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Chapter 1. 

General Introduction 

1.1. What is ‘Theoretical Chemistry’ ? 

P. A. M. Dirac, one of the persons who developed the quantum mechanics, said in 1929 that 

‘The underlying physical laws necessary for the mathematical theory of a large part of physics 

and the whole of chemistry are thus completely known, and the difficulty is only that the 

exact application of these laws leads to equations much too complicated to be soluble. It 

therefore becomes desirable that approximate practical methods of applying quantum 

mechanics should be developed, which can lead to an explanation of the main features of 

complex atomic systems, without too much computation.’ [1.1] Following one century of 

selfless efforts by many theoreticians and dramatic progress of computers, we have developed 

the versatile computation system, which allows us the ubiquitous application of ‘theoretical 

chemistry’ to various fields of science. [1.2-4] 

Undoubtedly, present high performance computers can give calculation results easily and 

fastly, which contribute largely to theoretical chemistry, however the aim of theoretical 

chemistry is not limited to produce the numerical data. If theoreticians do not reply to 

questions such as ‘What happened?’ or ‘How should we understand the origin or 
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mechanism?’, they have no future as fundamental scientists. The most advantage of 

theoretical chemistry is that it is able to give the direct answer to the above questions, because 

theoreticians have the wave functions themselves which can describe all of the chemical and 

physical properties from the first principle. Thus, we have to present proper interpretations 

and precise predictions for chemical phenomena. 

In such a situation, theoreticians must pay a careful attention to ‘technical terms’ in 

explanations. Present scientific realm includes a wide range of specialized fields, and the 

exchanges of opinions among the various fields are becoming increasingly difficult due to 

complicated technical terms of each specialized field. Part of these complications is 

essentially inevitable, because various aspect of nature cannot be explained by only one 

specialized term. However, some of them are senseless problems which result from lack of the 

communication among the different fields. We should be ashamed of our poor communication 

skills, because the fundamental scientists should have public accountability. Especially, 

theoretical chemistry must retain the accountability as mentioned above. In addition, present 

science field tends to emphasize immediate application to be more important, so that if 

theoreticians ignore the accountability, we will lose the raison d’etre in science. Therefore, we 

ought to provide interdisciplinary explanations which eliminate barriers between 

experimentalists and theoreticians, or among the specialized fields in molecular science. 

In this thesis, the author will give theoretical approach to molecular spectroscopy which 

plays an important role in physical chemistry. In doing so, the author takes a special care of 

the above mentioned problems and aims to provide necessary and sufficient explanations and 

models for experimental spectroscopy. Before describing concrete subjects of this thesis, the 

author will introduce basic theories in Section 1.2 to explain the objects and results of the 

research. 
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1.2. Basic Theory of Spectroscopy 

One of the viewpoints for understanding molecular chemistry is to focus attention on the 

motion of electrons in molecules. In principle, the motion of electrons can be described by the 

wave functions derived from Schrödinger or Dirac equation, and the basic idea supports 

‘electronic structure theory’ which plays one important part in modern theoretical chemistry. 

[1.5-8] On the other hand, molecular spectroscopy observes some kind of projections of the 

motion of electrons by absorption or emission of light by molecules. [1.9] 

Applying Fermi’s golden rule to the interaction between a molecule and light, we can write 

down the absorption or emission intensity from the state a to b as the following simple 

equation. [1.8] 

( ) 2

babaab EEI ΨΨ±−∝ µωδ h ,  (1-1) 

where aE  and bE  are the energy levels of the states a and b, and aΨ  and bΨ  are the 

total wave functions of the states a and b, µ  is electric-dipole moment operator. ba ΨΨ µ  

is called as the transition dipole moment vector. The above equation represents that only 

transitions which obey the energy conservation, ωh=− ba EE , can occur and the 

probability is proportional to the square of the transition dipole moment vector. Therefore, one 

way of theoretical approaches to the molecular spectroscopy is to focus on the energy 

difference ba EE −  and the transition dipole moment vector ba ΨΨ µ  between the initial 

and final state. 

For the concrete subject of the theoretical studies on the molecular spectroscopy, the author 

had chosen electron spectra for the Herzberg I band of oxygen molecule and photoelectron 

spectra of one-dimensional lanthanide-cyclooctatetraene clusters. In the former theme, the 
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author analyzed the absorption intensities, particularly the transition dipole moment which is 

the second term in Eq. (1-1). In the latter theme, he has calculated the electron detachment 

energies and ionization energies of clusters, for which the first term in Eq. (1-1) becomes 

important. In the following section, he will give simple reviews for the first and second terms 

of Eq. (1-1) from the theoretical viewpoint. 

1.2.1. Transition Dipole Moment 

If we fix an electric field irradiated to molecules in the Z direction of the laboratory-fixed 

coordinate, we can consider only the Z component of the transition dipole moment vector. 

Absorption or emission rate of plane polarized light with the electric vector of the light in the 

Z direction is proportional to the squared value of the Z component of the transition dipole 

moment as follows. [1.8,10,11] 

bZabaM ΨΨ= µ),( .  (1-2) 

If 0),( ≠baM , we call the transition between the state a to b as ‘allowed’, otherwise, we 

call the transition as ‘forbidden’. 

One of the most important approximations made in the electronic structure theory is the 

separation of the total wave function into independent electronic and nuclear factors. [1.8,10] 

Furthermore, the nuclear term can usually be approximated by a product of rotational and 

vibrational wave functions. [1.8,10] Thus, the total wave function is represented by 

iiii rve=Ψ .  (1-3) 

Here, e, v and r express the electronic, vibrational, and rotational states, respectively. In Eq. 

(1-3), each wave function is naturally defined in the molecular coordinate system (x, y, z). 

Therefore, to evaluate the transition dipole moment of Eq. (1-2), µZ must also be rewritten in 
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the molecular coordinate system. From classical mechanics, we know that µZ in the laboratory 

fixed system can be transformed to µx,y,z in the molecular fixed coordinate by the following 

direction cosine matrix φ(φ,θ,γ) relating unit vectors in the two systems in terms of the Euler 

angles φ,θ , and γ. [1.12] 

∑
=

=
zyxn

nZnZ
,,

),,( µγθφφµ .  (1-4) 

Using the above relation for Eq. (1-2), the transition dipole moment can be written as follows. 

( ) bbb
zyxn

nZnaaa rvervebaM ∑
=

=
,,

,,),( µγθφφ .  (1-5) 

The operator Znφ  only operates on the rotational wave function, and nµ  operates only on 

the electronic and vibrational wave functions. Thus, Eq. (1-5) is reduced as follows. 

( ) bZnabb
zyxn

naa rrvevebaM γθφφµ ,,),(
,,

∑
=

= .  (1-6) 

The matrix elements of the rotational wave function are tabulated conveniently in general text 

book. [1.12] Now, we come to the matrix elements of the electronic and vibrational wave 

functions. 

If the matrix element of the dipole moment operator with the electronic wave function is not 

significantly affected by changes in the internuclear separation during vibration, the matrix 

elements of the electronic and vibrational wave functions can be rewritten (Condon 

approximation) as follows. [1.8,10] 

e
bnababbnaa eevvveve

R
µµ = ,  (1-7) 

where ba vv  and 
e

bna ee
R

µ  are called as the Franck-Condon factor and n component of 

the electronic transition moment vector at the equilibrium nuclear coordinate Re, and depend 

only on the vibrational and electronic wave functions, respectively. 

The Franck-Condon factor ba vv  expresses the overlap integral between the two 



Chapter 1. General Introduction 

 1-10

vibrational states in their respective electronic states. The transition dipole moment is 

therefore largest between vibrational states that have the greatest overlap. Unless the two 

molecular potential curves are perfect replications of one another, any vibrational state has a 

nonzero value of ba vv . Indeed, it is generally the case that several vibrational states have 

similar values of ba vv , and so transitions occur to all of them. Thus, a progression of 

transitions is stimulated and a series of lines are observed in the electronic spectrum. [1.8] 

Next, we consider the second factor 
e

bna ee
R

µ  in Eq. (1-7). Since the electric-dipole 

moment operator is a one-electron operator, to the first approximation, one electron transitions 

from the initial wave function ae  to the final wave function be  is only allowed. 

In evaluating 
e

bna ee
R

µ  for molecules, the group theory plays an important role. [1.8] In 

the theory, firstly, we classify electronic states of the molecule by the irreducible 

representation of the point group to which the molecule belongs, and derive the ‘selection 

rule’ for the electronic transition moment. Hereafter, the author summarizes the selection rule 

for the electronic transition moment of homonuclear diatomic molecules. [1.8-10] 

Generally, the electronic and rotational wave functions of diatomic molecules are expressed 

by basis functions characterized by Hund’s coupling schemes. [1.8-10] We firstly discuss the 

selection rules that hold quite generally, independent of the coupling scheme to which the 

electronic state under consideration belongs, then discuss selection rules for Hund’s case (a). 

General selection rules [1.8-10] 
The selection rule for the quantum number J of the total angular momentum is 

00n restrictio with the ,1 ,0 =→/=±=∆ JJJ 　　 .  (1-8) 

Moreover, the selection rules about the + and − symmetry of the total wave function and the s 
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and a symmetry of identical nuclei hold quite generally as follows. 

asaass ↔/↔↔
−↔/−+↔/+−↔+

 , ,
,,

.  (1-9) 

Finally, we have the selection rule for the g and u symmetry of electronic states as follows. 

uuggug ↔/↔/↔ ,, .  (1-10) 

These rules always hold rigorously for electric dipole transition of homonuclear diatomic 

molecules. 

Selection rules holding for Hund’s case (a) [1.8-10] 
The basis function of Hund’s case (a) is characterized by the total angular momentum (J), 

the total spin angular momentum of electrons (S), the z component of the total orbital angular 

momentum of electrons (Λ), the z component of S (Σ), and the z component of the total 

angular momentum (Ω), which is related by Ω=Λ+Σ. Apart from the preceding general 

selection rules, there are some selection rules which hold in Hund’s case (a). 

　　

　

0,0
1 ,01 ,0

=∆Σ=∆
±=∆Ω±=∆Λ

S
.  (1-8) 

Furthermore, the selection rule for the symmetry of the Λ=0 (Σ) state is written as follows. 

mΣ↔/ΣΣ↔Σ ±±±  , .  (1-9) 

All these rules are established by a detailed consideration of the symmetry properties of the 

transition dipole moment with the Hund’s case (a) basis function. [1.9,10] As mentioned 

above, these selection rules hold only between the Hund’case (a) bases. In fact, owing to 

some perturbations, these selection rules break down, and we can observe ‘forbidden 

transition’. [1.8,9] 

For example, considering the spin-orbit or L-uncoupling interaction (as described in the 

following section), we can observe the −+ Σ↔Σ  electronic transition which is forbidden in 
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the Hund’s case (a) bases. In Section 1.3.1 and Chapter 2, the author will discuss theoretically 

this −+ Σ↔Σ  transition of oxygen molecule. 

1.2.2. Perturbations of Diatomic Molecules 

In the following section, the author summarizes the spin-orbit (SO) and L-uncoupling (RO) 

interactions as examples of perturbations of diatomic molecules. 

Spin-Orbit Interaction [1.8,10,13] 
We now turn to the interaction energy between an internal magnetic field and a magnetic 

moment of an electron. The classical calculation of the interaction energy runs as follows. An 

electron moving at a velocity v in an electric field E experiences a magnetic field, 

2c
vEB ×

= .  (1-10) 

where c is the speed of light. The electric field due to an isotropic electric potential φ is 

dr
d

r
φrE −= .  (1-11) 

It follows that 

vrB ×−=
dr
d

rc
φ

2

1 . (1-12) 

The orbital angular momentum of the electron is vrprl ×=×= em , and so 

lB
dr
d

rcme

φ
2

1
−= .  (1-13) 

An electron has a magnetic moment µ due to the spin angular momentum, 

)002319314.2(
2

=−= e
e

e g
m

eg
　　　　sµ .  (1-14) 

The interaction energy between a field B and a magnetic moment µ is Bµ ⋅− , so we can 
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anticipate that the spin-orbit interaction hamilitonian should be 

sllslµBµ ⋅−≅⋅−=⋅=⋅−=
dr
d

rcm
e

dr
d

rcm
eg

dr
d

rcm
H

ee

e

e
so

φφφ
22222 2

1 .  (1-15) 

It turns out that this is exactly twice the result obtained by solving the Dirac equation. The 

error comes from the implicit assumption that one can step from the stationary nucleus to the 

moving electron without treating the change of viewpoint relativistically. The correct 

calculation gives as follows, 

slsl ⋅=⋅−= )(
2 22 r

dr
d

rcm
eH

e
so ξφ .  (1-16) 

In this thesis, the author expresses the SO interaction for diatomic molecules as the 

following one-electron operator. 

∑

∑

=

⋅=

K
iK

iK

K
i

i
iso

r
Z

ia

iiaH

ll

sl

3
,eff

2

2
)(

)()(

α   (1-17) 

where α is the fine-structure constant, ce h2=α , iKl̂  is the orbital angular momentum of 

electron i about nucleus K, Zeff,K is the effective charge of the K th nucleus. 

The selection rules for matrix elements of Hso are summarized as follows. [1.10] 

1or0
1or0

00

±=∆Σ−=∆Λ=∆Σ=∆Λ
±=∆=∆

Σ↔/Σ↔/=∆Ω=∆ −+

　　

　　

　　　

SS
ugJ

  (1-18) 

In the single-configuration limit, if the two interacting states belong to the same configuration, 

then ∆Λ=∆Σ=0 or, if the two states differ by at most one spin-orbital, then ∆Λ=−∆Σ=±1. 

L-uncoupling [1.10-12] 
Due to the large mass ratio, the motion of nuclei is much slower than that of electron. This 

allows us to say that the nuclei are nearly fixed with respect to electron motion. However, in 
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fact, two motions weekly couple each other. Especially, coupling between the nuclear rotation 

and the electron motion is called as rotation perturbations. Rotation perturbation is essentially 

identical to the Coriolis force, which is a fictitious force owing to the transformation between 

the space-fixed and the molecular-fixed coordinate. 

An energy expression for the nuclear rotation is written as, 

( )22
2

2
2 2

1
2

1
yxROT RR

H RRR +==
µµ

,  (1-19) 

where R is the nuclear rotation angular momentum operator. The nuclear motion is 

necessarily in a plane that contains the internuclear axis: thus Rz=0. 

The total angular momentum (exclusive nuclear spin angular momentum), J, is defined also 

by the total electronic orbital and spin angular momentum, L
r

 and S
r

, 

SLRJ
rrrr

++≡   (1-20) 

and this definition can be used to reexpress ROTH  in a convenient form, 

( ) ( )[ ]

( ) ( ) ( )[
( ) ( ) ( )]+−−++−−++−−+ +−+−++

−+−+−=

−−+−−=

SJSJLJLJSLSL

SSLLJJ

SLJSLJ

222222
2

22
2

2
1

2
1

zzz

yyyxxxROT

R

R
H

µ

µ

,  (1-21) 

where 

yx

yx

yx

i

i

i

SSS

LLL

JJJ

±=

±=

±=

±

±

±

.  (1-22) 

The first three terms of ROTH  have diagonal matrix elements exclusively. This diagonal 

part of ROTH  is the rotational energy of the Hund’s case (a) basis function. The final three 

terms of ROTH , which couple the orbital, spin and total angular momenta, are responsible for 
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perturbations between different electronic states. The first term in the final three terms is 

called as spin-electronic perturbation, the second is L-uncoupling, and the last is S-uncoupling. 

In the following chapter, the author especially focuses on L-uncoupling. 

The selection rule for the L-uncoupling operator is as follows. [1.10] 

10
10

±=∆Λ=∆Σ=∆
↔/±=∆Ω=∆

　　

　　

S
ugJ

.  (1-23) 

Note that the J− operator in the molecular-fixed coordinate behaves as follows. 

1)1()1( +Ω+ΩΩ−+=Ω− JJJJJ .  (1-24) 

Therefore, J−L+ steps both Ω and Λ by ±1, which gives the above anomalous selection rules. 

1.2.3. Electron Detachment and Ionization Energy 

Photoelectron spectroscopy observes kinetic energy of an ejected electron by Einstein's 

photoelectric effect. The difference between the photon energy, which is known, and the 

electron kinetic energy, which is measured, is equal to the energy holding the electron in a 

molecule. Usually, we call the energy holding the electron in anion molecules as electron 

detachment energy, and that in neutral molecules as ionization energy. 

In electronic structure theory, we equate negative of the Hartree-Fock (HF) orbital energy 

with the electron detachment or ionization energy from that orbital. [1.5,6] This simple 

identification is the content of Koopmans’ theorem. The HF orbital energy εa is written as 

follows, 

( ) a
j

jjaa KJh ϕϕε ∑ −+= .  (1-25) 

where aϕ  is a spin orbital, Jj is the coulomb operator, and Kj is the exchange operator due 

to spin-orbital jϕ . Then, we divide Eq. (1-25) into the kinetic and potential energy parts as 
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follows. 

VT

ZKJ

KJh

a
j

jjaaa

a
j

jjaa

+=

−
−−+∆−=

−+=

∑∑

∑

ϕϕϕϕ

ϕϕε

α α

α

Rr
)(

2
1

)(

  (1-26) 

The magnitude of each energy component depends on the molecular size, substituent, and 

solvent effects. If the kinetic energy part T  does not depend on these effects, we can pay 

attention only to the potential energy part V . 

Ionic clusters may have strong intracluster electric field which depends on their size, 

structure and constituent atoms, so that the electric field would give characteristic influence 

on their V  part. Particularly, if the ionic molecules have anisotropic geometric structures, 

their intracluster electric field shows strong anisotropy and affects their V  part 

significantly. 

As an example of such clusters, the author has noticed lanthanide-cyclooctatetraene 

sandwich clusters with characteristic one-dimensional structure and strong ionic bonding. In 

Chapters 3 and 4, the author will perform theoretical studies for their electronic properties 

which reflect their one-dimensional strong ionic bonding. 

1.3. Concrete Subjects of This Thesis 

1.3.1. Photoabsorption in the Herzberg I Band of O2 Molecule 

Molecular oxygen dominates atmospheric chemistry completely because of its great 
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abundance, reactivity, and photosensitivity in the atmosphere. Molecular nitrogen, in 

comparison, is more abundant but chemically inert and essentially transparent to solar 

radiation. [1.14] 

The Herzberg I band system ( )−+ Σ←Σ gu XA 33  of O2 can be seen in the 240-285 nm region 

as the major part of the Herzberg band system. [1.14] The absorption band is utilized for the 

measurement of oxygen concentration in the air and its absorption intensity is of crucial 

importance in the ozone formation in the stratosphere. However, electronic transitions in the 

Herzberg band system are forbidden by the electronic symmetry selection rule −↔/+  in the 

Hund’s case (a) representation, so that accurate measurement of its intensity had not been 

conducted until recent years and few theoretical attempts have been made at the absorption 

mechanism. 

