
Efficient Data-Transfer Schemes
for On-Chip Interconnection

Networks

Kenichiro Anjo

2004

Abstract
System-on-Chip (SoC) is a Large Scale Integrated circuit (LSI) that integrates

various functions into a chip. SoCs have been received attentions due to the wide

range of applications, ability to integrate functions, cost reduction, and

performance improvement. However, according to the increase of transistor

density, a methodology to design SoCs becomes very complicated and

time-consuming. For ease of chip designs, SoCs are designed by reusing

Intellectual Property (IP) cores that have already been designed and verified.

Another approach is to use a programmable device which does not require chip

fabrication. A key to success in both approaches in terms of design time,

performance, and chip cost is on-chip interconnection networks, or on-chip buses

and Network-on-Chips (NoCs). In this thesis, how to design an on-chip bus and

an NoC efficiently is discussed, especially taking both performance and hardware

cost into account.

Firstly, novel cost- and performance-efficient implementation techniques for the

on-chip bus with bus wrappers are addressed. Four major features are included:

(i) a wrapper interface for small latency cycles, (ii) a write buffer switching

technique to optimize wrapper hardware cost and performance, (iii) a retry

technique to connect fast and slow slaves to the same bus with small

performance overhead and live lock avoidance, and (iv) a bit-width conversion

technique to reduce hardware cost. Simulated results with a traffic assumed in an

SoC show that the throughput is improved by 14 % and the Read and Write

latency are reduced by 16 % and 11 %, respectively, compared with the

conventional wrapper bus. Furthermore, 50 % hardware is reduced in the

proposed bus for a 5-master and 7-slave configuration in a CPU-based SoC in

0.15μm CMOS. It works at 200-MHz clock frequency and occupies 3.3-mm2

area.

Next, a novel data transfer scheme for NoCs in programmable devices is

described. A novel routing technique for achieving smaller hardware cost and

higher performance is discussed. Routing information is transferred in parallel to

data, which is different from the conventional packet data-transfer. This removes

cycle penalty for transferring header and hardware overhead for handling packet

structure. The proposed routing technique uses static analysis results of

communication patterns in applications and only assigns routing labels to the

pairs of communicating nodes. For reducing the required number of bits for

routing information, a local label which is only valid in a channel between

neighboring routers, is addressed. Local labels allow reusing a label value inside

a network and results in reduction of the number of label values. The presented

results show that the hardware amount for a router is reduced by 46 % from the

conventional distributed routing router using global addresses.

Acknowledgement
I would like to thank my advisor, Professor Dr. Hideharu Amano for his

generous support and encouragement for mostly 9 years. He kindly accepted

my difficult position as a working student. And he has given me many excellent

and useful ideas and advices.

 I gratefully thank Professor Dr. Fumio Teraoka, Professor Dr. Tadahiro Kuroda

and Associate Professor Dr. Nobuyuki Yamasaki for their overall comments to

my thesis for improvement. It was quite rushing request, but they accepted and

responded my request courteously.

 I really appreciate my superior in NEC Electronics Corporation, Dr. Masato

Motomura, for his admission of my request to become a working student. I

could not achieve this work without his understanding.

 I also would like to thank my ex-superiors in Silicon Systems Research

Laboratories of NEC Corporation, Dr. Masakazu Yamashina, Dr. Masayuki

Mizuno and Muneo Fukaishi for their advices from many aspects. With their

kindness support, I learned mentality as a researcher and how to proceed

researches.

 I would like to thank Atsushi Okamura for his many advices to drive NECoBus

project. I also leaned so many technical issues about chip designs.

I greatly thank Noriko Mizushima, Tomoharu Kajiwara, Yasuaki Kuroda, and

Masafumi Ohmori for their cooperation to the NECoBus project, and for their

contribution of verification environment and layout.

 I really really thank Dr. Michihiro Koibuchi, Yutaka Yamada, and Akiya Jouraku

for their support for Black-Bus project. They accepted and understood my

difficult position as a working student, and kindly helped many technical details

about the researches on Network-on-Chip.

 I would like to thank Katsumi Togawa as my co-worker. He always supported

all aspects of my work.

 I gratefully appreciate Hiroaki Inoue, Fukukyo Sudoh, Michitaka Okuno, Dr.

Yuichiro Shibata, Dr. Noriaki Suzuki for their encouragement to my activities.

 I would like to thank Assistant Professor Dr. Rizwan Bashirullah for his advice

and encouragement to my activity. I luckily met him in CICC 2002, and since

then, the discussion I had with him is very valuable and inspired my activity on

Network-on-Chips.

 I also would like to thank Dr. Adrian Ong for his friendship since we worked

together in Lucent Bell Laboratories. His mind and leadership as a researcher

and an engineer really inspired me.

Last, but not least, I wish to thank my family with whole my love, Tomoko and

Yumei for their continued support and patience to my activity. This work is not

achieved without their understandings and encouragement.

Yokohama, Japan

January 2005

Kenichiro Anjo

Contents

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 BACKGROUNDS .. 6

2.1. SYSTEM-ON-CHIPS (SOCS) ... 6
2.1.1. SOC GENERATION.. 6
2.1.2. KEY CRITERIA IN DESIGNING SOCS ... 6
2.1.2.1. TURN-AROUND-TIME (TAT) ... 7
2.1.2.2. COST .. 9
2.1.2.3. PERFORMANCE .. 10
2.1.2.4. POWER CONSUMPTION ... 10
2.2. IP-CORE BASED SOC .. 11
2.2.1. CONCEPT .. 11
2.2.2. DIFFICULTIES... 12
2.3. PROGRAMMABLE DEVICE ... 12
2.3.1. CONCEPT .. 12
2.3.2. ARCHITECTURE ... 13
2.3.2.1. FPGA ARCHITECTURE .. 13
2.3.2.2. PROCESSOR-ARRAY ARCHITECTURE.. 15
2.3.3. DIFFICULTIES IN PROGRAMMABLE DEVICE .. 16

CHAPTER 3 RELATED WORK .. 17

3.1. ON-CHIP BUSES... 17
3.1.1. AMBA .. 17
3.1.2. CORECONNECT ... 19
3.2. WRAPPER-BASED BUSES ... 19
3.2.1. INTERFACE-BASED DESIGN ... 20
3.2.2. WRAPPER INTERFACES .. 21
3.2.2.1. VIRTUAL COMPONENT INTERFACE (VCI).. 21
3.2.2.2. OPEN CORE PROTOCOL (OCP) .. 22
3.3. WRAPPER-BASED BUS IMPLEMENTATIONS ... 24
3.3.1. SILICON BACKPLANE .. 24
3.4. TECHNIQUES FOR IMPROVING WRAPPER-BASED BUSES ... 25
3.4.1. PREFETCHING IN SLAVE WRAPPERS .. 25
3.4.2. ARBITRATION HIDING MODE OF ADVANCED VCI .. 26
3.5. ADVANCED ON-CHIP BUSES .. 27
3.5.1. MULTI-LAYER AHB ... 27
3.5.2. LOTTERYBUS ... 28
3.6. NETWORK-ON-CHIPS... 29

3.6.1. PROGRAMMABLE SWITCH ... 29
3.6.2. SPIN .. 30
3.6.3. DALLY’S PROPOSAL.. 31
3.6.4. MATRIX INTERCONNECTION NETWORK IN ACM ... 33
3.6.5. MARESCAUX’S PROPOSAL .. 34
3.6. POSITIONING OF THIS RESEARCH.. 36
3.6.1. PROBLEM DEFINITION OF PRIOR WORK .. 36
3.6.1.1. WRAPPER-BASED BUSES .. 36
3.6.1.2. NETWORK-ON-CHIPS ... 37
3.6.2. PURPOSE AND MOTIVATION OF THIS RESEARCH.. 38
3.6.2.1. PURPOSE .. 38
3.6.2.2. MOTIVATION OF RESEARCH ON EFFICIENT DESIGN TECHNIQUES FOR WRAPPER-BASED

BUSES 39
3.6.2.3. MOTIVATION OF RESEARCH ON EFFICIENT DATA-TRANSFER SCHEME FOR

NETWORK-ON-CHIP.. 39

CHAPTER 4 EFFICIENT DATA-TRANSFER SCHEMES FOR WRAPPER-BASED BUSES41

4.1. OVERVIEW .. 41
4.2. PROTOCOLS WITH EXISTING WRAPPER INTERFACE .. 42
4.2.1. STANDARD ON-CHIP BUS PROTOCOLS ... 42
4.2.2. WRAPPER INTERFACE DEFINITIONS ... 42
4.2.3. WRAPPER-BASED BUS IMPLEMENTATIONS ... 43
4.3. DEVELOPED BUS ARCHITECTURE .. 44
4.3.1. INTERFACE DEFINITION ... 44
4.4. BUS ARCHITECTURE AND PROTOCOL OVERVIEW .. 47
4.4.1. WRITE-BUFFER SWITCHING ACCORDING TO WRITE DATA LENGTH..................................... 50
4.4.2. SLAVE DESIGNATED RETRY CONTROL SCHEME .. 53
4.4.3. CONVERTER-BASED MULTIPLE-BIT-WIDTH CORE CONNECTION .. 58
4.5. SOC IMPLEMENTATION AND EVALUATION ... 62
4.5.1. SOC ARCHITECTURE .. 62
4.5.2. SDRC EVALUATION.. 63
4.5.3. WBS EVALUATION.. 66
4.5.4. TOTAL BUS EVALUATION.. 68
4.5.5. COST EVALUATION ... 70
4.6. CONCLUSION OF THIS CHAPTER.. 73

CHAPTER 5 EFFICIENT DATA-TRANSFER SCHEMES FOR NETWORK-ON-CHIP 75

5.1. OVERVIEW .. 75
5.2. DATA-TRANSFER USING SEPARATE ROUTING INFORMATION... 76
5.3. PROPOSAL OF LOCAL LABELING SCHEME... 79
5.3.1. CONVENTIONAL DISTRIBUTED ROUTING USING GLOBAL ADDRESSES 79
5.3.2. LOCAL LABELING SCHEME... 80
5.3.3. STATIC ANALYSIS OF COMMUNICATION PATTERN ... 81
5.3.4. CONSTANT LOCAL LABELING SCHEME .. 82
5.3.4.1. LOW PORT FIRST (LPF) ALGORITHM ... 82
5.3.4.2. CROSSING PATHS ORDER (CPO) ALGORITHM.. 84
5.3.5. RENEWABLE LOCAL LABELS ... 85

5.4. EVALUATION.. 88
5.4.1. PERFORMANCE EVALUATION ... 89
5.4.1.1. ENVIRONMENT ... 89
5.4.1.2. PERFORMANCE RESULT .. 89
5.4.2. REQUIRED NUMBER OF LOCAL LABELS... 92
5.4.2.1. METHOD AND ENVIRONMENT... 92
5.4.2.2. APPLICATIONS.. 93
5.4.2.3. COMPARISON OF LOCAL LABEL NUMBERS... 97
5.4.3. EVALUATION OF HARDWARE AMOUNTS... 100
5.4.3.1. DESIGNED ROUTER ARCHITECTURE ... 101
5.4.3.2. EVALUATION ENVIRONMENT .. 102
5.4.3.3. EVALUATED AMOUNT OF ROUTER HARDWARE ... 102
5.4.3.4. RATIO OF EVALUATED HARDWARE AMOUNT... 104
5.4.4. COMPARISON WITH PROGRAMMABLE SWITCH .. 105
5.5. CONCLUSION OF THIS CHAPTER.. 107

CHAPTER 6 FUTURE WORK .. 108

CHAPTER 7 CONCLUSION..116

List of Figures
FIGURE 2-1 EXAMPLE OF SOC ARCHITECTURE··· 11
FIGURE 2-2 EXAMPLE OF FPGA ARCHITECTURE··· 14
FIGURE 2-3 CLB ARCHITECTURE OF VIRTEX II ··· 14
FIGURE 2-4 EXAMPLE OF PROCESSOR-ARRAY ARCHITECTURE··························· 15
FIGURE 2-5 PROCESSING ELEMENT ARCHITECTURE ··· 16
FIGURE 3-1 SOC STRUCTURE WITH AMBA ·· 18
FIGURE 3-2 SOC STRUCTURE WITH CORECONNECT··· 19
FIGURE 3-3 REFINEMENT MODEL OF AN IP CORE ·· 20
FIGURE 3-4 BUS CONNECTION WITH VCI ··· 22
FIGURE 3-5 SIGNAL DEFINITION AND PROTOCOL OF OCP ·································· 23
FIGURE 3-6 COMMUNICATION ARCHITECTURE OF SILICON BACKPLANE··········· 24
FIGURE 3-7 LYSECKY’S PREFETCHING STRUCTURE ··· 25
FIGURE 3-8 PROTOCOL CHART COMPARISON BETWEEN CASES WITH AND

WITHOUT ARBITRATION HIDING MODE, IN WRITE CASES. ··························· 27
FIGURE 3-9 STRUCTURE OF MULTI-LAYER AHB·· 28
FIGURE 3-10 PROGRAMMABLE SWITCHES IN FPGA ·· 29
FIGURE 3-11 NETWORK TOPOLOGY AND PACKET STRUCTURE OF SPIN·············· 30
FIGURE 3-12 ROUTER ARCHITECTURE OF SPIN ·· 31
FIGURE 3-13 NETWORK ARCHITECTURE AND PACKET STRUCTURE OF DALLY’S

PROPOSAL ··· 32
FIGURE 3-14 ROUTER ARCHITECTURE OF DALLY’S PROPOSAL ··························· 32
FIGURE 3-15 NETWORK TOPOLOGY AND PACKET STRUCTURE OF MIN IN ACM ·· 33
FIGURE 3-16 NETWORK TOPOLOGY AND PACKET STRUCTURE OF MARESCAUX’S

PROPOSAL ··· 35
FIGURE 3-17 ROUTER AND NETWORK INTERFACE ARCHITECTURE OF

MARESCAUX’S PROPOSAL ·· 35
FIGURE 4-1 BUS PROTOCOL WITH CONVENTIONAL WRAPPER INTERFACE ········ 44
FIGURE 4-2 PROPOSED WRAPPER-BASED BUS PROTOCOL·································· 46
FIGURE 4-3 BUS INTERFACE DEFINITION··· 46
FIGURE 4-4 DEVELOPED WRAPPER ARCHITECTURE ·· 48
FIGURE 4-5 PROTOCOL COMPARISON BETWEEN WRAPPERS WITH AND

WITHOUT EMBEDDED WRITE-DATA BUFFER·· 51
FIGURE 4-6 COST AND PERFORMANCE TRADEOFF OF USING WRITE-DATA

BUFFER ··· 52
FIGURE 4-7 SLAVE DESIGNATED RETRY CONTROL (SDRC) TECHNIQUE·············· 57
FIGURE 4-8 LIVELOCK AVOIDANCE IN SDRC WITH RANDOM INTERVAL·············· 57
FIGURE 4-9 CONVENTIONAL DATA-WIDTH CONVERSION SCHEMES ··················· 60
FIGURE 4-10 BUS CIRCUIT INTEGRATED WITH DATA-WIDTH CONVERTERS········ 61
FIGURE 4-11 BIT-WIDTH CONVERTER ARCHITECTURE FOR CWD BUS················ 61
FIGURE 4-12 CPU-BASED SOC WITH DEVELOPED WRAPPER-BASED BUS ············ 63
FIGURE 4-13 PERFORMANCE IMPACT OF RETRY INTERVAL ································ 65
FIGURE 4-14 PERFORMANCE AND COST IMPACT OF WRITE-DATA BUFFER IN

MASTER WRAPPER··· 67

FIGURE 4-15 HARDWARE COST OF THREE DATA-CONVERSION METHODS ·········· 70
FIGURE 4-16 MEASURED THROUGHPUT OF 1GB/S ETHERNET ROUTING

FUNCTION ··· 71
FIGURE 4-17 PHOTO OF ROUTING EVALUATION SYSTEM···································· 71
FIGURE 4-18 DIE PHOTOGRAPH OF THE DESIGNED SOC ···································· 72
FIGURE 4-19 LAYOUT PLOT OF THE ON-CHIP BUS IN THE SOC ··························· 73
FIGURE 5-1 STRUCTURE OF 2-D MESH NOC ·· 78
FIGURE 5-2 DATA-TRANSFER WITH PACKET STRUCTURE ··································· 78
FIGURE 5-3 DATA TRANSFER SCHEME USING SEPARATE ROUTING INFORMATION

·· 78
FIGURE 5-4 PACKET STRUCTURE COMPARISON (A) PACKET DATA TRANSFER (B)

SEPARATE ROUTING INFORMATION TRANSFER ··· 79
FIGURE 5-5 STATIC ANALYSIS RESULT OF AN EXAMPLE PATTERN······················ 82
FIGURE 5-6 LABEL ASSIGNMENT RESULT OF LOW PORT FIRST ALGORITHM ······ 83
FIGURE 5-7 LABEL ASSIGNMENT RESULT OF CROSSING PATHS ORDER

ALGORITHM··· 85
FIGURE 5-8 REQUIRED RENEWABLE LOCAL LABELS IN COMPLEMENT PATTERN

·· 86
FIGURE 5-9 RENEWABLE LOCAL LABELING RESULT OF AN EXAMPLE PATTERN 88
FIGURE 5-10 SIMULATED THROUGHPUT RESULTS ··· 91
FIGURE 5-11 SIMULATED LATENCY RESULTS ··· 91
FIGURE 5-12 TOPOLOGIES USED IN EVALUATION··· 93
FIGURE 5-13 TASK MAPPING RESULT OF JPEG CODEC FOR 2-D MESH TOPOLOGY

·· 94
FIGURE 5-14 TASK PARTITION OF APPLICATIONS (A) VITERBI DECODER (B) 4X4

NETWORK SWITCH (C) MPEG-2 ENCODER (D) OFDM ···································· 96
FIGURE 5-15 ROUTER ARCHITECTURES FOR 2-D MESH TOPOLOGIES USING (A)

UPDATED LOCAL LABELS AND (B) NON-UPDATED LOCAL LABELS ············· 102
FIGURE 5-16 PROGRAMMABLE SWITCH ARCHITECTURE ·································· 106
FIGURE 5-17 COMPARISON OF REQUIRED GATE COUNTS ACCORDING TO

CHANNELS/LABELS ··· 106
FIGURE 6-1 BUS STRUCTURE WITH MULTIPLEXER TREE ································· 110
FIGURE 6-2 BASIC CLOCK SYNCHRONIZATION CIRCUIT··································· 112

List of Tables
TABLE 3-1 SUMMARIZED TABLE OF CONVENTIONAL NOCS ································ 38
TABLE 4-1 MASTER WRAPPER HARDWARE REQUIRED BY WRITE-DATA BUFFER

SIZE ··· 53
TABLE 4-2 PERFORMANCE IMPACT OF WRITE DATA-BUFFER IN MASTER

WRAPPER··· 53
TABLE 4-3 THROUGHPUT OF DESIGNED BUS ··· 69
TABLE 4-4 WRITE LATENCY OF DESIGNED BUS ·· 69
TABLE 4-5 READ LATENCY OF DESIGNED BUS·· 69
TABLE 5-1 SIMULATION PARAMETERS·· 89
TABLE 5-2 CROSSING PATH OF STREAM APPLICATIONS IN 16-NODE NOC ··········· 99
TABLE 5-3 CROSSING PATH IN NPB 2.3 IN 16- AND 64-NODE NOC························· 99
TABLE 5-4 NUMBER OF COMMUNICATION PATHS AND AVERAGE HOPS IN STREAM

APPLICATIONS ··· 100
TABLE 5-5 NUMBER OF COMMUNICATION PATHS AND AVERAGE HOPS IN NPB 2.3

·· 100
TABLE 5-6 REQUIRED NUMBER OF GATES FOR A 2-D MESH LOCAL LABELING

ROUTER IN ASIC··· 103
TABLE 5-7 GATE COUNT RATIO OF ROUTERS IN VITERBI DECODER SOC ·········· 104

 1

Chapter 1 Introduction

Semiconductor process scaling enables larger number of transistors

embedded on a chip. This realizes wider range of applications and even higher

performance. However, using large number of transistors requires longer period

for designing and verifying circuits. Also, the required cost for chip fabrication

becomes high, and is considered as an even higher risk of chip reworking.

Thus, an organized and standardized method to design System-on-Chips

(SoCs) in shorter turn-around-time (TAT) and a design methodology with lower

bug risks become much important, as well as with small chip cost which is

always expected.

There are two possible solutions to achieve shorter TAT and lower bug risks. A

well-known way is reusing Intellectual Property (IP) cores, which were designed

and verified already. IP cores are designed to meet a certain communication

protocol so that they can be connected with an interconnection network. Then,

SoCs can be constructed by simply connecting IP cores with the network. As

on-chip interconnection networks for SoCs, on-chip buses [Arm99] [Ibm99] have

been widely used to connect IP cores. This scheme results in shorter TAT and

lower bug risks since IP cores which were designed and verified already are

reused.

Another solution is using programmable devices, such as Field Programmable

Gate Array (FPGA) or processor-arrays. According to the progress of CMOS

process technologies, these programmable devices are becoming more

cost-effective approach than fabricating Application Specific Integration Circuits

(ASICs) by users’ own expenses. The programmable devices have array-type

architecture which embeds Configurable Logic Blocks (CLBs) or processing

elements (PEs) in the shape of array and connects them by an interconnection

 2

network. This network is called a Network-on-Chip (NoC), which is a

programmable interconnection to realize any required connections within the

array.

In both these solutions, the on-chip interconnection networks are key factors

for success. In SoCs, the interconnection network is required to provide shorter

TAT as well as smaller hardware amount to suppress chip cost. On the other

hand, in programmable devices, programmable switches have been used as an

interconnection network. The programmable switches determine interconnect

programmability between CLBs/PEs, and providing sufficient programmability

requires large hardware amount of the chip, that is expensive chip cost.

On-chip buses
An on-chip bus has been widely used as an interconnection network on a chip

because its structure is simple and the number of connected nodes is easy to

scale, especially when it is small. Each core has bus protocol logic, such as

arbitration logic, and logic for issuing commands or responding to commands.

And thus, an SoC can be simply integrated by connecting these IP cores with

an on-chip bus. However, there are two major obstacles against encouraging

easy reuse of IP cores in bus-connected SoCs. One problem is that an on-chip

bus protocol is not an explicit rule to connect IP cores each other, because it

has optional functionalities, such as split transactions, burst transfers, etc.

Multiple vendors and designers create different IP cores for the same on-chip

bus, but they may support different options of the bus specification. So, IP cores

cannot be connected directly, and they are required to be modified so that they

can communicate each other properly with an on-chip bus. The other problem is

that several powerful on-chip bus specifications exist, and thus reusing IP cores

between these buses are not achievable. So, each IP core is required to

support multiple interfaces according to on-chip bus protocols, and this could be

a burden for IP core vendors.

 3

Wrapper-based buses
From the standpoint of IP core reusability, Virtual Socket Interface Association

(VSIA) defined an interface protocol called Virtual Component Interface (VCI)

[VSI01] which could be a satisfactory condition for IP cores to communicate

each other, as an explicit rule for connecting cores. The idea is using bus

wrappers, which bridge from the defined interface protocol to the physical

on-chip bus protocol. The interface protocol is point-to-point and independent of

any physical bus structures. The major motivation of using bus wrappers is

separating bus protocol logic from IP cores. IP cores are designed to comply

simply with a wrapper interface protocol to encapsulate complicated bus logic

into bus wrappers. Bus wrappers are typically prepared in advance, and a

wrapper-based bus can be generated by duplicating and connecting these

wrappers.

