メタン/硫化水素2成分系混合流体における Helmholtz 関数型状態方程式の開発

平成 17 年度

目 次

本論文主要記号表

1	序論	1
	1.1 本研究の目的および意義	1
	1.2 天然ガスの利用と物性研究の現状	2
	1.2.1 天然ガス利用の現状	2
	1.2.2 天然ガスの物性研究の現状	3
	1.3 超臨界混合流体の分類とその特徴	6
	1.3.1 Scott and van Konynenburg による 2 成分系混合流体の分類	6
	1.3.2 IUPAC による分類法	6
	1.3.3 混合流体の特徴と物性計算における問題点	8
	1.4 相平衡および臨界曲線に関する熱力学	11
	1.5 Helmholtz 関数型状態方程式の意義	13
2	純物質流体および混合流体に関する状態方程式開発の動向	16
	2.1 純物質流体に関する状態方程式	16
	2.1.1 状態方程式による純物質流体の物性計算	16
	2.1.2 van der Waals 型状態方程式	17
	2.1.3 virial 状態方程式	17
	2.1.4 BWR 型状態方程式	18
	2.1.5 Helmholtz 関数型状態方程式	19
	2.2 既存のメタンおよび硫化水素の状態方程式	20
	2.3 混合流体に関する状態方程式	22
	2.3.1 状態方程式による混合流体の物性計算	22
	2.3.2 van der Waals 型状態方程式の混合則	23
	2.3.3 virial 状態方程式の混合則	24
	2.3.4 BWR 型状態方程式の混合則	24
	2.3.5 Helmholtz 関数型状態方程式の混合則	25
	2.4 既存のメタン/硫化水素2成分系混合流体の状態方程式	27
	2.5 分子シミュレーションによる天然ガスの物性推算	28
3	状態方程式の開発手法と物性計算方法	30
	3.1 純物質流体ならびに混合流体に対する状態方程式の開発手法	30
	3.2 本研究における関数形の選定方法	30
	3.3 本研究で硫化水素に適用した状態方程式の開発手法	31
	3.4 線形最小二乗法	33
	3.5 非線形最小二乗法	34
	3.5.1 ガウス・ニュートン法	34
	3.5.2. Helmholtz 関数型状態方程式への適用	36
	3.6 相平衡の計算	39
	3.6.1 一般的な相平衡計算	39
	3.6.2 安定性解析を用いた相平衡計算	40
	3.7 臨界曲線の計算	43

	3.7.1	ニュートン・ラプソン法による計算	43
	3.7.2	Heidemann and Khalil 法による計算	44
4	硫化水素	春の Helmholtz 関数型状態方程式	48
	4.1 既初	存の実測値情報	48
	4.1.1	<i>PpT</i> 実測値	48
	4.1.2	気液平衡性質	51
	4.1.3	臨界定数,3重点および標準沸点温度	53
	4.1.4	その他の状態量	54
	4.1.5	理想気体の定圧比熱	55
	4.2 相	関に用いた入力値	56
	4.2.1	臨界定数,3重点および標準沸点温度	56
	4.2.2	<i>PpT</i> 実測値	56
	4.2.3	飽和蒸気圧、飽和液体密度および飽和蒸気密度	56
	4.2.4	その他の状態量	57
	4.2.5	補助的な状態方程式	57
	4.3 状的	態方程式の関数形と係数の数値	59
	4.4 作用	式した状態方程式の評価	60
	4.4.1	理想気体の定圧比熱	60
	4.4.2	<i>PpT</i> 性質	61
	4.4.3	気液平衡性質	62
	4.4.4	その他の状態量	63
	4.5 補約	外域の挙動	63
	4.6 既初	存の状態方程式との比較	64
	4.7 本》	状態方程式の不確かさ	65
5	メタン/	硫化水素 2 成分系混合流体の Helmholtz 関数型状態方程式	74
	5.1 既	存の実測値情報	74
	5.1.1	<i>P</i> ρTx 性質	74
	5.1.2	気液平衡性質および臨界曲線	74
	5.1.3	その他の状態量	76
	5.2 純4	物質流体の状態方程式	76
	5.3 混	合流体の状態方程式	78
	5.3.1	相関に用いた入力値	78
	5.3.2	混合則の関数形と係数の数値	79
	5.3.3	混合則の検討	81
	5.4 作用	式した状態方程式の評価	83
	5.4.1	<i>PρTx</i> 性質	83
	5.4.2	気液平衡および気液液3相平衡	83
	5.4.3	飽和液体密度および飽和蒸気密度	83
	5.4.4	臨界曲線	84
	5.4.5	過剰モルエンタルピー	84
	5.5 既	存の状態方程式との比較	84
	5.6 本:	状態方程式の不確かさ	85

6	メタン/エタン系とメタン/硫化水素系の状態曲面の比較				
	6.1 相平衡と臨界曲線	93			
	6.2 PpTx 性質,定圧比熱,定積比熱,音速およびジュール・トムソン係数	99			
	6.2.1 組成一定での状態曲面				
	6.2.2 温度一定での状態曲面				
	6.3 メタン/硫化水素2成分系混合流体の状態曲面における特徴のまとめ				
	6.4 天然ガスにおける硫化水素の影響	104			
7	結論	128			

謝辞

参考文献

参考論文一覧

付録

メタン/硫化水素2成分系混合流体における相平衡計算ならびに臨界曲線計算 Program

本論文主要記号表

記号

а	Helmholtz自由エネルギー [J·mol ⁻¹]	c
В	第 2 virial係数 [dm ³ ·mol ⁻¹]	cal
С	第3 virial係数 [dm ⁶ ·mol ⁻²]	exp
D	第4 virial係数 [dm ⁹ ·mol ⁻³]	i
C_P	定圧比熱 [J·mol ⁻¹ ·K ⁻¹]	j
C_V	定積比熱 [J·mol ⁻¹ ·K ⁻¹]	mix
f	フガシティー [MPa]	nbp
g	Gibbs自由エネルギー [J·mol ⁻¹]	r
h	エンタルピー [J·mol ⁻¹]	S
k _{ii}	異種分子間相互作用パラメータ	tr
n	モル数 [mol]	δ
Р	圧力 [MPa]	τ
R	一般ガス定数 (=8.314472 J·mol ⁻¹ ·K ⁻¹)	
S	エントロピー [J·mol ⁻¹ ·K ⁻¹]	
Т	温度 [K]	
и	内部エネルギー [J·mol ⁻¹]	
v	モル体積 [dm ³ ·mol ⁻¹]	肩記
	比体積 [m ³ ·kg ⁻¹]	0
w	重率	0 Dure
W	音速 [m·s ⁻¹]	r
x	混合流体のモル組成	T
	液体のモル組成	L V
у	気体のモル組成	v
Ζ	圧縮係数	
χ	極性係数	
χ^2	残差平方和	
δ	換算密度 (= $ ho/ ho_{ m c}$ または $ ho/ ho_{ m c,mix}$)	
μ	ジュール・トムソン係数 [K·MPa ⁻¹]	
ρ	密度 [mol·dm ⁻³]	
τ	換算温度の逆数 (= $T_{\rm c}/T$ または	
	$T_{\rm c, mix}/T$)	
ϕ	無次元化 Helmholtz 関数	
ω	偏心係数	

*ξ*_{ij} 異種分子間相互作用パラメータ

添字

с	臨界点
cal	計算値
exp	実測値
i	成分 <i>i</i>
i	成分 <i>j</i>
mix	混合流体
nbp	標準沸点
r	換算状態量
S	飽和蒸気
tr	3 重点
δ	δによる偏微分
τ	τによる偏微分

|号

0	理想気体状態
pure	純物質流体
r	実在流体
L	飽和液体
V	飽和蒸気

1 序論

1.1 本研究の目的および意義

地球環境の保護がエネルギー問題と共に考えられる今日,精度の高い流体の熱物性値情報がエネルギ ーの有効利用において重要な役割を担っている.従って,この熱物性値を明らかにしていく熱物性研究 というものは今日のエネルギー問題解決の根幹をなしていると言える.例えば,熱機関やヒートポンプ において,その効率は主に作動流体の熱力学性質に大きく依存することから,設計には作動流体の熱物 性値情報が必要不可欠である.近年では効率の追求のみならず,作動流体には環境適合性に配慮するこ とが求められ,自然界に存在する物質を用いることが望ましいと考えられる.そこで自然作動流体とし て,純物質流体のみならず混合流体を対象とし,その熱物性研究が盛んに行われている.環境への配慮 は 1997 年に地球温暖化防止会議(COP3)において採択された京都議定書にも見られるように年々その規 制の度合いが激しくなり,新しい作動流体への模索が続けられている現状にある.このことからも熱物 性研究におけるより一層の重要性と必要性をうかがい知ることができる.

また、近年石油に代わる次世代エネルギーとして、天然ガスに大きな注目が集っている.天然ガスは メタンを主成分とし、エタン、プロパン、ブタン等の炭化水素ならびに窒素、二酸化炭素、硫化水素と いった物質を含む多成分系の混合流体である.天然ガスは、地下で存在しているときは、高温高圧の超 臨界状態にあると考えられる.しかし、採掘時には温度・圧力の減少に伴いガスの状態変化が起こる. このとき、温度・圧力領域によっては逆行凝縮等の現象が起こることから、熱物性値を予め把握してお くことが重要となる.掘削後、輸送に際しては、パイプラインを通す方法と液化して LNG 輸送にする 方法があるが、いずれにしても天然ガスの熱物性値が幅広い温度・圧力で必要となってくることは明ら かであろう.しかし、天然ガスは多成分系の混合流体であるため、その挙動は極めて複雑である.さら に産地によって組成が異なるため、挙動も異なるという難しさがある.そこで、天然ガスの熱力学的な 挙動の解明は、天然ガスの効率的な利用という工業的な目的と同時に、多成分系混合流体の熱力学性質 の解明という学術的に非常に興味深い側面を有している.

一方で現在,気体よりも高密度で拡散率が大きく,物質を容易に溶かしやすいという性質から,分離 溶媒および反応溶媒として,超臨界流体の高度利用が注目されている.そこで,種々の純物質流体なら びに混合流体に対する超臨界域での熱物性研究が広く行われている.超臨界流体自体は 1822 年に Cagniard de LaTour によって臨界点が発見されて以来,古くから研究されてきたが,温度・圧力条件の厳 しさから工業的に利用されるようになったのはごく最近のことである.

このように流体の熱物性値は、様々な系の広範囲にわたる温度・圧力領域に対して工業的に必要とさ れ、基盤技術の根幹をなすが、この熱物性値を知的基盤情報として提供する熱物性データベースの構築 が求められている.熱物性データベース構築には、ユーザーの要求する温度・圧力、また混合系の場合 にはさらに組成といった条件に対し、適切な熱物性値を与えるため、高精度熱力学状態方程式が必要と なる.近年、状態方程式は計算機の演算処理能力向上に伴い、複雑化・高精度化の道を辿っている.そ して現在では、多項式表示による Helmholtz 関数型状態方程式が実測値を極めて高精度に再現できるよ うに作成されることから、国際状態方程式の多くはこの Helmholtz 関数型で作成されており、熱物性値 計算に対して広く利用されている.

このような熱物性研究を取り巻く背景の中で、本研究では、高精度な熱物性値が必要とされ、また多 成分系の熱力学性質を明らかにしていくという、学問的に非常に興味深い天然ガス系を研究対象とし、 中でも成分物質の1つである硫化水素に注目した.硫化水素は生命の誕生起源とされる海底の熱水鉱床 中に存在し、硫黄分が生命誕生に起因したと考えられているなど、とても重要な物質である.この硫化 水素は天然ガス主成分であるメタンとの2成分系において、気液液3相平衡や臨界曲線の発散といった 特異な現象が現れるなど、天然ガスの物性値に及ぼす影響が大きく、熱力学性質の解明が求められてい る.2成分系混合流体はScott and van Konynenburg [1,2]によるとその臨界曲線から大きく分けて6つの Type に分類することができる[3].多くの2成分系混合流体の臨界曲線は、P-T線図上において純物質の 両臨界点を結ぶ連続した曲線として描かれ、Type I として分類される.しかし、メタン/硫化水素2成分 系混合流体のように、気液液3相平衡や臨界曲線の発散といった特異な挙動を表すような系はType III として分類される. このような Type は互いに非常に性質の異なった分子同士の混合の場合に起こり, 二酸化炭素と水,各種炭化水素と水といった2成分系がこの Type III の例として挙げられる. Type III のような複雑な系はこれまで van der Waals 式に代表される3次型状態方程式によって相平衡ならびに臨 界曲線が *P-T*線図上で議論されてきたが,密度を含め,他の物性を高精度に表す状態方程式は作成され ていなかった.従って2成分系混合流体ですらその状態曲面が全流体域にわたって正確に研究しつくさ れているとは言い難い状況にある.また,多成分系への拡張が期待される Helmholtz 関数型状態方程式 が Type III のような複雑な系に適用可能であるかどうかは明らかではなかった.そこで本研究では、メ タン/硫化水素を研究対象とし、この状態方程式を Helmholtz 関数型によって作成し、さらにその状態曲 面を全流体域にわたって明らかにすることで、天然ガスの物性値の提供ならびに多成分多相系の熱力学 確立の一助となるべく研究を行った.

本研究ではまず、これまで精度の良い状態方程式が作成されていなかった硫化水素純物質流体に対し、 Helmholtz関数型による状態方程式を作成した[4]. そして混合流体に対するHelmholtz関数型の関数形の 解析を行った結果、本研究で作成した新たな混合則によって、気液液3相平衡や臨界曲線の発散といっ た現象を表現することが可能であり、さらにType IIIを再現する状態方程式の作成が可能であることを明 らかにした.この結果を踏まえ、メタン/硫化水素2成分系混合流体のHelmholtz関数型状態方程式を作 成するに至った[5].そこで本研究ではさらに、作成した状態方程式により、メタン/硫化水素2成分系 混合流体において、その相平衡、臨界曲線はもとより、これまで3次型状態方程式では明らかにされる ことがなかった、PpTx性質や比熱・音速といった誘導状態量に対する熱力学状態曲面を、気液を含めた 全流体域にわたって明らかにした[6].本研究の成果は、他のType IIIの挙動を示す2成分系に対しても Helmholtz関数型状態方程式によって作成できることを示すものである.超臨界流体の工業的利用が高ま っている今日、このようなTypeに対する状態方程式が今後ますます必要とされるであろう。第5章で詳 細に述べるが、状態方程式作成過程において、混合則中の偽臨界温度に含まれるパラメータk₁₂の値を変 化させると、2成分系のTypeがType IからII, IIIと連続的に変化することが明らかになった。これにより、 Type IIに対しても同様にHelmholtz関数型による状態方程式の作成が可能であることを示唆し、また今後 その作成が期待されるとともに、Type IIの状態曲面が詳細に明らかにされることであろう.

最後に本論文は,第1章で序論として研究の目的および意義を述べ,第2章で状態方程式に関する従 来の研究,第3章で状態方程式の開発手法と物性計算方法,第4章で硫化水素純物質流体の状態方程式, 第5章でメタン/硫化水素2成分系混合流体の状態方程式,第6章でメタン/エタンとの比較によるメタ ン/硫化水素の状態曲面の特徴,そして第7章で結論を記すという構成になっている.

1.2 天然ガスの利用と物性研究の現状

1.2.1 天然ガス利用の現状

天然ガスとは、自然界において地下に存在し、地表条件下で気体の状態となる物質の総称であり、通常は炭化水素を主成分とする可燃性ガスを指す[7]. 天然ガスはメタンを主成分とし、エタン、プロパン、 ブタン等の炭化水素および、窒素、二酸化炭素、硫化水素などを含む多成分系の混合流体である.現在、 環境問題が深刻になっているが、天然ガスを燃焼させた場合に発生する二酸化炭素は、石炭の約6割、 石油の7割程度で化石燃料の中で最も低い.また、最近では採掘から輸送、利用までのライフサイクル で温室効果を評価する研究が進められているが、このライフサイクルにおいても液化天然ガス(LNG)は あらゆる化石燃料の中で最も環境への負担が少ないということが明らかにされている[8,9]. 化石燃料の 燃焼時には二酸化炭素以外にも大気汚染の原因となる窒素酸化物や硫黄酸化物等が発生するが、これら についても天然ガスからの発生量は非常に低く、LNGの場合には製造時に不純物として窒素1.0%以下、 二酸化炭素 100 ppm 以下、硫化水素 5 ppm 以下[10]に抑えられるため、化石燃料の中でも最もクリーン であると言える.また、石油は産地が中東地域に偏っているのに対し、天然ガスは産地が世界中に存在 しているため、供給安定性が高い.1998年の世界エネルギー会議において、天然ガスの資源量は 200年 以上あるという試算結果も報告されており、当面資源枯渇の心配はないと考えられる[11].さらに近年、 メタンハイドレートが新しいエネルギー源として大きな注目を集めている.メタンハイドレートとは, メタン分子が籠状に結合した水分子によって取り囲まれている氷状の固体物質であり,自然界では極地 の永久凍土地帯や大陸周辺の海面下に存在している.日本近海でも,南海トラフ,オホーツク海など7 つの海域でハイドレート層の存在が有力視されており,日本周辺のメタンハイドレートが全て利用可能 であれば,その量は現在の国内天然ガス消費量の100年分以上とも言われ,将来的な天然ガス資源とし て大きな期待が持たれている.天然ガスを輸送する際には,パイプラインで輸送する方法と液化して LNGとして輸送する方法がある.わが国ではLNG輸送が専らであるが,近年になってアジア地域全体 をパイプラインで結ぶ計画や,サハリンからパイプラインによって天然ガスを輸送する計画が推し進め られている[12].

このように需要が高まりつつある天然ガスであるが、その熱物性値は知的基盤情報としての重要な位置を占めている。例えば、天然ガスの密度は、配管、機器、貯蔵のサイズ等の設計を行う場合、あるいは取引のための流量計測の場合に特に重要である。また、相平衡に関する熱物性値は液化プラントの設計には欠かす事ができない。さらに、パイプライン中は高圧であるために、液相の出現の有無を相平衡より確認しておく必要がある。しかし、天然ガスは先に述べたように、多成分系混合流体であり、その組成は産地によって大きく異なる。Table 1.1 に産地による組成の例を示す[13]. Table 1.1 に示した多種多様な組成を持つ天然ガスに対して熱物性値を提供するためには、これを精度良く算出することができる熱力学状態方程式が必要となる。

国名	USA	Canada	Germany	France	France	Ukraine	Indonesia	Brunei
産地	Kenai	Rainbow	Buchhorst- Siedenburg	Auzas	Lacq profond	Chebelinka	Arun	Seria
CH ₄	99.34	75.47	80.10	89.86	69.00	92.95	71.89	83.20
C_2H_6	0.11	12.16	0.20	5.09	3.00	3.85	5.64	8.40
C_3H_8	-	3.18	-	1.66	0.90	1.05	2.57	4.00
n-C ₄ H ₁₀	-	1 00	-	0.70	10.50	<u>}</u> 0.10	1144	1 00
i-C ₄ H ₁₀	-	£1.00	-	<i>j</i> 0.70	f 0.30	<i>f</i> 0.10	∫ 1.44	£1.90
$n-C_5H_{12}$	-	-	-	30.24	30.20	30.21	0.70	<u>}0 80</u>
$i-C_5H_{12}$	-	-	-	f 0.24	<i>j</i> 0.20	50.21	<i>j</i> 0.70	50.80
C ₆ H ₁₄ 以上	-	-	-	0.10	0.30	-	2.89	1.20
CO_2	0.20	-	9.20	0.43	9.30	0.09	14.51	0.50
N_2	0.52	2.49	3.80	1.92	1.50	1.50	0.35	-
O_2	0.01	-	-	-	-	-	-	-
H_2S	-	2.95	6.70	-	15.30	-	0.01	-

Table 1.1. 世界の天然ガスの産地と産地別成分組成例(mol %) [13]

1.2.2 天然ガスの物性研究の現状

天然ガスは多成分系の混合流体で、その熱力学性質は著しく複雑である.遠藤ら[14]は、天然ガス主 成分であるメタンを第1成分とし、エタン、プロパン、ノルマルブタン、イソブタン、窒素、二酸化炭 素、硫化水素の7成分を第2成分とする2成分系混合流体の相平衡を精度良く表すことができる熱力学 状態方程式を Peng-Robinson(PR)式により作成した.さらに、天然ガスをこれら8成分の混合流体とみな して、天然ガスの相平衡を推算している.天然ガス成分の1つである硫化水素は、メタンとの2成分系 において気液液3相平衡や臨界曲線の発散が現れるなど、他の天然ガス成分には見られない特異な挙動 を示し、硫化水素の混入は天然ガスの挙動に大きな影響を与える.本研究では、この硫化水素に着目し、 硫化水素純物質流体ならびにメタン/硫化水素2成分系混合流体の状態方程式をHelmholtz 関数型により 作成した. Fig. 1.1 に炭化水素系天然ガス成分と,本研究で対象とした硫化水素の飽和蒸気圧曲線を示す. Fig. 1.1 に示したメタン[15],エタン[16],プロパン[17],ノルマルブタン[18],イソブタン[19]の炭化水 素系成分に対しては、全て Helmholtz 関数型状態方程式が作成されている.また、Table 1.2 に臨界点の 値を示す.硫化水素の臨界温度は他の炭化水素系成分であるプロパンとほとんど同じにも関わらず、臨 界圧力は2倍以上もあり、その特異性がうかがえる.

天然ガスに対する物性研究は、既に長いパイプライン網が敷かれているヨーロッパやアメリカにおい て、盛んに行われている. 1961年、ヨーロッパでは、天然ガスに関する研究開発を効果的に促進させ、 ガス業界を強化するために 9 ヶ国, 11 のガス会社によって, 天然ガスの研究や技術開発を行う GERG (Gurpe Europeen de Recherches Gazierer, The European Gas Research Group)という組織が設立された. GERG[24]では, 天然ガスを, メタン, エタン, プロパン, ブタン, ペンタン, ヘキサン, ヘプタン, オ クタン,窒素、ヘリウム、二酸化炭素、一酸化炭素、水素の13成分からなる混合流体として扱ってお り,温度範囲 265-335 K, 圧力範囲 12 MPa までの, 種々の天然ガスに関する高精度な圧縮係数測定値と, GERG によって作成された virial 状態方程式による圧縮係数の計算値を報告している.純物質流体につ いては 36 種のデータセットで 2374 点, 2 成分系混合流体には 107 種のデータセットで 5847 点, 3 成分 系混合流体には 18種のデータセットで 620点,4成分系混合流体では 20種のデータセットで 492点, 天然ガスと天然ガスに見立てた混合流体については84種のデータセットで4486点が報告,比較され, 不確かさ±0.1%と報告している. また, その後アメリカのガス協会(American Gas Association, AGA)との 共同研究として AGA8-DC92 と呼ばれる BWR 型状態方程式が、パイプラインにおける天然ガスを対象 とした, 290-350 K, 30MPa までの領域において作成された[25]. 不確かさを±0.1%と報告している. さ らに、Jaeschke and Schley [26]は、天然ガスを対象として、メタン、エタン、プロパン、ノルマルブタン、 イソブタン, ノルマルペンタン, イソペンタン, ノルマルヘキサン, ノルマルヘプタン, ノルマルオク タン,ノルマルノナン,ノルマルデカン,窒素,水素,酸素,二酸化炭素,一酸化炭素,水,硫化水素, ヘリウム,アルゴンの21物質について理想気体の定圧比熱C¹の相関式を報告している.