As mentioned above, the −↔/+  selection rule is a particular rule that depends on the 

validity of the basis functions for electronic wave functions. In most cases, electronic wave 

function can be described by one electronic configuration. However, if some perturbations 

break down this approximation, it is necessary to represent one electronic state with some 

electronic configurations. For example, the wave functions of the X and A states can be 

written as follows. [1.10] 

L

L

+Σ+Σ=Σ

+Π+Σ=Σ
−++

−−

uAuu

gXgg

CA

CX
333

333

,  (1-27) 

where CX and CA are expansion coefficients. Note that the left term of the upper equation 

expresses the electronic wave function of the X state, and the right terms denote the electronic 

configurations with the −Σg
3  and gΠ3  symmetries. Using the above electronic wave 

functions, we can obtain non-zero electric transition moment between the X and A states 
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which borrows the −− Σ↔Σ ug
33  and gu Π↔Σ+ 33  transition moments through the 

−+ Σ⇔Σ uu
33  and gg Π⇔Σ− 33  perturbations. This concept is usually called as ‘intensity 

borrowing’. 

England et al. employed simple intensity borrowing model which considered the spin-orbit 

interaction (SO) and L-uncoupling (RO) as perturbations. [1.15] 

−+

−+

−−+

Σ⇔Π→←Σ

Σ⇔Π→←Σ

Σ→←Σ⇔Σ

⊥

⊥

ggu

ggu

guu

XA

XA

XBA

3
RO

33

3
SO

33

33
SO

3

1

1

//

µ

µ

µ

 

Some experimental groups have used this simple model for the analysis of the absorption 

intensity of the I band system, [1.16-19] however, the author has one question for this model, 

namely, ‘Are there no other important electronic states which couple with the X and A states?’ 

Thus, in Chapter 2, the author will develop two other theoretical models for the absorption 

mechanism, and discuss their validity for calculating the vibrational and rotational line 

strength of the I band system. In the chapter, we will see that the above simple model easily 

leads to erroneous results for weak forbidden band systems. 

1.3.2. Geometric and Electronic Structure of One-Dimensional 

Lanthanide-Cyclooctatetraene Sandwich Cluster 

Firstly, the author summarizes the basic character of the Eu atom and COT molecule. 

Eu atom [1.20,21] 
Atomic Number: 63 

Ground state Electron Configuration (Ionization Energy): [Xe]4f 76s2 (5.67eV) 
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Oxidation Ground States (Ionization Energy, Ionic Radius): 

Eu+/ [Xe]4f 76s1 (11.24 eV, 1.4~1.6 Å), Eu2+/ [Xe]4f 7 (24.92 eV, 1.31 Å) 

Eu3+/ [Xe]4f 6 (42.70 eV, 1.09 Å) 

COT molecule [1.22-25] 

Neutral Ground State:D2d (1A1) 

D2d

Neutral Excited State: D4h (1A1g), D8h (3A2g), C2h (1Ag), D4 (1A1 )

Dianion Ground State: D8h (1A1g) (Not isolated in gas phase. Its life time is calculated as 6.0 fs [1.23])

Anion Ground State: D4h (2B2g) (same C-C-C bond angles, two C-C bond distances)

Anion Excited State: D4h (2B1g) (same C-C bond distances, two C-C-C bond angles), D8h (2E2u) 

Geometric Structure

Relative Energies (eV) for Various Geometries

7.412.450.840.740

D4C2hD8hD4hD2d

0.840.740

D8hD4h (angle)D4h (bond)

Neutral

Anion

Note. All data are abstracted from ab initio calculation data Ref. [1.24,25].   

Note. experimental electron affinity of neutral COT is 0.55 (eV)

D4h C2h D4

D4h (bond) D4h (angle)

D8h

 

The lanthanide (Ln) and 1,3,5,7-cyclooctatetraene (COT) sandwich clusters were originally 
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synthesized in the gas phase using a combination of laser vaporization techniques and 

molecular beam methods by Nakajima and co-workers. [1.26-28] Recently, Hosoya et al. have 

succeeded in synthesizing large europium (Eu) - COT sandwich clusters, named as sandwich 

nanowires, in the gas phase. [1.29] Interestingly, the Eu-COT sandwich nanowires were 

formed with up to one-dimensional 27 layers (about 10 nm overall length), thus such clusters 

have been the most probable candidates for quasi one-dimensional nanomaterials with many 

special electric and magnetic properties. 

As shown in Fig. 1-1, the valence electronic configuration of the neutral COT has two holes, 

while that of the ground state of Eu has two outer valence electrons, so that the bonding 

scheme of Eu1(COT)1 cluster is easily considered as the ionic bond between the Eu2+ cation 

and COT2− anion due to the charge transfer from Eu to COT. 

Ｌδ (e2u)

Ｌπ (e1g)

Ｌσ (a2u)

Fig. 1-1 Valence π molecular orbitals. Neutral COT has 8 π electrons (Black arrows), 
and two holes. (Red arrows.)  

As discussed in Chapters 3 and 4, the electron affinity (EA) and ionization energy (Ei) of 

Eu1(COT)1 are about 0.8 and 6.0 (eV), respectively, and the electronic structure of the anion 

and cation clusters are Eu+COT2− and Eu2+COT−. These values are much smaller and larger 

than EA of the bare Eu2+ atom (5.67 (eV)) and Ei of the bare COT2− molecule (negative Ei), 
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because EA of Eu2+ decreases due to the repulsive interaction with COT2-, on the other hand, 

Ei of COT2− increases owing to the attractive interaction with Eu2+. 

These phenomena are generally found in most lanthanide (Ln) compounds, because they 

have and oxidation state of Ln3+ and strong ionic bonding. [1.30,31] Especially, since the 

Ln-COT sandwich clusters have one-dimensional strong ionic structures, their anisotropic 

electrostatic field is assumed to affect their electronic properties significantly. Therefore, the 

author was interested in the theoretical investigations for the electronic properties of Ln-COT. 

Fig. 1-2 Sequential harpoon mechanism for growth of Eu-COT. The dotted and white 
circles denote +1 and +2 charged metals, and dotted and white plates denote －1 and 
－ 2 charged COT ligands, respectively. 

e− e−

e−e−

Formal Charge

−2

−1

+1

+2

Eu3(COT)2 Eu3(COT)2

Eu2(COT)2

Eu3(COT)3

 

In addition, Hosoya et al. also considered the sequential harpoon mechanism for growth 

processes extending the length of Eu-COT nanowires in which efficient charge transfer occurs 



Chapter 1. General Introduction 

 1-22

at the terminal reaction sites as shown Fig. 1-2. [1.29] In this mechanism, one-end open 

sandwich clusters Eun(COT)n are key intermediates, so that accurate determination of their 

geometric and electronic structure is of curial importance. In addition, the photoelectron and 

photoionization spectra of Eun(COT)n show characteristic behaviors which depend strongly 

on the cluster size. 

Thus, the author has performed the theoretical investigations for one-end open sandwich 

clusters Eun(COT)n. In Chapter 3, he will give the theoretical analysis for the geometric and 

electronic structure of their anion Eun(COT)n
−, and assign their photoelectron spectra. He will 

also develop simple ‘point charge models’ to clarify the characteristic behavior of the 

photoelectron spectra. In Chapter 4, he will also investigate the ionization energy and electron 

distribution of the neutral Eun(COT)n which behave uniquely as their cluster size and 

electronic state change. 
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Chapter 2. 

Photoabsorption in 

the Herzberg I Band of O2 Molecule 

Abstract 

The Herzberg I band system of the oxygen molecule is electric-dipole forbidden and its 

absorption strength has been explained by intensity borrowing models which include the 

spin-orbit(SO) and L-uncoupling(RO) interactions as perturbations. The author employed 

three different levels of theoretical models to evaluate these two interactions, and obtained the 

rotational and vibronic absorption strengths using the ab initio method. The first model 

calculates the transition moments induced by the SO interaction variationally with the SO 

configuration interaction method (SOCI), and uses the first-order perturbation theory for the 

RO interaction, and is called SOCI. The second is based on the first-order perturbation theory 

for both the SO and RO interactions, and is called Pert(Full). The last is a limited version of 

Pert(Full), in that the first-order perturbation wave function for the initial and final state is 

represented by only one dominant basis, namely the gΠ31　  and −ΣuB 3　  state respectively, as 

originally used by England et al. [J.P. England, B.R. Lewis, and S.T. Gibson, Can. J. Phys. 74 

(1996) 185-193], and is called Pert(England). The vibronic oscillator strengths calculated by 
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these three models were in good agreement with the experimental values. As for the integrated 

rotational line strengths, the SOCI and Pert(Full) models reproduced the experimental results 

very well, however the Pert(England) model did not give satisfactory results. Since the 

Pert(England) model takes only the gΠ31　  and −ΣuB 3　  states into consideration, it cannot 

contain the complicated configuration interactions with highly excited states induced by the 

SO and RO interaction, which plays an important role for calculating the delicate integrated 

rotational line strength. This result suggests that the configuration interaction with highly 

excited states due to some perturbations cannot be neglected in the case of very weak 

absorption band systems. 
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2.1. Introduction 

The oxygen molecule plays an important role in the atmospheric chemistry on the earth, so 

there has been a considerable interest in this molecule. [2.1] Its importance comes from the 

great abundance, reactivity and photosensitivity in the atmosphere, and detailed spectroscopic 

information is available. However, due to the complex electronic structures, all of its 

fundamental properties have not been clear till now. In recent years, several experimental and 

theoretical groups have re-investigated this molecule. [2.1-2.9]  

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
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 X 3Σ-
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Fig. 2-1 Calculated potential energy curves in the low-lying energy 
region. The arrow shows the Herzberg band excitations.

 

The absorption of the Herzberg band systems is a key step of the ozone formation in the 

stratosphere, and has been utilized for the measurement of the oxygen concentration. The 
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absorption in the spectral region under investigation consists of three band systems (I, II and 

III), each of which is made of several vibrational bands. 

I band system: −+ Σ←Σ gu XA 33 　　 ,  (2-1) 

II band system: −− Σ←Σ gu Xc 31 　　 ,  (2-2) 

III band system: −Σ←∆ gu XA 33' 　　 , (2-3) 

and is represented by the arrow in Fig. 2-1. All of the sub-bands are electric dipole-forbidden 

by symmetry selection rules. Therefore, laboratory measurements of the band systems are 

difficult because of their small cross sections. 

The I band system can be seen in the 240-285nm region as the major part of the Herzberg 

band system. [2.1,3,7,8] Based on the Hund’s case (a) representation, −+ Σ−Σ  transitions are 

forbidden by the −↔/+  symmetry selection rule. [2.10] In fact, they can borrow the 

intensity from allowed transitions through some perturbations. Each vibrational band consists 

of 13 rotational branches. [2.11] The relative intensities of these branches vary by orders of 

magnitude and depend strongly on the relative strengths of the electronic interactions. 

Yoshino et al. measured the integrated absorption cross sections of this band system for 

individual rotational lines of 10 branches for the (4,0)-(11,0) bands and estimated vibronic 

oscillator strengths. [2.2,3] Recently, Jenouvrier and co-workers measured more detailed 

absorption cross sections for individual rotational lines of the three band systems, and 

determined the vibronic oscillator strength. [2.7,8] 

Theoretical formulae on the rotational line strengths of the −+ Σ−Σ gu
33  transitions were 

obtained previously, and particular attention was devoted to the −+ Σ−Σ gu XA 33 　　  transition. 

[2.12-2.15] Lewis et al. derived the formulae of the line strength and calculated the relative 

strengths of the 13 branches in this transition. [2.12] They employed an intensity-borrowing 
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model which considered the spin-orbit (SO) interactions of mΣ−Σ± 33  and ±Σ−Π 33  as 

perturbations. More general formulae including the SO and L-uncoupling (RO) were derived 

by Bellary et al. [2.13] Huestis et al. noted that the QQ  rotational branches were strongly 

affected by RO interaction. [2.14] Hence, the rotational perturbation terms can be essential to 

explain the rotational line strengths. England et al. [2.16] used the formulae derived by 

Bellary et al. and estimated some electronic transition moment parameters to fit the integrated 

absorption cross sections for rotational lines measured by Yoshino et al. They found that a 

good fit was obtained with only three independent parameters. Mérienne et al. [2.8] also 

determined new values of these parameters in the same procedure as England et al. Although 

there have been several studies on the absorption process of this band system as stated above, 

no concrete consensus has been made concerning the degree of theoretical sophistication 

necessary for the perturbations. 

As for ab initio studies on electronic transitions in the low-lying states, Klotz et al. 

calculated the electronic transition moments and vibronic oscillator strengths of the three 

Herzberg band systems. [2.17] However, their values are not in good agreement with the 

recent experimental data, moreover they did not include the rotational perturbations. Minaev 

computed the electric-dipole, electric-quadrupole, and magnetic-dipole transition moments 

from metastable states in the 190-300nm region. [2.18] Minaev et al. also studied about 20 

singlet and 20 triplet valence states and calculated the electric-dipole allowed transition 

moments among these states. [2.19] However, there has been no ab initio study that calculated 

the rotational line strengths of the Herzberg band systems including the rotational 

perturbations, and it can be an attractive challenge for theoreticians. 

Vroonhoven et al. performed theoretical studies on the photodissociation process from the 

Herzberg band excitations, and obtained the physical insight for the potential energy curves in 
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the dissociation region. [2.20,21] For example, they calculated the anisotropy parameters by 

using their theoretical potential curves and the experimental values [2.6] for the parallel and 

perpendicular branching ratios of the Herzberg transitions. If we have accurate transition 

moments for the initial excited state populations, we can obtain genuine theoretical anisotropy 

parameters and remove the ambiguity discussed in Ref [2.21]. Another interest to study the 

anisotropy parameter is the relatively large difference in the existing experimental values. The 

author hopes that additional ab initio calculations of the transition moments may help to 

resolve the remaining difficulties. 

As we have seen, in spite of various works on the Herzberg band systems, some questions 

still remain to be answered. Such problems might be solved with direct theoretical analyses. 

Moreover, to the best of my knowledge, there has been no study that attempted to simulate the 

rotational line strengths of the electric-forbidden band using the transition moments obtained 

by the ab initio calculation. Such a study is essential to examine the accuracy of the ab initio 

transition moments. In this chapter, the author calculates the transition moment parameters, 

and estimates the integrated rotational line strengths and vibronic oscillator strengths, 

employing three different levels of theoretical models to include the SO and RO interactions. 

The theoretical values obtained by these models are compared with the experimental ones. 

The anisotropy parameter for the photodissociation products is also calculated to compare 

with the experimental ones. This study provides a special insight in the SO and RO 

interactions and configuration interactions in this molecule, and offers a key role to an 

analysis of electric-dipole forbidden bands of other important molecules in atmospheric 

chemistry. 
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2.2. Theory 

2.2.1. Summary of Basic Theory 

General methods for the calculation of rotational line strength are well known; a 

particularly clear review was given by Whiting and Nicholls. [2.22] The rotational line 

strength vJJvS ''  of an electric-dipole transition is proportional to the squared value of the 

transition moment ),( baM . 

babaM effµ=),( ,  (2-4) 

with 

( )( ) ( )( ) zZzyxZyZxyxZyZxeff iiii µµµµµµ φφφφφ ++−+−+=
2
1

2
1 ,  (2-5) 

aaa rvea = ,  (2-6) 

Here αµ  is the α th molecule-fixed component of the electric-dipole moment operator and 

Ijφ  is the direction cosine operator which relates the j th molecule-fixed axis to the I th 

space-fixed axis. The ket a  is the total wave function which is approximated by the 

product of the electronic, vibrational, and rotational wave functions, and is usually called 

Born-Oppenheimer wave function. The operator Ijφ  only operates on the rotational wave 

function, and αµ  operates on the electronic and vibrational wave functions. Therefore, the 

),( baM  is reduced as follows.  
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( )yx iµµµ ±=± 2
1 ,  (2-8) 

( )ZyZx iφφφ ±=± 2
1 ,  (2-9) 

The matrix elements of the rotational wave function are tabulated conveniently in general text 

book. [2.10] 

Now, we come to the matrix elements of the electronic and vibrational wave functions. 

Actual values of these matrix elements depend on approximation methods used in the 

electronic wave functions. Without any electronic perturbations, the −+ Σ−Σ 33  transition is 

not allowed. Both Lewis et al. and Klotz et al. considered only the SO interaction for 

perturbation. [2.12,17] Later, Bellary et al. and England et al. included also the RO interaction. 

[2.13,16] Thus, it is interesting to know the relative importance of these perturbations. 

The actual computational method for these interactions is also an essential point. Most of 

the previous workers have calculated the electronic wave functions perturbed by the SO and 

RO interactions using the first-order perturbation theory within the small subspace of selected 

bases in the sum-over-states representation. However, for more accurate calculation, it is 

desired to use the perturbation or the variational theory without basis set selection. 

2.2.2. Methods for the Electronic Transition Moments 

The author employs the formulae of Bellary et al. [2.13] with the three models to calculate 

the electronic transition moments of the Herzberg I band system, called the SOCI, Pert(Full), 

and Pert(England) models. It has been believed that the SO interaction is the primary source 

of the absorption strength in the Herzberg I band system, and the RO interaction makes a 

secondary contribution to the rotational line strength. Therefore, the SOCI model employs the 
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variational CI method for the SO interaction and the first-order perturbation theory for the RO 

interaction. The Pert(Full) model is based on the first-order perturbation theory for these two 

interactions. The last one follows the work of England et al. in which each of the initial and 

final wave functions is expanded with only two spin-free electronic wave functions, one 

dominant and the other perturbing, employing the first-order perturbation theory. The author 

shall describe some details of the three models in the following sub-sections. 

SOCI Model 
The SOCI method employs the following total electronic Hamiltonian H including the SO 

part approximated in the one-electron operator form, and variationally calculates the 

electronic eigenfunctions corresponding to the Hund’s case (c) base. 

SOel HHH += ,  (2-10) 

∑∑ =⋅=
K

iK
iK

K
ii

i
iiiSO r

Z
awithaH llsl ˆ

2
ˆˆˆˆˆ 3

,eff
2α

　　　　 , (2-11) 

where α is the fine-structure constant, ce h2=α , iKl̂  is the orbital angular momentum of 

electron i about nucleus K, Zeff,K is the effective charge of the K th nucleus. Of the three 

models described before, this SOCI method provides the most accurate electronic wave 

functions perturbed by the SO interaction. 

The author treats the SOCI wave function as the zero-th order base for the Herzberg I band 

system, and evaluate the RO interaction with the first-order perturbation theory. The RO 

interaction is written as follows. 