Network-on-Chips
Programmable devices employ Network-on-Chips (NoCs) as their

interconnection networks. There are various types of NoCs, such as

programmable switches used in fine-grain architectures like FPGAs, or

interconnection networks using network routers for processor-array type SoCs

in future. There is no obvious definition of NoCs. Although in some published

documents, this paper assumes NoCs do include interconnection network in

FPGAs.

The programmable switch is a programmable crossbar, where required

communication paths can be configured by configuration data kept inside

configuration memories in each CLB/PE. Each switch is used only for a logical

single communication path from a source to a destination. In a programmable

device, multiple switches are prepared in a boundary of neighboring CLBs or

PEs to achieve sufficient flexibility. Thus, the programmable switches tend to

consume large amount of hardware.

An NoC using network routers is an interconnection for future generation of

programmable devices. The targeted architecture is coarse grain, and each

computation node can be microprocessors, FPGAs, processor-arrays, etc. This

 4

NoC has borrowed interconnection schemes of System-Area-Networks (SANs)

used in PC clusters or parallel computers. Routers used in this NoC handle

network packets and route packets to a certain destination according to routing

tags embedded in the packets or stored in routing tables.

Difficulties in on-chip interconnection networks
 As on-chip buses for SoCs, wrapper-based buses look a viable approach for

common use. A challenge is achieving small cost, which is always expected and

required in SoC designs. The conventional wrapper-based approach uses a bus

wrapper which includes FIFOs for data buffers, and thus results in large amount

of hardware. A design scheme of a wrapper-based bus which can achieve

practically small hardware without sacrificing performance and connectivity,

becomes important.

 As an NoC for programmable devices, achieving small hardware is a primary

requirement. Conventional programmable switches used in current

programmable devices potentially become a dominant factor in overall

hardware amount. Although conventional work on router-based NoCs can be

considered as a replacement, they did not focused on achieving practical

hardware amount.

Overview of this research
This research studies the challenges involved in design techniques for

wrapper-based buses and Network-on-Chips, especially to achieve practical

cost as well as good performance.

Firstly, design techniques for wrapper-based buses are described. Novel

wrapper interfaces are proposed to achieve better performance and lower cost.

The interface is optimized so that entire bus protocol can be optimized for better

performance. And several wrapper implementation techniques to minimize

buffer resources in a wrapper-based bus are proposed. The effectiveness of

these techniques is proved by simulation results and logic synthesis results.

Furthermore, to show reliability and a practical example of the proposed

 5

techniques, a CPU-based SoC which includes the designed bus is implemented

in 0.15μm CMOS processes.

Next, a data-transfer scheme targeted for programmable devices is shown.

This includes a novel routing technique for router-based NoCs. This

data-transfer approach does not use packet structure for avoiding hardware and

performance overhead in handling packet structure. And, the routing scheme

assumes static analysis of communication patterns and employs local labels for

specifying destinations in networks, differently from the conventional distributed

routing using a destination node address. The designed NoC router has simple

structure, and thus smaller hardware as well as better performance. The

effectiveness of these techniques is proved by application trace analysis,

cycle-based simulation, and logic synthesis.

This thesis is organized as follows. In Chapter 2, the backgrounds of this

research are described. Chapter 3 summarizes previous work of this research

regarding on-chip buses and network-on-chips, and clarifying the motivation

and the positioning of this thesis are clarified. In Chapter 4, the design

techniques for wrapper-based buses are proposed. Chapter 5 addresses the

data-transfer scheme for NoCs. Then, future work is discussed in Chapter 6 and

finally, Chapter 7 concludes this research.

 6

Chapter 2 Backgrounds

2.1. System-on-Chips (SoCs)

2.1.1. SoC generation
Advanced Complimentary Metal Oxide Semiconductor (CMOS) process

technology has reached generation of sub-0.1μm gate-length transistors.

According to a report of International Technology Roadmap for Semiconductors

(ITRS) for 2004 [Itr04], the gate density becomes more than 100 M

transistors/cm2 in sub-0.1μm CMOS technologies. A chip size ranges up to

several hundred mm2, depending on chip costs required by users, and thus,

embedded number of transistors is several hundred millions in a single chip.

This large number of transistors allows many usable functions for consumers in

a single chip, such as microprocessors, memories, circuits for

application-specific functions like image processing, networking, etc. A chip

which integrates multiple of these functions is called System-on-Chip (SoC) to

differentiate from a legacy single-chip single-function device.

2.1.2. Key criteria in designing SoCs
In this subsection, key criteria in designing SoCs are summarized. The criteria

listed here are turn-around-time (TAT), cost, performance and power.

 7

2.1.2.1. Turn-around-time (TAT)
 One of the important criteria in designing sub-0.1μm CMOS SoCs is

turn-around-time (TAT). The TAT of a chip can be defined as a period from the

time to start designing an architectural concept and to the time when chips are

shipped. The period comprises phases of architectural concept design, coding,

verification, layout, fabrication, testing, and assembly. In the era of SoCs, all

these steps have been getting complicated and each period has been becoming

longer. The issues in these steps are summarized here.

Architectural design
 While functions and requirements of an SoC range widely, an SoC architecture

must be considered and verified from many aspects, such as throughput,

latency, power consumption, cost etc. The architectural design is very important

because direction and strategy of a chip are mostly defined. Once coding

design starts, it requires lots of overhead to change the top-level strategy. In this

phase, the detailed circuit-level operation is not really essential, where block

diagrams and data-flows of the chip are more important.

Coding and verification
 Once the top-level functions are mostly defined, each IP core is actually coded

by designers. Hardware description is typically coded with Register Transfer

Level (RTL) hardware description language (HDL), and recently with C-level

hardware description language for large-scale or algorithmic designs.

 After functions are coded, the design is verified with testbench. As testbench,

RTL verification environment has been used, or recently testbench generation

tool using dedicated software language is used for effective generation of test

patterns. Verification is a time-consuming work especially for a large-scale SoC,

since combinations of multiple functions are also verified as well as each

function. In sub-0.1μm CMOS generation, easing verification phase is a key

issue to reduce TAT.

 8

 Also, after coding and verifying the design, the design is synthesized with logic

synthesis tool into gate level. This requires AC timing requirements as limitation

for the synthesis, and the tool will synthesize the design to meet the

requirements.

Layout
 After generating netlist in the coding phase, the design is actually laid out by

place and route tools for back-end designs. The rough design flow includes

power and ground wiring design, floor planning, placing cells, routing wires, and

clock distribution design. Finally, the laid out data is statically analyzed using

Static Timing Analyzer (STA) tool. If the timing does not meet, the coded design

must be modified moving back to the coding phase.

 This layout phase is also a time consuming phase for designing an SoC,

because this requires complicated steps for each function block and top-level

SoC layout. Since the sub-0.1μm CMOS device has many issues to consider,

such as crosstalk, static and dynamic IR drops, long wiring delays, and etc.

These device issues are all verified in Design Rule Checking (DRC) and STA

tools. Once one of these checks is violated, the layout should be re-tried to

solve the problem, and this iteration tends to spend long design time, especially

in designing large-scale SoCs.

Fabrication, chip testing, assembly
The laid out design is then taped-out, and the fabrication phase starts. The

fabrication period ranges from one to several months, depending on process

generations. After fabrication, chips are tested with LSI testers. Typically, during

chip fabrication, LSI test patterns are prepared reusing verification patterns.

After the chips are confirmed for correct operations under various environmental

conditions, they are assembled into a device package.

In complicated sub-0.1μm CMOS processes require longer period for

fabrication because process steps are increased. Also, the LSI testing requires

longer time to confirm correct operations since the number of functions to

confirm is increased.

 9

2.1.2.2. Cost
Another important criterion is cost. Cost is mostly classified into three types:

design cost, Non-Recurring Engineering (NRE) cost and chip cost.

Design cost
Design cost is the cost which is spent in the design phase, such as human

resource cost for designs and infrastructure cost. The human resource costs for

coding, verification, logic synthesis, layout and chip testing must be increased to

follow the increased functionalities of the device when the number of transistors

is large.

The infrastructure cost includes license fees for CAD tools to design chips and

computer servers required for running these tools. The CAD tools range widely,

and they are tools for RTL simulation, logic synthesis, design verification,

placing and routing, clock-tree synthesis, static timing analyzer, etc. There exist

various licensing styles, but in some cases they are shared within a company or

some universities. In those cases, fees are split by each project according to the

total time of spent licenses. The infrastructure cost is increased to suppress

design time when the number of transistors increases and the chip design

becomes complex.

NRE cost
NRE cost is the required cost for producing Application Specific Integrated

Circuits (ASICs). What is included in NRE varies up to chip vendors, but

typically it includes costs for creating mask sets and fabrication processes, at

least. The cost required for producing mask sets has been increasing while

transistor size is getting smaller, and the required mask writing and defect

inspection system become more and more complicated.

Chip cost
Chip cost is mainly determined by die cost and package cost. Die cost is

mostly determined by die area, which is related with functions to embed into a

 10

chip. The package cost is determined by number of I/Os and frequencies to

achieve in these I/Os. Number of I/Os affects pin counts of a package, and data

frequencies of I/Os determine package types, such as Flip-Chip BGA for

high-speed data-rate or Tape BGA for average data-rate.

2.1.2.3. Performance
Performance is classified into throughput and latency cycles. Throughput is

calculated by multiplying bit-widths of data and clock frequency in Hz. Thus, the

throughput is expressed with the unit of bit/s or Byte/s. It is an index to show

how much data is flowed in a certain boundary, such as internal boundary

between function blocks or an off-chip interface.

 Latency cycles are the latency required in certain accesses, such as Read or

Write operations of a CPU or an I/O transaction. It is simply calculated by

counting from the beginning cycle of a Read/Write command to the clock timing

to complete access. The latency cycles affects CPU utilization which is

degraded by the Read access latency.

2.1.2.4. Power consumption
 Power consumption consists of static and dynamic power dissipation. Static

power dissipation is the product of device leakage current and supply voltage. In

sub-0.1μm CMOS device, supply voltage becomes less than 1.0V, but device

leakage current increases due to thin thickness of transistor gate oxide.

Dynamic power dissipation is the consumed power by switching current of

CMOS transistors. The average dissipated power is proportional to the energy

required to charge and discharge the circuit capacitance, and the proportional

factor is equal to switching frequency. In sub-0.1μm CMOS device, according

to the increase of transistor operation frequencies and capacitive loads, the

static power is increased. The source of power reduction is the transistor supply

voltage, which is decreased less than or equal to 1.0V. How those factors affect

depends on chip architectures.

 11

Static power dissipation is more process dependent, since leakage currents of

transistors are the dominant factor. Controlling back-bias voltage to change

threshold of transistors is an example to suppress device leakage with

circuit-level techniques.

2.2. IP-core based SoC

2.2.1. Concept
According to the increase of number of transistors, an SoC consists of various

functional blocks. These blocks have been naturally considered for reusing,

once they are developed. They are called Intellectual Property (IP) cores, and

play important roles in designing SoCs, especially in reducing design and

verification time.

An example block diagram of an IP-core based SoC is shown in Figure 2-1. It

consists of various function blocks, such as a microprocessor, an MPEG

decoder, internal memories, I/O interfaces etc. As shown in this diagram, IP

cores are connected with an interconnection network that is an on-chip bus.

Although the interconnection network can be certain dedicated interconnects

between specific cores, the on-chip bus is more simple and easy to scale

number of IP cores.

Memory
Controller

MPEG
Decoder

Microprocessor

Video
I/O

Internal
Memory

Audio
I/O

Image
Filter

Figure 2-1 example of SoC architecture

 12

2.2.2. Difficulties
 Since the on-chip bus is a backbone of IP-based SoCs, its structure is very

important to ensure IP core connectivity. Key criteria in IP-based SoCs vary up

to requirements.

- An important criterion is achieving shorter TAT by reusing IP cores than

developing the device from the scratch. This results in reducing design

cost.

- Another is achieving good performance with small chip cost. Achieving

small cost is always required in any types of designs. However, amount of

hardware and degree of performance are tradeoff in most cases. Thus, the

balance must be considered and chosen according to the requirement.

2.3. Programmable device

2.3.1. Concept
 Chip developers design their own functions as ASICs to meet their own

requirements. However, in sub-0.1μm CMOS process generations, required

costs, especially design cost and NRE cost, become large and many

developers give up designing ASICs since they desire cheaper and lower-risk

approaches. Those developers start designing applications on programmable

devices instead of ASICs.

Programmable devices, which are Field Programmable Gate Array (FPGA),

Complex Programmable Logic Device (CPLD), or processor-arrays, have been

raising their market shares as alternative solutions against ASICs. Those

programmable devices do not require any expensive NRE to be paid for chip

fabrication vendors, and users just buy programmable devices and program the

design to the chip by themselves. Furthermore, if the design includes any bugs

and they are found after designing, they can change the design and re-program

it to the chip. So, these programmable solutions have advantages against

ASICs, from the standpoint of NRE cost.

 13

Compared with conventional programmable solutions, such as

microprocessors, Digital Signal Processors (DSPs), FPGA directly realizes

hardware circuit itself. Thus, FPGA can achieve better performance than those

processor-based approaches.

2.3.2. Architecture

2.3.2.1. FPGA architecture
Figure 2-2 shows an architecture example of FPGA. This is the architecture of

Xilinx Virtex II series [Xil04], which can realize 40K to 8M gates in a single

device. FPGA consists of Configurable Logic Block (CLB) array, which includes

Look Up Table (LUT) to realize programmable gates. LUT is a mechanism to

emulate gate operation, and Virtex II series have 4-input LUTs. The 4-bit input

data are converted to output as 1-bit data by looking up a table. This is the

emulation of 4-input complex gates. How output data and 4-bit input data are

related is programmed as table data by its configuration.

Figure 2-3 shows an internal architecture of CLB. And I/Os and DLLs are not

shown in this figure. CLB consists of a programmable interconnect and four

Slices. The programmable interconnect is crossbar switches which can be

configured to specify sets of a destination and a source CLB to communicate

each other. Fast Interconnect allows fast data transmission to neighboring CLBs

with low flexibility. Switch Matrix is an interconnection to communicate with other

CLBs anywhere. Slice is complex of LUTs, multiplexers, and registers. Slices

can be concatenated to realize cascaded operations with cascaded data input

and output port, such as a shifter.

 14

Programmable I/Os

Virtex II device
Block RAM

CLB
Multiplier

Figure 2-2 example of FPGA architecture

Switch
Matrix

Slice

Slice

Slice

Slice
Fast
Connects
to neighbors

COUT

CIN

COUT

CIN

LUT

LUT

Reg.

Reg.

Figure 2-3 CLB architecture of Virtex II

 15

2.3.2.2. Processor-array architecture
Another programmable solution is processor-array, differently from the

LUT-based approach. Figure 2-4 shows an example of the processor-array

architecture, Dynamically Reconfigurable Processor (DRP) developed by NEC

Electronics [Mot02]. The processor-array type programmable device consists of

processing elements (PEs) and internal memories. The specific unit for DRP is

State Transition Controller (STC) which controls an instruction pointer of each

processing element.

 Figure 2-5 shows an internal architecture of the PE. It includes Arithmetic Logic

Unit (ALU) and Data Management Unit (DMU) as calculation engines, registers

to latch outputs of ALU and DMU, and crossbar switches as programmable

interconnection. The PE receives an instruction pointer from the STC, and gets

an instruction to execute using the pointer as a memory address. The read

instruction is decoded and the PE configures the operations of ALU and DMU,

programmable switch connections, and other modes supported.

State Transition Controller

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

Mem Mem Mem Mem

Mem Mem Mem Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Figure 2-4 example of processor-array architecture

 16

Data input
(8bx2)

Data output
(8bx1)

Control input

Control output
PE

 in
st

ru
ct

io
ns

Instruction
Pointer

AL
U

R
eg

Data
signals

Control
signals

Crossbar switch

D
M

U

Figure 2-5 Processing element architecture

2.3.3. Difficulties in programmable device
 Programmable devices have two major advantages over SoCs, which are NRE

cost reduction and lower bug risks. However, there are some difficulties in

producing them.

One major problem is large chip area, which results in expensive chip cost. In

programmable devices, to emulate any types of hardware logic, they have

flexible programmable switches as interconnection networks. And also, number

of transistors required by programmable devices to emulate certain logic is

more than 10 times than the raw logic used in ASICs.

Another difficulty is performance. The operation frequency of a circuit in ASICs

is several times faster than that in programmable devices. This is because

circuits are realized by combination of raw cell logic gates, although they are

emulated by LUTs in programmable devices. Especially in sub-0.1μm CMOS

processes, wiring delay of CMOS devices become significant in overall delay in

a chip, due to narrowed pitch and width of interconnects [Itr04].

 17

Chapter 3 Related work

As described in the previous chapter, the key factor for IP-based SoCs and

programmable devices is on-chip interconnection networks. In this chapter,

related work of this research is summarized, from the standpoint of on-chip

buses and Network-on-chips.

3.1. On-chip buses
Firstly, standard on-chip buses which have been used for System-on-Chip

(SoC) designs are described in this section. There have been many buses,

used in some companies’ internal SoC designs, or as globally standardized

specifications. Here, bus specifications called AMBA and CoreConnect, which

have been widely used in SoC designs, are shown, as representatives.

3.1.1. AMBA
Advanced Microcontroller Bus Architecture (AMBATM) [Fly97][Arm99] is a bus

specification for a system interface of ARM processor cores, proposed in 1997.

The bus specification so far had been a local bus of a microprocessor, which

needed to be tightly coupled with its load-store pipeline structure [Arm94]. To

use a processor local bus as a general purposed SoC bus, there had been

several problems.

1) In the era of SoCs, function blocks which had been already designed and

verified should be reused to reduce design time. However, the processor

local bus did not allow non-microprocessor designers who did not know

microprocessor structure to integrate SoCs.

 18

2) The processor local bus is very simple and flexible, thus the designers could

enhance its specification. However, it is too simple and lack of practical

functionality. Specifically, multiple bus masters had not been supported in

the specification, thus integrating DMA controllers and memory controllers is

problematic.

3) All the circuits must have been synchronized with a CPU internal clock. This

causes complexity of the circuits and too much power consumption.

The motivations of AMBA were to solve these problems.

1) Apart from the processor local bus, a bus specification is defined for the

purpose of function block reuse. This improves design time.

2) This specification allows multiple bus masters to issue transactions, for

better performance.

3) The clocking structure was defined and it consists of two buses which have

higher and slower clock frequencies. This approach achieves reduced

power compared with the SoCs with a processor local bus. This results in

less power consumption.

An SoC structure with AMBA is shown in Figure 3-1. It consists of Advanced

High-performance Bus (AHB) and Advanced Peripheral Bus (APB). AHB is a

multiple-master and multiple-slave bus for high performance data transfers.

Slow function blocks are connected to APB, which is a single-master and

multiple-slave bus. APB is connected to AHB with an AHB-APB bridge, which is

the only master for APB. This bridge includes functions of an AHB slave and an

APB master. An AHB master can access an APB slave through the bridge.

ARM
Processor DMAC

Memory
Controller

Serial
I/O Timer

A/D
D/A

Bridge
AHB APB

Figure 3-1 SoC structure with AMBA

 19

3.1.2. CoreConnect
Another powerful on-chip bus is CoreConnect [Ibm99], developed by IBM

Corporation and released in 1999. An SoC structure using CoreConnect is

shown in Figure 3-2. This includes Processor Local Bus (PLB) for high

performance transactions, and On-chip Peripheral Bus (OPB) for connecting

slow function blocks. An OPB bridge connects PLB and OPB. The basic

structures of PLB and OPB are similar to those of AMBA. The distinguished

feature is that CoreConnect includes a Device Control Register (DCR) bus.

Using the DCR bus, a microprocessor can set configurations and read status of

function blocks. This is not performance critical, thus separated from PLB.

Positioning of CoreConnect is almost the same as AMBA. It improves on

design time, performance, and power consumption.

PowerPC DMAC

Memory
Controller

Serial
I/O Timer

A/D
D/A

OPB
BridgeProcessor Local Bus

(PLB)
On-chip
Peripheral Bus
(OPB)

OPB
arbiter

PLB
arbiter

Device Configuration Register bus
(DCR)

Figure 3-2 SoC structure with CoreConnect

3.2. Wrapper-based buses
Next, wrapper-based buses, started from an idea of “Interface-based design”

[RS97], are described in this section. Wrapper-based buses are proposed for

easing SoC designs, by reusing already developed function blocks, called

Intellectual Property (IP) cores. This section shows the idea of “interface-based

design” firstly, and then describes two conventional interfaces called Virtual

Component Interface (VCI) and Open Core Protocol (OCP). Then, several

implementations on bus wrappers and techniques for better performance are

shown.

 20

3.2.1. Interface-based design
The idea of “Interface-based design” was proposed as a new methodology for

designing SoCs in short time-to-market [RS97]. The goals of this methodology

are to encourage reusing IP cores, to achieve short design time, and to ease

system-level designs. This method separates communication behavior from

Intellectual Property (IP) cores. The design process started from developing

abstract system-level functionality first, and then is refined incrementally to

design more detailed parts, like its signal transition.

Figure 3-3 shows a refinement model of IP core designs from a system level

down to an implementation level. Firstly, SoC designers connect IP cores with

an abstract communication method, like send or receive functions. Then, this

method is replaced with a behavioral block which includes communication

wrappers to encapsulate detailed communication protocols. Finally,

communication wrapper hardware is connected to each IP core, and the signals

are visible to SoC designers. By using this methodology, the initial

behavior-level design will be easier because designers do not have to consider

detailed implementation information such as bus signals.

Sender Receiver

Master Slave

Repartition

Figure 3-3 Refinement model of an IP core

 21

3.2.2. Wrapper interfaces
Based on the idea of interface-based design, wrapper-based buses have been

utilized instead of conventional on-chip buses to ease IP core development and

increase its reusability. Wrapper-based buses separates complicated

communication logic from IP cores, and bus wrappers are attached to IP cores

for controlling bus protocols. There are two major wrapper interfaces, called

Virtual Component Interface (VCI) and Open Core Protocol (OCP).

3.2.2.1. Virtual Component Interface (VCI)
Virtual Socket Interface Association (VSIA) defined a universal

wrapper-interface called Virtual Component Interface (VCI) [VSI01]. The

motivation of VCI is to define a general-purpose interface, such that IP cores in

the shape of Virtual Components (VCs) of any origin, can be connected to SoCs

developed by any chip integrator. In this manner, VCs are not limited to

one-time usage by their designers, and can be reused over and over by other

designers. They did not try to define a new standard bus, since removing

conventional buses is not a practical strategy.

Because designers typically stick to their own buses for a long time and going

into a new specification is not easily accepted, VCI is defined. VCI is an

interface, rather than a bus, which is a point-to-point connection between a bus

wrapper and a VC. And also it allows direct connection of VCs. VCI includes

three levels of specification, Peripheral VCI (PVCI), Basic VCI (BVCI), and

Advanced VCI (AVCI). These specifications classify VCs by performance and

functionalities. VCI reduces design time and improves connectivity compared

with conventional on-chip buses.

Figure 3-4 shows a block diagram of a VCI-based system. IP cores which

initiate and receive transactions are called “Initiator VC” and “Target VC”

respectively. VCI is used both in bus interfaces for Initiator VC and Target VC.

Initiator VC is an initiator of VCI transaction, and Target VC is a target of VCI

transaction, where both VCI is a point-to-point connection between VC and a

bus wrapper. To convert transactions from VCI to an on-chip bus, wrappers

 22

which bridging protocols are used. For Initiator VC, Initiator Wrapper which

receives transactions from Initiator VC and initiates transactions on the bus is

used. For Target VC, Target Wrapper is used.