また,北アメリカとヨーロッパの天然ガス産業における共同研究として多くの PpTx データが体系的 に測定されている.これは,米国商務省国立標準・技術研究所(National Institute of Standards and Technology, NIST), Texas A & M 大学, van der Waals 研究所, Ruhrgas の 4 つの研究機関による共同研究である.そ して,NIST の Magee et al. [27]は Table 1.3 に示すような 5 種類の組成の天然ガスについて,温度範囲 225-350 K, 圧力範囲 35 MPa までにおいて,等容法により密度を測定した.この密度測定における不確 かさは±0.044%と報告されている.この測定対象とされた天然ガスの組成は,北アメリカまたはヨーロ ッパで産出される天然ガス成分であって,GU1 や NIST1 といった名前がつけられている. Texas A & M 大学の Hwang et al. [28]もこの共同研究の一環で,Table 1.3 に示す 5 種類の組成の天然ガスについて,バ ーネット法と直接秤量法により温度範囲 225-350 K,圧力範囲 70 MPa までにおいて密度を測定してい る.この密度測定における不確かさは±0.04%であると報告されている.このように天然ガスについては 多くの体系的な研究が報告されているが,硫化水素は研究対象とする成分物質として含まれていないこ とが多い.

Fig. 1.1. 炭化水素系天然ガス成分および硫化水素の飽和蒸気圧曲線

Table 1.2. 炭化水素系天然ガス成分および硫化水素の臨界定数

	<i>T</i> _c [K]	P _c [MPa]	$ ho_{ m c}$ [mol·dm ⁻³]	分子量M [kg·mol ⁻¹]	Reference
CH ₄	190.564	4.5992	10.139128 ^a	0.0160428 [20, 21]	[15]
C_2H_6	305.33	4.8718	6.87	0.030070 [16, 22]	[16]
C_3H_8	369.825	4.24709	4.9551429 ^b	0.0440956 [23]	[17]
n-C ₄ H ₁₀	425.125	3.796	3.9200168 ^c	0.0581222 [23]	[18]
$i-C_4H_{10}$	407.817	3.640	3.8601429 ^d	0.0581222 [23]	[19]
H_2S	373.37	8.96291	10.20	0.0340819 [23]	[4]

^a 文献[15]では_ρ = 162.66 kg·m⁻³で与えられている.上記分子量を用いて_ρをmol·dm⁻³に変換.また,この変換方法は文献 [20]の方法に則っている.

^b 文献[17]では_ρ=218.5 kg·m⁻³で与えられている. 上記分子量を用いて_ρをmol·dm⁻³に変換.

* 文献[19]では $\rho_{e} = 227.84 \text{ kg·m}^{-3}$ で与えられている.上記分子量を用いて ρ_{e} をmol·dm⁻³に変換. * 文献[19]では $\rho_{e} = 224.36 \text{ kg·m}^{-3}$ で与えられている.上記分子量を用いて ρ_{e} をmol·dm⁻³に変換.

Table 1.3. Magee et al. [27], Hwang et al. [28]が測定した天然ガス成分

Gas name	GU1	GU2	RG2	NIST1	NIST2
CH ₄	0.81299	0.81203	0.85898	0.96580	0.90644
C_2H_6	0.03294	0.04306	0.08499	0.01815	0.04553
C_3H_8	0.00637	0.00894	0.02296	0.00405	0.00833
n-C ₄ H ₁₀	0.00100	0.00155	0.00347	0.00102	0.00156
i-C ₄ H ₁₀	0.00101	0.00148	0.00351	0.00099	0.00100
$n-C_5H_{12}$	-	-	0.00053	0.00032	0.00045
$i-C_5H_{12}$	-	-	0.00051	0.00047	0.00030
$n-C_{6}H_{14}$	-	-	-	0.00063	0.00040
N_2	0.13575	0.05703	0.01007	0.00269	0.03134
CO ₂	0.00994	0.07591	0.01498	0.00588	0.00465

1.3 超臨界混合流体の分類とその特徴

1.3.1 Scott and van Konynenburg による2成分系混合流体の分類

混合流体における熱力学性質は純物質流体とは全く異なり、その挙動を正確に把握することは非常に 困難で、2成分系であっても、成分物質の組み合わせによってその熱力学性質は多種多様な挙動を示す. Scott and van Konynenburg [1, 2]は、van der Waals 式を解析することによって気液の臨界曲線、気液液 3 相平衡線ならびに液液の臨界曲線の有無から 2 成分系混合流体の分類を行った. Scott and van Konynenburg の分類に従うと、Fig. 1.2 に示すように 2 成分系混合流体はその臨界曲線より大きく分けて 6 つの Type に分類することが出来る. この 2 成分系の Type に関する詳細な記述が Rowlinson and Swinton [3]あるいはスミスら[29]によってなされている. Fig. 1.2 の"1"、"2"で示された実線は、それぞれ第1、第 2 成分の純物質流体における飽和蒸気圧曲線を表し、破線は臨界曲線を表している. 2 つの蒸気圧曲線 の間にある実線は気液液 3 相平衡線で、"U"は上部臨界終点(Upper Critical End Point, UCEP)、"L"は下部臨 界終点(Lower Critical End Point, LCEP)である.

Fig. 1.2. Scott and van Konynenburg による2成分系混合流体の分類[3]

1.3.2 IUPAC による分類法

Scott and van Konynenburg によって2成分系の Type が分類されて以来,数学的な解析から多くの新しい Type が発見されてきた[30-35]. このような新しい Type に対しても適用できるような命名法が 1998 年に国際純粋応用化学連合(International Union of Pure and Applied Chemistry, IUPAC)により提案されている[36]. 以下に IUPAC による命名法を記す.

IUPACによる命名法は以下の4つのステップにより構成される.

- IUPACによる命名法では、より高い臨界温度を持つ純物質流体の臨界点を出発点として、臨界曲線 と3相平衡線を繋げて考えることから出発する.例えばFig.1.2に示したType Vでは、第2成分の臨 界点から出発した臨界曲線は図中の"L"に到達し、そして"U"へと延びて最終的に第1成分の臨界点 へと収束する.この一連の臨界曲線ならびに3相平衡線を1つの流れとみなす.ステップ1では、 より高い臨界温度の純物質臨界点から出発する臨界曲線の特徴を記述する.まず一連の臨界曲線・3 相平衡線中の臨界曲線の数を数える.そしてこの曲線の分類を以下に示す記号によって上付きで表 す.例えばType Vでは一連の曲線は2本の臨界曲線と1本の3相平衡線から構成されているので数 は"2"である.また、第1成分の臨界点に収束しているので、IUPACによる表記はステップ1でType 2^P と記される.
 - C 高圧域へと発散する臨界曲線
 - P 低温側の純物質臨界点へ繋がる臨界曲線
 - Z Critical End Point で臨界曲線は終点をむかえ,3相平衡線は低温域へとずっと延びる場合

- O Critical End Point で臨界曲線は終点をむかえ,3相平衡線は4重点で終わる場合
- 2. 低温側の純物質臨界点から出発する臨界曲線をステップ1と同様に続けて表記する.しかしステップ1で"P"の場合には表記する必要はない.
- 3. ステップ1と2では数えられない臨界曲線を以下に分類し,続けて表記する(この場合上付きではない).
 - ℓ 高圧域から延びてきて Critical End Point で終点をむかえる臨界曲線
 - n 2つの Critical End Point を持つ臨界曲線
 - u 高圧域から延びてきて、圧力の極小値を持ち、再び高圧域へと延びる臨界曲線
 - o 閉ループの臨界曲線
- 4. 以下に示す情報がある場合にはステップ3に引き続き表記される(この場合上付きではない).
 - H Heteroazeotropy (共沸 + 液液平衡)
 - A 共沸
 - Q 4重点
 - M 圧力極大
 - W 圧力極小

次のステップ5は付加的な情報がある場合に使われる.

5. さらにより詳細な情報がある場合には、ピリオドを付け情報を付け加える.まだ確固とした規定は 作成されていないが、固相に関する情報の場合にはスラッシュ"/"の後にその情報を付け加える.

以下に例として, IUPACの命名法をScott and van Konynenburgの分類法に当てはめて説明する. Fig. 1.2 のType Iではステップ1により、より高温側の第2成分の臨界点から出発した臨界曲線は途切れること なく1本の曲線で低温側の第1成分の臨界点へ繋がっているので、IUPACの命名法ではType 1^Pで表され る. Type IIでは, ステップ1の段階で" $1^{P''}$ である. ステップ2ではステップ1での分類が"P''であるので 記述の必要がない.しかし高圧域から延びてきた臨界曲線が1つ存在するので、ステップ3より"化であ る. したがってType IIはType $1^{P_{\ell}}$ で表される. Type IIIはステップ1より第2成分の臨界点から出発した 臨界曲線は途切れることなく1本の臨界曲線が高圧域へ発散するので"1^C".次にステップ2より、低い 臨界温度である第1成分の臨界点から出発した臨界曲線はCritical End Point (この場合UCEP)で終点をむ かえる. ここでCritical End Point (UCEP)から出発する3相平衡線は低温域へとずっと延びているので、 結局ステップ2で数えられる臨界曲線の本数は1本.分類により"Z"であるから,ステップ2によって"1^Z". これで臨界曲線は全てであるので、ステップ1と2よりType IIIはType $1^{C}1^{Z}$ として表される. Type IVは 第2成分の臨界点から出発した臨界曲線が、まずCritical End Point (この場合LCEP)で終点をむかえる. しかし、この 3 相平衡線は高温高圧域へ延び、Critical End Point (この場合UCEP)を持つ. そしてこの Critical End Point (UCEP)から臨界曲線は再び始まり第1成分の臨界点へと収束する.この一連の曲線は、 2本の臨界曲線と3相平衡線からなり、第1成分の臨界点へ収束すると考える.したがって分類は"P". 以上ステップ1より"2^P"となる. Type IIと同様に高圧から延びてきたもうひとつ臨界曲線が存在し、こ れがステップ3により記述されるので結局Type $2^{P}\ell$ となる. Type VはType 2^{P} と記される. Type VIはステ ップ1で"1^P", ステップ2で"n"より, Type 1^Pnと表記される.

このような複雑なIUPAC命名法であるが、Scott and van KonynenburgによるType Iが今後の研究によって高圧域から延びてくる臨界曲線が発見された場合、Type IをType IIに修正するのではなく、Type $1^{P}n$ に拡張するだけで良いという利点がある.しかしながら、現在に至ってもScott and van Konynenburgによる分類方法が広く使用されているようであり、本論文では、以降Scott and van

Konynenburgによる分類にしたがって述べることとする.

1.3.3 混合流体の特徴と物性計算における問題点

Fig. 1.2 に示した Scott and van Konynenburg による分類を用いて2成分系混合流体の Type 別における 特徴を述べる. Type Iは、2成分系における最もシンプルな形である. Type Iの臨界曲線は第1、第2成 分の純物質の臨界点を連続的に結ぶものであり、このような混合系は、分子形状や臨界定数が似ている 物質同士の2成分系ならびに極性が小さい物質同士の2成分系で起こる.メタン/エタン2成分系混合 流体も Type I に属する. Fig. 1.3 に例として Lemmon and Jacobsen の Helmholtz 関数型状態方程式[37]か ら計算したメタン/エタン2成分系混合流体の臨界曲線ならびにx = 0.1, 0.5, 0.8 における相平衡を P-T 線図上に示す.ここでxはメタンのモル組成を表している.純物質流体が気液平衡にある場合,気体と 液体は当然ながら同じ成分物質である。しかし混合流体が気液平衡にある場合には、一般に気体と液体 の組成は異なる.このため、純物質のように飽和蒸気圧曲線は温度に対して一義的に決定されるわけで はなく、Fig. 1.3(a)に示したように、飽和曲線は、露点曲線と沸点曲線の2つに分かれる、露点曲線と沸 点曲線に囲まれた領域は気液が共存する2相の平衡状態にある.従って、ある温度・圧力における気体 を等温のまま昇圧していくと、露点曲線と交わるところで二相域に入り、沸点曲線と交わるまで気液の 組成および密度を変化させながら二相域の状態が続く.沸点曲線と交わるところで一相域の飽和液体と なる. 露点曲線と沸点曲線の交わる点が臨界点となるが, Fig. 1.3(a)の拡大図である Fig. 1.3(b)の x = 0.8 に見られるように、臨界点は純物質と異なり必ずしも最高温度・圧力であるとは限らない.また、x=0.8、 T=230 K の気体を昇圧すると、A と B の 2 回露点曲線と交わることになる. この過程において B から 再び一相域となるとき,昇圧しているにも関わらず,二相域における液体相が消滅する.この現象は逆 行凝縮と呼ばれる. Fig. 1.4 に Lemmon and Jacobsen の状態方程式[37]から計算したメタン/エタン2成分 系混合流体の3次元 P-T-x線図上における相平衡を示す.

Fig. 1.3. メタン/エタン2成分系混合流体の臨界曲線ならびにx=0.1,0.5,0.8 における相平衡

Type IIは、Type Iと同様純物質の臨界点を結ぶ連続した臨界曲線と、高圧域から気液液3相平衡線へ 延びる臨界曲線が現れる.二酸化炭素/ノルマルオクタン、二酸化炭素/ノルマルデカン、二酸化炭素 /2-オクタノールといった2成分系がこのType IIの例として挙げられる.Type IIでは低温域で液液の相平 衡が存在する.また、Type IIでは気液液3相平衡が存在し、高圧域から延びてきた臨界曲線は、この気 液液3相平衡線と交わって終点(UCEP)となる.Type Iと同様、純物質の両臨界点を結ぶ臨界曲線は気液 の臨界点の軌跡であるのに対し、低温における高圧域から延びてきた臨界曲線は、液液の臨界点の軌跡 である.この液液の臨界曲線は、液液平衡におけるUpper Critical Solution Temperature (UCST)を結んだ線 である.UCSTは、等圧で*T*--x線図上に液液平衡を描いた場合の最高温度である.また、その最低温度は Lower Critical Solution Temperature (LCST)と呼ばれる.従って、UCSTおよびLCSTの状態は液液の臨界点 に相当する状態である.本研究では第5章に示すが、Helmholtz関数型状態方程式における関数形を解析 した結果、偽臨界温度中に含まれる異種分子間相互作用パラメータ $k_{12} = 0.95$ のときにHelmholtz関数型 によってType IIを表すことが可能であることを明らかにした。そこで、ここではType IIの相平衡挙動を 明確に示すために、このときの状態方程式から計算したType IIの3次元*P*-*T*-x線図上における相平衡を Fig. 1.5 に示す.

Type III では,臨界温度のより低い第1成分から出発した臨界曲線は気液液3相平衡線と交わる UCEP で終点を迎え,一方臨界温度のより高い第2成分から出発した臨界曲線は,第1成分の臨界点へと収束 せず,高圧域へと発散する.このような Type III は互いに非常に性質の異なった分子同士の混合の場合 に起こる.二酸化炭素/水,各種炭化水素/水といった2成分系がこの Type の例として挙げられ,天然 ガス関連物質では,本研究で対象としたメタン/硫化水素の2成分系がこの Type III に属する.高圧域へ と発散する臨界曲線の形状は物質によって様々であるが,Fig.1.2の Type III に見られるように,温度に 対して極小値を持つような場合には,極小値より高温高圧の領域において新たな相平衡が現れる.これ は Type III の1つの特徴であり,従来気気平衡と呼ばれているが,実際の密度状態から液液平衡と呼ぶ 方がふさわしい.Fig.1.6 に本研究により得られたメタン/硫化水素の Helmholtz 関数型状態方程式[5]から計算したメタン/硫化水素2成分系混合流体の3次元 P-T-x 線図上における相平衡を示す.

Type IV は、気液液 3 相平衡で 2 つの領域を持つ.第1成分から出発した臨界点は、Type III と同様に UCEP で終点となる.しかし第2成分から出発した臨界曲線は、第1成分の臨界点に収束せず、高圧域 へと発散することもなく、気液液 3 相平衡線と交わり終点(LCEP)を迎える.また、Type IV は Type II 同 様、低温域において高圧域から延びてきた液液の臨界曲線を持ち、気液液 3 相平衡線と交わる.従って、 Type IV には 2 つの UCEP と 1 つの LCEP が存在する.この Type IV は、臨界定数が著しく異なる 2 つの 物質の混合系における場合であり、エタン/プロパノール、メタン/ヘキサン、プロパン/ポリイソブテ ンなどの 2 成分系が挙げられる.Type V は Type IV と類似しているが、Type V には高圧から延びてくる 液液の臨界曲線が存在しない.Type V の例としてはエタン/エタノールの 2 成分系が挙げられる.最後 に Type VI は、Type I に見られる純物質の両臨界点を結ぶ連続の曲線と、液液の臨界曲線が存在する. Type VI の液液臨界曲線は UCST と LCST からなり、この 2 つの曲線が合流することでドーム状の臨界 曲線を形成する.この Type の例としては水/2-ブタノンの 2 成分系が挙げられる.Type II と Type VI は 気液の臨界温度よりも低い温度で液液平衡が存在することで特徴づけることができる.また、Type IV と Type V は第2成分から出発した臨界曲線がLCEP で終点をむかえるという共通の特徴を持つ.従って、 第2成分から出発した臨界曲線は気液の臨界点から液液の臨界点へと連続的にその特徴を変化させる.

以上のような Type の議論は P-T 線図上では頻繁に研究がなされているものの、その他の物性につい ては密度の状態曲面ですら詳細には明らかになっていないのが現状である.これは Scott and van Konynenburg によって行われたように、3 次型状態方程式を用いて研究されることが多く、3 次型状態方 程式は特に液相において密度を精度良く再現しきれていないことによる.近年、純物質に対する高精度 な状態方程式は Helmholtz 関数型によって作成され、混合則を用いてこれらの混合流体への拡張が行わ れている[37-39].しかしこれらの状態方程式の対象は全て Type I であり、Type II~VI に示すような複雑 な系を全流体域にわたって明らかにした研究は行われていない.本研究では Type III に属するメタン/ 硫化水素 2 成分系混合流体を対象として実測値を高精度に再現できる Helmholtz 関数型状態方程式を初 めて作成し、これによって Type III の複雑な系を、全流体域にわたって相平衡や臨界曲線はもとより、 PpTx 性質や比熱・音速などの誘導状態量を含めその挙動を明らかにした.

Fig. 1.4. Type I, メタン/エタン2成分系混合流体の3次元 P-T-x線図上における相平衡

Fig. 1.5. Type II の 3 次元 P-T-x 線図上における相平衡

Fig. 1.6. Type III, メタン/硫化水素2成分系混合流体の3次元 P-T-x線図上における相平衡

1.4 相平衡および臨界曲線に関する熱力学

前節 1.3 で示した 2 成分系混合流体における複雑な相平衡ならびに臨界曲線を状態方程式から算出す るためには熱力学的な関係を把握しておく必要がある.そこで本節では純物質流体ならびに混合物流体 における相平衡および臨界点に関する熱力学的な条件について述べる.

相平衡状態を熱力学的に論ずる場合には,化学ポテンシャルまたはGibbs自由エネルギーによって行われるが,状態方程式を用いた実際の計算にはフガシティーを用いる.純物質流体の場合,閉じた系において,ある温度・圧力で気液が平衡状態にあるとき,式(1.1)に示すように気側のフガシティーf^Vと液側のフガシティーf^Lが等しいことが条件となる.

$$f^{\rm V} = f^{\rm L} \tag{1.1}$$

一方,混合流体の場合,閉じた系において,ある温度・圧力で系全体が相平衡の状態にあるとき,以下の3つの条件が満たされている.

1. 系中の質量(モル数)が保存される.

2. 各々の成分の化学ポテンシャルまたはフガシティーが全ての相で等しい.

3. 平衡状態で存在する温度, 圧力において系全体の Gibbs 自由エネルギーが最小の値をとる.

条件1の質量保存と条件2の化学ポテンシャルまたはフガシティーに関する条件は、一般的に相平衡問題を解くときの基本条件である.また、条件3は系の熱力学的な安定性を示す条件である.多くの場合、状態方程式を用いた相平衡計算は、条件1と2だけで問題なく行うことができる.しかしながら、気液液3相平衡のように複雑な相平衡が絡む場合には、相平衡計算には条件3を考慮した安定性解析[40]を用いる必要がある.条件3と安定性解析に関する詳細な記述は第3章3.6節で行う.

