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Chapter 1. General Introduction

Chapter 1.

General Introduction

1.1. Whatis ‘Theoretical Chemistry’ ?

P. A. M. Dirac, one of the persons who developed the quantum mechanics, said in 1929 that
‘The underlying physical laws necessary for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble. It
therefore becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main features of
complex atomic systems, without too much computation.’” [1.1] Following one century of
selfless efforts by many theoreticians and dramatic progress of computers, we have developed
the versatile computation system, which allows us the ubiquitous application of ‘theoretical
chemistry’ to various fields of science. [1.2-4]

Undoubtedly, present high performance computers can give calculation results easily and
fastly, which contribute largely to theoretical chemistry, however the aim of theoretical
chemistry is not limited to produce the numerical data. If theoreticians do not reply to

questions such as ‘What happened?’ or ‘How should we understand the origin or
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Chapter 1. General Introduction

mechanism?’, they have no future as fundamental scientists. The most advantage of
theoretical chemistry is that it is able to give the direct answer to the above questions, because
theoreticians have the wave functions themselves which can describe all of the chemical and
physical properties from the first principle. Thus, we have to present proper interpretations
and precise predictions for chemical phenomena.

In such a situation, theoreticians must pay a careful attention to ‘technical terms’ in
explanations. Present scientific realm includes a wide range of specialized fields, and the
exchanges of opinions among the various fields are becoming increasingly difficult due to
complicated technical terms of each specialized field. Part of these complications is
essentially inevitable, because various aspect of nature cannot be explained by only one
specialized term. However, some of them are senseless problems which result from lack of the
communication among the different fields. We should be ashamed of our poor communication
skills, because the fundamental scientists should have public accountability. Especially,
theoretical chemistry must retain the accountability as mentioned above. In addition, present
science field tends to emphasize immediate application to be more important, so that if
theoreticians ignore the accountability, we will lose the raison d’etre in science. Therefore, we
ought to provide interdisciplinary explanations which eliminate barriers between
experimentalists and theoreticians, or among the specialized fields in molecular science.

In this thesis, the author will give theoretical approach to molecular spectroscopy which
plays an important role in physical chemistry. In doing so, the author takes a special care of
the above mentioned problems and aims to provide necessary and sufficient explanations and
models for experimental spectroscopy. Before describing concrete subjects of this thesis, the
author will introduce basic theories in Section 1.2 to explain the objects and results of the

research.
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Chapter 1. General Introduction

1.2. Basic Theory of Spectroscopy

One of the viewpoints for understanding molecular chemistry is to focus attention on the
motion of electrons in molecules. In principle, the motion of electrons can be described by the
wave functions derived from Schrodinger or Dirac equation, and the basic idea supports
‘electronic structure theory’ which plays one important part in modern theoretical chemistry.
[1.5-8] On the other hand, molecular spectroscopy observes some kind of projections of the
motion of electrons by absorption or emission of light by molecules. [1.9]

Applying Fermi’s golden rule to the interaction between a molecule and light, we can write
down the absorption or emission intensity from the state a to b as the following simple
equation. [1.8]

2
H

| 5(E, — B, +hoo)(W, /¥, (1-1)

where E, and E, are the energy levels of the states a and b, and |‘Pa> and |‘Pb> are the

total wave functions of the states aand b, p is electric-dipole moment operator. <‘Pa|u|‘Pb>

is called as the transition dipole moment vector. The above equation represents that only

transitions which obey the energy conservation, |E - Eb|=ha) , can occur and the

a
probability is proportional to the square of the transition dipole moment vector. Therefore, one

way of theoretical approaches to the molecular spectroscopy is to focus on the energy
difference E, — E, and the transition dipole moment vector <‘Pa|u|‘Pb> between the initial
and final state.

For the concrete subject of the theoretical studies on the molecular spectroscopy, the author

had chosen electron spectra for the Herzberg I band of oxygen molecule and photoelectron

spectra of one-dimensional lanthanide-cyclooctatetraene clusters. In the former theme, the
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Chapter 1. General Introduction

author analyzed the absorption intensities, particularly the transition dipole moment which is
the second term in Eq. (1-1). In the latter theme, he has calculated the electron detachment
energies and ionization energies of clusters, for which the first term in Eq. (1-1) becomes
important. In the following section, he will give simple reviews for the first and second terms

of Eq. (1-1) from the theoretical viewpoint.

1.2.1. Transition Dipole Moment

If we fix an electric field irradiated to molecules in the Z direction of the laboratory-fixed
coordinate, we can consider only the Z component of the transition dipole moment vector.
Absorption or emission rate of plane polarized light with the electric vector of the light in the
Z direction is proportional to the squared value of the Z component of the transition dipole

moment as follows. [1.8,10,11]
M(ab) = (¥, |1, |¥, ). (1-2)

If M(a,b)=0, we call the transition between the state a to b as ‘allowed’, otherwise, we
call the transition as ‘forbidden’.

One of the most important approximations made in the electronic structure theory is the
separation of the total wave function into independent electronic and nuclear factors. [1.8,10]
Furthermore, the nuclear term can usually be approximated by a product of rotational and
vibrational wave functions. [1.8,10] Thus, the total wave function is represented by

%) =le)v)lr)- (1-3)
Here, €, v and r express the electronic, vibrational, and rotational states, respectively. In Eq.
(1-3), each wave function is naturally defined in the molecular coordinate system (X, Y, 2).

Therefore, to evaluate the transition dipole moment of Eq. (1-2), 4z must also be rewritten in
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Chapter 1. General Introduction

the molecular coordinate system. From classical mechanics, we know that z in the laboratory
fixed system can be transformed to 4y, in the molecular fixed coordinate by the following
direction cosine matrix ¢(¢,6,y) relating unit vectors in the two systems in terms of the Euler

angles ¢,6, and . [1.12]

Hz = Z¢Zn(¢9997)/un . (1_4)

N=x,y,z

Using the above relation for Eq. (1-2), the transition dipole moment can be written as follows.

M (aa b) = Z<ea |<Va |<ra |¢Zn (¢’ 05 7):un| eb>| Vb>| rb> . (1'5)

n=x,y,z
The operator ¢,, only operates on the rotational wave function, and p, operates only on

the electronic and vibrational wave functions. Thus, Eq. (1-5) is reduced as follows.

M(@b)= Y (e, [(Va|u, | ) Vo )ra|dm(8.60.7) 1) (1-6)

n=xy,z
The matrix elements of the rotational wave function are tabulated conveniently in general text
book. [1.12] Now, we come to the matrix elements of the electronic and vibrational wave
functions.

If the matrix element of the dipole moment operator with the electronic wave function is not
significantly affected by changes in the internuclear separation during vibration, the matrix
elements of the electronic and vibrational wave functions can be rewritten (Condon

approximation) as follows. [1.8,10]
(€ (Vattn @ )IVe ) = (Va Vo a1 ) (1-7)
where <Va |Vb> and <ea | ,un|eD>R are called as the Franck-Condon factor and n component of

the electronic transition moment vector at the equilibrium nuclear coordinate Re, and depend

only on the vibrational and electronic wave functions, respectively.

The Franck-Condon factor <Va|vb> expresses the overlap integral between the two

1-9



Chapter 1. General Introduction

vibrational states in their respective electronic states. The transition dipole moment is
therefore largest between vibrational states that have the greatest overlap. Unless the two

molecular potential curves are perfect replications of one another, any vibrational state has a

nonzero value of <Va|vb>' Indeed, it is generally the case that several vibrational states have

similar values of <va|vb>, and so transitions occur to all of them. Thus, a progression of

transitions is stimulated and a series of lines are observed in the electronic spectrum. [1.8]

Next, we consider the second factor (ea |,un|eo> in Eq. (1-7). Since the electric-dipole

Re
moment operator is a one-electron operator, to the first approximation, one electron transitions

from the initial wave function |ea> to the final wave function |eb> is only allowed.
In evaluating <ea | yn|eD>R for molecules, the group theory plays an important role. [1.8] In

the theory, firstly, we classify electronic states of the molecule by the irreducible
representation of the point group to which the molecule belongs, and derive the ‘selection
rule’ for the electronic transition moment. Hereafter, the author summarizes the selection rule
for the electronic transition moment of homonuclear diatomic molecules. [1.8-10]

Generally, the electronic and rotational wave functions of diatomic molecules are expressed
by basis functions characterized by Hund’s coupling schemes. [1.8-10] We firstly discuss the
selection rules that hold quite generally, independent of the coupling scheme to which the

electronic state under consideration belongs, then discuss selection rules for Hund’s case (a).

General selection rules [1.8-10]

The selection rule for the quantum number J of the total angular momentum is
AJ =0,+1, withtherestriction J=0-AJ=0. (1-8)

Moreover, the selection rules about the + and — symmetry of the total wave function and the S

1-10



Chapter 1. General Introduction

and a symmetry of identical nuclei hold quite generally as follows.

+O D+, —h—
sosaoassra

(1-9)
Finally, we have the selection rule for the g and u symmetry of electronic states as follows.
g U gdg,ushu. (1-10)

These rules always hold rigorously for electric dipole transition of homonuclear diatomic

molecules.

Selection rules holding for Hund’s case (a) [1.8-10]

The basis function of Hund’s case (a) is characterized by the total angular momentum (J),
the total spin angular momentum of electrons (S), the Z component of the total orbital angular
momentum of electrons (A), the z component of S (X), and the z component of the total
angular momentum (Q), which is related by Q=A+Z. Apart from the preceding general

selection rules, there are some selection rules which hold in Hund’s case (a).

AA=0,+1 AQ=0,+1
AS=0, AX=0 ’

(1-8)
Furthermore, the selection rule for the symmetry of the A=0 () state is written as follows.
PIRIRES Il YR S Il (1-9)

All these rules are established by a detailed consideration of the symmetry properties of the
transition dipole moment with the Hund’s case (a) basis function. [1.9,10] As mentioned
above, these selection rules hold only between the Hund’case (a) bases. In fact, owing to
some perturbations, these selection rules break down, and we can observe ‘forbidden
transition’. [1.8,9]

For example, considering the spin-orbit or L-uncoupling interaction (as described in the

following section), we can observe the X' <> X~ electronic transition which is forbidden in
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Chapter 1. General Introduction

the Hund’s case (a) bases. In Section 1.3.1 and Chapter 2, the author will discuss theoretically

this X7 <> X transition of oxygen molecule.
1.2.2. Perturbations of Diatomic Molecules

In the following section, the author summarizes the spin-orbit (SO) and L-uncoupling (RO)

interactions as examples of perturbations of diatomic molecules.

Spin-Orbit Interaction [1.8,10,13]

We now turn to the interaction energy between an internal magnetic field and a magnetic
moment of an electron. The classical calculation of the interaction energy runs as follows. An
electron moving at a velocity v in an electric field E experiences a magnetic field,

Exv
B= et (1-10)

where C is the speed of light. The electric field due to an isotropic electric potential ¢ is

g-_rd% (1-11)
rdr

It follows that

z—id—?rxv. (1-12)

The orbital angular momentum of the electronis 1=rxp=myrxv, and so

B=- 12%1. (1-13)
m,rc” dr

An electron has a magnetic moment p due to the spin angular momentum,

p=—3C (g, =2.002319314). (1-14)
2m,

The interaction energy between a field B and a magnetic moment p is —p-B, so we can
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Chapter 1. General Introduction

anticipate that the spin-orbit interaction hamilitonian should be

Ho=pB=— 90 ___9& db ., e d (1-15)
m,rc’ dr 2m,c’r dr m,’c’r dr

SO

It turns out that this is exactly twice the result obtained by solving the Dirac equation. The
error comes from the implicit assumption that one can step from the stationary nucleus to the
moving electron without treating the change of viewpoint relativistically. The correct

calculation gives as follows,

e dg
H =- Zl.s=&(r)l-s. 1-16
0= g 1S (1-16)

In this thesis, the author expresses the SO interaction for diatomic molecules as the

following one-electron operator.
Hg =2 al()-s()

. a’ Z,
ali) =3 ="

K iK

(1-17)

where « is the fine-structure constant, o =€’ / hc, iiK is the orbital angular momentum of

electron i about nucleus K, Z,k is the effective charge of the K th nucleus.

The selection rules for matrix elements of Hg, are summarized as follows. [1.10]

AJ=0 AQ=0 g<pu X <X
AS=0 or AS=+l1 (1-18)
AN=AY=0 or AA=-AX=+%1

In the single-configuration limit, if the two interacting states belong to the same configuration,

then AA=AZ=0 or, if the two states differ by at most one spin-orbital, then AA=—AZ=+1.

L-uncoupling [1.10-12]
Due to the large mass ratio, the motion of nuclei is much slower than that of electron. This

allows us to say that the nuclei are nearly fixed with respect to electron motion. However, in
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Chapter 1. General Introduction

fact, two motions weekly couple each other. Especially, coupling between the nuclear rotation
and the electron motion is called as rotation perturbations. Rotation perturbation is essentially
identical to the Coriolis force, which is a fictitious force owing to the transformation between
the space-fixed and the molecular-fixed coordinate.

An energy expression for the nuclear rotation is written as,

Y

—R’= R: +R?), 1-19
Z/JRZ 2ﬂR2 ( X y) ( )

ROT —

where R is the nuclear rotation angular momentum operator. The nuclear motion is
necessarily in a plane that contains the internuclear axis: thus R~0.

The total angular momentum (exclusive nuclear spin angular momentum), J, is defined also

— —

by the total electronic orbital and spin angular momentum, L and S,

J

R+L+S (1-20)
and this definition can be used to reexpress H,; 1in a convenient form,

1

HROT :W[(Jx _Lx _Sx)2 +(Jy _Ly _Sy)z]
_ 2;R2 (02 - 32)+ (12 - 12 )+ (52 -82) : (1-21)

(LS +Ls)-(L + 3L )-(rs + 3787

where
J =J *iJ,
L* =iniLy. (1-22)
S* =8, =iS,

The first three terms of H,y; have diagonal matrix elements exclusively. This diagonal
part of Hg, 1s the rotational energy of the Hund’s case (a) basis function. The final three

terms of H o;, which couple the orbital, spin and total angular momenta, are responsible for
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Chapter 1. General Introduction

perturbations between different electronic states. The first term in the final three terms is
called as spin-electronic perturbation, the second is L-uncoupling, and the last is S-uncoupling.
In the following chapter, the author especially focuses on L-uncoupling.

The selection rule for the L-uncoupling operator is as follows. [1.10]

AJ=0 AQ=+1 g<u

. (1-23)
AS=AS=0 AA=4tl

Note that the J operator in the molecular-fixed coordinate behaves as follows.

J7)30Q) = I +1) - QQ+1D)|IQ+1). (1-24)

Therefore, J L" steps both Q and A by £1, which gives the above anomalous selection rules.
1.2.3. Electron Detachment and Ionization Energy

Photoelectron spectroscopy observes kinetic energy of an ejected electron by Einstein's
photoelectric effect. The difference between the photon energy, which is known, and the
electron kinetic energy, which is measured, is equal to the energy holding the electron in a
molecule. Usually, we call the energy holding the electron in anion molecules as electron
detachment energy, and that in neutral molecules as ionization energy.

In electronic structure theory, we equate negative of the Hartree-Fock (HF) orbital energy
with the electron detachment or ionization energy from that orbital. [1.5,6] This simple

identification is the content of Koopmans’ theorem. The HF orbital energy &, is written as

A

where |(pa> is a spin orbital, J; is the coulomb operator, and K; is the exchange operator due

follows,

h+>(9,-K,

]

¢a>. (1-25)

to spin-orbital ¢;. Then, we divide Eq. (1-25) into the kinetic and potential energy parts as
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Chapter 1. General Introduction

follows.

N

Z
:%:(Jj'_l<j)__:§: ;{

Ir-

ga=<¢ah+Z(Jj—Kj)
oo

The magnitude of each energy component depends on the molecular size, substituent, and

RN
2

Il
—
A

a|

¢a> (1-26)

solvent effects. If the kinetic energy part <T> does not depend on these effects, we can pay

attention only to the potential energy part <V> .

Ionic clusters may have strong intracluster electric field which depends on their size,

structure and constituent atoms, so that the electric field would give characteristic influence

on their <V> part. Particularly, if the ionic molecules have anisotropic geometric structures,

their intracluster electric field shows strong anisotropy and affects their <V> part

significantly.

As an example of such clusters, the author has noticed lanthanide-cyclooctatetraene
sandwich clusters with characteristic one-dimensional structure and strong ionic bonding. In
Chapters 3 and 4, the author will perform theoretical studies for their electronic properties

which reflect their one-dimensional strong ionic bonding.

1.3. Concrete Subjects of This Thesis

1.3.1. Photoabsorption in the Herzberg I Band of O, Molecule

Molecular oxygen dominates atmospheric chemistry completely because of its great
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Chapter 1. General Introduction

abundance, reactivity, and photosensitivity in the atmosphere. Molecular nitrogen, in
comparison, is more abundant but chemically inert and essentially transparent to solar

radiation. [1.14]

The Herzberg I band system (A3Z§ <—X3Z;) of O, can be seen in the 240-285 nm region

as the major part of the Herzberg band system. [1.14] The absorption band is utilized for the
measurement of oxygen concentration in the air and its absorption intensity is of crucial
importance in the ozone formation in the stratosphere. However, electronic transitions in the
Herzberg band system are forbidden by the electronic symmetry selection rule + <» — in the
Hund’s case (a) representation, so that accurate measurement of its intensity had not been
conducted until recent years and few theoretical attempts have been made at the absorption
mechanism.

As mentioned above, the + <» — selection rule is a particular rule that depends on the
validity of the basis functions for electronic wave functions. In most cases, electronic wave
function can be described by one electronic configuration. However, if some perturbations
break down this approximation, it is necessary to represent one electronic state with some
electronic configurations. For example, the wave functions of the X and A states can be

written as follows. [1.10]

| X72g) =] 125 )+ O M )+ (1-27)
|AEy) =[5 )+ G g )+

where Cx and Cp are expansion coefficients. Note that the left term of the upper equation

expresses the electronic wave function of the X state, and the right terms denote the electronic

configurations with the ‘% and °I1, symmetries. Using the above electronic wave

functions, we can obtain non-zero electric transition moment between the X and A states
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Chapter 1. General Introduction

which borrows the °%_ «»*X; and °X]<«>*TI, transition moments through the

'$;<’%; and I <M perturbations. This concept is usually called as ‘intensity
borrowing’.

England et al. employed simple intensity borrowing model which considered the spin-orbit

interaction (SO) and L-uncoupling (RO) as perturbations. [1.15]
AT! i B'X, « XX
AT 1T 2x3z;
AL, 51T, gx&g
Some experimental groups have used this simple model for the analysis of the absorption
intensity of the I band system, [1.16-19] however, the author has one question for this model,

namely, ‘Are there no other important electronic states which couple with the X and A states?’

Thus, in Chapter 2, the author will develop two other theoretical models for the absorption
mechanism, and discuss their validity for calculating the vibrational and rotational line
strength of the I band system. In the chapter, we will see that the above simple model easily

leads to erroneous results for weak forbidden band systems.