Initiator VC

VCI Initiator

VCI
(Point-to-point)

VCI Target

Bus Master

Target VC

VCI Target

VCI
(Point-to-point)

VCI Initiator

Bus Slave

On-chip Bus

Initiator
Wrapper

Target
Wrapper

Figure 3-4 Bus connection with VCI

3.2.2.2. Open Core Protocol (OCP)
SONICS Inc. has defined Open Core Protocol (OCP) [Son00] as a

communication interface for IP cores. The motivation of this interface is

encouraging reuse of IP cores without any chip reworks. The interface is

independent of interconnect implementation details, such as bus bit-width or

control timings. The distinguished features from VCI are as follows.

1) The OCP definition is not classified as Peripheral, Basic, or Advanced, like

VCI. Thus the single interface can be used for any purposes.

 23

2) OCP supports control procedures and test interface signals for

manufacturing.

3) A practical design has been developed, with their proprietary bus, called

Silicon Backplane [Son02]. Thus, development environment for OCP already

exists, while VCI mainly focused on specification definition.

Since VCI did not work well as a standardized interface, OCP was chosen as

next version of VCI in 2003.

Figure 3-5 shows a basic signal definitions and protocols of OCP. In Figure 3-5

(a), signals required for communications between a master and a slave of OCP,

are illustrated. The same clock signal is delivered to both the master and the

slave. All the signals except for the clock signal are unidirectional from the

master to the slave, or from the slave to the master. Figure 3-5 (b) shows basic

protocol charts for Read and Write transactions of OCP. The master activates

MCmd and MAddr signals for specifying requested commands. If a command is

a Write request, Write data is also transmitted on MData. The slave responds to

the request transmission by activating SCmdAccept. If a command is a Read

request, SResp and SData signals are transmitted to send back the read data.

Beyond this basic description, further advanced features, such as

simultaneous and out-of-order data transmission by tagging command IDs to

request and response, are supported.

M
as

te
r

S
la

ve

(a) (b)

Command (MCmd)

clk

Data (MData)

Address (MAddr)

Data (SData)

Response (SResp)

Command Accept
(SCmdAccept)

Read

Write

MCmd, MAddr

SCmdAccept

SResp, SData

MCmd, MAddr, MData

SCmdAccept

Figure 3-5 Signal definition and protocol of OCP

 24

3.3. Wrapper-based bus implementations

3.3.1. Silicon Backplane
SONICS Inc. developed Silicon Backplane, as an on-chip interconnect using

OCP. To mainly focus on multimedia applications, Silicon Backplane is

distinguished with a feature which guarantees performance, especially

throughput, by employing a Time Division Multiplexed Access (TDMA) protocol.

Figure 3-6 shows communication architecture of Silicon Backplane. Master

and slave cores, designed with an OCP interface, are connected by Silicon

Backplane and OCP wrappers. Silicon Backplane is generated automatically by

the delivered toolkit. When generating Silicon Backplane between cores, the

requirements for inter-core communication performance are specified as

parameters. The time slots are statically assigned to these communications so

that the given requirements are satisfied. Since the arbitration cycles are

statically determined, no parts which have dynamic latency cycles exist in this

interconnect. For removing dynamic latency cycles, an OCP wrapper splits a

burst data from an OCP initiator into small chunk of data, called threads, and

each thread is transmitted within one cycle. This requires FIFO buffers in

wrappers, whose size should be a maximum length supported by the OCP

specification. So, from the chip cost aspect, it requires large amount of

hardware required by FIFO buffers in all the wrappers.

Master
Core 2

Master
Core 1

Master
Core 3

Slave
Core

Slave
Core

FIFO

Communication BusWrapper

OCP

1
2

3
1

1
1

Figure 3-6 Communication architecture of Silicon Backplane

 25

3.4. Techniques for improving wrapper-based
buses

Although the wrapper-based bus architectures can increase IP core reusability,

conventional publications pointed out increase of access overhead, especially

of latency cycles. Here two techniques for improving access latency cycles are

summarized.

3.4.1. Prefetching in slave wrappers
Bus wrappers enable to retarget IP cores to different SoCs. However, it

addresses longer Read latency cycles, because additional interactions between

bus wrappers and IP cores are required. To achieve better performance with

wrapper interfaces, an implementation technique which keeps local copies of

accessed registers in bus wrappers, has been proposed [LV02]. By prefetching

register data in a slave wrapper as shown in Figure 3-7, no interaction on a

slave wrapper interface is needed for a Read operation. The latency to send

back the Read data to the master becomes at least 2-cycle faster.

This scheme improves specifically latency cycles of Read operations.

However, creating data copies in bus wrappers requires additional hardware

overhead, resulting in increase of chip cost.

Bus wrapper
(Interface module)

IP Core

data address
read
enable

write
enable

System
bus

Internal
bus
(e.g. VCI)

Accessible registers

(a) No pre-fetching (b) pre-fetching

IP Core

data address
read
enable

write
enable

Accessible registers

Data Copies

Figure 3-7 Lysecky’s prefetching structure

 26

3.4.2. Arbitration hiding mode of advanced VCI
The Advanced VCI (AVCI) specification includes a technique called “arbitration

hiding mode”. This is a feature of an interface protocol which allows to process

a current data-transfer and a next request issue in a pipeline manner. Typically

a request phase of a bus protocol includes an arbitration which consumes

several latency cycles. Thus, this pipelining processing of issuing a next request

and transferring current data results in better throughput by hiding arbitration

cycles in a request.

Figure 3-8 shows comparison of protocol charts when (a) without and (b) with

the arbitration hiding mode, in Write transaction cases. Note that a VCI initiator

and a VCI target of this figure correspond to the ones in Figure 3-4.

As shown in Figure 3-8 (a), without the arbitration hiding mode, a Write

transaction is initiated by the VCI initiator, which may be a master IP core. It

issues a Write address and a command. Then, the VCI targets which may be a

master bus wrapper, receives and processes the command. It requests

arbitration and communicates with a slave. After establishing the communication

path, the VCI target sends a command acknowledgement back to the initiator,

and the initiator transfers Write data. Without the arbitration hiding mode, the

VCI initiator must wait for an end of the previous Write data transaction to

submit an address transfer of the next Write transaction.

With the arbitration hiding mode described in Figure 3-8 (b), Arbitration

Command Valid and Arbitration Address signals specify an advanced arbitration

request for a next request, in the meantime when a current request is in

process. Arbitration Command Acknowledge signals indicates that an

acknowledgement for the next request issued after bus arbitration. This

overlapped arbitration reduces latency cycles for a request.

 27

Data 1

Address 1

VCI
Initiator

VCI
Target

VCI
Initiator

VCI
Target

Arbitration

(a) Without arbitration hiding mode (b) With arbitration hiding mode

Command
Acknowledge

Data 2

Address 2

ArbitrationCommand
Acknowledge

Data 1

Address 1

ArbitrationCommand
Acknowledge

Data 2

Arbitration Request
Address 2

Arbitration
Arbitration
Acknowledge

Figure 3-8 Protocol chart comparison between cases with and without

arbitration hiding mode, in Write cases.

3.5. Advanced on-chip buses
Before summarizing NoCs, several advanced on-chip bus architectures which

triggered researches and developments for NoCs are described. The major

limitation of conventional on-chip buses is that it can only process one

transaction at a time, and thus several efforts to improve on-chip bus

performance have been proposed. In this section, Multi-layer AHB and

Lotterybus are shown.

3.5.1. Multi-layer AHB
Multi-layer AHB [Arm01] is an interconnection which has multiple AMBA AHB

buses. This enables parallel data-transfers between multiple pairs of a master

and the slave in a system. Figure 3-9 shows an example structure of the

multi-layer AHB. Masters and slaves are connected to an interconnect matrix

which includes multiple layers of the AHB buses. These AHB buses are

 28

separate each other, and this structure allows multiple masters to issue

transactions for different slaves at a time. When multiple masters try to access

to the same slave, a master in higher priority completes transaction first and

another next. Further variations can be constructed, such that local slaves are

connected only to a specific layer, or only some slaves are shared by some

layers.

Master
#1

Master
#2

Slave
#1

Slave
#2

M
ux

M
ux

Decode

Decode

Layer 1

Layer 2

Interconnect Matrix

Figure 3-9 Structure of multi-layer AHB

3.5.2. Lotterybus
Lahiri pointed out problems and limitations of the conventional static priority

shared bus and TDMA bus [LRL02]. A shared bus with static priority has

difficulties in controlling bandwidth allocation in fine grain, IP core by IP core.

Thus, the TDMA architecture is not suitable for IP cores which require low

latency cycles and high throughput. The proposed Lotterybus includes a

dynamic arbitration control scheme. Differently from the TDMA bus, time slots

are not assigned statically to each core, and Lotterybus arbitrates and assigns

time slots dynamically to the cores.

This work showed that many difficulties are included in conventional on-chip

buses, and experiments through computer network architectures are useful to

interconnection network designs in SoCs.

 29

3.6. Network-on-Chips
Network-on-Chips (NoCs) are communication architectures used in

programmable devices, or router-based interconnection networks which could

be used in future SoCs. NoCs used in programmable devices are

programmable switches. Some proposals on NoC architectures for future

array-type SoCs utilize routers which have been used in interconnection

networks used in System Area Network (SAN) or parallel computers. In this

section, several NoC architectures are described and summarized as below.

3.6.1. Programmable switch
 Most programmable devices such as FPGA, CPLD, and processor arrays,

employ programmable switches [RB91] as interconnection networks. As an

example, programmable switch architecture used in FPGA is shown in Figure

3-10. CLBs are connected with communication box (CBOX) and switch box

(SBOX). CBOX and SBOX are programmable crossbars, which consists of

multiple of multiplexers and configuration memory to store configuration data for

specifying connections. In CBOX and SBOX, the actual switch architecture is

not a full crossbar, and they reduce switching flexibilities by removing

multiplexer inputs.

CLB

CLB

CLB

CLB

SBOX

CBOX

CBOX

Figure 3-10 Programmable switches in FPGA

 30

3.6.2. SPIN
In [GG02], as a replacement of conventional shared bus structures, Scalable,

Programmable, Integrated Network (SPIN) is proposed. SPIN employs a

fat-tree topology because of its cost efficiency [Lai85], as shown in Figure 3-11

(a). A simple packet structure is used for inter-core communication, and link and

upper layers can be designed on top of it, such as stream data-flow

communications or address-space accesses. The packet structure, presented in

Figure 3-11 (b), includes a single-flit header, variable body flits and a tail flit. The

header includes an 8-bit destination node number to indicate up to 256 nodes.

By adding a tail flit, the end of a packet is specified and a variable-sized packet

is provided.

Figure 3-12 shows a router architecture designed for SPIN. Since a fat-tree

topology for 16 nodes requires 8 input ports for child and parent paths, and it

supports two shared output buffers, a 10x10 crossbar is necessary.

32 bit

Head
Flit

Tail
Flit

Body

(a) (b)

Figure 3-11 Network topology and packet structure of SPIN

 31

10x10
Partial

Crossbar

Child
Paths

Parent
Paths

R
ou

tin
g

Shared Output Buffer

4-word
Input buffers

Figure 3-12 Router architecture of SPIN

3.6.3. Dally’s proposal
Dally and Towles showed design criteria for NoCs and showed an example

NoC structure [DT01]. NoC is applied as an interconnection so that it can treat

the increased number of IP cores on a chip as a replacement of on-chip wiring.

Controlling electrical parameters such as crosstalk and parasitic capacitance is

made easy, since the architecture is better-structured than the conventional

global wirings.

The described example includes same-sized IP cores connected by an

interconnection network. Their proposed topology of this network is folded 2-D

torus for 16 nodes, as shown in Figure 3-13 (a). This employs a variable-sized

packet structure as shown in Figure 3-13 (b). Conventional virtual channel

flow-control is applied, for removing packet blocking in channels. A large

number of buffer spaces is consumed: 10K bits for each input controller in a

router.

Figure 2-1 shows router architecture in this proposal. A router in a node

includes five input and five output controllers. One of the ports is used to

connect internal core logic. This figure only shows a west input controller and

paths from west for simplicity. The output controller only has an output

 32

multiplexer and output buffers to store data coming from the inputs. This

architecture is similar to a typical router which has been used in System Area

Networks of PC clusters, or parallel computers [DYN02].

Figure 3-13 Network architecture and packet structure of Dally’s proposal

West
Input

Tile
output

North
Output

South
Output

East
Output

Tile logic &
Local wirings

(only west input controller is shown)

from
previous
node

to
output
controllers

Controller output
credits

from
input
controllers

to
next
node

Controlleroutput
credits

output
buffers

Figure 3-14 Router architecture of Dally’s proposal

Router IP Core
Data 256 bit

Control 22 bit

Header

Tail

Body

(a) (b)

 33

3.6.4. Matrix Interconnection Network in ACM
Adaptive Computing Machine (ACM) [Mas02] is a reconfigurable architecture

proposed for processing mostly wireless applications. ACM has various types of

computation nodes, which are prepared as libraries for ASIC development.

Types of computation nodes and its combination are chosen by each user. The

architecture framework using an NoC called Matrix Interconnection Network

(MIN) to connect different kinds of nodes is prepared.

Figure 3-15 (a) shows the architecture overview. Each computation node is

connected by an NoC of H-tree topology. Four of the computation nodes are

connected by a network router, and the router is connected to routers of

different nodes through another router which is a non-blocking root.

Figure 3-15 (b) is packet structure used in ACM. A single flit packet is used,

and thus, a packet header is attached to data which is transferred in a single

cycle. The packet header is 19 bits for each 32-bit data, which includes

destination address, port number and task number as header fields.

Fully Connected
Non-blocking Root

Router Router

I/O

Internal
Memory

External
Memory

System
Control

I/O

-Address
-Port number
-Task number

32 bit 19 bit
-Data

(a) (b)

Computation
node

Figure 3-15 Network topology and packet structure of MIN in ACM

 34

3.6.5. Marescaux’s proposal
A reconfigurable SoC for multimedia applications which integrates an NoC in

the center, is shown in [MBV02]. For prototyping on FPGA, a 2-D torus topology

is chosen due to its 2-D array architecture. The logical 2-D torus topology is

shown in Figure 3-16 (a), and its implementation applied folded torus structure

which had been used in [DT01]. Figure 3-16 (b) shows a packet structure of this

network, which has two header flits, fix-sized body and a tail flit.

The routing scheme used in this proposal is source routing [DYN02]. With the

source routing, routers route data according to routing tags attached by a

source node. These routing tags specify which port to forward data, to all the

routers to pass. The source routing does not require routing tables in routers,

but in nodes. Compared with a distributed routing which typically uses a global

address as routing information to look up a routing table in routers, source

nodes assign routing tags to each communication path, not to each destination

node. Thus, it has flexibility to change routes according to types of

communication paths.

This work employed an e-cube routing [DS87] as routing algorithm, which

calculates routing tags easily by only comparing a source node position and a

destination node position in a source node. This e-cube routing is a sort of

source routing only applicable to 2-D mesh or torus structures. The routing tags

specify the number of hops to route along X- and Y-directions. A router transfers

packets toward X-direction firstly until the number of X-hops becomes zero.

Then it route toward Y-direction next.

The router architecture is shown in Figure 3-17 (a). It does not have routing

table, but has circuits to check routing tags. The network interface used in this

work is shown in Figure 3-17 (b). The proposed network interface which is

located between a task in a core, and a router has packet generation and

reception logic. This interface faces the task with signals of a destination logical

address, a port number and a message length.

 35

32 bit

Head
Flit

Tail
Flit

Body

(a) (b)

Figure 3-16 Network topology and packet structure of Marescaux’s proposal

Input
Controller

Input
Controller

Arbiter

-1

-1

Data
Ctrl
Nack

2x2
Crossbar

Data
Ctrl
Nack

(a)

W
rit

e
R

ou
te

r

R
ea

d
R

ou
te

r

Data

Ctrl

Nack

Data

Ctrl

Nack

Task
Wrapper

(b)

FIFO
Buffers

FIFO
Buffers

Msg
Len
Port
Dst

Msg
Len
Port

Figure 3-17 Router and network interface architecture of Marescaux’s proposal

 36

3.6. Positioning of this research
This section describes problem definitions of prior work to be solved, and

clarifies the purposes and motivations of this research.

3.6.1. Problem definition of prior work

3.6.1.1. Wrapper-based buses
As described in the previous chapter, wrapper-based buses have been

considered as a hopeful approach to encourage IP core reuses. However, VCI

failed to be a major standard for wrapper-based buses, and some other counter

proposals looked better solutions, like OCP. And finally OCP was chosen as a

next version of VCI standard in 2003. The major difference between VCI and

OCP is that the OCP interface is a single definition, where VCI classified three

specifications according to performance ranges. Also the OCP interface

specification is verified on silicon with SiliconBackplane-based implementation.

So, interface based on the practical implementation is quite essential to acquire

high credibility.

Several publications discussed implementation techniques to improve

performance in wrapper-based buses. In [LV02], a technique to accelerate

Read latency cycles by prefetching data into a slave wrapper is proposed, as

described in Section 3.4.1. Also, the Advanced VCI specification includes the

arbitration hiding mode, as described in Section 3.4.2. The combination of OCP

and SiliconBackplane does not accelerate latency cycles or throughput, but

guarantees inter-core throughputs, as shown in Section 3.3.1. In summary,

conventional approaches have mostly focused on solving latency overhead and

guaranteeing throughput.

Those prior work on wrapper-based bus implementations focused mostly only

on performance improvement. However, improving performance without

consuming further additional hardware is quite important in consumer market

which is typically cost-sensitive. Thus, further considerations on wrapper-based

 37

bus implementation from both aspects of cost and performance are quite

essential.

3.6.1.2. Network-on-Chips
Table 3-1 shows a summarized table of conventional NoC proposals. To

compare these NoCs, four criteria are listed, that are topology, packet length,

size of header, and routing scheme.

- Prior work show that network topology depends on application types, such

that H-tree topology is good for Wireless application [Mas02], a

cost-effective application should take fat-tree [GG02], and 2-D mesh or

torus are good for FPGA-based application [MBV02]. Thus, in NoC

researches, consideration on multiple topologies is important to apply

various applications.

- Conventional proposals use variable or fixed-length packets, and only ACM

uses single-flit packet. So, most NoCs take the approaches like SANs, and

the packet-based data-transfer is applied. Although ACM tried to explore

another approach, that is a single-flit packet data-transfer, there is no

obvious motivation revealed in their published papers.

- The required header size is 19-38 bits and relatively large when

transferring 32- or 64-bit data. Size of the headers affects hardware amount

of multiplexers, data buffers, and the routing table entries.

- All the routing schemes applied in these NoCs are the methods used in

SANs. Routing function must be decided after considering communication

patterns and cost requirements, since this has great impacts on them.

 As summarized above, an NoC architecture must be discussed from the

aspects of applications, hardware cost, and performance, all of which are quite

important criteria in designing SoCs.

 38

Table 3-1 Summarized table of conventional NoCs

 Topology Packet

Length

Header Size Routing

Dally’s

proposal

2-D torus Variable 38 bit Source routing

(16 bit)

SPIN Fat-tree Variable 32 bit 8 bit

(Up/down routing)

ACM H-tree 1 flit 19 bit Distributed routing

with node addresses

Marescaux’s

proposal

2-D torus 16 flit 32 bit Source routing

(e-cube routing:6 bit)

3.6.2. Purpose and motivation of this research

3.6.2.1. Purpose
The on-chip interconnection networks are in the generation of wrapper-based

buses. And the next generation would be Network-on-Chips in sub-0.1μm

CMOS process technologies. To both of these technical fields, this research

focuses on how efficient the data transfer is, by considering both hardware

amount and performance, differently from conventional approaches.

In the technical field of wrapper-based buses for IP-based SoCs,

considerations on hardware amount and functionality as well as performance,

are very important to achieve practical quality and support general-purpose use

with enough functionalities. This research focuses on also showing

functionalities and achieved performance as well as a proposal of a novel

wrapper interface and a bus implementation. Also, a real chip design is included

in this research as well as proposals of novel design techniques.

As for NoCs, conceptual proposals which simply applied conventional network

architectures used in parallel computers or SANs, have been published already.

The major purposes of this research on NoCs is to give an idea to transfer data

 39

cost-efficiently and to show this scheme fits SoC environment which has wide

range of IP cores, small or large, with practical applications.

3.6.2.2. Motivation of research on efficient
design techniques for wrapper-based buses

As described in Section 3.6.1.1, implementations of wrapper-based buses are

quite important for practical use. While conventional research and development

of wrapper-based buses mostly focused only on performance improvement, this

research tries to figure out its cost-efficiency by considering tradeoffs between

performance and hardware cost. And as well as the performance and cost

tradeoffs, connectivity of IP cores has been considered to solve potential

obstacles in buses, such as livelock, retries and bit-width conversion. To show

performance and cost-efficiency, impacts on these criteria of each proposed

techniques are shown item by item. And finally, overall performance and

hardware cost are shown, with a real chip implementation.

3.6.2.3. Motivation of research on efficient
data-transfer scheme for Network-on-Chip

Although Network-on-Chips have been considered as a replacement of

programmable switches, there are major three differences in networking

environment, differently from SANs in PC clusters/parallel computers. The

differences are described as bellows:

1) An NoC is used to connect computation nodes in coarse-grained

programmable devices. Once a chip is fabricated, the numbers of IP cores

and their functionalities are not changed in most cases. In SANs, the ability

to change the number of nodes is important for scalability.

2) Although a SAN is based on chip-to-chip communication, an NoC is

intra-chip communication. Thus, an NoC does not have pin count limitations

between routers or nodes, and can take advantage of rich wires provided by

semiconductor process scaling.

 40

3) Cost of routers in SANs is important but not really too significant, because

the node itself is typically made up of large amounts of hardware like

microprocessors, north bridges, DRAMs, etc. In NoCs, the computation

nodes vary from small to large. Thus, the router itself is expected to be

small enough even with small IP cores.

Taking those environmental differences into account, this research on NoC

proposes a novel technique to transfer data cost-efficiently. Major claims of this

research are that applying a data-transfer scheme using separate routing

information apart from the conventional packet data transfer, and on this

scheme, a novel routing technique using local labels is proposed. The results

include analysis of communication patterns in real applications, and show its

hardware-cost efficiency and performance improvement.

 41

Chapter 4 Efficient data-transfer
schemes for wrapper-based

buses

This chapter presents wrapper-based bus architecture for low-cost

implementation and implementation techniques to improve performance. In

Section 4.1, overview of this proposal is described, firstly. Next, conventional

protocol charts with an existing wrapper interface are shown in Section 4.2.

Section 4.3 describes the proposed wrapper interface and several design

techniques which exploit this interface are described. The example SoC which

uses the proposed bus is shown, and based on this architecture, evaluated

results of performance and hardware amount are shown in Section 4.5.

4.1. Overview
This research has been done for the purpose of achieving cost and

performance efficient implementations of wrapper-based buses, and solving

some connectivity problems for better design TAT. In this research a

general-purpose wrapper-based bus for better SoC performance that has less

wrapper hardware [AOK02] is proposed. The goal is to develop wrapper-based

bus architecture for a wide range of applications that require lower cost and

better performance. To achieve this goal, unique wrapper interfaces including a

flow-based slave interface are defined. Wrapper implementation techniques

called Write buffer switching (WBS) and slave designated retry control (SDRC)

with a livelock avoidance scheme are developed, under the proposed

interfaces. Furthermore, to broaden the application range, a technique for

 42

connecting cores that have different bit-widths by embedding converters in the

physical bus have been developed.

4.2. Protocols with existing wrapper interface
In this section, previous work related to implementation techniques for

wrapper-based buses is summarized.