( ).+−−+ +−= LJLJvRO BH   (2-12) 

Here, ±J  is the molecule-fixed raising and lowering operators of the total angular 

momentum, mL  is the raising and lowering operators of the total electronic orbital angular 
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momentum, and  

v
R

vBv 2

2

2µ
h

= .  (2-13) 

Then, the initial and final wave functions are constructed following the procedure of the 

Bellary et al. [2.13] For example, 1=Ω  and e symmetry components of the initial and final 

total wave functions are as follows, 
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where ±Ω ,, Jn  is the symmetrized wave function, 

[ ]MJMJJ SSS ,,,,,,2,, 12122112 Ω−Λ±ΩΛ=±Λ Ω−
+

Ω
+−

Ω
+ .  (2-16) 

and Ωn  and Ωm  denote Ω
+ Λ12S , the electronic eigenfunctions of Eq. (2-10). Therefore, the 

good quantum number of these electronic wave functions is Ω . [2.10] The symbol ' 

represents quantities of the final electronic state, and ( )Ωmb  and ( )Ωnb'  are the expansion 

coefficients for the initial and final electronic state, respectively. In Eqs. (2-14) and (2-15), 

( )Ωnb'  and ( )gmb 0 , for example, are given by the perturbation method as follows. 

( ) ( ) ( )uu
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,  (2-17) 
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,  (2-18) 

In the actual calculation, all the Ωn  and Ωm  states were chosen within the CI space, which 

can couple with the initial and final states through the RO interaction. 

Next, the symmetry selection rules, ( )feJ ↔=∆ 　0  and ( )ffeeJ ↔↔=∆ ,1  are 

considered, and 13 electronic transition moments are obtained. In the procedure of Bellay et 

al., these electronic transition moments can be simply re-expressed by 13 independent 

parameters. They noted that, in the limit of small perturbation of the SO and RO interactions, 

these parameters can be further reduced to only three by the symmetry properties of the 

electronic wave functions and by omitting small second-order parameters. Accuracy of such 

approximation will be examined later. 

Then, these three electronic transition moment parameters are defined as follows. 
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Pert(Full) and Pert(England) Models 
Next, the perturbation theory is used for both the SO and RO interactions, and elH  in Eq. 

(2-10) is chosen as the zero-th order Hamiltonian for the electronic wave functions, and 

therefore the eigenfunctions correspond to the Hund’s case (a) base. 

If the initial and final electronic wave functions are constructed by the first-order 

perturbation theory with the complete Hund’s case (a) base, the 13 parameters for the 13 

electronic transition moments can be defined. Due to the symmetry properties of the 
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electronic wave functions and omitting second-order parameters, these transition moment 

parameters can be reduced to only three as in the previous sub-section. This model is called 

Pert(Full), and the three transition parameters are defined as follows. 

( ) ( )
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Here, m and n are the Hund’s case (a) base and their good quantum numbers are Λ, S, and 

Σ.[2.10] For example, ( )mα  and ( )ma  are the expansion coefficients for the initial state 

considering SO interaction as perturbation, and ( )ma  is the coefficient for the )(0 Σ=Λ 　  

component, and ( )ma  and ( )mb  for the )(1 Π=Λ 　  component. For instance, ( )mα , ( )ma  

and ( )mb  are expressed as follows. 
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Next, more approximately, the first-order perturbation theory is used within the subspace of 

the selected Hund’s case (a) base in the sum-over-states representation. England et al. 

considered the model in which the initial −Σ gX 3  state was only perturbed by the first gΠ3  
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state through SO and RO interactions, and the final +ΣuA3  state was only perturbed by the 

gΠ3  state. If these basis states are selected as England et al., the three reduced parameters can 

be defined as follows. 

( ) −−− ΣΣΣ= uzgu BXBZ 333'2 µα ,  (2-28) 

( ) +
+ ΣΠΠ= ugg AaX 333 11 µ ,  (2-29) 

( ) +
+ ΣΠΠ= ugg AbM 333 11 µ ,  (2-30) 

and ( )−ΣuB3'α , ( )ga Π31  and ( )gb Π31  are as follows.  

( ) ( ) ( )−+

+−

−

Σ−Σ

ΣΣ
=Σ

uu

uSOu

u BEAE

AHB
B 33

33

3'α   (2-31) 

( ) ( ) ( )−

−

Σ−Π

ΠΣ
=Π

gg

gSOg
g XEE

HX
a 33

33
3

1

1
1 ,  (2-32) 

( ) ( ) ( )−

+−

Σ−Π

ΠΣ
−=Π

gg

gg
vg XEE

X
Bb 33

33
3

1

1
1

L
, (2-33) 

This transition model is called Pert(England). 

Lastly, a brief comment is given on the vibrational wave functions. To calculate the 

absorption strengths at the room temperature, the centrifugal distortion effect should be 

included for each vibrational wave function. The vibrational potential curve including the 

centrifugal distortion term is as follows. 

),5,3,1(
2

)1()()( 2

2
)( L

h
=

+
+= N

R
NNRVRV N

eff 　　
µ

,  (2-34) 

V(R) is the adiabatic potential curve as a function of the internuclear distance R and N is the 

rotational quantum number. The distorted vibrational wave function is calculated with the 

initial and final electronic potential curves and the centrifugal distortion term corresponding 

to each transition model. 
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2.2.3. Absorption Strength 

Integrated Rotational Line Cross Section 
The author calculates the three parameters in each model, and evaluates the rotational line 

strength vJJvS ''  derived by Bellary et al.[2.13] To calculate the rotational line strengths, the 

eigenfunctions of the three rotational term series )3,2,1()( 　　　=iJFi  of +ΣuA3  and −Σ gX 3  are 

also needed. The mixing coefficients JJJ ssc ,','  and Js  were obtained with the Hamiltonian 

described by Cheung et al. [2.23] and the experimental molecular constants of Jenouvrier et 

al.[2.7] for the A state and those of Amiot et al.[2.24] for the X state. 

The calculational line strengths vJJvS ''  can be related to the integrated line cross section 

)(υσ  by the following line oscillator strengths in cgs unit. [2.22] 









+
== ∫ 123

8)( ''''
2

2

2

2

' J
S

ge
cmd

Ne
cmf vJJvvJJve

line
v

e
vv

υπυυσ
π h

,  (2-35) 

where 3=g  is the statistical weight of the ground state, em  and e  are the mass and the 

charge of an electron, υ  and vJJv ''υ  are the transition frequencies, h  is Planck’s constant 

divided by π2 . JN  is the relative population of the rotational level of the ground electronic 

and vibrational state, and is calculated by assuming the room temperature (293K).  

Vibronic Oscillator Strength 
The vibronic integrated line cross sections are evaluated by summing the calculated 

integrated strengths of all the rotational lines for the 13 branches as follows. 

∑ ∑
= =

=
13

1 1
2

2

' ),(
a

oddN

Nv

e
vv Na

Ne
cm

f σ
π

.  (2-36) 

Here, Nv is the relative population of the vibrational level of the ground state at the room 
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temperature (293K), a denotes each branch, and N is the rotational quantum number. 

2.3. Calculation Method 

All the ab initio calculations were performed by the COLUMBUS program package. 

[2.25-27] Throughout this chapter, internuclear distance is given in Å, and transition moment 

in atomic unit. The multi-reference (MR)-CI method was used for the three models. As the 

one-electron orbitals, the state-averaged SCF molecular orbitals were employed by optimizing 

for the averaged state of all the configurations derived from gygxuyuxg ππππσ 1,1,1,1,3 　　　　  and 

uσ3 , namely the six orbitals for eight electrons. Here, the six orbitals are the molecular 

orbitals correlating to 2p atomic orbitals of the oxygen atom. The configuration state 

functions (CSFs) were generated with the reference of the above complete active space. 

In the SOCI model, for evaluating each electronic transition moment parameter, the initial 

and final state wave functions were calculated with the first-order SOCI method and the 

cc-pVTZ basis set. [2.28] The parameter Zeff,K=5.84 was used in Eq. (2-11), which is 

appropriate for the SO splitting of the oxygen atom ( )JP3 . The calculational and 

experimental (shown in parenthesis) SO splittings were 159.0 (158.5) cm−1 between 1
3 P  and 

2
3 P , and 78.1 (68.0) cm−1 between 0

3 P  and 1
3 P . With these initial and final state wave 

functions, the Z, X and M electronic transition moment parameters in Eqs. (2-19)-(2-21) were 

obtained. In the calculation of the M parameter, the CSF representation instead of the 

sum-over-states representation was used, and the parameter was evaluated by solving linear 

equations employing the iterative algorithm by Pople et al. [2.29] Because these two 

representations are related by the unitary transformation, the equivalent value should be 

obtained by the two representations. 
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As for the Pert(Full) model, first, a spin-free first-order CI calculation was performed to 

obtain the initial and final state wave functions as the Hund’s case(a) eigenfunctions with the 

cc-pVTZ basis set. Next, Z, X and M were calculated by solving linear equations equivalent to 

Eqs. (2-22)-(2-24) in the CSF representation. Calculations in the Pert(England) model were 

carried out in the same way as in the Pert(Full) model except that the gΠ31  and −ΣuB3  

states were employed in the sum-over states representation as in Eqs. (2-28)-(2-30) to obtain Z, 

X and M. 

In the SOCI model, the vibrational wave functions were calculated with the potential curves 

derived from the contracted SO MR-SDCI(COSOCI) method with the cc-pVQZ basis set 

[2.28] with Zeff,K=5.79, because this high level method was necessary to give the correct 

dissociation energies and shapes for the ground and excited potential curves. [2.20,30] The 

calculational SO splittings with these method were 159.0cm−1 between 1
3 P  and 2

3 P , and 79.4 

cm−1 between 0
3 P  and 1

3 P . In the COSOCI method, first, a spin-free MR-SDCI calculation 

was performed to obtain the Hund’s case (a) eigenvalues and eigenfunctions. Next, a small 

Hamiltonian matrix of Eq. (2-10), which is composed of the diagonal matrix elements of the 

Hund’s case (a) eigenstates obtained above and the off-diagonal matrix elements of the SO 

interaction, was diagonalized, and then the eigenvalues and eigenfunctions including the SO 

interaction were obtained. All the electronic states correlating to the PP 33 +  dissociation 

limit in the Hund’s case (a) base are included. In the Pert(Full) and Pert(England) model, the 

spin-free MR-SDCI potential curves were used for the calculation of the vibrational wave 

functions. The vibration wave functions for each potential curve were calculated by the grid 

method with the Mathematica program. [2.31-34] 



Chapter 2. Photoabsorption in the Herzberg I band of O2 Molecule 

 2-42

2.4. Results and Discussion 

2.4.1. Comparison of Electronic Transition Moment 

Parameters in Three Models 

Table 2-1 compares the computed electronic transition moment parameters at 27.1=R Å as 

an example. 

1.097×10–51.021×10–51.132×10–51.108×10–55.276×10–6M

5.534×10–65.631×10–65.974×10–65.734×10–60Mu

5.443×10–44.584×10–65.354×10–65.347×10–65.276×10–6Mg

3.380×10–4 (3.380×10–4)3.387×10–43.505×10–43.496×10–42.153×10–4X

1.255×10–41.174×10–41.331×10–40Xu

2.132×10–42.331×10–42.165×10–42.153×10–4Xg

9.079×10–4 (9.079×10–4)9.179×10–49.098×10–49.039×10–41.231×10–3Z

1.031×10–31.083×10–41.149×10–31.231×10–3Zu

–1.131×10–4–1.732×10–4– 2.451×10–40Zg

SOCI (second–order)aPert(Full)Pert(10)Pert(3)Pert(England)

Note. Going from left to right, the calculational level becomes higher. The expression of each transition moment 
parameter is given in Eqs. (2-19)-(2-21), (2-22)-(2-24) and (2-28)-(2-30). Each value converges to the SOCI value 
as increasing the calculation level. 

a The value calculated by the second–order perturbation theory for the SO interaction.

Table 2–1 Comparison of the transition moment parameters at R=1.27 Å calculated by five models.

 

In the third (fourth) column of the table, calculation values obtained with the lower three 

(ten) intermediate states in the sum-over-states formulae in Eqs. (2-22)-(2-24) were added in 

order to examine the convergence. 

Firstly, the author comments on the Z and X parameters. The Z and X parameters converge 

to the values of the SOCI model as increasing the calculation level. The Pert(England) model 

does not account for the +− Σ−Σ gg nX 33  and uu nA Π−Σ + 33  couplings, thus the values of Zg, 

Xu and Mu were 0. However, in the higher level calculations, the relative magnitudes of these 
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couplings are not negligible at all in the total value of Z, X and M. 

Table 2-2 shows the dominant expansion coefficients, ( )mα , ( )n'α , ( )ma , and ( )na  in 

Eqs. (2-22) and (2-23). 

Table 2–2 Dominant expansion coefficients, α(m), α’(n), 
a(m) and a’(n) calculated from Eqs. (2–22) and (2–23).

3.679×10–43.226×10–4

–3.421×10–4–1.591×10–5

–4.871×10–5–3.594×10–4

8.796×10–43.935×10–4

–4.038×10–51.429×10–3

1.489×10–5–3.773×10–5

9.910×10–5–2.719×10–4

–3.741×10–5–1.415×10–4

6.431×10–5–8.290×10–5

1.051×10–3–2.287×10–5

α’(n) and a’(n)α(m) and a(m)

( )+Σ g
31α

( )+Σ g
32α

( )+Σ g
33α

( )+Σ g
34α

( )+Σ g
35α

( )ga Π31

( )ga Π32

( )ga Π33

( )ga Π34

( )ga Π35

( )−ΣuB 3'α

( )−Σu
32'α

( )−Σu
33'α

( )−Σu
34'α

( )−Σu
35'α

( )ua Π32'

( )ua Π33'

( )ua Π34'

( )ua Π35'

( )ua Π31'

 

Here, the expansion coefficients of gΠ31  and −ΣuB3  were by far the most important as 

supposed by England et al. [2.16] However, it is also found that other coefficients were not 

necessarily negligible. Especially, the +Σ g
33 , +Σ g

34 , gΠ32  and gΠ33  states have 

non-negligible expansion coefficient values in the X state, and the uΠ32 , uΠ34 , and uΠ35  

states have considerable magnitudes in the A state. 

Furthermore, Table 2-3 compared the contribution to each transition moment parameter, Zg, 

Xg, Zu and Xu of Eqs. (2-22) and (2-23), from above electronic states. It is also found that the 

values of ( )−Σuu BZ 3  and ( )ggX Π31  were the most important as supposed by England et al. 

[2.16] However, other values, for example, ( )+Σ ggZ 32  and ( )uuX Π32 , were not negligible 
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Table 2–3 Contribution to Zg, Xg, Zu and Xu from each 
electronic state in Table 2-2.

7.589×10–61.709×10–5

8.169×10–6–1.007×10–6

1.857×10–53.225×10–6

1.135×10–4–2.086×10–6

9.614×10–72.153×10–4

4.043×10–5–6.301×10–14

–5.237×10–54.185×10–5

–8.265×10–5–8.130×10–5

9.061×10–5–1.608×10–4

1.231×10–3–2.958×10–6

Zu(n) and Xu(n)Zg(m) and Xg(m)

( )+Σ ggZ 31

( )+ΣggZ 32

( )+Σ ggZ 33

( )+ΣggZ 34

( )+ΣggZ 35

( )ggX Π31

( )ggX Π32

( )ggX Π33

( )ggX Π34

( )ggX Π35

( )−Σuu BZ 3

( )−ΣuuZ 32

( )−ΣuuZ 33

( )−ΣuuZ 34

( )−ΣuuZ 35

( )uuX Π31

( )uuX Π32

( )uuX Π33

( )uuX Π34

( )uuX Π35

 

It is emphasized that the SO and RO interactions induce the small but non-negligible 

configuration interactions with highly excited states, and even these small interactions bring 

significant influence on the inherently small electronic transition moment parameters. 

Although their values almost converged in the Pert(10) model, 40 % difference still 

persisted in Zg. It is noticed that the Zg and Zu parameters converged smoothly to the Pert(Full) 

values, but other parameters did not. The Xg and Xu parameters converged to the Pert(Full) 

values with oscillation. The difference between the parameter values by the Pert(Full) and 

SOCI models was about 1% or less. One possible cause of this small difference is the 

omission of the second-order terms such as, 

nmmana
n m

z∑∑ µ)()(' ,  (2-37) 

in Eq. (2-22). Normalized the initial and final state first-order wave functions, the Z and X 

parameters were calculated including the above terms. Then, 410158.9 −×=Z  and 

410386.3 −×=X  were obtained. Both parameters converged a little to the SOCI values, but 
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there still remain 0.87% and 0.18% differences in the Z and X parameter, respectively. Further, 

the second-order electronic wave functions perturbed by the SO interaction for the X and A 

states were calculated. For example, the perturbed wave function up to the second-order for 

the X state is as follows. 

( )( )∑∑
≠≠

−

−−
+

−
+=Σ

Xmn

nXmn

Xn

nX
g m

nEXEmEXE
HHn

nEXE
HXX

,

3

)()()()(
''

)()(
' .  (2-38) 

Here, X is −Σ gX 3  and jHiH SOij =' . With the normalized perturbation wave functions, Z 

and X parameters were obtained as 410079.9 −×  and 410380.3 −×  respectively, which are 

essentially identical to those in the SOCI model. The maximum value of the expansion 

coefficients in the third terms in Eq. (2-38) was 610154.2 −× . Namely, the expansion 

coefficients of the first-order wave function have a possible error in the order of 610− . 

Therefore, the Z parameter of Pert(Full) is in agreement with that of SOCI only up to 610−  

and the second-order term is responsible for about 1% difference in the Z parameters 

calculated by the SOCI and Pert(Full) models. Although the first-order perturbation theory 

seems appropriate to describe the Herzberg I band system, it may cause some errors for other 

weaker intensity band systems, in which very small higher-order expansion coefficients are 

not negligible in the relative magnitude, for example, in the Herzberg II and III band systems. 

As for the M parameter, almost the same discussions hold as for Z and X. However, there 

was a significant difference (10%) between the SOCI and Pert(Full) model for the gM  

parameter. It is for this reason that gM  calculated by the SOCI model includes the 

higher-order coupling terms induced by the SO and RO interaction. The dominant component 

of this higher-order terms for the gM  parameter is as follows. 
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The −Σ gX 3  state splits into the −Σ gX 1
3  and −

+Σ
g

X
0

3  states due to the second-order SO 

interaction, and these two states, in the Hund’s case (c) representation, are able to couple with 

each other through the RO interaction. Although the matrix element of the RO interaction was 

very small ( 810011.2 −×  a.u.), since it should vanish in the Hund’s case(a) limit, the energy 

splitting ( ) ( )−− Σ−Σ + gg
XEXE 1

3
0

3  was also small( 410990.2 −× a.u.). Thus, the above transition 

moment parameter makes a meaningful contribution. 

Next, the calculated electronic transition moment parameters are compared with the 

experimental ones obtained by Mérienne et al. [2.8] and other ab initio values of Klotz et al. 