1.3.2. Geometric and Electronic Structure of One-Dimensional

Lanthanide-Cyclooctatetraene Sandwich Cluster

Firstly, the author summarizes the basic character of the Eu atom and COT molecule.

Eu atom [1.20,21]

Atomic Number: 63

Ground state Electron Configuration (Ionization Energy): [Xe]4f'6s” (5.67¢V)
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Chapter 1. General Introduction

Oxidation Ground States (Ionization Energy, Ionic Radius):

Eu'/ [Xe]4f76s' (11.24 eV, 1.4~1.6 A), Eu®"/ [Xe]4f” (24.92 ¢V, 1.31 A)

Eu’"/ [Xe]4f® (42.70 eV, 1.09 A)

COT molecule [1.22-25]

Geometric Structure

Neutral Ground State:D,, ('A,) U

Dy

Neutral Excited State: D, (1A ), Dgy, (3A ), C,, (1A ), D, ('A;)

O 0O Y =

Dy

Anion Ground State: Dy, (?B,,) (same C-C-C bond angles, two C-C bond distances)

Anion Excited State: Dy, (?B) (same C-C bond distances, two C-C-C bond angles), Dg,, (°E,,))

Q)

Dy, (bond) Dy, (angle)

Dianion Ground State: D, (1A1g) (Not isolated in gas phase. Its life time is calculated as 6.0 fs [1.23])

Relative Energies (eV) for Various Geometries

Daog Dan Dan Con D,
Neutral
0 0.74 0.84 2.45 7.41
Note. experimental electron affinity of neutral COT is 0.55 (eV)
. D4h (bond) D4h (angle) Dgh
Anion
0 0.74 0.84

Note. All data are abstracted from ab initio calculation data Ref. [1.24,25].

The lanthanide (Ln) and 1,3,5,7-cyclooctatetraecne (COT) sandwich clusters were originally
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synthesized in the gas phase using a combination of laser vaporization techniques and
molecular beam methods by Nakajima and co-workers. [1.26-28] Recently, Hosoya et al. have
succeeded in synthesizing large europium (Eu) - COT sandwich clusters, named as sandwich
nanowires, in the gas phase. [1.29] Interestingly, the Eu-COT sandwich nanowires were
formed with up to one-dimensional 27 layers (about 10 nm overall length), thus such clusters
have been the most probable candidates for quasi one-dimensional nanomaterials with many
special electric and magnetic properties.

As shown in Fig. 1-1, the valence electronic configuration of the neutral COT has two holes,
while that of the ground state of Eu has two outer valence electrons, so that the bonding
scheme of Eu;(COT); cluster is easily considered as the ionic bond between the Eu*" cation

and COT”" anion due to the charge transfer from Eu to COT.

Fig. 1-1 Valence = molecular orbitals. Neutral COT has 8 & electrons (Black arrows),
and two holes. (Red arrows.)

As discussed in Chapters 3 and 4, the electron affinity (EA) and ionization energy (Ej) of
Eu,(COT); are about 0.8 and 6.0 (eV), respectively, and the electronic structure of the anion
and cation clusters are Eu'COT* and Eu*"COT . These values are much smaller and larger

than EA of the bare Eu”" atom (5.67 (eV)) and Ej of the bare COT*~ molecule (negative Ej),
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because EA of Eu*" decreases due to the repulsive interaction with COTZ', on the other hand,

Ej of COT? increases owing to the attractive interaction with Eu®".

These phenomena are generally found in most lanthanide (Ln) compounds, because they
have and oxidation state of Ln*" and strong ionic bonding. [1.30,31] Especially, since the
Ln-COT sandwich clusters have one-dimensional strong ionic structures, their anisotropic
electrostatic field is assumed to affect their electronic properties significantly. Therefore, the

author was interested in the theoretical investigations for the electronic properties of Ln-COT.

Formal Charge

— Eu,(COT),—

| O]

y— Eus(COT), —

o] o]

Loble  iepelCe

ool

Eu,(COT);——

Fig. 1-2 Sequential harpoon mechanism for growth of Eu-COT. The dotted and white
circles denote +1 and +2 charged metals, and dotted and white plates denote 1 and
2 charged COT ligands, respectively.

In addition, Hosoya et al. also considered the sequential harpoon mechanism for growth

processes extending the length of Eu-COT nanowires in which efficient charge transfer occurs
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at the terminal reaction sites as shown Fig. 1-2. [1.29] In this mechanism, one-end open
sandwich clusters Eun(COT), are key intermediates, so that accurate determination of their
geometric and electronic structure is of curial importance. In addition, the photoelectron and
photoionization spectra of Eup(COT), show characteristic behaviors which depend strongly
on the cluster size.

Thus, the author has performed the theoretical investigations for one-end open sandwich
clusters Eup(COT),. In Chapter 3, he will give the theoretical analysis for the geometric and
electronic structure of their anion Euy(COT), , and assign their photoelectron spectra. He will
also develop simple ‘point charge models’ to clarify the characteristic behavior of the
photoelectron spectra. In Chapter 4, he will also investigate the ionization energy and electron
distribution of the neutral Eu,(COT), which behave uniquely as their cluster size and

electronic state change.
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Chapter 2.
Photoabsorption in

the Herzberg I Band of O, Molecule

Abstract

The Herzberg I band system of the oxygen molecule is electric-dipole forbidden and its
absorption strength has been explained by intensity borrowing models which include the
spin-orbit(SO) and L-uncoupling(RO) interactions as perturbations. The author employed
three different levels of theoretical models to evaluate these two interactions, and obtained the
rotational and vibronic absorption strengths using the ab initio method. The first model
calculates the transition moments induced by the SO interaction variationally with the SO
configuration interaction method (SOCI), and uses the first-order perturbation theory for the
RO interaction, and is called SOCI. The second is based on the first-order perturbation theory
for both the SO and RO interactions, and is called Pert(Full). The last is a limited version of

Pert(Full), in that the first-order perturbation wave function for the initial and final state is

represented by only one dominant basis, namely the 13Hg and B’X, state respectively, as

originally used by England et al. [J.P. England, B.R. Lewis, and S.T. Gibson, Can. J. Phys. 74

(1996) 185-193], and is called Pert(England). The vibronic oscillator strengths calculated by
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these three models were in good agreement with the experimental values. As for the integrated
rotational line strengths, the SOCI and Pert(Full) models reproduced the experimental results

very well, however the Pert(England) model did not give satisfactory results. Since the

Pert(England) model takes only the 1°TI , and B’X. states into consideration, it cannot

contain the complicated configuration interactions with highly excited states induced by the
SO and RO interaction, which plays an important role for calculating the delicate integrated
rotational line strength. This result suggests that the configuration interaction with highly
excited states due to some perturbations cannot be neglected in the case of very weak

absorption band systems.
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2.1. Introduction

The oxygen molecule plays an important role in the atmospheric chemistry on the earth, so
there has been a considerable interest in this molecule. [2.1] Its importance comes from the
great abundance, reactivity and photosensitivity in the atmosphere, and detailed spectroscopic
information is available. However, due to the complex electronic structures, all of its
fundamental properties have not been clear till now. In recent years, several experimental and

theoretical groups have re-investigated this molecule. [2.1-2.9]
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Fig. 2-1 Calculated potential energy curves in the low-lying energy
region. The arrow shows the Herzberg band excitations.

The absorption of the Herzberg band systems is a key step of the ozone formation in the

stratosphere, and has been utilized for the measurement of the oxygen concentration. The
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absorption in the spectral region under investigation consists of three band systems (I, II and

IIT), each of which is made of several vibrational bands.

Iband system: A'Z] « X'T_, (2-1)
Il band system: ¢'T; « X°Z, (2-2)
I1I band system: A °A, < X32§ , (2-3)

and is represented by the arrow in Fig. 2-1. All of the sub-bands are electric dipole-forbidden
by symmetry selection rules. Therefore, laboratory measurements of the band systems are
difficult because of their small cross sections.

The I band system can be seen in the 240-285nm region as the major part of the Herzberg

band system. [2.1,3,7,8] Based on the Hund’s case (a) representation, X" —X~ transitions are

forbidden by the + <» — symmetry selection rule. [2.10] In fact, they can borrow the
intensity from allowed transitions through some perturbations. Each vibrational band consists
of 13 rotational branches. [2.11] The relative intensities of these branches vary by orders of
magnitude and depend strongly on the relative strengths of the electronic interactions.

Yoshino et al. measured the integrated absorption cross sections of this band system for
individual rotational lines of 10 branches for the (4,0)-(11,0) bands and estimated vibronic
oscillator strengths. [2.2,3] Recently, Jenouvrier and co-workers measured more detailed
absorption cross sections for individual rotational lines of the three band systems, and

determined the vibronic oscillator strength. [2.7,8]

Theoretical formulae on the rotational line strengths of the *X; - ¥, transitions were

obtained previously, and particular attention was devoted to the AL’ — X3Z§ transition.

[2.12-2.15] Lewis et al. derived the formulae of the line strength and calculated the relative

strengths of the 13 branches in this transition. [2.12] They employed an intensity-borrowing
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model which considered the spin-orbit (SO) interactions of *~* —> =¥ and °*TI1->X* as

perturbations. More general formulae including the SO and L-uncoupling (RO) were derived
by Bellary et al. [2.13] Huestis et al. noted that the ®Q rotational branches were strongly

affected by RO interaction. [2.14] Hence, the rotational perturbation terms can be essential to
explain the rotational line strengths. England et al. [2.16] used the formulae derived by
Bellary et al. and estimated some electronic transition moment parameters to fit the integrated
absorption cross sections for rotational lines measured by Yoshino et al. They found that a
good fit was obtained with only three independent parameters. Mérienne et al. [2.8] also
determined new values of these parameters in the same procedure as England et al. Although
there have been several studies on the absorption process of this band system as stated above,
no concrete consensus has been made concerning the degree of theoretical sophistication
necessary for the perturbations.

As for ab initio studies on electronic transitions in the low-lying states, Klotz et al.
calculated the electronic transition moments and vibronic oscillator strengths of the three
Herzberg band systems. [2.17] However, their values are not in good agreement with the
recent experimental data, moreover they did not include the rotational perturbations. Minaev
computed the electric-dipole, electric-quadrupole, and magnetic-dipole transition moments
from metastable states in the 190-300nm region. [2.18] Minaev et al. also studied about 20
singlet and 20 triplet valence states and calculated the electric-dipole allowed transition
moments among these states. [2.19] However, there has been no ab initio study that calculated
the rotational line strengths of the Herzberg band systems including the rotational
perturbations, and it can be an attractive challenge for theoreticians.

Vroonhoven et al. performed theoretical studies on the photodissociation process from the

Herzberg band excitations, and obtained the physical insight for the potential energy curves in
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the dissociation region. [2.20,21] For example, they calculated the anisotropy parameters by
using their theoretical potential curves and the experimental values [2.6] for the parallel and
perpendicular branching ratios of the Herzberg transitions. If we have accurate transition
moments for the initial excited state populations, we can obtain genuine theoretical anisotropy
parameters and remove the ambiguity discussed in Ref [2.21]. Another interest to study the
anisotropy parameter is the relatively large difference in the existing experimental values. The
author hopes that additional ab initio calculations of the transition moments may help to
resolve the remaining difficulties.

As we have seen, in spite of various works on the Herzberg band systems, some questions
still remain to be answered. Such problems might be solved with direct theoretical analyses.
Moreover, to the best of my knowledge, there has been no study that attempted to simulate the
rotational line strengths of the electric-forbidden band using the transition moments obtained
by the ab initio calculation. Such a study is essential to examine the accuracy of the ab initio
transition moments. In this chapter, the author calculates the transition moment parameters,
and estimates the integrated rotational line strengths and vibronic oscillator strengths,
employing three different levels of theoretical models to include the SO and RO interactions.
The theoretical values obtained by these models are compared with the experimental ones.
The anisotropy parameter for the photodissociation products is also calculated to compare
with the experimental ones. This study provides a special insight in the SO and RO
interactions and configuration interactions in this molecule, and offers a key role to an
analysis of electric-dipole forbidden bands of other important molecules in atmospheric

chemistry.
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2.2. Theory

2.2.1. Summary of Basic Theory

General methods for the calculation of rotational line strength are well known; a
particularly clear review was given by Whiting and Nicholls. [2.22] The rotational line

strength S, of an electric-dipole transition is proportional to the squared value of the

transition moment M (a,b).

M (a,b) = (alpy o), (2-4)
with
Pt :%(¢ZX +i¢2yxux _iuy)+%(¢2x —i¢ZyXllx + illy)+¢zzllz > (2-5)
|a> = |ea>|va>| ra> > (2'6)

Here p, is the ath molecule-fixed component of the electric-dipole moment operator and
¢, is the direction cosine operator which relates the j th molecule-fixed axis to the | th

space-fixed axis. The ket |a> is the total wave function which is approximated by the

product of the electronic, vibrational, and rotational wave functions, and is usually called

Born-Oppenheimer wave function. The operator ¢, only operates on the rotational wave
function, and p, operates on the electronic and vibrational wave functions. Therefore, the

M (a,b) is reduced as follows.

(e

aelé ) .

M(ab)=(v, n,

(v,

CYTREY A R\
CYTHEY A7y
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. Z%(uxiiuy), (2-8)
4, =%(¢ZX tig,), (2-9)

The matrix elements of the rotational wave function are tabulated conveniently in general text
book. [2.10]
Now, we come to the matrix elements of the electronic and vibrational wave functions.

Actual values of these matrix elements depend on approximation methods used in the

electronic wave functions. Without any electronic perturbations, the X" =X~ transition is

not allowed. Both Lewis et al. and Klotz et al. considered only the SO interaction for
perturbation. [2.12,17] Later, Bellary et al. and England et al. included also the RO interaction.
[2.13,16] Thus, it is interesting to know the relative importance of these perturbations.

The actual computational method for these interactions is also an essential point. Most of
the previous workers have calculated the electronic wave functions perturbed by the SO and
RO interactions using the first-order perturbation theory within the small subspace of selected
bases in the sum-over-states representation. However, for more accurate calculation, it is

desired to use the perturbation or the variational theory without basis set selection.

2.2.2. Methods for the Electronic Transition Moments

The author employs the formulae of Bellary et al. [2.13] with the three models to calculate
the electronic transition moments of the Herzberg I band system, called the SOCI, Pert(Full),
and Pert(England) models. It has been believed that the SO interaction is the primary source
of the absorption strength in the Herzberg I band system, and the RO interaction makes a

secondary contribution to the rotational line strength. Therefore, the SOCI model employs the
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variational CI method for the SO interaction and the first-order perturbation theory for the RO
interaction. The Pert(Full) model is based on the first-order perturbation theory for these two
interactions. The last one follows the work of England et al. in which each of the initial and
final wave functions is expanded with only two spin-free electronic wave functions, one
dominant and the other perturbing, employing the first-order perturbation theory. The author

shall describe some details of the three models in the following sub-sections.

SOCI Model
The SOCI method employs the following total electronic Hamiltonian H including the SO
part approximated in the one-electron operator form, and variationally calculates the

electronic eigenfunctions corresponding to the Hund’s case (c) base.

H=H,+Hg, (2-10)
Heo =2 a1 -5, with Za— L (2-11)
i K 2 r|K

where « is the fine-structure constant, « =€’ / hc, iiK is the orbital angular momentum of

electron i about nucleus K, Zk is the effective charge of the K th nucleus. Of the three
models described before, this SOCI method provides the most accurate electronic wave
functions perturbed by the SO interaction.

The author treats the SOCI wave function as the zero-th order base for the Herzberg I band
system, and evaluate the RO interaction with the first-order perturbation theory. The RO

interaction is written as follows.
Heo =—B,(J" L7 +J L") (2-12)
Here, J* is the molecule-fixed raising and lowering operators of the total angular

momentum, L is the raising and lowering operators of the total electronic orbital angular
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momentum, and

hZ
B, = <v{2ﬂR2 v>. (2-13)

Then, the initial and final wave functions are constructed following the procedure of the
Bellary et al. [2.13] For example, 2=1 and e symmetry components of the initial and final

total wave functions are as follows,

AT

J.e)=| AT}, 3'-)

+[(3-1+2)]*> by, fn,,, 3'-), (2-14)

My

~[3@+n]* Y b (g, Yy, ')
Mou

\x3z- J e>=\x3z- J+>

1g>%» 1g>Y>

+H@-DE@+2]” 3 blm, Jm,.3.-), (2-15)
Mg

~[3@+1]” X blm, Jm,,. 3.-)
Mg

where |n,,J,%) is the symmetrized wave function,

2180 3.2) =27 291 A, 0, 0 M) £, 0,0, M), (2-16)
and n, and m, denote *°" A, the electronic eigenfunctions of Eq. (2-10). Therefore, the
good quantum number of these electronic wave functions is Q. [2.10] The symbol '
represents quantities of the final electronic state, and b(m,) and b'(n,) are the expansion
coefficients for the initial and final electronic state, respectively. In Egs. (2-14) and (2-15),
b'(n,) and b(m,, ), for example, are given by the perturbation method as follows.

' <n0u L‘\Nz:u)
D)= B )y

(2-17)
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<mog L |xesg,)

; (2-13)
E(X 32;9 )_ E(mog )

b(m,)=-B,

In the actual calculation, all the n, and m, states were chosen within the CI space, which

can couple with the initial and final states through the RO interaction.

Next, the symmetry selection rules, AJ=0(e<>f) and AJ=l(e<>ef <> f) are

considered, and 13 electronic transition moments are obtained. In the procedure of Bellay et
al., these electronic transition moments can be simply re-expressed by 13 independent
parameters. They noted that, in the limit of small perturbation of the SO and RO interactions,
these parameters can be further reduced to only three by the symmetry properties of the
electronic wave functions and by omitting small second-order parameters. Accuracy of such
approximation will be examined later.

Then, these three electronic transition moment parameters are defined as follows.

Z =2(X°% [n,|ATy,). (2-19)
X =2(X°5 [n | AT ) (2-20)
M=M,+M,
(2-21)
= S blm Kmygln | A, )+ 20, X S ).
Pert(Full) and Pert(England) Models

Next, the perturbation theory is used for both the SO and RO interactions, and H, in Eq.

(2-10) is chosen as the zero-th order Hamiltonian for the electronic wave functions, and
therefore the eigenfunctions correspond to the Hund’s case (a) base.

If the initial and final electronic wave functions are constructed by the first-order
perturbation theory with the complete Hund’s case (a) base, the 13 parameters for the 13

electronic transition moments can be defined. Due to the symmetry properties of the
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electronic wave functions and omitting second-order parameters, these transition moment
parameters can be reduced to only three as in the previous sub-section. This model is called

Pert(Full), and the three transition parameters are defined as follows.

z2-2,+2,
, (2-22)
:\/E{Za(erﬂpzA3Z:>+Za'(n)<X3ng,zn>}
X =X, +X,
(2-23)
= Zalmmu [AZ;)+ 2 (X [ |n )
M =M, +M,
(2-24)

=Zm:b(anipf\NZw+Zn:b'(n)<x32§\u+\n>
Here, m and n are the Hund’s case (a) base and their good quantum numbers are A, S, and
2.[2.10] For example, a(m) and a(m) are the expansion coefficients for the initial state
considering SO interaction as perturbation, and a(m) is the coefficient for the A =0(2)
component, and a(m) and b(m) for the A=1(IT) component. For instance, a(m), a(m)

and b(m) are expressed as follows.