4.2.1. Standard on-chip bus protocols
Using the on-chip bus protocols of AMBA [Arm99] or CoreConnect [Ibm99], we

can connect an IP core including bus interface logic to a bus directly, and the

core can communicate with another core also connected to the bus. However,

IP cores complying with a standard bus protocol cannot be connected to

another bus without changing their bus interface logic. For general purpose use,

these protocols enable IP cores with a wide range of performance. Separate

buses are defined for high- and low-performance and these buses are

connected by a delivered bus bridge.

4.2.2. Wrapper interface definitions
To improve IP core reusability, wrapper interfaces have been defined to

remove communication logic from the cores and put it into a bus wrapper. A

standardized wrapper interface has been developed, and an interface called

“Virtual Component Interface (VCI)” has been defined [VSI01]. The VCI has an

interface protocol that can be bridged into any physical bus protocol with bus

wrapper hardware. With this interface, IP cores can be retargeted into any

physical bus protocol by replacing bus wrappers. The master and slave

interface protocols are identical, so the master and slave cores can be viewed

as directly connected. Another wrapper interface is called Open Core Protocol

(OCP) [Son00], and it is similar to the advanced specification of VCI.

 43

4.2.3. Wrapper-based bus implementations
The operation of the basic wrapper-based bus protocol using an existing

wrapper-based interface [VSI01] is illustrated in Figure 4-1. The bus comprises

a master IP core, a slave IP core, a master wrapper, a slave wrapper, and a

physical bus connection. The master core issues requests, and the slave core

receives them.

Figure 4-1 (a) shows the case when the slave core is ready to receive a

request from the master core. The master and slave wrappers pass the request,

and the slave core accepts it. Responses are sent back only for Read requests;

Write transactions do not require responses. Write requests are sent with Write

data as burst transfers.

Figure 4-1 (b) shows the case in which the slave core is not ready. Because it

does not have buffer space available for receiving more requests, the major

difference here is that the response is a busy response. The master wrapper

continues to send the request until the slave core returns to a ready state and it

accepts the request.

From the performance point of view, the slave-ready situation is the best case;

the non-ready case degrades average performance. Some conventional

wrapper-based bus implementations [Son02][YNL01] embed FIFOs to buffer

request and Write data in the wrappers. This improves average performance

because the retry transactions are accelerated. One proposed wrapper-based

bus [Son02] improves performance by optimizing the size of the FIFO buffers in

the master and slave wrappers, so that the retry accesses do not consume bus

throughput and increase the number of access latency cycles. Another

proposed wrapper-based bus [YNL01] can be implemented with 3K to 5K gates

excluding those for FIFO buffers [LYB02].

A reported performance optimization technique [LV02] reduces the latency

cycle overhead, which is one of the major drawbacks of wrapper-based buses.

It specifically accelerates the Read latency cycles by placing accessible register

copies inside the slave wrappers. Thus, interaction between a slave wrapper

and the slave core for Read requests is unnecessary. Comparison of the

 44

designed wrapper with a basic wrapper without embedded FIFO buffers and

complying with the VCI protocol showed that the basic wrapper requires

approximately 3K gates while the designed wrapper requires an additional

number of gates, ranging from less than 1K to approximately 3K, depending on

the size of the required register copies.

Wrapper Interface

Command,
Address,
etc.

Response

Check
Buffer

Issue
Command

Receive
Response

Master
Core

Slave
Core

Master
Wrapper

Slave
Wrapper

Busy

Check
Buffer

Not Busy

Retry

Busy

Not
Busy

Physical
Bus

Command,
Address,
etc.

Check
Buffer

ResponseReceive
Response

Master
Core

Slave
Core

Master
Wrapper

Slave
Wrapper

Physical
Bus

Issue
Command

(a) Slave core when not busy (b) Slave core when busy, retry in master

Figure 4-1 Bus protocol with conventional wrapper interface

4.3. Developed bus architecture

4.3.1. Interface definition
The bus design strategy proposed in this research is focused on achieving

better performance with minimum bus wrapper hardware so that it can be

widely used in various applications. As discussed in Section 4.2, to achieve

better performance with existing wrapper interfaces, buffer space for requests

 45

and Write data are typically embedded inside the wrapper. Since this approach

increases the hardware, this proposal does not take it.

Figure 4-2 (a) and (b) show the operation of the proposed bus protocol for

Read and Write transactions, with a no-buffer wrapper implementation. A

flow-control protocol in the slave wrapper interface is used, rather than a

handshaking interface with a request-response manner. The interface definition

is shown in Figure 4-3 (a) and (b). It is basically the same as that in the

conventional wrapper interface. Similar to the conventional one, the interface

views advanced implementations using multiple-buses or crossbars as future

possibilities. Thus, the protocol allows issuing simultaneous requests before

waiting for completing corresponding data transfers to achieve non-blocking

communications. The major difference is that the master and slave wrapper

interfaces are not identical. For the slave interface, status signals are simply

added to indicate busy or not busy for the request buffer and the Write data

buffer in the slave core and retry interval signals for specifying the back-off

interval for retrying. It is assumed that only a few latency cycles are required to

transmit the status signals, and the slave wrapper can determine whether to

accept or reject a request received from the master with these signals.

Therefore, before passing a request to the slave core, the slave wrapper can

determine whether the slave core has available buffer space, and thus there is

no need for an interaction. This interface can potentially result in shorter latency

cycles than those of the conventional wrapper-based interface. Furthermore,

the proposed protocol decreases the hardware complexity of the slave core

interface because it guarantees that all the transmitted requests are buffered

and processed rather than being rejected due to a busy condition. The purpose

of the retry interval signals is described in Section 4.4.2.

 46

Wrapper Interface

Busy
Command,
Address,
etc

Read
Response

Command
Decode
& Read

Issue
Command

Receive
Response

Busy
Command,
Address,
etc

Write
Data

Issue
Command

Ack
Retry

Transmit
Write
Data

Busy

Not
Busy

Busy

Not
BusyRetry

Master
Core

Slave
Core

Master
Wrapper

Slave
Wrapper

Physical
Bus

Master
Core

Slave
Core

Master
Wrapper

Slave
Wrapper

Physical
Bus

(a) Read access (b) Write access
Figure 4-2 Proposed wrapper-based bus protocol

Master
Interface

Slave
Interface

Slave
Wrapper

Master
Wrapper

Master
Core

Slave
Core

Command
Buffer

Write Data
Buffer

Read Data
Buffer

R
eq

ue
st

C
om

m
an

d

A
dd

re
ss

Si
ze

R
es

po
ns

e

R
sp

. E
rr

or

R
ea

d
D

at
a

W
rit

e
D

at
a

C
om

m
an

d
ID

C
om

m
an

d
ID

C
m

d
A

ck

R
eq

ue
st

C
om

m
an

d

A
dd

re
ss

Si
ze

R
es

po
ns

e

R
sp

. E
rr

or

R
ea

d
D

at
a

W
rit

e
D

at
a

C
om

m
an

d
ID

C
om

m
an

d
ID

C
m

d
A

ck

C
m

d
St

at
us

W
. B

uf
St

at
us

R
eq

ue
st

C
om

m
an

d

A
dd

re
ss

Si
ze

R
es

po
ns

e
R

. D
at

a

W
rit

e
D

at
a

C
om

m
an

d
ID

C
om

m
an

d
ID

R
et

ry
 In

te
rv

al

Command
Buffer

Write Data
Buffer

Read Data
Buffer

R
eq

ue
st

C
om

m
an

d

A
dd

re
ss

Si
ze

R
es

po
ns

e

R
sp

. E
rro

r

R
ea

d
D

at
a

W
rit

e
D

at
a

C
om

m
an

d
ID

C
om

m
an

d
ID

C
m

d
A

ck

(a) Conventional (b) Proposed
Figure 4-3 Bus interface definition

 47

4.4. Bus architecture and protocol overview
 In this research, a wrapper-based bus using the proposed interface is

designed, to demonstrate that no-data-buffer wrappers with practical

performance can be implemented at low cost.

Figure 4-4 shows the architecture of the developed bus. The physical layer

consists of a command and Write data (CWD) bus and a Read data (RD) bus.

The separated CWD and RD buses enable split transactions to be naturally

supported, in which each Read transaction releases the CWD bus to another

bus before the Read data is made available. Furthermore, non-blocking

communication, in which multiple Read requests are issued from a master core

before the corresponding Read data reaches the master core, is supported

simply by attaching an ID to each command. The CWD bus conveys requests,

addresses, commands, sizes, command IDs, master IDs, Write data,

acknowledgements (Acks), negative-acknowledgements (Nacks), and retry

information. The RD bus conveys responses, Read data, command IDs, and

master IDs. The CWD and RD arbiters resolve any bus access exclusivity

problems. The arbitration algorithms are independent of the wrapper

architecture and should be optimized to meet the requirements of the SoC. An

example application is described in Section 4.5.

 48

Master Wrapper Slave Wrapper

Arbitration
Sequencer

Command
Receiver

Command
Transmitter

Retry
Counter

1 word

1 word

Write Data
Receiver

CWD Bus

RD Bus

Master
Interface

Arbitration
Sequencer

Command
Receiver

Read Data
Transmitter

Read Data
Receiver

Early Bus
Request

Read Command
Receiver

Slave
Interface

Ack
Nack

Retry Information

Request
Command
Address

Write Data
Command ID

Master ID
etc.

ID
Decoder

Master
ID

RD Request
Master ID

Command ID
Read Data

etc.

Request
Grant

Write Buffer
Status

Command
Buffer Status

Max Retry
Trial

Retry Interval

Accept
Judge

Command

Ack/Nack

CWD
Arbiter

RD
Arbiter

Request
Grant

Request
Command
Write Data

Address
Size
etc.

Response
Read Data

Command ID
etc.

Response
Read Data

Command ID
etc.

Request
Command
Address

Size
Cmd Ack

etc.
Write Data

Pseudo Random
Number

Generator

Read Data
Receiver

Figure 4-4 Developed wrapper architecture

 The bus processing sequence is described below.

1) A master wrapper (MW) receives the command, address, command ID and

size from the master core through a master interface. The command ID is

used to issue multiple simultaneous transaction requests.

2) The MW requests arbitration from the arbiter and waits until it receives a

grant signal.

3) The MW transmits the received information to the CWD bus along with a

unique master ID, which is originally programmed into the MW.

4) A slave wrapper (SW) decodes the command to see if the request is a

Read or Write one. For a Read request, the SW checks the command

buffer status on the slave interface. If the status is not busy, the SW passes

the request to the slave core. For a Write request, the SW checks the

command buffer status and the Write data buffer status. If both are not

busy, it accepts the request and returns an Ack to the MW. If either one of

 49

the status is not an acceptable condition, it returns a Nack to the MW with

retry information. No transaction occurs in the slave interface in this case,

which is different from the conventional wrapper interface implementation.

The retry sequence is described in Section 4.4.2.

5) If the MW receives an Ack, it transmits a command acknowledgement

signal to the master core, indicating an available condition for the next

command. The next command can be fetched during simultaneous

processing of the current command or Write data so that the next

command can be issued instantaneously. If it receives Nack, the MW starts

the retry sequence and releases the bus to another master awaiting

arbitration.

6) If the transmitted command is Write and the MW receives an Ack, it

transmits the Write data. It receives the Write data from the interface and

transmits it to the CWD bus. The SW also receives the Write data and

passes it to the slave interface. If the Write data buffer is embedded in the

MW, the master core can transmit the Write data before the MW receives

an Ack.

 The Read data response sequence is described here.

7) If Read data is prepared in the slave core, a response request and a

master ID received with the request command are issued to the slave

interface.

8) The SW sends an arbitration request to the RD arbiter. Arbitration hiding

mode is used to reduce the number of Read latency cycles as it is in the

conventional wrapper interface [VSI01]. The arbitration request is called an

early bus request (EBR) and can be asserted several cycles before the

Read response request is initiated.

9) If the SW receives a grant signal from the arbiter, it receives the Read data

from the slave interface and passes it to the RD bus along with the master

and command IDs.

10) The MW compares the received master ID with the unique ID for each

master wrapper. Only the matching wrapper receives the command ID and

the response data from the RD bus; it passes them to the master interface.

 50

4.4.1. Write-buffer switching according to write
data length

 Deep FIFO buffers which are included in the conventional wrapper

implementations [Son02][YNL01], may not be necessary since some IP cores

may have redundant FIFOs or memories for buffering. To reduce cost for any

case, the bus wrapper should include a minimized data buffer to achieve the

required performance. Firstly, the tradeoff between sizes of the buffer in the

master wrapper is evaluated.

Considering the number of bits that needs to be stored, a request buffer

requires 67 bits for the proposed interface, and the Write data buffer requires

128 bytes at the maximum burst size. Since the request buffer is considered as

a negligible offset, and thus only the impact of the Write-data buffer is

evaluated. Table 4-1 shows the amount of hardware required for a master

wrapper for various buffer sizes. This wrapper handles 64-bit data, and the

circuit design is optimized for 200-MHz operation with 0.15µm CMOS

processes. The hardware amount is shown in NAND-equivalent gate counts,

and the Write data buffer was designed as an array of flip-flops. Compared with

a method that does not use a Write-data buffer, the hardware increase ranges

from about 20 % to 326 % and depends on the size of the embedded buffer.

 Next, the performance impact of using a Write data buffer is examined. As

shown in Figure 4-5, the major difference is that latency and throughput of the

CWD bus are consumed when the Write data buffer is not used, since the bus

has been reserved for the upcoming Write data transfer after an Ack is detected.

With a Write-data buffer, the master wrapper can output the buffered Write data

onto the CWD bus as soon as it receives an Ack. Table 4-2 shows the

performance impact of embedding the Write-data buffer as evaluated using RTL

simulation for the case in which sustained Write transactions with the same

burst size were issued. The master core could issue a command simultaneously

with the transmission of the previous Write data. Since the bus assumed one

master and one slave for simplicity, there were no arbitration latency. As shown

in the table, the Write latency was lower and the throughputs were higher with

 51

the embedded Write data buffer because of the instantaneous Write-data

transmission following Ack reception. The Write latency was improved by about

10 % - 33 % depending on the size of the transmitted burst. The throughput was

increased by about 9 % - 33 %.

Figure 4-6 shows the evaluated results of the latency and throughput increase

per gate. As shown in the figure, the latency and throughput increase per gate

degraded as the burst size was increased. In the implementation of a

CPU-based SoC described in Section 4.5, a 16-byte buffer is used to keep the

latency and throughput increase per gate fewer than 50 % degradation.

As described above, the master wrapper implementation impacts performance

and has a cost tradeoff. Therefore, the Write buffer switching (WBS) technique

is used in the master wrapper. As shown in Figure 4-4, the master wrapper has

embedded Write-data buffers for handling two-beat bursts. With WBS,

Write-data transactions shorter than or equal to the buffer size use this buffer,

and longer transactions do not. The master wrapper determines whether to

store the Write data in the buffer, by comparing the requested command size to

the buffer size. To the best of our knowledge, conventional techniques simply

embed a FIFO buffer in a wrapper or do not include any buffers.

Wrapper Interface

Nack

Command,
Address,
etc.

Write
Data

Issue
Command

Ack

Retry

Transmit
Write Data

Nack

Command,
Address,
etc,

Write
Data

Issue
Command

Ack

Retry

Transmit
Write
Data

Busy

Not
Busy

Busy

Not
Busy

Released to
another master

Write transaction

Occupied by
this master

Master
Core

Slave
Core

Master
Wrapper

Slave
Wrapper

Physical
Bus

Master
Core

Slave
Core

Master
Wrapper

Slave
Wrapper

Physical
Bus

(a) Without buffer (b) With buffer
Figure 4-5 Protocol comparison between wrappers with and without

embedded Write-data buffer

 52

Latency
increase/gate
(cycles/gate)

Throughput
increase/gate
(MB/s/gate)

8 128
0

0.05

0.10

0

0.002

0.004

0.006

Burst size (byte)
6416 32

-31%

-54%

-74%

-90%
-82%

-91%

-76%

-54%

Throughput

Latency

Figure 4-6 Cost and performance tradeoff of using Write-data buffer

 53

Table 4-1 Master wrapper hardware required by Write-data buffer size

Buffer Size

(byte)

Amount of master

wrapper hardware

(gates)

Increase

(%)

0 2976 –

8 3579 20.3

16 4275 43.7

32 5535 86.0

64 7622 156.1

128 12683 326.3

Table 4-2 Performance impact of Write data-buffer in master wrapper

Write Latency

(cycles)

Bus Throughput

(MB/s)

Burst

Size

(bytes)
Without

Buffer

With

Buffer

Improvement

(%)

Without

Buffer

With

Buffer

Improvement

(%)

8 9 6 33.3 199 266 33.2

16 11 8 27.3 353 452 27.9

32 15 12 20.0 581 708 21.9

64 23 19 17.4 853 984 15.4

128 39 35 10.3 1112 1219 9.6

4.4.2. Slave designated retry control scheme
 For the bus to be widely applicable, it must be able to connect to both fast and

slow IP cores. Conventional standard buses can be categorized as high- and

low-performance buses. Using the two types together requires complicated bus

bridges, which can potentially suffer from deadlock [Pci01]. The wrapper-based

approach eliminates this requirement, but communication between fast and

slow cores is problematic, especially for retry sequences.

 54

In conventional implementations [Son02][ZC02], a retry sequence is controlled

by a master wrapper, and the intervals for retry requests are determined master

by master, independently. The length of the interval after receiving a Nack from

a slave wrapper affects performance [ZC02]. When fast and slow slaves are

connected to the same bus, the interval before the slaves become available for

another command differs. Therefore, using a constant interval for retry could

degrade bus throughput when using a short interval or lengthen the access

latency when using a long interval. To handle this problem with existing physical

buses, the master wrappers must decode the addresses to determine the

destination before transmitting requests to slaves and change the interval slave

by slave. This requires dedicated wrappers that support different address maps

in each SoC.

In this research, a retry control technique called slave designated retry control

(SDRC) is proposed, which is illustrated in Figure 4-7. With this mechanism,

when a retry occurs, the slave wrapper specifies the number of retry interval

cycles which is used for the master wrapper to wait before re-issuing the

request. The slave wrapper interface includes a retry interval signal that

specifies the number of interval cycles which is based on the slave’s speed. The

physical bus layer is designed to convey the retry interval information over a

retry information signal.

Consider two cases: a master wrapper communicates with fast slaves and with

slow slaves. Shown in Figure 4-7 (a) is an example of when a slave wrapper

can process one command within a few clock cycles. With this slave, an

eight-cycle interval is specified as a core attribute of the slave. The slave

wrapper returns a Nack with the retry information, including the specified retry

interval of eight cycles. The master wrapper sets eight cycles for the retry

interval and counts down to zero. It then re-sends the rejected request and

address to the slave wrapper. By this time, the slave is not busy and accepts it.

Figure 4-7 (b) shows an example of when the slave wrapper has a longer

latency, 64 cycles, or a slower clock frequency. In this case, a longer retry

interval is specified, which reduces the number of unnecessary retries. In this

 55

example, our scheme removes 7 unnecessary retries by using an interval of 64

cycles.

Another complicated problem regarding retry is livelock. Livelock is the case in

which one master wrapper cannot access a slave while another can. Livelock is

also referred to as the “starvation problem” [Son02]. In an Ethernet network, this

is the well-known “Capture Effect” [RY94]. Ethernet does not arbitrate before

transmitting, so a master may not be able to achieve good performance due to

frequent collisions. A scheme similar to Ethernet has been applied to a bus

[DG98]. Each master wrapper has a random number generator, and if a master

receives a retry response from an accessed slave, it waits for the interval

specified by the generated random number. As specified in the Ethernet

standard, the master should generate the random number based on the number

of rejected requests to avoid synchronizing the retry timing. Another possible

solution to avoid livelock is having access queues in slave wrappers to remove

back-off retry accesses [Arm99]. However, controlling the queue in the slave

wrapper requires complicated logic and area overhead for the buffer. Our

approach is to take the back-off retry sequence and extend this structure with

small hardware to avoid livelock.

In the livelock example shown in Figure 4-8 (a), two master wrappers are

trying to send Read requests to a slave core. The requests are serialized by the

CWD bus. The request from Master 1 arrives first. It is accepted by the slave,

and the slave enters a busy state. Therefore, when the request from Master 2

arrives, it is rejected. A rejection response is sent to Master 2, and a retry

sequence is initiated. In the meantime, a Read response is sent to Master 1,

and Master 1 sends the next command to the slave. Master 2 re-sends the retry

Read request to the slave, and it is again rejected. This sequence continues

until the retry trial counter overflows in Master 2, which may be reported as a

bus error. In this example, only Master 1 can access the slave, and this is a

livelock.

Our solution is to use a pseudo random number generated in the target slave.

By generating the number in the slave, randomness for all accessing masters is

ensured and synchronization of the retry timings is avoided. In addition, this

 56

random number is used as an additional offset for the retry interval. Our SDRC

can be easily implemented with only a small adaptation. As Figure 4-4 shows,

the slave wrapper includes a random number generator. The number is sent to

a master wrapper by using the retry information signal of the CWD bus. The

master wrapper adds this number to the retry interval number specified by the

slave. By using this technique, we can avoid the livelock problem, as shown in

Figure 4-8 (b). The proposed livelock avoidance technique issues no throughput

degradation, but small latency overhead due to the latency increase by a

random offset for retry interval cycles. However, low-cost implementation is

achieved by simply extending the back-off retry structure with a random number

generator which requires only a few shift registers and exclusive-OR gates.

 57

Busy Not Busy

Request

Nack
(Interval

= 8 cycles)

Request Request

Ack

Request

Request

Not Busy

Request

Other
Master

Busy

7-6-5-4-3-2-1-0

Master
Interface

Slave
Wrapper

Slave
Interface

Master
Wrapper Interval Timer

Busy Not Busy

Request

Nack
(Interval

= 64 cycles)

Request Request

Ack

Request

Request

Not Busy

Request

Other
Master

Busy

63-62-61-…..
Interval Timer

-3-2-1-0

Retry Interval = 8 cycles Retry Interval = 64 cycles
…..

(a) Fast slave (b) Slow slave

Figure 4-7 Slave designated retry control (SDRC) technique

SC: Slave IP Core

MC: Master IP Core

SW: Slave Wrapper

MW: Master Wrapper

Bus

MC 1 MW 1MC 2 MW 2 SW SC

Ack Nack

Master 1 Master 2 Slave

Busy

Not Busy

Busy

Not Busy

Busy

Not Busy

Read
Response

RequestReq
Read

Req.1-1

Read
Req.1-2

Read
Req.1-3

Read
Req.1-4

Read
Req.2-1

Bus

Ack
Nack

Master 1 Master 2 Slave

Busy

Not Busy

Busy

Not Busy

Busy
Not Busy

Read
Response

RequestReq
Read

Req.1-1

Read
Req.1-2

Read
Req.1-3

Read
Req.1-4

Read
Req.2-1

+random

+random

Busy

Not Busy
Read

Req.2-2

Busy

Interval Interval
+Random

MC 1 MW 1MC 2 MW 2 SW SC

(a) Livelock condition (b) With SDRC

Figure 4-8 Livelock avoidance in SDRC with random interval

 58

4.4.3. Converter-based multiple-bit-width core
connection

 Data-width conversion should be supported for connecting various bit-width

cores because changing the bus width of an IP core and re-verifying it are

burdens for SoC designers. Therefore, the ability to enhance the bus bit-width is

needed to be retained as well as a low-cost implementation.

 Two conventional data-width conversion techniques are illustrated in Figure

4-9. Figure 4-9 (a) shows the one used for a PCI bus [Pci01]. This bus requires

different acknowledgement signals that indicate the supported data width of a

slave for reporting this to the master, and the bit-width is converted in a master.