[2.17] in Figs. 2-2, -3. 
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Fig. 2-2 The Z parameters calculated by the three models, 
compared with the values of Mérienne et al.(points) [2.8] and 
other ab initio values of Klotz et al. [2.17] The Pert(England) 
model gives 20 % larger values compared with the experimental 
ones. The SOCI and Pert(Full) models give 10 % smaller values.  
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(a) X parameter (b) M parameter
Fig. 2-3 The X and M parameters calculated by the three models, compared with the values of 
Mérienne et al.(points) [2.8] and other ab initio values of Klotz et al. [2.17] 
(a) As for X,  the Pert(England) model gives 50 % smaller values compared with the experimental
ones. The SOCI and Pert(Full) models give 15 % smaller values. 
(b) As for M, The Pert(England) model gives 50 % smaller values compared with the 
experimental ones. The SOCI and Pert(Full)models are in good agreement with the experimental 
ones.  

As for the SOCI and Pert(Full) models, though all the three parameters were about 10 % 

smaller than the experimental estimates, they were still in reasonable agreement. On the other 

hand, the Pert(England) model did not reproduce the value of Mérienne et al. even 

qualitatively, namely Z was overestimated and X and M were underestimated. 

Klotz et al. calculated Z and X parameters using a similar model as Pert(England) and their 

values have a similar tendency as Pert(England). Later, the sensitivities of the rotational and 

vibronic absorption strengths to these small but meaningful differences in the transition 

moments will be discussed. 

2.4.2. Vibrational Wave Functions 

The potential curves of the initial and final states were calculated with the COSOCI method. 

Table 2-4 lists the calculated and experimental spectroscopic constants eeR ω,  and eD  for 
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the X and the three Herzberg states [2.35] of the spin-free and COSOCI potential curves. 

Table 2–4. Spectroscopic constants for the X and the three Herzberg states. The inside in 
parenthesis is the value from the potential curves including the SO interaction, and the 
other values are from the Hund’s case (a) potential curves.

0.906c0.9030.946819c8157931.513c1.5131.515

1.112c1.1141.176790c7978091.518c1.5141.517

0.830c0.8250.868 
(0.849)802c804801

(800)1.520c1.5201.522 
(1.522)

5.193b5.2145.263 
(5.223)1550b15801554 

(1554)1.213b1.2081.212 
(1.212)

CalcExp.aPresentCalc.Exp.aPresentCalc.Exp.aPresent

De (eV)ωe (cm–1)Re (Å)

Note. The inside in parenthesis is the values from the potential curves including the SO interaction, and 
the other values are from the Hund’s case (a) potential curves. (a Ref.[2.35], b Ref.[2.30], c Ref.[2.20])

+ΣuA3

−Σuc1

uA ∆3'

−Σ gX 3

 

The values in parenthesis are calculated by the COSOCI method for the 1=Ω  component 

of the X and A states. The calculation values are in good agreement with the experimental and 

other calculational values. 

The vibrational wave functions were obtained for the X and A states with the above 

potential curves. The results for the A state are compared with the experimental values of 

Jenouvrier et al. [7] and theoretical values of Vroonhovenet al. [20] in Table 2-5. 

The present calculation reproduced the experimental values reasonably except for the 

12'=v  vibrational level. The 12'=v  level is the highest level below the dissociation limit, 

so that a small perturbation gives an enormous change in the vibrational wave function. For 

instance, the difference between the Hund’s case (a) and Hund’s case (c) potential curves is 

rather large in spite of the small SO interaction for the 12'=v  level. 
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Table 2–5. Vibrational energies and rotational constants of the             state. +ΣuA3

0.3774941239.7100.1640041265.3610.36595 
(0.28433)

41529.992 
(41489.228)12

0.5006241105.6120.5047041158.9750.46408 
(0.45921)

41374.130 
(41349.603)11

0.5857840873.8470.5942940924.3340.54178 
(0.54072)

41114.441 
(41093.869)10

0.6505240548.5850.6586940588.1760.60198 
(0.60152)

40760.944 
(40741.738)9

0.7001240141.4590.7066140170.2130.65082 
(0.65063)

40328.895 
(40310.528)8

0.7398539664.3220.7446939684.6760.69219 
(0.69230)

39830.955 
(39812.808)7

0.7725539127.7060.7763539141.9460.72848 
(0.72873)

39276.670 
(39258.056)6

0.8004238539.7340.8035938549.6660.76121 
(0.76121)

38673.338 
(38654.422)5

0.8247937906.3300.8276737913.6280.79133 
(0.79128)

38026.405 
(38007.903)4

0.8465137233.2010.8493737238.3160.81952 
(0.81965)

37340.329 
(37321.853)3

0.8662636523.8590.8692336527.2670.84628 
(0.84644)

36618.545 
(36599.639)2

0.8849235781.5960.8876335783.3230.87196 
(0.87206)

35863.750 
(35844.646)1

0.90292–––––––0.9049935008.8260.89679 
(0.89685)

35078.315 
(35059.139)0

B(v’)T(v’)B(v’)T(v’)B(v’)T(v’)

Vroonhoven et al.Jenouvrier et al.Calc.
v’

Note. The inside of parenthesis is the value obtained from the potential curves including the SO interaction.

 

This point was also discussed by Vroonhoven et al. [2.36] Other theoretical values [2.20] 

were in better agreement with experiment than ours except for the 12'=v  level. This is 

because they used larger basis set (aug-cc-pV5Z) and different calculation method. They 

calculated the potential curves using two methods for different internuclear regions. In the 

Franck-Condon region, they used the CASSCF+MRCI method, while they constructed the 

potential curves in an ad-hok manner in the dissociation region. Anyway, both methods 

reproduced the experimental values reasonably except for 12'=v  level, therefore the present 
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potential curves and vibration wave functions were used for the calculation of each absorption 

strength. 

Lastly, the Franck-Condon factor (FCF) between the X and A states were calculated. Note 

that in the actual calculation discussed before, the Condon approximation was not used, but 

the transition moment ),( baM  was directly evaluated with Eq. (2-7). However, it is still 

interesting to compare the theoretical and experimental FCFs to examine the vibrational wave 

function with the experiment data. 

Table 2–6. Franck–Condon factor (N=1) calculated by the 
SOCI model, compared with experimental data from Ref [2.16].

6.528×10–412,0

2.258×10–411,0

2.449×10–32.979×10–410,0

2.629×10–33.065×10–49,0

2.380×10–32.706×10–48,0

1.889×10–32.109×10–47,0

1.325×10–31.457×10–46,0

8.149×10–48.845×10–45,0

4.309×10–44.638×10–44,0

2.027×10–43,0

6.938×10–42,0

1.659×10–41,0

2.086×10–40,0

England et al.Calc.Band (v’, v)

Note. v’ and v represent the vibrational levels of the             and         
states, respectively.    

+ΣuA3 −Σ gX 3

 

The difference between the Hund’s case (a) and (c) potential curves for the FCF is 

negligibly small. Then, the rotationless FCF in the SOCI model was compared with the ones 

of England et al. [2.16] in Table 2-6. The present values were about 10% larger than theirs. 

Mérienne et al. determined the electronic transition moment parameters using the 

experimental FCF. If the transition moment ),( baM  is calculated in the SOCI and Pert(Full) 
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models, as a product of each electronic transition moment parameter and the FCF, the present 

transition moments are in almost quantitative agreement with the experimental ones because 

the electronic transition moment parameters and FCF were, respectively 10 % smaller and 

larger than the experimental ones. However, the Pert(England) model does not reproduce the 

experimental transition moments, because as described in 2.4.1, the electronic transition 

moment parameters in that model did not agree with the experimental ones even qualitatively. 

Direct calculations of the transition moments yielded essentially the same values as the ones 

using the Condon approximation. Therefore, it is concludes that only the SOCI and Pert(Full) 

models are able to reproduce the transition moments of Mérienne et al. 

2.4.3. Integrated Rotational Line Strength 

Table 2–7. Comparison of each calculational intensity and experimental data 
[2.8] (10–26 cm2 cm–1) of the 13 rotational lines for the N=13 of the (7, 0) band.

0.080.050.42OQ13

12.513.1113.9977.97SR21

5.435.9451.13SR32

2.001.810.17SQ31

188179.96181.84233.13QR23

208180.52182.82256.33QR12

27.112.1214.416.71QQ33

42.045.3640.2719.90QQ22

285242.85228.4593.49QQ11

172149.27150.46174.25QP32

190157.32159.02206.71QP21

14.015.9716.8979.49OP23

28.829.2830.63113.54OP12

Exp.SOCIPert(Full)Pert(England)Branch

Note. Going from left to right, the calculational level becomes higher.  

With the above electronic transition moment parameters, potential curves, and the formulae 
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of Bellary et al., the integrated rotational line absorption cross sections of the 13 rotational 

branches were calculated for each vibrational band. Three calculational results of N=13 in the 

v’=7 vibrational band were shown in Table 2-7. 
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(a) OP12, OP23 and QP32 branches (b) QP21, QR12 and QR23 branches

(c) QQ11, QQ22 and QQ33 branches (d) SR21, SQ31, SR32 and OQ13 branches

Fig. 2-4 Comparison of the calculated line strengths of the SOCI and Pert(Full) models with 
the experimental data of Mérienne et al.(points) for the (7,0) band. [2.8] The solid and dash 
lines represent the calculational values obtained by the SOCI and Pert(Full) model, 
respectively. (a) OP12, OP23 and QP32 branches, (b) QP21, QR12 and QR23 branches (c) QQ11, QQ22
and QQ33 branches, (d) SR21, SQ31, SR32 and OQ13 branches. For SR32 and OQ13 branches, only 
calculated values are showed.  

Clearly, the SOCI and Pert(Full) models give better results than the Pert(England) model, 

for example, for the 12
O P , 23

O P , 11
Q Q , 22

Q Q , 33
Q Q  and 21

S R  branches. The 

Pert(England) model cannot reproduce the experimental results very well. On the other hand, 

the SOCI and Pert(Full) models give the almost quantitative results for most branches. The 
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transition moments of Klotz et al. gave the similar results as Pert(England). Therefore, their 

transition moments are not appropriate for the calculation of the integrated rotational line 

strengths. 

Next, the calculated and experimental integrated rotational line strengths with various N in 

the SOCI and Pert(Full) models are shown in Fig. 2-4, and those of Pert(England) in Fig. 2-5. 

With various N, a similar conclusion for the three models can be obtained. That is, only the 

SOCI and Pert(Full) models are able to reproduce the experimental results quantitatively. In 

comparison of the SOCI and Pert(Full) models, it is noticed that the SOCI model is slightly 

better than Pert(Full), for example, for the 11
Q Q , 22

Q Q  and 21
S R  branches. The calculation 

can give very weak line strengths, for the 31
S Q , 13

O Q  and 32
S R  branches, and these very 

small values are consistent with the fact that they were not observed experimentally. In this 

thesis, the author have discussed only the rotational branches of the (7-0) band, however, a 

similar tendency for other bands was obtained as well. 
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Fig. 2-5 Comparison of the OP12, OP23 and SR21 line strengths 
calculated by the Pert(England) model with the experimental data 
of Mérienne et al.(points) for the (7,0) band. [2.8] The solid lines 
represent the calculational values obtained by the Pert(England).  
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5.750.000.08OQ13

12.513.1112.3413.11SR21

5.434.465.43SR32

3.652.832.00SQ31

188179.96188.21179.96QR23

208180.52186.22180.52QR12

27.140.3013.5912.12QQ33

42.045.3640.2745.36QQ22

285169.54232.10242.85QQ11

172149.27143.73149.27QP32

190157.32159.77157.32QP21

14.015.9716.9315.97OP23

28.829.2831.2529.28OP12

Exp.Model 2Model 1SOCIBranch

Table 2–8. Calculational intensity (10–26cm2cm–1) of 13 rotational lines for N=13 
of the (7,0) band obtained by two sets of parameters compared with 
experimental ones. [2.8]

Note. SOCI used the relation as Z,X=Y,M1=M2=Mef=Mfe,Ne=Nf=ζ0=ζ1=η0=η1=0. Model 1 
calculated each rotational line with the 13 independent parameter set Z, X, Y, M1, M2, Mef, Mfe, 
Ne, Nf, ζ0, ζ1, η0 and η. Model 2 used only Z and X parameters and omitted M in SOCI.

 

As mentioned before, strictly speaking, the SOCI model needs 13 independent parameters 

instead of just three. These were termed as Z, X, Y, M1, M2, Mef, Mfe, Ne, Nf, ζ 0, ζ1, η0 and η1 

by Bellary et al. [2.13] For example, X and Y parameters are written as follows. 

−
+

+
+ΣΣ=

gu XAX
0

3
1

3 µ ,  (2-40) 

−
+

+ ΣΣ= − gu XAY 1
3

0

3 µ ,  (2-41) 

In general, X cannot be equal to Y, with a finite strength of the SO interaction. Treating these 

13 parameters independently, the author calculated the integrated rotational line strengths for 

N=13 of the (7,0) band (Model 1), and compared with the previous SOCI results obtained 

with the three parameters in Table 2-8. Moreover, to investigate the effect of the RO 

interaction, the M parameter was omitted in the SOCI model (Model 2). 

As for the lines of strong intensity, differences between the Model 1 and SOCI were about 
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3% or less. Although small differences can be seen in the weak intensity lines of the 13
O Q , 

31
S Q  and 32

S R  branches, the overall intensity did not change very much. With altering the 

rotational and vibrational levels, this tendency did not change. 

Therefore, it is concluded that in practice only three electronic parameters are enough to 

calculate the integrated rotational line strengths in the SOCI model. Of course, this conclusion 

can apply to the Pert(Full) and Pert(England) model. Next, comparing Model 2 and SOCI, it 

is found that some Q lines of the 13
O Q , 11

Q Q , 33
Q Q  and 31

S Q  branches of Model 2 are 

different from those of SOCI very much. These results are consistent with the conclusion of 

Huestis et al. [2.14] Therefore, we cannot neglect the RO interaction at all. 

So far, we have seen that the SOCI and Pert(Full) models can reproduce the integrated 

rotational line strengths. In contrast, the Pert(England) model cannot reproduce them even 

qualitatively. To refer to Eq. (2-7), we can ascertain that the difference of the calculational 

results is due to the electronic transition moment parameters, because the calculated FCFs 

were not sensitive to the theoretical models. In the SOCI and Pert(Full) models, the electronic 

transition moment parameters were in good agreement with the experimental ones. On the 

other hand, the Pert(England) model calculated each electronic transition moment parameter 

only roughly, and it did not yield even the relative ratio of the individual parameters correctly. 

It has also been showed that the cause of the difference among the three models is the degrees 

of configuration interactions with the highly excited states induced by the SO and RO 

interactions. Hence, it is concluded that each rotational line strength is strongly sensitive to 

the accuracy of each electronic transition moment parameter, and only the higher level 

calculational models including the configuration interactions with highly excited states 

reproduce the absolute values of each parameter. However, in the next section, it will be 

shown that the results of vibronic oscillator strengths do not depend on the calculational level 
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very much. 

2.4.4. Vibronic Oscillator Strength 

Table 2-9 shows the vibronic oscillator strengths of the ( 0,120' =−= vv 　 ) bands using 

the three models. 

The SOCI and Pert(Full) models reproduced the experimental values very well, and 

Pert(England) models also give reasonable results. Why can we calculate each vibrational 

oscillator strength fairly well with any model ? 

9.15×10–111.229×10–101.229×10–101.583×10–1011,0

3.578×10–113.578×10–114.599×10–1112,0

1.64×10–101.601×10–101.602×10–102.070×10–1010,0

1.79×10–101.619×10–101.621×10–102.103×10–109,0

1.57×10–101.399×10–101.401×10–101.828×10–108,0

1.22×10–101.063×10–101.065×10–101.399×10–107,0

8.36×10–117.141×10–117.155×10–119.470×10–116,0

5.09×10–114.199×10–114.210×10–115.618×10–115,0

2.51×10–112.127×10–112.133×10–112.874×10–114,0

1.11×10–118.954×10–118.987×10–111.222×10–113,0

3.73×10–122.941×10–122.954×10–124.063×10–122,0

8.02×10–136.734×10–136.767×10–139.416×10–131,0

8.36×10–148.078×10–148.125×10–141.144×10–140,0

Exp.SOCIPert(Full)Pert(England)Band (v’, v)

Note that the three models give similar results unlike the integrated rotational line strengths. 

Table 2–9. Vibronic oscillator strength from the Pert(England), Pert(Full) and 
SOCI models compared with the experimental data from Ref [2.8].

 

Buijsse et al. expressed the effective electronic transition moment of the vibronic transition 

for a give J, 

( ) 3)1(644 22222
eff ++−+= JJMMXZM ,  (2-42) 

and applied this 2
effM  to the expression of the vibronic oscillator strength, 



Chapter 2. Photoabsorption in the Herzberg I band of O2 Molecule 

 2-57

2
eff'2

2

' 3
8

M
he

cm
f vv

e
vv υ

π
= ,  (2-43) 

Here, vvq '  is the FCF. Using this approximate expression, we are able to focus on the only 

electronic transition moment parameter in analyzing the model independent vibronic 

oscillator strength, because vv 'υ  and vvq '  did not depend on the three models very much. 

2
effM  was evaluated for J=11 which is appropriate for the room temperature conditions. Fig. 

2-6 shows that effM  calculated by Pert(England) is in accidental agreement with the value of 

Mérienne et al., because in this model, Z was overestimated and X and M were underestimated 

from their value as explained in Section 2.4.1, showing an error cancellation. 
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Fig. 2-6 Effective electronic transition moment Meff
2 calculated by 

the three models, compared with the values of Mérienne et al.[2.8]
The Pert(England) model shows accidental agreement.  

Therefore, we can obtain the reasonable results only for the vibronic oscillator strengths. On 

the other hand, the SOCI and Pert(Full) models underestimated the value of Mérienne et al. In 

view of the fact that our FCF is 10% larger than the experimental one, the above effM  in the 

SOCI and Pert(Full) models are in quantitative agreement with the experiment. Therefore, all 

of the three models can reproduce the vibrational oscillator strength reasonably. 
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2.4.5. Anisotropy Parameter in Photodissociation Processes 

Using the new transition moment parameters, an anisotropy parameter β was simply 

estimated for the photodissociation products from the Herzberg continuum. [2.4,6,9] 

Considering the experimental conditions, the vibration state of −Σ gX 3  was supposed in the 

ground state and the rotational motions were neglected. Moreover, in the axial recoil limit, the 

anisotropy parameter β is simply written as follows. [2.37] 

22

22

4
24
ZX

ZX
+
+−

=β .  (2-44) 

β was calculated with the new transition moment parameters and shown in Table 2-10 along 

with experimental values of Tonokura et al. [2.4], Buijsse et al. [2.6] and Alexander et al. [2.9], 

as well as another ab initio value calculated from the transition moment parameters of Klotz 

et al. [2.17] 

0.55±0.10(3P2,1)0.612±0.0651.6±0.41.7110.930 
(0.900)a0.9421.672

AlexanderdBuijssecTonokurabKlotzSOCIPert(Full)Pert(England)

Table 2–10. Anisotropy parameter from the Pert(England), Pert(Full) and SOCI 
models compared with the ab initio value of Klotz et al. in Ref [2.17], and the 
experimental data in Ref [2.4,6,9].

aThe value including the contribution from the Herzberg II and III transitions.
bRef [2.4] at 226 nm.
cRef [2.6] at 226nm.
dRef [2.9] at 222nm. The value is obtained from the 3P2 and 3P1 products.  

