is expected to be reduced. 

 

Table 5-6 Required number of gates for a 2-D mesh local labeling router in ASIC 

The number of local 

labels 

Constant (CPO) 

labeling (gates) 

Renewable 

labeling (gates) 

2 (1 bit) 3132 3189 

4 (2 bit) 3450 3766 

8 (3 bit) 4049 5062 

16 (4 bit) 5220 7863 

32 (5 bit) 7987 13455 

64 (6 bit) 11015 26396 
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5.4.3.4. Ratio of evaluated hardware amount 
Next, ratio between a router and each node of the Viterbi decoder SoC is 

evaluated to show the impact of the proposed scheme on the total SoC gate 

counts. Table 5-7 shows the ratio comparison with the conventional global 

addressing scheme. The Viterbi decoder consists of 15 nodes and each of them 

is listed in at left column. The ratios of the CPO labeling router and the global 

addressing router are shown. 

 As shown in Table 5-7, the tasks range from 1K gates to 62K gates, and the 

total number of gates of this SoC is approximately 320K gates. The router ratios 

from the sum of the router and each node range from 6.1 % to 78.3 % in using 

local labeling, where these of the global addressing scheme range from 7.7 % 

to 82.3 %. For the total gate counts, the ratio of local labeling routers is 15.8% 

where that of the global addressing scheme is 19.5%. 

Table 5-7 Gate count ratio of routers in Viterbi decoder SoC 

 
Gate count of 

node* 
Router ratio with local 

labels (%) 
Router ratio with global 

address (%) 

ACS 20045 16.8 20.7 

MKPM 5012 44.7 51.0 

FIFO0 62560 6.1 7.7 

FIFO1 62560 6.1 7.7 

FIFO2 62560 6.1 7.7 

FIFO3 62560 6.1 7.7 

Delta 1125 78.3 82.3 

TB0 6123 39.8 46.0 

TB1 6123 39.8 46.0 

TB2 6123 39.8 46.0 

TB3 6123 39.8 46.0 

SOTB0 5673 41.6 47.9 

SOTB1 5673 41.6 47.9 

SOTB2 5673 41.6 47.9 

SOTB3 5673 41.6 47.9 

Total 323606 15.8 19.4 

* without router 
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5.4.4. Comparison with programmable switch 
In FPGAs, programmable switches [RB91] have been used as interconnection 

networks. The programmable switches require static analysis of all routing paths, 

and so the local labeling scheme, in a sense, can be viewed as a similar 

approach to these. Main difference between the local labeling scheme and the 

programmable switches is that wires connected with programmable switches 

carry only data from a single output, while wires in the local labeling scheme are 

used in a time multiplexing manner with several paths. Figure 5-16 outlines a 

typical structure for a programmable switch used in FPGAs. This switch has four 

connection links to neighboring switches, and the other link is connected to a 

calculation node. 

In programmable switches, one channel in a link is only used by a single 

connection. Thus, to share a link with multiple connections, multiple channels 

are required. In this figure, M is the number of channels per link. FS in this 

figure, on the other hand, means switch flexibility. As described in [RB91], it has 

been introduced to reduce the size of the crossbar. The total potential input for 

the crossbar is 4M+1, and FS channels have been selected and multiplexed to 

each output. 

Figure 5-17 compares the number of gates required for the 32-bit 

programmable switch and the 32-bit local labeling router. This graph plots the 

number of channels and labels versus the number of gates required for the 

programmable switch and the local labeling router. The proposed local labels 

only require 371 gates per label, while the programmable switch requires 431, 

1060, 1670, and 3346 gates per channel. Thus, the proposed routing scheme 

using local labels reduced the number of gates per channel. 