Therefore, for supporting further bit-widths, this technique requires modifying

the physical bus specification and the master core logic for communicating with

the slave. Figure 4-9 (b) shows the technique used in the conventional

wrapper-based bus [Son02]. The strategy is for a wrapper to convert the

bit-widths when necessary. When converting the bit-width, it must handle the

bandwidth gap between the interface and the bus. Thus, it requires a FIFO

buffer to absorb the gap, where a large amount of hardware is needed. To be

able to enhance the supported bit-width, different wrappers must be developed.

 To convert the data-width while keeping the ability to expand it and to achieve

a low-cost bus implementation, a data-width converter is embedded in the

physical bus. As illustrated in Figure 4-10, two 64-bit master wrappers and two

64-bit slave wrappers are connected using a 64-bit CWD bus and a 64-bit RD

bus, while two 32-bit master wrappers and two 32-bit slave wrappers are

connected using a 32-bit CWD bus and a 32-bit RD bus. The 32-bit and 64-bit

CWD buses are connected using a CWD bit-width converter, and the 32-bit and

64-bit RD buses are connected using a RD bit-width converter. The CWD and

RD bit-width converters monitor the bus traffic, detect cases that require

data-width conversion, and convert the data as required. With our approach, the

master and slave wrappers do not need to recognize the bit-width capability of

the destination. Thus, bit-width enhancement is easier than with the

conventional techniques, and data buffers are not needed inside the wrappers

 59

for bit-width conversion. Thus, the total bus system requires less hardware

compared with existing approaches.

Figure 4-11 (a) shows the CWD converter architecture. The RD converter is

not shown, as it is similar to that of the CWD. It receives request, command,

size, Write data, ack, and nack signals from both the 32- and 64-bit CWD

buses. The request, command, size, ack, and nack signals of each bus are

passed to the other bus to share the same bus cycle in these buses. The

required condition for data-width conversion is detected in the conversion

condition detector (CCD). When the CCD detects a bus cycle in which data

needs to be converted, the Write data is input into a FIFO buffer. This buffer

supports data packing and unpacking, such as 32-bit input and 64-bit output, or

64-bit input and 32-bit output. The converted Write data is then transmitted to

the other bus from the one where the original data came. Figure 4-11 (b) shows

the CCD sequencer for the CWD converter. The detect condition is a Write

command received from either the 32- or 64-bit bus that is acknowledged from

the other bus. When this particular condition occurs, the converter translates the

Write data from 32 to 64 bits, or from 64 to 32 bits. Additional bit-widths can be

supported by enhancing the architecture.

 60

64 bit

32 bit

64 bit

32 bit

Master Slave64-bit
Bus

Bit-width
Conversion

32 bit 64 bit
Bit-width

Conversion
64 bit 32 bit

Request
+ Address

Ack32

Ack64

After Request
if (Ack64)

not convert
else if (Ack32)

convert

(a) Conversion in 64-bit units

64 bit

32 bit

64 bit

32 bit

Master
Wrapper

Slave
Wrapper

64-bit
Bus

Bit-width
Conversion

32 bit 64 bit

Bit-width
Conversion

64 bit 32 bit

(b) Conversion in 32-bit wrappers

Figure 4-9 Conventional data-width conversion schemes

 61

64-bit
CWD Bus

64-bit
RD Bus

32-bit
RD Bus

CWD
Converter

RD
Converter

64-bit
Master

Wrappers

32-bit
Master

Wrappers

64-bit
Slave

Wrappers

32-bit
Slave

Wrappers

32-bit Bus

32-bit
CWD Bus

64-bit Bus

Figure 4-10 Bus circuit integrated with data-width converters

IDLE

Cmd64 Cmd32

Do nothing
until frame end

Convert Data
32b 64b

Convert Data
64b 32b

Write command
from 32-b master

Write command
from 64-b master

Ack from
32-b master

Ack from
64-b master

Nack OR
Ack from
32-b master

Nack OR
Ack from
64-b master

32-bit
CWD bus

64-bit
CWD bus

C
om

m
an

d
R

eq
ue

st

Conversion
Condition
Detector

A
ck

N
ac

k

W
rit

e
D

at
a

[3
1:

0]

From 32-bit
Slave

From 32-bit
Master

C
om

m
an

d
R

eq
ue

st

A
ck

N
ac

k

W
rit

e
D

at
a

[6
3:

0]

Si
ze

Si
ze

From 64-bit
Slave From

64-bit Master

To 32-bit
Slave

To 64-bit
Slave

pack/unpack
FIFO

Bits
[31:0]

Bits
[63:32]

WE

C
on

ve
rte

d
W

rit
e

D
at

a
[6

3:
0]

C
on

ve
rte

d
W

rit
e

D
at

a
[3

1:
0]

To 32-bit
Slave

To 64-bit
Slave

(a) Architecture (b) CCD Sequencer
Figure 4-11 Bit-width converter architecture for CWD bus

 62

4.5. SoC implementation and evaluation

4.5.1. SoC architecture
The developed wrapper-based bus is applied to a CPU-based SoC [Oka02].

As shown in Figure 4-12, this SoC has a 400-MHz 64-bit 2-issue out-of-order

superscalar processor core, 256-KB level-2 cache, and a DDR-SDRAM

interface. The SDRAM is accessible through the L2 cache from an on-chip bus.

Along with the on-chip bus, a CPU core, a PCI-X interface, two 10/100-base

Ethernet MACs, a local bus interface, and a performance monitor are connected

as five masters and seven slaves. This SoC is targeted for use as a network

packet controller in various systems. All the function blocks except the Ethernet

ones have 64-bit data width; and the Ethernet blocks have 32-bit width. Thus,

the on-chip bus requires an internal data-width converter. The bus operates at

200 MHz, and its targeted maximum throughput is 800 MB/s. It is fabricated

using 0.15µm CMOS processes.

The unique features of the bus for this SoC are its arbitration algorithms and

the Write-data buffer size. The arbitration algorithms are determined by taking

the expected traffic patterns into account. For the CWD arbiter, a simple

round-robin algorithm is used, and the parking master is chosen as the same

master which used the bus last time. For the RD arbiter, the same algorithm is

used, but the parking master is always an L2 cache because the outgoing and

incoming packets of network routing applications are always from or to the L2

cache or SDRAM. The size of the Write-data buffer in a master wrapper is

two-beat bursts, considering the cost-performance tradeoff, as described in

Section 4.4.1. Also, in these applications, the CPU frequently issues two-beat

burst Write transactions to the interfaces to maintain the registers for the

purpose of DMA control, status monitoring, etc. Longer burst Write traffic is not

latency sensitive, but is throughput sensitive.

 Taking this SoC as an application example, its bus performance and the

efficiency of the developed techniques are evaluated. Here, the evaluated

impact of the SDRC and WBS techniques, the integrated bus performance, and

the cost of the designed bus are presented. Using an evaluation method similar

 63

to the one used previously [ZC02][LRL02], a simulation environment is

established by using the RTL design of the developed bus. The environment

consisted of the bus RTL design, a master model that could generate a

maximum of eight simultaneous non-blocking Read requests, and a slave model

that could receive one command at a time. In addition, the interval is set for

receiving the next available command as a parameter in the slave model. The

constructed platform was based on the five-master seven-slave bus system.

MIPS
CPU Core
400 MHz

PCI-X
I/F

10/100
BASE
MAC

Local
Bus
I/F

200-MHz
32/64 bit
Bus

32-bit
I/F

64-bit
I/F

64- bit
I/F

DDR
SDRAM

10/100
BASE
MAC

MW MWSWSWSW

M
W

SW

MW SW MW SW

CWD
Converter

RD
ConverterL2 Cache

(256 KB)

DDR SDRAM
Controller64 bit

133 MHz

64-bit
I/F

MW: Master Wrapper
SW: Slave Wrapper

Figure 4-12 CPU-based SoC with developed wrapper-based bus

4.5.2. SDRC evaluation
 Figure 4-13 shows the performance impact of the retry interval when using the

SDRC mechanism. The modeled traffic is for a case when a master core

accesses a fast and a slow slave, at the same time another master accesses

the same fast slave core. This model is similar to that of a CPU accessing a

slow I/O device while traffic flows into the SoC from the network interfaces. 75%

 64

of the traffic from the master operating as a CPU was for the slow slave core

and 25% was for the fast one. The traffic of the other master was randomly

generated, and the ratio of Read and Write commands was even. Each slave

core could handle one request at a time. All the master and slave cores were

designed as 64-bit units for simplicity. Figure 4-13 (a) shows the throughput for

four intervals to wait for the next available buffer, and five retry intervals. When

slaves became available in 1 and 16 cycles, the throughput decreased as the

retry interval was increased. When they became available in 32 and 64 cycles,

the tendency changed. When slaves became available in 64 cycles, the bus

with a 64-cycle retry interval had the highest throughput. Figure 4-13 (b) shows

the corresponding Nack message ratio. The ratio difference increased with the

slave available interval due to the increased number of Nack messages

resulting from the too short retry interval. The differences between 0- and

64-cycle retry intervals were 3.9% and 15.9% in the 1-cycle and 64-cycle

available intervals.

 65

0

200

400

600

800

1000

1 16 32 64

0 8 16 32 64

Interval for next available buffer in slave (cycles)

Throughput
(MB/s)

Retry interval (cycles)

(a) Throughput

0
5

10
15
20
25
30
35
40
45

1 16 32 64

0 8 16 32 64
Nack ratio

(%)

Retry interval (cycles)

Interval for next available buffer in slave (cycles)

(b) Nack ratio

Figure 4-13 Performance impact of retry interval

 66

4.5.3. WBS evaluation
The throughput is evaluated for three sizes of the Write buffer in a master

wrapper for four traffic patterns. Traffic pattern A was the average case in which

all five masters accessed the slaves using bursts with random sizes from five

supported sizes up to 128 bytes. In pattern B, one high-performance master

required mostly longer burst transfers, while the other masters required shorter

burst transfers. In pattern C, one master generated the same transactions which

are used in the SDRC evaluation as a CPU model, while the other masters

generated shorter burst transfers with request intervals up to 20 - 30 cycles.

Pattern D was the modeled traffic of the targeted SoC. One master was

modeled as a CPU, as in pattern C; another master was modeled as a PCI-X

interface that required frequent DMA transactions from off-chip I/O devices. The

other masters required shorter burst transfers corresponding to those of

Ethernet interfaces.

All the master and slave cores were connected as 64-bit units to exclude the

effect of converters and to focus on the WBS effects. With the developed WBS

technique, using a 16-byte buffer improved the performance by about 1% to

9%, while a 128-byte buffer improved it by about 6% to 12%. The improvement

was good for pattern C because the traffic was mostly short-burst transactions.

There was little improvement for the pattern B due to the frequent long-burst

transactions.

The hardware cost is estimated for a bus system comprising five 64-bit master

wrappers, seven 64-bit slave wrappers, two decoders, multiplexers, and two

arbiters. As shown in Figure 4-14 (b), the required hardware cost was

approximately 60K gates for the master wrappers with 0- and 16-byte buffers,

while the wrapper with a 128-byte buffer required 102K gates. With a 16-byte

buffer, the WBS technique only imposed a hardware overhead of only 9%, while

with a 128-byte buffer it imposed an 89% overhead. The WBS technique

achieved better performance than one with no buffer wrapper, and it required a

smaller hardware cost than a wrapper with a 128-byte buffer.

 67

0
200
400
600
800

1000
1200

traff ic A traff ic B traff ic C traff ic D

0 byte 16 byte 128 byte
Throughput

(MB/s)

(a) Throughput

0
20
40
60
80

100
120

0 16 128
0
20
40
60
80
100

Write-data buffer size (byte)

Hardware cost
(K gate)

Cost increase
(%)

(b) Hardware cost

Figure 4-14 Performance and cost impact of Write-data buffer in master

wrapper

 68

4.5.4. Total bus evaluation
 Table 4-3 shows the evaluated throughput of a bus system developed for the

SoC. The system had two 32-bit masters, two 32-bit slaves, three 64-bit

masters, three 64-bit slaves, a CWD data-width converter, and an RD

data-width converter, with a conventional arbitration hiding technique, early bus

request (EBR), using our WBS technique and a flow-controlled interface (I/F).

The traffic patterns were the same as for the WBS-only evaluation (Section IV

A). As Table 4-3 shows, applying all three techniques increased throughput by

about 12 % to 16 %. With EBR alone, throughput was reduced in two cases.

This was because advance arbitration requests unnecessarily occupied the RD

bus, blocking the other transactions. In this application, most transactions were

destined for the L2 cache, which could respond more quickly, so the impact of

EBR was quite small. Table 4-4 and Table 4-5 show the Write and Read latency

in cycles/word, similarly to a previous publication [LRL02]. The Write latency

improved by about 14 % to 20 %, while the Read latency improved by about

8 % to 15 %.

 The network application performance of the designed chip using the evaluation

board is measured, where a gigabit Ethernet interface card is connected to a

133-MHz PCI-X bus of it. The photo of the evaluation system is shown in Figure

4-17. Linux runs on the CPU as routing software, and it achieved 500 MIPS

when running a performance measurement tool of Linux. As routing operation,

the CPU receives packets coming through the PCI-X bus and transmits them to

the card through the PCI-X bus. For comparison, the same application has been

evaluated on a personal computer which has 600-MIPS processor and a

33-MHz 32-bit PCI bus for connecting gigabit Ethernet interface card. As shown

in Figure 4-16, the routing throughput result of the 500-MIPS processor linearly

grows when the packet size increases. The 500-MIPS processor routes almost

the same number of packets per seconds as the 600-MIPS processor does in

small-sized packet cases. However, when the packet size increases, the PCI

bus becomes a performance bottleneck. The designed on-chip bus used in the

designed 500-MIPS CPU-based SoC is not performance critical in the gigabit

 69

Ethernet routing application, due to its enough performance budget for this

application range.

Table 4-3 Throughput of designed bus

Traffic

Pattern
Base

Early

Bus

Request

(EBR)

EBR

+ I/F

EBR

+ I/F

+ WBS

Improvement

(%)

A 600 601 653 672 12.0

B 785 781 849 887 13.0

C 487 489 542 565 16.0

D 579 575 633 660 14.0

Table 4-4 Write Latency of designed bus

Traffic

Pattern
Base

Early

Bus

Request

(EBR)

EBR

+ I/F

EBR

+ I/F

+ WBS

Improvement

(%)

A 9.0 8.9 8.0 7.5 16.7

B 9.9 9.5 8.8 8.5 14.1

C 9.8 10.0 8.5 7.9 19.4

D 9.2 9.3 7.9 7.7 16.3

Table 4-5 Read Latency of designed bus

Traffic

Pattern
Base

Early

Bus

Request

(EBR)

EBR

+ I/F

EBR

+ I/F

+ WBS

Improvement

(%)

A 9.2 9.5 8.6 8.3 9.8

B 10.0 9.9 9.5 9.2 8.0

C 9.9 9.8 8.7 8.5 14.1

D 9.2 9.2 8.7 8.2 10.9

 70

4.5.5. Cost evaluation
Figure 4-15 shows the hardware cost in gates of three data conversion

methods for a total bus system comprising two 32-bit masters, two 32-bit

slaves, three 64-bit masters, and five 64-bit slaves. The conventional technique

requires data buffers in either the 32-bit or 64-bit wrappers. The 32-bit and

64-bit wrapper-based conversion methods required 85K gates and 122K gates.

Our converter-based method required only 61K gates, so it decreased the

hardware cost by 28 % and 50 % compared to two existing methods.

A die photograph of the designed SoC is shown in Figure 4-18, and the layout

plot of the developed wrapper-based bus is shown in Figure 4-19. Our

wrapper-based bus occupies a 3.3-mm2 L-shaped area, and all the bus

connections are contained in this area. The CWD and RD converters consume

large part of this area due to their embedded buffer for data conversion. The

wrappers require a smaller area due to our no-data-buffer implementation. This

chip is fabricated using 0.15µm CMOS processes and has six metal layers. The

chip package is a 500-pin Advanced BGA. The power voltage is 1.5 V for the

core transistors and 2.5/3.3 V for the I/O transistors.

(K gates)

Hardware
Amount

0

20

40

60

80

100

120

140

converter-based 32-b conversion 64-b conversion

32-bit Master Wrapper 64-bit Master Wrapper 32-bit Slave Wrapper

64-bit Slave Wrapper CWD Converter RD Converter

Other

Figure 4-15 Hardware cost of three data-conversion methods

 71

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0 500 1000 1500 2000

500-MIPS processor with PCI-X bus (designed)
600-MIPS processor with PCI busThroughput

(Mb/s)

Packet size (bytes)

Figure 4-16 Measured throughput of 1Gb/s Ethernet routing function

PCI-X
bus

G-bps
Ethernet
I/F

DDR-SDRAM

Developed
SoC

Figure 4-17 Photo of routing evaluation system

 72

CPU CORE Ethernet

PCI-X

Local
Bus

32
K

B
 L

1
I-

C
ac

he
32

K
B

 L
1

D
-C

ac
he

On Chip bus

256KB L2 Cache

Figure 4-18 Die photograph of the designed SoC

 73

0.9 mm

4.0 mm

1.6 mm

0.6 mm

A
rb

ite
r +

 M
ul

tip
le

xe
rs

MW SW

SW

MW

SW

MW

SW

MW

SW

SW

MW SW

RD

Converter

CWD

Converter

Figure 4-19 Layout plot of the on-chip bus in the SoC

4.6. Conclusion of this chapter
This chapter described a wrapper-based bus implementation that has practical

performance with low hardware cost. The wrappers do not require a data buffer,

and our wrapper interface supports the status signals of the request and Write

data buffers, and the retry interval signals in each slave IP core.

 74

Three novel wrapper-based bus implementation techniques are also

described. The Write buffer switching technique increases throughput and

reduces Write latency. There is a tradeoff between the master wrapper

hardware cost, throughput, and Write latency for sustained Write transactions,

so a guideline for determining the optimal buffer size by evaluating throughput

and latency per gate, is developed. The second technique is called “slave

designated retry control”. With this technique, the retry interval before a master

wrapper re-issues a request is determined slave by slave according to the

response speed. The number of retry intervals affects the overall throughput

and negative-acknowledgement ratio. Furthermore, a livelock avoidance

scheme that can be easily implemented by simply adding pseudo random

number generator, has been developed. The third technique converts the

data-width to enable IP cores with different bit-widths to be connected at a small

hardware cost.

These techniques for a CPU-based SoC designed for networking applications

are evaluated. For a bus system with two 32-bit masters, two 32-bit slaves,

three 64-bit masters, and five 64-bit slaves, using our WBS technique and the

proposed flow-based interface increased throughput by about 14 % compared

to using a conventional wrapper-based implementation for the traffic pattern

modeled for the targeted network application. It also reduced the Read and

Write latency by about 16 % and 11 %. A hardware cost evaluation showed that

our converter-based technique can reduce hardware costs in terms of gates by

28 % or 50 % compared with two conventional conversion techniques. A chip

based on these techniques was implemented in 0.15µm CMOS process

technologies; the area for the on-chip bus is 3.3 mm2, and the operation

frequency is 200 MHz.

 75

Chapter 5 Efficient data-transfer
schemes for Network-on-Chip

This chapter describes a novel data-transfer technique using local labels in

NoCs for programmable devices. In Section 5.1, overview of this proposal is

described. Next, in Section 5.2, a data transfer scheme using separate routing

information is shown. Then, in Section 5.3, a novel routing scheme using local

labels is proposed. In Section 5.4, evaluation results are shown, and Section

5.5 concludes this chapter.

5.1. Overview
 In sub-0.1 μ m CMOS generations, SoCs hit difficulties for design

methodologies due to large number of transistors. Apart from the SoCs,

programmable devices seem better solution instead of developing ASICs from

the aspect of design and NRE costs. Thus, programmable devices in current

generation such as FPGA and CPLD raise its market shares. Also, as future

technologies, dynamically reconfigurable processors such as ACM, DRP,

DAP/DNA, appear for better logic gate density than the current generation.

 By those programmable devices and reconfigurable processors, design and

fabrication costs are greatly reduced compared with the case when developing

ASICs. However, hardware logic gate is emulated in those programmable

approaches, while raw cell-based gates are used in ASICs. This difference of

gate densities will affect the chip cost. So, in programmable devices, reducing

chip area becomes a critical issue to achieve high credibility.

As described in Section 2.3, the key factor for reducing chip cost in

programmable devices is an on-chip interconnection network, called

 76

Network-on-Chip (NoC). The programmable devices in current generation

employ the programmable switch as NoC. Its structure is basically a

programmable crossbar, and it consumes large amount of hardware [DR04].

 Another structure of NoC is using network routers [DT01][MBV02][GG02].

Although the programmable switch is an architecture which allows a single

switch to be used by a single logical connection between a source and a

destination. Here, by acquiring a scheme to transfer data used in network

routers, which has been used in System Area Networks [SH96][BCF95][Ita01] in

parallel computers or clusters, the required hardware amount is expected for

reduction.

 Although conventional NoCs simply applied SANs to SoCs as described in

Section 3.6.2.3, environmental requirements of SoCs must be considered for

less hardware amount. Three major environmental differences are that 1)

environment is application oriented, 2) wire resources are rich and flexible, and

3) cost sensitivity. Taking these requirements into account, this research

presents a novel data-transfer scheme for low-cost NoC implementation and

improving performance as an interconnection network of programmable devices.

First, a data-transfer scheme using separate routing information which takes

advantage of rich wiring resources on chip, is presented for cost-efficient

implementation. Then, a novel local labeling scheme for specifying destination

in a fewer bits than the conventional global addressing scheme is proposed to

reduce hardware amount of routers. Comparison between required hardware

amount for the programmable switch and the router-based NoC is also shown.

5.2. Data-transfer using separate routing
information

An example of a NoC structure in 2-D mesh topology is shown in Figure 5-1. It

consists of network routers and IP cores. Each connection between neighboring

routers and node/router is uni-directional, and it includes data and control lines.

A set of data and control signals are called “channel” in this thesis. As an IP

core (node), a microprocessor, a reconfigurable unit such as programmable

 77

logic or processor arrays, a memory or hardware logic can be placed, and these

nodes communicate each other.

Figure 5-2 shows a timing diagram of a data-transfer with packet structure used

in conventional NoCs. On a channel, a packet header which includes fields at

least for routing information and data length is transferred first, and then data

itself and a packet tail follow. Packets are transferred in the unit of “flit” which

corresponds to the data size equal to the bit-width of data signal in routers and

nodes. This data-transfer scheme requires composing and decomposing

packets in nodes and handling the packet structure in routers.

 However, as described in the previous section, flexible wire resources can be

used in NoCs, differently from SANs which have pin count limitation of chip

packages. So, we can leave from the packet structure and this research utilizes

a data-transfer scheme using separate routing information. As shown in Section

5.3, this scheme uses a dedicated signal for transmitting routing information in

parallel to data. This apparently results in removing the cycle overhead for

sending headers, and also simplifies router and node hardware from those for

conventional packet data-transfer.

Figure 5-4 (a) and (b) show packet formats used in the packet data-transfer

and the data-transfer using separate routing information. As shown in Figure 5-4

(a), a header is sent as a first flit of the packet and it consists of at least routing

information and length field for specifying payload size. And, the tail flit is

transmitted if necessary. As shown in Figure 5-4 (b), data which is transferred

by a node is split into multiple of data to be transmitted in a cycle, and routing

information which specifies destination is transmitted in parallel. In this scheme,

length is not necessary in routers, and the upper layer logic in IP cores may or

may not need it. Thus, this is meant to be the field in payload.