混合物が相平衡にあるとき,式(1.2)に示すように各成分における化学ポテンシャルが全ての相において等しいが,これは各成分のフガシティーが全ての相において等しいという式(1.3)の条件と等価になる. ここで式(1.2),(1.3)中の π は平衡時において存在する相の数である.また μ_i は平衡状態で存在する複数相のうち,ある"1"と名付けられた相の成分 *i* の化学ポテンシャルを表し, f_i 」は化学ポテンシャル同様に,相"1"の成分 *i* のフガシティーを表している.

$$\mu_i^1 = \mu_i^2 = \dots = \mu_i^\pi \qquad (i = 1, 2, \dots, N)$$
(1.2)

$$f_i^1 = f_i^2 = \dots = f_i^\pi \qquad (i = 1, 2, \dots, N)$$
(1.3)

相平衡における自由度は、Nを成分数、 π を平衡時の相の数とするとき、式(1.4)による Gibbs の相律に よって決定される. N=2の2成分系では、気液の2相が平衡状態にあるとき、 π =2なので、式(1.4)よ り自由度 F=2となり、TとPを指定すると全ての相平衡状態が決定される.また、気液液3相平衡が 存在する場合には π =3なのでF=1となり、従ってTを決定すると気液液3相平衡の状態が全て決定さ れることになる.

$$F = 2 - \pi + N \tag{1.4}$$

2成分系混合流体では臨界曲線の形状が2成分系のType決定の重要な要因となり,また相平衡を完全に表すためにも臨界点を決定する必要がある.そこで純物質流体および混合流体における臨界点について述べる.純物質流体の臨界点は,式(1.5),(1.6)によって表され,圧力Pにおける比体積(あるいはモル体積) の1階および2階の偏微分が0となる点で与えられる.

$$\left(\frac{\partial P}{\partial v}\right)_T = 0 \tag{1.5}$$

$$\left(\frac{\partial^2 P}{\partial v^2}\right)_T = 0 \tag{1.6}$$

今,独立変数としてvの代わりに密度 ρ をとると、 $v=1/\rho$ の関係にあるから、式(1.5)、(1.6)はそれぞれ式(1.7)、(1.8)になり、結局臨界圧力Pにおける密度 ρ の1階および2階の偏微分が0となる点としても求まる.純物質流体の臨界点における条件は、P-v線図あるいは $P-\rho$ 線図上において、臨界等温線が臨界点で水平な変曲点を持つことを意味している.

$$\left(\frac{\partial P}{\partial v}\right)_T = \left(\frac{\partial \rho}{\partial v}\right)_T \left(\frac{\partial P}{\partial \rho}\right)_T = -\frac{1}{v^2} \left(\frac{\partial P}{\partial \rho}\right)_T = -\rho^2 \left(\frac{\partial P}{\partial \rho}\right)_T = 0$$
(1.7)

$$\left(\frac{\partial^2 P}{\partial v^2}\right)_T = \left(\frac{\partial^2 \rho}{\partial v^2}\right)_T \left(\frac{\partial P}{\partial \rho}\right)_T + \left(\frac{\partial \rho}{\partial v}\right)_T^2 \left(\frac{\partial^2 P}{\partial \rho^2}\right)_T \\
= \frac{2}{v^3} \left(\frac{\partial P}{\partial \rho}\right)_T + \frac{1}{v^4} \left(\frac{\partial^2 P}{\partial \rho^2}\right)_T = 2\rho^3 \left(\frac{\partial P}{\partial \rho}\right)_T + \rho^3 \left(\frac{\partial^2 P}{\partial \rho^2}\right)_T = 0$$
(1.8)

一方, 混合流体の臨界点は Gibbs によって式(1.9), (1.10)で与えられている.

$$\mathbf{U} = \begin{vmatrix} \frac{\partial^2 g}{\partial x_1^2} & \frac{\partial^2 g}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 g}{\partial x_2 \partial x_{n-1}} \\ \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial^2 g}{\partial x_2^2} & \dots & \frac{\partial^2 g}{\partial x_2 \partial x_{n-1}} \\ \vdots & \vdots & \frac{\partial^2 g}{\partial x_n \partial x_2} & \vdots \\ \frac{\partial^2 g}{\partial x_{n-1} \partial x_1} & \frac{\partial^2 g}{\partial x_{n-1} \partial x_2} & \dots & \frac{\partial^2 g}{\partial x_{n-1}^2} \end{vmatrix} = 0$$

$$\mathbf{M} = \begin{vmatrix} \frac{\partial \mathbf{U}}{\partial x_1} & \frac{\partial \mathbf{U}}{\partial x_2} & \dots & \frac{\partial \mathbf{U}}{\partial x_{n-1}} \\ \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial^2 g}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 g}{\partial x_2 \partial x_{n-1}} \\ \vdots & \vdots & \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial^2 g}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 g}{\partial x_2 \partial x_{n-1}} \\ \vdots & \vdots & \frac{\partial^2 g}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 g}{\partial x_n \partial x_2} \end{vmatrix} = 0$$

$$(1.10)$$

また、特に2成分系の場合には、式(1.9)、(1.10)より式(1.11)、(1.12)として書き換えられる.

$$\left(\frac{\partial^2 g}{\partial x_1^2}\right)_{T,P} = 0 \tag{1.11}$$

$$\left(\frac{\partial^3 g}{\partial x_1^3}\right)_{T,P} = 0 \tag{1.12}$$

しかしながら,通常,状態方程式は独立変数として $T \ge v$ または ρ をとり, Gibbs 自由エネルギーg の代わりに Helmholtz 自由エネルギーa で表されるので,独立変数を変換する必要がある.式(1.11),(1.12)の独立変数を変換すると式(1.13),(1.14)となる.

$$\left(\frac{\partial^2 g}{\partial x_1^2}\right)_{T,P} = \left(\frac{\partial^2 a}{\partial x_1^2}\right)_{T,\nu} + \left[\left(\frac{\partial P}{\partial x_1}\right)_{T,\nu}^2 / \left(\frac{\partial P}{\partial \nu}\right)_{T,x_1}\right] = 0$$
(1.13)

$$\begin{pmatrix} \frac{\partial^{3}g}{\partial x_{1}^{3}} \end{pmatrix}_{T,P} = \begin{pmatrix} \frac{\partial^{3}a}{\partial x_{1}^{3}} \end{pmatrix}_{T,\nu} + \begin{bmatrix} 3 \begin{pmatrix} \frac{\partial P}{\partial x_{1}} \end{pmatrix}_{T,\nu} \begin{pmatrix} \frac{\partial^{2}P}{\partial x_{1}^{2}} \end{pmatrix}_{T,\nu} / \begin{pmatrix} \frac{\partial P}{\partial \nu} \end{pmatrix}_{T,x_{1}} \end{bmatrix} \\ - \begin{bmatrix} 3 \begin{pmatrix} \frac{\partial P}{\partial x_{1}} \end{pmatrix}_{T,\nu}^{2} \begin{pmatrix} \frac{\partial^{2}P}{\partial x_{1}\partial \nu} \end{pmatrix}_{T} / \begin{pmatrix} \frac{\partial P}{\partial \nu} \end{pmatrix}_{T,x_{1}}^{2} \end{bmatrix} \\ + \begin{bmatrix} \left(\frac{\partial P}{\partial x_{1}} \right)_{T,\nu}^{3} \begin{pmatrix} \frac{\partial^{2}P}{\partial \nu^{2}} \end{pmatrix}_{T,x_{1}} / \begin{pmatrix} \frac{\partial P}{\partial \nu} \end{pmatrix}_{T,x_{1}}^{3} \end{bmatrix} = 0$$
(1.14)

Type I のような連続した単純な形状を示す臨界曲線では、式(1.13)、(1.14)を用いて算出することが可能である.しかし繰り返し計算に用いる初期値の与え方が難しいため、Type II や III のような Type I 以外の臨界曲線にこの式を直接用いて収束を試みることは困難である.そこで本研究では式(1.13)、(1.14)と等価な式を用いて臨界曲線を算出する Heidemann and Khalil [41]の方法を用いた. Heidemann and Khalil の方法の詳細は第3章3.7節にて述べることとする.

1.5 Helmholtz 関数型状態方程式の意義

本研究ではメタン/硫化水素 2 成分系混合流体の状態方程式をHelmholtz関数型によって作成した. Helmholtz関数型状態方程式はHelmholtz自由エネルギーaを,ガス定数Rと温度Tの積で割った無次元量¢の形で展開され,純物質流体,混合流体ともに,理想項 ϕ^0 と剰余項 ϕ' の和で表される.そして独立変数には温度Tと密度pをとる.実際には独立変数においても無次元化された形を用いるが,純物質流体と混合流体で無次元化の仕方が異なり,さらに混合流体の場合には独立変数として新たにモル組成x_iが加わる.純物質流体における無次元化Helmholtz自由エネルギー ϕ の式形を式(1.15)に,混合流体における無次元化Helmholtz自由エネルギー ϕ の式形を式(1.15)に,混合流体における無次元化Helmholtz自由エネルギー ϕ の式形を式(1.15)に,混合流体における無次元化Helmholtz自由エネルギー ϕ の式形を式(1.15)に,混合流体における無次元化の仕方が異なり,さらに混合流体の場合には独立変数として新たにモル組成x_iが加わる. 純物質流体の理想項 ϕ^0 と剰余項 ϕ_{mix} でまたにた成する. 理想項 ϕ_{mix}^0 においては熱力学関係式より導出されるが,剰余項 ϕ_{mix}^r は経験的に混合則が適用される. 純物質流体の場合には,独立変数である温度T,密度pはそれぞれ臨界温度T_cと臨界密度 ρ_c を用いて $\tau = T_c/T$, $\delta = \rho/\rho_c$ のように無次元化された形で用いられる. また混合流体の場合には,第5章で詳細に述べるが,理想項 ϕ_{mix}^0 における臨外元化され,剩余項 ϕ_{mix}^r 中の独立変数は偽臨界温度 $T_{c,mix}$ および偽臨界密度 $\rho_{c,mix}$ を用いて $\tau = T_{c,mix}/T$, $\delta = \rho/\rho_{c,mix}$ のように無次元化される.

純物質流体:
$$\phi(\tau,\delta) = a/RT = \phi^0(\tau,\delta) + \phi^r(\tau,\delta)$$
 (1.15)

混合流体:
$$\phi_{\text{mix}} = a/RT = \phi_{\text{mix}}^0(\tau_i^{\text{pure}}, \delta_i^{\text{pure}}, x_i) + \phi_{\text{mix}}^r(\tau, \delta, x_i)$$
 (1.16)

Helmholtz 自由エネルギーa に対して温度 T と密度 ρ , あるいは比体積 v を独立変数としてとり, $a(T, \rho)$ または a(T, v)の形で状態方程式を記述しておくと、微分操作のみによって他の全ての状態量を算出する ことができ、積分操作に伴う積分定数を必要としないことから $a(T, \rho)$ や a(T, v)はカノニカル関数と呼ば れる. 純物質流体に対し、式(1.15)で表した無次元化された Helmholtz 自由エネルギーから他の物性を算 出する場合には、Table 1.4 に示す熱力学関係式を用いることで導出することができる. また、混合流体 に対しては、Table 1.5 に示す熱力学関係式を用いる. 一方で、Gibbs 自由エネルギーg に対し、温度 T

と圧力 P を独立変数として表すとき, Helmholtz 自由エネルギーと同様にカノニカル関数となる.物質の状態を議論する際には,温度と圧力で行うことが通常であるから,Gibbs 自由エネルギーの形で状態 方程式を作成した方が実用的であるように思える.しかし,相平衡時には同一の温度・圧力によって異 なる密度の値をとることから,相平衡を含めた全流体域にわたって1つの状態方程式で流体の挙動を表 す場合には,密度を温度・圧力の関数とすることができず,従って温度・密度を独立変数とする Helmholtz 自由エネルギーで表さなければならない.

物性	関係式
圧力	$\frac{P(\tau,\delta)}{\rho RT} = 1 + \delta \phi_{\delta}^{\rm r}$
内部エネルギー	$\frac{u(\tau,\delta)}{RT} = \tau \left(\phi_{\tau}^{0} + \phi_{\tau}^{\mathrm{r}} \right)$
エンタルピー	$\frac{h(\tau,\delta)}{RT} = 1 + \tau \left(\phi_{\tau}^{0} + \phi_{\tau}^{r}\right) + \delta \phi_{\delta}^{r}$
エントロピー	$\frac{s(\tau,\delta)}{R} = \tau \left(\phi_{\tau}^{0} + \phi_{\tau}^{\mathrm{r}} \right) - \phi^{0} - \phi^{\mathrm{r}}$
Gibbs 自由エネルギー	$\frac{g(\tau,\delta)}{RT} = 1 + \delta\phi^{\rm r}_{\delta} + \phi^0 + \phi^{\rm r}$
定積比熱	$\frac{C_V(\tau,\delta)}{R} = -\tau^2 \left(\phi^0_{\tau\tau} + \phi^r_{\tau\tau} \right)$
定圧比熱	$\frac{C_P(\tau,\delta)}{R} = -\tau^2 \left(\phi_{\tau\tau}^0 + \phi_{\tau\tau}^r\right) + \frac{\left(1 + \delta\phi_{\delta}^r - \delta\tau\phi_{\delta\tau}^r\right)^2}{1 + 2\delta\phi_{\delta}^r + \delta^2\phi_{\delta\delta}^r}$
音速	$\frac{W^2(\tau,\delta)M}{RT} = 1 + 2\delta\phi^{\rm r}_{\delta} + \delta^2\phi^{\rm r}_{\delta\delta} - \frac{\left(1 + \delta\phi^{\rm r}_{\delta} - \delta\tau\phi^{\rm r}_{\delta\tau}\right)^2}{\tau^2\left(\phi^0_{\tau\tau} + \phi^{\rm r}_{\tau\tau}\right)}$
ジュール・トムソン係数	$\mu(\tau,\delta)R\rho = \frac{-\left(\delta\phi_{\delta}^{r} + \delta^{2}\phi_{\delta\delta}^{r} + \delta\tau\phi_{\delta\tau}^{r}\right)}{\left(1 + \delta\phi_{\delta}^{r} - \delta\tau\phi_{\delta\tau}^{r}\right)^{2} - \tau^{2}\left(\phi_{\tau\tau}^{0} + \phi_{\tau\tau}^{r}\right)\left(1 + 2\delta\phi_{\delta}^{r} + \delta^{2}\phi_{\delta\delta}^{r}\right)}$
等温絞り係数	$\delta_T(\tau,\delta)\rho = 1 - \frac{1 + \delta\phi^{\rm r}_{\delta} - \delta\tau\phi^{\rm r}_{\delta\tau}}{1 + 2\delta\phi^{\rm r}_{\delta} + \delta^2\phi^{\rm r}_{\delta\delta}}$
第 2 virial 係数	$B(\tau)\rho_{\rm c} = \lim_{\delta \to 0} \phi^{\rm r}_{\delta}(\tau,\delta)$
第 3 virial 係数	$C(\tau)\rho_{\rm c}^2 = \lim_{\delta \to 0} \phi_{\delta\delta}^{\rm r}(\tau,\delta)$
フガシティー	$\ln\left(\frac{f(\tau,\delta)}{P}\right) = -\ln(Z) + Z - 1 + \phi^{r}$

Table 1.4. 純物質流体における無次元化された Helmholtz 関数と他の物性間における熱力学関係式

ただし ϕ_{δ}^{r} , $\phi_{\delta\delta}^{r}$, ϕ_{τ}^{r} , $\phi_{\delta\tau}^{r}$, $\psi_{\delta\tau}^{r}$, $\psi_{\delta\tau}^{r}$, $\psi_{\delta\tau}^{r}$, $\psi_{\delta\tau}^{r}$, $\psi_{\delta\tau}^{r}$, $\psi_{\delta\tau}^{r} = \left(\frac{\partial \phi^{r}}{\partial \tau}\right)_{\tau}$, $\phi_{\tau}^{r} = \left(\frac{\partial \phi^{r}}{\partial \tau}\right)_{\delta}$, $\phi_{\tau\tau}^{r} = \left(\frac{\partial^{2} \phi^{r}}{\partial \tau^{2}}\right)_{\delta}$, $\phi_{\delta\tau}^{r} = \left(\frac{\partial^{2} \phi^{r}}{\partial \tau \partial \delta}\right)$

物性	関係式
理想気体	
内部エネルギー	$\frac{u^0}{RT} = \sum_{i=1}^N x_i \tau_i^{\text{pure}} \left(\frac{\partial \phi_i^0}{\partial \tau_i^{\text{pure}}} \right)$
エンタルピー	$\frac{h^{0}}{RT} = 1 + \sum_{i=1}^{N} x_{i} \tau_{i}^{\text{pure}} \left(\frac{\partial \phi_{i}^{0}}{\partial \tau_{i}^{\text{pure}}} \right)$
エントロピー	$\frac{s^{0}}{R} = \sum_{i=1}^{N} x_{i} \tau_{i}^{\text{pure}} \left(\frac{\partial \phi_{i}^{0}}{\partial \tau_{i}^{\text{pure}}} \right) - \phi_{\text{mix}}^{0}$
定積比熱	$\frac{C_V^0}{RT} = -\sum_{i=1}^N x_i \tau_i^{\text{pure},2} \left(\frac{\partial^2 \phi_i^0}{\partial \tau_i^{\text{pure},2}} \right)$
実在流体	
圧力	$\frac{P(\tau,\delta)}{\rho RT} = 1 + \delta \phi_{\delta}^{\rm r}$
内部エネルギー	$\frac{u(\tau,\delta)}{RT} = \frac{u^0}{RT} + \tau \phi_\tau^{\rm r}$
エンタルピー	$\frac{h(\tau,\delta)}{RT} = \frac{h^0}{RT} + \tau \phi_{\tau}^{\rm r} + \delta \phi_{\delta}^{\rm r}$
エントロピー	$\frac{s(\tau,\delta)}{R} = \frac{s^0}{RT} + \tau \phi_{\tau}^{\rm r} - \phi^{\rm r}$
定積比熱	$\frac{C_V(\tau,\delta)}{R} = \frac{C_V^0}{R} - \tau^2 \phi_{\tau\tau}^{\rm r}$
定圧比熱	$\frac{C_P(\tau,\delta)}{R} = \frac{C_V}{R} + \frac{\left(1 + \delta\phi^{\rm r}_{\delta} - \delta\tau\phi^{\rm r}_{\delta\tau}\right)^2}{1 + 2\delta\phi^{\rm r}_{\delta} + \delta^2\phi^{\rm r}_{\delta\delta}}$
音速	$\frac{W^2(\tau,\delta)M}{RT} = 1 + 2\delta\phi_{\delta}^{\rm r} + \delta^2\phi_{\delta\delta}^{\rm r} - \frac{\left(1 + \delta\phi_{\delta}^{\rm r} - \delta\tau\phi_{\delta\tau}^{\rm r}\right)^2}{\left(C_V/R\right)}$
ジュール・トムソン係数	$\mu(\tau,\delta)R\rho = \frac{-\left(\delta\phi_{\delta}^{r} + \delta^{2}\phi_{\delta\delta}^{r} + \delta\tau\phi_{\delta\tau}^{r}\right)}{\left(1 + \delta\phi_{\delta}^{r} - \delta\tau\phi_{\delta\tau}^{r}\right)^{2} + \left(C_{V}/R\right)\left(1 + 2\delta\phi_{\delta}^{r} + \delta^{2}\phi_{\delta\delta}^{r}\right)}$
成分 <i>i</i> のフガシティー	$\frac{f_i}{\rho RT} = x_i \exp\left(\frac{\partial \left(n\phi_{\min}^{r}\right)}{\partial n_i}\right)_{T,V,n_{j\neq i}}$

Table 1.5. 混合流体における無次元化された Helmholtz 関数と他の物性間における熱力学関係式

ただし ϕ_{δ}^{r} , $\phi_{\delta\delta}^{r}$, $\phi_{\tau\tau}^{r}$, $\phi_{\delta\tau}^{r}$ は以下の微分を表すものとする.また,nは系全体のモル数を表し, n_iは成分iのモル数を表す. Vは体積である.

$$\phi_{\delta}^{\mathrm{r}} = \left(\frac{\partial \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \delta}\right)_{\tau, x_{1}}, \quad \phi_{\delta\delta}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \delta^{2}}\right)_{\tau, x_{1}}, \quad \phi_{\tau}^{\mathrm{r}} = \left(\frac{\partial \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \tau}\right)_{\delta, x_{1}}, \quad \phi_{\tau\tau}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \tau^{2}}\right)_{\delta, x_{1}}, \quad \phi_{\delta\tau}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \tau \partial \delta}\right)_{x_{1}}$$

2 純物質流体および混合流体に関する状態方程式開発の動向

2.1 純物質流体に関する状態方程式

2.1.1 状態方程式による純物質流体の物性計算

純物質流体における熱力学状態量は,独立変数として 2 つの状態量をとり,互いに従属関係にある. つまり,第3の状態量を状態方程式の形で記述しておくと,他の状態量は微分あるいは積分操作を伴う 熱力学関係式によって全て導出することができる.van der Waals式に代表される 3 次型状態方程式は圧 力Pに対して温度Tと比体積vを独立変数とし,P(T,v)の形で状態方程式が記述される.P(T,v)の状態方程 式から,例えばエントロピーs,エンタルピーh,定圧比熱 C_P を算出する場合には理想気体の定圧比熱 $C_P^0(T)$ を用いて式(2.1)-(2.3)に示す熱力学関係式から導出することができる.しかし,このとき積分計算 が必要となり,基準点温度T₀および積分定数 C_1 , C_2 を決定することが必要となる.

$$s = \int_{\infty}^{\nu} \left(\frac{\partial P}{\partial T}\right)_{\nu} d\nu + \int_{T_0}^{T} \frac{C_P^0}{T} dT - R \ln \frac{T}{T_0} + C_1$$

$$\tag{2.1}$$

$$h = T^{2} \int_{-\infty}^{\nu} \left[\frac{\partial (P/T)}{\partial T} \right]_{\nu} d\nu + \int_{T_{0}}^{T} C_{P}^{0} dT - R(T - T_{0}) + P\nu + C_{2}$$
(2.2)

$$C_P = T \int_{-\infty}^{\nu} \left(\frac{\partial^2 P}{\partial T^2} \right)_{\nu} d\nu - T \left(\frac{\partial P}{\partial T} \right)_{\nu}^2 / \left(\frac{\partial P}{\partial \nu} \right)_T + C_P^0 - R$$
(2.3)

そこで、Helmholtz自由エネルギーaに対して温度Tと密度 ρ 、あるいは比体積vを独立変数としてとり、 $a(T, \rho)$ またはa(T, v)の形で状態方程式を記述しておくと、カノニカル関数となるため、微分操作のみによって他の全ての状態量を算出することができ、積分操作に伴う積分定数を必要としない、式(2.4)-(2.7)に Helmholtz自由エネルギーaから圧力P、エントロピーs、エンタルピーh、定圧比熱 C_P を算出するための熱力学関係式を示す。近年作成されているHelmholtz関数型状態方程式において、式(1.15)に示したように理想項と剰余項からなる無次元化されたHelmholtz自由エネルギー ϕ を用いて他の物性を計算する場合にはTable 1.4 に示した通りである.

$$P = -\left(\frac{\partial a}{\partial v}\right)_T \tag{2.4}$$

$$s = -\left(\frac{\partial a}{\partial T}\right)_{v}$$
(2.5)

 $h = a + Pv + Ts \tag{2.6}$

$$C_P = -T \left(\frac{\partial^2 a}{\partial T^2}\right)_v + T \left(\frac{\partial^2 a}{\partial T \partial v}\right)^2 \left/ \left(\frac{\partial^2 a}{\partial v^2}\right)_T$$
(2.7)

$$\phi(\tau,\delta) = a/RT = \phi^0(\tau,\delta) + \phi^r(\tau,\delta) \tag{1.15}$$

状態方程式は、一般的に実測値に合わせてパラメータや係数が決定されるが、全ての状態量に対して実 測値を高精度に再現するように作成することは非常に困難であり、特に微分操作を伴う場合、熱力学関 係式から導出される状態量は実測値の再現性が良くない.従ってこれまでに様々な状態方程式が提案さ れている.そこで、以下に代表的な状態方程式について述べることとする.

2.1.2 van der Waals 型状態方程式

1873 年にオランダの物理学者 van der Waals は,理想気体の状態方程式 *Pv* = *RT* の圧力 *P* と比体積 *v* に 修正項を加え,式(2.8)の van der Waals 式を作成した[42].