The number of gates for the local labeling router with a 4-bit label is almost the 

same as that of the switch when FS is four. The local labeling scheme router 

with 8-bit labels requires almost the same number of gates as the 

programmable switch whose FS is 2. However, according to [RB91], from the 

standpoint of routability, the case that FS is two is not practical.  So, 

considering cases whose FS is more than or equal to four, the local labeling 
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scheme router with 3-bit labels is smaller than that of the programmable switch 

in most cases. 
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Figure 5-16 Programmable switch architecture 

 
Figure 5-17 Comparison of required gate counts according to channels/labels 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

0 10 20 30 40 

Router 
FS=2 
FS=4 
FS=8 
FS=16 

Number of channels/labels 

Number of gates 

371 gates/label 

431 gates/channel 

1060 gates/channel 1670 gates/channel 

3346 gates/channel 



 107

5.5. Conclusion of this chapter 
In this chapter, a novel data-transfer method for an on-chip interconnection 

network in programmable devices is proposed. A local label is attached to each 

1-cycle data as routing information. Unlike the traditional packet transfer, the 

local label is transferred on dedicated wires attached to data lines to remove 

complicated packet generation procedures in a node. Only a small-sized local 

label is required to specify routing tags to the destination, and intermediate 

routers change it to solve local label conflict between paths on a physical 

channel. Furthermore, it can simplify network interface structures in nodes, 

because it removes packet structure to assembly. 

The results of flit-level simulation show that the data-transfer with separate 

routing information which transfers only 1-flit data, can increase throughput 

especially in cases with fixed communication patterns. 

 The evaluation results in 2-D mesh and torus topologies using streaming 

applications. The required number for labels is 8 in 16-node case which 

decreased 1 bit from the global addressing scheme. And for a 64-node case, it 

requires 4 bits for NAS parallel benchmarks which have more complicated 

communication pattern than typical streaming applications, and it reduced 2 bits 

from the global addressing scheme. 

The hardware comparison results show that the proposed router is constructed 

in smaller hardware than the ones in distributed routing and source routing. It 

can reduce 4 % and 29 % in the 16-node case from them respectively, and 

29 % and 74 % in the 64-node case. 

In summary, the proposed local labeling scheme, which transfers 1-flit data 

and attaches a local label, is advantageous from various aspects, especially 

hardware cost. It can simplify the router structure and decrease the hardware 

amount of routers, with sustaining performance comparable to the conventional 

packet data transfers. All these results are shown under the practical application 

patterns for high credibility. 
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Chapter 6 Future work 

 

This thesis focused on the research on implementation techniques of on-chip 

interconnection networks regarding cost and performance efficiency. However, 

there are some other possible approaches for these research topics 

 
Layout and clocking 
In this research, the designed bus has 5 masters and 7 slaves in a chip, and 

the designed layout is shown in Figure 4-18. The layout shown here assumes 

that the on-chip bus is laid out as an IP block. In this layout scheme, area 

consumed by an on-chip bus is roughly estimated in advance, and the 

corresponding area must be reserved. And other IP cores that are connected to 

the on-chip bus must have boundaries with the bus block. 

However, when numbers of masters and slaves increase, there are several 

possible problems to solve. 

1) It will be difficult to design an on-chip bus with small area and in simple 

shape, since all the IP blocks have share boundaries with it. The shape 

will be widely spread in a chip, and will not be a simple rectangular and 

more complex. 

2) Because the bus structure is basically trees of multiplexers as shown in 

Figure 6-1, the multiplexers will be centralized into one spot. Thus, center 

location of a bus block will be congested due to multiplexers and signal 

wires. Distributed placing of multiplexers is important to reduce congestion 

of signal wires. 

3) Bus operation frequency will be difficult to increase. Bus signals are 

distributed from the final stage of the multiplexer tree. Those signals are 

not only wired to slaves, but to masters in some cases when masters refer 
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to bus signals, such as a bus frame signal. So, bus signals travels from 

master core to the center of the bus block, and then to masters and 

slaves. In most buses, bus protocols are designed with the assumption of 

1-cycle delay. 

4) Netlist of the bus multiplexer tree must reflect the physical locations of 

masters and slaves. If each multiplexer multiplexes output signals from 

masters not neighboring each other, the location of the multiplexer will be 

centralized into a central spot of the bus block. Even with the physical 

compiler, the netlist should be changed to meet the physical locations of 

the masters and slaves to place and route effectively. 