 78

Router

IP Core

Wires for data
Wires for controls

SoC

Channel

Figure 5-1 Structure of 2-D mesh NoC

router router

controls

Header

Data

Clock cycle

Channel

Tail Payload

Figure 5-2 Data-transfer with packet structure

router router

controls

Routing
Information

Data

Clock cycle

Channel

Figure 5-3 Data transfer scheme using separate routing information

 79

(a) (b)

Flit 0
Flit 1
Flit 2
Flit 3

Destination NodeLength

Payload

Upper-layer data structure

Any packet format used in IP cores
Header

Any packet format used in IP cores

Routing Info.

Tail

Figure 5-4 Packet structure comparison (a) packet data transfer (b) separate

routing information transfer

5.3. Proposal of local labeling scheme

5.3.1. Conventional distributed routing using
global addresses

Global addresses have been typically used to specify destination in

conventional NoCs [PW04]. This conventional global addressing scheme simply

attaches a global node number of a destination to transmitted data. In routers,

each packet looks up routing tables and gets a port number to forward.

A routing function for the conventional distributed routing using node

addresses is expressed with C, as a set of channels, and N as a set of nodes:

C x N C

This function receives a set of input channel and a set of global node number as

inputs, and outputs a set of cannel number as a result [DS87]. The bit amount

required in this algorithm is ⌈ log2N⌉ , where N is a number of nodes.

 80

 This global addressing scheme is quite general purposed, since any of nodes

can transmit packet to any other nodes. However, although this scheme is

simple and flexible, it requires number of bits according to the number of nodes

depending on a number of nodes in SoC. For example, the 4-bit routing

information is required in 16 nodes, and 6 bits in 64 nodes.

5.3.2. Local labeling scheme
In many SoCs, applications are pre-determined and specified before chips are

fabricated. So, we can take advantage of static analysis results of

communication patterns in applications. This research proposes a method to

utilize static analysis to reduce hardware cost by optimizing routing information

field in the data-transfer scheme using separate routing information.

The proposed method for reducing routing information is applying a local

labeling scheme. The local labeling scheme utilizes static analysis results of

communication patterns to reduce a required number of bits for routing tags and

routing table entries. As an identifier for specifying a destination, a local label

which is only valid in a channel between a certain pair of neighboring routers or

node/router, is used instead of global node addresses. Since the local label is a

value which is only valid in a single channel, the same value can be used in a

different channel for specifying a different destination. And thus, this local

labeling scheme can reduce the required number of bits for specifying

destination nodes. Compared with a conventional distributed routing, hardware

cost becomes fewer when the maximum number of required local labels in

channels is less than the number of nodes.

Here, algorithms to calculate the number of required local labels are shown in

the following sections. Overall in an NoC, the maximum number of local labels

required in all the channels is called “Crossing Path (CP)”, in this research. One

algorithm shown is constant labeling scheme, and the other is renewable local

labeling scheme [AYK04].

 81

5.3.3. Static analysis of communication pattern
First of all, an algorithm to extract communication paths from an application

traffic pattern is shown. A communication path is defined as a set of channels

from a source node to a destination node. Before the analysis, an application

must be split into multiple of tasks and each of them is mapped onto a certain

node, by any mapping algorithm. Below is the static analysis algorithm to

extract communication paths.

1) A logical counter is associated to each channel. All the counters are

initialized 0.

2) A set of communication pairs of nodes is prepared. Choose one from the set

of communication pairs which are not analyzed yet.

3) Any routing algorithm is applied to the chosen pair, and the communication

path is established by being routed on a sequence of channels determined

by the algorithm.

4) Increment all the counters which the communication path has.

5) Repeat from 2) to 4), before completing the analysis of all the

communication pairs.

Each counter value after this analysis shows the number of communication

paths routed on each channel, and thus, equals to the required number of local

labels in each channel. So, the maximum number of the entire counters after

the analysis becomes theoretical Crossing Path (CP).

 An example of analyzed communication paths in a 3x3 2-D mesh network is

shown in Figure 5-5. Each circle shows a router and unidirectional channels are

connected between neighboring nodes. Nodes are not shown for simplicity. As

shown in this figure, the theoretical CP here is 4, extracted by this static

analysis.

 82

0 1 2

3 4 5

6 7 8

Router
1

0

2

0

2

0

3

0

0

0

0

0

0
1

0
0

0
0

0
0

0
3

0
4

Counter Channel

Figure 5-5 Static analysis result of an example pattern

5.3.4. Constant local labeling scheme
This section presents an algorithm to assign local labels to a set of

communication paths derived by the static analysis algorithm described in the

previous section. The constant labeling scheme proposed in this section

assigns a single local label to a communication path. As constant local labeling

schemes, the Low Port First algorithm is shown first, and the Crossing Paths

Order algorithm, next.

5.3.4.1. Low Port First (LPF) algorithm
This subsection shows the Low Port First (LPF) algorithm as below. This is an

algorithm which simply assigns constant local labels without any effort to reduce

the number of required local labels.

1) First, a set of communication paths of applications is extracted by the static

analysis algorithm. A unique node number is assigned to each node. And, a

logical counter is assigned to an entire network as a label counter for local

label values. This counter is initialized to 0.

 83

2) A set of nodes which are not analyzed yet is derived. Choose a node which

has the minimum node number in the set of nodes which is not analyzed yet,

and remove the selected node from the set. When the set becomes empty,

the algorithm terminates.

3) Extract all the communication paths which start from the selected node.

4) From the set of the extracted communication paths, pick all the independent

communication paths any of which do not share any channel each other.

Assign the current label counter value to the communication paths as their

local labels, and increment the label counter. This procedure is repeated

until the set of paths finishes.

5) Return to 2) for a next communication path.

Figure 5-6 is the result of applying the LPF algorithm to the static analysis

result shown in Figure 5-5. This example pattern requires 5 local labels.

0 1 2

3 4 5

6 7 8
Router

Channel

0

0

1

3

2

4

n Label value

Figure 5-6 Label assignment result of Low Port First algorithm

 84

5.3.4.2. Crossing Paths Order (CPO) algorithm
Although the LPF algorithm is simple, there is no effort for reducing required

number of labels. The number of required local labels in the example shown in

Figure 5-6 is 5, and it has a gap between its result and the theoretical Crossing

Path, 4. This is because the LPF algorithm does not assign appropriate label

values to the communication paths in the busiest channel C(5,8), where C(x, y)

is a channel between node x and y, and x/y are global node numbers. Thus,

assigning labels to the busiest channel should be done prior to the others for

achieving a minimized number of local labels. Here, the Crossing Paths Order

(CPO) algorithm is proposed as below.

1) First, a set of communication paths is derived by the static analysis

algorithm.

2) Choose a channel which has a maximum label counter value as a result of

the static analysis algorithm, from the set of channels which are not

analyzed yet. If this set is empty, the algorithm terminates.

3) A set of communication paths which are routed on the selected channel in 2)

is derived. And if any of these communication paths already have local

labels, remove them from the set. Also, a set of local label values in the

communication paths is prepared for the channel, so that the values of the

communication paths which already have local labels are assigned as initial

values for the set.

4) Prepare a logical label counter for the channel and initialized to a value

which does not match any of the values in the set of local label values

prepared in 3).

5) Pick a communication path from the set of communication paths prepared in

3). Assign the current label counter value as a local label to the selected

communication path. Add the value to the set of local label values.

6) Set the counter value to the next larger value than the current which does

not match any of the values in the set of local label values. If the set of

 85

communication paths becomes empty after the removal of the

communication path in 5), return to 2), otherwise go to 5).

Figure 5-7 shows the result of label assignment to the static analysis result

presented in Figure 5-5, by the CPO algorithm. Crossing Path becomes 4, and

it is fewer than the result of the LPF algorithm. This is because the CPO

algorithm assigns a local label value to the communication path which has the

largest number of local labels from the set of communication paths not analyzed

yet. Thus, the CPO algorithm can reduce the number of required local labels.

0 1 2

3 4 5

6 7 8
Router

Channel

2

0

0

2

1
3

n Label value

Figure 5-7 Label assignment result of Crossing Paths Order algorithm

5.3.5. Renewable Local Labels
The constant local labeling scheme assigns a single local label value to each

communication path, and tries to minimize the required number of local labels.

On the other hand, a renewable local labeling scheme presented in this section

 86

is the algorithm which assigns a single local label to each channel, not to each

communication path. This increases flexibility of label assignment and the

required number of labels can be more reduced so that it becomes equal to the

same value with the static analysis result. Below is the procedure of the

renewable local labeling algorithm.

1) Assign a logical counter to each channel, and initialize them to 0.

2) Choose a single channel from the set of communication paths to which local

labels are not assigned.

3) Assign logical counter values of the channels where the communication path

is routed, to the communication path. Sequence of the local labels express

the communication path itself.

4) Increment the counters used in 3).

5) Repeat 2) to 4)

The renewable local labeling algorithm assigns local labels so that the derived

Crossing Path is equal to the Crossing Path of the static analysis result, thus

this Crossing Path is theoretically minimized.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1 1

2 2

1 1

1 1

2 2

1 1

1 1

2 2

1 1

1 1

2 2

1 1

0 0 0

0

0

0

1

0

0

0

P(0,15)
P(1,14)

P(4,11),
P(0,15)

P(4,11),
P(5,10)

n Label value P(x,y): Path from x to y

Channel to right node Channel to left node

Figure 5-8 Required renewable local labels in complement pattern

 87

Figure 5-8 shows the required number of local labels when using complement

pattern [DYN02] and e-cube routing [DS87] on a 4x4 2-D mesh network. In this

figure, the numbers assigned to all the channels present required local label

numbers. This pattern consists of 16 communication paths that are P(0,15),

P(1,14), P(2,13) … P(15,0), where P(x,y) is the communication path from a

node x to a node y.

 Figure 5-8 also shows examples of assigning labels. A local label sequence,

“1000” is assigned to the communication path P(1,14) on C(1,2), C(2,6), C(6,10)

and C(10,14). In the same manner, to the communication path P(0,15), a

sequence “000000” is assigned to C(0,1), C(1,2), C(2,3), C(3,7), C(7,11) and

C(11,15).

 A key feature of the renewable local labeling scheme is that it allows different

local labels to channels in a communication path. Thus, the derived number of

Crossing Paths is minimized and equal to the theoretical CP derived by the

static analysis algorithm.

 However, the renewable local labeling scheme requires a function for updating

local labels in routers, differently from the constant local labeling scheme. For

example, in Figure 5-8, P(1,14) and P(0,15) have different local labels in the

same channel C(7,11), where P(0,15) and P(4,11) have different labels in

C(1,2), and P(1,14) and P(5,10) in C(6,10). And as another example, P(1,14)

has different local labels in C(1,2) and C(2,6). This updating function is

implemented in a router architecture described in Section 5.4.3.1.

 Figure 5-9 shows the result of applying the renewable local labeling scheme to

the static analysis result in Figure 5-5. The resulted Crossing Paths is 4, and

this is the same result as the static analysis result.

 The CPO algorithm assigns local labels so that the required number of labels

in the busiest channel is minimized. However, the result of the CPO algorithm is

not the minimum number for all possible cases, since it allocates a larger local

label value in a case when a communication path not traversing the busiest path

conflicts in other channels with all the communication paths in the busiest

channel. On the other hand, the renewable local labeling can allocate the

 88

minimized Crossing Path in the communication pattern which is equal to the

result of the static analysis algorithm.

 The routing function for the renewable local labeling scheme is described as

follows, where C is channel and P is local label.

C x P C x P

0 1 2

3 4 5

6 7 8
Router

Channel

0 0

0 0 0
0

1

1

0

1

1

2

2

2
3

n Label value

Figure 5-9 Renewable local labeling result of an example pattern

5.4. Evaluation
In this section, the performance results and the hardware cost of the proposed

scheme are shown. First, the performance evaluation data when using the

data-transfer with separate routing information is described. Then, evaluation

data on the required number of local labels used in the proposed local labeling

scheme is shown, to compare it with the conventional global addressing

scheme.

 89

5.4.1. Performance evaluation
First, this section shows the performance advantage in applying a data transfer

scheme using separate routing information.

5.4.1.1. Environment
Performances for the cases using the data-transfer scheme with separate

routing information and using the packet data-transfer are evaluated with

flit-level simulator written in C++. The traffic patterns used for the evaluation are

Uniform and Bit-reversal traffic patterns [DYN02]. The Uniform traffic is a pattern

where a destination is chosen randomly data by data. And the Bit-reversal traffic

is a pattern where each source node has its own fixed destination node.

Table 5-1 shows the simulation parameters. The simulated network topology is

4x4 2-D mesh, and a data-transfer scheme implemented in the router is

wormhole routing without virtual channel. Size of the data buffer in the router is

1-flit length. And the header length is 1 flit for the packet transfer case, where

the data transfer using separate routing information does not issue this

overhead. Simulation was run for 50000 cycles, and initial 5000 cycles are

ignored to remove the initialization phase. The data size of a flit is 32 bits.

Table 5-1 simulation parameters

Simulation time 50000 cycles

Topology 4x4 2-D mesh

Routing algorithm e-cube routing

The number of VC 1

Data-transfer scheme Wormhole

5.4.1.2. Performance result
Figure 5-10 and Figure 5-11 show the simulated throughput and latency results

for the Bit-reversal and the Uniform traffic patterns. The unit of throughput is

bytes/cycle/node which shows throughput per node. The unit of latency is the

 90

number of cycles and it shows average number of cycles for each flit to stay in

the network per each cycle data.

 As shown in Figure 5-10 (a), the throughput for the data-transfer using

separate routing information in the Bit-reversal traffic is constant, independently

of the data size. When data size is larger than the data size for a single cycle in

using separate routing information, data is split into each cycle data and each of

them has its own routing information. Thus, no cycle overhead for transferring

routing information or headers is required. On the other hand, when using the

packet data-transfer scheme, the header requires 1-cycle overhead. Thus,

when the data size is small, the packet data-transfer cannot achieve that much

performance as the data-size is large. In a case for the 4-byte data, the

data-transfer using separate routing information doubled the throughput from

that of the packet data-transfer.

 On the other hand, as shown in Figure 5-10 (b), when using the Uniform traffic

pattern, the throughput for the data-transfer using separate routing information

degrades when increasing the data size. This is because the destination is

picked randomly, and the opportunity to conflict in a router becomes more

frequent in using separate routing information.

 Thus, using separate routing information results in good performance

especially using the traffic pattern is fixed like the Uniform traffic pattern.

 91

Data size (bytes) Data size (bytes)

(a) Bit-reversal traffic (b) Uniform traffic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11

Separate Routing Info. Packet Transfer

4 8 16 32 64 128 256 512 1024 2048 4096

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11

Separate Routing Info. Packet Transfer

4 8 16 32 64 128 256 5121024 2048 4096

Figure 5-10 Simulated throughput results

(a) Bit-reversal traffic (b) Uniform traffic

Data size (Byte) Data size (Byte)

Latency
(cycle)

Latency
(cycle)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11

Separate Routing Info. Packet Transfer

4 8 16 32 64 128 256 512 1024

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8 9 10 11

Separate Routing Info. Packet Transfer

4 8 16 32 64 128 256 512 10242048 4096 2048 4096

Figure 5-11 Simulated latency results

 92

5.4.2. Required number of local labels

5.4.2.1. Method and environment
 As evaluation, communication patterns of typical applications are analyzed to

evaluate required numbers of local labels in the constant and the renewable

local labeling schemes. As applications, some of multimedia and

communication applications are chosen as practical stream data processing.

And as other applications, NAS parallel benchmarks (NPB) 2.3

[BHS95][SWW97] are analyzed for reference, where NPB cannot be realistic

applications for SoCs.

 First, an algorithm of each application is analyzed and each application is split

into multiple functional tasks. A task-flow graph is drawn by the analysis result.

The number of nodes is assumed to be less than 16, the same as [DT02]. Each

application is mapped onto three topologies for 16 nodes, in 2-D mesh, 2-D

torus and H-tree topologies. For the evaluation of a 64-node NoC, NPB is

mapped onto a 64-node NoC. In this evaluation, a required number of local

labels for each application is derived by applying the static analysis, the

constant and the renewable local labeling algorithms to the mapping results of

applications.

 As network topologies to evaluate, three major topologies, 2-D mesh, 2-D

torus and H-tree are evaluated, as shown in Figure 5-12. As routing algorithms,

an e-cube (X/Y) routing is used in 2-D torus (mesh), and up/down routing in

H-tree. Only in 2-D torus virtual channels are implemented in routers.

 93

Figure 5-12 Topologies used in evaluation

5.4.2.2. Applications
 Two types of applications are selected: stream data processing applications

and NAS parallel benchmarks.

As stream processing applications, JPEG codec, Viterbi decoder, 4x4 network

switch, OFDM (Orthogonal Frequency Division Multiplexing) and MPEG-2

encoder are analyzed. These applications are analyzed statically and task-flow

graphs are created from the algorithms. The detailed descriptions of these

applications are shown below.

JPEG Codec

 94

JPEG codec is a set of JPEG decoder and encoder. The task flow graph is

shown in Figure 5-13. This application compresses and decompresses static

images. The decoder receives JPEG byte-stream as input and outputs raw

image data in RGB (R: Red, G:Green and B:Blue) format. The encoder flow is

opposite and outputs JPEG byte-stream data. Figure 5-13 (a) shows its task

flow and Figure 5-13 (b) shows the task mapping result on 16-node 2-D mesh

topology. Each square shows a node and the line between nodes correspond to

channels. The arrow beside the channel is the data-flow of image data, and the

dotted line shows the control data-flow, such as header information and table

data. In this evaluation, different local labels are assigned to the communication

paths between the same source node and the same destination node which

convey different types of data.

Header
Analysis

Huffman
Decoding

1-D IDCT
for Row

1-D IDCT
for Column

MCU
mapping

YUV-RGB
Conversion

Stream
Generation

Huffman
Encoding

1-D DCT
for Row

1-D DCT
for Column

RGB-YUV
Conversion

MCU
Sampling

Inverse
Quantization

Quantization

(a) (b)

0 1 2 3

4

8

12

5 6 7

9 10 11

13 14 15

Encoder

Decoder

Image data
Control data

Figure 5-13 Task mapping result of JPEG codec for 2-D mesh topology

Viterbi Decoder
Figure 5-14 (a) shows a task-flow of the Viterbi decoder which is an error

correction code widely used in many applications. This Viterbi decoder is a

 95

Soft-In Soft-Out (SISO) Viterbi decoder [Kan03]. This firstly processes

Add-Compare-Select (ACS) calculation, and then buffers the history of the

calculated results in the FIFO buffer. In Delta, the difference between the

histories is extracted, and Trace-Back (TB) phase processes the difference in a

pipelined manner. The FIFO buffer consists of 64-bank memory macoros, but

this task mapping tries to distribute and average the amount of hardware for

each node, and use 4 nodes to process FIFO buffering history data.

4x4 Network Switch
Figure 5-14 (b) shows a task-flow of the 4-input 4-output network switch

[AJA03]. In a Link module, an input header of data is analyzed, virtual channel

operation is done, and arbitration cycles are issued. In 4x4 Crossbar (CB), it

switches and transfers the output packet from the link modules.

MPEG-2 Encoder
Figure 5-14 (c) is a task flow of MPEG-2 encoder [LLS04]. A function block of a

frame data is input to an Input Buffer module, and the reference data stored in

Reference Buffer is used to search a motion vector for the input frame data in a

Motion Estimation module.

OFDM
Figure 5-14 (d) shows a task-flow of OFDM which is a wireless communication

protocol [LLS04]. Each processing core from Core 0 to Core 7 executes

2048-point Inverse-FFT (Fast Fourier Transform). The output complex numbers

are calculated and normalized in MAC (Multiply-and Accumulate) units.

 96

(a)

(b)

(c)

(d)

ACS

MKPM

FIFO 1

TB0 TB1

TB2 TB3

SOTB0 SOTB1

SOTB2 SOTB3

link0

link0

link0

link0

link1

link1

link1

link1

CB

CB

CB

CB

CB

CB

CB

CB

Ctrl IBuf

MEDCT/Q

IDCT/IQ RefBuf

MAC0

MAC1

MAC2

MAC3

MAC4

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

MEM

MAC 0

MAC 1

MAC 2

MAC 3

Add
Compare
Select

Trace Back

Soft Output Trace Back

Minimum
PM

4x4 Crossbar

Motion
Estimation

Reference
Buffer

Input
Buffer

Discrete
Cosine
Transform/
Quantization

Inverse DCT/
Inverse Q

FIFO 2

FIFO 3

FIFO 0

Delta

Delta
Calculation

Figure 5-14 Task partition of applications (a) Viterbi decoder (b) 4x4 network

switch (c) MPEG-2 encoder (d) OFDM

NAS parallel benchmarks 2.3
From NAS Parallel Benchmarks [BHS95][SWW97] which consist of typical

numerical parallel application programs described with the MPI library [GLD96],

six matrix computation programs are analyzed: BT (Block Tridiagonal solver),

CG (Conjugate Gradient), LU (LU-decomposition), MG (Multi-Grid solver) and

SP (Scalar Pentadiagonal solver). These are implemented and executed on the

RHiNET-2 cluster with 64 nodes [WOT03], and the communication traces were

obtained using MPI profiling libraries [GLD96]. Using obtained results, these

communication paths are calculated under the X/Y and e-cube routing on the

two-dimensional mesh and torus.

The task-flows of stream applications described above are simple, such that

data is input to a node and output from it. In this research, however, for cases

that other possible task mapping with complex communication pattern is

 97

required, NPB 2.3 is also used for analysis as a prior research in [HP03]. NPB

2.3 is scientific calculation benchmarks, and thus it is not a realistic benchmark

set for NoC, but typically used in PC clusters or parallel computers. It has

characteristics to include broadcast communication and communication

between neighboring nodes, differently from stream applications.

5.4.2.3. Comparison of local label numbers
The stream applications in the previous section are mapped onto a 16-node

NoC. The mapping and static analysis results of the applications are shown in

Table 5-2, and the average number of hops and the number of total

communication paths are shown in Table 5-4. Table 5-3 is the table to show the

Crossing Paths of NPB 2.3 and the average number of hops and the number of

communication paths in Table 5-5. Some of the NPB applications are analyzed

also on 64-node NoC. In Table 5-2 and Table 5-3, the number of bits required

for local labels is calculated as ⌈ log2m⌉ when the number of CP is m.

The total communication paths of the stream applications are approximately

from 20 to 30, where 16-node applications of NPB result in more than 60

communication paths. This is because the analyzed stream applications simply

receive input data and transmit output data, and every task operates as

pipelined manner. In some applications, performance is improved by parallel

processing like FIFO buffering after ACS calculation in the Viterbi decoder.

However, no synchronization communication occurs in the system, and the total

number of communication paths is not increased to that large number in NPB.

In NPB, broadcast communication is required to synchronize timings between

nodes, and IS requires 240 communication paths which are all-to-all

combination of 16 nodes, for instance.

 As shown in Table 5-2, the resulted CPs for the stream applications are less

than 8 in 16-node NoC for all the topologies. Thus, the required number of bits

for local labels in these applications is bit, where the conventional global

addressing scheme requires 4 bits in 16-node NoC. Thus, the local labeling

scheme reduced by 1 bit from the conventional global addressing scheme. The

 98

source routing described in [DT02] requires 16 bits in 2-D mesh and torus

topologies, and 8 bits for H-tree topology, and thus the local labeling scheme

reduced by 13 bits and 5 bits from them.

 In NPB, IS which includes the largest number of the communication paths

results in the largest number of Crossing Paths, as shown in Table 5-3. Its CP is

16 in 2-D mesh topology and 15 in 2-D torus topology, and thus the 4-bit local

labels are required. So, the local labeling scheme does not improve it from the

global addressing scheme. However, in the other applications except for IS,

they do not include all-to-all communication, and are less CPs than that of IS. In

these applications, the renewable local labeling scheme results in 8 local labels

which are 3 bits, at most, and the constant local labeling scheme requires 10

local labels, which are 4 bits. So, the renewable local labeling scheme reduced

by 1 bit from the constant local labeling scheme in 2-D mesh and torus

topologies. Also in the 64-node NoC, applications except for IS require 14 local

labels which are 4 bits. So, it reduced by 2 bits compared with the global

addressing scheme which requires 6 bits for 64-node NoC.