<X3ZQ‘HSO‘m(Z)> (2_25)

= B ez,

(X5, He 1) 026

= )l

<X3Z;‘L“n‘(l'[)>

E(m(IT)-E(X°z,)

Next, more approximately, the first-order perturbation theory is used within the subspace of

b(m) = - (2-27)

the selected Hund’s case (a) base in the sum-over-states representation. England et al.

considered the model in which the initial X’z state was only perturbed by the first °IT,
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state through SO and RO interactions, and the final A’Y’ state was only perturbed by the
‘I, state. If these basis states are selected as England et al., the three reduced parameters can

be defined as follows.

z =\5a'(832;)<x325\u2\83z;>, (2-28)
X = a1, 1T, |AS; ) (2-29)
M =b{I"IT, K11 | A, (2-30)

and o'(B’S;), a(i’r1,) and b(I’11,) are as follows.

B'E,[H o |A'Z)

2Bz, )= ) £ (2-31)

a(i’r, )= <X325‘H30‘13H9> (2-32)
*ElT,)-E(XCE, )

b(* 11, )=-B <X325 ) (2-33)

EQ, ) E(Cx, )
This transition model is called Pert(England).

Lastly, a brief comment is given on the vibrational wave functions. To calculate the
absorption strengths at the room temperature, the centrifugal distortion effect should be
included for each vibrational wave function. The vibrational potential curve including the
centrifugal distortion term is as follows.

R2N(N +1)

VIV (R) =V (R) + = (N=135,-), (2-34)

V(R) is the adiabatic potential curve as a function of the internuclear distance R and N is the
rotational quantum number. The distorted vibrational wave function is calculated with the
initial and final electronic potential curves and the centrifugal distortion term corresponding

to each transition model.
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2.2.3. Absorption Strength

Integrated Rotational Line Cross Section

The author calculates the three parameters in each model, and evaluates the rotational line

strength S, derived by Bellary et al.[2.13] To calculate the rotational line strengths, the
eigenfunctions of the three rotational term series F(J)(i=1,2,3) of A’z and X°% are
also needed. The mixing coefficients c¢',,s,,s; and s; were obtained with the Hamiltonian

described by Cheung et al. [2.23] and the experimental molecular constants of Jenouvrier et
al.[2.7] for the A state and those of Amiot et al.[2.24] for the X state.

The calculational line strengths S,;,, can be related to the integrated line cross section

o(v) by the following line oscillator strengths in cgs unit. [2.22]

V'v

2 2
- [ ouydo=E TEC(UV'J'VJSv'J'VJj, (2-35)
7N, e 3nefg | 23 +1

where g=3 is the statistical weight of the ground state, m, and e are the mass and the
charge of an electron, v and v,,,, are the transition frequencies, 7 is Planck’s constant
divided by 27 . N, is the relative population of the rotational level of the ground electronic

and vibrational state, and is calculated by assuming the room temperature (293K).

Vibronic Oscillator Strength
The vibronic integrated line cross sections are evaluated by summing the calculated

integrated strengths of all the rotational lines for the 13 branches as follows.

2 13 oddN
fy =23 S 5, N). (2-36)

Vv T 2
e N, = N3

Here, Ny is the relative population of the vibrational level of the ground state at the room
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temperature (293K), a denotes each branch, and N is the rotational quantum number.

2.3. Calculation Method

All the ab initio calculations were performed by the COLUMBUS program package.
[2.25-27] Throughout this chapter, internuclear distance is given in A, and transition moment
in atomic unit. The multi-reference (MR)-CI method was used for the three models. As the
one-electron orbitals, the state-averaged SCF molecular orbitals were employed by optimizing

for the averaged state of all the configurations derived from 3o, 17,17, 174, 17, and

30,, namely the six orbitals for eight electrons. Here, the six orbitals are the molecular

orbitals correlating to 2p atomic orbitals of the oxygen atom. The configuration state
functions (CSFs) were generated with the reference of the above complete active space.

In the SOCI model, for evaluating each electronic transition moment parameter, the initial
and final state wave functions were calculated with the first-order SOCI method and the

cc-pVTZ basis set. [2.28] The parameter Z.mk=5.84 was used in Eq. (2-11), which is

appropriate for the SO splitting of the oxygen atom (3 PJ). The calculational and
experimental (shown in parenthesis) SO splittings were 159.0 (158.5) cm ™' between ° P and

P, and 78.1 (68.0) cm ' between ‘P, and ’P. With these initial and final state wave

functions, the Z, X and M electronic transition moment parameters in Egs. (2-19)-(2-21) were
obtained. In the calculation of the M parameter, the CSF representation instead of the
sum-over-states representation was used, and the parameter was evaluated by solving linear
equations employing the iterative algorithm by Pople et al. [2.29] Because these two
representations are related by the unitary transformation, the equivalent value should be

obtained by the two representations.
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As for the Pert(Full) model, first, a spin-free first-order CI calculation was performed to
obtain the initial and final state wave functions as the Hund’s case(a) eigenfunctions with the
cc-pVTZ basis set. Next, Z, X and M were calculated by solving linear equations equivalent to

Egs. (2-22)-(2-24) in the CSF representation. Calculations in the Pert(England) model were

carried out in the same way as in the Pert(Full) model except that the 1° [T, and B’

states were employed in the sum-over states representation as in Egs. (2-28)-(2-30) to obtain Z,
Xand M.

In the SOCI model, the vibrational wave functions were calculated with the potential curves
derived from the contracted SO MR-SDCI(COSOCI) method with the cc-pVQZ basis set
[2.28] with Z.,k=5.79, because this high level method was necessary to give the correct

dissociation energies and shapes for the ground and excited potential curves. [2.20,30] The

calculational SO splittings with these method were 159.0cm ™' between’ P and °P,, and 79.4
cm ' between *P, and P. In the COSOCI method, first, a spin-free MR-SDCI calculation

was performed to obtain the Hund’s case (a) eigenvalues and eigenfunctions. Next, a small
Hamiltonian matrix of Eq. (2-10), which is composed of the diagonal matrix elements of the
Hund’s case (a) eigenstates obtained above and the off-diagonal matrix elements of the SO
interaction, was diagonalized, and then the eigenvalues and eigenfunctions including the SO
interaction were obtained. All the electronic states correlating to the *P+’ P dissociation
limit in the Hund’s case (a) base are included. In the Pert(Full) and Pert(England) model, the
spin-free MR-SDCI potential curves were used for the calculation of the vibrational wave
functions. The vibration wave functions for each potential curve were calculated by the grid

method with the Mathematica program. [2.31-34]
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2.4. Results and Discussion

2.4.1. Comparison of Electronic Transition Moment

Parameters in Three Models

Table 2-1 compares the computed electronic transition moment parameters at R=1.27 A as

an example.

Table 2—-1 Comparison of the transition moment parameters at R=1.27 A calculated by five models.

Pert(England) Pert(3) Pert(10) Pert(Full) SOCI (second—order)?

Z, 0 -2451x 10%  —-1.732x 10* -1.131x 10

Z, 1.231x 1073 1.149x 1073 1.083% 107 1.031x 1073

z 1.231x 1073 9.039x 107* 9.098x 10~ 9.179x 10*  9.079x 1074 (9.079x 107%)
X, 2.153% 107 2.165% 107 2.331x 10 2.132x 1074

X, 0 1.331x 107* 1.174x 107 1.255x 10

X 2.153x 107* 3.496x 107 3.505x 10~ 3.387x 10*  3.380x 107#(3.380x 107%)
M, 5.276x% 1076 5.347x 1076 5.354x 107° 4.584x 107°° 5.443% 107

M, 0 5.734x 1076 5.974x 1076 5.631x 1076 5.534x 1076

M 5.276x% 1076 1.108% 107 1.132x 107 1.021x 107 1.097x 107

Note. Going from left to right, the calculational level becomes higher. The expression of each transition moment
parameter is given in Egs. (2-19)-(2-21), (2-22)-(2-24) and (2-28)-(2-30). Each value converges to the SOCI value
as increasing the calculation level.

a The value calculated by the second—order perturbation theory for the SO interaction.

In the third (fourth) column of the table, calculation values obtained with the lower three

(ten) intermediate states in the sum-over-states formulae in Eqgs. (2-22)-(2-24) were added in

order to examine the convergence.

Firstly, the author comments on the Z and X parameters. The Z and X parameters converge

to the values of the SOCI model as increasing the calculation level. The Pert(England) model

does not account for the X°%; —n’S} and A’X; —n’Il, couplings, thus the values of Zg,

Xy and M, were 0. However, in the higher level calculations, the relative magnitudes of these
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couplings are not negligible at all in the total value of Z, X and M.
Table 2-2 shows the dominant expansion coefficients, a(m), «'(n), a(m), and a(n) in

Egs. (2-22) and (2-23).

Table 2—2 Dominant expansion coefficients, a(m), /(n),
a(m) and a’(n) calculated from Egs. (2—22) and (2—-23).

o(m) and a(m) o () and &(n)
alPzr)  2287x 10°  &'(BE,)  1.051x 107
a2’s:)  8200x 105 @'(2°%;)  6431x 10°
a¥%y)  1415% 10% 2(3°z;)  3.741x 10
a@x:)  2719% 10% a(#%7)  9.910% 10°
o5°%;) 3773 10° &(5'3;)  1489x 107
al’m,)  1429%x 107 a(Pm,) 4038 10°
a2’m,)  3935x 104 a(2’m,)  8.796x 1074
a3'm,)  -3.504x 10 a(3m,)  -4.871x 107
al#'y)  -1591x 105 g(4rr,)  -3.421x 10
a(53ng) 3.226x 10 g(s*mr,)  3.679% 107

Here, the expansion coefficients of 131_1g and B’Y, were by far the most important as

supposed by England et al. [2.16] However, it is also found that other coefficients were not

necessarily negligible. Especially, the 3°%’

3g+ 3 3
g ¥Z,, 27II; and 3°I1; states have

non-negligible expansion coefficient values in the X state, and the 2°TT,, 4°T1,, and 5°II,

u’
states have considerable magnitudes in the A state.
Furthermore, Table 2-3 compared the contribution to each transition moment parameter, Zg,

Xg, Zy and X, of Egs. (2-22) and (2-23), from above electronic states. It is also found that the

values of Z, (B3 Z;) and X, (13 Hg) were the most important as supposed by England et al.

[2.16] However, other values, for example, Z, (23 DI ) and X, (231’1u ), were not negligible
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Table 2-3 Contribution to Z, X;, Z, and X, from each
electronic state in Table 2-2.

Z,(m) and X(m) Z,(n) and X,(n)
z,(Pz;)  —2958x 10¢  z,(B°

T;)  1231x 1072
) -1608x 104 z,(2's 9.061x 1073
z,(3z;)  -8130x 105 z,(3's ~8.265% 1075
)
)

)
)

4.185x 10°  zZ,(#’z;)  -5.237x 10°°
)

Z,(55;)  -6301x 101 z,(s°%;)  4.043x 10°9
X,(Pm,)  2153x 104 x,(°m,)  9.614x 107
X,(2m,) -2086x 106 x,(r1,)  1.135x 104
X,3m,)  3225¢ 100 x,(°'r,)  1.857x 10
X,@m,) -1.007x 106 x,(4'r,)  8.169% 10
X,(5m,)  1709% 105 x,(s°r1,)  7.589% 10

It is emphasized that the SO and RO interactions induce the small but non-negligible
configuration interactions with highly excited states, and even these small interactions bring
significant influence on the inherently small electronic transition moment parameters.

Although their values almost converged in the Pert(10) model, 40 % difference still
persisted in Zg. It is noticed that the Zg and Z,, parameters converged smoothly to the Pert(Full)
values, but other parameters did not. The Xy and X, parameters converged to the Pert(Full)
values with oscillation. The difference between the parameter values by the Pert(Full) and
SOCI models was about 1% or less. One possible cause of this small difference is the

omission of the second-order terms such as,
> 2 amamy(m,|n), (2-37)

in Eq. (2-22). Normalized the initial and final state first-order wave functions, the Z and X
parameters were calculated including the above terms. Then, Z=9.158x10" and

X =3.386x10"" were obtained. Both parameters converged a little to the SOCI values, but
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there still remain 0.87% and 0.18% differences in the Z and X parameter, respectively. Further,
the second-order electronic wave functions perturbed by the SO interaction for the X and A
states were calculated. For example, the perturbed wave function up to the second-order for

the X state is as follows.

3v-\ H'nx H'mnH'nX -
X 29>_|X>+ZE(><>—E(n)|”>+ 2 (E<><)—E(m))(E<><)—E<n))|m>' (239)

nzX n,m=X

Here, X is X° X, and H'; = <i|H so|j> With the normalized perturbation wave functions, Z

and X parameters were obtained as 9.079x10™* and 3.380x10* respectively, which are
essentially identical to those in the SOCI model. The maximum value of the expansion
coefficients in the third terms in Eq. (2-38) was 2.154x10°°. Namely, the expansion
coefficients of the first-order wave function have a possible error in the order of 107°.
Therefore, the Z parameter of Pert(Full) is in agreement with that of SOCI only up to 107°
and the second-order term is responsible for about 1% difference in the Z parameters
calculated by the SOCI and Pert(Full) models. Although the first-order perturbation theory
seems appropriate to describe the Herzberg I band system, it may cause some errors for other
weaker intensity band systems, in which very small higher-order expansion coefficients are
not negligible in the relative magnitude, for example, in the Herzberg II and III band systems.

As for the M parameter, almost the same discussions hold as for Z and X. However, there

was a significant difference (10%) between the SOCI and Pert(Full) model for the M
parameter. It is for this reason that M, calculated by the SOCI model includes the

higher-order coupling terms induced by the SO and RO interaction. The dominant component

of this higher-order terms for the M, parameter is as follows.

g
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<X3z;g Lix’s,,) os;
“E(xz - Bz VT T

-B

n AL, )=8.715x107. (2-39)

The X3Z§ state splits into the X3 DI and X° Z&g states due to the second-order SO

interaction, and these two states, in the Hund’s case (c) representation, are able to couple with

each other through the RO interaction. Although the matrix element of the RO interaction was
very small (2.011x10~* a.u.), since it should vanish in the Hund’s case(a) limit, the energy

splitting E(X ’ Z0 )— E(X 321’9) was also small(2.990x10*a.u.). Thus, the above transition

moment parameter makes a meaningful contribution.
Next, the calculated electronic transition moment parameters are compared with the
experimental ones obtained by Mérienne et al. [2.8] and other ab initio values of Klotz et al.

[2.17] in Figs. 2-2, -3.

R (a.u.)
242 244 2.46 2.48 2.50 2.52 2.54 2.56

15 T T T T T T T T T T T T
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= 124 v V—V—v—y- N
2 oo
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g 11 —e—S0CI
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104 —v— Pert(England) n
g ' E LI —o—Klotz et al.
=t ] [ |
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2 09- o4- L -
S i T ——¢— i
= T—6—
N 08 R
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Fig. 2-2 The Z parameters calculated by the three models,
compared with the values of Mérienne et al.(points) [2.8] and
other ab initio values of Klotz et al. [2.17] The Pert(England)
model gives 20 % larger values compared with the experimental
ones. The SOCI and Pert(Full) models give 10 % smaller values.
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Fig. 2-3 The X and M parameters calculated by the three models, compared with the values of
Mérienne et al.(points) [2.8] and other ab initio values of Klotz et al. [2.17]
(a) As for X, the Pert(England) model gives 50 % smaller values compared with the experimental
ones. The SOCI and Pert(Full) models give 15 % smaller values.

(b) As for M, The Pert(England) model gives 50 % smaller values compared with the
experimental ones. The SOCI and Pert(Full)models are in good agreement with the experimental

ones.

As for the SOCI and Pert(Full) models, though all the three parameters were about 10 %

smaller than the experimental estimates, they were still in reasonable agreement. On the other

hand, the Pert(England) model did not reproduce the value of Mérienne et al. even

qualitatively, namely Z was overestimated and X and M were underestimated.

Klotz et al. calculated Z and X parameters using a similar model as Pert(England) and their

values have a similar tendency as Pert(England). Later, the sensitivities of the rotational and

vibronic absorption strengths to these small but meaningful differences in the transition

moments will be discussed.

2.4.2. Vibrational Wave Functions

The potential curves of the initial and final states were calculated with the COSOCI method.

Table 2-4 lists the calculated and experimental spectroscopic constants R,,@, and D, for
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the X and the three Herzberg states [2.35] of the spin-free and COSOCI potential curves.

Table 2—4. Spectroscopic constants for the X and the three Herzberg states. The inside in
parenthesis is the value from the potential curves including the SO interaction, and the
other values are from the Hund'’s case (a) potential curves.

R.(A) o, (cm™) De(eV)
Present Exp.?  Calc. Present Exp.? Calc. Present Exp.? Calc
X3z, (}jg) 1208 1213 (}ggj) 1580 1550° éégz) 5214 5193
Ax (}:gg) 1520 1.520¢ (28(1)) 804 802° (81233) 0.825  0.830°
clz; 1.517 1.514  1.518° 809 797 790¢ 1.176  1.114 1.112°
A’ A, 1.515 1.513  1.513¢ 793 815 819¢ 0946 0903  0.906°

Note. The inside in parenthesis is the values from the potential curves including the SO interaction, and
the other values are from the Hund’s case (a) potential curves. (2 Ref.[2.35], ® Ref.[2.30], ¢ Ref.[2.20])

The values in parenthesis are calculated by the COSOCI method for the €2=1 component
of the X and A states. The calculation values are in good agreement with the experimental and
other calculational values.

The vibrational wave functions were obtained for the X and A states with the above
potential curves. The results for the A state are compared with the experimental values of
Jenouvrier et al. [7] and theoretical values of Vroonhovenet al. [20] in Table 2-5.

The present calculation reproduced the experimental values reasonably except for the
V'=12 vibrational level. The V'=12 level is the highest level below the dissociation limit,
so that a small perturbation gives an enormous change in the vibrational wave function. For
instance, the difference between the Hund’s case (a) and Hund’s case (c) potential curves is

rather large in spite of the small SO interaction for the V'=12 level.
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Table 2-5. Vibrational energies and rotational constants of the A’S; state.