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$
(2.8)

ここで a, b は物質固有の定数であるが, 臨界定数から式(1.5), (1.6)の臨界点条件により一義的に決定する ことができ,対応状態原理が成り立つ.Rはガス定数を表している.この van der Waals 式によって初め て気液の連続性を表すことが可能になった. その後, van der Waals 式を改良した Redlich-Kwong(RK)式 [43]や Soave-Redlich-Kwong(SRK)式[44], Peng-Robinson(PR)式[45]などが作成され,実測値に対する再現 性が向上された.これらは比体積vに関する3次式にまとめられ、3次型状態方程式とも呼ばれる.van der Waals 型状態方程式は、式(2.9)のように一般形によって記述することができる[46].

$$P = \frac{RT}{v-b} - \frac{a\alpha(v-\eta)}{(v-b)(v^2 + \delta v + \varepsilon)}$$
(2.9)

ここで α は物質に依存する定数を含む温度の関数で,臨界点では1になるように整理される.また, η , δ , ε は通常bの関数として表されることが多い. Table 2.1 にvan der Waals式, RK式, SRK式, PR式の η , δ , ε , α におけるそれぞれの関数形を示す. $T_r = T / T_c$ を表し、 ω は偏心係数を表す. 偏心係数はPitzer [47]によ って導入され、球形分子と非球形分子との差異を考慮し、分子形状の球形からのずれを表すパラメータ である. van der Waals式およびRK式は臨界温度 T_c および臨界圧力 P_c によって定数が全て定まることから, 2 変数対応状態原理にもとづいている.これに対し、SRK式およびPR式は臨界温度T_c,臨界圧力P_cそし て偏心係数ωによって全て決まることから3変数対応状態原理にもとづいている.3次型状態方程式は 式形が簡単で、温度、圧力、組成の再現性が良いことから、混合流体の相平衡計算に広く使用されてい る.

状態方程式 δ η £ α

Table 2.1. van der Waals 型の状態方程式[46]

van der Waals 式	b	0	0	1
Redlich-Kwong 式 (RK 式)	b	b	0	$T_{ m r}^{-0.5}$
Soave-Redlich-Kwong 式 (SRK 式)	b	b	0	$[1 + (0.480 + 1.574\omega - 0.176\omega^2)(1 - T_r^{-0.5})]^2$
Peng-Robinson 式 (PR 式)	b	2 <i>b</i>	$-b^2$	$[1 + (0.37464 + 1.54226\omega - 0.26992\omega^2)(1 - T_r^{-0.5})]^2$

2.1.3 virial 状態方程式

1901 年に Kammerling Onnes は理想気体の状態方程式において, 圧縮係数 $Z(=P/\rho RT)$ を密度 ρ あるい は圧力 P のべき乗展開することにより実在気体に適用できるようにした. これは virial 状態方程式と呼 ばれ、式(2.10)によって表される.

$$\frac{P}{\rho RT} = 1 + B(T)\rho + C(T)\rho^2 + \dots$$
(2.10)

ここで B, C, \cdots は virial 係数と呼ばれ,温度のみの関数として表され,統計力学によって分子間ポテンシャルと関係づけられる.第2 virial 係数 B は2分子間の相互作用に関係し,第3 virial 係数 C は3分子間の相互作用に関係している.しかし多分子間の相互作用を考慮しなければならない液体域では,密度の再現性に限界があり,通常は低密度の気体域に対して用いられる.第2,第3 virial 係数の定性的な挙動は知られており,Dymond and Smith [48]によって多くの物質に対する第2,第3 virial 係数の値がまとめられている.

2.1.4 BWR 型状態方程式

virial 状態方程式において多分子間の相互作用を表すために無限級数展開することは事実上不可能であるので,高密度域では収束性が悪くなる.そこで Benedict, Webb, and Rubin [49]は関数形に指数関数を 導入した.これによって全流体域における定量的な実測値再現性を向上させた.Benedict-Webb-Rubin (BWR)式を式(2.11)に示す.

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2}\right)\rho + (bRT - a)\rho^3 + a\alpha\rho^6 + \frac{c\rho^3 \left(1 + \gamma\rho^2\right)\exp\left(-\gamma\rho^2\right)}{T^2}$$
(2.11)

ここで A_0 , B_0 , C_0 , a, b, c, α , γ は流体に固有な定数である. その後BWR型状態方程式は様々な改良が加えられ,修正BWR(mBWR)型状態方程式として数多く報告されているが,今日までに報告されたmBWR型状態方程式の多くは以下の関数形で表すことができる.

$$\frac{P}{\rho RT} = 1 + \sum_{i=1}^{m} a_i T^{t_i} \rho^{d_i} + \exp\left(-\left(\rho / \rho_0\right)^2\right) \sum_{i=m+1}^{n} a_i T^{t_i} \rho^{d_i}$$
(2.12)

ここで、密度 ρ を無次元化するために用いる密度パラメータ ρ_0 は通常、臨界密度 ρ_c が用いられる.式(2.12) に用いられる定数は物質ごとに異なるが、Plazer and Maurer [50]はBWR型状態方程式の1つである、 Bender [51]によって作成されたBender式に対し、偏心係数 ω と極性係数 χ の2つのパラメータを臨界温度、 臨界密度に追加して、4変数対応状態原理を用いた一般化状態方程式、PM式を作成した.PM式は式(2.13) によって表される.

$$Z = 1 + B^* \delta + C^* \delta^2 + D^* \delta^3 + E^* \delta^4 + F^* \delta^5 + (G^* + H^* \delta^2) \delta^2 \exp(-\delta^2)$$
(2.13)

ここで、 $B^* \sim H^*$ は以下に示す温度の関数で表される.

$$B^{*} = e_{1} - e_{2} / \tau - e_{3} / \tau^{2} - e_{4} / \tau^{3} - e_{5} / \tau^{4}$$

$$C^{*} = e_{6} + e_{7} / \tau + e_{8} / \tau^{2}$$

$$D^{*} = e_{9} + e_{10} / \tau$$

$$E^{*} = e_{11} + e_{12} / \tau$$

$$F^{*} = e_{13} / \tau$$

$$G^{*} = e_{14} / \tau^{3} + e_{15} / \tau^{4} + e_{16} / \tau^{5}$$

$$(2.14)$$

$$(2.14)$$

$$(2.15)$$

$$(2.16)$$

$$(2.17)$$

$$(2.18)$$

$$(2.18)$$

$$(2.19)$$

$$H^* = e_{17} / \tau^3 + e_{18} / \tau^4 + e_{19} / \tau^5$$
(2.20)

独立変数である τ , δ はそれぞれ τ = T_c /T, δ = ρ / ρ_c によって無次元化されている. 係数 e_i は偏心係数 ω と極性係数 χ の関数として係数 $g_{i,i}$ とともに以下のように表される.

$$e_i(\omega,\chi) = g_{4,i} + g_{1,i}\omega + g_{2,i}\chi + g_{3,i}\omega\chi + g_{5,i}\chi^2$$
(2.21)

2.1.5 Helmholtz 関数型状態方程式

マサチューセッツ工科大学の Keenan et al. [52]は 1969 年に初めて Helmholtz 関数によって,水に対す る状態方程式を作成し,1936 年版の Keenan and Keyes の蒸気表の改訂版を作成した. Helmholtz 関数型 状態方程式は,カノニカル関数になっているため,微分のみの操作で他の物性を算出することができ, 積分定数を必要としない利点がある.

$$a = \psi_0(T) + RT[\ln \rho + \rho Q(\rho, T)]$$
(2.22)

$$\psi_0(T) = \sum_{i=1}^6 C_i / \tau^{i-1} + C_7 \ln T + C_8 \ln(T/\tau)$$
(2.23)

$$Q(\rho,T) = (\tau - \tau_{c}) \sum_{j=1}^{7} (\tau - \tau_{aj})^{j-2} \left[\sum_{i=1}^{8} A_{ij} (\rho - \rho_{aj})^{j-1} + e^{-E\rho} \sum_{i=9}^{10} A_{ij} \rho^{i-9} \right]$$
(2.24)

ここで R はガス定数, $\tau = 1000/T$, $\tau_c \equiv 1000/T_c$, E = 4.8 で,

$$\tau_{aj} = \begin{cases} \tau_{c} \ (j=1) \\ 2.5 \ (j>1) \end{cases}, \qquad \rho_{aj} = \begin{cases} 0.634 \ (j=1) \\ 1.0 \ (j>1) \end{cases}$$

を満たすものとする.式(2.23), (2.24)中の*C_i*, *A_{ij}*は係数である.Helmholtz関数型の状態方程式は広義においてmBWR型状態方程式に分類される.

その後, National Bureau of Standards (NBS, 現NIST)のHaarとGallagher, そしてNational Research Council of Canada (NRC)のKell [53]は 1984 年にHelmholtz関数型によって水の状態方程式を作成し, NBS/NRCの 蒸気表を作成した.この状態方程式はInternational Association for the Properties of Steam (IAPS, 現IAPWS) の状態方程式として用いられた.Helmholtz自由エネルギーaで示された式(2.25)は*a*base, *a*residual, *a*ideal gasの3 つの部分に分けて作成された.最初の*a*baseは理論的に作成された項であり,高温域および高密度域をよく表すことができる.第2項目の*a*residualは実測値を高精度に再現するための*a*baseの修正項である.そして 第3項目の*a*ideal gasは理想気体状態を表す項である.

$$a = a_{\text{base}}(\rho, T) + a_{\text{residual}}(\rho, T) + a_{\text{ideal gas}}(T)$$
(2.25)

式(2.26)に示すabaseはUrsell-Mayer [54]のvirial理論から導出された関数である.

$$a_{\text{base}}(\rho,T) = RT \left[-\ln(1-\gamma) - \frac{\beta-1}{1-\gamma} + \frac{\alpha+\beta+1}{2(1-\gamma)^2} + 4\gamma \left(\frac{\overline{B}}{b} - \gamma\right) - \frac{\alpha-\beta+3}{2} + \ln\frac{\rho RT}{P_0} \right]$$
(2.26)

ここで, $y = b\rho/4$, $\alpha = 11$, $\beta = 133/3$, $\gamma = 7/2$, $P_0 = 1.01325$ barである. 2 つのパラメータb, \overline{B} は式(2.27), (2.28)によって表される. また, b_i , B_i は係数で, $T_0 = 647.073$ Kである.

$$b = b_1 \ln \frac{T}{T_0} + \sum_{j=0,1,3,5} b_j \left(\frac{T_0}{T}\right)^j$$
(2.27)

$$\overline{B} = \sum_{j=0,1,2,4} B_j \left(\frac{T_0}{T}\right)^j$$
(2.28)

式(2.29)に示すaresidualは実測値に相関して作成された.第37項から第40項に導入された関数は臨界点付

近の精度を高めるために導入されたもので,式(2.30)に示す無次元化された密度 δ_i と無次元化された温度 r_i を用いて表され, Gussian bell shaped termsと呼ばれる.式(2.29), (2.30)中のk(i), l(i), g(i), ρ_i , T_i , α_i , β_i は係 数として与えられる.

$$a_{\text{residual}}(\rho, T) = \sum_{i=1}^{36} \frac{g_i}{k(i)} \left(\frac{T_0}{T}\right)^{l(i)} (1 - e^{-\rho})^{k(i)} + \sum_{i=37}^{40} g_i \delta_i^{l(i)} \exp(-\alpha_i \delta_i^{k(i)} - \beta_i \tau_i^2)$$
(2.29)

$$\delta_i = \frac{\rho - \rho_i}{\rho_i}, \qquad \tau_i = \frac{T - T_i}{T_i}$$
(2.30)

理想気体状態を表す $a_{ideal gas}$ は式(2.31)で与えられ、 $T_R = T/100$ 、 C_i は係数を表す.

$$a_{\text{ideal gas}}(T) = -RT \left[1 + \left(\frac{C_1}{T_R} + C_2\right) \ln T_R + \sum_{i=3}^{18} C_i T_R^{i-6} \right]$$
(2.31)

1985 年にRuhr大学のSchmidt and Wagner [55]は酸素に対して式(2.32)-(2.34)に示すHelmholtz関数型状態方程式を作成した. Schmidt and WagnerによるHelmholtz関数型状態方程式は, Helmholtz自由エネルギ ー*aを*ガス定数*R*と温度*T*の積で割って無次元化されたHelmholtz関数*ϕ*に従属しており,式(2.32)に示した ように理想項 ϕ^0 と剰余項 ϕ' の和からなる.理想項 ϕ^0 は理想気体を表し,剰余項 ϕ' は実在流体に寄与する. 理想項 ϕ^0 は理想気体の定圧比熱に相関して作成され,剰余項 ϕ' は*PP*^T性質のみならず比熱や音速といっ た誘導状態量における多物性の実測値を高精度に再現するように作成される.理想項 ϕ^0 は式(2.33)に示 すような関数形で理想気体の定圧比熱を相関して作成されており,基準点の温度・圧力 T_0 = 298.15 Kと $P_0 = 0.101325$ MPaを用いて $\tau_0 = T_c/T_0$, $\delta_0 = P_0/(RT_0\rho_c)$ で与えられ,そしてそのときのエンタルピー $h^{id}(\tau_0)$,エントロピー $s^{id}(\tau_0,\delta_0)$ を含んでいる.一方剰余項 ϕ' は一般的に式(2.34)のように展開される. ここで τ , δ は,それぞれ臨界温度 T_c ,臨界密度 ρ_c を用いて $\tau = T_c/T$, $\delta = \rho/\rho_c$ のように無次元化される. Wagnerらの研究グループは ϕ' に対して,式(2.34)による関数形を基本とし,項の増減を統計的な基準を 用いて,実測値を高精度に再現できるまで繰り返し行うことにより作成していることが大きな特徴の1 つである.この方法によって多物性同時相関された結果,作成された状態方程式は $P\rhoT$ 性質のみならず 比熱や音速といった誘導状態量に対しても実測値を高精度に再現する.

$$\phi(\tau,\delta) = a/RT = \phi^0(\tau,\delta) + \phi^r(\tau,\delta)$$
(2.32)

$$\phi^{0}(\tau,\delta) = k_{1}\tau^{1.5} + k_{2}\tau^{-2} + k_{3}\ln\tau + k_{4}\tau + k_{5}\ln\{\exp(k_{7}\tau) - 1\} + k_{6}\ln\left\{1 + \frac{2}{3}\exp(-k_{8}\tau)\right\} + k_{9} + \frac{h^{\rm id}(\tau_{0})}{RT} - \frac{s^{\rm id}(\tau_{0},\delta_{0})}{RT} + \ln\left(\frac{\delta}{\delta_{0}}\right)$$
(2.33)

$$\phi^{r}(\tau,\delta) = \sum_{i=1}^{13} n_{i} \tau^{t_{i}} \delta^{d_{i}} + \sum_{i=14}^{32} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{c_{i}})$$
(2.34)

2.2 既存のメタンおよび硫化水素の状態方程式

メタン純物質流体は、国際純粋応用化学連合(International Union of Pure and Applied Chemistry; IUPAC) により 1991 年に作成されたHelmholtz関数型による式(2.35)のSetzmann and Wagner [15]の状態方程式が推 奨式とされている. 独立変数である温度*T*, 密度 ρ はそれぞれ臨界温度*T*_cと臨界密度 ρ_c を用いて $\tau = T_c/T$, $\delta = \rho/\rho_c$ のように無次元化された形で用いられる. メタンの臨界温度および臨界密度は $T_c = 190.564$ K, $\rho_{c} = 162.66 \text{ kg·m}^{-3}$ または分子量 0.0160428 kg·mol⁻¹を用いて $\rho_{c} = 10.139128 \text{ mol·dm}^{-3}$ で与えられる.式 (2.36)中の f_{i}, g_{i} は係数である.また,剰余項 ϕ^{t} は式(2.37)に示すように40項から成り, $n_{i}, t_{i}, d_{i}, \alpha_{i}, \Delta_{i}, \beta_{i}, \gamma_{i}$ は係数である.また,第37項から第40項は臨界点近傍のみに作用するGussian bell shaped termsである.

$$\phi(\tau,\delta) = a/(RT) = \phi^0(\tau,\delta) + \phi^{\mathrm{r}}(\tau,\delta)$$
(2.35)

$$\phi^{0} = \ln(\delta) + f_{1} + f_{2}\tau + f_{3}\ln(\tau) + \sum_{i=4}^{8} f_{i}\ln\{1 - \exp(-g_{i}\tau)\}$$
(2.36)

$$\phi^{r} = \sum_{i=1}^{13} n_{i} \tau^{t_{i}} \delta^{d_{i}} + \sum_{i=14}^{20} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta) + \sum_{i=21}^{25} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{2}) + \sum_{i=26}^{29} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{3}) + \sum_{i=30}^{36} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{4}) + \sum_{i=37}^{40} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp\{-\alpha_{i} (\delta - \Delta_{i})^{2} - \beta_{i} (\tau - \gamma_{i})^{2}\}$$

$$(2.37)$$

一方硫化水素純物質流体における高精度な状態方程式は作成されていないのが現状である.中でも代表的な状態方程式について述べる.1973年にStarling [56]はメタン,エタン,プロパン,ノルマルブタン, イソブタン,ノルマルペンタン,イソペンタン,ノルマルヘキサン,ノルマルヘプタン,ノルマルオク タン,エチレン,プロピレン,二酸化炭素,硫化水素,窒素という石油成分に対して式(2.38)に示すBWR 型状態方程式を作成している.ここでA₀, B₀, C₀, D₀, E₀, a, b, c, d, a, yは物質固有の係数を表す.硫化水素 に対しては,温度範囲 189-589 K, 圧力範囲 55 MPaまでの領域で成立するとしている.

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2} + \frac{D_0}{T^3} - \frac{E_0}{T^4}\right) \rho^2 + \left(bRT - a - \frac{d}{T}\right) \rho^3 + \alpha \left(a + \frac{d}{T}\right) \rho^6 + \frac{c\rho^3}{T^2} \left(1 + \gamma \rho^2\right) \exp\left(-\gamma \rho^2\right)$$
(2.38)

硫化水素の状態方程式に関する文献で、特に詳細に検討されているものに旧NBSのGoodwin [57]による状態方程式がある. Goodwinは 1983 年にそれまでの硫化水素に関する文献をまとめ、状態方程式を作成した. 温度範囲は 188-760 K, 圧力範囲は 75 MPaまでである. Goodwinの状態方程式は通常の状態方程式とは少々異なる. そこで以下にGoodwinの状態方程式について説明する. Goodwinの状態方程式は密度と温度を独立変数とする圧力展開型の関数形で作成されているが、任意の密度から飽和における温度を計算し、物性の計算には必ずこの飽和温度を必要とする. Goodwinは臨界点の温度 $T_{\rm e}$, 圧力 $P_{\rm e}$, 密度 $\rho_{\rm e}$ と3重点温度 $T_{\rm tr}$ を決定した後、飽和蒸気圧相関式、飽和液体密度相関式、飽和蒸気密度相関式を作成している. 相関式を式(2.39)-(2.41)に示す.

$$\ln(10P_{\rm S}) = a_1 / x + a_2 + a_3 x + a_4 x^2 + a_5 x^3 + a_6 (1 - x)^{1.70}$$
(2.39)

$$\rho^{\rm L} / \rho_{\rm c} - 1 = b_1 u^{0.35} + b_2 u + b_3 u^2 + b_4 u^3 \tag{2.40}$$

$$\rho^{\rm V} = P_{\rm S} / \left(Z(T) R^* T \right) \tag{2.41}$$

ここで、 $a_1 \sim a_6$ 、 $b_1 \sim b_4$ は定数であり、 $x = T/T_c$ 、 $u = 1 - T/T_c$ 、 $R^* = R\rho_c$ である. Z(T)は温度の関数で定義されている. 次に状態方程式を式(2.42)に示す.

$$P - P_{\rm S}(\delta) = \delta R^* (T - T_{\rm S}(\delta)) + \delta^2 R^* T_{\rm c} F(\delta, T)$$
(2.42)

式(2.42)中の $F(\delta,T)$ は換算密度と温度の関数で定義される.式(2.42)は密度と温度を独立変数としてとっているが、式中に飽和蒸気温度 T_s が入っていることに複雑さが増している.どんな密度 ρ に対しても式(2.40)、(2.41)からこの密度に対する温度 $T_s(\delta)$ が反復計算により得られる.この $T_s(\delta)$ を用いることで $P_s(\delta)$ も算出可能である.これより得られた $T_s(\delta)$ と $P_s(\delta)$ を式(2.42)中に用いることで圧力を算出することができる.しかしある温度、圧力から密度を求める際にはこの逆の過程を経らなければならないので、計算は複雑さを極めることになる.本研究では2分法を多用することで温度、圧力からの密度計算を行った.

2.3 混合流体に関する状態方程式

2.3.1 状態方程式による混合流体の物性計算

混合流体の状態方程式からの物性計算も,純物質流体同様,熱力学関係式を用いることで種々の状態 量を算出することができる.混合流体の場合には独立変数として温度・圧力,あるいは温度・密度の他 にモル組成 x_i を追加する必要がある.通常,混合流体の状態方程式は,純物質流体の状態方程式をもと に作成されることが多い.その際に混合則が適用されるが,適用方法には,van der Waals型状態方程式 のようにパラメータに対して混合則を用いる場合と,Helmholtz関数型状態方程式のように純物質流体の 状態方程式をそのまま用い,混合則によって結合する方法とがある. $P(T, v, x_i)$ の状態方程式からエント ロピーs,エンタルピーh,定圧比熱 C_P を算出する場合には,2.1.1節で示した式(2.1)-(2.3)に示す熱力学 関係式に対し,組成一定として同様の計算を行うことで導出することができる.また,Helmholtz自由エ ネルギーaから圧力P,エントロピーs,エンタルピーh,定圧比熱 C_P を算出するときも組成一定として式 (2.4)-(2.7)の計算を行えばよい.式(1.16)に示した無次元化されたHelmholtz自由エネルギー ϕ_{mix} を用いて 他の物性を計算する場合にはTable 1.5 に示した通りである.

$$\phi_{\text{mix}} = a / RT = \phi_{\text{mix}}^0(\tau_i^{\text{pure}}, \delta_i^{\text{pure}}, x_i) + \phi_{\text{mix}}^r(\tau, \delta, x_i)$$
(1.16)

混合流体と純物質流体とでは、相平衡において計算方法に大きな違いが見られる. 純物質流体に対して 相平衡計算を行う場合はフガシティーを計算するが、混合流体の場合には、成分iの部分モル量の考え方 を必要とし、成分iのフガシティーを計算する必要がある. このため混合流体において状態方程式から相 平衡の条件式を計算する場合にはかなりの煩雑さを要する. 混合流体における状態方程式から成分iのフ ガシティーを計算する関係式を以下に示す. $P(T, v, x_i)$ から成分iのフガシティーを計算する場合には、式 (2.43)および式(2.44)によって行う. また、無次元化されたHelmholtz自由エネルギー ϕ_{mix} から成分iのフガ シティーを計算する場合には、剰余項 ϕ_{mix} を用いて式(2.45)から導出する.

$$f_i = x_i P \varphi_i \tag{2.43}$$

$$\ln \varphi_i = \int_{\infty}^{\nu} \left\{ \frac{1}{\nu} - \frac{1}{RT} \left[\frac{\partial (nP)}{\partial n_i} \right]_{T,V,n_{j\neq i}} \right\} d\nu - \ln \left(\frac{P\nu}{RT} \right) + \frac{P\nu}{RT} - 1$$
(2.44)

$$\frac{f_i}{\rho RT} = x_i \exp\left(\frac{\partial \left(n\phi_{\min}^{\mathrm{r}}\right)}{\partial n_i}\right)_{T,V,n_{j\neq i}}$$
(2.45)

式(2.45)は非常に端的な計算式によって表現される.しかし実際Helmholtz関数型状態方程式から計算する場合には,独立変数である δin_i の関数となり,さらに偽臨界温度 $T_{c,mix}$,偽臨界密度 $\rho_{c,mix}$ そして剰余 項 ϕ_{mix}^r に入っているモル組成 $x_i in_i$ の関数であるために,式(2.45)中の微分計算はかなり複雑なものになる.第3章 3.7.2節で述べるが,臨界点計算ではさらに,

$$\left(\frac{\partial \ln f_i}{\partial n_j}\right), \qquad \left(\frac{\partial^2 \ln f_i}{\partial n_k \partial n_j}\right)$$

の微分計算が必要となる.熱力学関係式での記述は非常にきれいな形で表現されているものの,実際の 計算には膨大な計算量を必要とする.このような複雑な微分計算に対しては,例えば Mathematica のよ うな汎用計算ソフトが計算の一助となる.この計算量は混合則に依存することから,混合則においても 計算量をできるだけ少なくするよう考慮した形をとることが望ましいと言える.