Clearly, Pert(Full) and SOCI results are in good agreement with the recent experimental 

data of Buijsse et al. and Alexander et al. On the other hand, the values derived with the 

electronic transition moment parameters by Pert(England) and Klotz et al. are significantly 

different from the recent experiments, instead they are in agreement with that of Tonokura et 

al. As was seen before, the Pert(England) model cannot yield the accurate electronic transition 
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moment parameters, so its β value is not reliable. In this calculation, the dissociation is 

assumed to take place only from the Herzberg I transition. However, the experiments also 

contain a small contribution of the photoproducts from the Herzberg II and III transitions 

whose transition moments are dominated by perpendicular components. [2.6] With the SOCI 

model, the β value was also calculated, and some improvement was obtained toward the 

recent experimental values. Therefore, this work supports the anisotropy parameter of Buijsse 

et al. and Alexander et al. Possible reason for the difference in their experimental results was 

discussed in Ref [2.6]. In this section, an accuracy of the SOCI and Pert(Full) model is also 

confirmed by the calculation of the anisotropy parameter. 

2.5. Conclusion 

The author employed three theoretical models, SOCI, Pert(Full) and Pert(England), to 

calculate the electric-dipole forbidden transition moment of the Herzberg I band system. 

Comparing the calculational and experimental transition moments, the author found that 

SOCI and Pert(Full) are able to calculate them quantitatively, on the other hand, 

Pert(England) cannot yield them even qualitatively. The difference between the SOCI and 

Pert(Full) models was small, so that the SO interaction can be essentially represented by the 

first-order perturbation theory. Although the second-order interactions between the SO and 

RO couplings were also calculated by the SOCI model, it turned out to be less important. 

Namely, either the variation or first-order perturbation theory is applicable to the calculation 

of the electric transition moment, as long as all the configuration interactions with 

highly-excited stated induced by the SO and RO interactions are included. On the other hand, 

a limited first-order perturbation theory as Pert(England) in which the initial and final wave 
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functions are truncated by only one perturbing state as gΠ31　  and −ΣuB 3　  is not appropriate 

for the quantitative calculation. Moreover, even if the contributions of other low-lying states 

was included in the sum-over-states representation as in Pert(3) and Pert(10), they converged 

to Pert(Full) very slowly in spite of the weak SO perturbations of the oxygen molecule. 

Therefore, it is concluded that the basis set truncations easily lead to erroneous results for 

weak forbidden band systems such as the Herzberg I band system. 

To confirm an accuracy of the current transition moments, the author calculated the 

integrated rotational line strengths and vibronic oscillator strengths of the Herzberg I band 

system with the SOCI, Pert(Full) and Pert(England) models. The SOCI and Pert(Full) models 

gave reasonable results for both strengths, while the Pert(England) model reproduced only the 

vibronic oscillator strength due to an error cancellation. Thus, the SOCI and Pert(Full) models 

which include all the possible configuration interactions with highly excited states through 

some perturbations are necessary to calculate very weak absorption strengths quantitatively. 

The author also calculated the anisotropy parameter in the photodissociation from the 

Herzberg I band and obtained reasonable agreement with recent experimental data of Buijsse 

et al. and Alexander et al. in the SOCI and Pert(Full) model. 

Configurational analysis shows that the slow convergence in the sum-over-states 

representations in Tables 2-1, -2, and -3 originates from the fact that the oxygen molecule has 

some lower-lying unoccupied valence orbitals, gπ  and uσ . For example, the wave function 

of the ground state is represented using the MR-SDCI(cc-pVQZ) method as follows. 

422242 1307.09381.0 guggugX ππσππσ LL −≅ .  (2-45) 

The first term cannot couple with highly excited states through the SO or RO interactions 

which consist of the one-electron operators, because most of the highly excited states are 

expressed by the configurations in which two or more electrons are excited from the first term 
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in Eq. (2-45). On the other hand, the second term makes it possible to couple with the highly 

excited states directly and induces the complicated configuration mixings through even small 

perturbations. Since the Herzberg I band system is a weak absorption band system, these 

interactions cannot be neglected by any means. 
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Chapter 3. 

Geometric and 

Electronic Structures of Eun(C8H8)n
− 

Abstract 

Nakajima and co-workers have measured the photoelectron spectra of the multiple-decker 

1:1 sandwich clusters of Eun(COT)n
− (n=1-4; COT=1,3,5,7-cyclooctatetraene), synthesized in 

the gas-phase. The author studied theoretically the bonding scheme, charge distribution, 

valence orbital energies and photodetachment energies. He calculated the ground electronic 

state X− and the first excited electronic state A−, both of which have strong ionic bonding and 

characteristic charge distribution. Moreover, the valence orbital energies of Eu (6s) and COT 

(Lδ) were found to depend strongly on cluster size and their positions in the clusters. With the 

calculated vertical detachment energies for these valence orbitals, the peaks in the 

experimental photoelectron spectra were assigned, and the origin of their interesting behavior 

was analyzed by employing simple point charge models. From these analyses, it became clear 

that the characteristic behavior of the spectra is due to the strong ionic bonding and the charge 

distribution. In addition, using the point charge models, the vertical detachment energies of 

the one-dimensional polymer [ ]−
∞Eu(COT)  were estimated. 
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3.1. Introduction 

The advent of the laser vaporization synthesis method in the 80's [3.1-3] and the successive 

development of the technique during the last ten years [3.4,5] have enabled us to generate 

various kinds of novel clusters without environmental factors such as oxidation or reduction 

of the products. Moreover, considerable experimental and theoretical efforts have recently 

revealed their characteristic physical and chemical properties, which have been anticipated for 

the application to new nanostructured materials. In this regard, Nakajima and co-workers have 

reported the preparation of multiple-decker sandwich clusters, in which metal atoms and 

organic ligands are alternately stacked one-dimensionally. [3.5] Typical examples for the 

sandwich clusters are combinations of vanadium (V) atoms and benzene (Bz) molecules and 

those of lanthanide (Ln) atoms and cyclooctatetraene (COT) molecules. 

In the case of the V-Bz sandwich clusters, many experimental and theoretical studies in the 

last decade have clarified their geometric and electronic structures. [3.6-13] For instance, 

Yasuike et al. and Miyajima et al. have studied the bonding scheme and ionization energies 

both experimentally and theoretically, and have made it clear that Vn(Bz)n+1 have covalent 

bonding due to the charge transfer interaction between the benzene LUMOs and the dδ 

orbitals of V. This builds up the one-dimensional quasi-band structure. [3.6-8] Following 

these earlier studies, Pandey and co-workers performed DFT calculations for the neutral and 

anion V-Bz clusters, and obtained the electron affinities, ionization energies, and ground state 

spin multiplicities. [3.9,10] Broyer and co-workers determined the permanent dipole moment 

of V(Bz)2 and V(Bz) using molecular beam deflection experiments in an inhomogeneous 

electric field and theoretical calculations. [3.11,12] They reported that the V(Bz)2 sandwich 

cluster has no dipole moment because of its symmetrical structure. They also reported that the 

one-end open sandwich cluster of V(Bz), somewhat curiously, has negligible dipole moment. 
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It is reasonable, however, if the dominantly prepared stable structure is weakly bound by a 

long-range van der Waals force and thus has no charge polarization in the cluster. Recently, 

Miyajima et al. measured the magnetic moments of Vn(Bz)n+1 by a molecular beam magnetic 

deflection method with a Stern-Gerlach magnet and found a monotonic increase of the 

magnetic moment with the cluster size. [3.13] 

Over the past half a century, a lot of studies have been conducted in the condensed phase 

organometallic chemistry with rare earth metals, as reviewed, for example, by Schumann et al. 

[3.14] Particularly, the complex of Ln and COT was firstly isolated by Hayes and Thomas in 

1969. [3.15] Since then, there have been many studies of their synthesis, [3.16-19] geometric 

structure and chemical properties. [3.19-24] Their bonding scheme has been recognized as 

fairly ionic and their maximum size has been reported as several layers. On the other hand, 

there have been only a limited number of theoretical works concerning Ln-COT complexes. 

Dolg and co-workers investigated the geometric and electronic structures of the Ln(COT)2 

(Ln=Ce, Nd, Tb, and Yb), which are the smallest unit of Lnn(COT)m sandwich clusters. 

[3.25-28] They reported that Ln(COT)2 have D8h symmetry and, as a first approximation, 

consist of Ln3+ positive central metal ions pinched with two COT1.5− rings. 

It is only recently that gas phase experimental works have been performed on Ln-COT 

complexes with the laser vaporization synthesis method. Kurikawa et al. measured the 

electron binding energies and the ionization energies of larger Lnn(COT)m (Ln=Ce, Nd, Eu, 

Ho, Er, and Yb) with photoelectron spectroscopy. [3.29,30] Based on the experimental results 

and the theoretically predicted charge distribution of Ln(COT)2, they suggested that the 

Lnn(COT)m sandwich clusters also have a strong ionic bonding owing to the electron transfer 

from Ln to COT. Miyajima et al. also discussed the charge distribution of Ln-COT clusters by 

a chemical probe method with Na atoms as electron donors. [3.31] Recently, Hosoya et al. has 
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succeeded in synthesizing larger Eu-COT sandwich clusters, named as sandwich nanowires, 

in the gas phase using a combination of laser vaporization techniques and molecular beam 

methods. [3.32] In contrast to Vn(Bz)m, which was limited to seven layers, Eu-COT sandwich 

nanowires were formed with up to one-dimensional 27 layers (about 10 nm overall length) 

which stimulated theoretical investigation. 

In this Chapter, the author reports a theoretical study on the geometric and electronic 

structures of one-end open 1:1 sandwich clusters of Enn(COT)n
− (n=1-4), because they are 

considered to be important intermediates in the sequential formation step of the larger 

Eu-COT sandwich nanowires and their photoelectron spectra show a characteristic 

dependence on the cluster size. [3.32] In addition, such a study is essential to understand the 

properties of the larger cluster and other Lnn(COT)m compounds. 

In Section 3.2, computational details are given. In Section 3.3, the author first presents the 

experimental photoelectron spectra which show interesting cluster size dependencies. Next, 

the author theoretically gives optimized geometries and their charge distribution for two 

different electronic states, and discusses the characteristic behavior of valence orbital energies 

of the Eu and COT portions which exhibit strong dependency on the cluster size and the 

relative positions. The experimental photoelectron spectra are assigned in comparison with 

the DFT calculations and also with the spectra of barium(Ba)-COT. Furthermore, the physical 

origin of the characteristic behavior of the valence orbital energies is revealed with simple 

point charge models. Using the point charge models, the vertical detachment energies (VDE) 

of the one-dimensional polymer [ ]−
∞Eu(COT)  are easily estimated. Finally, one-dimensional 

potential curves are depicted, based on the linear synchronous transit (LST) paths [3.33] to 

investigate the energetic relations among the anion and neutral clusters. 
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3.2. Computational Method 

All the DFT calculations were carried out with the B3LYP functionals [3.34] built in the 

Gaussian 98 program package. [3.35] Throughout this paper, bond lengths are given in 

angstrom (Å), and energies in eV. A molecular axis (z-axis) is defined as a line passing 

through Eu and the center of gravity of the COT ligand. The eight π molecular orbitals on a 

COT ligand are denoted, based on their symmetries, as nondegenerate Lσ, doubly degenerate 

Lπ, Lδ, Lφ, and nondegenerate Lγ, therefore the valence electronic configurations of COT2− 

and COT− are Lσ
2Lπ

4Lδ
4 and Lσ

2Lπ4Lδ3, respectively. The geometric structure of the aromatic 

ground state COT2− is D8h. For COT−, several isomeric structures with symmetries of D4h and 

D8h, have been reported. [3.36,37] Valence electronic configurations of the ground states of 

Eu2+, Eu+ and Eu are 4f 7, 4f 76s1, 4f 76s2, respectively, in which the 4f electrons always have a 

half-filled shell structure with a core-like character. 

As reported previously, [3.29,30] the charge distribution for the Eu-COT clusters consists of 

Eu2+ cations and COT2− anions. Based on the above mentioned configurations of Eu, which 

have a core-like character of 4f 7, and the charge distribution model of Eun(COT)n, three 

different combinations of basis sets and ECPs were applied: 4f CORE-A, 4f CORE-B, and 4f 

VALENCE. In 4f CORE-A, the 4f core ECP and (7s6p5d)/[5s4p3d] basis set of the 

Stuttgart/Cologne group [3.38] for Eu and the D95 basis set [3.39] for COT were chosen. In 

4f CORE-B, to see the effect of polarization and diffuse functions for COT2−, the D95 basis 

was replaced by the 6-31+G(d) basis set [3.40]. In 4f VALENCE, the 4f valence ECP and 

(12s11p10d8f)/[5s5p4d3f] basis set of the Stuttgart/Cologne group were employed for Eu 

[3.38] and 6-31+G(d) for COT. 
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3.3. Results and Discussions 

3.3.1. Photoelectron Spectra 

Hosoya et al. have measured photoelectron spectra of Eun(COT)n
− (n=1-4) to gain detailed 

information about their electronic structure. 

Fig. 3-1 Experimental photoelectron spectra for (n, n)－ (n=1-4) at the photon 
energy of 355nm (3.49eV) and calculation results with ∆DFT shown by vertical 
lines. Symbols M and C(1)  represent the M and C(1) peaks from the X－ state, 
and symbol H denotes the H peak from the A－ state as described in section 4.3. 
The M peak shifts to the higher energy side with the cluster size, and the C(1) 
and H peaks are almost independent of the cluster size.
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Fig. 3-1 and 3-2 show the spectra with the third harmonic (355 nm; 3.49 eV) and the fifth 
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harmonic (213 nm; 5.83 eV) of a Nd3+: YAG laser, respectively. In the spectra, the horizontal 

axis corresponds to the electron binding energy, Eb, defined as Eb = hν – Ek where Ek is the 

kinetic energy of the photoelectron. 

Fig. 3-2 Experimental photoelectron spectra for (n, n)－ (n=1-4) at the photon 
energy of 213nm (5.83eV) and calculation results with vertical lines, which are 
obtained by Koopmans’ theorem with the UHF orbital energies. Symbol C(i) 
stands for the detachment from each COT(i) in the X－ state as described in 
section 4.3. The number of C(i) peaks increases according with the cluster size.
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In Fig. 3-1, two significant peaks are found: the first one shifts to the higher energy side 

with the cluster size (M peak) and the second one is almost independent of the cluster size 

(C(1) peak). In the spectra of n≥2, the weak hot band is also observed around the binding 

energy of 1.0 eV (H peak). In Fig. 3-2, successive peaks are observed where the number of 
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peaks increases according with the cluster size (C(i) peak). 

To assign the photoelectron spectra and explain the physical origin of their characteristics, 

the theoretical studies on geometric and electronic structures of Eun(COT)n
− will be discussed 

in the following sections. 
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3.3.2. Optimized Geometry, 

Charge Distribution and Localized Molecular Orbitals 

Fig. 3-3 Formal charge distribution and optimized geometry parameters (Å) for the X－ and A－

electronic states of (n, n)－ (n=1-4) calculated by three different treatments. For n=1-3, the optimized 
parameters of 4f CORE-A and -B are shown and inside of parenthesis are the parameters of 4f
CORE-A. For n=4, optimization was carried out only with the 4f CORE-A. For the X－ and A－ states 
of n=1, optimized parameter calculated by 4f VALENCE are also shown. The black, dotted and 
white circles denote neutral, +1 and +2 charged metals, and dotted and white plates denote －1 and 
－ 2 charged COT ligands, respectively. Assumed geometric structures and their parameters for the 
X- and A- state of [Eu(COT)]∞ － are ra(X－)=2.181, rb(X－)=2.475, ra(A－)=2.454, rb(A－)=2.220.
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Fig. 3-3 shows the formal charge distribution, together with the optimized distances 
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between the metal and the center of gravity of the COT carbon ring. The formal charges are 

easily determined by counting the number of electrons among the valence orbitals, namely the 

6s and Lδ orbitals, since each orbital is well localized on Eu or COT, as discussed later. In this 

figure, the black, dotted, and white circles denote neutral, +1, and +2 charged metals, and 

dotted and white plates denote −1 and −2 charged COT ligands, respectively. As lower-lying 

electronic states, the author found two different doublet states (with 4f core ECP), that the 

author calls the X− and A− states. The A− state arises by a one-electron transfer from the left 

end COT2− to the right end Eu+ ion in Fig. 3-3(a). 

Interestingly, computational results showed that exposed metal atom carried a charge of +1 

and 0 in the X− and A− states respectively, and the COT− ligand was always the exposed 

ligand in the A− state, as shown in Fig. 3-3. Moreover, the A− state was an excited state, 

namely higher than the X− state in energy, in all the cluster sizes studied. Additional details 

will be discussed in Section 3.3.5. 

The optimized distances between Eu and COT in Fig. 3-3 show a very small basis set 

dependency, namely the maximum deviation between CORE-A and -B was about 0.03 Å for 

n=1-3. The geometry optimization with 4f VALENCE performed only for n=1 shows a 

slightly larger deviation yet less than 0.1 Å in the distance between Eu and COT. 

The geometries of the X− and A− states are specified with two kinds of distances, ra and rb as 

shown in the lower part of Fig. 3-3. ra is the bond distance between an Eu2+ and the left-hand 

neighboring COT, and rb is the one between an Eu2+ and the right-hand neighboring COT. It is 

interesting to point out that in the X− state, ra < rb, namely, ra is about 2.1-2.2 and rb is about 

2.4-2.6, while the opposite is true in the A− state, where ra is about 2.4-2.6 and rb is about 2.2. 

It is assumed that the polymer [ ]−
∞Eu(COT)  takes a single set of the parameters in the X− 

state, ra(X−)=2.181 and rb(X−)=2.475, which are the averaged values of those for n=4. For the 
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A− state, ra(A−)=2.454 and rb(A−)=2.220 were assumed in a similar manner. 

Table 3–1. Optimized C–C bond distances (Å) of the COTs in the X– and A– states.a,b

1.431 (1.431)1.432 (1.432)1.430 (1.433)1.397 (1.455)A(4,4)–

–––––1.420 (1.421)1.419 (1.423)1.386 (1.446)B
–––––1.430 (1.431)1.430 (1.433)1.397 (1.455)A

(3,3)–

––––––––––1.417 (1.423)1.386 (1.445)B
––––––––––1.427 (1.433)1.397 (1.454)A

(2,2)–

–––––––––––––––1.383 (1.444) 
1.383d (1.444)dB

–––––––––––––––1.394 (1.454)A
(1,1)–

C-CC-CC-CC-C4f CORE(n,n)–

COT(4)COT(3)COT(2)COT(1)
A– state c

1.4321.4321.4311.430A(4,4)–

–––––1.4211.4211.420B
–––––1.4311.4311.430A

(3,3)–

––––––––––1.4211.420B
––––––––––1.4311.430A

(2,2)–

–––––––––––––––1.420 (1.419)dB
––––––––––––––1.430A

(1,1)–

C-CC-CC-CC-C4f CORE(n,n)–

COT(4)COT(3)COT(2)COT(1)
X– state

a For n=1-3, the optimized distances are calculated by the 4f CORE-A and -B, and for n=4, they are calculated 
only by the 4f CORE-A.
b COT(i) denotes i th COT counted sequentially from the left in Figure 3-3.
c In the A– state, because of the C4v structure, two kinds of C-C bond lengths are distinctively shown, longer 
being in parenthesis.
d The optimized distances are calculated by the 4f VALENCE.