Calc. Jenouvrier et al. Vroonhoven et al.

v’ T(V) B(V) T(V) B(V) T(V) B(V)

0 ?;;)(3589311359) ?08899667;5) 35008.826 0.90499 _ 0.90292
1 ?35;;6:4765;)6) ?08877129066) 35783.323 0.88763 35781.596 0.88492
2 536665198953359) ?08;16624?4) 36527.267 0.86923 36523.859 0.86626
3 33773;2013;593) ?08811995625) 37238.316 0.84937 37233.201 0.84651
4 55355749033) ?07799113238) 37913.628 0.82767 37906.330 0.82479
5 5586675343:52) ?07766112211) 38549.666 0.80359 38539.734 0.80042
6 5399227568607506) ?07725;783) 39141.946 0.77635 39127.706 0.77255
7 5399851029;058) ?06699221390) 39684.676 0.74469 39664.322 0.73985
8 ?4?332180859258) ?0665505623) 40170.213 0.70661 40141.459 0.70012
9 ?2376219;‘;8) ?06600119?2) 40588.176 0.65869 40548.585 0.65052
10 ?411101;34;619) ?05;15782) 40924.334 0.59429 40873.847 0.58578
1 ?41 13 3729'.163(())3) ?6%4??3281) 41158975 050470 41105612  0.50062
12 ?41155899929228) ?0326;?353) 41265.361 0.16400 41239.710 0.37749

Note. The inside of parenthesis is the value obtained from the potential curves including the SO interaction.

This point was also discussed by Vroonhoven et al. [2.36] Other theoretical values [2.20]
were in better agreement with experiment than ours except for the v'=12 level. This is
because they used larger basis set (aug-cc-pV5Z) and different calculation method. They
calculated the potential curves using two methods for different internuclear regions. In the
Franck-Condon region, they used the CASSCF+MRCI method, while they constructed the
potential curves in an ad-hok manner in the dissociation region. Anyway, both methods

reproduced the experimental values reasonably except for V'=12 level, therefore the present
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potential curves and vibration wave functions were used for the calculation of each absorption
strength.

Lastly, the Franck-Condon factor (FCF) between the X and A states were calculated. Note
that in the actual calculation discussed before, the Condon approximation was not used, but
the transition moment M (a,b) was directly evaluated with Eq. (2-7). However, it is still
interesting to compare the theoretical and experimental FCFs to examine the vibrational wave
function with the experiment data.

Table 2—-6. Franck—Condon factor (N=1) calculated by the
SOCI model, compared with experimental data from Ref [2.16].

Band (v, v) Calc. England et al.
0,0 2.086x 107
1,0 1.659x 10
2,0 6.938x 104
3,0 2.027% 107
4,0 4.638x 10 4.309% 10
5,0 8.845x 104 8.149x 104
6,0 1.457x 10 1.325x 1073
7,0 2.109x 10°* 1.889x 1073
8,0 2.706x 10~ 2.380x 1073
9,0 3.065% 10 2.629% 1073
10,0 2.979x 10°* 2.449x 1073
11,0 2.258x 10°*
12,0 6.528x 10

Note. v’ and v represent the vibrational levels of the A3Z: and X°%~
states, respectively.

The difference between the Hund’s case (a) and (c) potential curves for the FCF is
negligibly small. Then, the rotationless FCF in the SOCI model was compared with the ones
of England et al. [2.16] in Table 2-6. The present values were about 10% larger than theirs.
Meérienne et al. determined the electronic transition moment parameters using the

experimental FCF. If the transition moment M (&,b) is calculated in the SOCI and Pert(Full)
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models, as a product of each electronic transition moment parameter and the FCF, the present
transition moments are in almost quantitative agreement with the experimental ones because
the electronic transition moment parameters and FCF were, respectively 10 % smaller and
larger than the experimental ones. However, the Pert(England) model does not reproduce the
experimental transition moments, because as described in 2.4.1, the electronic transition
moment parameters in that model did not agree with the experimental ones even qualitatively.
Direct calculations of the transition moments yielded essentially the same values as the ones
using the Condon approximation. Therefore, it is concludes that only the SOCI and Pert(Full)

models are able to reproduce the transition moments of Mérienne et al.

2.4.3. Integrated Rotational Line Strength

Table 2—7. Comparison of each calculational intensity and experimental data
[2.8] (10726 cm? cm~") of the 13 rotational lines for the N=13 of the (7, 0) band.

Branch Pert(England) Pert(Full) SOCI Exp.

op 113.54 30.63 29.28 28.8
12

P, 79.49 16.89 15.97 14.0
Qp,, 206.71 159.02 157.32 190
ep,, 174.25 150.46 149.27 172
°Q,; 0.42 0.05 0.08
Q,, 93.49 228.45 242.85 285
Q,, 19.90 40.27 45.36 42.0
Q,, 6.71 14.41 12.12 27.1
5Q;, 0.17 1.81 2.00
R,, 256.33 182.82 180.52 208
R, 233.13 181.84 179.96 188
SR,, 77.97 13.99 13.11 12.5
SR, 51.13 5.94 5.43

Note. Going from left to right, the calculational level becomes higher.

With the above electronic transition moment parameters, potential curves, and the formulae
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of Bellary et al., the integrated rotational line absorption cross sections of the 13 rotational
branches were calculated for each vibrational band. Three calculational results of N=13 in the
Vv’=7 vibrational band were shown in Table 2-7.
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Fig. 2-4 Comparison of the calculated line strengths of the SOCI and Pert(Full) models with
the experimental data of Mérienne et al.(points) for the (7,0) band. [2.8] The solid and dash
lines represent the calculational values obtained by the SOCI and Pert(Full) model,
respectively. (a) °P,,, °P,; and AP, branches, (b) @P,,, R, and @R,; branches (c) Q,,, ?Q,,
and 9Qg; branches, (d) °R,4, 5Qs4, SRy, and °Q,; branches. For SR;, and ©Q,; branches, only
calculated values are showed.

Clearly, the SOCI and Pert(Full) models give better results than the Pert(England) model,
for example, for the °P,, °P,, °Q, ., “Q,, ?Q, and °R,, branches. The

Pert(England) model cannot reproduce the experimental results very well. On the other hand,

the SOCI and Pert(Full) models give the almost quantitative results for most branches. The
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transition moments of Klotz et al. gave the similar results as Pert(England). Therefore, their
transition moments are not appropriate for the calculation of the integrated rotational line
strengths.
Next, the calculated and experimental integrated rotational line strengths with various N in
the SOCI and Pert(Full) models are shown in Fig. 2-4, and those of Pert(England) in Fig. 2-5.
With various N, a similar conclusion for the three models can be obtained. That is, only the
SOCI and Pert(Full) models are able to reproduce the experimental results quantitatively. In

comparison of the SOCI and Pert(Full) models, it is noticed that the SOCI model is slightly

better than Pert(Full), for example, for the °Q,;, “Q,, and °R,, branches. The calculation

can give very weak line strengths, for the *Q,,, °Q,; and °R,, branches, and these very

small values are consistent with the fact that they were not observed experimentally. In this
thesis, the author have discussed only the rotational branches of the (7-0) band, however, a
similar tendency for other bands was obtained as well.

200 -
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Fig. 2-5 Comparison of the °P,,, °P,; and SR,, line strengths
calculated by the Pert(England) model with the experimental data
of Mérienne et al.(points) for the (7,0) band. [2.8] The solid lines
represent the calculational values obtained by the Pert(England).
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Table 2—-8. Calculational intensity (10-26cm?cm~") of 13 rotational lines for N=13
of the (7,0) band obtained by two sets of parameters compared with
experimental ones. [2.8]

Branch SOCI Model 1 Model 2 Exp.
°P,, 29.28 31.25 29.28 28.8
P, 15.97 16.93 15.97 14.0
Qp,, 157.32 159.77 157.32 190
ep,, 149.27 143.73 149.27 172
°Q, 0.08 0.00 5.75
Q,, 242.85 232.10 169.54 285
Q,, 45.36 40.27 45.36 42.0
Q,, 12.12 13.59 40.30 27.1
5Q;, 2.00 2.83 3.65
R,, 180.52 186.22 180.52 208
R, 179.96 188.21 179.96 188
SR,, 13.11 12.34 13.11 12.5
SR, 5.43 4.46 5.43

Note. SOCI used the relation as Z,X=Y,M,=M,=M =M;.,N.=N=¢,=¢,=1,=1,=0. Model 1
calculated each rotational line with the 13 independent parameter set Z, X, Y, M;, M,, M, M,
Ng, Ni, &os &5 17 @and 7. Model 2 used only Z and X parameters and omitted M in SOCI.

As mentioned before, strictly speaking, the SOCI model needs 13 independent parameters
instead of just three. These were termed as Z, X, Y, M;, M2, Mg, Mte, Ne, Nt, o, C1, 770 and 7

by Bellary et al. [2.13] For example, X and Y parameters are written as follows.

X = (A2 | Xz, ), (2-40)

Y=(Az!

Jo Xz ), (2-41)

In general, X cannot be equal to Y, with a finite strength of the SO interaction. Treating these
13 parameters independently, the author calculated the integrated rotational line strengths for
N=13 of the (7,0) band (Model 1), and compared with the previous SOCI results obtained
with the three parameters in Table 2-8. Moreover, to investigate the effect of the RO
interaction, the M parameter was omitted in the SOCI model (Model 2).

As for the lines of strong intensity, differences between the Model 1 and SOCI were about
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3% or less. Although small differences can be seen in the weak intensity lines of the °Q,,

°Q,, and °R,, branches, the overall intensity did not change very much. With altering the

rotational and vibrational levels, this tendency did not change.
Therefore, it is concluded that in practice only three electronic parameters are enough to
calculate the integrated rotational line strengths in the SOCI model. Of course, this conclusion

can apply to the Pert(Full) and Pert(England) model. Next, comparing Model 2 and SOCI, it

is found that some Q lines of the °Q,,, °Q,,, Q. and °Q,, branches of Model 2 are

different from those of SOCI very much. These results are consistent with the conclusion of
Huestis et al. [2.14] Therefore, we cannot neglect the RO interaction at all.

So far, we have seen that the SOCI and Pert(Full) models can reproduce the integrated
rotational line strengths. In contrast, the Pert(England) model cannot reproduce them even
qualitatively. To refer to Eq. (2-7), we can ascertain that the difference of the calculational
results is due to the electronic transition moment parameters, because the calculated FCFs
were not sensitive to the theoretical models. In the SOCI and Pert(Full) models, the electronic
transition moment parameters were in good agreement with the experimental ones. On the
other hand, the Pert(England) model calculated each electronic transition moment parameter
only roughly, and it did not yield even the relative ratio of the individual parameters correctly.
It has also been showed that the cause of the difference among the three models is the degrees
of configuration interactions with the highly excited states induced by the SO and RO
interactions. Hence, it is concluded that each rotational line strength is strongly sensitive to
the accuracy of each electronic transition moment parameter, and only the higher level
calculational models including the configuration interactions with highly excited states
reproduce the absolute values of each parameter. However, in the next section, it will be

shown that the results of vibronic oscillator strengths do not depend on the calculational level
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very much.

2.4.4. Vibronic Oscillator Strength

Table 2-9 shows the vibronic oscillator strengths of the (V'=0-12, v=0) bands using

the three models.
The SOCI and Pert(Full) models reproduced the experimental values very well, and
Pert(England) models also give reasonable results. Why can we calculate each vibrational

oscillator strength fairly well with any model ?

Table 2-9. Vibronic oscillator strength from the Pert(England), Pert(Full) and
SOCI models compared with the experimental data from Ref [2.8].

Band (V,Vv)  Pert(England) Pert(Full) SOCI Exp.

0,0 1.144x 10714 8.125x 107 8.078x 107'*  836x 1071
1,0 9.416x 10713 6.767x 10713 6.734x 1073 8.02x 10713
2,0 4.063x 10712 2.954x 10712 2.941x 10712 3.73x 10712
3,0 1.222x 1071 8.987x 107" 8.954x 107" 1.11x 107!
4,0 2.874x 10711 2.133x 1071 2.127x 1071 2.51x 107!
5,0 5.618x 107! 4.210x 107" 4.199x 101" 5.09x 107!
6,0 9.470x 107! 7.155x 1071 7.141x 107" 8.36x 107!
7,0 1.399x 10710 1.065x 1071 1.063x 1071  1.22x 10710
8,0 1.828x 10710 1.401x 1071 1.399x 1071 1.57x 10710
9,0 2.103x 10710 1.621x 1071 1.619% 1071  1.79x 10710
10,0 2.070x 10710 1.602x 1071 1.601x 10710  1.64x 1070
11,0 1.583x 10710 1.229x 10710 1.229x 1071 9.15% 107!
12,0 4.599% 107! 3.578x 10711 3.578x 107!

Note that the three models give similar results unlike the integrated rotational line strengths.

Buijsse et al. expressed the effective electronic transition moment of the vibronic transition
for a give J,

M2 =(Z +4X> —4M? +6M>J(J +1))/3, (2-42)

and applied this M7, to the expression of the vibronic oscillator strength,
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_8z’mgc
3he’

f Dy M esz > (2_43)

V'v

Here, q,, is the FCF. Using this approximate expression, we are able to focus on the only

electronic transition moment parameter in analyzing the model independent vibronic

oscillator strength, because v, and q,, did notdepend on the three models very much.
M2, was evaluated for J=11 which is appropriate for the room temperature conditions. Fig.

2-6 shows that M ; calculated by Pert(England) is in accidental agreement with the value of

Meérienne et al., because in this model, Z was overestimated and X and M were underestimated
from their value as explained in Section 2.4.1, showing an error cancellation.
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Fig. 2-6 Effective electronic transition moment M4 calculated by
the three models, compared with the values of Mérienne et al.[2.8]
The Pert(England) model shows accidental agreement.

Therefore, we can obtain the reasonable results only for the vibronic oscillator strengths. On

the other hand, the SOCI and Pert(Full) models underestimated the value of Mérienne et al. In

view of the fact that our FCF is 10% larger than the experimental one, the above M . in the

SOCI and Pert(Full) models are in quantitative agreement with the experiment. Therefore, all

of the three models can reproduce the vibrational oscillator strength reasonably.
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2.4.5. Anisotropy Parameter in Photodissociation Processes

Using the new transition moment parameters, an anisotropy parameter £ was simply
estimated for the photodissociation products from the Herzberg continuum. [2.4,6,9]

Considering the experimental conditions, the vibration state of X3Z§ was supposed in the

ground state and the rotational motions were neglected. Moreover, in the axial recoil limit, the

anisotropy parameter £ is simply written as follows. [2.37]

—4X*+227°
=iz (49

P was calculated with the new transition moment parameters and shown in Table 2-10 along
with experimental values of Tonokura et al. [2.4], Buijsse et al. [2.6] and Alexander et al. [2.9],

as well as another ab initio value calculated from the transition moment parameters of Klotz

etal. [2.17]

Table 2-10. Anisotropy parameter from the Pert(England), Pert(Full) and SOCI
models compared with the ab initio value of Klotz et al. in Ref [2.17], and the
experimental data in Ref [2.4,6,9].

Pert(England) Pert(Full) SOCI  Klotz Tonokura®  Buijsse® Alexanderd
1.672 0.942 0.930 1.711 1.6 04 0.612% 0.065 0.55= 0.10(°P, )
) . 0.900 " 6% 0. 612+ 0. .55+ 0. o

aThe value including the contribution from the Herzberg Il and Il transitions.
bRef [2.4] at 226 nm.

°Ref [2.6] at 226nm.

dRef [2.9] at 222nm. The value is obtained from the 3P, and 3P, products.

Clearly, Pert(Full) and SOCI results are in good agreement with the recent experimental
data of Buijsse et al. and Alexander et al. On the other hand, the values derived with the
electronic transition moment parameters by Pert(England) and Klotz et al. are significantly
different from the recent experiments, instead they are in agreement with that of Tonokura et

al. As was seen before, the Pert(England) model cannot yield the accurate electronic transition
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moment parameters, so its £ value is not reliable. In this calculation, the dissociation is
assumed to take place only from the Herzberg I transition. However, the experiments also
contain a small contribution of the photoproducts from the Herzberg II and III transitions
whose transition moments are dominated by perpendicular components. [2.6] With the SOCI
model, the S value was also calculated, and some improvement was obtained toward the
recent experimental values. Therefore, this work supports the anisotropy parameter of Buijsse
et al. and Alexander et al. Possible reason for the difference in their experimental results was
discussed in Ref [2.6]. In this section, an accuracy of the SOCI and Pert(Full) model is also

confirmed by the calculation of the anisotropy parameter.

2.5. Conclusion

The author employed three theoretical models, SOCI, Pert(Full) and Pert(England), to
calculate the electric-dipole forbidden transition moment of the Herzberg I band system.
Comparing the calculational and experimental transition moments, the author found that
SOCI and Pert(Full) are able to calculate them quantitatively, on the other hand,
Pert(England) cannot yield them even qualitatively. The difference between the SOCI and
Pert(Full) models was small, so that the SO interaction can be essentially represented by the
first-order perturbation theory. Although the second-order interactions between the SO and
RO couplings were also calculated by the SOCI model, it turned out to be less important.
Namely, either the variation or first-order perturbation theory is applicable to the calculation
of the electric transition moment, as long as all the configuration interactions with
highly-excited stated induced by the SO and RO interactions are included. On the other hand,

a limited first-order perturbation theory as Pert(England) in which the initial and final wave
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. . 3 Ie—  » .
functions are truncated by only one perturbing state as 1°I1; and B°X, is not appropriate

for the quantitative calculation. Moreover, even if the contributions of other low-lying states
was included in the sum-over-states representation as in Pert(3) and Pert(10), they converged
to Pert(Full) very slowly in spite of the weak SO perturbations of the oxygen molecule.
Therefore, it is concluded that the basis set truncations easily lead to erroneous results for
weak forbidden band systems such as the Herzberg I band system.

To confirm an accuracy of the current transition moments, the author calculated the
integrated rotational line strengths and vibronic oscillator strengths of the Herzberg I band
system with the SOCI, Pert(Full) and Pert(England) models. The SOCI and Pert(Full) models
gave reasonable results for both strengths, while the Pert(England) model reproduced only the
vibronic oscillator strength due to an error cancellation. Thus, the SOCI and Pert(Full) models
which include all the possible configuration interactions with highly excited states through
some perturbations are necessary to calculate very weak absorption strengths quantitatively.

The author also calculated the anisotropy parameter in the photodissociation from the
Herzberg I band and obtained reasonable agreement with recent experimental data of Buijsse
et al. and Alexander et al. in the SOCI and Pert(Full) model.

Configurational analysis shows that the slow convergence in the sum-over-states
representations in Tables 2-1, -2, and -3 originates from the fact that the oxygen molecule has

some lower-lying unoccupied valence orbitals, 7, and o,. For example, the wave function
of the ground state is represented using the MR-SDCl(cc-pVQZ) method as follows.
| X)=0.9381-- 0wl ) - 01307 o) w7y ). (2-45)
The first term cannot couple with highly excited states through the SO or RO interactions

which consist of the one-electron operators, because most of the highly excited states are

expressed by the configurations in which two or more electrons are excited from the first term
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in Eq. (2-45). On the other hand, the second term makes it possible to couple with the highly
excited states directly and induces the complicated configuration mixings through even small
perturbations. Since the Herzberg I band system is a weak absorption band system, these

interactions cannot be neglected by any means.

2-61



Chapter 2. Photoabsorption in the Herzberg I band of O, Molecule

Reference

[2.1] D.H. Parker, Acc. Chem. Res. 33 (2000) 563.

[2.2] K. Yoshino, J.E. Murray, J.R. Esmond, Y. Sun, W.H. Parkinson, A.P. Thone, R.C.M.