2.3.2 van der Waals 型状態方程式の混合則

van der Waals型状態方程式における混合則は経験的に決定され,式(2.9)におけるパラメータ $a\alpha$ とbに混 合則を適用する.混合則には純物質の $(a\alpha)_i$ と b_i を用い,Lorentz-Berthelot則にならって,エネルギーに関 するパラメータには幾何平均を,大きさに関するパラメータには算術平均をもとにして作成される.bには通常式(2.46)に示す算術平均が用いられる. $a\alpha$ は状態方程式によって異なるが幾何平均が用いられ, van der Waals式, RK式には式(2.47)が用いられ,SRK式やPR式には式(2.48)が用いられる.ここで下付き のiは第i成分であることを表し,式(2.48)中の k_{ij} は異種分子間相互作用パラメータを表す.van der Waals 型状態方程式における混合則をまとめてTable 2.2 に示す.

$$P = \frac{RT}{v-b} - \frac{a\alpha(v-\eta)}{(v-b)(v^2 + \delta v + \varepsilon)}$$
(2.9)

$$b = \sum_{i} x_i b_i \tag{2.46}$$

$$a\alpha = \left(\sum_{i} x_i (a\alpha)_i^{1/2}\right)^2 \tag{2.47}$$

$$a\alpha = \sum_{i} \sum_{j} x_{i} x_{j} \left(1 - k_{ij} \right) \sqrt{(a\alpha)_{i} (a\alpha)_{j}}$$
(2.48)

状態方程式	<i>ad</i> に対する混合則	bに対する混合則
van der Waals 式	$a\alpha = \left(\sum_{i} x_i (a\alpha)_i^{1/2}\right)^2$	$b = \sum_{i} x_i b_i$
Redlich-Kwong 式 (RK 式)	$a\alpha = \left(\sum_{i} x_i (a\alpha)_i^{1/2}\right)^2$	$b = \sum_{i} x_i b_i$
Soave-Redlich-Kwong 式 (SRK 式)	$a\alpha = \sum_{i} \sum_{j} x_{i} x_{j} (1 - k_{ij}) \sqrt{(a\alpha)_{i} (a\alpha)_{j}}$	$b = \sum_{i} x_i b_i$
Peng-Robinson 式 (PR 式)	$a\alpha = \sum_{i} \sum_{j} x_{i} x_{j} (1 - k_{ij}) \sqrt{(a\alpha)_{i} (a\alpha)_{j}}$	$b = \sum_{i} x_i b_i$

Table 2.2. van der Waals 型状態方程式に対する混合則[46]

2.3.3 virial 状態方程式の混合則

virial 状態方程式における混合則は理論的に導出することができ、式(2.49)のようになる.

$$Z = 1 + \sum_{i} \sum_{j} x_{i} x_{j} B_{ij} \rho + \sum_{i} \sum_{j} \sum_{k} x_{i} x_{j} x_{k} C_{ijk} \rho^{2} + \sum_{i} \sum_{j} \sum_{k} \sum_{l} x_{i} x_{j} x_{k} x_{l} D_{ijkl} \rho^{3} + \dots$$
(2.49)

ここで B_{ij} , C_{ijk} , D_{ijkl} は異種分子間の相互作用に基づくvirial係数である.従って,混合流体の第 2 virial係数 B_{mix} は式(2.50),第 3 virial係数 C_{mix} は式(2.51)になる. i = jのときは同種分子間の相互作用にもとづくvirial係数を表し,純物質のときの値と等しくなる.また, $i \neq j$ のときは異種分子間の相互作用にもとづくvirial係数を表し,交差virial係数と呼ばれる.交差virial係数は対称性から,例えば第 2 virial係数では $B_{ii} = B_{ii}$ となる.

$$B_{\rm mix} = \sum_{i} \sum_{j} x_i x_j B_{ij}$$
(2.50)

$$C_{\text{mix}} = \sum_{i} \sum_{j} \sum_{k} x_i x_j x_k C_{ijk}$$
(2.51)

経験的な状態方程式を混合流体に適用する場合の混合則は、この virial 状態方程式の混合則にならって 作成されることが多い.

2.3.4 BWR 型状態方程式の混合則

BWR 型状態方程式に対して用いられる混合則は研究者間によって違いが見られる.しかし一般的に virial 状態方程式の混合則と類似の形式を用い,Lorentz-Berthelot 則にならって作成ことが多い.式(2.11) に示した BWR 型状態方程式には,係数に対して混合則が適用される.Sarashina et al. [58]は2成分系に 対して式(2.52)に示す以下の混合則を作成している.

$$P = \rho RT + \left(B_0 RT - A_0 - \frac{C_0}{T^2}\right)\rho + (bRT - a)\rho^3 + a\alpha\rho^6 + \frac{c\rho^3(1 + \gamma\rho^2)\exp(-\gamma\rho^2)}{T^2}$$
(2.11)

$$A_{0} = \sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} x_{j} A_{0ij} , \quad A_{012} = m \sqrt{A_{01} A_{02}} , \quad B_{0} = \sum_{i=1}^{2} x_{i} B_{0i} , \quad C_{0} = \left(\sum_{i=1}^{2} x_{i} C_{0i}^{1/2}\right)^{2} , \quad a = \left(\sum_{i=1}^{2} x_{i} a_{i}^{1/3}\right)^{3} , \quad b = \left(\sum_{i=1}^{2} x_{i} b_{i}^{1/3}\right)^{3} , \quad c = \left(\sum_{i=1}^{2} x_{i} c_{i}^{1/3}\right)^{3} , \quad \alpha = \left(\sum_{i=1}^{2} x_{i} \alpha_{i}^{1/3}\right)^{3} , \quad \gamma = \left(\sum_{i=1}^{2} x_{i} \gamma_{i}^{1/2}\right)^{2}$$

$$(2.52)$$

Plazer and Maurer [50]は式(2.13)に示したPM式において、4 つの変数である臨界温度 T_c ,臨界密度 ρ_c , 偏心係数 ω と極性係数 χ に対し、式(2.53)-(2.58)に示すTsai and Shyu [59]が提案した混合則を適用することにより混合流体に拡張した.ここでは3 つの異種分子間相互作用パラメータ η , k_{ii} , χ_{ii} が導入されている.

$$Z = 1 + B^* \delta + C^* \delta^2 + D^* \delta^3 + E^* \delta^4 + F^* \delta^5 + \left(G^* + H^* \delta^2\right) \delta^2 \exp\left(-\delta^2\right)$$
(2.13)

$$T_{\rm c,mix} = \frac{1}{v_{\rm c,mix}^{\eta}} \sum_{i} \sum_{j} x_{i} x_{j} v_{\rm c,ij}^{\eta} T_{\rm c,ij}$$
(2.53)

$$T_{c,ij}v_{c,ij}^{\eta} = \sqrt{(T_{c,ij}T_{c,ij})(v_{c,ij}v_{c,ij})^{\eta}k_{ij}}$$
(2.54)

$$v_{\rm c,mix} = \sum_{i} \sum_{j} x_i x_j v_{\rm c,ij}$$
(2.55)

$$v_{c,ij} = \frac{1}{8} \left(v_{c,i}^{1/3} + v_{c,j}^{1/3} \right)^3 \xi_{ij}$$
(2.56)

$$\omega_{\rm mix} = \sum_{i} x_i \omega_i \tag{2.57}$$

$$\chi_{\rm mix} = \sum_{i} x_i \chi_i \tag{2.58}$$

2.3.5 Helmholtz 関数型状態方程式の混合則

混合流体における Helmholtz 関数型状態方程式は式(1.16)によって与えられる.

$$\phi_{\text{mix}} = a / RT = \phi_{\text{mix}}^0(\tau_i^{\text{pure}}, \delta_i^{\text{pure}}, x_i) + \phi_{\text{mix}}^r(\tau, \delta, x_i)$$
(1.16)

理想項については熱力学関係式によって式(2.59)のように導出することができる.しかし、剰余項については経験的に決定される.

$$\phi_{\min}^{0} = \sum x_{i} \phi_{i}^{0}(\tau_{i}^{\text{pure}}, \delta_{i}^{\text{pure}}) + \sum x_{i} \ln(x_{i})$$
(2.59)

Lemmon and Jacobsen [37]はHelmholtz関数型状態方程式において一般化を目的とした混合則を作成した. 剰余項には新たに寄与関数 $\Delta \phi^{r}$ を用いて式(2.60)のように表され、寄与関数自体は式(2.61)によって表される. 式(2.61)中に用いられる係数 N_k , t_k , d_k は物質によらず共通であり、 F_{ij} を2成分系の組み合わせごとに決定する. 混合系の場合, 独立変数 τ , δ は式(2.62), (2.63)に示す偽臨界温度 $T_{c,mix}$, 偽臨界密度 $\rho_{c,mix}$ を用いて $\tau = T_{c,mix}/T$, $\delta = \rho/\rho_{c,mix}$ のように無次元化される. また、天然ガスの状態方程式を論じる上でも、特に重要となるメタン/エタン2成分系混合流体の場合には $F_{ij} = 1$, $\xi_{ij} = 0$, $\zeta_{ij} = 0$, $\beta_{ij} = 1$ を用いている.

$$\phi^{\mathrm{r}}(\tau,\delta,x_i) = \sum_{i=1}^{n} x_i \phi^{\mathrm{r}}_i(\tau,\delta) + \Delta \phi^{\mathrm{r}}(\tau,\delta,x_i)$$
(2.60)

$$\Delta \phi^{\mathrm{r}}(\tau, \delta, x_i) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_i x_j F_{ij} \sum_{k=1}^{10} N_k \tau^{t_k} \delta^{d_k}$$
(2.61)

$$T_{\rm c,mix} = \sum_{i=1}^{n} x_i T_{\rm c,i} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_j^{\beta_{ij}} x_j^{\phi_{ij}} \zeta_{ij}$$
(2.62)

$$\rho_{\rm c,\,mix} = \left[\sum_{i=1}^{n} x_i \,/\, \rho_{\rm c,\,i} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_i \,x_j \xi_{ij}\right]^{-1} \tag{2.63}$$

Tillner-Roth and Friend [38]は水/アンモニア 2 成分系混合流体に関する高精度な状態方程式を Helmholtz関数型によって作成した.式(2.64)に示すTillner-Roth and Friendの剰余項はLemmon and Jacobsen [37]と同様の式形をしている.しかしながら、寄与関数ならびに偽臨界温度、偽臨界密度において式 (2.65)-(2.69)に示したように違いが見られる.独立変数 τ , δ は偽臨界温度 $T_{e,mix}$, 偽臨界比体積 $v_{e,mix}$ を用 いて $\tau = T_{c,mix}/T$, $\delta = v_{c,mix}/v$ のように無次元化される. δ においてはLemmon and Jacobsenの状態方程式 との差異が見られるが,密度と比体積の違いであって本質的な違いはない. $T_{c,mix}$, $v_{c,mix}$ に現れる交差 項 $T_{c,12}$ および $v_{c,12}$ には,式(2.68),(2.69)に示したように純物質の臨界温度 $T_{c,i}$,臨界比体積 $v_{c,i}$ をそれぞ れ算術平均する形で用いており,異種分子間相互作用パラメータとして k_T , k_V を導入している.

$$\phi^{\mathrm{r}}(\tau,\delta,x) = \sum_{i=1}^{2} x_i \phi^{\mathrm{r}}_i(\tau,\delta) + \Delta \phi^{\mathrm{r}}(\tau,\delta,x) = x_1 \phi^{\mathrm{r}}_1(\tau,\delta) + x_2 \phi^{\mathrm{r}}_2(\tau,\delta) + \Delta \phi^{\mathrm{r}}(\tau,\delta,x)$$
(2.64)

$$\frac{\Delta \phi^{r}(\tau, \delta, x)}{x(1 - x^{\gamma})} = a_{1}\tau^{t_{i}}\delta^{d_{i}} + \sum_{i=2}^{6}a_{i}\tau^{t_{i}}\delta^{d_{i}}\exp\left(-\delta^{c_{i}}\right) + x\sum_{i=7}^{13}a_{i}\tau^{t_{i}}\delta^{d_{i}}\exp\left(-\delta^{c_{i}}\right) + a_{i}x^{2}\tau^{t_{i}}\delta^{d_{i}}\exp\left(-\delta^{c_{i}}\right)$$
(2.65)

$$T_{\rm c,\,mix} = x^2 T_{\rm c,\,1} + (1-x)^2 T_{\rm c,\,2} + 2x (1-x^{\alpha}) T_{\rm c,\,12}$$
(2.66)

$$v_{\rm c,\,mix} = x^2 v_{\rm c,\,1} + (1-x)^2 v_{\rm c,\,2} + 2x (1-x^\beta) v_{\rm c,\,12}$$
(2.67)

$$T_{c,12} = \frac{T_{c,1} + T_{c,2}}{2} k_T$$
(2.68)

$$v_{c,12} = \frac{v_{c,1} + v_{c,2}}{2} k_V \tag{2.69}$$

鈴木と上松[60]は同様に水/アンモニア 2 成分系混合流体についてHelmholtz関数型状態方程式を作成 した. 剰余項には単純な式形の式(2.70)を用いている. そして対応状態原理の概念を利用して, 偽臨界 値 $T_{c,mix}$, $v_{c,mix}$ を式(2.71)-(2.74)によって作成し, これによって高精度な状態方程式を作成した. ここで 式(2.71)-(2.74)中の α , β , k_{12} , ξ_{12} は温度Tの3次式で表される. 独立変数 τ , δ は $\tau = T_{c,mix}/T$, $\delta = v_{c,mix}/v$ である. $T_{c,12}$ および $v_{c,12}$ には純物質の臨界温度 $T_{c,i}$, 臨界比体積 $v_{c,i}$ を算術平均して用いており, 異種分 子間相互作用パラメータとして k_{12} , ξ_{12} を導入している. $v_{c,12}$ 作成には, 比体積は長さの3乗に比例する ことを考慮した関数形になっている.

$$\phi^{r}(\tau,\rho,x_{i}) = \sum_{i=1}^{2} x_{i}\phi^{r}_{i}(\tau,\delta) = x_{1}\phi^{r}_{1}(\tau,\delta) + x_{2}\phi^{r}_{2}(\tau,\delta)$$
(2.70)

$$T_{\rm c,\,mix} = x^2 T_{\rm c,\,1} + (1-x)^2 T_{\rm c,\,2} + 2x^{\alpha} (1-x^{1.05}) T_{\rm c,\,12}$$
(2.71)

$$T_{\rm c,12} = \frac{T_{\rm c,1} + T_{\rm c,2}}{2} k_{12}$$
(2.72)

$$v_{\rm c,\,mix} = x^2 v_{\rm c,\,1} + (1-x)^2 v_{\rm c,\,2} + 2x^\beta (1-x)^{-0.055} (1-x^{0.95}) v_{\rm c,\,12}$$
(2.73)

$$v_{c,12} = \frac{1}{8} \xi_{12} \left(v_{c,1}^{1/3} + v_{c,2}^{1/3} \right)^3$$
(2.74)

Miyamoto and Watanabe [39]はプロパン, イソブタン, ノルマルブタンの混合系について, 剰余項として式(2.75)の式形を用い,式(2.76)-(2.80)に示す混合則を適用し,実測値に対して高精度に再現している. 寄与関数は式(2.76)に示すように係数 $a_1 \sim a_4$ を持つ4項からなる関数によって作成されている. 係数 $a_1 \sim a_4$ および式(2.79), (2.80)中の $k_{T,ij}$ $k_{V,ij}$ は, プロパン, イソブタン, ノルマルブタン中のどの2成分を組み合わせるかで固有の値を持つ.

$$\phi^{\mathrm{r}}(\tau,\delta,x_i) = \sum_{i=1}^n x_i \phi^{\mathrm{r}}_i(\tau,\delta) + \Delta \phi^{\mathrm{r}}(\tau,\delta,x_i)$$
(2.75)

$$\Delta \phi^{\rm r}(\tau,\delta,x_i) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n x_i x_j [a_1 \delta^2 + a_2 \tau \delta^4 + a_3 \delta^{12} \exp(-\delta) + a_4 \tau \delta^5 \exp(-\delta)]$$
(2.76)

$$T_{\rm c,\,mix} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j T_{\rm c,\,ij}$$
(2.77)

$$1/\rho_{\rm c,\,mix} = v_{\rm c,\,mix} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j v_{\rm c,\,ij}$$
(2.78)

$$T_{c,ij,i\neq j} = \frac{T_{c,i} + T_{c,j}}{2} k_{T,ij}$$
(2.79)

$$v_{c,ij,i\neq j} = \frac{v_{c,i} + v_{c,j}}{2} k_{V,ij}$$
(2.80)

2.4 既存のメタン/硫化水素2成分系混合流体の状態方程式

遠藤ら[14]は、天然ガス主成分であるメタンを第1成分とし、エタン、プロパン、ノルマルブタン、 イソブタン、窒素、二酸化炭素、硫化水素の7成分を第2成分とする2成分系混合流体を対象として、 これらの相平衡を精度良く表すことが出来るPR式を作成した.メタン/硫化水素2成分系混合流体は臨 界曲線の発散や気液液3相平衡の出現など、その挙動を正確に表すことは非常に困難である。しかしな がら遠藤らが作成したPR式はこの複雑な相挙動を精度よく表すことが出来る。さらにこのPR式から、 遠藤らは臨界曲線や気液液3相平衡を含めた相平衡における状態曲面全体を詳細に明らかにしている。 PR式を式(2.81)に示す.また混合則は式(2.46)、(2.48)、(2.82)、(2.83)である。実測値を高精度に相関するた め、異種分子間相互作用パラメータ k_{ij} は式(2.84)のような温度の関数にして、メタン/硫化水素2成分系 混合流体の場合には、 A_0 =9.10139×10⁻³、 A_1 =1.55209×10⁻⁴、 A_2 =3.47962×10⁻⁷の値をとる。

$$P = \frac{RT}{v-b} - \frac{a\alpha}{v^2 + 2bv - b^2}$$
(2.81)

$$b = \sum_{i} x_i b_i \tag{2.46}$$

$$a\alpha = \sum_{i} \sum_{j} x_{i} x_{j} \left(1 - k_{ij} \right) \sqrt{(a\alpha)_{i} (a\alpha)_{j}}$$
(2.48)

$$a_i = 0.45724 \frac{R^2 T_{c,i}^2}{P_{c,i}}, \qquad b_i = 0.07780 \frac{R T_{c,i}}{P_{c,i}},$$
(2.82)

$$\alpha_{i} = \left[1 + \left(0.37464 + 1.54226\omega_{i} - 0.26992\omega_{i}^{2}\right)\left(1 - \left(T/T_{c,i}\right)^{0.5}\right)\right]^{2}$$
(2.83)

$$k_{ij} = A_0 + A_1 T + A_2 T^2 \tag{2.84}$$

2.5 分子シミュレーションによる天然ガスの物性推算

計算機の発展した今日,熱物性値を分子シミュレーションによって算出しようとする試みも行われている.分子シミュレーションの代表的な方法としては,分子動力学(MD)法やモンテカルロ(MC)法が挙

げられる. 例えば, 吉田ら[61-63]はLennard-Jones (LJ)ポテンシャルを用いたMC法によりメタン, エタンにおける純物質流体の物性推算を行った. そしてさらに, 天然ガスをメタン, エタン, プロパン, 二酸化炭素, 窒素の 5 成分からなる混合流体とみなし, LJポテンシャルを用いたMC法により天然ガスの物性推算を行った. LJポテンシャルは, 2 つの分子*i*および*j*の間の距離を*r*としたとき, この分子間のポテンシャルエネルギー*ø_iをr*の関数として以下のように表される.

$$\phi_{ij}(r) = 4\varepsilon_{ij} \left\{ \left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^6 \right\}$$
(2.85)

ここで ϵ_{ij} はエネルギーの次元を持ったパラメータであり、 σ_{ij} は分子の大きさを表すパラメータである. まず純物質において、これらのパラメータは各成分物質に対する状態方程式から算出される $P\rho T$ 性質に 相関するようにして決定された.メタン純物質流体に対して、NVTアンサンブルを用いて $P\rho T$ 性質を求 めSetzmann and Wagnerの状態方程式[15]と比較したところ、飽和点近傍および臨界点近傍を除いて、気 液にわたり±1.0%の密度偏差で一致している.また、Gibbsアンサンブルを用いて気液平衡計算を行っ た場合にも良好な結果が得られることが報告されている.LJポテンシャルを用いた分子シミュレーショ ンは、球形分子であるメタンに対して良好な結果を示しているが、一方でエタンのように分子形状が球 形からずれてくる場合には、 $P\rho T$ 性質において、Friend et al.の状態方程式[16]と比較し、±10.0%の密度 偏差が見られることが報告されている.