 

Table 3-1 summarizes the optimized C-C bond distances of the COT ligands in the X− and 

A− states to focus on the geometry of each COT. Here, COT(i) denotes the i th COT counted 

sequentially from the left in Fig. 3-3 and Eu(i) denotes also the i th Eu from the left. 

Geometry optimizations for the X− state with both 4f CORE-A and -B for n=1-3 and with 4f 

CORE-A for n=4 yielded C8v structures with all of the C-C distances are about 1.42 Å. For the 

A− state, the optimizations led to C4v structures, in which only COT(1), with the formal charge 
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of −1, has a largely distorted C4v structure due to the Jahn-Teller effect and has the two kinds 

of C-C distances of about 1.39 and 1.45 Å, whose average value is again 1.42 Å. It is noted 

that, as the position number i increases, the symmetry of COT(i) becomes closer to C8v, 

reflecting their formal charge of −2. All of the C-H bond distances were 1.09 Å. 

The frequency analysis was also carried out for each state of n=1-3 with 4f CORE-A. For 

n=1 and 2, the optimized geometries for the X− and A− states were both stable structures. For 

n=3, while the X− state was stable, a doubly degenerate imaginary frequency of 8.89 cm−1 was 

obtained for the A− state along a lateral motion from the z-axis. However, the energy lowering 

from the C4v structure was only 0.26cm−1, thus the geometries restricted to the C4v structure 

for the A− state of n=3 were used in the following calculations. For n=4, the optimization was 

performed only with 4f CORE-A, assuming the C8v and C4v structures for the X− and A− states, 

respectively. Based on these results, the optimized structures with 4f CORE-B except for n=4, 

for which those with 4f CORE-A, will be used for the rest of discussion, unless otherwise 

stated. 

To see the charge distribution, the Mulliken charge calculated by 4f CORE-A with the 

formal charge in Fig. 3-4 are compared. Here, it is found that formal charges of +2, +1, and 0 

of Eu correspond approximately to 0.8, 0.2 and −0.4 of the Mulliken charges, respectively. 

Similarly, formal charges of −2 and −1 of COT correspond to −1.0 and −0.6 of the Mulliken 

charges, respectively. Moreover, it is noticed that this correspondence always holds 

irrespective of the cluster size and the electronic state. Although the formal charge in the point 

charge models, to be discussed later, is different from the Mulliken charge quantitatively, it 

reflects the qualitative tendency of the charge distribution. 
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(a) X− state
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(b) A− state
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0.825 0.948 -0.395
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-0.350
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Fig. 3-4 Mulliken population analysis with 4f CORE-A and formal charge distribution for (a) X－

and (b) A－ states of (n, n)－ (n=1-4).  

Lastly, Fig. 3-5 presents the Kohn-Sham orbitals of the HOMO, the second and the third 

HOMO of n=2 in the X− state, plotted using the Molekel program. [3.41] 

These orbitals are well localized on each portion, namely the HOMO is on Eu(2) and the 

second and the third HOMO are on COT(1) and COT(2), respectively. Note that the latter two 

orbitals have the same δ symmetry. Interestingly, the HOMO is strongly polarized away from 

the surrounding COT2− due to their repulsive interaction as also observed in the monohalides 

of alkali-earth and Ln. [3.42] These characteristics were seen for all of the cluster sizes of 

n=1-4, both for the X− and A− states. Based on the orbital localization and ionic charge 

distribution of Eun(COT)n
−, it is concluded that these clusters have a strong ionic bonding. 
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(a) HOMO

(b) 2nd HOMO

(c) 3rd HOMO
Fig. 3-5 The HOMO (a), second (b) and third HOMO (c) for the X－ state of (2, 2) 
－. Each MO is essentially localized on the Eu atom and COT ligands, 
respectively.  

3.3.3. Valence Orbital Energy and Detachment Energy. 

Hartree-Fock Orbital Energy 
Before calculating the theoretical vertical detachment energy (VDE), the valence orbital 

energies are estimated to consider possible detachment channels. For this purpose, the 

Hartree-Fock (HF) orbital energies, which are easily related to VDE with Koompans’ theorem, 

are more meaningful than the Kohn-Sham orbital energies. Thus, the UHF orbital energies 
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with 4f CORE-B are first calculated and their valence orbital energies are summarized in Fig. 

3-6. Here, 6s(X−) and 6s(A−) denote each 6s orbital of the terminal Eu+ and Eu in the X− and 

A− states respectively, and Lδ(COT(i)) denote the Lδ orbital localized on each COT(i) in the 

X− state, as shown in Fig. 3-6(b). 

It is noticed that the orbital energy of 6s(X−) decreases with the cluster size, however, that 

of 6s(A−) is almost constant. The energy of Lδ(COT(1)) is almost independent of the cluster 

size. In addition, in a specific cluster size n, the orbital energy of each Lδ(COT(i)) shows a 

critical dependence on its position in the clusters, namely, it becomes lower as going to the 

right (as the position number i increases). In Section 3.3.4, the origin of the characteristics of 

these valence orbital energies will be revealed. 

(a) HF orbital energy diagram
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Fig. 3-6 (a) Energy diagram of the valence orbitals (eV) and the corresponding label 
for detachment peaks. All results are calculated by the UHF method with 4f CORE-B 
and the optimized distances given in Table 1 and Figure 3. (b) Label of each 
molecular orbital: 6s(X－,A－) denotes the 6s orbital of the terminal Eu in the X－ and A－

states, and Lδ expresses the one of each COT in the X－ state. COT(i) denotes i th
COT counted sequentially from the left in this figure.  

Further, to investigate the 4f orbital energy and the dependency on the ECPs, the UHF 

orbital energies for the X− state by using 4f VALENCE with the highest spin-multiplicity of 9 

and 16 for n=1 and 2 were calculated, respectively. Table 3-2 summarizes and compares the 

6s, Lδ, Lπ, and 4f orbital energies calculated by 4f VALENCE and 4f CORE-B. 
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In spite of the different ECPs and basis sets for Eu, the 6s, Lδ, and Lπ orbital energies 

calculated with these two methods are in agreement with each other within a maximum 

deviation of 0.17 eV. The orbital energies of 4f in Table 3-2 are much higher than those of the 

bare Eu+ and Eu2+ cations due to the strong ligand field by the surrounding COT2−. [3.42,43] 

Moreover, they split to one 4fσ and doubly degenerate 4fπ, 4fδ, and 4fφ components within 

0.25 eV in the C8v structure. The magnitude of the splitting pattern of 4f is significantly 

different from that of the 5f orbitals of actinocenes. [3.44-46] Since the 5f orbitals are more 

extensive than the 4f orbitals and their energies are higher than the HOMO (Lδ) of COT, the 

interactions between the 5f orbitals and COT ligands are much stronger. On the other hand, 

because the compact 4f orbitals of lanthanide are lower in energy than that of the inner 

orbitals of COT, the splitting energies are smaller, and the splitting pattern is expected to 

depend strongly on their local charge. 

Although no calculations with other spin-multiplicities were performed, because of the 

small splitting energies of the 4f orbitals and the reasonable agreement in the other valence 

orbital energies, it is considered that the 4f shell can be treated as core, unless the 

photodetachment of a 4f electron is explicitly examined. In that case, as shown later, 

Koopmans’ theorem overestimates the VDE very much, and the DFT method including 

orbital relaxation effects shows much better performance. An interesting point to be added 

here is that the orbital energies of 4f and Lπ also depend on their positions in the clusters. The 

reason for this dependence is similar to that of Lδ as discussed in Section 3.3.4 
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Table 3–2. Comparison of the UHF orbital energies calculated by 4f CORE-B and 4f 
VALENCE for the X– state.a,b

––––––11.2184fπ(2)

––––––11.1984fφ(2)

––––––11.1094fδ(2)

––––––11.0894fσ(2)

––––––9.7094fσ(1)

––––––9.6894fπ(1)

––––––9.5504fφ(1)––––––9.7534fσ(1)

––––––9.5124fδ(1)––––––9.6434fπ(1)

–9.436–9.266Lπ(COT(2))––––––9.6204fφ(1)

–7.581–7.572Lπ(COT(1))––––––9.5164fδ(1)

–4.257–4.142Lδ(COT(2))–7.587–7.494Lπ(COT(1))

–2.443–2.387Lδ(COT(1))–2.501–2.371Lδ(COT(1))

–2.003–2.0726s(2)–0.929–0.9166s(1)

4f CORE-B4f VALENCE4f CORE-B4f VALENCE

(2, 2)–(1, 1)–

a Calculations on the optimized geometry with 4f CORE-B shown in Table 3-1 and Fig. 3-3.
b COT(i) and 4f(i) denote orbitals on the i th COT and Eu, respectively,  counted sequentially from the left in Fig. 
3-3.  

Detachment from 6s(X−,A−) and Lδ(COT(1)) 
Having investigated the valence and 4f orbital energies, the author assigned the two 

detachment channels: firstly, the M peak to a detachment from 6s(X−), and secondly, the C(1) 

peak to a detachment from Lδ(COT(1)) as shown in Fig. 3-1 and 3-6. 

Then, the VDEs for these two channels were calculated using the more quantitative ∆DFT 

method, in which the VDEs were evaluated from the difference in the DFT total energies of 

Eun(COT)n
− and the corresponding one electron detached neutral states at the anion 

equilibrium geometry. First, the dependency of the calculated VDEs on the three 

computational methods, 4f CORE-A, -B, and 4f VALENCE were investigated. It is found that 
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the differences between 4f CORE-A and -B for the M and C(1) peaks of n=1-4 are less than 

0.1 eV, and those between 4f CORE-B and 4f VALENCE for the two peaks of n=1 are also 

less than 0.1 eV. Therefore, in the following discussion, only the calculation results with 4f 

CORE-B will be used. 

In Figs. 3-1 and 3-2, the calculated VDEs with 4f CORE-B are presented as solid sticks 

along with the experimental spectra. The calculated values for the two peaks M and C(1) in 

Fig. 3-1 are in a fair agreement with the experiment at 355 nm. Especially, they reproduce the 

characteristic behavior; the first peak shifts to the higher energy side as the cluster size 

increases, while the second peak is independent of the cluster size. 

As for electron detachment from the excited A− state, two detachment channels are also 

expected: firstly, from 6s(A−) (H peak), and secondly, from the COT2− ligands. For each 

cluster size, the calculated VDEs are obtained for the H peak near 0.9 eV and for the second 

peak near 3.0 eV. Because this second peak of the A− state would overlap with the broad C(1) 

peak of the X− state, it is experimentally difficult to identify the second peak distinctly from 

these two peaks. On the other hand, the H peak can be observed clearly for cluster size n≥2 as 

in Fig. 3-1. Although the H peak for n=1 might be overlapped with the M peak, the weak peak 

near 0.9 eV can be assigned to the detachment from 6s(A−) of the excited A− state, and its 

weak intensity reflects an evidence for the minor production of the A− state. In fact, Hosoya et 

al. reported that the intensity ratio between the H and M peaks depended on the source 

conditions such as stagnation pressure for He carrier gas; the lower stagnation pressure gave 

the H peak intensity stronger relative to that of the M peak. Note that the H peak becomes 

prominent with cluster size, which seemingly corresponds to the smaller energy difference 

between the X− and A− states in larger clusters. This point will be discussed further in Section 

3.3.5 
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Detachment form each Lδ(COT(i)) orbital 

Next, the author considers electron detachment from each Lδ(COT(i)) in the X− state (C(i) 

peak). The VDEs were calculated using the UHF orbital energies in Fig. 3-6 and Koopmans’ 

theorem instead of the ∆DFT method, because the latter method cannot yield excited states 

with the same symmetry as the lowest state due to the convergence problem practically and 

the Hohenberg-Kohn theorem conceptually, namely, each state obtained by the electron 

detachment from these Lδ orbitals belongs to the same symmetry. The results are compared 

with the experimental spectra taken with the photon energy of 213nm (5.83eV) in Fig. 3-2. 

The calculation also reproduces the characteristic peaks qualitatively. The successive peaks 

whose number is equal to that of the COTs can be assigned to detachment from each 

Lδ(COT(i)). 

Detachment from 4f orbitals 
Let us consider the electron detachment from the 4f orbitals in the X− state. A peak around 

3.7 eV was found in both the spectra of n=1 and 2 of Fig. 3-2. (That for n=2 appears as a 

shoulder.) Fig. 3-7 shows the photoelectron spectrum for Ba-COT cluster anions of 

Ba2(COT)2
− together with that for Eu2(COT)2

− at 213 nm measured by Hosoya et al. Since a 

Ba atom has an electron configuration of [Xe]4f 06s2, it is expected that Ba-COT forms an 

identical sandwich cluster with Eu-COT without 4f electrons, where a Ba atom takes a Ba2+ 

state in the clusters. In fact, Hosoya et al suggested that the mass distributions of anionic and 

neutral Ba-COT are very similar to those of Eu-COT; the successive series of (n, n+1), (n, n), 

and (n, n−1) clusters for Ba-COT appear prominently. [3.47] The abundance of Ba1(COT)1
− 

was too small to measure the photoelectron spectrum. As expected from the identical ionic 

distribution between Eu-COT and Ba-COT, both give almost the same EA and similar overall 
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features as shown in Fig. 3-7, while there is apparently an additional photodetachment 

contribution of 4f orbitals around 3.5-4.0 eV in the spectra of Eu2(COT)2
−. 

0 1 2 3 4 5

Ba2(COT)2
−

Electron Binding Energy / eV

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Eu2(COT)2
−

4f : 3.71

C(2)M C(1)

Fig. 3-7 The photoelectron spectrum for Ba2(COT)2 
－ together with that for 

Eu2(COT)2
－ at 213 nm. There is apparently an additional photodetachment 

contribution of 4f orbitals around 3.5-4 eV in the spectra of Eu2(COT)2
－. The spectral 

envelopes in the 213 nm spectra were deconvoluted into a train of components by 
gaussian functions. For Eu2(COT)2

－ at 213 nm, one additional peak appears at 3.71 
eV as labeled by a downward arrow.  

To assign the position of the electronic transition clearly, the spectral envelopes in the 213 

nm spectra were deconvoluted into a set of component Gaussian functions as indicated by the 

curves in Fig. 3-7. For Eu2(COT)2
− at 213 nm, one additional peak appears at 3.71 eV, as 

labeled by a downward arrow in Fig. 3-7. 

With the ∆DFT method, the final neutral states were calculated with one hole in the 4fφ(1) 

as the initial guess, VDEs were obtained for n=1 and 2 as 4.256 eV and 4.313 eV, respectively. 

Especially for n=2, the converged hole state was not localized in 4f(1), but delocalized in both 

4f(1) and 4f(2). Therefore, the experimental peak around 3.7 eV is due to a detachment 

channel from the delocalized 4f orbitals. Since the 4f orbitals are very compact, the 
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detachment of a 4f electron causes a very large shrinking of other outer orbitals and stabilizes 

the final neutral state significantly. By this reason, the VDE calculated for the detachment of 

4f electron with ∆DFT becomes much smaller than that predicted with Koopmans’ theorem 

given in Table 3-2. It is noted that this type of large orbital relaxation upon photoionization 

from a compact sized orbital was observed previously in the (3dσ)−1 ionization channel of 

VnBzn+1. [3.7] From these results, it seems plausible to assign the peak around 3.7 eV to the 4f 

−1 channel, although the photoelectron spectrum for the Ba1(COT)1
− cannot be measured. 

The source of the difference (about 0.6 eV) between the experimental and calculated VDEs 

for the 4f −1 channel is attributable to the ECP or the DFT method, because the ∆DFT method 

with the 4f VALENCE treatment overestimates the ionization energies for the 4f −1 channel of 

the Eu+ and Eu2+ cations by about 1 eV. Therefore, the ∆DFT results for the 4f −1 channel for 

n=1 and 2, with an overestimation of about 0.6 eV, are reasonable within this calculation error. 

For more detailed analyses, it would be necessary to calculate with other theoretical methods. 

Although this remains as a future study, the detachments from the 6s and COT(i) were not 

affected very much by the explicit inclusion of 4f orbitals, therefore the characteristic 

behavior of these detachments will be studied in the next section. 

3.3.4. Point Charge Model. 

Using the HF orbital energies in Fig 3-6, it is noticed that Koopmans’ theorem is able to 

explain the cluster size dependences of the M, C(i), and H peaks. The variation of the HF 

orbital energies can be divided into kinetic and potential energy parts. For the relevant valence 

orbitals, it is observed that the kinetic energies showed very weak cluster size dependences, 

since each molecular orbital is largely localized and does not change their shape significantly 

as shown in Fig. 3-8. It is therefore considered that the origin of the variation of the orbital 
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energy is due to the potential part, especially the intracluster electrostatic potential. 

Fig. 3-8 Hartree-Fock orbital energy and its potential part  <V> and kinetic energy part <T>. 
(a) 6s orbital of Eu+ in the X- state. (b) Lδ orbital of COT(1) in the X- state.

(a)  6s orbital of Eu+ in the X− state (b)  Lδ orbital of COT(1) in the X− state
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Here, two point charge models are developed reflecting the strong ionic bonding of the 

Eun(COT)n clusters. In a model, only the electrons belonging to a metal atom or COT ligand 

are explicitly treated, from which photodetachment takes place, and the remaining Eu metals 

and COT ligands as point charges distributed as in Fig. 3-3. Then, the DFT calculation was 

performed for one Eu atom or one COT molecule with the surrounding point charges with the 

CHARGE keyword in the Gaussian program package, and calculated VDEs by the ∆DFT 

method with thus calculated energies. This method is referred to the “Point Charge+DFT” 

method. 

As another model, using classical electrostatic formula, the electrostatic potentials which 

are created by the surrounding point charges iQ  at ir  are evaluated namely, 

∑
= −

=
1

)(
i i

ia
class

QV
rr

r   (3-1) 

Here, r  is a position vector at which the potential is evaluated and is the average position 

of the electron detaching from the orbital a. For ir , the optimized geometry shown in Fig. 
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3-3 is applied. The electron binding energy is the work to be done on an electron to detach it 

to infinity. Therefore the electrostatic potential can be regarded as VDE, and this method is 

called as the a
classV  method. In what follows, these two approximate point charge models 

provide us with a simple and qualitative explanation for the photoelectron spectra and reveal 

that the characteristic behavior of the M, C(i) and H peaks originates from the 

one-dimensional strong ionic bonding. 