Learner, G. Cox, Can. J. Phys. 72 (1994) 1101.

[2.3] K. Yoshino, J.R. Esmond, J.E. Murray, W.H. Parkinson, A.P. Thorne, R.C.M. Learner,

G. Cox, J. Chem. Phys. 103 (1995) 1243.

[2.4] K. Tonokura, N. Shafer, Y. Matsumi, M. Kawasaki, J. Chem. Phys. 95 (1991) 3394.

[2.5] D.J. Leahy, D.L. Osborn, D.R. Cyr, D.M. Neumark, J. Chem. Phys. 103 (1995) 2495.

[2.6] B. Buijsse, W.J. van der Zande, A.T.J.B. Eppink, D.H. Parker, B.R. Lewis, S.T.

Gibson, J. Chem. Phys. 108 (1998) 7229.

[2.7] A. Jenouvrier, M.-F. M¢érienne, B. Coquart, M. Carleer, S. Fally, A.C. Vandaele, C.

Hermans, R. Colin, J. Mol. Spectrosc. 198 (1999) 136.

[2.8] M.-F. Mérienne, A. Jenouvrier, B. Coquart, M. Carleer, S. Fally, R. Colin, A.C.

Vandaele, C. Hermans, J. Mol. Spectrosc. 202 (2000) 171.

[2.9] A.J. Alexander, Z.H. Kim, R.N. Zare, J. Chem. Phys. 118 (2003) 10566.

[2.10] H. Lefebvre-Brion, R.W. Field, Perturbations in the Spectra of Diatomic Molecules.

Academic Press, Orlando. (1986)

[2.11] G. Herzberg, Spectra of Diatomic Molecules. Van Nostrand-Reinhold, Princeton,

New Jersey. (1950)

[2.12] B.R. Lewis, S.T. Gibson, Can. J. Phys. 68 (1990) 231.

2-62



Chapter 2. Photoabsorption in the Herzberg I band of O, Molecule

[2.13] V.P. Bellary, T.K. Balasubramanian, J. Quant. Spectrosc. Radiat. Transfer. 45 (1991)

283.

[2.14] D.L. Huestis, R.A. Copeland, K. Knutsen, T.G. Slanger, R.T. Jongma, M.G.H.

Boogaarts, G. Meijer, Can. J. Phys. 72 (1994) 1109.

[2.15] J.B. Tatum, J.K.G. Watson, Can. J. Phys. 49 (1971) 2693.

[2.16] J.P. England, B.R. Lewis, S.T. Gibson, Can. J. Phys. 74 (1996) 185.

[2.17] R. Klotz, S.D. Peyerimhoff, Mol. Phys. 57 (1986) 573.

[2.18] B.F. Minaev, Chem. Phys. 252 (2000) 25.

[2.19] B.F. Minaev, L.G. Telyatnik, Optics and Spectroscopy. 91 (2001) 883.

[2.20] M.C.G.N. van Vroonhoven, G.C. Groenenboom, J. Chem. Phys. 116 (2002) 1954.

[2.21] M.C.G.N. van Vroonhoven, G.C. Groenenboom, J. Chem. Phys. 116 (2002) 1965.

[2.22] E.E. Whiting, R.W. Nicholls, Astropys. J. Suppl. 27 (1974) 1.

[2.23] A.S.-C. Cheung, K. Yoshino, W.H. Parkinson, D.E. Freeman, J. Mol. Spectrosc. 119

(1986) 1.

[2.24] C. Amiot, J. Verges, Can. J. Phys. 59 (1981) 1391.

[2.25] R. Shepard, I. Shavitt, R.M. Pitzer, D.C. Comeau, M. Pepper, H. Lischka, P.G.

Szaley, R. Ahlrichs, F.B. Brown, J.-G. Zhao, Int. J. Quan. Chem. Symp. 22 (1988) 149.

[2.26] K. Morokuma, K. Yamashita, S. Yabushita, in: A.Lagana (Ed.), Supercomputer
Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules, Kluwer, Dordrecht,

(1989) 37.

2-63



Chapter 2. Photoabsorption in the Herzberg I band of O, Molecule

[2.27] S. Yabushita, Z. Zhang, R.M. Pitzer, J. Phys. Chem. A 103 (1999) 5791.

[2.28] T.H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007.

[2.29] J.A. Pople, R. Krishnan, H.B. Schlegel, J.S. Binkley, Int. J. Quantum. Chem. Symp.

13 (1979) 225.

[2.30] H. Partridge, C.W. Bauschlicher, Jr., S.R. Langhoft, P.R. Taylor, J. Chem. Phys. 95

(1991) 8292.

[2.31] E.A. McCullough, Jr., R.E. Wyatt, J. Chem. Phys. 54 (1971) 3578.

[2.32] C. Cerjan, K.C. Kulander, Comput. Phys. Commun. 63 (1991) 529.

[2.33] M. Sugawara, M. Kato, Y. Fujimura, Chem. Phys. Lett. 184 (1991) 203.

[2.34] K. Takahashi, M. Sugawara, S. Yabushita, J. Phys. Chem. A. 106 (2002) 2676.

[2.35] T.G. Slanger, P.C. Cosby, J. Phys. Chem. 92 (1988) 267.

[2.36] M.C.G.N. van Vroonhoven, G.C. Groenenboom, J. Chem. Phys. 117 (2002) 5240.

[2.37] R.N. Zare, Mol. Phtochem. 4 (1972)

2-64



Chapter 3. Geometric and Electronic Structures of Eun(CgHs)n-

Chapter 3.
Geometric and

Electronic Structures of Eu,(CgHg),,

Abstract

Nakajima and co-workers have measured the photoelectron spectra of the multiple-decker
1:1 sandwich clusters of Euy(COT), (n=1-4; COT=1,3,5,7-cyclooctatetraene), synthesized in
the gas-phase. The author studied theoretically the bonding scheme, charge distribution,
valence orbital energies and photodetachment energies. He calculated the ground electronic
state X and the first excited electronic state A , both of which have strong ionic bonding and
characteristic charge distribution. Moreover, the valence orbital energies of Eu (6s) and COT
(Ls) were found to depend strongly on cluster size and their positions in the clusters. With the
calculated vertical detachment energies for these valence orbitals, the peaks in the
experimental photoelectron spectra were assigned, and the origin of their interesting behavior
was analyzed by employing simple point charge models. From these analyses, it became clear
that the characteristic behavior of the spectra is due to the strong ionic bonding and the charge

distribution. In addition, using the point charge models, the vertical detachment energies of

the one-dimensional polymer [Eu(COT)]; were estimated.
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3.1. Introduction

The advent of the laser vaporization synthesis method in the 80's [3.1-3] and the successive
development of the technique during the last ten years [3.4,5] have enabled us to generate
various kinds of novel clusters without environmental factors such as oxidation or reduction
of the products. Moreover, considerable experimental and theoretical efforts have recently
revealed their characteristic physical and chemical properties, which have been anticipated for
the application to new nanostructured materials. In this regard, Nakajima and co-workers have
reported the preparation of multiple-decker sandwich clusters, in which metal atoms and
organic ligands are alternately stacked one-dimensionally. [3.5] Typical examples for the
sandwich clusters are combinations of vanadium (V) atoms and benzene (Bz) molecules and
those of lanthanide (Ln) atoms and cyclooctatetraene (COT) molecules.

In the case of the V-Bz sandwich clusters, many experimental and theoretical studies in the
last decade have clarified their geometric and electronic structures. [3.6-13] For instance,
Yasuike et al. and Miyajima et al. have studied the bonding scheme and ionization energies
both experimentally and theoretically, and have made it clear that V(Bz)n+; have covalent
bonding due to the charge transfer interaction between the benzene LUMOs and the ds
orbitals of V. This builds up the one-dimensional quasi-band structure. [3.6-8] Following
these earlier studies, Pandey and co-workers performed DFT calculations for the neutral and
anion V-Bz clusters, and obtained the electron affinities, ionization energies, and ground state
spin multiplicities. [3.9,10] Broyer and co-workers determined the permanent dipole moment
of V(Bz); and V(Bz) using molecular beam deflection experiments in an inhomogeneous
electric field and theoretical calculations. [3.11,12] They reported that the V(Bz), sandwich
cluster has no dipole moment because of its symmetrical structure. They also reported that the

one-end open sandwich cluster of V(Bz), somewhat curiously, has negligible dipole moment.
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It is reasonable, however, if the dominantly prepared stable structure is weakly bound by a
long-range van der Waals force and thus has no charge polarization in the cluster. Recently,
Miyajima et al. measured the magnetic moments of V(Bz)y:; by a molecular beam magnetic
deflection method with a Stern-Gerlach magnet and found a monotonic increase of the
magnetic moment with the cluster size. [3.13]

Over the past half a century, a lot of studies have been conducted in the condensed phase
organometallic chemistry with rare earth metals, as reviewed, for example, by Schumann et al.
[3.14] Particularly, the complex of Ln and COT was firstly isolated by Hayes and Thomas in
1969. [3.15] Since then, there have been many studies of their synthesis, [3.16-19] geometric
structure and chemical properties. [3.19-24] Their bonding scheme has been recognized as
fairly ionic and their maximum size has been reported as several layers. On the other hand,
there have been only a limited number of theoretical works concerning Ln-COT complexes.
Dolg and co-workers investigated the geometric and electronic structures of the Ln(COT),
(Ln=Ce, Nd, Tb, and YD), which are the smallest unit of Lny(COT)y, sandwich clusters.
[3.25-28] They reported that Ln(COT), have Dg, symmetry and, as a first approximation,
consist of Ln>" positive central metal ions pinched with two COT'~" rings.

It is only recently that gas phase experimental works have been performed on Ln-COT
complexes with the laser vaporization synthesis method. Kurikawa et al. measured the
electron binding energies and the ionization energies of larger Ln,(COT)y, (Ln=Ce, Nd, Eu,
Ho, Er, and Yb) with photoelectron spectroscopy. [3.29,30] Based on the experimental results
and the theoretically predicted charge distribution of Ln(COT),, they suggested that the
Lny(COT)m sandwich clusters also have a strong ionic bonding owing to the electron transfer
from Ln to COT. Miyajima et al. also discussed the charge distribution of Ln-COT clusters by

a chemical probe method with Na atoms as electron donors. [3.31] Recently, Hosoya et al. has

3-67



Chapter 3. Geometric and Electronic Structures of Eun(CgHs)n-

succeeded in synthesizing larger Eu-COT sandwich clusters, named as sandwich nanowires,
in the gas phase using a combination of laser vaporization techniques and molecular beam
methods. [3.32] In contrast to Vn(Bz)m, which was limited to seven layers, Eu-COT sandwich
nanowires were formed with up to one-dimensional 27 layers (about 10 nm overall length)
which stimulated theoretical investigation.

In this Chapter, the author reports a theoretical study on the geometric and electronic
structures of one-end open 1:1 sandwich clusters of Eny(COT), (n=1-4), because they are
considered to be important intermediates in the sequential formation step of the larger
Eu-COT sandwich nanowires and their photoelectron spectra show a characteristic
dependence on the cluster size. [3.32] In addition, such a study is essential to understand the
properties of the larger cluster and other Ln,(COT)my compounds.

In Section 3.2, computational details are given. In Section 3.3, the author first presents the
experimental photoelectron spectra which show interesting cluster size dependencies. Next,
the author theoretically gives optimized geometries and their charge distribution for two
different electronic states, and discusses the characteristic behavior of valence orbital energies
of the Eu and COT portions which exhibit strong dependency on the cluster size and the
relative positions. The experimental photoelectron spectra are assigned in comparison with
the DFT calculations and also with the spectra of barium(Ba)-COT. Furthermore, the physical
origin of the characteristic behavior of the valence orbital energies is revealed with simple

point charge models. Using the point charge models, the vertical detachment energies (VDE)
of the one-dimensional polymer [Eu(COT)]; are easily estimated. Finally, one-dimensional

potential curves are depicted, based on the linear synchronous transit (LST) paths [3.33] to

investigate the energetic relations among the anion and neutral clusters.
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3.2. Computational Method

All the DFT calculations were carried out with the B3LYP functionals [3.34] built in the
Gaussian 98 program package. [3.35] Throughout this paper, bond lengths are given in
angstrom (A), and energies in eV. A molecular axis (z-axis) is defined as a line passing
through Eu and the center of gravity of the COT ligand. The eight © molecular orbitals on a
COT ligand are denoted, based on their symmetries, as nondegenerate L, doubly degenerate
Ly, Ls, Ly, and nondegenerate L,, therefore the valence electronic configurations of COT*
and COT are LGZL,,,-“LS4 and LGZLn4L53, respectively. The geometric structure of the aromatic
ground state COT*" is Dg,,. For COT ", several isomeric structures with symmetries of Dy, and
Dgn, have been reported. [3.36,37] Valence electronic configurations of the ground states of
Eu®’, Eu" and Eu are 4f7, 4f76s', 4f 7652, respectively, in which the 4f electrons always have a
half-filled shell structure with a core-like character.

As reported previously, [3.29,30] the charge distribution for the Eu-COT clusters consists of
Eu”" cations and COT* anions. Based on the above mentioned configurations of Eu, which
have a core-like character of 4f7, and the charge distribution model of Eun(COT),, three
different combinations of basis sets and ECPs were applied: 4f CORE-A, 4f CORE-B, and 4f
VALENCE. In 4f CORE-A, the 4f core ECP and (7s6p5d)/[5s4p3d] basis set of the
Stuttgart/Cologne group [3.38] for Eu and the D95 basis set [3.39] for COT were chosen. In
4f CORE-B, to see the effect of polarization and diffuse functions for COT*", the D95 basis
was replaced by the 6-31+G(d) basis set [3.40]. In 4f VALENCE, the 4f valence ECP and
(12s11p10d81)/[5s5p4d3f] basis set of the Stuttgart/Cologne group were employed for Eu

[3.38] and 6-31+G(d) for COT.
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3.3. Results and Discussions

3.3.1. Photoelectron Spectra

Hosoya et al. have measured photoelectron spectra of Eu,(COT), (n=1-4) to gain detailed

information about their electronic structure.
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Fig. 3-1 Experimental photoelectron spectra for (n, n) (n=1-4) at the photon
energy of 355nm (3.49eV) and calculation results with ADFT shown by vertical
lines. Symbols M and C(1) represent the M and C(1) peaks from the X state,
and symbol H denotes the H peak from the A state as described in section 4.3.
The M peak shifts to the higher energy side with the cluster size, and the C(1)
and H peaks are almost independent of the cluster size.

Fig. 3-1 and 3-2 show the spectra with the third harmonic (355 nm; 3.49 eV) and the fifth
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harmonic (213 nm; 5.83 eV) of a Nd*": YAG laser, respectively. In the spectra, the horizontal
axis corresponds to the electron binding energy, Ey, defined as Ey, = hv — Ex where Ej is the

kinetic energy of the photoelectron.

Intensity (arb. units)

c(1) C(2iC(3)
012345

Electron Binding Energy / eV

Fig. 3-2 Experimental photoelectron spectra for (n, n) (n=1-4) at the photon
energy of 213nm (5.83eV) and calculation results with vertical lines, which are
obtained by Koopmans’ theorem with the UHF orbital energies. Symbol C(i)
stands for the detachment from each COT(i) in the X state as described in
section 4.3. The number of C(i) peaks increases according with the cluster size.

In Fig. 3-1, two significant peaks are found: the first one shifts to the higher energy side
with the cluster size (M peak) and the second one is almost independent of the cluster size
(C(1) peak). In the spectra of n>2, the weak hot band is also observed around the binding

energy of 1.0 eV (H peak). In Fig. 3-2, successive peaks are observed where the number of

3-71



Chapter 3. Geometric and Electronic Structures of Eun(CgHs)n-

peaks increases according with the cluster size (C(i) peak).
To assign the photoelectron spectra and explain the physical origin of their characteristics,
the theoretical studies on geometric and electronic structures of Eu,(COT), will be discussed

in the following sections.

3-72



Chapter 3. Geometric and Electronic Structures of Eun(CgHs)n-

3.3.2. Optimized Geometry,

Charge Distribution and Localized Molecular Orbitals

Formal Charge Formal Charge

|:|<—> -2 —
2.120 2.630
(2.107 [4f CORE-A]) (2.634 [4f CORE-A))
(2.030 [4f VALENCE]) : (2.549 [4f VALENCE])
2.583 2.227
(2.591) (2.217)
<+—> <+—> <—> <+—>
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(2.109)  (2.171) (2.415)  (2.630)
2.568 2.461 2.233 2.213
(2.572)  (2.466) (2.228)  (2.205)
|:| <—>|:| <—ﬂ - 4—>|:| 4—>|:|
2.123 2.183 2.209 2.388 2.448 2.580
(2.110)  (2.178)  (2.202) (2.378)  (2.450)  (2.602)
2.570 2.444 2.412 2.241 2.215 2.205
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(a) X~ state (b) A-state

Fig. 3-3 Formal charge distribution and optimized geometry parameters (A) for the X and A
electronic states of (n, n) (n=1-4) calculated by three different treatments. For n=1-3, the optimized
parameters of 4f CORE-A and -B are shown and inside of parenthesis are the parameters of 4f
CORE-A. For n=4, optimization was carried out only with the 4f CORE-A. For the X and A states
of n=1, optimized parameter calculated by 4f VALENCE are also shown. The black, dotted and
white circles denote neutral, +1 and +2 charged metals, and dotted and white plates denote 1 and

2 charged COT ligands, respectively. Assumed geometric structures and their parameters for the
X and A state of [Eu(COT)],, are r (X )=2.181, r (X )=2.475, r (A )=2.454, r (A )=2.220.

Fig. 3-3 shows the formal charge distribution, together with the optimized distances
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between the metal and the center of gravity of the COT carbon ring. The formal charges are
easily determined by counting the number of electrons among the valence orbitals, namely the
6s and L orbitals, since each orbital is well localized on Eu or COT, as discussed later. In this
figure, the black, dotted, and white circles denote neutral, +1, and +2 charged metals, and
dotted and white plates denote —1 and —2 charged COT ligands, respectively. As lower-lying
electronic states, the author found two different doublet states (with 4f core ECP), that the
author calls the X and A states. The A state arises by a one-electron transfer from the left
end COT? to the right end Eu” ion in Fig. 3-3(a).

Interestingly, computational results showed that exposed metal atom carried a charge of +1
and 0 in the X and A states respectively, and the COT ligand was always the exposed
ligand in the A state, as shown in Fig. 3-3. Moreover, the A state was an excited state,
namely higher than the X state in energy, in all the cluster sizes studied. Additional details
will be discussed in Section 3.3.5.

The optimized distances between Eu and COT in Fig. 3-3 show a very small basis set
dependency, namely the maximum deviation between CORE-A and -B was about 0.03 A for
n=1-3. The geometry optimization with 4f VALENCE performed only for n=1 shows a
slightly larger deviation yet less than 0.1 A in the distance between Eu and COT.