混合流体に対し、分子シミュレーションを適用する場合には異種分子間に対するポテンシャルを決定 する必要がある.このとき、Lorentz-Berthelot 則が用いられることが多い.これは異種分子間のLJパラ メータに対し、*e*には幾何平均、*o*には算術平均を用いる.

$$\varepsilon_{ij} = \sqrt{\varepsilon_{ii}\varepsilon_{jj}} \tag{2.86}$$

$$\sigma_{ij} = \frac{1}{2} (\sigma_{ii} + \sigma_{jj}) \tag{2.87}$$

ここで下付のi, jは式(2.85)とは異なり分子種を表す.さらに、式(2.88)のように異種分子間相互作用パラ メータ δ_i を式(2.86)に導入することで実測値に対する再現性を高めることが行われている.

$$\varepsilon_{ij} = \delta_{ij} \sqrt{\varepsilon_{ii} \varepsilon_{jj}} \tag{2.88}$$

吉田らは*δ*_{*ij*} = 1.0 とし、NVTアンサンブルを用いて*PpTx*性質を求め、GERGの実測値[24]との比較を行った.この結果、メタン/エタンにおいて密度 150 kg·m³以下の気相域で±1.5%の圧力偏差、メタン/プロパンにおいて密度 80 kg·m³以下の気相域で±1%の圧力偏差、メタン/ご酸化炭素において密度 80 kg·m³以下の気相域で±1%の圧力偏差、メタン/窒素において密度 65 kg·m³以下の気相域で±1%の圧力偏差で実測値と一致している.さらに、メタン/エタン/プロパン、メタン/エタン/二酸化炭素の3 成分系については密度 100 kg·m³以下の気相域で±2.0%の圧力偏差で実測値と一致しており、メタン/エタン/プロパン/窒素の4 成分系においては密度 80 kg·m⁻³以下の気相域で±1.0%の圧力偏差で実測値としている.このように気相域において吉田らの分子シミュレーション結果は実測値と良好な一致を示している.また、吉田らはGibbsアンサンブルを用いてメタン/エタン2 成分系混合流体における気液平衡計算を行った.Fig. 2.1 に 250 Kでの吉田らによる気液平衡計算結果を示す.Davalos et al. [64]の実測値,Lemmon and Jacobsen [37]のHelmholtz関数型状態方程式からの計算結果、および遠藤ら[14]のPR式からの計算結果をあわせてFig. 2.1 に示す.吉田らの分子シミュレーションによる結果は気液平衡の挙動を良く表しているが、露点曲線側で実測値との差が大きく見られる.Helmholtz関数型状態方程式やPR式は、Davalos et al.の実測値を非常に良く再現している.混合流体の物性推算を行う場合には、まず純物質流体における物

性推算を正確に行うことが必要とされ、分子シミュレーションは、エタン純物質流体において、実測値の再現性が良くないことが、Fig. 2.1 に示した実測値との差に起因していると考えられる.

LJ ポテンシャルを用いた分子シミュレーションによる物性推算は、メタン純物質流体のような球形分子における物性値推算に対して非常に有効である.しかし、多くの場合には、分子形状は球形でないことから、分子形状の球形からのずれを考慮した分子間ポテンシャルを用いることで、様々な純物質流体において精度の向上が見込まれる.また混合流体に対しては、多体間における分子間ポテンシャルを用いることで、物性推算の今後の進展が期待される.

Fig. 2.1. MC シミュレーションによるメタン/エタンの 250 K 気液平衡計算結果

3 状態方程式の開発手法と物性計算方法

3.1 純物質流体ならびに混合流体に対する状態方程式の開発手法

本研究で行った状態方程式の開発手法の概略を,純物質流体および混合流体について述べる.純物質 流体におけるHelmholtz関数型状態方程式は理想項 ϕ^0 と剰余項 ϕ^r の和として表され,理想項 ϕ^0 は理想気体 の定圧比熱相関式より導出が可能である.剰余項 ϕ^r は一般に式(3.1)によって表されるが,本研究では $P\rhoT$ 性質や気液平衡性質,ならびに音速や比熱などの物性における実測値を高精度に再現し,かつ状態曲面 において物理的に妥当な挙動を示すように,これらの異なる物性に対し同時相関を行うことによって関 数形を決定した.

$$\phi^{\mathrm{r}}(\tau,\delta) = \sum n_i \tau^{t_i} \delta^{d_i} + \sum n_i \tau^{t_i} \delta^{d_i} \exp\left(-\delta^{c_i}\right)$$
(3.1)

ここで、 $\tau = T_c/T$, $\delta = \rho/\rho_c$ である.また,式(3.1)の有効な項の選択方法としてWagner [65]の段階的回 帰最適化法を採用した.一般に項の選定は実測値の分布およびデータ数に影響を受けるために、本研究 では、飽和蒸気圧相関式、飽和蒸気密度相関式、飽和液体密度相関式を気液平衡性質に対して作成し、 実測値の限られている低密度の気相域に対してはvirial状態方程式を作成して、これらの補助式からの計 算値を相関に加えた.過剰相関を防ぐ方法として、Miyamoto and Watanabe [17-19]やSpan [66]によって行 われている異種流体同時相関法があるが、これは分子構造や極性が似ており、対応状態原理が比較的成 り立つ物質間でしか適用できないので本研究では採用しなかった.式(3.1)中の n_i について線形および非 線形の最小二乗法による相関を行い、実測値との偏差から統計的な手法によりその有効性を判断して n_i を取捨選択した.また、 t_i , d_i に対しても非線形の最小二乗法を適用することで硫化水素純物質流体に対 し、最も適した関数形を作成した.相関後に補外域における挙動を調べるため、Ideal curve, Boyle curve, Joule-Thomson inversion curve, Joule inversion curveの4 つのIdeal curvesを計算し、その妥当性を確認した 上で最終的な状態方程式を完成させた. Ideal curvesの詳細については第4章で述べることとする.

混合流体におけるHelmholtz関数型状態方程式も理想項 ϕ_{mix}^{0} と剰余項 ϕ_{mix}^{r} の和として表される.理想項 ϕ_{mix}^{0} は純物質流体の理想項 ϕ_{i}^{0} を用い,熱力学関係式によって導出することができる.剰余項 ϕ_{mix}^{r} は純物 質流体の剰余項 ϕ_{i}^{r} に混合則を適用し相関した.混合則は経験的に作成したが、本研究では実測値を高精 度に再現するために温度と密度を独立変数とする関数 F_{12} を導入した.この関数 F_{12} の相関には非線形最 小二乗法を用いた.混合流体の物性相関において純物質流体と異なる点は、成分iのフガシティーが気液 で等しくなるという気液平衡の条件を加えたことと、Gibbsによる混合流体の臨界点条件を加えたことで ある.

3.2 本研究における関数形の選定方法

多項式型の状態方程式作成において有効とされる Wagner [65]による段階的回帰最適化法は,線形の最小二乗法を基本とした相関方法であるが,予め有効と考えられる項を bank of terms として作成しておき, その中の項を1つ追加し,あるいは削除することを繰り返し行うことによって,必要な項を選定するという方法である.項の付加および削除の選定基準には統計的手法として広く使われている*t*-テストと*F*-テストが用いられる.この段階的回帰最適化法の登場によって初めて項の選定がアルゴリズム化された. *t*値は,残差平方和をσ²,自由度を*d*_f,係数*n*_iの分散を*a*_iとしたときに,式(3.2)によって算出できる.

$$t = n_i / \left[\sigma^2 a_i / d_f \right]^{1/2}$$
(3.2)

t-テストは、この係数*ni*における*t*値と*t*分布を比較することによって係数*ni*の有効性を判断する方法である、一方*F*-テストは、項を追加あるいは削除した場合に式(3.3)によって算出できる.

$$F = (\sigma_1^2 / d_{f1}) / (\sigma_2^2 / d_{f2})$$
(3.3)

ここで、 σ_1^2 は項を追加・削除する前の残差平方和、 d_{f1} は自由度、 σ_2^2 は項を追加・削除した後の残差平方和、 d_{f2} は自由度である。F-テストは、式(3.3)によって算出されたF値とF分布を比較することによって項の有効性を判断する方法である。本研究ではWagnerによって提案された段階的回帰最適化法を参考にして、t-テスト、F-テストを導入し、Fig. 3.1 に示す選定方法により入力値に対する最適関数を決定した。

Fig. 3.1. 本研究における関数形の選定方法

3.3 本研究で硫化水素に適用した状態方程式の開発手法

本研究で対象とした硫化水素の実測値は比熱等の誘導状態量においてほとんど存在しないなど,非常 に限られていることから,状態方程式作成の際に過剰相関が極めて起こりやすい状況にある.本研究で は、3.1 節で述べたように作成した補助式による計算値を実測値に加えて相関するとともに,天然ガス 主成分であるメタンの IUPAC 式である Setzmann and Wagner [15]の状態方程式の関数形を初期関数形と して用いた. Setzmann and Wagner [15]の状態方程式の剰余項は式(2.37)に示すように全 40 項で表される.

$$\phi^{r} = \sum_{i=1}^{13} n_{i} \tau^{t_{i}} \delta^{d_{i}} + \sum_{i=14}^{20} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta) + \sum_{i=21}^{25} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{2}) + \sum_{i=26}^{29} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{3}) + \sum_{i=30}^{36} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{4}) + \sum_{i=37}^{40} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp\{-\alpha_{i} (\delta - \Delta_{i})^{2} - \beta_{i} (\tau - \gamma_{i})^{2}\}$$

$$(2.37)$$

本研究では,式(2.37)の関数形に対して硫化水素の実測値および補助式から求めた計算値を加えて入力 値とし,重率 wを PpT 性質については状態曲面における温度・圧力依存性を考慮した式(3.4)から計算さ れる値を用た.

$$w^{2} = 1 \left[u_{P}^{2} + \left(\frac{\partial P}{\partial T} \right) u_{T}^{2} + \left(\frac{\partial P}{\partial \rho} \right) u_{\rho}^{2} \right]$$
(3.4)

ここで u_P , u_T , u_P はそれぞれ実測値の持つ圧力,温度,密度の不確かさを表す.その他の物性に対しては 過剰相関を起こさないような重率を試行錯誤によって決定して最小二乗法を実施した.次にFig. 3.1 に示 した関数形の選定方法に従って,項の追加・削除を行って,入力値に対する最適な関数形を決定した. その後,係数 n_i に対して誘導状態量まで含めた非線形最小二乗法を実施し,入力値に対する再現性や状
態曲面の妥当性に対して検討し,入力値とその重率の変更,項の選定を繰り返し,暫定的な23項の式(3.5) に示す関数形を決定した.

$$\phi^{\mathrm{r}}(\tau,\delta) = \sum_{i=1}^{11} n_i \tau^{t_i} \delta^{d_i} + \sum_{i=12}^{16} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta) + \sum_{i=17}^{19} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^2) + \sum_{i=22}^{21} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^3) + \sum_{i=22}^{23} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^4)$$
(3.5)

さらに式(3.5)の τ , δ の指数係数 t_i , d_i にも非線形最小二乗法を適用し、得られた t_i , d_i を用いて最後に係数 n_i に対して非線形最小二乗法を適用することで剰余項を作成した.最後にIdeal curvesの挙動を検証し、 その妥当性を確認した上で状態方程式完成とした.本研究で使用した手順をFig. 3.2 に示す.

Fig. 3.2. 本研究による剰余項作成手順

3.4 線形最小二乗法

飽和蒸気圧相関式、飽和蒸気密度相関式、飽和液体密度相関式といった、気液平衡性質における相関

式および低密度の気相域に対するvirial状態方程式の係数は線形の最小二乗法により作成することがで きる.そこでまず、一般的に線形の最小二乗法を行う場合について述べる.xを独立変数 x_i のベクトル、 nを係数 n_i のベクトルとし、相関の目的としている値をyとする.このとき相関すべき値と、変数x、係数 nを用いて計算した値との残差を $\zeta(x, y, n)$ で表し、残差平方和 χ^2 を式(3.6)によって表す.ここでMは全デ ータ数であり、下付きのmはm番目のデータを表す. w_m は各データの重率である.

$$\chi^{2}(\mathbf{n}) = \sum_{m=1}^{M} \frac{\zeta(\mathbf{x}_{m}, y_{m}, \mathbf{n})^{2}}{w_{m}^{2}}$$
(3.6)

ここで,最小二乗法は式(3.6)による残差平方和を最小にする方法であり,このための条件は全てのn_iに対して式(3.7)が成り立つ必要がある.

$$\left(\frac{\partial \chi^2}{\partial n_i}\right)_{\mathbf{x},y,n_j \neq n_i} = 0 \tag{3.7}$$

今 n と y が線形関係にある場合,残差 $\zeta(\mathbf{x}, y, \mathbf{n})$ は式(3.8)のように記述できるから,式(3.6)による残差平方和は式(3.9)となる.

$$\zeta(\mathbf{x}, y, \mathbf{n}) = a_0(\mathbf{x}, y) - \sum_{i=1}^{I} n_i a_i(\mathbf{x})$$
(3.8)

$$\chi^{2}(\mathbf{n}) = \sum_{m=1}^{M} \left(a_{0}(\mathbf{x}_{m}, y_{m}) - \sum_{i=1}^{I} n_{i} a_{i}(\mathbf{x}_{m}) \right)^{2} \frac{1}{w_{m}^{2}}$$
(3.9)

ここでIはniの個数である.従って,式(3.7)の微分を行うと式(3.10)になる.

$$\left(\frac{\partial \chi^2}{\partial n_i}\right)_{\mathbf{x}, y, n_j \neq n_i} = \sum_{m=1}^M -2a_i(\mathbf{x}_m) \left(a_0(\mathbf{x}_m, y_m) - \sum_{j=1}^I n_j a_j(\mathbf{x}_m)\right) \frac{1}{w_m^2}$$
(3.10)

これらを展開していくと、結局式(3.7)が成り立つためには式(3.11)が成り立てばよいことになる.

$$A\mathbf{n} = \mathbf{q} \tag{3.11}$$

ここで A, qの成分はそれぞれ式(3.12), (3.13)によって表すことができる.

$$a_{ij} = \sum_{m=1}^{M} \left(\frac{a_i(\mathbf{x}_m) a_j(\mathbf{x}_m)}{w_m^2} \right)$$
(3.12)

$$q_i = \sum_{m=1}^{M} \left(\frac{a_i(\mathbf{x}_m) a_0(\mathbf{x}_m, y_m)}{w_m^2} \right)$$
(3.13)

従って、式(3.11)を計算することで、係数 n_i を成分とするベクトルnを求めることができる.また、行列Aの逆行列 A^{-1} における対角成分は、係数 n_i の分散を表す.

以上のような一般論を飽和蒸気圧相関式の場合に当てはめると、決定すべき係数をn_iとして飽和蒸気 圧相関式の一般形は式(3.14)のよう書けるから、式(3.14)に対するa₀, a_iは式(3.15)のように書ける.

$$\ln(P/P_{\rm c}) = (T_{\rm c}/T) \sum_{i=1}^{I} n_i (1 - T/T_{\rm c})^{t_i}$$
(3.14)

$$a_0 = \ln(P/P_c)(T/T_c), \quad a_i = (1 - T/T_c)^{i_i}$$
(3.15)

また, 飽和蒸気密度ならびに飽和液体密度の場合には, 相関式の一般形は式(3.16)のように記述できるので, a_0, a_i は式(3.17)のようになる. ただし ρ は ρ ^Vまたは ρ ^Lである.

$$\ln(\rho / \rho_{\rm c}) = \sum_{i=1}^{I} n_i (1 - T / T_{\rm c})^{t_i}$$
(3.16)

$$a_0 = \ln(\rho/\rho_c), \quad a_i = (1 - T/T_c)^{t_i}$$
 (3.17)

virial 状態方程式に対しては, Miyamoto and Watanabe [17-19]によって, プロパン, ノルマルブタン, イソブタンといった天然ガス成分に適用され, 良好な成果を得ている Zhang et al. [67]による式形を用いて作成した. 式形を式(3.18)に示す.

$$\frac{P}{\rho RT} = 1 + \left[D_1 + D_2 T_r^{-1} + D_3 \exp(T_r^{-1}) \right] \rho + \left[D_4 + D_5 T_r^{-5} + D_6 T_r^{-12} \right] \rho^2 + D_7 T_r^{-2.25} \rho^3$$
(3.18)

virial状態方程式における係数も飽和における相関式同様,線形の最小二乗法により決定することができる. *a*₀, *a*_iは式(3.19), (3.20)のように書ける.

$$a_{0} = \frac{P}{\rho RT}$$

$$a_{1} = b_{1}\rho, \quad a_{2} = b_{2}T_{r}^{-1}\rho, \quad a_{3} = b_{3}\exp(T_{r}^{-1})\rho, \quad a_{4} = c_{1}\rho^{2}, \quad a_{5} = c_{2}T_{r}^{-1}\rho^{2}, \text{ and}$$
(3.19)

$$a_6 = c_3 T_r^{-12} \rho^2, \ a_7 = d_1 T_r^{-2.25} \rho^3$$
 (3.20)

3.5 非線形最小二乗法

Helmholtz関数型の状態方程式を作成する場合には、式(3.1)に示す剰余項の関数形および係数を求める ため線形・非線形の最小二乗法を用いなければならない. Table 3.1 にHelmholtz関数型状態方程式から求 められる物性に対する残差平方和を示す. Table 3.1 に示した係数*ni*に対して線形関係にある物性に対し ては、3.4 節に記した式(3.12)および式(3.13)に示した*a*₀, *ai*を算出することができる. しかしながら、非線 形の関係にある物性に対しては、非線形の最小二乗法を適用する必要がある. 非線形最小二乗法につい ては種々の方法があるが、本研究では最も一般的なガウス・ニュートン法による非線形最小二乗法を行 った. また、初期値には線形の最小二乗法で得られた値を用いている.

3.5.1 ガウス・ニュートン法

状態方程式における非線形最小二乗法の作成方法を論じる前に、まずガウス・ニュートン法についての一般的な説明を行う[68].決定したい係数をn,その初期値をn₀として、合わせたい関数を $y = f(\mathbf{x}, \mathbf{n})$ と表す.この関数を初期値の近くでテイラー展開し、1次までの項をとると以下の式が得られる.

$$f(\mathbf{x},\mathbf{n}) = f(\mathbf{x},\mathbf{n}_0) + \sum \partial f(\mathbf{x},\mathbf{n}_0) / \partial n_i \Delta n_i$$
(3.21)

 $\mathbf{n} = \mathbf{n}_0 + \Delta \mathbf{n}$

今,残差平方和 χ^2 を式(3.23)で表すと、これを最小にするためには式(3.24)を満たせば良い.このとき、 Δn は式(3.25)により求めることが出来る.

$$\chi^{2} = \sum \left(y_{m} - f(\mathbf{x}_{m}, \mathbf{n}) \right)^{2} w_{m}^{-2}$$
(3.23)

$$\partial \chi^2 / \partial n_i = 0 \tag{3.24}$$

$$\Delta \mathbf{n} = \left(J^T W J\right)^{-1} J^T W \Delta \mathbf{E} \tag{3.25}$$

ここで,式(3.25)中のJ, W, △Eは以下の式(3.26)-(3.28)によって表される.

$$J = \begin{bmatrix} \frac{\partial f(\mathbf{x}_1, \mathbf{n}_0)}{\partial n_1} & \frac{\partial f(\mathbf{x}_1, \mathbf{n}_0)}{\partial n_2} & \dots & \frac{\partial f(\mathbf{x}_1, \mathbf{n}_0)}{\partial n_I} \\ \frac{\partial f(\mathbf{x}_2, \mathbf{n}_0)}{\partial n_1} & & \vdots \\ \vdots & & & \vdots \\ \frac{\partial f(\mathbf{x}_m, \mathbf{n}_0)}{\partial n_1} & \dots & \dots & \frac{\partial f(\mathbf{x}_m, \mathbf{n}_0)}{\partial n_I} \end{bmatrix}$$
(3.26)

$$W = \begin{bmatrix} w_1^{-2} & 0 \\ w_2^{-2} & \\ & \ddots & \\ 0 & & w_m^{-2} \end{bmatrix}$$
(3.27)

$$\Delta \mathbf{E} = \begin{bmatrix} y_1 - f(\mathbf{x}_1, \mathbf{n}_0) \\ y_2 - f(\mathbf{x}_2, \mathbf{n}_0) \\ \vdots \\ y_m - f(\mathbf{x}_m, \mathbf{n}_0) \end{bmatrix}$$
(3.28)

以上の方法がガウス・ニュートン法である. すなわち, ガウス・ニュートン法では, 適当な係数の初期 値を出発点として, その近くで関数をテイラー展開し, 係数の変化分に関して線形な方程式に変換して から, その方程式を解くことによって, 係数の修正値を計算する. しかし, この修正値はテイラー展開 の高次導関数を無視しているため, 厳密には正しくない. そこで, ここで得られた修正値を初期値に加 え, 新たな推定値としてもう一度同じ操作を繰り返すことによって逐次正しい値に近づけていく反復解 法で最適解を求める.