M Peak. 
The M peak was assigned to electron detachment from the 6s orbital of Eu+ in the X− state 

(6s(X−)). Therefore, the remaining Eu2+ and COT2− ligands were approximated by +2 and −2 

point charges, respectively and placed along the z-axis using the optimized geometry, as 

shown in Fig 3-3. Then, the Point Charge+DFT method was employed. As for the )6s(X−

classV  

method, considering the spatial extent of 6s(X−) (Fig. 3-5), a position r  of the detaching 

electron was taken at 1.733Å outside that of Eu+ for all n. This value of 1.733Å comes from 

the expectation value for the position (orbital centroid) of the 6s(X−) electron for n=1. In the 

left part of Fig. 3-9 shows the results obtained by the two point charge models in comparison 

to other calculation results and experiment. Note that the absolute value of )6s(X−

classV  is shifted 

to fit with the ∆DFT calculation value at n=1. Clearly, the point charge models reproduce 

other data qualitatively in spite of their simplicity. Especially, the asymptotic behavior of 

VDE is well reproduced. Therefore, it is concluded that the characteristic behavior of the M 

peak results from the variation of the electrostatic potential felt by the detaching electron 

induced by the surrounding Eu2+ and COT2− which can be approximated as point charges. 
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(b) One-dimensionally 
aligned dipole moment

Fig. 3-9 (a) Calculation results of the point charge models for the M peak of (n, n) － (n=1-4) in 
comparison with other calculations and experimental data. (b) Schematic diagram for the 
Coulombic interaction between the detaching electron for the M peak and dipole moments which 
align one-dimensionally in the same direction. 
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Now, the relation between the cluster size and the variation of the electrostatic potential is 

considered. As schematically shown in the right part of Fig. 3-9, viewing from Eu+, the 

increase of the cluster size corresponds to the attachment of a pair of +2 and −2 point charges 

to the left side of the cluster: this pair is regarded as an electric dipole. The Eu-COT cluster 

has the one-dimensional structure, so that the dipoles align one-dimensionally in the same 

direction on increasing the cluster size. Therefore, the increase of the cluster size can be 

regarded as the stacking of dipoles on the left side of the cluster. Each dipole stabilizes the 

detaching electron in Eu+ by an energy that is inversely proportional to the square of the 

distance between the detaching electron and the attached dipole. The sum of such stabilization 

energies converges asymptotically to a constant value with n. An asymptotic convergence is 

observed as a characteristic behavior of the M peak and reflects the one-dimensional ionic 

bonding structure of the Eun(COT)n
− clusters. 
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C(i) and H Peaks. 
In a similar manner, the point charge models can be applied to the C(i) and H peaks. As 

mentioned before, the C(1) peak is always assigned to the electron detachment from COT(1)2− 

in the X− state (Lδ(COT(1))) and the H peak to the detachment from the neutral Eu(n) in the 

A− state (6s(A−)). Moreover, both peaks hardly shift on increasing the cluster size. In applying 

Eq. (3-1) to the C(1) peak, the value was calculated at the center of the COT ring. As for the H 

peak in the A− state, a value of 0.844Å was used as the position of 6s(A−) centroid.  

Fig. 3-10 Calculation results of the point charge models for the C(1) (a) and H (b) peaks of (n, n)－

(n=1-4) in comparison with other calculations and experimental data. 
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Fig. 3-10 shows the calculated results for the C(1) and H peaks in comparison to other data. 

The two point charge models also give a qualitative explanation for the size independent 

behavior of the C(1) and H peaks. Namely, the electrostatic potentials at the left end COT(1) 

in the X− state and neutral Eu in the A− state are almost independent of the cluster size. 

For the C(1) peak, let us consider the relation between the cluster size and the variation of 

the electrostatic potential in view of the left end COT(1) in the X− state with looking at Fig. 

3-3. In this case, the increase of the cluster size corresponds to the change of the right end Eu+ 

to Eu2+ and the addition of a pair of COT2− and Eu+ ; the attachment of a group of +1, −2, +1 

point charges to the right side of the cluster. Since this group is regarded as an electric 
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quadruple, the stabilization energy is inversely proportional to the third power of the distance 

between the detaching electron on COT(1) and the quadruple. Namely, the electrostatic 

potential at the left end COT(1) in the X− state is almost independent of the cluster size in 

contrast to that at the right end Eu+ (M peak). 

As for the H peak, a similar explanation can be applied, namely, viewing from the neutral 

Eu in the A− state, the increase of the cluster size corresponds to the attachment of a group of 

−1, +2, −1 point charges, which is approximated as a quadruple, to the left side of the cluster. 

Therefore, the cluster size dependence of the C(1) and H peaks is much smaller than that of 

the M peak. 

Next, the author gives a simple explanation for the strong position dependence in the orbital 

energies of COT(i) and 4f(i) in the X− state as shown in Fig. 3-6 and Table 3-2. For example, 

in the (3, 3)− cluster, the Lδ orbital energy of COT(2) is about 1.7 eV lower than that of 

COT(1), and that of COT(3) is about 1.1 eV lower than that of COT(2). Looking at Fig. 3-3 

and the lower part of Fig. 3-9, it is noticed that COT(3) is stabilized by two dipole moments 

consisting of the combination of (COT(1)2− Eu(1)2+) and (COT(2)2− Eu(2)2+), while COT(2) is 

stabilized by only one dipole moment of (COT(1)2− Eu(1)2+). Therefore, the orbital energy 

becomes lower as going to the right because of more stabilization by dipole moment stackings. 

A similar explanation is applicable to other cluster sizes, so that this gradient among the 

orbital energies of COT(i) and 4f(i) is also regarded as an interesting character in the 

one-dimensional ionic bonding cluster. 

It should be pointed out that, contrary to the X− state, the Lδ orbital energies of COT(i) in 

the A− state do not show a clear stairs-like behavior in the cluster. This is possibly because the 

A− state does not show a clear dipole chain structure, namely a significant bond alternation, as 

shown in Fig. 3-3. 
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Based on the above discussion, each VDE is estimated for the polymer [ ]−
∞Eu(COT)  using 

the assumed geometric parameter ra(X−/A−)and rb(X−/A−) for the X− and A− state, respectively, 

in Section 3.3.2 and Fig. 3-3. In the calculation, firstly the variation of each VDE from n=4 to 

n=∞ is accumulated using Eq. (3-1), and secondly the accumulated variation was added to 

the experimental data of n=4. In this way, each VDE empirically to n=∞ was extrapolated 

and values of 2.894, 2.449, and 0.972(eV) for the M, C(1) and H peaks were obtained, 

respectively. The VDE for the M peak showed a monotonous convergence, and the difference 

in the VDE between n=30 and n=∞ was 0.096 eV. On the other hand, those for the C(1) and 

H peaks converged quickly at n=4. 

Similar point charge models have been used for the analyses of, for example, chemical shift 

in core ionization energies, [3.48-50] electron affinities and ionization energies, [3.51,52] 

solvent effect in condensed phase, [3.53,54] and so on. In these cases, the point charge models 

have been used mainly for analyzing the substituent effects. In this work, the variation of the 

intracluster electrostatic potential has been studied by increasing the cluster size, and the 

characteristic behavior of the photodetachment spectra has been analyzed. Similar phenomena 

are also expected in other clusters with a strong ionic bonding, to which the point charge 

models can be conveniently applied. 

3.3.5. Relations among the X−, A− and X States. 

In this last section, the author investigates the relative energies among the X−, A− and 

neutral ground X states to consider the stability of the A− state. Recently, several groups have 

suggested that a laser vaporization or pulsed arc method generates clusters in metastable 

structures. [3.12,55] Therefore, it is very interesting to look at the energy and structure 
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relations between the X− and A− state theoretically. The adiabatic excitation energies from X− 

to A− of n=1-4 were calculated as 1.569, 1.413, 1.384 and 1.382 eV, respectively. 

Fig. 3-11 One-dimensional potential curves of the X－ and A－ states alone the linear 
synchronous transit path connecting the minimum structures of these two states for n=1,2, 
and those for the X and A－ states, for n=1,2.
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To investigate possible relaxation mechanisms from the metastable A− state, 

one-dimensional potential energy curves were calculated for the X− and A− states of n=1 and 2, 

as shown in the upper part of Fig. 3-11. Here the potential energy is relative to the minimum 

energy of the X− state. RX−min and RA−min represent the optimized nuclear structure for the X− 

and A− state, respectively. The reaction path is an artificial one on which all the structural 

parameters are assumed to change linearly from RX−min to RA−min using the linear synchronous 

transit path [3.33] in the cartesian coordinates and was calculated with 4f CORE-B. Clearly, 
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the A− state is higher in energy than the X− state at all the coordinates. 

The relative energy between the A− and the neutral X state is also investigated along a 

similar artificial reaction path between RXmin and RA−min, and the potential curves were shown 

in the lower part of Fig. 3-11. The neutral X state is the final state of the one-electron 

detachment from the terminal Eu+ in the X− state as discussed in Chapter 4. [3.56] As for the 

A− and X state potential curves of n=1, the minimum energy of the A− state is higher than that 

of the X state and these potential curves show a crossing, therefore there is a low barrier on 

the reaction path from A− to X. A magnitude of the barrier is only about 600 cm−1. On the 

other hand, for n=2, the minimum energy of the A− state is lower than that of the X state and 

the reaction barrier from RA−min to RXmin is about 1 eV which is much larger than that of n=1. 

From these calculation results, two possible relaxation processes can be considered from the 

A− state: (i) radiative relaxation to the X− state with fluorescence, A−→X−+hν, (ii) 

nonradiative autodetachment to the X state, A−→X+e−. In the A− state, the electronic 

configurations of the COT− and neutral Eu metal portions are Lσ
2Lπ

4Lδ
3 and 4f 76s2, 

respectively and those in the X− state are Lσ
2Lπ

4Lδ
4 and 4f 76s1, respectively, so that the 

process (i) is equivalent to the one-electron transition from the 6s to Lδ orbital. Because these 

orbitals have different symmetries of σ and δ with respect to the molecular axis, this σ to δ 

transition is forbidden. Therefore, the radiative relaxation process (i) cannot take place 

effectively. The process (ii) can be considered as a simultaneous process consisting of an 

electron transfer from 6s to Lδ and an electron detachment from 6s. The theoretical estimate 

of such an autodetachment lifetime is possible using, for example, the complex coordinate 

method [3.57], but the efficiency of the process can be simply discussed by comparing the 

potential curves alone. Note that the autodetachment can take place only in the nuclear 

configurations where the A− state is less stable than the X state. Therefore, from the lower part 
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of Fig. 3-11, the autodetachment probability in n=1 is expected to be larger than that in n=2 

because the former has a smaller reaction barrier to arrive at the nuclear configurations where 

the autodetachment becomes possible. In the spectra of n=1 in Fig. 3-1, the H peak is close to 

the M peak, so that it would be difficult to verify the preparation of the A− state 

unambiguously. On the other hand, the small H peaks can be observed in the spectra for the 

A− state of n=2 or larger. This experimental observation is consistent with the theoretical 

analysis above, since once the A− state is prepared, it relaxes neither to the X− nor X state 

efficiently and it is stable enough to be detected. 

3.4. Conclusions 

In this chapter, the author has studied the geometric and electronic structures of the 

Eun(COT)n
− anion clusters based on the photoelectron spectra and the DFT method. The 

geometry optimization for the anions with 4f core ECP and basis set gave two lower-lying 

states, the ground state X− as a dominant product and the excited state A− as a minor product 

in the experiment, both of which have a one-dimensional structure and strong ionic bonding. 

The combined experimental and theoretical study made it clear that in the X− state, the orbital 

energies of 6s largely decrease with the cluster size and those of the Lδ orbitals on COTs have 

a stairs-like behavior in the clusters, in which the highest step has an almost constant energy 

independent of the cluster size. In the A− state, the 6s level had a negligible cluster size 

dependence and the Lδ orbitals on COTs showed no stairs-like behavior, in a sharp contrast 

with that in the X− state. All this characteristic behavior was interpreted by the position 

sensitive intracluster electrostatic potential evaluated by the simple point charge models 

To investigate the detachment channels from the 4f orbitals, the author suggested to 

measure the photoelectron spectra of Ba-COT and performed the DFT calculation with the 4f 
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valence ECP and basis set. The peaks of n=1 and n=2 around 3.7 eV were assigned to the 4f −1 

channel. 

With the point charge models, the VDEs for [ ]−
∞Eu(COT)  were estimated as 2.894, 2.449, 

and 0.972 (eV) for the M, C(1) and H peaks, respectively. Such a polymer is interesting as a 

one-dimensional conductor, since it would have stairs-like orbital energies, and electrical 

conductivity may arise due to the positively charged soliton generated by electron detachment 

from the deeper Lδ orbitals. [3.58] In addition, such polymers may show the characteristic 

energy transfer behavior due to the dipole chains. [3.59-61] 

Lastly, the author summarized the energetic relations among the X−, A− and X states using 

the linear synchronous transit paths, and concluded that the A− state can be observed 

experimentally because of inefficient relaxation processes to the ground X− and X states. In 

the next Chapter 4, the author will present the ionization energies of the X state which also 

shows size dependence due to the strong ionic bonding and one-dimensional structure. [3.59] 

For the V-Bz cluster, Yasuike et al. have previously found a significant cluster size 

dependence in the valence orbital energies, and their origin was due to the delocalization of 

the dδ orbitals of V through the benzene LUMOs. In this study of Eu-COT, the author has also 

found a similar size dependence, however, it was proved to be due to the very strong 

intracluster electrostatic potential caused by the strong ionic bonding. All of the results 

indicate that the unique electronic structure of Eun(COT)n
− is due to the one-dimensional 

structure. In other words, the characteristic feature observed experimentally is a clear 

evidence of the one-dimensional strong ionic bonding of the clusters. 
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Chapter 4. 

Ionization Energies and 

Electron Distribution of Eun(C8H8)n 

Abstract 

The ionization energies of Eun(COT)n (n=1-4) were found to decrease asymptotically with 

the cluster size. The low-spin state X and the high-spin state a were characterized with DFT 

calculations; their adiabatic energy difference was found to decrease with the cluster size. The 

calculated ionization energies of the X states reproduced the experimental size dependence. 

Those of the a states also agreed except for n=1. These features were explained by the 

significant variation of the electrostatic potential at ionization sites. The state-specific 

permanent dipole moments were calculated to clarify the difference in the electronic states. 
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4.1. Introduction 

Most lanthanide (Ln) compounds have oxidation state of Ln3+ and strong ionic bonding 

characters, which are responsible for their unique properties. [4.1,2] For example, theoretical 

studies by Dolg et al. showed that Ln(COT)2 (Ln=Ce, Nd, Tb, and Yb, 

COT=1,3,5,7-cyclooctatetraene) approximately consist of Ln3+ central ions pinched with two 

COT1.5− rings. [4.3] Kurikawa et al. measured the electron binding energies and the adiabatic 

ionization energies (Ei’s) of larger Lnn(COT)m (Ln=Ce, Nd, Eu, Ho, and Yb). [4.4] 

Particularly, they found that the full sandwich clusters Lnn(COT)n+1 (n≤5) of Ho and Nd show 

a strong size dependence of Ei’s, while those of Eu and Yb were almost independent of the 

size, and attributed the different behavior to the difference in the preferable oxidation state, 

namely that the latter two metals prefer Ln2+ in the gas phase ionic clusters. 

Recently, Nakajima and co-workers have found the preparation of larger size 

multiple-decker sandwich clusters of Eun(COT)m, and considered that the growth process 

follows the sequential harpoon mechanism. [4.5] Since the one-end open sandwich clusters, 

Eun(COT)n hereafter abbreviated as (n, n), are key intermediates in this mechanism,  

accurate determination of their Ei’s and the charge distribution is of crucial importance. 

In this chapter, the author discusses the experimental Ei’s of (n, n) which show the 

characteristic decrease with the cluster size and provides a theoretical analysis of its origin 

with a focus on the charge distribution. Their permanent dipole moments are also discussed in 

connection with the critical dependence on the geometric structures and charge distributions 

of these clusters. 
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4.2. Computational Method 

All the DFT calculations were carried out with the B3LYP functionals [4.6] built in the 

Gaussian 98 program, [4.7] employing two basis sets. In Basis-A, the 4f core ECP and 

(7s6p5d)/[5s4p3d] basis set of the Stuttgart/Cologne group [4.8] were chosen for Eu and D95 

[4.9] for COT. In Basis-B, D95 was replaced by 6-31+G(d) [4.10]. 

4.3. Results and Discussions 
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Fig. 4-1 Photoionization efficiency curves for Eun(COT)n ( n=1-4 ). Solid downward 
arrows show the adiabatic ionization thresholds. Number in parentheses indicate 
experimental uncertainties; 6.12(5) represents 6.12±0.05.  
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Fig. 4-1 shows the PIE curves for (n, n) (n=1-4). The experimental Ei’s exhibit a 

characteristic asymptotic decrease with n. 

4.3.1. Geometric and electronic structures 

It is convenient to define a molecular axis (z-axis) as a line passing through Eu and the 

center of gravity of COT. The eight π orbitals on a COT are classified with the symmetry as 

nondegenerate Lσ, doubly degenerate Lπ, Lδ, Lφ, and nondegenerate Lγ. The neutral COT has 

the valence electronic configuration of Lσ
2Lπ

4Lδ
2 with two holes, while the ground state of Eu 

is 4f 76s2 with two weakly bound electrons, therefore the bonding scheme of Eu(COT) is 

essentially an ionic bond between Eu2+ and COT2− with a large permanent dipole moment. 

This strong polarity of the monomer unit would favor the linear chain structures of the (n, n) 

clusters and give rise to a strong electric field in the cluster, as shown in Fig. 4-2. 

COT(1) COT(2) COT(3)

Eu(1) Eu(2) Eu(3)

Fig. 4-2 Linear dipole chain structure of Eun(COT)n. The white circles and plates 
denote +2 charged metals and dotted and -2 charged COT ligands, respectively.
The arrow denotes a dipole moment composed of COT2- and Eu2+

 

In this figure, an arrow represents a dipole moment composed of COT2− and Eu2+, and 

COT(i) denote the i th COT counted sequentially from the left, and also Eu(i) the i th Eu from 

the left. This electric field has a strong influence on the frontier orbitals, among which Lδ on 

the COT(1) is destabilized most and becomes HOMO, whereas the empty 6s orbital on the 

opposite terminal Eu is stabilized most and becomes LUMO. As n becomes larger, this 

electric field gets stronger and electric field may eventually exchange these two energy levels 

and prompt an electron transfer from Lδ on COT(1) to 6s on the opposite side, yielding stable 
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diradical states with these two open-shell orbitals. 
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Fig. 4-3 Optimized distances between Eu and the center of gravity of the COT carbon ring along 
with the formal charge distribution for the neutral and cation clusters calculated with Basis-B for 
n=1-3 and Basis-A for n=4. The dotted and white circles denote +1 and +2 charged metals, and 
dotted and white plates denote -1 and -2 charged COT ligands, respectively. The checked circles 
and plates reflect the characteristic delocalized molecular orbitals as shown in Fig.4-5, and the 
charges were determined as +1.30 and -1.30 for n=3, and +1.15 and -1.15 for n=4, respectively. 