The geometries of the X and A states are specified with two kinds of distances, r, and 1, as
shown in the lower part of Fig. 3-3. r, is the bond distance between an Eu®" and the left-hand
neighboring COT, and 1y, is the one between an Eu”" and the right-hand neighboring COT. It is
interesting to point out that in the X state, r, < 1y, namely, 1, is about 2.1-2.2 and r}, is about

2.4-2.6, while the opposite is true in the A state, where 1, is about 2.4-2.6 and 1, is about 2.2.
It is assumed that the polymer [Eu(COT)]; takes a single set of the parameters in the X

state, r,(X )=2.181 and ry(X )=2.475, which are the averaged values of those for n=4. For the
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A state, (A )=2.454 and r,(A )=2.220 were assumed in a similar manner.

Table 3-1. Optimized C—C bond distances (A) of the COTs in the X~ and A~ states.2P

X~ state
COT(1) COT(2) COT(3) COT(4)
(n,n)-  4fCORE Cc-C C-C C-C C-C
1.430 e e e
(1.1 )
B 1.420 (1.419) e e _
A 1.430 1.431 _ _
(2,2
B 1.420 1.421 R R
A 1.430 1.431 1.431 _
(3,3
B 1.420 1.421 1.421 _
4,4y A 1.430 1.431 1.432 1.432
A~ state ¢
COT(1) COT(2) COT(@3) COT(4)
(n,ny-  4fCORE Cc-C C-C Cc-C C-C
A 1.394 (1.454) e e _
(L,1) 1.383 (1.444)
B - - -
1.3834 (1.444)d
02 A 1.397 (1.454) 1.427 (1.433) — e
’ B 1.386 (1.445) 1.417 (1.423) — —
GA) A 1.397 (1.455) 1.430 (1.433) 1.430 (1.431) _
’ 1.386 (1.446) 1.419 (1.423) 1.420 (1.421) —
4,4) A 1.397 (1.455) 1.430 (1.433) 1.432 (1.432) 1.431(1.431)

a For n=1-3, the optimized distances are calculated by the 4f CORE-A and -B, and for n=4, they are calculated
only by the 4f CORE-A.

b COT(i) denotes i th COT counted sequentially from the left in Figure 3-3.

¢ In the A~ state, because of the C,, structure, two kinds of C-C bond lengths are distinctively shown, longer
being in parenthesis.

d The optimized distances are calculated by the 4f VALENCE.

Table 3-1 summarizes the optimized C-C bond distances of the COT ligands in the X and
A states to focus on the geometry of each COT. Here, COT(i) denotes the i th COT counted
sequentially from the left in Fig. 3-3 and Eu(i) denotes also the i th Eu from the left.
Geometry optimizations for the X state with both 4f CORE-A and -B for n=1-3 and with 4f
CORE-A for n=4 yielded Cs, structures with all of the C-C distances are about 1.42 A. For the

A state, the optimizations led to Cyy structures, in which only COT(1), with the formal charge
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of —1, has a largely distorted Cs4, structure due to the Jahn-Teller effect and has the two kinds
of C-C distances of about 1.39 and 1.45 A, whose average value is again 1.42 A. It is noted
that, as the position number i increases, the symmetry of COT(i) becomes closer to Cs,,
reflecting their formal charge of —2. All of the C-H bond distances were 1.09 A.

The frequency analysis was also carried out for each state of n=1-3 with 4f CORE-A. For
n=1 and 2, the optimized geometries for the X and A states were both stable structures. For
n=3, while the X  state was stable, a doubly degenerate imaginary frequency of 8.89 cm™' was
obtained for the A state along a lateral motion from the z-axis. However, the energy lowering
from the Cyy structure was only 0.26cm ', thus the geometries restricted to the Cy, structure
for the A state of n=3 were used in the following calculations. For n=4, the optimization was
performed only with 4f CORE-A, assuming the Cg, and Cy, structures for the X and A states,
respectively. Based on these results, the optimized structures with 4f CORE-B except for n=4,
for which those with 4f CORE-A, will be used for the rest of discussion, unless otherwise
stated.

To see the charge distribution, the Mulliken charge calculated by 4f CORE-A with the
formal charge in Fig. 3-4 are compared. Here, it is found that formal charges of +2, +1, and 0
of Eu correspond approximately to 0.8, 0.2 and —0.4 of the Mulliken charges, respectively.
Similarly, formal charges of —2 and —1 of COT correspond to —1.0 and —0.6 of the Mulliken
charges, respectively. Moreover, it is noticed that this correspondence always holds
irrespective of the cluster size and the electronic state. Although the formal charge in the point
charge models, to be discussed later, is different from the Mulliken charge quantitatively, it

reflects the qualitative tendency of the charge distribution.
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Fig. 3-4 Mulliken population analysis with 4f CORE-A and formal charge distribution for (a) X
and (b) A states of (n, n) (n=1-4).

Lastly, Fig. 3-5 presents the Kohn-Sham orbitals of the HOMO, the second and the third
HOMO of n=2 in the X state, plotted using the Molekel program. [3.41]

These orbitals are well localized on each portion, namely the HOMO is on Eu(2) and the
second and the third HOMO are on COT(1) and COT(2), respectively. Note that the latter two
orbitals have the same 6 symmetry. Interestingly, the HOMO is strongly polarized away from
the surrounding COT?” due to their repulsive interaction as also observed in the monohalides
of alkali-earth and Ln. [3.42] These characteristics were seen for all of the cluster sizes of
n=1-4, both for the X and A states. Based on the orbital localization and ionic charge

distribution of Eup(COT)j, , it is concluded that these clusters have a strong ionic bonding.
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I o

(a) HOMO

(b) 2nd HOMO

(c) 3rd HOMO

Fig. 3-5 The HOMO (a), second (b) and third HOMO (c) for the X state of (2, 2)
. Each MO is essentially localized on the Eu atom and COT ligands,
respectively.

3.3.3. Valence Orbital Energy and Detachment Energy.

Hartree-Fock Orbital Energy

Before calculating the theoretical vertical detachment energy (VDE), the valence orbital
energies are estimated to consider possible detachment channels. For this purpose, the
Hartree-Fock (HF) orbital energies, which are easily related to VDE with Koompans’ theorem,

are more meaningful than the Kohn-Sham orbital energies. Thus, the UHF orbital energies
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with 4f CORE-B are first calculated and their valence orbital energies are summarized in Fig.
3-6. Here, 6s(X ) and 6s(A") denote each 6s orbital of the terminal Eu” and Eu in the X and
A" states respectively, and Ls(COT(i)) denote the Ls orbital localized on each COT(i) in the
X' state, as shown in Fig. 3-6(b).

It is noticed that the orbital energy of 6s(X ) decreases with the cluster size, however, that
of 6s(A ) is almost constant. The energy of Ls(COT(1)) is almost independent of the cluster
size. In addition, in a specific cluster size n, the orbital energy of each Ls(COT(i)) shows a
critical dependence on its position in the clusters, namely, it becomes lower as going to the
right (as the position number i increases). In Section 3.3.4, the origin of the characteristics of

these valence orbital energies will be revealed.
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Fig. 3-6 (a) Energy diagram of the valence orbitals (eV) and the corresponding label
for detachment peaks. All results are calculated by the UHF method with 4f CORE-B
and the optimized distances given in Table 1 and Figure 3. (b) Label of each
molecular orbital: 6s(X ,A ) denotes the 6s orbital of the terminal Eu in the X and A
states, and L; expresses the one of each COT in the X state. COT(i) denotes i th
COT counted sequentially from the left in this figure.

Further, to investigate the 4f orbital energy and the dependency on the ECPs, the UHF
orbital energies for the X state by using 4f VALENCE with the highest spin-multiplicity of 9
and 16 for n=1 and 2 were calculated, respectively. Table 3-2 summarizes and compares the

6s, Ls, L, and 4f orbital energies calculated by 4f VALENCE and 4f CORE-B.
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In spite of the different ECPs and basis sets for Eu, the 6s, Ls, and L, orbital energies
calculated with these two methods are in agreement with each other within a maximum
deviation of 0.17 eV. The orbital energies of 4f in Table 3-2 are much higher than those of the
bare Eu” and Eu”" cations due to the strong ligand field by the surrounding COT?". [3.42,43]
Moreover, they split to one 4f; and doubly degenerate 4f;, 415, and 4f, components within
0.25 eV in the Cg, structure. The magnitude of the splitting pattern of 4f is significantly
different from that of the 5f orbitals of actinocenes. [3.44-46] Since the 5f orbitals are more
extensive than the 4f orbitals and their energies are higher than the HOMO (Ls) of COT, the
interactions between the 5f orbitals and COT ligands are much stronger. On the other hand,
because the compact 4f orbitals of lanthanide are lower in energy than that of the inner
orbitals of COT, the splitting energies are smaller, and the splitting pattern is expected to
depend strongly on their local charge.

Although no calculations with other spin-multiplicities were performed, because of the
small splitting energies of the 4f orbitals and the reasonable agreement in the other valence
orbital energies, it is considered that the 4f shell can be treated as core, unless the
photodetachment of a 4f electron is explicitly examined. In that case, as shown later,
Koopmans’ theorem overestimates the VDE very much, and the DFT method including
orbital relaxation effects shows much better performance. An interesting point to be added

here is that the orbital energies of 4f and L, also depend on their positions in the clusters. The

reason for this dependence is similar to that of Ls as discussed in Section 3.3.4
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Table 3—-2. Comparison of the UHF orbital energies calculated by 4f CORE-B and 4f
VALENCE for the X~ state.?

(1, 1y 2,2y
4fVALENCE  4f CORE-B 4fVALENCE  4f CORE-B

6s(1) ~0.916 ~0.929 6(2) 2,072 ~2.003
L,(COT(1)) ~2371 ~2.501 Ly(COT(1)) ~2.387 ~2.443
L (COT(1)) ~7.494 ~7.587 L,(COT(2)) —4.142 —4.257
4 (1) -9.516 S L (COT(1)) ~7.572 ~7.581
4f,(1) -9.620 — L (COT(2)) ~9.266 -9.436
4f (1) -9.643 E— 4 (1) 9,512 E—
4f (1) -9.753 S 4£,(1) -9.550 S
4f (1) -9.689 S
4f (1) -9.709 S
4f (2) ~11.089 S
4F(2) ~11.109 S
41,(2) ~11.198 S
4f (2) ~11.218 S

2 Calculations on the optimized geometry with 4f CORE-B shown in Table 3-1 and Fig. 3-3.
b COT(i) and 4f(i) denote orbitals on the i th COT and Eu, respectively, counted sequentially from the left in Fig.
3-3.

Detachment from 6s(X-,A-) and Ls;(COT(1))

Having investigated the valence and 4f orbital energies, the author assigned the two
detachment channels: firstly, the M peak to a detachment from 6s(X ), and secondly, the C(1)
peak to a detachment from Ls(COT(1)) as shown in Fig. 3-1 and 3-6.

Then, the VDEs for these two channels were calculated using the more quantitative ADFT
method, in which the VDEs were evaluated from the difference in the DFT total energies of
Eun(COT), and the corresponding one electron detached neutral states at the anion
equilibrium geometry. First, the dependency of the calculated VDEs on the three

computational methods, 4f CORE-A, -B, and 4f VALENCE were investigated. It is found that
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the differences between 4f CORE-A and -B for the M and C(1) peaks of n=1-4 are less than
0.1 eV, and those between 4f CORE-B and 4f VALENCE for the two peaks of n=1 are also
less than 0.1 eV. Therefore, in the following discussion, only the calculation results with 4f
CORE-B will be used.

In Figs. 3-1 and 3-2, the calculated VDEs with 4f CORE-B are presented as solid sticks
along with the experimental spectra. The calculated values for the two peaks M and C(1) in
Fig. 3-1 are in a fair agreement with the experiment at 355 nm. Especially, they reproduce the
characteristic behavior; the first peak shifts to the higher energy side as the cluster size
increases, while the second peak is independent of the cluster size.

As for electron detachment from the excited A state, two detachment channels are also
expected: firstly, from 6s(A7) (H peak), and secondly, from the COT>" ligands. For each
cluster size, the calculated VDEs are obtained for the H peak near 0.9 eV and for the second
peak near 3.0 eV. Because this second peak of the A" state would overlap with the broad C(1)
peak of the X state, it is experimentally difficult to identify the second peak distinctly from
these two peaks. On the other hand, the H peak can be observed clearly for cluster size n>2 as
in Fig. 3-1. Although the H peak for n=1 might be overlapped with the M peak, the weak peak
near 0.9 eV can be assigned to the detachment from 6s(A ) of the excited A state, and its
weak intensity reflects an evidence for the minor production of the A state. In fact, Hosoya et
al. reported that the intensity ratio between the H and M peaks depended on the source
conditions such as stagnation pressure for He carrier gas; the lower stagnation pressure gave
the H peak intensity stronger relative to that of the M peak. Note that the H peak becomes
prominent with cluster size, which seemingly corresponds to the smaller energy difference
between the X and A states in larger clusters. This point will be discussed further in Section

335
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Detachment form each Ls(COT(2) orbital

Next, the author considers electron detachment from each Ls(COT(i)) in the X state (C(i)
peak). The VDEs were calculated using the UHF orbital energies in Fig. 3-6 and Koopmans’
theorem instead of the ADFT method, because the latter method cannot yield excited states
with the same symmetry as the lowest state due to the convergence problem practically and
the Hohenberg-Kohn theorem conceptually, namely, each state obtained by the electron
detachment from these L; orbitals belongs to the same symmetry. The results are compared
with the experimental spectra taken with the photon energy of 213nm (5.83eV) in Fig. 3-2.
The calculation also reproduces the characteristic peaks qualitatively. The successive peaks
whose number is equal to that of the COTs can be assigned to detachment from each

Ls(COT(i)).

Detachment from 4f orbitals

Let us consider the electron detachment from the 4f orbitals in the X state. A peak around
3.7 eV was found in both the spectra of n=1 and 2 of Fig. 3-2. (That for n=2 appears as a
shoulder.) Fig. 3-7 shows the photoelectron spectrum for Ba-COT cluster anions of
Bay(COT), together with that for Eu,(COT), at 213 nm measured by Hosoya et al. Since a
Ba atom has an electron configuration of [Xe]4f6s?, it is expected that Ba-COT forms an
identical sandwich cluster with Eu-COT without 4f electrons, where a Ba atom takes a Ba?"
state in the clusters. In fact, Hosoya et al suggested that the mass distributions of anionic and
neutral Ba-COT are very similar to those of Eu-COT; the successive series of (n, n+1), (n, n),
and (n, n—1) clusters for Ba-COT appear prominently. [3.47] The abundance of Ba;(COT);
was too small to measure the photoelectron spectrum. As expected from the identical ionic

distribution between Eu-COT and Ba-COT, both give almost the same EA and similar overall
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features as shown in Fig. 3-7, while there is apparently an additional photodetachment

contribution of 4f orbitals around 3.5-4.0 eV in the spectra of Eu,(COT); .
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Fig. 3-7 The photoelectron spectrum for Ba,(COT), together with that for
Eu,(COT), at213 nm. There is apparently an additional photodetachment
contribution of 4f orbitals around 3.5-4 eV in the spectra of Eu,(COT), . The spectral
envelopes in the 213 nm spectra were deconvoluted into a train of components by
gaussian functions. For Eu,(COT), at 213 nm, one additional peak appears at 3.71
eV as labeled by a downward arrow.

To assign the position of the electronic transition clearly, the spectral envelopes in the 213
nm spectra were deconvoluted into a set of component Gaussian functions as indicated by the
curves in Fig. 3-7. For Euy(COT), at 213 nm, one additional peak appears at 3.71 eV, as
labeled by a downward arrow in Fig. 3-7.

With the ADFT method, the final neutral states were calculated with one hole in the 4fy(1)
as the initial guess, VDEs were obtained for n=1 and 2 as 4.256 eV and 4.313 eV, respectively.
Especially for n=2, the converged hole state was not localized in 41(1), but delocalized in both
41(1) and 4f(2). Therefore, the experimental peak around 3.7 eV is due to a detachment

channel from the delocalized 4f orbitals. Since the 4f orbitals are very compact, the
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detachment of a 4f electron causes a very large shrinking of other outer orbitals and stabilizes
the final neutral state significantly. By this reason, the VDE calculated for the detachment of
4f electron with ADFT becomes much smaller than that predicted with Koopmans’ theorem
given in Table 3-2. It is noted that this type of large orbital relaxation upon photoionization
from a compact sized orbital was observed previously in the (3ds)”' ionization channel of
ViBz,:1. [3.7] From these results, it seems plausible to assign the peak around 3.7 eV to the 4f
! channel, although the photoelectron spectrum for the Ba;(COT);” cannot be measured.

The source of the difference (about 0.6 eV) between the experimental and calculated VDEs
for the 4! channel is attributable to the ECP or the DFT method, because the ADFT method
with the 4f VALENCE treatment overestimates the ionization energies for the 4" channel of
the Eu" and Eu®" cations by about 1 eV. Therefore, the ADFT results for the 4f ™' channel for
n=1 and 2, with an overestimation of about 0.6 €V, are reasonable within this calculation error.
For more detailed analyses, it would be necessary to calculate with other theoretical methods.
Although this remains as a future study, the detachments from the 6s and COT(i) were not
affected very much by the explicit inclusion of 4f orbitals, therefore the characteristic

behavior of these detachments will be studied in the next section.

3.3.4. Point Charge Model.

Using the HF orbital energies in Fig 3-6, it is noticed that Koopmans’ theorem is able to
explain the cluster size dependences of the M, C(i), and H peaks. The variation of the HF
orbital energies can be divided into kinetic and potential energy parts. For the relevant valence
orbitals, it is observed that the kinetic energies showed very weak cluster size dependences,
since each molecular orbital is largely localized and does not change their shape significantly

as shown in Fig. 3-8. It is therefore considered that the origin of the variation of the orbital
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energy is due to the potential part, especially the intracluster electrostatic potential.
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Fig. 3-8 Hartree-Fock orbital energy and its potential part <V> and kinetic energy part <T>.
(a) 6s orbital of Eu* in the X state. (b) L, orbital of COT(1) in the X" state.

Here, two point charge models are developed reflecting the strong ionic bonding of the
Eun(COT), clusters. In a model, only the electrons belonging to a metal atom or COT ligand
are explicitly treated, from which photodetachment takes place, and the remaining Eu metals
and COT ligands as point charges distributed as in Fig. 3-3. Then, the DFT calculation was
performed for one Eu atom or one COT molecule with the surrounding point charges with the
CHARGE keyword in the Gaussian program package, and calculated VDEs by the ADFT
method with thus calculated energies. This method is referred to the “Point Charge+DFT”

method.

As another model, using classical electrostatic formula, the electrostatic potentials which

are created by the surrounding point charges Q. at r, are evaluated namely,

Vim=Y 3 G3-1)

=) |r _ri|
Here, r is a position vector at which the potential is evaluated and is the average position

of the electron detaching from the orbital a. For r,, the optimized geometry shown in Fig.
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3-3 is applied. The electron binding energy is the work to be done on an electron to detach it

to infinity. Therefore the electrostatic potential can be regarded as VDE, and this method is

called as the V2

4as method. In what follows, these two approximate point charge models
provide us with a simple and qualitative explanation for the photoelectron spectra and reveal
that the characteristic behavior of the M, C(i) and H peaks originates from the

one-dimensional strong ionic bonding.