Table 3.1. 純物質流体における Helmholtz 関数型状態方程式作成時の各物性に対する残差平方和

相関データ	関係式

係数n/l 文 1 て 秋田 関係
圧力
$$\chi_1^2 = \sum_{m=1}^M \left[\frac{P - \rho RT}{\rho^2 RT} - \rho_c^{-1} \phi_{\sigma}^{t} \right]_m^2 w_m^{-2}$$

定積比熱 $\chi_2^2 = \sum_{m=1}^M \left[\frac{C_V}{R} + \tau^2 (\phi_{\tau\tau}^0 + \phi_{\tau\tau}^1) \right]_m^2 w_m^{-2}$
第 2 virial 係数 $\chi_3^2 = \sum_{m=1}^M \left[B\rho_c - \phi_{\delta}^t (\tau, \delta \to 0) \right]_m^2 w_m^{-2}$
飽和蒸気圧と飽和液体密度 $\chi_4^2 = \sum_{m=1}^M \left[\frac{P_s - \rho^1 RT}{(\rho^1)^2 RT} - \rho_c^{-1} \phi_{\delta}^t (\tau, \delta^1) \right]_m^2 w_m^{-2}$
飽和蒸気圧と飽和蒸気密度 $\chi_5^2 = \sum_{m=1}^M \left[\frac{P_s - \rho^V RT}{(\rho^V)^2 RT} - \rho_c^{-1} \phi_{\delta}^t (\tau, \delta^V) \right]_m^2 w_m^{-2}$
氮液平衡 Maxwell の関係式 $\chi_6^2 = \sum_{m=1}^M \left[\frac{P_s}{RT} \left(\frac{1}{\rho^V} - \frac{1}{\rho^L} \right) - \ln \left(\frac{\delta^L}{\delta^V} \right) - \phi^r (\tau, \delta^L) + \phi^r (\tau, \delta^V) \right]_m^2 w_m^{-2}$
係数n/l C 文目 C T 非線形関係
定圧比熱 $\chi_7^2 = \sum_{m=1}^M \left[\frac{C_P}{R} + \tau^2 (\phi_{\tau\tau}^0 + \phi_{\tau\tau}^1) - \frac{(1 + \delta \phi_{\delta}^t - \delta \tau \phi_{\delta\tau}^t)^2}{1 + 2\delta \phi_{\delta}^t + \delta^2 \phi_{\delta\delta}^t} \right]_m^2 w_m^{-2}$
音速 $\chi_8^2 = \sum_{m=1}^M \left[\frac{W^2}{R} - 1 - 2\delta \phi_{\delta}^t - \delta^2 \phi_{\delta\delta}^t + \frac{(1 + \delta \phi_{\delta}^t - \delta \tau \phi_{\delta\tau}^t)^2}{\tau^2 (\phi_{\tau\tau}^0 + \phi_{\tau\tau}^t)} \right]_m^2 w_m^{-2}$

$$\phi_{\delta}^{\mathrm{r}} = \left(\frac{\partial\phi^{\mathrm{r}}}{\partial\delta}\right)_{\tau}, \quad \phi_{\delta\delta}^{\mathrm{r}} = \left(\frac{\partial^{2}\phi^{\mathrm{r}}}{\partial\delta^{2}}\right)_{\tau}, \quad \phi_{\tau}^{\mathrm{r}} = \left(\frac{\partial\phi^{\mathrm{r}}}{\partial\tau}\right)_{\delta}, \quad \phi_{\tau\tau}^{\mathrm{r}} = \left(\frac{\partial^{2}\phi^{\mathrm{r}}}{\partial\tau^{2}}\right)_{\delta}, \quad \phi_{\delta\tau}^{\mathrm{r}} = \left(\frac{\partial^{2}\phi^{\mathrm{r}}}{\partial\tau\partial\delta}\right)$$

3.5.2 Helmholtz 関数型状態方程式への適用

このようなガウス・ニュートン法による非線形最小二乗法を用いて,Helmholtz関数型状態方程式にお ける剰余項ø^r中の係数n_iを決定する場合には,相関を行いたい物性を係数n_iで微分する必要がある.従っ て,本研究で考慮した物性では,定圧比熱*C*_Pのデータが係数n_iと非線形の関係になるので,式(3.29)によ り微分量を計算し,非線形の最小二乗法プログラムに組み込むことになる.異なる物性に対して同時に 非線形の最小二乗法を行う場合には,係数n_iと線形関係にある物性に対しても同時に非線形の最小二乗 法で相関を行わなければならない.例えば,圧力Pは線形関係にある物性であるが,係数n_iで微分を行い, 非線形関係にある物性と同様の方法によって相関を行う.しかしながら,線形関係にある物性の場合, 係数n_iでの微分は結果的に線形の最小二乗法の場合と同様の行列計算を行うことになる.また,関数形 構築の際に指数係数t_i, d_iを非線形の最小二乗法によって決定するためには,係数n_i同様,式(3.30),式(3.31) に示すようなt_i, d_iによる微分が必要となる.

$$\frac{\partial}{\partial n_i} \left[\frac{C_P(\tau, \delta)}{R} \right] = \frac{\partial}{\partial n_i} \left[-\tau^2 \left(\phi_{\tau\tau}^0 + \phi_{\tau\tau}^r \right) + \frac{\left(1 + \delta \phi_{\delta}^r - \delta \tau \phi_{\delta\tau}^r \right)^2}{1 + 2\delta \phi_{\delta}^r + \delta^2 \phi_{\delta\delta}^r} \right]$$
(3.29)

$$\frac{\partial}{\partial t_i} \left[\frac{C_P(\tau, \delta)}{R} \right] = \frac{\partial}{\partial t_i} \left[-\tau^2 \left(\phi_{\tau\tau}^0 + \phi_{\tau\tau}^r \right) + \frac{\left(1 + \delta \phi_{\delta}^r - \delta \tau \phi_{\delta\tau}^r \right)^2}{1 + 2\delta \phi_{\delta}^r + \delta^2 \phi_{\delta\delta}^r} \right]$$
(3.30)

$$\frac{\partial}{\partial d_i} \left[\frac{C_P(\tau, \delta)}{R} \right] = \frac{\partial}{\partial d_i} \left[-\tau^2 \left(\phi_{\tau\tau}^0 + \phi_{\tau\tau}^r \right) + \frac{\left(1 + \delta \phi_{\delta}^r - \delta \tau \phi_{\delta\tau}^r \right)^2}{1 + 2\delta \phi_{\delta}^r + \delta^2 \phi_{\delta\delta}^r} \right]$$
(3.30)

$$\mathbb{Z} \subset \mathcal{T} \phi_{\delta}^{\mathrm{r}} = \left(\frac{\partial \phi^{\mathrm{r}}}{\partial \delta}\right)_{\tau}, \quad \phi_{\delta\delta}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi^{\mathrm{r}}}{\partial \delta^{2}}\right)_{\tau}, \quad \phi_{\tau}^{\mathrm{r}} = \left(\frac{\partial \phi^{\mathrm{r}}}{\partial \tau}\right)_{\delta}, \quad \phi_{\tau\tau}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi^{\mathrm{r}}}{\partial \tau^{2}}\right)_{\delta}, \quad \phi_{\delta\tau}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi^{\mathrm{r}}}{\partial \tau \partial \delta}\right) \mathcal{T} \stackrel{\text{def}}{\Rightarrow} \mathcal{T} .$$

一方,理想項 ϕ^0 は,式(3.31)によって表される.理想項 ϕ^0 は理想気体の定圧比熱 C_p^0 のデータに合わせて係数 f_i , g_i を決定するが,このとき f_i , g_i は C_p^0 と非線形の関係にあるため、非線形の最小二乗法を用いて係数を決定した.

$$\phi^{0}(\tau,\delta) = \ln(\delta) + f_{1} + f_{2}\tau + f_{3}\ln(\tau) + \sum f_{i}\ln\{1 - \exp(-g_{i}\tau)\}$$
(3.31)

混合流体に対して Helmholtz 関数型により実測値を相関する場合には非線形の最小二乗法を用いた. 非線形最小二乗法の方法はガウス・ニュートン法を用いた.従って,相関時には式(3.29)のように,決 定したい係数による,相関対象の物性の微分計算を必要とする.混合流体では相平衡時には気液の成分 *i*におけるフガシティーが等しくなることから,相平衡における相関には式(3.32),(3.33)を用いた.本研 究ではさらに,臨界点に対しても相関を行った.臨界点の条件式より式(1.13),(1.14)を相関に加えた.相 関過程において,臨界点付近における相平衡は実測値に合わせづらい傾向がうかがえた.しかし,臨界 点の条件式を相関を加えることにより,臨界点はもとより,臨界点付近の相平衡においても相関の向上 性が確認された.混合流体に対する残差平方和を Table 3.2 に示す.

$$f_1^{\rm L}(T,P,x) - f_1^{\rm V}(T,P,y) = 0$$
(3.32)

$$f_2^{\rm L}(T,P,x) - f_2^{\rm V}(T,P,y) = 0$$
(3.33)

$$\left(\frac{\partial^2 g}{\partial x_1^2}\right)_{T,P} = \left(\frac{\partial^2 a}{\partial x_1^2}\right)_{T,\nu} + \left[\left(\frac{\partial P}{\partial x_1}\right)_{T,\nu} \middle/ \left(\frac{\partial P}{\partial \nu}\right)_{T,x_1}\right] = 0$$
(1.13)

$$\left(\frac{\partial^{3}g}{\partial x_{1}^{3}}\right)_{T,P} = \left(\frac{\partial^{3}a}{\partial x_{1}^{3}}\right)_{T,\nu} + \left[3\left(\frac{\partial P}{\partial x_{1}}\right)_{T,\nu}\left(\frac{\partial^{2}P}{\partial x_{1}^{2}}\right)_{T,\nu} \middle/ \left(\frac{\partial P}{\partial \nu}\right)_{T,x_{1}}\right] \\
- \left[3\left(\frac{\partial P}{\partial x_{1}}\right)_{T,\nu}^{2}\left(\frac{\partial^{2}P}{\partial x_{1}\partial \nu}\right)_{T} \middle/ \left(\frac{\partial P}{\partial \nu}\right)_{T,x_{1}}^{2}\right] \\
+ \left[\left(\frac{\partial P}{\partial x_{1}}\right)_{T,\nu}^{3}\left(\frac{\partial^{2}P}{\partial \nu^{2}}\right)_{T,x_{1}} \middle/ \left(\frac{\partial P}{\partial \nu}\right)_{T,x_{1}}^{3}\right] = 0$$
(1.14)

本研究で対象とするメタン/硫化水素2成分系混合流体の場合には、Type IIIの挙動を維持したまま実 測値の相関を行わなければならないという困難さがある.そこで、実測値の相関はもとより挙動の確認 も重要となる.本研究では、相関を行った後、すぐに相平衡および臨界曲線の挙動を確認するという手 順を繰り返し行った.混合流体の場合には、成分iのフガシティーおよび臨界曲線の条件式自体、状態 方程式から計算を行う場合にはかなりの煩雑さを要する.さらに、実際に相平衡点ならびに臨界点を状 態方程式から求める場合には、条件式を計算した上で、その条件式を満たす解を見つけるようなアルゴ リズムを構成することが非常に重要となる.特に、気液液3相平衡や臨界曲線の発散といった特異な現 象が現れる場合には、相平衡計算ならびに臨界曲線計算に特別な工夫が必要となる.以下に相平衡の計 算ならびに臨界曲線の計算方法について述べる.

相関データ	関係式
圧力	$\chi_{1}^{2} = \sum_{m=1}^{M} \left[\frac{P - \rho RT}{\rho^{2} RT} - \rho_{c}^{-1} \phi_{\delta}^{r} \right]_{m}^{2} w_{m}^{-2}$
定積比熱	$\chi_{2}^{2} = \sum_{m=1}^{M} \left[\frac{C_{V}}{R} - \frac{C_{V}^{0}}{R} + \tau^{2} \phi_{\tau\tau}^{\mathrm{r}} \right]_{m}^{2} w_{m}^{-2}$
定圧比熱	$\chi_3^2 = \sum_{m=1}^M \left[\frac{C_P}{R} - \frac{C_V}{R} - \frac{\left(1 + \delta \phi_{\delta}^{\mathrm{r}} - \delta \tau \phi_{\delta \tau}^{\mathrm{r}}\right)^2}{1 + 2\delta \phi_{\delta}^{\mathrm{r}} + \delta^2 \phi_{\delta \delta}^{\mathrm{r}}} \right]_m^2 w_m^{-2}$
音速	$\chi_4^2 = \sum_{m=1}^M \left[\frac{W^2}{R} - 1 - 2\delta\phi_\delta^{\rm r} - \delta^2\phi_{\delta\delta}^{\rm r} + \frac{\left(1 + \delta\phi_\delta^{\rm r} - \delta\tau\phi_{\delta\tau}^{\rm r}\right)^2}{\left(C_V/R\right)} \right]_m^2 w_m^{-2}$
気液平衡	$\chi_5^2 = \sum_{m=1}^M \left[f_1^{\rm L}(T, P, x) - f_1^{\rm V}(T, P, y) \right]_m^2 w_m^{-2} \qquad \succeq$
	$\chi_6^2 = \sum_{m=1}^M \left[f_2^{\rm L}(T, P, x) - f_2^{\rm V}(T, P, y) \right]_m^2 w_m^{-2}$
	$\chi_7^2 = \sum_{m=1}^M \left[\left(\frac{\partial^2 a}{\partial x_1^2} \right)_{T,\nu} + \left[\left(\frac{\partial P}{\partial x_1} \right)_{T,\nu}^2 / \left(\frac{\partial P}{\partial \nu} \right)_{T,x_1} \right] \right]_m^2 w_m^{-2} \succeq$
臨界点	$\left[\left(\frac{\partial^3 a}{\partial x_1^3}\right)_{T,v} + \left[3\left(\frac{\partial P}{\partial x_1}\right)_{T,v}\left(\frac{\partial^2 P}{\partial x_1^2}\right)_{T,v}\right]^2\right]^2$
	$\chi_8^2 = \sum_{m=1}^M - \left[3 \left(\frac{\partial P}{\partial x_1} \right)_{T,\nu}^2 \left(\frac{\partial^2 P}{\partial x_1 \partial \nu} \right)_T / \left(\frac{\partial P}{\partial \nu} \right)_{T,x_1}^2 \right] w_m^{-2}$
	$\left[+ \left[\left(\frac{\partial P}{\partial x_1} \right)_{T,v}^3 \left(\frac{\partial^2 P}{\partial v^2} \right)_{T,x_1} \right] \left(\frac{\partial P}{\partial v} \right)_{T,x_1}^3 \right]_m$
$t \in \mathcal{L}(\phi_{s}^{r}, \phi_{ss}^{r}, \phi_{\tau}^{r}, \phi_{\tau\tau}^{r}, \phi$	よは以下の微分を表すものとする.

Table 3.2. 混合流体における Helmholtz 関数型状態方程式作成時の各物性に対する残差平方和

ただし $\phi_{\delta}^{\mathrm{r}}, \phi_{\delta\delta}^{\mathrm{r}}, \phi_{\tau}^{\mathrm{r}}, \phi_{\tau\tau}^{\mathrm{r}}, \phi_{\delta\tau}^{\mathrm{r}}$ は以下の微分を表すものとする. $\phi_{\delta}^{\mathrm{r}} = \left(\frac{\partial \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \delta}\right)_{\tau,x_{\mathrm{l}}}, \phi_{\delta\delta}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \delta^{2}}\right)_{\tau,x_{\mathrm{l}}}, \phi_{\tau}^{\mathrm{r}} = \left(\frac{\partial \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \tau}\right)_{\delta,x_{\mathrm{l}}}, \phi_{\tau\tau}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \tau^{2}}\right)_{\delta,x_{\mathrm{l}}}, \phi_{\delta\tau}^{\mathrm{r}} = \left(\frac{\partial^{2} \phi_{\mathrm{mix}}^{\mathrm{r}}}{\partial \tau \partial \delta}\right)_{x_{\mathrm{l}}}$

3.6 相平衡の計算

3.6.1 一般的な相平衡計算

2 成分系において系が気液の平衡状態にあるとき、成分 iのフガシティーが気側 f_i^{V} と液側 f_i^{L} で等し

いことから,式(3.34),(3.35)が成り立っている.ここで上付きの"L"は液相を"V"は気相を表す.また下付きの"1"は第1成分,"2"は第2成分を表す.気液平衡を論じる際には,通常xを液相のモル組成,yを気相のモル組成として表す.

$$f_1^{\rm L}(T,P,x) = f_1^{\rm V}(T,P,y) \tag{3.34}$$

$$f_2^{\rm L}(T,P,x) = f_2^{\rm V}(T,P,y)$$
(3.35)

2 成分系では、気液平衡は温度 T と圧力 P を指定すると、Gibbs の相律より液相のモル組成 x と気相の モル組成 y を決定でき、これによって系の全ての物性を決定することができる。気液平衡の一般的な算 出方法[46]を Fig. 3.3 に示す.この計算では、組成の初期値に最適な値を用いることが計算収束の際の重 要な条件になる.Type I に分類される系に対しては、Fig. 3.3 に示した方法で計算することができる。し かし、Type III に分類されるような、気液液 3 相平衡が出現するような系に対しては、ある温度・圧力 で 3 相平衡状態になったり、気液または液液の 2 つの相平衡状態が計算できたりと初期値の推定が非常 に困難である。そこで本研究では Michelsen [40]の安定性解析を用いた気液平衡計算方法を採用した。

Fig. 3.3. 2成分系混合流体の気液平衡算出方法[46]

3.6.2 安定性解析を用いた相平衡計算

Michelsen [40]は混合による Gibbs 自由エネルギー変化 *Ag* による相分離の判定基準を提案した.これが 安定性解析である. *Ag* は式(3.36)によって求めることができる. 安定性解析は *Ag* を x に対してプロット

し、共通接線が引けるかどうかで相の安定性を判断する.これは Gibbs の接平面基準と称される.共通 接線が引けた場合には、接点の間の組成に対しては不安定となり、それぞれの接点の組成に相分離する. 3点で接する場合には、3相平衡になる.2成分系では3相平衡以上相分離することはないが、2成分系 以上の多成分系において、多点で接する場合には多相平衡になる.例として Fig. 3.4 にメタン/硫化水素 2成分系混合流体の本状態方程式から計算した(a)310Kの相平衡図と(b)温度 310K, 圧力 2,5,15 MPa に おける混合による Gibbs 自由エネルギー変化 Ag を示す. Fig. 3.4(a)の 310 K における相平衡図より, 圧 力が 2 MPa, 15 MPa のときには、相平衡が起こらない.従って Fig. 3.4(b)に示すように Ag の曲線におい て共通接線を引くことができない.しかし, 5 MPa では気液の相平衡が起こる.このとき Fig. 3.4(b)に示 したように 5 MPa では Ag, Bg を接点として共通接線を引くことができる. 5 MPa では液相の組成 Ag と 気相の組成 Bg で相平衡状態となるが、これらの組成は Fig. 3.4(a)でそれぞれ A と B に対応する. 続い て3相平衡が現れる場合について考察する. Fig. 3.5 はメタン/硫化水素2成分系混合流体の本状態方程 式から計算した(a)200 K の相平衡図と(b)拡大図である. 200 K では 4.898 MPa で 3 相平衡が起こる. Fig. 3.5 中に、4.0, 4.898, 5.0, 6.0 MPa における相平衡点を A から K によって示した. そして Fig. 3.6 にメタ ン/硫化水素2成分系混合流体の本状態方程式から計算した200Kの混合によるGibbs自由エネルギー 変化Ag を(a)4.0 MPa, (b)4.898 MPa, (c)5.0MPa, (d)6.0 MPa において示す. Fig. 3.4 同様に, Fig. 3.5 の A か ら K の組成は、それぞれ Fig. 3.6 中の Ag から Kg の組成に対応する. 4.0 MPa のときには、気液平衡が 起こる. 従って, Fig. 3.6(a)では一本の共通接線が引けている. しかし3相平衡圧力である 4.898 MPa で は、Fig. 3.6(b)から分かるように、共通接線は Cg, Dg, Eg の 3 点において Ag の曲線と接している. この 3 つの組成において気液液3相平衡状態となる. さらに 5.0 MPa では, Fig. 3.5 より組成 F, G による平衡 と組成 H. I による 2 つの相平衡が存在する.従って Fig. 3.6(c)では Fg と Gg を接点とする共通接線と. Hg と Ig を接点とする共通接線の2本の共通接線が引ける. どちらの相平衡が起こるかは、仕込みモル 組成によって決定され、仕込みモル組成がFとGの間であれば、組成F,Gによる液液相平衡が起こり、 仕込みモル組成がHとIの間であれば、組成H,Iによる気液平衡が起こる.最後に、6.0 MPaでは組成 J, Kによる液液平衡が起こる. Fig. 3.6(d)では共通接線が1本引けることになる. このとき Ag は全てが 液側より計算された曲線となっている.安定性解析を利用した2成分系混合流体の計算方法を Fig. 3.7 に示す.

$$\frac{\Delta g}{RT} = x_1 \left(\ln \frac{f_1}{x_1 P} - \ln \frac{f_{(1)}}{P} + \ln x_1 \right) + x_2 \left(\ln \frac{f_2}{x_2 P} - \ln \frac{f_{(2)}}{P} + \ln x_2 \right)$$
(3.36)

Fig. 3.4. メタン/硫化水素2成分系混合流体の本状態方程式から計算した(a)310 Kの相平衡図と(b)温度310 K, 圧力2,5,15 MPa における混合による Gibbs 自由エネルギー変化*Ag*

Fig. 3.5. メタン/硫化水素2成分系混合流体の本状態方程式から計算した(a)200Kの相平衡図と(b)拡大図

Fig. 3.6. メタン/硫化水素 2 成分系混合流体の本状態方程式から計算した 200 K の Gibbs 自由エネルギー変 化*Ag* (a)4.0 MPa, (b)4.898 MPa, (c)5.0MPa, (d)6.0 MPa

Fig. 3.7. 安定性解析を利用した2成分系混合流体の相平衡算出方法

ここでFig. 3.7 に示した安定性解析を利用した2成分系混合流体の相平衡算出方法について述べる.ま ず相平衡計算を行いたい温度T・圧力Pを与える.この温度・圧力に対し仕込みモル組成z1を与える.こ の(T, P, z₁)の状態が安定か不安定かを調べる操作が安定性解析である.安定か不安定かはFig. 3.6 に示し たGibbsの接平面基準にもとづいている. 仕込みモル組成z₁において接線を引き, この接線がGibbs自由 エネルギー変化Agの曲線と交わるときには不安定であり、交わらない場合には安定となることで、その 安定性を判断する. 与えた仕込みモル組成z」で安定であれば、次の仕込みモル組成を与え、再び安定性 解析を始める.z₁をモル組成0から安定性解析を始めて、モル組成1まで安定であり続けるならば、与 えた温度・圧力では相分離は起こらないことを意味する.あるz₁での接線がGibbs自由エネルギー変化Ag の曲線と交わり、不安定と判断されると、この交わった点近傍の組成は仕込みモル組成z」と共通接線が 引けることから、これらを初期値として成分iのフガシティーによる相平衡条件を用いた相平衡計算に移 る.この相平衡計算により、計算結果(T, P, x1, y1)を得るが、この計算結果に対して再び安定性解析を行 う.この結果安定であれば相平衡解(T, P, x₁, y₁)を得るが,不安定と判断されれば,再び接平面基準から 得られた初期値によって相平衡計算を行う.このようにすると真の相平衡解(T, P, x1, v1)を得るが,その 後,解の組成(x1, v1)において大きい値の方のモル組成から再び仕込みモル組成が1になるまで安定性解 析を行う必要がある.これは、与えられた温度・圧力でさらに相平衡が起こらないかを確認する必要が あるためである.つまりFig. 3.6(c)の場合に相当し、まず始めにFg-Ggの相平衡解を得るが、さらにモル 組成Ggからモル組成1まで安定解析を行うことでHg-Igの相平衡を見つけることができる.気液液3相 平衡は、温度を指定するとGibbsの相律より圧力および3つの組成が一義的に決定される.この圧力のと きには、Fig. 3.6(c)においてモル組成GgとHgが一致する場合であるので、本研究では、2 分法によってこ の一致する組成を求めることで3相平衡圧力を算出した.