Another approach to layout the bus block other than handling it as an IP core 

is leaving it as top-level glue logic. To successfully layout with this approach, 

each IP core must be placed with sufficient spaces between them to place bus 

multiplexers and to route bus signals. The bus logic is typically placed and 

routed in the final stage of the layout flow, since these are handled as top-level 

glue logic. Thus, estimating the required space in the early stage floorplanning 

as precise as possible is more and more important. Another important issue is 

to layout the bus block with small latency penalty. With this layout scheme, the 

area for layouting bus logic is widely spread all over the chip. Thus, signaling 

delay is more likely to get long than the scheme which handles the bus as an IP 

core. Thus, physical synthesis other than simple logic synthesis will be much 

more important. 

On the other hand, the router-based NoC has difficult shape to layout as a 

single IP core. The overall floorplan is based on the architecture shown in 

Figure 5-1. As it is shown in the figure, handling overall network as a single 

functional block is not a realistic approach, because the shape is not a simple 

rectangular. The easiest way is concatenating NoC router with each 

computation node. With this approach, layouting a computation node plus a 

router first, and then, dupulicating the prepared node and router. 
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Figure 6-1 bus structure with multiplexer tree 

 

Clock skews 

The designed bus has a single operation clock frequency. In sub-0.1μm 

CMOS devices, the frequency increases, and the allowable clock skew which is 

a difference of the clock arrival time within in the bus block, decreases. The 

clock distribution circuit has typically tree structure, and consists of clock drivers 

and signal wirings. For achieving less clock skew, designing a clock distribution 

tree with accurate delay estimation is a key issue. However, estimating clock 

delay accurately in sub-0.1μm CMOS devices is not easy. It requires balanced 

structure of a clock distribution network, and accurate delay estimation of buffer 

and wiring delays. 

The layout can be done in two styles as described in the layout suggestions. 

- When the bus block is handled as an IP core, its clock distribution 

network is designed using hierarchical clock tree synthesis (CTS), in 

most cases. A clock distribution network of each IP core is designed 
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using CTS first, and then, the top-level clock distribution network is 

designed next. In this flow, designing a clock distribution network with 

small clock skew in the bus block which could be complex shape is 

important. To design the clock network, a clock input port for the bus 

block is defined. When the shape is complex, the lengths from the input 

port to flip-flops vary. In this case, CTS will insert clock buffers to the 

short paths and this increase the latency of the clock network. If the delay 

of the clock network is long, this will affect PLL’s stability factor when it is 

feedbacked from the end point of the tree and will increase power 

consumption. 

- When the bus is laid out as top-level glue logic, the top-level clock 

distribution network design will be important. All the IP cores have 

regions working with the same clock frequency, and they are widely 

spread inside the chip. With this scheme, all the flip-flops included inside 

the bus logic should be included in each connected IP cores, and only 

leave multiplexers as glue-logic. 

 

 In the router-based NoC, the number of connected nodes is assumed to be 

large and the layout is regular array structure of nodes and routers. So, the NoC 

region will be widely spread overall the chip. Although this research designed all 

the NoC region to be clocked with the same frequency, another design strategy 

that each router is operating in the same clock frequency with a neighboring 

node could be realistic. 

When taking this approach, the clock synchronization circuit must be 

implemented in the boundaries of neighboring routers. In the current router 

design shown in Figure 5-15, there are input and output buffers which are 

interfaced with each neighboring router. The clock synchronization circuit could 

be implemented in those buffer designs. The possible side effect is the router 

operating with the slowest frequency will be a performance bottleneck. In that 

case, routing algorithm could be newly designed to select routers in fast 

frequencies prior to those in slow frequencies. 
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Clock synchronization 
In this research, the clock frequency is assumed to be single, and if some 

other frequencies are required such as by I/O interfaces, the clock 

synchronization must be done in IP cores. The clock synchronization is 

considered as a critical issue since it could frequently be sources of logical 

bugs. Thus, clock synchronization circuits without bugs should be embedded 

inside bus wrappers or network routers. This will unburden IP core or 

computation node designers. 