M Peak.

The M peak was assigned to electron detachment from the 6s orbital of Eu' in the X state
(65(X)). Therefore, the remaining Eu*" and COT*” ligands were approximated by +2 and —2

point charges, respectively and placed along the z-axis using the optimized geometry, as

shown in Fig 3-3. Then, the Point Charge+DFT method was employed. As for the V.53

class
method, considering the spatial extent of 6s(X ) (Fig. 3-5), a position r of the detaching
electron was taken at 1.733A outside that of Eu" for all n. This value of 1.733A comes from
the expectation value for the position (orbital centroid) of the 6s(X ) electron for n=1. In the

left part of Fig. 3-9 shows the results obtained by the two point charge models in comparison

to other calculation results and experiment. Note that the absolute value of V3 is shifted

to fit with the ADFT calculation value at n=1. Clearly, the point charge models reproduce
other data qualitatively in spite of their simplicity. Especially, the asymptotic behavior of
VDE is well reproduced. Therefore, it is concluded that the characteristic behavior of the M
peak results from the variation of the electrostatic potential felt by the detaching electron

induced by the surrounding Eu*” and COT?” which can be approximated as point charges.
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Fig. 3-9 (a) Calculation results of the point charge models for the M peak of (n, n) (n=1-4)in
comparison with other calculations and experimental data. (b) Schematic diagram for the
Coulombic interaction between the detaching electron for the M peak and dipole moments which
align one-dimensionally in the same direction.

Now, the relation between the cluster size and the variation of the electrostatic potential is
considered. As schematically shown in the right part of Fig. 3-9, viewing from Eu’, the
increase of the cluster size corresponds to the attachment of a pair of +2 and —2 point charges
to the left side of the cluster: this pair is regarded as an electric dipole. The Eu-COT cluster
has the one-dimensional structure, so that the dipoles align one-dimensionally in the same
direction on increasing the cluster size. Therefore, the increase of the cluster size can be
regarded as the stacking of dipoles on the left side of the cluster. Each dipole stabilizes the
detaching electron in Eu” by an energy that is inversely proportional to the square of the
distance between the detaching electron and the attached dipole. The sum of such stabilization
energies converges asymptotically to a constant value with n. An asymptotic convergence is
observed as a characteristic behavior of the M peak and reflects the one-dimensional ionic

bonding structure of the Eup(COT), clusters.
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C(2) and H Peaks.

In a similar manner, the point charge models can be applied to the C(i) and H peaks. As
mentioned before, the C(1) peak is always assigned to the electron detachment from COT(1)*
in the X state (Ls(COT(1))) and the H peak to the detachment from the neutral Eu(n) in the
A state (6s(A )). Moreover, both peaks hardly shift on increasing the cluster size. In applying
Eq. (3-1) to the C(1) peak, the value was calculated at the center of the COT ring. As for the H

peak in the A~ state, a value of 0.844A was used as the position of 6s(A") centroid.
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- m- Koopmans 2.0- - m- Koopmans
3.01 —e— Point Charge + DFT : —e— Point Charge + DFT
= —omvE S ol —om V)
‘; 2.8 * EXP. ~ & EXP.
S . PN ¢ )
] & @ .00 L ———— . . . ... *
w 264 o /Q 1]
g o — ——o0 2 05- - e -
S 0" s ko] - N
D 24- JSAALLES S * i s s
' —— 0.0 o
2.2 : T T T -0.5 T T T T
(1.1) (2,2) (3,3) 4.4y (1.1) (22) (3,3) (4.4)
Cluster Size Cluster Size
(a) C(1) Peak (b) H Peak

Fig. 3-10 Calculation results of the point charge models for the C(1) (a) and H (b) peaks of (n, n)
(n=1-4) in comparison with other calculations and experimental data.

Fig. 3-10 shows the calculated results for the C(1) and H peaks in comparison to other data.
The two point charge models also give a qualitative explanation for the size independent
behavior of the C(1) and H peaks. Namely, the electrostatic potentials at the left end COT(1)
in the X state and neutral Eu in the A state are almost independent of the cluster size.

For the C(1) peak, let us consider the relation between the cluster size and the variation of
the electrostatic potential in view of the left end COT(1) in the X state with looking at Fig.
3-3. In this case, the increase of the cluster size corresponds to the change of the right end Eu”
to Eu®" and the addition of a pair of COT>” and Eu" ; the attachment of a group of +1, =2, +1

point charges to the right side of the cluster. Since this group is regarded as an electric
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quadruple, the stabilization energy is inversely proportional to the third power of the distance
between the detaching electron on COT(1) and the quadruple. Namely, the electrostatic
potential at the left end COT(1) in the X state is almost independent of the cluster size in
contrast to that at the right end Eu" (M peak).

As for the H peak, a similar explanation can be applied, namely, viewing from the neutral
Eu in the A" state, the increase of the cluster size corresponds to the attachment of a group of
—1, +2, —1 point charges, which is approximated as a quadruple, to the left side of the cluster.
Therefore, the cluster size dependence of the C(1) and H peaks is much smaller than that of
the M peak.

Next, the author gives a simple explanation for the strong position dependence in the orbital
energies of COT(i) and 4f(i) in the X state as shown in Fig. 3-6 and Table 3-2. For example,
in the (3, 3) cluster, the Ls orbital energy of COT(2) is about 1.7 eV lower than that of
COT(1), and that of COT(3) is about 1.1 eV lower than that of COT(2). Looking at Fig. 3-3
and the lower part of Fig. 3-9, it is noticed that COT(3) is stabilized by two dipole moments
consisting of the combination of (COT(1)*” Eu(1)*") and (COT(2)*” Eu(2)*"), while COT(2) is
stabilized by only one dipole moment of (COT(1)*” Eu(1)*"). Therefore, the orbital energy
becomes lower as going to the right because of more stabilization by dipole moment stackings.
A similar explanation is applicable to other cluster sizes, so that this gradient among the
orbital energies of COT(i) and 4f(i) is also regarded as an interesting character in the
one-dimensional ionic bonding cluster.

It should be pointed out that, contrary to the X state, the Ls orbital energies of COT(i) in
the A state do not show a clear stairs-like behavior in the cluster. This is possibly because the
A state does not show a clear dipole chain structure, namely a significant bond alternation, as

shown in Fig. 3-3.
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Based on the above discussion, each VDE is estimated for the polymer [Eu(COT)]; using

the assumed geometric parameter r,(X /A )and r,(X /A ) for the X and A state, respectively,
in Section 3.3.2 and Fig. 3-3. In the calculation, firstly the variation of each VDE from n=4 to

n=co is accumulated using Eq. (3-1), and secondly the accumulated variation was added to

the experimental data of n=4. In this way, each VDE empirically to n=c0 was extrapolated

and values of 2.894, 2.449, and 0.972(eV) for the M, C(1) and H peaks were obtained,
respectively. The VDE for the M peak showed a monotonous convergence, and the difference

in the VDE between n=30 and n=c0 was 0.096 eV. On the other hand, those for the C(1) and

H peaks converged quickly at n=4.

Similar point charge models have been used for the analyses of, for example, chemical shift
in core ionization energies, [3.48-50] electron affinities and ionization energies, [3.51,52]
solvent effect in condensed phase, [3.53,54] and so on. In these cases, the point charge models
have been used mainly for analyzing the substituent effects. In this work, the variation of the
intracluster electrostatic potential has been studied by increasing the cluster size, and the
characteristic behavior of the photodetachment spectra has been analyzed. Similar phenomena
are also expected in other clusters with a strong ionic bonding, to which the point charge

models can be conveniently applied.

3.3.5. Relations among the X', A" and X States.

In this last section, the author investigates the relative energies among the X, A and
neutral ground X states to consider the stability of the A state. Recently, several groups have
suggested that a laser vaporization or pulsed arc method generates clusters in metastable

structures. [3.12,55] Therefore, it is very interesting to look at the energy and structure
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relations between the X and A state theoretically. The adiabatic excitation energies from X

to A of n=1-4 were calculated as 1.569, 1.413, 1.384 and 1.382 eV, respectively.
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Fig. 3-11 One-dimensional potential curves of the X and A states alone the linear
synchronous transit path connecting the minimum structures of these two states for n=1,2,
and those for the X and A states, for n=1,2.

To investigate possible relaxation mechanisms from the metastable A state,
one-dimensional potential energy curves were calculated for the X and A states of n=1 and 2,
as shown in the upper part of Fig. 3-11. Here the potential energy is relative to the minimum
energy of the X state. Rx min and Ramin represent the optimized nuclear structure for the X
and A state, respectively. The reaction path is an artificial one on which all the structural

parameters are assumed to change linearly from Rx min t0 Rao"min using the linear synchronous

transit path [3.33] in the cartesian coordinates and was calculated with 4f CORE-B. Clearly,
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the A" state is higher in energy than the X state at all the coordinates.

The relative energy between the A and the neutral X state is also investigated along a
similar artificial reaction path between Rxmin and Ra~min, and the potential curves were shown
in the lower part of Fig. 3-11. The neutral X state is the final state of the one-electron
detachment from the terminal Eu" in the X state as discussed in Chapter 4. [3.56] As for the
A and X state potential curves of n=1, the minimum energy of the A state is higher than that
of the X state and these potential curves show a crossing, therefore there is a low barrier on
the reaction path from A™ to X. A magnitude of the barrier is only about 600 cm'. On the
other hand, for n=2, the minimum energy of the A state is lower than that of the X state and
the reaction barrier from Ramin to Rxmin 1s @bout 1 eV which is much larger than that of n=1.

From these calculation results, two possible relaxation processes can be considered from the

A state: (1) radiative relaxation to the X state with fluorescence, A — X +hv, (i)
nonradiative autodetachment to the X state, A — X+€. In the A state, the electronic

configurations of the COT and neutral Eu metal portions are LGZL{‘LB3 and 4f 7652,
respectively and those in the X state are Lo°L, Ly’ and 4f’6s', respectively, so that the
process (1) is equivalent to the one-electron transition from the 6s to Ls orbital. Because these
orbitals have different symmetries of ¢ and & with respect to the molecular axis, this ¢ to &
transition is forbidden. Therefore, the radiative relaxation process (i) cannot take place
effectively. The process (ii) can be considered as a simultaneous process consisting of an
electron transfer from 6s to Ls and an electron detachment from 6s. The theoretical estimate
of such an autodetachment lifetime is possible using, for example, the complex coordinate
method [3.57], but the efficiency of the process can be simply discussed by comparing the
potential curves alone. Note that the autodetachment can take place only in the nuclear

configurations where the A state is less stable than the X state. Therefore, from the lower part
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of Fig. 3-11, the autodetachment probability in n=1 is expected to be larger than that in n=2
because the former has a smaller reaction barrier to arrive at the nuclear configurations where
the autodetachment becomes possible. In the spectra of n=1 in Fig. 3-1, the H peak is close to
the M peak, so that it would be difficult to verify the preparation of the A state
unambiguously. On the other hand, the small H peaks can be observed in the spectra for the
A state of =2 or larger. This experimental observation is consistent with the theoretical
analysis above, since once the A state is prepared, it relaxes neither to the X nor X state

efficiently and it is stable enough to be detected.

3.4. Conclusions

In this chapter, the author has studied the geometric and electronic structures of the
Eun(COT), anion clusters based on the photoelectron spectra and the DFT method. The
geometry optimization for the anions with 4f core ECP and basis set gave two lower-lying
states, the ground state X as a dominant product and the excited state A as a minor product
in the experiment, both of which have a one-dimensional structure and strong ionic bonding.
The combined experimental and theoretical study made it clear that in the X state, the orbital
energies of 6s largely decrease with the cluster size and those of the L; orbitals on COTs have
a stairs-like behavior in the clusters, in which the highest step has an almost constant energy
independent of the cluster size. In the A state, the 6s level had a negligible cluster size
dependence and the Ly orbitals on COTs showed no stairs-like behavior, in a sharp contrast
with that in the X state. All this characteristic behavior was interpreted by the position
sensitive intracluster electrostatic potential evaluated by the simple point charge models

To investigate the detachment channels from the 4f orbitals, the author suggested to

measure the photoelectron spectra of Ba-COT and performed the DFT calculation with the 4f
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valence ECP and basis set. The peaks of n=1 and n=2 around 3.7 eV were assigned to the 4f

channel.
With the point charge models, the VDEs for [Eu(COT)]; were estimated as 2.894, 2.449,

and 0.972 (eV) for the M, C(1) and H peaks, respectively. Such a polymer is interesting as a
one-dimensional conductor, since it would have stairs-like orbital energies, and electrical
conductivity may arise due to the positively charged soliton generated by electron detachment
from the deeper Ls orbitals. [3.58] In addition, such polymers may show the characteristic
energy transfer behavior due to the dipole chains. [3.59-61]

Lastly, the author summarized the energetic relations among the X , A and X states using
the linear synchronous transit paths, and concluded that the A state can be observed
experimentally because of inefficient relaxation processes to the ground X and X states. In
the next Chapter 4, the author will present the ionization energies of the X state which also
shows size dependence due to the strong ionic bonding and one-dimensional structure. [3.59]

For the V-Bz cluster, Yasuike et al. have previously found a significant cluster size
dependence in the valence orbital energies, and their origin was due to the delocalization of
the ds orbitals of V through the benzene LUMOs. In this study of Eu-COT, the author has also
found a similar size dependence, however, it was proved to be due to the very strong
intracluster electrostatic potential caused by the strong ionic bonding. All of the results
indicate that the unique electronic structure of Euny(COT), is due to the one-dimensional
structure. In other words, the characteristic feature observed experimentally is a clear

evidence of the one-dimensional strong ionic bonding of the clusters.
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Chapter 4.
Ionization Energies and

Electron Distribution of Eu,(CgHjg),

Abstract

The ionization energies of Eu,(COT), (n=1-4) were found to decrease asymptotically with
the cluster size. The low-spin state X and the high-spin state a were characterized with DFT
calculations; their adiabatic energy difference was found to decrease with the cluster size. The
calculated ionization energies of the X states reproduced the experimental size dependence.
Those of the a states also agreed except for n=1. These features were explained by the
significant variation of the electrostatic potential at ionization sites. The state-specific

permanent dipole moments were calculated to clarify the difference in the electronic states.
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4.1. Introduction

Most lanthanide (Ln) compounds have oxidation state of Ln’" and strong ionic bonding
characters, which are responsible for their unique properties. [4.1,2] For example, theoretical
studies by Dolg et al. showed that Ln(COT), (Ln=Ce, Nd, Tb, and Yb,
COT=1,3,5,7-cyclooctatetraene) approximately consist of Ln’" central ions pinched with two
COT' rings. [4.3] Kurikawa et al. measured the electron binding energies and the adiabatic
ionization energies (Ej’s) of larger Lny(COT)m (Ln=Ce, Nd, Eu, Ho, and Yb). [4.4]
Particularly, they found that the full sandwich clusters Lny(COT)ns1 (N<5) of Ho and Nd show

a strong size dependence of Ej’s, while those of Eu and Yb were almost independent of the

size, and attributed the different behavior to the difference in the preferable oxidation state,
namely that the latter two metals prefer Ln”" in the gas phase ionic clusters.

Recently, Nakajima and co-workers have found the preparation of larger size
multiple-decker sandwich clusters of Eu,(COT)m, and considered that the growth process
follows the sequential harpoon mechanism. [4.5] Since the one-end open sandwich clusters,
Eun(COT), hereafter abbreviated as (n, n), are key intermediates in this mechanism,

accurate determination of their Ej’s and the charge distribution is of crucial importance.
In this chapter, the author discusses the experimental Ej’s of (n, n) which show the

characteristic decrease with the cluster size and provides a theoretical analysis of its origin
with a focus on the charge distribution. Their permanent dipole moments are also discussed in
connection with the critical dependence on the geometric structures and charge distributions

of these clusters.
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4.2. Computational Method

All the DFT calculations were carried out with the B3LYP functionals [4.6] built in the
Gaussian 98 program, [4.7] employing two basis sets. In Basis-A, the 4f core ECP and
(7s6p5d)/[5s4p3d] basis set of the Stuttgart/Cologne group [4.8] were chosen for Eu and D95

[4.9] for COT. In Basis-B, D95 was replaced by 6-31+G(d) [4.10].

4.3. Results and Discussions

1.0— : : : :
(. 1)
0.5 6.12 (5) I
5 2.2)
: 4.25 (5)
g G.3)
S 4.10 (7)1
T
@9
05 4.01 (6)
|
o.oJ{

40 45 50 55 6.0
Photon Energy / eV

Fig. 4-1 Photoionization efficiency curves for Eu (COT), ( n=1-4 ). Solid downward
arrows show the adiabatic ionization thresholds. Number in parentheses indicate
experimental uncertainties; 6.12(5) represents 6.12+ 0.05.
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Fig. 4-1 shows the PIE curves for (n, n) (n=1-4). The experimental Ej’s exhibit a

characteristic asymptotic decrease with n.

4.3.1. Geometric and electronic structures

It is convenient to define a molecular axis (z-axis) as a line passing through Eu and the
center of gravity of COT. The eight m orbitals on a COT are classified with the symmetry as
nondegenerate L, doubly degenerate L., Ls, Ly, and nondegenerate L,. The neutral COT has
the valence electronic configuration of LGZL,E“LS2 with two holes, while the ground state of Eu
is 4f '6s* with two weakly bound electrons, therefore the bonding scheme of Eu(COT) is
essentially an ionic bond between Eu*" and COT*” with a large permanent dipole moment.
This strong polarity of the monomer unit would favor the linear chain structures of the (n, n)

clusters and give rise to a strong electric field in the cluster, as shown in Fig. 4-2.

COT(1) COT(2) COT(3)

" Eu(1)  Eu(2)  Eu(3)

Fig. 4-2 Linear dipole chain structure of Eu (COT),. The white circles and plates
denote +2 charged metals and dotted and -2 charged COT ligands, respectively.
The arrow denotes a dipole moment composed of COT? and Eu?*

In this figure, an arrow represents a dipole moment composed of COT*~ and Eu”", and
COT(i) denote the i th COT counted sequentially from the left, and also Eu(i) the i th Eu from
the left. This electric field has a strong influence on the frontier orbitals, among which Ls on
the COT(1) is destabilized most and becomes HOMO, whereas the empty 6s orbital on the
opposite terminal Eu is stabilized most and becomes LUMO. As n becomes larger, this
electric field gets stronger and electric field may eventually exchange these two energy levels

and prompt an electron transfer from Ls on COT(1) to 6s on the opposite side, yielding stable
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diradical states with these two open-shell orbitals.

e
<“> <+
1.979 2.344
2.726 2.308
<+—» <+
lolo O
<+> <+> <+ g
2.052 2.002 2335 2278
2.393 2.420 2285 2322
<+ <+ <“> <+
-1.3OEOHOH@+L30 OHOH
<“> <+> <+> <+—> <+ <+>
2238 2.211 2.163 2337 2295 2269
2325 2.333 2.371 2282 2.298 2.328
<+ <+ <+ <+ <+
-1.1SEOHOHOH@+1.15 6“@”@”
<+> <+> <“> <+ <+—> <+—> <“> <+>
2288 2269 2249 2.209 2337 2301 2286 2.264
(a) Neutral X state (b) Neutral a state
O
<+>
2.119 Formal Charge
2.460
<+“—>
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<+ <+>
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2.364 2.503
<+ <+

ofolo
> > <>
2285 2174  2.039

2326 2398 2522
«—>r > —>

Lololo o
2302 2228 2160 2.030

(c) Cation X* state

Fig. 4-3 Optimized distances between Eu and the center of gravity of the COT carbon ring along
with the formal charge distribution for the neutral and cation clusters calculated with Basis-B for
n=1-3 and Basis-A for n=4. The dotted and white circles denote +1 and +2 charged metals, and
dotted and white plates denote -1 and -2 charged COT ligands, respectively. The checked circles
and plates reflect the characteristic delocalized molecular orbitals as shown in Fig.4-5, and the
charges were determined as +1.30 and -1.30 for n=3, and +1.15 and -1.15 for n=4, respectively.