(c) Cation X+ state
2.302

2.326

2.228 2.160 2.030

2.398 2.522
2.285 2.174 2.039

2.5032.364

2.239 2.045

2.460

2.119

 

The optimized geometries along with the formal charges are shown in Fig. 4-3 (a), (b), and 

(c) geometry, for the singlet X, triplet a for the neutral, and doublet X+ state for the cation, 
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respectively. Note that with the 4f-core ECP, 4f electrons are not explicitly treated and their 

spins are suppressed. The formal charges are determined from the number of electrons in the 

6s and Lδ orbitals, which are well localized except in the cases of n=3 and 4 of the X state. 

For n=1-4, the a state is a simple HOMO-LUMO excited triplet diradical state obtained 

from the closed-shell singlet state, and therefore the 6s orbital on the terminal Eu becomes the 

HOMO of the a state. The closed-shell singlet state is the ground state X only for n=1 and 2, 

and the HOMO is Lδ on COT(1). For n=3 and 4, as described above, the electric field is so 

strong that the closed-shell singlet state becomes unstable and spin- and space-symmetry 

breakings take place, and the ground electronic state X gains a singlet diradical character. 

(a) X state of (3, 3) 

β HOMO

0.001.00

α HOMO

0.700.30

α HOMO

1.000.00

α 2nd HOMO

0.001.00
(b) a state of (3, 3) 

(c) X state of (4, 4)

α HOMO

0.850.15

Fig. 4-4 Kohn-Sham orbitals of the X and a states of n=3 and that of the X state of n=4 plotted with 
the Molekel program [12], and the Mulliken population for the terminal Eu and COT. All the results 
were calculated by Basis-B. 

 

Fig. 4-4 (a) shows the α and β spin HOMOs of the X state of n=3 are localized in 6s on 

Eu(3) and Lδ on COT(1), respectively, yet to a lesser extent than the corresponding open-shell 

orbitals for the a state in Fig. 4-4 (b). In the X state of n=4, the degree of the orbital 
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localization increases as seen in Fig. 4-4 (c) and also in the increase of the S2 value, from 

0.675 for n=3 to 0.825 for n=4. In addition, the α spin orbitals of n=3 and 4 in the X state 

show unusual mixings, because of the space-symmetry breaking, between 6s and Lδ of each 

terminal Eu and COT, respectively. The Mulliken population analysis for these orbitals 

provides an estimate of the degree of the localization in the terminal Eu and COT as given in 

Fig. 4-4 and the formal charge distribution for these states in Fig. 4-3. 

Table 4-1. Optimized geometry parameters of the C-C bond length of each COT in the X, 
a and X+ state.a,b,c

1.434 (1.435)1.433 (1.433)1.432 (1.434)1.397 (1.457)A(4, 4)
–––––1.424 (1.424)1.422 (1.424)1.386 (1.448)B(3, 3)
––––––––––1.424 (1.424)1.387 (1.448)B(2, 2)
–––––––––––––––1.389 (1.449)B(1, 1)
C-CC-CC-CC-CBasis(n, n)

COT(4)COT(3)COT(2)COT(1)
X+ state

1.432 (1.432)1.432 (1.433)1.432 (1.434)1.396 (1.457)A(4, 4)
–––––1.422 (1.422)1.421 (1.423)1.386 (1.447)B(3, 3)
––––––––––1.421 (1.423)1.386 (1.447)B(2, 2)
–––––––––––––––1.385 (1.446)B(1, 1)
C-CC-CC-CC-CBasis(n, n)

COT(4)COT(3)COT(2)COT(1)
a state

1.432 (1.433)1.432 (1.433)1.431 (1.433)1.402 (1.452)A(4, 4)
–––––1.422 (1.422)1.421 (1.423)1.396 (1.438)B(3, 3)
––––––––––1.4231.421B(2, 2)
–––––––––––––––1.421B(1, 1)
C-CC-CC-CC-CBasis(n, n)

COT(4)COT(3)COT(2)COT(1)
X state

a For n=1-3, the optimized parameters are calculated by Basis-B, and for n=4, they are calculated by Basis-A.
b COT(i) denotes i th COT counted sequentially from the left in Fig. 4-4.
c Because of the C4v structure, two kinds of C-C bond lengths are distinctively shown, longer being in 
parenthesis.  

Table 4-1 summarized the optimized C-C bond distances of the COT ligands in the X, a and 

X+ states to focus on the geometry of each COT. The symmetry of the X state was C8v for n=1 

and 2, consistent with the aromaticity with the formal charge of −2 for all of COTs with the 
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optimized C-C bond lengths of about 1.42 Å. For the remaining cases, only the COT(1) has 

the open-shell configuration of Lσ
2Lπ

4Lδ
3, which causes a Jahn-Teller distortion to overall C4v 

symmetry. Their two kinds of C-C distances were about 1.39 and 1.45 Å, however, the 

remaining COTs had essentially C8v structure. [4.12,13] 

Additionally, the frequency analysis was performed for the n=1-3 cluster size with Basis-A 

and the results were summarized in Table 4-2. For the X and a states of n=1 and 2 and the X+ 

state of n=1, the above C8v and C4v structures were local minima. For other states, a 

non-degenerate imaginary frequency was obtained along a twist motion of COT (TW) and a 

doubly degenerate imaginary frequency along a lateral motion from the z-axis (LAT). 

However, all the imaginary frequencies are very small. Thus, the geometries were assumed to 

be restricted to the C4v structures for the latter states. 

Table 4-2. Calculation results of the frequency analysis for the X, a 
and X+ state with the 4f CORE-A.a NONE, TW and LAT represent 
‘no imaginary frequency’ and imaginary frequencies along the twist 
motion of COT and along the lateral motion from the z-axis, 
respectively.

13.53 (TW)7.61 (TW)
5.77 (LAT)

7.14 (TW)
5.52 (LAT)(3, 3)

8.82 (TW)7.73 (TW)NONE(2, 2)

NONENONENONE(1, 1)

X+ statea stateX state(n, n)

aThe optimized geometries of 4f CORE-A were used for analysis. The differences 
of the optimized geometries between 4f CORE-A and -B were 0.02Å or less.  

4.3.2. Ionization energies and permanent dipole moments of 

the X and a states 

Fig. 4-5 shows that the ∆DFT methods for the X state reproduce the asymptotic behavior of 

Ei’s quantitatively. The agreement of the results for the a state is also satisfactory except for 
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n=1. This is accountable because their adiabatic energies become almost degenerate, as n 

increases, as discussed below, and they have a common final state X+. These low Ei values are 

prerequisite for the sequential growth mechanism based on harpooning. In addition, the strong 

diradical character shown above for the X and a states, with radical centers localized on both 

ends, is quite reasonable for this mechanism. [4.5] 
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Fig. 4-5 Experimental ionization energies in comparison with calculation results of 
the X and a states by DDFT method. The Basis-B was applied with the optimized 
geometries of Fig. 4-3.

 

The origin of the size dependence of these Ei’s is the significant variation in the 

electrostatic potential at the ionization sites, as also discussed in Chapter 3. [4.13] 
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(a) One-end open sandwich : quadruple Qzz or dipole Dz

(b) Full sandwich : quadruple Qzz

Ionizing electron

a state of n=1-4, and X state of n=3 and 4 X state of n=1 and 2

6s

(1,  1)

(2,  2)

+2−1 −1quadruple Qzz

-1 +1

-1 -2+2 +1

Charge increment on the addition of a COT-Eu unit ; aaaaa

Lδ

+2−2 dipole Dz

-2 +2

-2 -2+2 +2

Ionizing electron
Lδ

+2−1 −1quadruple Qzz

-1 +2 -1

-2 +2 -1+2-1

Fig. 4-6 Schematic explanation for the variation of Eis : (a) one-end open sandwich and (b) full 
sandwich. Seeing from the ionizing electron, the size increase of the one-end open sandwich 
corresponds to the attachment of a quadruple or dipole moment, while that of the full sandwich 
is represented by the attachment of a quadruple moment 

 

Let us first consider the small size dependence of Ei of the a state using the formal charge 

distribution of Fig. 4-6(a). In view of the right end Eu, where the HOMO of 6s resides, the 

increase in n can be regarded as the attachment of a group of −1, +2, −1 point charges, an 

approximate quadruple moment, to the left side of the cluster, which weakly destabilizes the 

ionizing electron and results in an asymptotic decrease. 
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Next, let us consider the large decrease in Ei from n=1 to n=2 in the X state, whose HOMO 

is Lδ on COT(1). Viewing from this orbital, the increase in the size corresponds to the 

attachment of a pair of −2 and +2 point charges, namely a dipole moment, to the right end of 

the cluster, which significantly destabilizes the ionizing electron in COT(1). 

As for the small size dependence of Ei from n=3 to n=4, the electronic structure of the X 

state is the singlet diradical state, so that their Ei shows an asymptotic decrease as in the case 

of the a state. 

A similar explanation can also be made on the size independent Ei of the full sandwich 

Eun(COT)n+1. [4,14] A preliminary calculation results show that the lowest ionization occurs 

from the terminal COT with a formal charge of −1. The increase in n corresponds to the 

attachment of a quadruple moment to the opposite terminal side as shown in Fig. 4-6 (b); 

therefore the Ei shows no significant size dependence. These size dependencies can provide 

clear evidence for Eu to take the oxidation state of Ln2+ in these clusters. 

Table 4-3. Adiabatic excitation energy (ADE) ofbetween the X and a state with 
respect to the X state and and z component of their dipole moment calculated by 
Basis-A and -B. The inside of parenthesis is the results of Basis-A.

-0.124 (-0.292)9.246 / 17.477a (8.029 / 15.536a)0.031 (0.027)(4, 4)

0.095 (-0.269)11.321 / 18.938a (9.936 / 17.324a)0.066 (0.062)(3, 3)

0.167 (-0.146)21.825 (21.692)0.362 (0.331)(2, 2)

0.259 (0.655)8.482 (8.436)1.419 (1.415)(1, 1)

AX

Dipole moment (D)
ADE (eV)(n, n)

a Calculation results with the a state spin contamination projected out.  

Table 4-3 shows that the energy difference between the X and a states decreases 

asymptotically with n owing to the diradical character. Therefore, both states may coexist as 

intermediates and their distinction by the Ei’s alone seems to be difficult. To see these states 
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from another standpoint, their dipole moments were compared in Table 4-3. The theoretical 

results predict that the dipole moments of the X and a states are very large and small, 

respectively, reflecting the difference in their charge distribution and the optimized geometries. 

For example, as seen from Fig. 4-3 the charge distribution of the X state for n=2 represents 

two parallel dipoles (COT(1)2− Eu(1)2+) and (COT(2)2− Eu(2)2+), whereas that of the a state 

consists of two anti-parallel dipoles (COT(1)− Eu(2)+) and (Eu(1)2+COT(2)2−). For n=3 and 4, 

their dipole moments are still significantly different. The primary reason for this difference is 

that they have differently delocalized HOMOs, as shown in Fig. 4-4, which have a large 

influence due to the one-dimensional structure. The difference in the geometries of the X and 

a states, namely large and small bond alternation displayed in Figs. 4-3 (a) and (b) 

respectively, is also attributable to this difference. The author hopes that experimental 

measurement of the permanent dipole moments can clarify the electronic states of the 

prepared clusters. 
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Chapter 5. 

General Conclusion 

In this thesis, the author has discussed theoretical analysis and modeling on the molecular 

spectroscopy of oxygen molecule and one-dimensional lanthanide-cyclooctatetraene clusters. 

As for oxygen molecule, the electric-dipole forbidden transition −+ Σ←Σ gu XA 33 　　  in the 

Herzberg I band system was treated. To evaluate the electric transition moment, three 

theoretical intensity borrowing models, SOCI, Pert(Full) and Pert(England), were employed 

in which the spin-orbit coupling (SO) and L-uncoupling (RO) are considered as perturbations. 

In the SOCI model, the author firstly calculated SO interaction variationally, which plays 

the primary contribution to the electric transition moment, and secondly treated RO 

interaction using the first-order perturbation theory with the SO wave functions (Hund’s case 

(c) basis function) as the zero-th order basis functions. As for the Pert(Full) and Pert(England), 

both SO and RO interactions were evaluated using the first-order perturbation theory with the 

spin-free wave functions (Hund’s case (a) basis function) as the zero-th order basis. The 

difference between Pert(England) and Pert(Full) model is that the former model includes only 

one dominant perturbing state as gΠ31　  and −ΣuB 3　  among all complete basis functions. 

In comparison of each calculated electric transition moment, it was found that the SOCI and 

Pert(Full) model give almost same electric transition moment, on the other hand, the 



Chapter 5. General Conclusion 

 5-116

Pert(England) model presents largely different values from the above electric transition 

moments. Namely, the contribution of excited states other than gΠ31　  and −ΣuB 3　  cannot be 

neglected. 

To confirm an accuracy of each transition moments, the integrated rotational line strength 

and vibrational oscillator strength with the three models were calculated, and compared with 

the experiment. It is found that SOCI and Pert(Full) are able to calculate them quantitatively, 

on the other hand, Pert(England) cannot yield them even qualitatively, because Pert(England) 

cannot represent the complicated configuration interactions with highly excited states induced 

by the perturbations. Therefore, it was conclude that the interactions with highly excited states, 

which have been believed as small in the past because of the large energy separation, cannot 

be neglected at all in the case of very weak absorption band system. 

From the detailed analysis for the Herzberg I band system as mentioned before, the author 

has made clear some characteristics of theoretical methods to treat an electric-dipole 

forbidden transition. These characteristics can also be generalized to other molecules, because 

initial and final states of various forbidden transitions have open-shell electric structures 

which result in complicated configuration interactions through small perturbations as 

mentioned above. In the case of light molecules, weak perturbations can be taken into account 

using models like SOCI or Pert(Full). On the other hand, in the case of heavy molecules in 

which the SO interaction becomes much stronger, a variational or higher-order perturbation 

theory should be applied, because non-negligible differences between the SOCI and Pert(Full) 

models were observed even in the oxygen molecule and such a difference becomes more 

significant as increasing the SO interaction. For the future studies, we should investigate other 

electric-forbidden bands keeping the above characteristics in mind. 

As for the one-dimensional lanthanide-cyclooctatetraene clusters (Ln-COT), the author 
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focused on the Eun(COT)n sandwich clusters. The geometric and electronic structures of the 

anions and neutral clusters show that they have the fairly ionic bonding which consists chiefly 

of Eu2+ and COT2− components, and their valence orbital energies depend strongly on the 

electronic state, the cluster size, and their positions in the clusters. 

As for the anion clusters in the ground state, the orbital energies of 6s largely decrease with 

the cluster size and those of the Lδ orbitals on COTs have a stairs-like behavior in the clusters, 

in which the highest step has an almost constant energy with the cluster size. For the first 

excited state, the 6s level had a negligible cluster size dependence and the Lδ orbitals on COTs 

showed no stairs-like behavior. 

As for the neutral clusters in the triplet ground state, the 6s orbital energies (HOMO) of the 

terminal Eu are independent of the cluster size. For the singlet ground state of n=1 and 2, the 

HOMO is the Lδ orbitals of the terminal COT, whose energies increase significantly. For that 

of n=3 and 4, the HOMO changes to the 6s orbitals of the terminal Eu and their energies are 

almost constant with the cluster size. Although these two spin states show different electronic 

structures, their adiabatic excitation energies decrease asymptotically with the cluster size. 

Comparing with the experimental photoelectron spectra, the author had obtained good 

agreement and confirmed the above characteristics. 

To investigate the characteristic orbital energies of each valence orbital, the author has 

developed the simple point charge models, and revealed that the reason of all characteristic 

behaviors is due to the anisotropic intracluster electrostatic field by the one-dimensional 

structure and the strong ionic bonding. 

Although the point charge model easily estimated the cluster size dependency of the orbital 

energies, there are two important reminders for the application of the point charge model to 

other molecules: (i) This model is only applicable to molecules with localized orbitals, for 
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example, due to strong ionic bondings. (ii) Their calculation results are strongly affected by 

the magnitude and place of point charges. Therefore, before the application of this model to 

other molecules, we should investigate their geometric and electronic structures carefully by 

theoretical and experimental method. 

Finally, the author describes the issues which remain unsettled. In this thesis, the properties 

of the ‘full’ (Eun(COT)n+1) and ‘inverse’ (Eun+1(COT)n) sandwich clusters are not discussed in 

detail. However, Nakajima and co-workers measured very interesting photoelectron spectra, 

and ionization energies of these clusters. For the ionization energies, author’s preliminary 

calculation results showed the good agreement with the experiment, however, for the 

photoelectron spectra of their anions, the agreement becomes worse. 

In doing so, we should firstly study their geometric structures in detail. For the ‘full’ and 

‘inverse’ anion clusters, two types of geometries, symmetric structure (D8h or D4h) and 

anti-symmetric structure (C8v or C4v) can be considered. Preliminary calculations showed that 

DFT method gave symmetric structures, on the contrary, CASSCF method presented 

anti-symmetric structures for both ‘full’ and ‘inverse’ anion clusters. In the future studies, 

large size CASSCF or CI calculation should be performed to solve these discrepancies, 

because in these two clusters both dynamical and nondynamical electron correlations would 

be very important. 

Secondly, we should investigate the geometric and electronic properties of other Ln-COT 

clusters, especially, Ln=Nd, Tb, Ho which take a +3 oxidation state in the cluster by using the 

photoelectron spectroscopy and theoretical calculation. The Ln(III)-COT sandwich clusters 

will show very different electronic properties from the Ln(II)-COT in spite of the similar 

geometric structures as discussed in the earlier works by Kurikawa et al. 

The most difficult problem for calculating the Ln(III)-COT clusters is that they have open 



Chapter 5. General Conclusion 

 5-119

shell 4f electrons. Therefore, if possible, we would like to perform large size active space 

CASSCF+CI calculations for the larger size clusters as in the earlier calculations by Dolg and 

co-workers. 

Because of the very different mass spectra between Ln(II) and Ln(III)-COT clusters, the 

author thinks that the growth mechanism of Ln(III)-COT clusters is different form that of 

Ln(II)-COT. For the Ln(II)-COT, each harpooning reaction rate as discussed in this thesis 

would be almost the same, because their mass spectra show almost the same compositions of 

(n-1, n), (n, n), (n, n+1). However, for Ln(III)-COT, their mass spectra indicate only one 

strong compositions of (n, n+1). One possibility for the difference is that each reaction rate is 

very different in the sequential harpoon mechanism of Ln(III)-COT. Another reaction 

mechanism may dominate the growth process of Ln(III)-COT. 

The author hopes that this thesis helps further research on the Ln-COT clusters to clarify the 

above problems in the future. 

 