 The basic implementation of the clock synchronization for a single-bit signal is 

simply clocked once with a source clock and more than twice with a destination 

clock, as it is well-known. Further implementation possibilities are embedding 

FIFOs as elastic buffer. FIFO consumes large number of transistors or requires 

large internal memories. However, dual port memory will ease the logic design 

with two clock domains. Besides FIFOs, when transferring multiple bits of data 

over the clock boundary, like memory pointer values, the value should be gray 

coded to ensure 1-bit transition. 

 

Data
(domain A)

Clock BClock A

Data
(domain B)

 

Figure 6-2 basic clock synchronization circuit 

Automatic netlist generation and logic verification 
On-chip buses and router-based NoCs are expected to support any kinds of 

SoCs or programmable devices. Thus, designing automatic netlist generation 

tool is a good idea. In this idea, netlist will be automatically generated according 

to the configured address map, and numbers of masters and slaves to be 



 113

connected. Although generating netlist itself is quite easy, how to ensure its 

logic quality by verification is an open issue. 

Router-based NoCs and wrapper-based buses have the same feature that 

both use duplicated logic of bus wrappers and network routers. So, from the 

logic verification point of view, the unit-level verification is done easily, but 

verification for combination of routers is more difficult. 

 As for the logic verification, two approaches can be considered. One approach 

is static verification, using property checking for the interface protocols. This 

does not require any testbench generation for the RTL design and possible 

protocol rules are written for the property checking tool. The static approach will 

analyze the design statically. Thus, serious protocol errors, which are difficult to 

be found out in dynamic simulation approches, such as deadlock and livelock, 

are expected to check. 

 A dynamic simulation approach will require logic verification by generating 

testbenches. The logic simulation will require assertions and coverage to meet, 

which should be defined by logic designers and verification engineers. The 

assertions are the rules to check in any places in the design. The coverage to 

meet is the sufficient condition to complete the logic simulation and this must be 

defined as combination of timing conditions and function conditions. These 

verification schemes can be easily established using SPECMAN or VELA, 

released by Vericity and Synopsys. 

 

Reduction of power consumption 
 Power reduction is an important aspect also in high-end products as well as in 

consumer products. In this research, power consumption is not critical in an 

on-chip bus or an NoC since its hardware amount is not really large compared 

with IP cores. However, saving power consumption is always important in any 

function blocks in a chip. Thus, listed below are the possible items for reducing 

power in on-chip buses and NoCs. 

Dynamic power can be reduced by clock gating when it is not used. To 

implement gated clock in on-chip buses or NoCs, stopping operations of unused 

wrappers or NoCs is a possible idea. Clock gating is typically done by shutting a 
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clock for a certain IP core itself. However, in wrapper-based buses or 

router-based NoCs, each bus wrapper or router is connected to different IP 

cores or nodes. 

As for wrapper-based buses, thus, only clocks for some of the wrappers are 

stopped, and the shutdowned wrappers are required to ensure not disturbing 

operations of other wrappers. Thus, an asynchronous status signal that 

indicates shutdown status should be generated. And in the boundary of the 

shutdowned wrapper, by using that status signal and connecting that to clear 

input port of flip-flops which hold the interface signals, such as arbitration 

request, enable signals for the physical bus. 

As for router-based NoCs, those shutdowned routers will never pass packets 

through them. Thus, before shutting down routers, the management algorithm 

of the shutdown process is required. Also, as well as the case for the on-chip 

bus, the interfacing signals must be kept disabling when a router is shutdowned. 

As for reducing static power consumption, it is not easy to achieve without 

changing process technology or controlling power voltage. A possible item is 

changing threshold voltage of transistors by controlling back-bias voltage. 

Another item is using high-K gate transistor for less leak current. 