The optimized geometries along with the formal charges are shown in Fig. 4-3 (a), (b), and

(c) geometry, for the singlet X, triplet a for the neutral, and doublet X state for the cation,
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respectively. Note that with the 4f-core ECP, 4f electrons are not explicitly treated and their
spins are suppressed. The formal charges are determined from the number of electrons in the
6s and L; orbitals, which are well localized except in the cases of =3 and 4 of the X state.
For n=1-4, the a state is a simple HOMO-LUMO excited triplet diradical state obtained
from the closed-shell singlet state, and therefore the 6s orbital on the terminal Eu becomes the
HOMO of the a state. The closed-shell singlet state is the ground state X only for n=1 and 2,
and the HOMO is Ls on COT(1). For n=3 and 4, as described above, the electric field is so
strong that the closed-shell singlet state becomes unstable and spin- and space-symmetry

breakings take place, and the ground electronic state X gains a singlet diradical character.

oo 11 fop e TN

0.30 0.70 0.00 1.00
B HOMO g Q O o 2nd HOMO a Q 0
1.06 | IO.OO 1.06 0.00
(a) X state of (3, 3) (b) a state of (3, 3)
wowo TEXL L[
0.15 IO.85

(c) X state of (4, 4)

Fig. 4-4 Kohn-Sham orbitals of the X and a states of n=3 and that of the X state of n=4 plotted with
the Molekel program [12], and the Mulliken population for the terminal Eu and COT. All the results
were calculated by Basis-B.

Fig. 4-4 (a) shows the a and  spin HOMOs of the X state of n=3 are localized in 6s on
Eu(3) and Ls on COT(1), respectively, yet to a lesser extent than the corresponding open-shell

orbitals for the a state in Fig. 4-4 (b). In the X state of n=4, the degree of the orbital

4-106



Chapter 4. lonization Energies and Electron Distribution of Eun(CgHsg)n

localization increases as seen in Fig. 4-4 (c) and also in the increase of the S value, from
0.675 for n=3 to 0.825 for n=4. In addition, the o spin orbitals of N=3 and 4 in the X state
show unusual mixings, because of the space-symmetry breaking, between 6s and Ls of each
terminal Eu and COT, respectively. The Mulliken population analysis for these orbitals
provides an estimate of the degree of the localization in the terminal Eu and COT as given in

Fig. 4-4 and the formal charge distribution for these states in Fig. 4-3.

Table 4-1. Optimized geometry parameters of the C-C bond length of each COT in the X,
a and X* state.2b¢

X state
COT(1) COT(2) COT(3) COT#4)
(n, n) Basis C-C C-C C-C C-C
(1, 1) B 1.421 _— _— _—
2,2) B 1.421 1.423 — —
(3,3) B 1.396 (1.438) 1.421 (1.423) 1.422 (1.422)  —
4,4) A 1.402 (1.452) 1.431 (1.433) 1.432 (1.433) 1.432 (1.433)
a state
COT(1) COT(2) COT@3) COT4)
(n, n) Basis C-C C-C C-C C-C
(1,1 B 1.385 (1.446) — R —_—
(2,2) B 1.386 (1.447) 1.421 (1.423) _ _—
(3,3) B 1.386 (1.447) 1.421 (1.423) 1.422 (1.422) _—
4,4 A 1.396 (1.457) 1.432 (1.434) 1.432 (1.433) 1.432 (1.432)
X" state
COT(1) COT(2) COT(@3) COT#4)
(n, n) Basis C-C C-C C-C C-C
(1, 1) B 1.389 (1.449) _— _ _—
2,2) B 1.387 (1.448) 1.424 (1.424) A A
(3,3) B 1.386 (1.448) 1.422 (1.424) 1.424 (1.424)  —
4,4) A 1.397 (1.457) 1.432 (1.434) 1.433 (1.433) 1.434 (1.435)

a For n=1-3, the optimized parameters are calculated by Basis-B, and for n=4, they are calculated by Basis-A.

b COT(i) denotes i th COT counted sequentially from the left in Fig. 4-4.
¢ Because of the C,, structure, two kinds of C-C bond lengths are distinctively shown, longer being in

parenthesis.

Table 4-1 summarized the optimized C-C bond distances of the COT ligands in the X, a and
X" states to focus on the geometry of each COT. The symmetry of the X state was Cs, for n=1

and 2, consistent with the aromaticity with the formal charge of —2 for all of COTs with the
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optimized C-C bond lengths of about 1.42 A. For the remaining cases, only the COT(1) has
the open-shell configuration of | s P S , which causes a Jahn-Teller distortion to overall Cy4y,
symmetry. Their two kinds of C-C distances were about 1.39 and 1.45 A, however, the
remaining COTs had essentially Cg, structure. [4.12,13]

Additionally, the frequency analysis was performed for the n=1-3 cluster size with Basis-A
and the results were summarized in Table 4-2. For the X and a states of n=1 and 2 and the X"
state of n=1, the above Cg, and C,4, structures were local minima. For other states, a
non-degenerate imaginary frequency was obtained along a twist motion of COT (TW) and a
doubly degenerate imaginary frequency along a lateral motion from the z-axis (LAT).
However, all the imaginary frequencies are very small. Thus, the geometries were assumed to

be restricted to the Cy4, structures for the latter states.

Table 4-2. Calculation results of the frequency analysis for the X, a
and X* state with the 4f CORE-A.2 NONE, TW and LAT represent
‘no imaginary frequency’ and imaginary frequencies along the twist
motion of COT and along the lateral motion from the z-axis,

respectively.
(n, n) X state a state X" state
(1,1) NONE NONE NONE
(2,2) NONE 7.73 (TW) 8.82 (TW)
7.14 (TW) 7.61 (TW)
33 55 @A 5.77 (LAT) 13.33 (TW)

aThe optimized geometries of 4f CORE-A were used for analysis. The differences
of the optimized geometries between 4f CORE-A and -B were 0.02A or less.

4.3.2. Ionization energies and permanent dipole moments of

the X and a states

Fig. 4-5 shows that the ADFT methods for the X state reproduce the asymptotic behavior of

Ei’s quantitatively. The agreement of the results for the a state is also satisfactory except for
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n=1. This is accountable because their adiabatic energies become almost degenerate, as n
increases, as discussed below, and they have a common final state X'. These low Ej values are
prerequisite for the sequential growth mechanism based on harpooning. In addition, the strong

diradical character shown above for the X and a states, with radical centers localized on both

ends, is quite reasonable for this mechanism. [4.5]

6.0
S
Q
>
o2
2 50
|
c
ie)
©
N
[
O 40-
Cluster Size

Fig. 4-5 Experimental ionization energies in comparison with calculation results of
the X and a states by DDFT method. The Basis-B was applied with the optimized
geometries of Fig. 4-3.

The origin of the size dependence of these Ej’s is the significant variation in the

electrostatic potential at the ionization sites, as also discussed in Chapter 3. [4.13]

4-109



Chapter 4. lonization Energies and Electron Distribution of Eun(CgHsg)n

Charge increment on the addition of a COT-Eu unit

lonizing electron

& 6s i Ry
an | O
-1 -2 +2
quadruple Q,, (1 -1 +2—1 -2 +2 i0) dipole D,
0] @ e |o]o
-1 42 -2 +1 2 +2 -2 +2
a state of n=1-4, and X state of n=3 and 4 X state of n=1 and 2

(a) One-end open sandwich : quadruple Q,, or dipole D,

lonizing electron

&L
ol
-1 42 1

quadruple Q,, (:II 142 -1

(b) Full sandwich : quadruple Q,,

Fig. 4-6 Schematic explanation for the variation of Eis : (a) one-end open sandwich and (b) full
sandwich. Seeing from the ionizing electron, the size increase of the one-end open sandwich
corresponds to the attachment of a quadruple or dipole moment, while that of the full sandwich
is represented by the attachment of a quadruple moment

Let us first consider the small size dependence of Ej of the a state using the formal charge
distribution of Fig. 4-6(a). In view of the right end Eu, where the HOMO of 6s resides, the
increase in N can be regarded as the attachment of a group of —1, +2, —1 point charges, an
approximate quadruple moment, to the left side of the cluster, which weakly destabilizes the

ionizing electron and results in an asymptotic decrease.
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Next, let us consider the large decrease in Ej from n=1 to n=2 in the X state, whose HOMO

is Ls on COT(1). Viewing from this orbital, the increase in the size corresponds to the
attachment of a pair of —2 and +2 point charges, namely a dipole moment, to the right end of
the cluster, which significantly destabilizes the ionizing electron in COT(1).

As for the small size dependence of Ej from n=3 to n=4, the electronic structure of the X
state is the singlet diradical state, so that their Ej shows an asymptotic decrease as in the case

of the a state.

A similar explanation can also be made on the size independent Ej of the full sandwich
Eun(COT)ns1. [4,14] A preliminary calculation results show that the lowest ionization occurs
from the terminal COT with a formal charge of —1. The increase in N corresponds to the
attachment of a quadruple moment to the opposite terminal side as shown in Fig. 4-6 (b);

therefore the Ej shows no significant size dependence. These size dependencies can provide

clear evidence for Eu to take the oxidation state of Ln>" in these clusters.

Table 4-3. Adiabatic excitation energy (ADE) ofbetween the X and a state with
respect to the X state and and z component of their dipole moment calculated by
Basis-A and -B. The inside of parenthesis is the results of Basis-A.

Dipole moment (D)
(n, n) ADE (eV)
X A
1,1 1.419 (1.415) 8.482 (8.436) 0.259 (0.655)
(2,2) 0.362 (0.331) 21.825 (21.692) 0.167 (-0.146)
(3,3) 0.066 (0.062) 11.321/18.938%(9.936 / 17.324%) 0.095 (-0.269)
4,4 0.031 (0.027) 9.246 /17.477% (8.029 / 15.536%) -0.124 (-0.292)

2 Calculation results with the a state spin contamination projected out.

Table 4-3 shows that the energy difference between the X and a states decreases
asymptotically with n owing to the diradical character. Therefore, both states may coexist as

intermediates and their distinction by the Ej’s alone seems to be difficult. To see these states
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from another standpoint, their dipole moments were compared in Table 4-3. The theoretical
results predict that the dipole moments of the X and a states are very large and small,
respectively, reflecting the difference in their charge distribution and the optimized geometries.
For example, as seen from Fig. 4-3 the charge distribution of the X state for n=2 represents
two parallel dipoles (COT(1)*” Eu(1)*") and (COT(2)*" Eu(2)*"), whereas that of the a state
consists of two anti-parallel dipoles (COT(1)” Eu(2)") and (Eu(1)**COT(2)*). For n=3 and 4,
their dipole moments are still significantly different. The primary reason for this difference is
that they have differently delocalized HOMOs, as shown in Fig. 4-4, which have a large
influence due to the one-dimensional structure. The difference in the geometries of the X and
a states, namely large and small bond alternation displayed in Figs. 4-3 (a) and (b)
respectively, is also attributable to this difference. The author hopes that experimental
measurement of the permanent dipole moments can clarify the electronic states of the

prepared clusters.
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Chapter 5.

General Conclusion

In this thesis, the author has discussed theoretical analysis and modeling on the molecular

spectroscopy of oxygen molecule and one-dimensional lanthanide-cyclooctatetraene clusters.

As for oxygen molecule, the electric-dipole forbidden transition A’X’ « X325 in the

Herzberg 1 band system was treated. To evaluate the electric transition moment, three
theoretical intensity borrowing models, SOCI, Pert(Full) and Pert(England), were employed
in which the spin-orbit coupling (SO) and L-uncoupling (RO) are considered as perturbations.
In the SOCI model, the author firstly calculated SO interaction variationally, which plays
the primary contribution to the electric transition moment, and secondly treated RO
interaction using the first-order perturbation theory with the SO wave functions (Hund’s case
(c) basis function) as the zero-th order basis functions. As for the Pert(Full) and Pert(England),
both SO and RO interactions were evaluated using the first-order perturbation theory with the
spin-free wave functions (Hund’s case (a) basis function) as the zero-th order basis. The

difference between Pert(England) and Pert(Full) model is that the former model includes only

one dominant perturbing state as 131'1g and B’Y; among all complete basis functions.

In comparison of each calculated electric transition moment, it was found that the SOCI and

Pert(Full) model give almost same electric transition moment, on the other hand, the
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Pert(England) model presents largely different values from the above electric transition

moments. Namely, the contribution of excited states other than 131_1g and B’Y; cannot be

neglected.

To confirm an accuracy of each transition moments, the integrated rotational line strength
and vibrational oscillator strength with the three models were calculated, and compared with
the experiment. It is found that SOCI and Pert(Full) are able to calculate them quantitatively,
on the other hand, Pert(England) cannot yield them even qualitatively, because Pert(England)
cannot represent the complicated configuration interactions with highly excited states induced
by the perturbations. Therefore, it was conclude that the interactions with highly excited states,
which have been believed as small in the past because of the large energy separation, cannot
be neglected at all in the case of very weak absorption band system.

From the detailed analysis for the Herzberg I band system as mentioned before, the author
has made clear some characteristics of theoretical methods to treat an electric-dipole
forbidden transition. These characteristics can also be generalized to other molecules, because
initial and final states of various forbidden transitions have open-shell electric structures
which result in complicated configuration interactions through small perturbations as
mentioned above. In the case of light molecules, weak perturbations can be taken into account
using models like SOCI or Pert(Full). On the other hand, in the case of heavy molecules in
which the SO interaction becomes much stronger, a variational or higher-order perturbation
theory should be applied, because non-negligible differences between the SOCI and Pert(Full)
models were observed even in the oxygen molecule and such a difference becomes more
significant as increasing the SO interaction. For the future studies, we should investigate other
electric-forbidden bands keeping the above characteristics in mind.

As for the one-dimensional lanthanide-cyclooctatetraene clusters (Ln-COT), the author
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focused on the Eu,(COT), sandwich clusters. The geometric and electronic structures of the
anions and neutral clusters show that they have the fairly ionic bonding which consists chiefly
of Eu*" and COT*" components, and their valence orbital energies depend strongly on the
electronic state, the cluster size, and their positions in the clusters.

As for the anion clusters in the ground state, the orbital energies of 6s largely decrease with
the cluster size and those of the L; orbitals on COTs have a stairs-like behavior in the clusters,
in which the highest step has an almost constant energy with the cluster size. For the first
excited state, the 6s level had a negligible cluster size dependence and the L;s orbitals on COTs
showed no stairs-like behavior.

As for the neutral clusters in the triplet ground state, the 6s orbital energies (HOMO) of the
terminal Eu are independent of the cluster size. For the singlet ground state of n=1 and 2, the
HOMO is the L; orbitals of the terminal COT, whose energies increase significantly. For that
of =3 and 4, the HOMO changes to the 6s orbitals of the terminal Eu and their energies are
almost constant with the cluster size. Although these two spin states show different electronic
structures, their adiabatic excitation energies decrease asymptotically with the cluster size.

Comparing with the experimental photoelectron spectra, the author had obtained good
agreement and confirmed the above characteristics.

To investigate the characteristic orbital energies of each valence orbital, the author has
developed the simple point charge models, and revealed that the reason of all characteristic
behaviors is due to the anisotropic intracluster electrostatic field by the one-dimensional
structure and the strong ionic bonding.

Although the point charge model easily estimated the cluster size dependency of the orbital
energies, there are two important reminders for the application of the point charge model to

other molecules: (i) This model is only applicable to molecules with localized orbitals, for
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example, due to strong ionic bondings. (ii) Their calculation results are strongly affected by
the magnitude and place of point charges. Therefore, before the application of this model to
other molecules, we should investigate their geometric and electronic structures carefully by
theoretical and experimental method.

Finally, the author describes the issues which remain unsettled. In this thesis, the properties
of the ‘full’ (Eup(COT)n:1) and ‘inverse’ (Euny1(COT),) sandwich clusters are not discussed in
detail. However, Nakajima and co-workers measured very interesting photoelectron spectra,
and ionization energies of these clusters. For the ionization energies, author’s preliminary
calculation results showed the good agreement with the experiment, however, for the
photoelectron spectra of their anions, the agreement becomes worse.

In doing so, we should firstly study their geometric structures in detail. For the ‘full” and
‘inverse’ anion clusters, two types of geometries, symmetric structure (Dg, or Dg4,) and
anti-symmetric structure (Cs, or C4y) can be considered. Preliminary calculations showed that
DFT method gave symmetric structures, on the contrary, CASSCF method presented
anti-symmetric structures for both ‘full” and ‘inverse’ anion clusters. In the future studies,
large size CASSCF or CI calculation should be performed to solve these discrepancies,
because in these two clusters both dynamical and nondynamical electron correlations would
be very important.

Secondly, we should investigate the geometric and electronic properties of other Ln-COT
clusters, especially, Ln=Nd, Tb, Ho which take a +3 oxidation state in the cluster by using the
photoelectron spectroscopy and theoretical calculation. The Ln(III)-COT sandwich clusters
will show very different electronic properties from the Ln(I[)-COT in spite of the similar
geometric structures as discussed in the earlier works by Kurikawa et al.

The most difficult problem for calculating the Ln(III)-COT clusters is that they have open
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shell 4f electrons. Therefore, if possible, we would like to perform large size active space
CASSCF+CI calculations for the larger size clusters as in the earlier calculations by Dolg and
co-workers.

Because of the very different mass spectra between Ln(I) and Ln(IIT)-COT clusters, the
author thinks that the growth mechanism of Ln(III)-COT clusters is different form that of
Ln(IT)-COT. For the Ln(II)-COT, each harpooning reaction rate as discussed in this thesis
would be almost the same, because their mass spectra show almost the same compositions of
(n-1, n), (n, n), (n, n+1). However, for Ln(III)-COT, their mass spectra indicate only one
strong compositions of (N, N+1). One possibility for the difference is that each reaction rate is
very different in the sequential harpoon mechanism of Ln(III)-COT. Another reaction
mechanism may dominate the growth process of Ln(III)-COT.

The author hopes that this thesis helps further research on the Ln-COT clusters to clarify the

above problems in the future.
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