 On the other hand in the H-tree topology, the required numbers of local labels

for NPB are less than 48, which is 6 bits, including IS, and less than 20, which is

5 bits, excluding IS. They are larger numbers than that of the global addressing

scheme. In the H-tree topology, all the communication paths traverse the vertex

on top of the tree and those upward links require larger numbers of local labels.

This implies that further research on appropriate topologies for local labels like

in [YAK04] is necessary for achieving appropriate tree-based topology.

 Next, discussion is given to the comparison between the renewable local

labeling scheme and the CPO labeling scheme. As shown in Table 5-2, there is

no difference between the numbers of CPs for stream applications for these

algorithms. However, as shown in Table 5-3, applications except for LU result in

smaller numbers of local labels using the renewable labeling algorithm. This is

caused when any communication paths not in the busiest path conflicts in other

channels with all the communication paths in the busiest channel. However,

according to the analysis results of stream applications, there are no such

cases in these stream applications.

 99

Table 5-2 Crossing Path of stream applications in 16-node NoC

 2-D mesh 2-D torus H-tree

 Ren. LPF CPO Ren. LPF CPO Ren. LPF CPO

VITERBI 5 5 5 4 4 4 6 6 6

4x4 switch 4 5 5 4 4 4 4 4 4

JPEG 8 8 8 8 8 8 8 8 8

MPEG-2 5 5 5 3 3 3 6 6 6

OFDM 4 5 4 4 4 4 6 6 6

 Ren.: Renewable local labeling

Table 5-3 Crossing Path in NPB 2.3 in 16- and 64-node NoC

 2-D mesh 2-D torus H-tree

 Ren. LPF CPO Ren. LPF CPO Ren. LPF CPO

BT.16 8 11 10 8 10 9 20 22 20

CG.16 5 8 6 5 7 6 11 14 12

IS.16 16 22 20 15 20 20 48 60 60

LU.16 6 6 6 6 6 6 12 14 12

MG.16 5 6 6 5 5 5 12 13 12

SP.16 8 11 10 8 11 10 20 22 20

CG.64 10 13 11 9 11 11 11 14 12

MG.64 9 14 14 9 13 13 48 58 48

 Ren.: Renewable local labeling

 100

Table 5-4 Number of communication paths and average hops in stream

applications

 Number of hops

Number of

Communication

Paths

 2-D mesh 2-D torus H-tree

VITERBI 2.78 2.67 2.44 18

4x4 switch 2.83 2.67 2.00 24

JPEG 2.36 2.27 1.36 22

MPEG-2 2.84 2.53 2.37 19

OFDM 2.47 2.34 2.19 32

Table 5-5 Number of communication paths and average hops in NPB 2.3

 Number of hops

Number of

Communication

Paths

BT.16 3.00 2.50 2.25 128

CG.16 2.79 2.68 1.58 76

IS.16 3.67 3.13 2.60 240

LU.16 2.40 2.40 2.00 80

MG.16 2.60 2.40 2.20 80

SP.16 3.00 3.00 2.25 128

CG.64 3.80 3.58 2.16 440

MG.64 3.78 3.55 3.00 576

5.4.3. Evaluation of hardware amounts
 This section describes the evaluation results using the required number of

local labels derived in the previous section.

 101

5.4.3.1. Designed router architecture
 The purpose of the proposed local labeling scheme is to reduce the required

hardware amount of a router by reducing required numbers of local labels.

Thus, as well as the algorithms to reduce numbers of local labels, evaluation of

router architectures to achieve small hardware amount is also important.

 Figure 5-15 (a) and (b) show the designed router architecture using the

renewable and the constant local labeling schemes for the 2-D mesh topology.

These routers distribute routing tables to all the input ports for parallel lookups,

and do not take centralized approach. And since communication patterns

assumed to be statically analyzed by the proposed algorithms, each input port

does not have virtual channels for the purpose of avoiding deadlocks. Inputs to

the router are from the four directions and one node output, and the same for

outputs. Thus, the crossbar is 5x5. And there is a simple I/O interface to

initialize routing tables, which is not shown in the figure.

An input port controller of the renewable local labeling router shown in Figure

5-15 (a) looks up the routing table using an input local label as a table address.

The table entry includes an output channel number and a local label at the

output channel. So, the input port controller uses the output channel number as

a select signal for the crossbar and replace the local label in the entry with the

input local label. On the other hand in the constant labeling router architecture

shown in Figure 5-15 (b), the input local label is simply transferred to the output

port and there is no need for replacement. The entry for this router is simply an

output channel number, and does not need the local label for replacement.

 As described above, the routers for the renewable and constant local labeling

schemes have almost the same structure, and the difference is the table format.

 102

(a) (b)

Input
Buffer

Data Label Valid

Node Out

North

East

West

South

Ready

Input
Buffer

Input
Buffer

Input
Buffer

Input
Buffer

Node In

Output
Buffer

Output
Buffer

Output
Buffer

Output
Buffer

Output
Buffer

5x5 crossbar

Ready
Control

M
U

X

Arbiter

Arbiter

Arbiter

Arbiter

M
U

X
M

U
X

M
U

X
M

U
X

Arbiter

Routing
Table

Routing
Table

Routing
Table

Routing
Table

Routing
Table

Pipeline stage

Input
Buffer

Data Label Valid

Node Out

North

East

West

South

Ready

Input
Buffer

Input
Buffer

Input
Buffer

Input
Buffer

Node In

Output
Buffer

Output
Buffer

Output
Buffer

Output
Buffer

Output
Buffer

5x5 crossbar

Ready
Control

M
U

X

Arbiter

Arbiter

Arbiter

Arbiter

M
U

X
M

U
X

M
U

X
M

U
X

Arbiter

Routing
Table

Routing
Table

Routing
Table

Routing
Table

Routing
Table

Output port Output port

Figure 5-15 Router architectures for 2-D mesh topologies using (a) updated

local labels and (b) non-updated local labels

5.4.3.2. Evaluation environment
 To compare the required hardware amounts for the routers shown in Figure

5-15 (a) and (b), both these routers were designed in HDL and synthesized with

Synopsys DesignCompiler using 0.15μm CMOS cell libraries. The result is

expressed in 2-input NAND equivalent gate.

5.4.3.3. Evaluated amount of router hardware
Table 5-6 shows required hardware amount for the renewable and constant

local labeling routers for the 2-D mesh topology. The results are shown in

2-input NAND-equivalent gates. As shown in this table, the required hardware

 103

amount of the router increases according to the number of local labels, due to

the increase of routing table entries.

 According to the result of required local labels for stream applications

described in Section 5.4.2, 3-bit local labels are required in the 16-node NoC.

Thus, the renewable and constant local labeling routers result in 5062 and 4049

gates, respectively. Since a router for the conventional global addressing

scheme corresponds to the one with the constant local labeling router with 4 bit

labels, it requires 5220 gates. Thus, using the constant local labeling router

reduces 22 % gate counts than it, and the renewable local labeling router only

reduces 3 %. So, in the case when the renewable local labeling algorithm does

not reduce the required number of local labels from the constant local labeling

algorithm, the constant labeling scheme resulted in a simpler router.

 In the 64-node NoC, the required gate counts for the renewable and constant

routers for NPB applications resulted in 4 bits for both cases, and 7863 and

5220 gates. When using the global addressing scheme, 6 bits are required for a

routing tag and the router results in 11015 gates. Thus, the renewable labeling

scheme reduced by 28 % and 46 % from the renewable and constant labeling

routers. For the stream applications which require fewer communication paths

than NPB, more hardware amount is expected to be reduced.

Table 5-6 Required number of gates for a 2-D mesh local labeling router in ASIC

The number of local

labels

Constant (CPO)

labeling (gates)

Renewable

labeling (gates)

2 (1 bit) 3132 3189

4 (2 bit) 3450 3766

8 (3 bit) 4049 5062

16 (4 bit) 5220 7863

32 (5 bit) 7987 13455

64 (6 bit) 11015 26396

 104

5.4.3.4. Ratio of evaluated hardware amount
Next, ratio between a router and each node of the Viterbi decoder SoC is

evaluated to show the impact of the proposed scheme on the total SoC gate

counts. Table 5-7 shows the ratio comparison with the conventional global

addressing scheme. The Viterbi decoder consists of 15 nodes and each of them

is listed in at left column. The ratios of the CPO labeling router and the global

addressing router are shown.

 As shown in Table 5-7, the tasks range from 1K gates to 62K gates, and the

total number of gates of this SoC is approximately 320K gates. The router ratios

from the sum of the router and each node range from 6.1 % to 78.3 % in using

local labeling, where these of the global addressing scheme range from 7.7 %

to 82.3 %. For the total gate counts, the ratio of local labeling routers is 15.8%

where that of the global addressing scheme is 19.5%.

Table 5-7 Gate count ratio of routers in Viterbi decoder SoC

Gate count of

node*
Router ratio with local

labels (%)
Router ratio with global

address (%)

ACS 20045 16.8 20.7

MKPM 5012 44.7 51.0

FIFO0 62560 6.1 7.7

FIFO1 62560 6.1 7.7

FIFO2 62560 6.1 7.7

FIFO3 62560 6.1 7.7

Delta 1125 78.3 82.3

TB0 6123 39.8 46.0

TB1 6123 39.8 46.0

TB2 6123 39.8 46.0

TB3 6123 39.8 46.0

SOTB0 5673 41.6 47.9

SOTB1 5673 41.6 47.9

SOTB2 5673 41.6 47.9

SOTB3 5673 41.6 47.9

Total 323606 15.8 19.4

* without router

 105

5.4.4. Comparison with programmable switch
In FPGAs, programmable switches [RB91] have been used as interconnection

networks. The programmable switches require static analysis of all routing paths,

and so the local labeling scheme, in a sense, can be viewed as a similar

approach to these. Main difference between the local labeling scheme and the

programmable switches is that wires connected with programmable switches

carry only data from a single output, while wires in the local labeling scheme are

used in a time multiplexing manner with several paths. Figure 5-16 outlines a

typical structure for a programmable switch used in FPGAs. This switch has four

connection links to neighboring switches, and the other link is connected to a

calculation node.

In programmable switches, one channel in a link is only used by a single

connection. Thus, to share a link with multiple connections, multiple channels

are required. In this figure, M is the number of channels per link. FS in this

figure, on the other hand, means switch flexibility. As described in [RB91], it has

been introduced to reduce the size of the crossbar. The total potential input for

the crossbar is 4M+1, and FS channels have been selected and multiplexed to

each output.

Figure 5-17 compares the number of gates required for the 32-bit

programmable switch and the 32-bit local labeling router. This graph plots the

number of channels and labels versus the number of gates required for the

programmable switch and the local labeling router. The proposed local labels

only require 371 gates per label, while the programmable switch requires 431,

1060, 1670, and 3346 gates per channel. Thus, the proposed routing scheme

using local labels reduced the number of gates per channel.

The number of gates for the local labeling router with a 4-bit label is almost the

same as that of the switch when FS is four. The local labeling scheme router

with 8-bit labels requires almost the same number of gates as the

programmable switch whose FS is 2. However, according to [RB91], from the

standpoint of routability, the case that FS is two is not practical. So,

considering cases whose FS is more than or equal to four, the local labeling

 106

scheme router with 3-bit labels is smaller than that of the programmable switch

in most cases.

Switch

North
Switch

East
Switch

West
Switch

South
Switch

Tile Out Tile In

Number of channels
per link

(M)

Switching Flexibility
(FS)

Link

Channel

Figure 5-16 Programmable switch architecture

Figure 5-17 Comparison of required gate counts according to channels/labels

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40

Router
FS=2
FS=4
FS=8
FS=16

Number of channels/labels

Number of gates

371 gates/label

431 gates/channel

1060 gates/channel 1670 gates/channel

3346 gates/channel

 107

5.5. Conclusion of this chapter
In this chapter, a novel data-transfer method for an on-chip interconnection

network in programmable devices is proposed. A local label is attached to each

1-cycle data as routing information. Unlike the traditional packet transfer, the

local label is transferred on dedicated wires attached to data lines to remove

complicated packet generation procedures in a node. Only a small-sized local

label is required to specify routing tags to the destination, and intermediate

routers change it to solve local label conflict between paths on a physical

channel. Furthermore, it can simplify network interface structures in nodes,

because it removes packet structure to assembly.

The results of flit-level simulation show that the data-transfer with separate

routing information which transfers only 1-flit data, can increase throughput

especially in cases with fixed communication patterns.

 The evaluation results in 2-D mesh and torus topologies using streaming

applications. The required number for labels is 8 in 16-node case which

decreased 1 bit from the global addressing scheme. And for a 64-node case, it

requires 4 bits for NAS parallel benchmarks which have more complicated

communication pattern than typical streaming applications, and it reduced 2 bits

from the global addressing scheme.

The hardware comparison results show that the proposed router is constructed

in smaller hardware than the ones in distributed routing and source routing. It

can reduce 4 % and 29 % in the 16-node case from them respectively, and

29 % and 74 % in the 64-node case.

In summary, the proposed local labeling scheme, which transfers 1-flit data

and attaches a local label, is advantageous from various aspects, especially

hardware cost. It can simplify the router structure and decrease the hardware

amount of routers, with sustaining performance comparable to the conventional

packet data transfers. All these results are shown under the practical application

patterns for high credibility.

 108

Chapter 6 Future work

This thesis focused on the research on implementation techniques of on-chip

interconnection networks regarding cost and performance efficiency. However,

there are some other possible approaches for these research topics

Layout and clocking
In this research, the designed bus has 5 masters and 7 slaves in a chip, and

the designed layout is shown in Figure 4-18. The layout shown here assumes

that the on-chip bus is laid out as an IP block. In this layout scheme, area

consumed by an on-chip bus is roughly estimated in advance, and the

corresponding area must be reserved. And other IP cores that are connected to

the on-chip bus must have boundaries with the bus block.

However, when numbers of masters and slaves increase, there are several

possible problems to solve.

1) It will be difficult to design an on-chip bus with small area and in simple

shape, since all the IP blocks have share boundaries with it. The shape

will be widely spread in a chip, and will not be a simple rectangular and

more complex.

2) Because the bus structure is basically trees of multiplexers as shown in

Figure 6-1, the multiplexers will be centralized into one spot. Thus, center

location of a bus block will be congested due to multiplexers and signal

wires. Distributed placing of multiplexers is important to reduce congestion

of signal wires.

3) Bus operation frequency will be difficult to increase. Bus signals are

distributed from the final stage of the multiplexer tree. Those signals are

not only wired to slaves, but to masters in some cases when masters refer

 109

to bus signals, such as a bus frame signal. So, bus signals travels from

master core to the center of the bus block, and then to masters and

slaves. In most buses, bus protocols are designed with the assumption of

1-cycle delay.

4) Netlist of the bus multiplexer tree must reflect the physical locations of

masters and slaves. If each multiplexer multiplexes output signals from

masters not neighboring each other, the location of the multiplexer will be

centralized into a central spot of the bus block. Even with the physical

compiler, the netlist should be changed to meet the physical locations of

the masters and slaves to place and route effectively.

Another approach to layout the bus block other than handling it as an IP core

is leaving it as top-level glue logic. To successfully layout with this approach,

each IP core must be placed with sufficient spaces between them to place bus

multiplexers and to route bus signals. The bus logic is typically placed and

routed in the final stage of the layout flow, since these are handled as top-level

glue logic. Thus, estimating the required space in the early stage floorplanning

as precise as possible is more and more important. Another important issue is

to layout the bus block with small latency penalty. With this layout scheme, the

area for layouting bus logic is widely spread all over the chip. Thus, signaling

delay is more likely to get long than the scheme which handles the bus as an IP

core. Thus, physical synthesis other than simple logic synthesis will be much

more important.

On the other hand, the router-based NoC has difficult shape to layout as a

single IP core. The overall floorplan is based on the architecture shown in

Figure 5-1. As it is shown in the figure, handling overall network as a single

functional block is not a realistic approach, because the shape is not a simple

rectangular. The easiest way is concatenating NoC router with each

computation node. With this approach, layouting a computation node plus a

router first, and then, dupulicating the prepared node and router.

 110

Master A Master B Master C Master D

2-1
multiplexer

Slave A Slave B Slave C Slave D

output signal of the bus

output signal
from a master

2-1
multiplexer

2-1
multiplexer

Figure 6-1 bus structure with multiplexer tree

Clock skews

The designed bus has a single operation clock frequency. In sub-0.1μm

CMOS devices, the frequency increases, and the allowable clock skew which is

a difference of the clock arrival time within in the bus block, decreases. The

clock distribution circuit has typically tree structure, and consists of clock drivers

and signal wirings. For achieving less clock skew, designing a clock distribution

tree with accurate delay estimation is a key issue. However, estimating clock

delay accurately in sub-0.1μm CMOS devices is not easy. It requires balanced

structure of a clock distribution network, and accurate delay estimation of buffer

and wiring delays.

The layout can be done in two styles as described in the layout suggestions.

- When the bus block is handled as an IP core, its clock distribution

network is designed using hierarchical clock tree synthesis (CTS), in

most cases. A clock distribution network of each IP core is designed

 111

using CTS first, and then, the top-level clock distribution network is

designed next. In this flow, designing a clock distribution network with

small clock skew in the bus block which could be complex shape is

important. To design the clock network, a clock input port for the bus

block is defined. When the shape is complex, the lengths from the input

port to flip-flops vary. In this case, CTS will insert clock buffers to the

short paths and this increase the latency of the clock network. If the delay

of the clock network is long, this will affect PLL’s stability factor when it is

feedbacked from the end point of the tree and will increase power

consumption.

- When the bus is laid out as top-level glue logic, the top-level clock

distribution network design will be important. All the IP cores have

regions working with the same clock frequency, and they are widely

spread inside the chip. With this scheme, all the flip-flops included inside

the bus logic should be included in each connected IP cores, and only

leave multiplexers as glue-logic.

 In the router-based NoC, the number of connected nodes is assumed to be

large and the layout is regular array structure of nodes and routers. So, the NoC

region will be widely spread overall the chip. Although this research designed all

the NoC region to be clocked with the same frequency, another design strategy

that each router is operating in the same clock frequency with a neighboring

node could be realistic.

When taking this approach, the clock synchronization circuit must be

implemented in the boundaries of neighboring routers. In the current router

design shown in Figure 5-15, there are input and output buffers which are

interfaced with each neighboring router. The clock synchronization circuit could

be implemented in those buffer designs. The possible side effect is the router

operating with the slowest frequency will be a performance bottleneck. In that

case, routing algorithm could be newly designed to select routers in fast

frequencies prior to those in slow frequencies.

 112

Clock synchronization
In this research, the clock frequency is assumed to be single, and if some

other frequencies are required such as by I/O interfaces, the clock

synchronization must be done in IP cores. The clock synchronization is

considered as a critical issue since it could frequently be sources of logical

bugs. Thus, clock synchronization circuits without bugs should be embedded

inside bus wrappers or network routers. This will unburden IP core or

computation node designers.

 The basic implementation of the clock synchronization for a single-bit signal is

simply clocked once with a source clock and more than twice with a destination

clock, as it is well-known. Further implementation possibilities are embedding

FIFOs as elastic buffer. FIFO consumes large number of transistors or requires

large internal memories. However, dual port memory will ease the logic design

with two clock domains. Besides FIFOs, when transferring multiple bits of data

over the clock boundary, like memory pointer values, the value should be gray

coded to ensure 1-bit transition.

Data
(domain A)

Clock BClock A

Data
(domain B)

Figure 6-2 basic clock synchronization circuit

Automatic netlist generation and logic verification
On-chip buses and router-based NoCs are expected to support any kinds of

SoCs or programmable devices. Thus, designing automatic netlist generation

tool is a good idea. In this idea, netlist will be automatically generated according

to the configured address map, and numbers of masters and slaves to be

 113

connected. Although generating netlist itself is quite easy, how to ensure its

logic quality by verification is an open issue.

Router-based NoCs and wrapper-based buses have the same feature that

both use duplicated logic of bus wrappers and network routers. So, from the

logic verification point of view, the unit-level verification is done easily, but

verification for combination of routers is more difficult.

 As for the logic verification, two approaches can be considered. One approach

is static verification, using property checking for the interface protocols. This

does not require any testbench generation for the RTL design and possible

protocol rules are written for the property checking tool. The static approach will

analyze the design statically. Thus, serious protocol errors, which are difficult to

be found out in dynamic simulation approches, such as deadlock and livelock,

are expected to check.

 A dynamic simulation approach will require logic verification by generating

testbenches. The logic simulation will require assertions and coverage to meet,

which should be defined by logic designers and verification engineers. The

assertions are the rules to check in any places in the design. The coverage to

meet is the sufficient condition to complete the logic simulation and this must be

defined as combination of timing conditions and function conditions. These

verification schemes can be easily established using SPECMAN or VELA,

released by Vericity and Synopsys.

Reduction of power consumption
 Power reduction is an important aspect also in high-end products as well as in

consumer products. In this research, power consumption is not critical in an

on-chip bus or an NoC since its hardware amount is not really large compared

with IP cores. However, saving power consumption is always important in any

function blocks in a chip. Thus, listed below are the possible items for reducing

power in on-chip buses and NoCs.

Dynamic power can be reduced by clock gating when it is not used. To

implement gated clock in on-chip buses or NoCs, stopping operations of unused

wrappers or NoCs is a possible idea. Clock gating is typically done by shutting a

 114

clock for a certain IP core itself. However, in wrapper-based buses or

router-based NoCs, each bus wrapper or router is connected to different IP

cores or nodes.

As for wrapper-based buses, thus, only clocks for some of the wrappers are

stopped, and the shutdowned wrappers are required to ensure not disturbing

operations of other wrappers. Thus, an asynchronous status signal that

indicates shutdown status should be generated. And in the boundary of the

shutdowned wrapper, by using that status signal and connecting that to clear

input port of flip-flops which hold the interface signals, such as arbitration

request, enable signals for the physical bus.

As for router-based NoCs, those shutdowned routers will never pass packets

through them. Thus, before shutting down routers, the management algorithm

of the shutdown process is required. Also, as well as the case for the on-chip

bus, the interfacing signals must be kept disabling when a router is shutdowned.

As for reducing static power consumption, it is not easy to achieve without

changing process technology or controlling power voltage. A possible item is

changing threshold voltage of transistors by controlling back-bias voltage.

Another item is using high-K gate transistor for less leak current.

Error correction scheme
Since Network-on-Chip is a possible candidate for interconnection in future

SoCs, or near-future programmable devices, the error correction scheme

becomes much more important due to high risks of chip designs. On the other

hand in on-chip buses, the error correction is not really a critical issue, but for

achieving better soft-error-rate (SER), it is recommended to implement.

The possible risks include high NRE cost, long period required for reworking,

functional errors due to soft-errors, and design bugs which are not found by chip

testing.

- NRE cost is getting higher, generation by generation. Thus, avoiding bug

risks is quite important.

 115

- Once reworking process started, the re-design and re-verification are

required as well as re-creating masks and re-fabricating. All these periods

are getting longer, generation by generation.

- Soft-errors widely range according to their error sources, such as

alpha-beam, etc. Soft-error will possibly occur and it will be recovered by

resetting. Thus, idea of error correction will total operation stability since it

enables recovering without resetting.