 

Error correction scheme 
Since Network-on-Chip is a possible candidate for interconnection in future 

SoCs, or near-future programmable devices, the error correction scheme 

becomes much more important due to high risks of chip designs. On the other 

hand in on-chip buses, the error correction is not really a critical issue, but for 

achieving better soft-error-rate (SER), it is recommended to implement. 

The possible risks include high NRE cost, long period required for reworking, 

functional errors due to soft-errors, and design bugs which are not found by chip 

testing. 

- NRE cost is getting higher, generation by generation. Thus, avoiding bug 

risks is quite important. 
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- Once reworking process started, the re-design and re-verification are 

required as well as re-creating masks and re-fabricating. All these periods 

are getting longer, generation by generation. 

- Soft-errors widely range according to their error sources, such as 

alpha-beam, etc. Soft-error will possibly occur and it will be recovered by 

resetting. Thus, idea of error correction will total operation stability since it 

enables recovering without resetting. 

- Chip testing is increasingly getting difficult. Logic BIST (Built-In-Self-Test) 

is widely considered as a candidate for generating more chip test patterns, 

however integrating logic BIST into ASICs in generalized scheme is very 

important but difficult to establish. 

Thus, according to these backgrounds, error correction schemes are required 

to be established. A possible implementation of error correction is to support 

ECC code in routers or bus wrappers. However, this will issue a certain cycle 

penalties to correct errors. A more system-level approach is using only parity 

data and detecting defects inside the chip. Then, retransmit it so as to avoid 

defects. Here, how to avoid defects is the key issue, and in this statement, just 

leaving it as an open issue. 
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Chapter 7 Conclusion 

 

In this thesis, on-chip interconnection networks for current and near-future 

generation are researched, especially from the standpoint of performance and 

cost efficiency. As an interconnection network for current SoCs, novel 

wrapper-based bus architecture is proposed. And for programmable devices or 

processor-arrays as near-future SoC architectures, a router-based NoC with a 

novel routing scheme is proposed. 

Firstly, a wrapper-based bus which has practical performance with low 

hardware cost is presented for current generation IP-based SoC. This thesis 

pointed out that: 

- Conventional wrapper-based buses only focused on IP core reuse and 

sustaining performance. The wrapper-based bus proposed in this thesis 

takes an approach to reduce hardware amount with sustaining required 

performance and functionalities to reuse IP core. What is necessary in the 

bus wrapper design is not embedding a data buffer, and considering 

tradeoffs between cost and performance. 

Furthermore, three novel wrapper-based bus implementation techniques for 

better IP core connectivity and better performance with small hardware cost are 

proposed. 

- A proposed Write buffer switching technique increases throughput and 

reduces Write latency. The guideline for determining the optimal buffer size 

by evaluating throughput and latency per gate is shown. 

- A slave designated retry control technique is proposed. This technique 

allows connecting fast and slow IP cores into the same wrapper-based bus 

without performance degradation.  



 117

- Novel data-width converter architecture is developed to allow connecting 

different bit-width IP cores to the same bus at a small hardware cost. 

With the design of a CPU-based SoC, these techniques are evaluated with 

simulation and confirmed performance increase and cost effectiveness 

compared with conventional approaches. And for higher credibility, the real chip 

fabricated in 0.15µm CMOS process is confirmed for the stable operations. 

Next, a novel data-transfer scheme in NoCs, which attaches a local label to 

each 1-cycle data, is presented. This local labeling scheme uses static analysis 

results of communication patterns in applications and suppresses the required 

number of bits for routing information compared with the conventional global 

addressing scheme. 

 To show the credibility of this proposed data-transfer technique, typical realistic 

applications for multi-media and communication are evaluated. And a result that 

shows the proposed labeling scheme decreased required amount of router 

hardware with sustaining performance. And further more, this thesis showed 

that local labeling router can achieve better hardware cost per channels 

compared with programmable switches used in current generation FPGAs. 

 In summary, this thesis showed two essential interconnection networks for 

current IP-based SoCs and near-future programmable devices, from the 

important aspects of cost and performance efficiency. The proposed two 

approaches have distinguished features that try to be simple and less-hardware 

with sustaining performance. 
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