- Chip testing is increasingly getting difficult. Logic BIST (Built-In-Self-Test)

is widely considered as a candidate for generating more chip test patterns,

however integrating logic BIST into ASICs in generalized scheme is very

important but difficult to establish.

Thus, according to these backgrounds, error correction schemes are required

to be established. A possible implementation of error correction is to support

ECC code in routers or bus wrappers. However, this will issue a certain cycle

penalties to correct errors. A more system-level approach is using only parity

data and detecting defects inside the chip. Then, retransmit it so as to avoid

defects. Here, how to avoid defects is the key issue, and in this statement, just

leaving it as an open issue.

 116

Chapter 7 Conclusion

In this thesis, on-chip interconnection networks for current and near-future

generation are researched, especially from the standpoint of performance and

cost efficiency. As an interconnection network for current SoCs, novel

wrapper-based bus architecture is proposed. And for programmable devices or

processor-arrays as near-future SoC architectures, a router-based NoC with a

novel routing scheme is proposed.

Firstly, a wrapper-based bus which has practical performance with low

hardware cost is presented for current generation IP-based SoC. This thesis

pointed out that:

- Conventional wrapper-based buses only focused on IP core reuse and

sustaining performance. The wrapper-based bus proposed in this thesis

takes an approach to reduce hardware amount with sustaining required

performance and functionalities to reuse IP core. What is necessary in the

bus wrapper design is not embedding a data buffer, and considering

tradeoffs between cost and performance.

Furthermore, three novel wrapper-based bus implementation techniques for

better IP core connectivity and better performance with small hardware cost are

proposed.

- A proposed Write buffer switching technique increases throughput and

reduces Write latency. The guideline for determining the optimal buffer size

by evaluating throughput and latency per gate is shown.

- A slave designated retry control technique is proposed. This technique

allows connecting fast and slow IP cores into the same wrapper-based bus

without performance degradation.

 117

- Novel data-width converter architecture is developed to allow connecting

different bit-width IP cores to the same bus at a small hardware cost.

With the design of a CPU-based SoC, these techniques are evaluated with

simulation and confirmed performance increase and cost effectiveness

compared with conventional approaches. And for higher credibility, the real chip

fabricated in 0.15µm CMOS process is confirmed for the stable operations.

Next, a novel data-transfer scheme in NoCs, which attaches a local label to

each 1-cycle data, is presented. This local labeling scheme uses static analysis

results of communication patterns in applications and suppresses the required

number of bits for routing information compared with the conventional global

addressing scheme.

 To show the credibility of this proposed data-transfer technique, typical realistic

applications for multi-media and communication are evaluated. And a result that

shows the proposed labeling scheme decreased required amount of router

hardware with sustaining performance. And further more, this thesis showed

that local labeling router can achieve better hardware cost per channels

compared with programmable switches used in current generation FPGAs.

 In summary, this thesis showed two essential interconnection networks for

current IP-based SoCs and near-future programmable devices, from the

important aspects of cost and performance efficiency. The proposed two

approaches have distinguished features that try to be simple and less-hardware

with sustaining performance.

 118

References
[Arm94] ARM Ltd., “The ARM6 Family Bus Interface,” ARM DAI 0018B,

available at http://www.arm.com, December 1994.

[Arm99] ARM Ltd., “AMBA Specification Rev 2.0,” available at

http://www.arm.com, 1999.

[Arm01] ARM Ltd., “Multilayer-AHB overview,” available at http://www.arm.com,

2001.

[AJA03] H. Amano, A. Jouraku, and K. Anjo, “A Dynamically Adaptive Switching

Fabric on a Multicontext Reconfigurable Device,” Proceedings of the

Field-Programmable Logic and Applications, pp.161-170, September 2003.

[AOK02] K. Anjo, A. Okamura, T. Kajiwara, N. Mizushima, M. Omori, and Y.

Kuroda, “NECoBus: A high-end SoC bus with a portable and low-latency

wrapper-bus interface mechanism,” Proceedings of IEEE Custom Integrated

Circuit Conference, pp.315-318, May 2002.

[AYK04] K. Anjo, Y. Yamada, M. Koibuchi, A. Jouraku, and H. Amano,

“BLACK-BUS: A New Data-Transfer Technique using Local Address on

Networks-on-Chips,” Proceedings of IEEE International Parallel and Distributed

Processing Symposium, pp.10a, April 2004.

[BCF95] N.J. Borden, C. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N.

Seizovic and W.K. Su, “Myrinet: a gigabit-per-second local area network,” IEEE

Micro, vol.15, no.1, pp.29-35, 1995.

 119

[BHS95] D.Bailey, T.Harris, W.Saphir, R.Wijngaart, A.Woo and M.Yarrow, “The

NAS Parallel Benchmarks 2.0," NAS Technical Report, NAS-95-020, Dec, 1995.

[BM02] L. Benini and G.D. Micheli, “Network On-chips,” IEEE Computer, vol. 35,

No. 1, pp.70-78, January 2002.

[CBQ00] R. Casado, A. Bermudez, F.J. Quiles, J.L. Sanchez and J. Duato,

“Performance Evaluation of Dynamic Reconfiguration in High-Speed Local Area

Networks,” Proceedings of The 6th International Symposium on

High-Performance Computer Architecture, pp.85-96, January 2000.

[CV96] J. Carbonaro and F. Verhoorn, “Cavallino: the teraflops router and NIC,”

Proceedings of Hot Interconnect IV, pp.157-160, 1996.

[DA93] W.J. Dally and H. Aoki, “Deadlock-free Adaptive Routing in

Multicomputer Networks Using Virtual Channels,” IEEE Transactions on Parallel

and Distributed Systems, vol.4, No.4, pp.466-475, 1993.

[Deh04] A. DeHon, “Unifying Mesh- and Tree-Based Programmable

Interconnect,” IEEE Transactions on Very Large Scale Integration Systems,

Vol.12, No.10, pp.1051-1065, October 2004.

[DG98] G. D.Donley and M. Gujral, “Livelock Avoidance,” U.S. Patent 5761446,

June.02, 1998.

[DR04] A. DeHon and R. Rubin, “Design FPGA Interconnect of Multilevel

Metalization,” IEEE Transactions on Very Large Scale Integration Systems,

vol.12, No.10, pp.1038-1050, Oct. 2004.

 120

[DS87] W.J. Dally and C.L. Seitz, “Deadlock-free message routing in

multiprocessor interconnection networks,” IEEE Transactions on Computers,

vol.36, no.5, pp.547-553, 1987.

[DT01] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip

Interconnection Networks,” Proceedings of Design Automation Conference,

pp.684-689, June 2001.

[DVK01] J.A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S.J. Souri, K.

Banerjee, K.C. Saraswat, A. Rahman, R. Reif and J.D. Meindi, “Interconnect

limits on gigascale integration in the 21st century,” Proceedings of IEEE, vol.89,

no.3, pp.305-324, 2001.

[DYN02] J. Duato, S. Yalamanchili and L. Ni, “Interconnection networks: an

engineering approach,” Morgan Kaufmann, 2002.

[Fly97] D. Flynn, “AMBA: Enabling reusable on-chip designs,” IEEE Micro,

vol.17, no.4, pp.20-27, July 1997.

[GG02] P. Guerrier and A. Greiner, “A generic architecture for on-chip

packet-switched interconnections,” Proceedings of Design Automation and Test

in Europe, pp.250-256, March 2002.

[GLD96] W. Gropp, E. Lusk, N. Doss, A. Skjellum, "A high-performance,

portable implementation of the MPI message passing interface standard",

Parallel Computing, vol. 22, no. 6, pp. 789-828, September 1996.

[HP03] W.H. Ho and and T.M. Pinkston, “A Methodology for Designing Efficient

On-Chip Interconnects on Well-Behaved Communication Patterns,”

Proceedings of the Ninth International Symposium on High-Performance

Computer Architecture, pp.377-388, February 2003.

 121

[Ibm99] IBM Corporation, “The CoreConnectTM Bus Architecture,“ available at

http://www.chips.ibm.com/ products/coreconnect/index.html, 1999.

[Ita01] I.T. Association, “Infiniband architecture specification vol.1 release 1.0.a,”

available at http://www.infinibandta.com, 2001.

[Itr04] International Roadmap Technology for Semiconductor 2004 Update,

available at http://www.itrs.net/Common/2004Update/2004Update.htm, 2004.

[Kan03] Naoto Kaneko, “Design and Power Analysis of Soft-Input Soft-Output

Viterbi Decoder on Multicontext Device DRP,” Master Thesis, Department of

Open and Environmental System, Faculty of Science and Technology, Keio

University, 2003.

[KFJ01] M. Koibuchi, A. Funahashi, A. Jouraku and H. Amano, “L-turn Routing:

An adaptive routing in irregular networks,” Proceedings of the International

Conference on Parallel Processing, pp.374-383, September 2001.

[KRD03] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson

and J. D. Owens, “Programmable Stream Processors,” IEEE Computers,

pp.54-62, August 2003.

[Lai85] C. Leiserson, “Fat-trees: Universal Networks for Hardware-Efficient

Supercomputing,” IEEE Transactions on Computers, vol.34, No.10, pp.892-901,

October 1985.

[LLS04] J. Liang, A. Laffely, S. Srinivasan and R. Tessier, “An Architecture and

Compiler for Scalable On-Chip Communication,” IEEE Transactions on Very

Large Scale Integration Systems, vol.12, no.7, pp.711-726, July 2004.

 122

[LRL02] K. Lahiri, A. Raghunathan and G. Lakshminarayana, “LOTTERYBUS: A

New High-Performance Communication Architecture for System-on-Chip

Designs,” Proceedings of Design Automation Conference, pp.15-20, June 2002.

[LV02] R. Lysecky and F. Vahid, “Prefetching for Improved Bus Wrapper

Performance in Cores,” ACM Transactions on Design Automation of Electronic

Systems, Vol. 7, No. 1, pp.58-90, January 2002.

[LYB02] D. Lyonnard, S. Yoo, A. Baghdadi, and A.A. Jerraya, “Automatic

Generation of Application-Specific Architectures for Heterogeneous MPSoC

through Combination of Processors,” Colloque CAO, pp.15-18, May 2002.

[Mas02] P. Master, “The age of adaptive computing is here,” Proceedings of the

International Conference on Field Programmable Logic and Applications, pp.1,

2002.

[MBV02] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde and R. Lauwereins,

“Interconnection networks enable fine-grain dynamic multi-tasking on FPGAs,”

Proceedings of 12th International Conference on Field-Programmable Logic

and Applications, pp.795-805, 2002.

[Mot02] M. Motomura, “A dynamically reconfigurable processor architecture,”

presented in Microprocessor Forum, San Jose, CA, 2002.

[NIN00] N. Nishi, T. Inoue, M. Nomura, S. Matsushita, S. Torii, A. Shibayama, J.

Sakai, T. Ohsawa, Y. Nakamura, S. Shimada, Y. Ito, M. Edahiro, M. Mizuno, K.

Minami, O. Matsuo, H. Inoue, T. Manabe, T. Yamazaki, Y. Nakazawa, Y. Hirota,

Y. Yamada, N. Onoda, H. Kobinata, M. Ikeda, K. Kazama, A. Ono, T. Horiuchi,

M. Motomura, M. Yamashina and M. Fukuma, “A 1GIPS 1W single-chip

tightly-coupled four-way multiprocessor with architecture support for multiple

control flow execution.” Proceedings of the IEEE International Solid-State

Circuits Conference, pp.418-419, February 2000.

 123

[Oka02] A. Okamura, “VR7701: A High Performance Superscalar Processor

with Integrated L2 Cache and Peripherals,” presented in Embedded Processor

Forum, San Jose, CA, 2002.

[Pci01] PCI Special Interest Group, “PCI Local Bus Specification Rev. 2.3,”

October 2001.

[PW04] B. Plunkett and J. Watson, “Adapt2004 ACM Architecture Overview,”

available at http://www.quicksilvertech.com, 2004..

[RB91] J. Rose and S. Brown, “Flexibility of interconnection structures for

field-programmable gate arrays,” IEEE Journal of Solid-State Circuits, vol.26,

no.3, pp.277-282, March 1991.

[RD03] R. Rubin and A. DeHon, “Design of FPGA Interconnect for Multilevel

Metalization,” Proceedings of the International Symposium on Field

Programmable Gate Arrays, pp.154-163, February, 2003.

[RS97] J.A. Rowson and A. Sangiovanni-Vincentelli, “Interface-Based Design,”

Proceedings of 34th Design Automation Conference, pp.178-183, 1997.

[RY94] K.K. Ramakrishnan and H. Yang, “The Ethernet Capture Effect: Analysis

and Solution,” Proceedings of IEEE 19th Conference on Local Computer

Networks, pp.228-240, October 1994.

[SB77] H. Sullivan and T.R. Bashkow, “A large scale, homogeneous, fully

distributed parallel machine,” Proceedings of the 4th International Conference

on Computer Architecture, March 1977.

[Sin00] H. Singh, L. Ming-Hau, L. Guangming, F.J. Kurdahi, N. Bagherzadeh,

and E.M. Chaves Filho, “Morphosys: An Integrated Reconfigurable System for

 124

Data-parallel and Computation Intensive Applications, “ IEEE Transactions on

Computers, vol.49, no.5, pp.465-481, 2000.

[SH96] S.L. Scott and G.T. Horson, “The Cray T3E network: adaptive routing in

a high performance 3D torus,” Proceedings of Hot Interconnects IV,

pp.147-156, 1996.

[SR00] J.C. Sancho and A. Robles, “Improving the up*/down* routing scheme

for networks of workstations,” Proceedings of the European Conference on

Parallel Computing, pp.882-889, 2000.

[SRD01] J.C. Sancho, A. Robles and J. Duato, “Effective strategy to compute

forwarding tables for Infiniband networks,” Proceedings of the International

Conference on Parallel Processing, pp.48-57, 2001.

[Son02] Sonics Inc., “SONICS uNetwork Technical Overview,” available at

http://www.sonicsinc.com, January 2002.

[Son00] Sonics Inc., “Open Core Protocol Specification 1.0,” available at

http://www.socworks.com, 2000.

[SWW97] W. Saphir, R. Van Der Wijngaart, A. Woo and M. Yarrow, “New

Implementations and Results for the NAS Parallel Benchmarks 2,” Proceedings

of 8th SIAM Conference on Parallel Processing for Scientific Computing, Mar.

1997.

[VSI01] Virtual Socket Interface Association, “Virtual Component Interface

Specification Version 2 (OCB 2 2.0),” available at http://www.vsi.org, April 2001.

[Wol03] W. Wolf, “Application-Specific Networks-on-Chip,” Proceedings of

SASIMI, pp.111-118, 2003.

 125

[WOT03] K. Watanabe, T. Otsuka, J. Tsuchiya, H. Harada, J. Yamamoto, H.

Nishi, T. Kudoh and H. Amano, “Performance evaluation of RHiNET-2/NI: a

network interface for distributed parallel computing systems,” Proceedings of

the International Symposium on Cluster Computing and the Grid, pp.318-325,

2003.

[Xil04] Xilinx, Inc., “Virtex II Platform FPGAs: Complete Datasheet v3.3,”

available at http://www.xilinx.com, June 2004.

[YAK04] Yutaka Yamada, Hideharu Amano, Michihiro Koibuchi, Akiya Jouraku,

Kenichiro Anjo and Katsunobu Nishimura, “Folded Fat-H-Tree: an

interconnection network topology for Dynamic Reconfigurable Processor Array,”

Proceedings of International Conference on Embedded and Ubiquitous

Computing, pp.301-311, August 2004.

[YNL01] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A.A. Jerraya, “A

Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and

Design,” Proceedings of the ninth International Symposium on

Hardware/software Co-design, pp.195-200, April 2001.

[ZC02] L. Zhang and V. Chaudhary, “On the Performance of Bus

Interconnection for SoCs,” Proceedings of 4th Workshop on Media and Stream

Processors, pp.1-10, November 2002.

 126

A List of Related Papers
Journal Papers
Kenichiro Anjo, Michihiro Koibuchi, Yutaka Yamada, Akiya Jouraku and Hideharu Amano,

“Evaluation of Local Labeling Scheme on Network-on-Chip,” IEICE Transactions on

Information and Systems (In Japanese, to appear).

Kenichiro Anjo, Atsushi Okamura and Masato Motomura, “Wrapper-based Bus

Implementation Techniques for Performance Improvement and Cost Reduction,” IEEE

Journal of Solid State Circuits. Vol.36, No.5, pp.804-817, May 2004.

Kenichiro Anjo, Hiroaki Inoue, Mitsuru Sato, Tomohiro Kudoh, Hideharu Amano, and Kei

Hiraki, “MBP-light: DSM Management Processor on Massively Parallel Processor

JUMP-1,” ISPJ Journal, vol.39, no.6, pp.1632-1643, June 1998. (In Japanese)

Hideharu Amano, Akiya Jouraku, and Kenichiro Anjo, “A dynamically reconfigurable

hardware on Dynamically Reconfigurable Processor,” IEICE Transactions on

Communications, Vol.E86-B, No.12, pp.3385-3391, December 2003.

Hiroaki Nishi, Ken-ichiro Anjo, Tomoiro Kudoh, Hideharu Amano, “The RDT Router Chip:

A versatile router for supporting a distributed shared memory,” IEICE Transactions on

Information and Systems, Vol.E80-D, No.9, pp.854-862, September 1997.

 127

International Conferences
Kenichiro Anjo, Yutaka Yamada, Michihiro Koibuchi, Akiya Jouraku, and Hideharu

Amano, “BLACK-BUS: A New Data-Transfer Technique using Local Address on

Networks-on-Chips,” Proceedings of IEEE International Parallel and Distributed

Processing Symposium, pp.10-17, April 2004.

Kenichiro Anjo, Atsushi Okamura, Tomoharu Kajiwara, Noriko Mizushima, Masafumi

Omori, and Yasuaki Kuroda, “NECoBus: A high-end SoC bus with portable &

low-latency wrapper-based interface mechanism,” Proceedings of IEEE Custom

Integrated Circuit Conference, pp.315-318, May 2002.

Yutaka Yamada, Hideharu Amano, Michihiro Koibuchi, Akiya Jouraku, Kenichiro Anjo

and Katsunobu Nishimura, “Folded Fat-H-Tree: an interconnection network topology for

Dynamic Reconfigurable Processor Array,” Proceedings of International Conference on

Embedded and Ubiquitous Computing, pp.301-311, Aug 2004.

Masayasu Suzuki, Yohei Hasegawa, Yutaka Yamada, Naoto Kaneko, Katsuaki

Deguchi, Hideharu Amano, Kenichiro Anjo, Masato Motomura, Kazutoshi

Wakabayashi, Takeo Toi, and Toru Awashima, "Stream Applications on the Dynamically

Reconfigurable Processor," Proceedings of International Conference on Field

Programmable Technology, pp.137-144, December 2004.

Masayasu Suzuki, Yohei Hasegawa, Yutaka Yamada, Katsuaki Deguchi, Kenichiro

Anjo, Toru Awashima, and Hideharu Amano, "Stream Application Evaluation on the

DRP-1,” Proceedings of International Conference on COOL Chips VII, pp.33-47, April

2004.

Noriaki Suzuki, Syunsuke Kurotaki, Masayasu Suzuki, Naoto Kaneko, Yutaka Yamada,

Katsuaki Deguchi, Yohei Hasegawa, Hideharu Amano, Kenichiro Anjo, Masato

Motomura, Kazutoshi Wakabayashi, Takeo Toi, and Toru Awashima, "Implementing and

Evaluating Stream Applications on the Dynamically Reconfigurable Processor,”

Proceedings of International Conference on Field-Programmable Custom Computing

Machine, April 2004.

 128

Hideharu Amano, Akiya Jouraku, and Kenichiro Anjo, “A dynamically adaptive switching

fabric on a multicontext reconfigurable device,” Proceedings of International

Conference on Field Programmable Logic and Application, pp.161-170, September

2003.

Toshiro Kitaoka, Hideharu Amano, and Kenichiro Anjo, “Reducing the Configuration

Loading Time of a Coarse Grain Multicontext Reconfigurable Device,” Proceedings of

International Conference on Field Programmable Logic and Application, pp.171-180,

September 2003.

Masayuki Mizuno, Kenichiro Anjo, Yoshikazu Sumi, Hitoshi Wakabayashi, Toru

Mogami, Tadahiko Horiuchi, and Masakazu Yamashina, “On-Chip Multi-GHz Clocking

with Transmission Lines,” Proceedings of IEEE International Solid-State Circuits

Conference, pp.366-367, February 2000.

Masayuki Mizuno, Kenichiro Anjo, Yoshikazu Sumi, Muneo Fukaishi, Hitoshi

Wakabayashi, Toru Mogami, Tadahiko Horiuchi, and Masakazu Yamashina, “Clock

Distribution Networks with On-Chip Transmisson Lines,” Proceedings of International

Interconnect Technology Conference, pp.3-5, June 2000.

Taro Fujii, Koichiro Furuta, Masato Motomura, Masahiro Nomura, Masayuki Mizuno,

Kenichiro Anjo, Kazutoshi Wakabayashi, Yoshinori Hirota, Yoetsu Nakazawa, Hiroshi

Ito, and Masakazu Yamashina “A Dynamically Reconfigurable Logic Engine with a

Multi-Context/Multi-Mode Universal-Cell Architecture and Distributed Reconfiguration

Control Mechanism,” Proceedings of IEEE International Solid-State Circuits

Conference, pp.364-365, February 1999.

Taro Fujii, Koichiro Furuta, Masato Motomura, Masahiro Nomura, Masayuki Mizuno,

Kenichiro Anjo, Kazutoshi Wakabayashi, Yoshinori Hirota, Yoetsu Nakazawa, Hiroshi

Ito, and Masakazu Yamashina, “A 0.25µm CMOS, 5.1M-Transistor, Dynamically

Reconfigurable Logic Engine(DRLE) LSI,” Proceedings of IEICE COOL Chips,

pp.51-63, April 1999.

Hiroaki Inoue, Kenichiro Anjo, Junji Yamamoto, Jun Tanabe, Masaki Wakabayashi,

Mitsuru Sato, Hideharu Amano, and Kei Hiraki “The preliminary evaluation of MBP-light

 129

with two protocol policies for a massively parallel processor-JUMP-1,” Proceedings of

IEEE Frontiers of Massively Parallel Computation, pp.268-275, February 1999.

Hiroaki Nishi, Hideharu Amano, Katsunobu Nishimura, Ken-ichiro Anjo, and Tomohiro

Kudoh, “The RDT network router chip”, Proceedings of IEEE Asia and South Pacific

Design Automation Conference, pp.675-676, January 1997.

Hiroaki Nishi, Katsunobu Nishimura, Kenichiro Anjo, Tomohiro Kudo, and Hideharu

Amano, “The JUMP-1 router chip: a versatile router for supporting a distributed shared

memory, Proceedings of IEEE International Phoenix Conference on Computers and

Communications, pp.158-164, March 1996.

Hiroaki Inoue, Ken-ichiro Anjo, Jun Tanabe, Katsunobu Nishimura, Mitsuru Satoh, Kei

Hiraki, Hideharu Amano, "MBP-light: A Processor for Management of Distributed

Shared Memory on JUMP-1," Proceedings of IEICE COOL chips, pp.169-182, April

1999.

Hiroaki Inoue, Ken-ichiro Anjo, Jun Tanabe, Katsunobu Nishimura, Mitsuru Satoh, Kei

Hiraki, Hideharu Amano, "MBP-light: A Processor for Management of Distributed

Shared Memory," Proceedings of the 3rd International Conference on ASIC,

pp.199-202, October 1998.

Magazine
Kenichiro Anjo, “On-chip buses,” IPSJ Magazine vol.44, no.1, pp.73-77, January 2003

(In Japanese).