3.7 臨界曲線の計算

3.7.1 ニュートン・ラプソン法による計算

2 成分系混合流体の臨界点条件は式(1.11), (1.12)によって与えられ,独立変数を温度 *T*,密度 ρ あるいは比体積 v である Helmholtz 自由エネルギーに変換すると式(1.13), (1.14)になる.臨界曲線の計算はニュートン法の1つであるニュートン・ラプソン法を用いることによって,指定した組成に対し,式(1.13), (1.14)を満たす温度・圧力を算出することができる. Fig. 3.8 に臨界曲線算出方法を示す. Fig. 3.8 中の ΔT , Δp は,式(3.37), (3.38)に示すように臨界点の条件を α , β とすると,式(3.39), (3.40)に示される式によって計算される.ここで下付の" ρ "は密度 ρ による微分を表し,下付の"T"は温度 Tによる微分を表すものとする.

$$\left(\frac{\partial^2 g}{\partial x_1^2}\right)_{T,P} = 0 \tag{1.11}$$

$$\left(\frac{\partial^3 g}{\partial x_1^3}\right)_{T,P} = 0 \tag{1.12}$$

$$\left(\frac{\partial^2 g}{\partial x_1^2}\right)_{T,P} = \left(\frac{\partial^2 a}{\partial x_1^2}\right)_{T,\nu} + \left[\left(\frac{\partial P}{\partial x_1}\right)_{T,\nu}^2 / \left(\frac{\partial P}{\partial \nu}\right)_{T,x_1}\right] = 0$$
(1.13)

$$\left(\frac{\partial^{3}g}{\partial x_{1}^{3}}\right)_{T,P} = \left(\frac{\partial^{3}a}{\partial x_{1}^{3}}\right)_{T,\nu} + \left[3\left(\frac{\partial P}{\partial x_{1}}\right)_{T,\nu}\left(\frac{\partial^{2}P}{\partial x_{1}^{2}}\right)_{T,\nu} \middle/ \left(\frac{\partial P}{\partial \nu}\right)_{T,x_{1}}\right] \\
- \left[3\left(\frac{\partial P}{\partial x_{1}}\right)_{T,\nu}^{2}\left(\frac{\partial^{2}P}{\partial x_{1}\partial \nu}\right)_{T} \middle/ \left(\frac{\partial P}{\partial \nu}\right)_{T,x_{1}}^{2}\right] \\
+ \left[\left(\frac{\partial P}{\partial x_{1}}\right)_{T,\nu}^{3}\left(\frac{\partial^{2}P}{\partial \nu^{2}}\right)_{T,x_{1}} \middle/ \left(\frac{\partial P}{\partial \nu}\right)_{T,x_{1}}^{3}\right] = 0$$
(1.14)

$$\alpha = \left(\frac{\partial^2 a}{\partial x_1^2}\right)_{T,\nu} + \left[\left(\frac{\partial P}{\partial x_1}\right)_{T,\nu}^2 / \left(\frac{\partial P}{\partial \nu}\right)_{T,x_1}\right]$$
(3.37)

$$\beta = \left(\frac{\partial^{3} a}{\partial x_{1}^{3}}\right)_{T,v} + \left[3\left(\frac{\partial P}{\partial x_{1}}\right)_{T,v}\left(\frac{\partial^{2} P}{\partial x_{1}^{2}}\right)_{T,v} \middle/ \left(\frac{\partial P}{\partial v}\right)_{T,x_{1}}\right] \\ - \left[3\left(\frac{\partial P}{\partial x_{1}}\right)_{T,v}^{2}\left(\frac{\partial^{2} P}{\partial x_{1} \partial v}\right)_{T} \middle/ \left(\frac{\partial P}{\partial v}\right)_{T,x_{1}}^{2}\right] \\ + \left[\left(\frac{\partial P}{\partial x_{1}}\right)_{T,v}^{3}\left(\frac{\partial^{2} P}{\partial v^{2}}\right)_{T,x_{1}} \middle/ \left(\frac{\partial P}{\partial v}\right)_{T,x_{1}}^{3}\right]$$
(3.38)

$$\Delta T = \frac{-\alpha_{\rho}\beta + \beta_{\rho}\alpha}{\alpha_{\rho}\beta_T - \alpha_{\rho}\beta_T}$$
(3.39)

$$\Delta \rho = \frac{-\alpha \beta_T + \beta \alpha_T}{\alpha_\rho \beta_T - \beta_\rho \alpha_T} \tag{3.40}$$

Fig. 3.8. ニュートン・ラプソン法による臨界曲線計算方法

Fig. 3.8 の計算方法では温度と密度の初期値が重要な役割を担う. Type I のような単純な系に対しては初 期値の推定が比較的容易であるが, Type III のような臨界曲線が発散するような系では, 同一組成に対 して気液と液液の2つの臨界点が存在したり, あるいは特定の組成では臨界点が存在しない場合がある ために, 初期値の推定が非常に困難である. そこで本研究では, このような複雑な系に対しても計算を 行うことができる Heidemann and Khalil [41]の方法を用いた. Heidemann and Khalil 法は, 臨界点は安定 限界上の安定点であるとして求める方法であり, 以下に詳細を述べる.

3.7.2 Heidemann and Khalil 法による計算

臨界点は安定限界上の安定点であるために、均一相の安定条件から考える.ある相I (T_0 , V_0 , n_{10} , n_{20} , …, n_{N0})を試行点とし、これが等温変化により新しい状態II (T_0 , V, n_1 , n_2 , …, n_N)になったとすると、相Iは式(3.41)を満たすとき安定であると言える.

$$\left[A - A_0 + P_0(V - V_0) - \sum_{i=1}^N \mu_{i0}(n_i - n_{i0})\right]_{T_0} > 0$$
(3.41)

ここで, μ_{i0}は化学ポテンシャル, *A* – *A*₀は変化した状態間におけるHelmholtz自由エネルギーの差である. 第2の条件として非等温変化に対して以下の条件を満足しなければならない.

$$\left[A - A_0 + S_0(T - T_0)\right]_{V_0, n_{i0}} > 0 \tag{3.42}$$

この条件式(3.42)は定積比熱が正である限り満足される.式(3.41),(3.42)が満たされないとき,相は2つ あるいはそれ以上の相に分離することによって,より低い内部エネルギーをとるような変化を起こす. しかしながら,以下のような変化

$$\Delta V = k V_0 \tag{3.43}$$

$$n = k n_{i0}$$
, $i = 1, \dots, N$ (3.44)

では、圧力、化学ポテンシャルは一定であるために相変化としてみなされない.従って、

$$\Delta V = 0 \tag{3.45}$$

と設定できる. このとき式(3.41)は,

$$\left[A - A_0 - \sum_{i=1}^N \mu_{i0} \Delta n_i\right]_{T_0, V_0} > 0$$
(3.46)

と変形することができる.ここで、Helmholtz自由エネルギーを試行点のまわりで Taylor 展開すると、

$$\begin{bmatrix} A - A_0 - \sum_{i=1}^{N} \mu_{i0} \Delta n_i \end{bmatrix}_{T_0, V_0} = \frac{1}{2!} \sum_j \sum_i \left(\frac{\partial^2 A}{\partial n_j \partial n_i} \right) \Delta n_i \Delta n_j + \frac{1}{3!} \sum_k \sum_j \sum_i \left(\frac{\partial^3 A}{\partial n_k \partial n_j \partial n_i} \right) \Delta n_i \Delta n_j \Delta n_k + O(\Delta n^4)$$
(3.47)

となる. 任意の*Δn* に対して式(3.47)が正であるとき, 試行点は安定である. この試行点が安定限界上に存在するための必要条件は,

$$q_{ij} = \left(\frac{\partial^2 A}{\partial n_j \partial n_i}\right) \tag{3.48}$$

の要素を持つ行列Qに対し、式(3.49)を満たすベクトルAnが存在することである.

$$Q \Delta \mathbf{n} = \mathbf{0} \tag{3.49}$$

$$\Delta \mathbf{n} = (\Delta n_1, \Delta n_2, \cdots, \Delta n_N)^{\mathrm{T}}$$
(3.50)

あるいは, Qの行列式が0になることである.

$$\det Q = 0 \tag{3.51}$$

安定限界上の全ての点では,式(3.49),(3.50)を満足しなければならない.そしてさらに,臨界点では式 (3.50)を満たすベクトルΔnにおいて,式(3.52)に示すように,式(3.47)の右辺第2項が0になる必要がある.

$$C = \frac{1}{3!} \sum_{k} \sum_{j} \sum_{i} \left(\frac{\partial^{3} A}{\partial n_{k} \partial n_{j} \partial n_{i}} \right) \Delta n_{i} \Delta n_{j} \Delta n_{k} = 0$$
(3.52)

式(3.49), (3.50), (3.52)は, 臨界点の直接的な計算手法である.この手法は, Gibbs自由エネルギーを用いた場合の2つの行列式(1.9), (1.10)がゼロになるのとは型が異なるが, 結果は一致する.この場合, 臨界点に対する2つの条件は, 式(3.49)および(3.52)であり, 式(3.52)中のΔn_iは式(3.50)より得られる.

$$\mathbf{U} = \begin{vmatrix} \frac{\partial^2 g}{\partial x_1^2} & \frac{\partial^2 g}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 g}{\partial x_1 \partial x_{n-1}} \\ \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial^2 g}{\partial x_2^2} & \dots & \frac{\partial^2 g}{\partial x_2 \partial x_{n-1}} \\ \vdots & \vdots & \frac{\partial^2 g}{\partial x_n \partial x_2} & \vdots \\ \frac{\partial^2 g}{\partial x_{n-1} \partial x_1} & \frac{\partial^2 g}{\partial x_{n-1} \partial x_2} & \dots & \frac{\partial U}{\partial x_{n-1}} \\ \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial U}{\partial x_2} & \dots & \frac{\partial U}{\partial x_{n-1}} \\ \vdots & \vdots & \frac{\partial^2 g}{\partial x_2 \partial x_1} & \frac{\partial^2 g}{\partial x_2 \partial x_{n-1}} \\ \end{bmatrix} = 0$$
(1.9)

以上の方法を,状態方程式から熱力学関係式より計算によって求める場合,式(3.48),(3.52)における Helmholtz 自由エネルギーA に関する微分は,成分 *i* のフガシティーを用いて式(3.53)(3.54)のように書く ことができる.

$$\left(\frac{\partial^2 A}{\partial n_j \partial n_i}\right) = RT \left(\frac{\partial \ln f_i}{\partial n_j}\right)$$
(3.53)

$$\left(\frac{\partial^3 A}{\partial n_k \partial n_j \partial n_i}\right) = RT \left(\frac{\partial^2 \ln f_i}{\partial n_k \partial n_j}\right)$$
(3.54)

微分計算においては以下を利用することで計算量を減らすことが出来る.

$$\left(\frac{\partial \ln f_i}{\partial n_j}\right) = \left(\frac{\partial \ln f_j}{\partial n_i}\right)$$
(3.55)

$$\left(\frac{\partial^2 \ln f_i}{\partial n_k \partial n_j}\right) = \left(\frac{\partial^2 \ln f_j}{\partial n_k \partial n_i}\right) = \left(\frac{\partial^2 \ln f_k}{\partial n_i \partial n_j}\right)$$
(3.56)

以上が Heidemann and Khalil 法である. Fig. 3.9 に Heidemann and Khalil 法のフローチャートを示す. しかし,実際に計算を行うと,この方法では準安定の状態であっても算出してしまう. そのため本研究 では算出した結果に安定性解析を用いることで算出された状態の安定性を判断し,これによって本当に 安定である臨界点のみを算出した.

Fig. 3.9. Heidemann and Khalil 法を用いた本研究の臨界曲線算出方法

4 硫化水素の Helmholtz 関数型状態方程式

4.1 既存の実測値情報

硫化水素は天然ガス成分の1つであり、メタンとの混合系において特異な挙動を示すなど天然ガスの 熱力学性質において重要な成分物質であるにも関わらず、その熱力学性質ほとんど明らかにされていな い.その理由としては、天然ガスに含まれる硫化水素の成分量が他の炭化水素系成分と比べ少ないこと、 また毒性や腐食性があり、測定が困難であることなどが挙げられる.硫化水素の物性研究において、特 に注目すべきことは1983年に旧NBS(現NIST)のGoodwin [57]によって実測値情報がまとめられ、状 態方程式が作成されたことである.本研究ではGoodwin によってまとめられた実測値情報をもとに、そ れ以降の実測値情報については大型データベースであるChemical Abstracts および主要 Journal によって 検索を行った.本研究では約1600点の実測値を収集し、収集した実測値の温度はITS90へと変換した. 論文中で使用した温度は全てITS90に変換した値を用いている.Table 4.1 に収集した硫化水素の実測値 情報を示す.

4.1.1 PpT 実測値

Fig. 4.1 に(a)P-T線図および(b) P-p線図上における硫化水素の PpT 実測値分布を示す. 硫化水素の PpT 性質は 1950 年に Reamer et al. [70]によって初めて気相域から液相域にかけての広範にわたる測定が行われた. その後 Lewis and Fredericks [71]によって 170 MPa までという高圧域まで, Rau and Mathia [72]によって 760 K という高温域までにおいて PpT 実測値が測定された. Goodwin [57]は 1983 年に硫化水素の状態方程式を作成しているが、この文献において Straty [73]の測定データも合わせて報告されており、状態方程式の作成に使用されている. そして 2001 年には Ihmels and Gmehling [76]によって液相域ならびに超臨界域において 468 点もの測定点が報告されている. これによって,より信頼性の高い状態方程式が 作成できるようになった.以下に主要な実測値の概要を示す.

Fig. 4.1. (a)P-T線図および(b) P-p線図上における硫化水素の PpT 実測値分布

				Р		ρ		Т	
Author ^{a, b}	Year	Property	No. of Data	Range	δP	Range	δρ	Range	δТ
				(MPa)	(kPa)	(mol·dm ⁻³)	(mol·dm ⁻³)	(K)	(mK)
Wright and Maass [69]	1931	ΡρΤ	54	0.03-0.4	n.a.	0.01-0.2	n.a.	238-320	n.a.
Reamer et al. [70]	1950	$P\rho T$	275	0.1-69	0.05%	0.03-27	n.a.	278-444	n.a.
Lewis and Fredericks [71]	1968	$P\rho T$	106	9.1-171	0.25%	8.0-23	n.a.	373-493	500
Rau and Mathia [72]	1982	$P\rho T$	67	6.0-60	n.a.	3.0-15	n.a.	342-760	n.a.
Straty* [73]	1983	$P\rho T$	112	0.2-38	n.a.	0.05-13	n.a.	493-523	n.a.
Liu et al. [74]	1986	$P\rho T$	106	1.0-33	0.01%	0.24-19	1%	300-500	10
Bailey et al. [75]	1987	$P\rho T$	86	0.2-33	0.1%	0.05-19	1%	284-501	10
Ihmels and Gmehling* [76]	2001	ΡρΤ	468	2.8-40	6	2.4-26	0.3%	273-548	30
Cardoso [77]	1921	$P_{\rm S}$	16	1.0-9.0	n.a.			273-373	n.a.
Klemenc and Bankowski [78]	1932	$P_{\rm S}$	9	0.02-0.1	n.a.			188-213	n.a.
Giauque and Blue* [79]	1936	$P_{\rm S}$	11	0.02-0.1	n.a.			188-213	n.a.
Reamer et al.* [70]	1950	$P_{\rm S}$	21	1.2-9.0	0.05%			278-374	n.a.
Clark et al.# [80]	1951	$P_{\rm S}$	8	0.02-0.14	n.a.			188-220	50
Bierlein and Kay [81]	1953	$P_{\rm S}$	16	1.5-9.0	0.1%			286-374	20
Kay and Brice [82]	1953	$P_{\rm S}$	9	1.4-8.9	n.a.			283-373	n.a.
Kay and Rambosek [83]	1953	$P_{\rm S}$	31	1.0-8.9	0.7			272-373	n.a.
Reamer et al. [84]	1953	$P_{\rm S}$	4	1.2-9.0	0.1%			278-373	20
Clarke and Glew* [85]	1970	$P_{\rm S}$	26	0.04-2.3	0.03%			195-303	n.a.
Reamer et al. [70]	1950	$ ho^{ m V}$	16			0.6-10	n.a.	278-374	n.a.
Bierlein and Kay [81]	1953	$ ho^{ m V}$	16			0.8-10	0.5%	286-374	20
Kay and Rambosek [83]	1953	$ ho^{ m V}$	13			1.4-10	0.004	311-373	n.a.
Reamer et al. [84]	1953	$ ho^{ m V}$	4			0.6-10	0.25%	278-373	20
Clarke and Glew*, # [85]	1970	$ ho^{ m V}$	29			0.02-1.8	n.a.	193-323	n.a.
Klemenc and Bankowski* [78]	1932	$ ho^{ m L}$	12			27.9-29.0	n.a.	190-212	n.a.
Baxter et al. [86]	1934	$ ho^{ m L}$	7			20.0-27.5	n.a.	192-331	n.a.
Reamer et al.* [70]	1950	$ ho^{ m L}$	16			10.2-24.2	n.a.	278-374	n.a.
Bierlein and Kay [81]	1953	$ ho^{ m L}$	16			10.2-23.9	0.5 %	286-374	20
Kay and Rambosek [83]	1953	$ ho^{ m L}$	20			10.2-25.0	0.04	272-373	n.a.
Reamer et al. [84]	1953	$ ho^{ m L}$	4			10.2-24.2	0.25%	278-373	20
Clarke and Glew* [85]	1970	$\rho^{\rm L}$	30			20.9-28.9	n.a.	193-323	n.a.
Cubitt et al. [87]	1987	ρ^{L}	18			25.1-28.7	n.a.	197-265	n.a.
Millar [88]	1923	C_P	5	0.1	n.a.			216-278	n.a.
Clusius and Frank [89]	1936	C_P	4					194-209	n.a.
Giauque and Blue* [79]	1936	C _P	6					189-211	n.a.
Swamy and Rao [#] [90]	1970	C_P	6					188-213	n.a.
Millar [#] [88]	1923	C_V	5	0.1	n.a.			216-278	n.a.
Swamy and Rao [#] [90]	1970	C_V	6					188-213	n.a.

Table 4.1. 硫化水素の実測値情報

^a Data used as input data are denoted by *.
^b Calculated data are denoted by #.

A) Ihmels and Gmehling [76] (2001)の研究

Ihmels and Gmehling は振動管密度計により硫化水素の*PpT*性質を温度範囲 273-548 K, 圧力範囲 2.8-40 MPa の領域において測定した.また,硫化水素以外にもトルエン,二酸化炭素,硫化カルボニルの*PpT* 性質も測定している.実験に用いた硫化水素の試料純度は 99.5 vol.%である.温度測定精度は±30 mK, 圧力測定精度は 20 MPa までは±2 kPa, 20 MPa 以上 60 MPa までは±6 kPa と報告している.振動管密度 計で測定するにあたり,水とブタンを参照物質として測定し,装置定数を決定している.密度測定精度 は温度,圧力,振動周期の測定精度ならびに参照物質に依存するとしているが,圧縮液体域で±0.3%, 臨界点付近で約±2%と報告している.

B) Reamer et al. [70] (1950)の研究

硫化水素の PpT 性質は Reamer et al.によって初めて広範囲における測定がなされた. Reamer et al.は水 銀変容法を用いて温度範囲 278-444 K, 圧力範囲 0.1-69 MPa の領域において測定を行った. 圧力測定精 度は 0.05%と報告している. また, PpT 性質のみならず,気液平衡性質である飽和蒸気圧,飽和液体密 度,飽和蒸気密度の測定,そしてこれらの値と臨界点付近の PpT 実測値より臨界温度,臨界圧力ならび に臨界密度を決定している. 硫化水素の臨界密度測定は Reamer et al.によって初めて測定された. この ように広範囲にわたる実測値を報告しているが,測定に使用した水銀変容法は,硫化水素と水銀が反応 してしまうという欠点がある. Reamer et al.は硫化水素と水銀が反応して水素を発生することから測定前 後に試料の質量に変化が見られたと報告している.

C) Lewis and Fredericks [71] (1968)の研究

Lewis and Fredericks は温度範囲 373-493 K, 圧力範囲 9.1-171 MPa の領域において測定を行った.測定方法は Reamer et al. [70]が論文中で述べていたような,水銀変容法による硫化水素と水銀の反応を避けるために等容法により測定している. 圧力測定精度は 0.25%, 温度測定精度は±0.5 K と報告している.

D) Rau and Mathia [72] (1982)の研究

Rau and Mathia は等容法によって温度範囲 342-760 K, 圧力範囲 6-60 MPa の領域において測定を行った. 試料純度は 99%であり, さらに凝縮脱気が行われている. 測定精度は記述されてはいないが, 彼らが使用した装置を記述している文献[91](1977)では試料容器の温度を測定する熱電対の精度は 2 K 以下であると報告している.

E) Wright and Maass [69] (1931)の研究

Wright and Maass は等容法によって温度範囲 238-320 K, 圧力範囲 0.03-0.4 MPa の領域において測定を行った. Wright and Maass は実在流体が理想気体の法則に対してどの程度の偏差があるかを研究の対象としており、この 研究の一貫として硫化水素の密度を低密度の気相域で測定し、見かけのモル量という形で報告している.測定精 度については報告されていない.

F) Bailey et al. [75] (1987)の研究

Bailey et al.は GPA (Gas Processors Association)の研究の一貫として、バーネット法によって硫化水素の $P\rho T$ 性質について温度範囲 284-501 K, 圧力範囲 0.2-33 MPa の領域で測定を行った. Bailey et al.は硫化 水素の他に、硫化水素/メタン、硫化水素/二酸化炭素、硫化水素/メチルシクロヘキサン、硫化水素/ トルエンの 2 成分系混合流体と、硫化水素/メタン/トルエン/メチルシクロヘキサンの 4 成分系混合流 体における硫化水素を中心とした混合物について $P\rho T$ 測定を行っている. 硫化水素の試料純度は 99.5% である. 温度測定精度は±10 mK, 圧力測定精度は 0.1%、密度測定精度は 1%と報告している.

G) Liu et al. [74] (1986)の研究

Liu et al.は Bailey et al.と同じ研究グループであって、バーネット法によって硫化水素の *P*ρT 性質を温度範囲 300-500 K, 圧力範囲 1.0-33 MPa の領域において測定を行った. 試料純度は 99 mol%以上と報告している. また,温度測定精度は±10 mK, 圧力測定精度は 0.01%,密度測定精度は 1%と報告している.

4.1.2 気液平衡性質

Table 4.1 に本研究により収集した気液平衡性質に関する実測値情報を示す.また,Fig. 4.2 に硫化水素 の(a)飽和蒸気圧と(b)飽和蒸気密度ならびに飽和液体密度の VLE 実測値分布を示す.Fig. 4.2(a)は P-T 線図,Fig. 4.2(b)は T-p線図である.硫化水素の気液平衡における測定は比較的古いものが多い.1970 年に Clarke and Glew [85]によって飽和蒸気圧が測定され,さらにそれまでの飽和液体密度ならびに飽和蒸気密度か らの計算値が報告されている.しかしながら,それ以後,硫化水素の気液平衡性質における測定はほと んど行われていない.飽和蒸気圧における実測値情報は,Fig. 4.2(a)から分るように,220-245 K の間は 測定が行われておらず,また臨界点付近における飽和蒸気密度と飽和液体密度は,水銀変容法による Reamer et al. [70]や Bierlein and Kay [81]あるいは Kay and Rambosek [83]の実測値しか存在しない.先に述 べたように水銀変容法は,硫化水素と水銀との反応があることから高精度測定が困難である.Fig. 4.2 の実測値分布よりこれらの測定値しかない臨界点付近では不確かさが大きいと考えられる.また,飽和 蒸気密度においては,Clarke and Glew [85]のデータが計算値であることを考慮すると,より信頼性の高 い実測値報告が待たれるところである.飽和液体密度は低温域において,Klemenc and Bankowski [78]に よる実測値と Baxter et al. [86]による実測値,それと Cubitt et al. [87]による実測値が存在するが,Baxter et al.による実測値は他の実測値と傾向が異なっている.以下に主要な実測値情報における概要を示す.

Fig. 4.2. 硫化水素の(a)飽和蒸気圧と(b)飽和蒸気密度ならびに飽和液体密度の VLE 実測値分布

A) Kay and Rambosek [83] (1953)の研究

Kay and Rambosekはプロパン/硫化水素の2成分系混合流体の飽和蒸気圧,飽和液体密度ならびに飽和 蒸気密度を温度範囲 272-373 Kの領域において水銀変容法により測定を行った.そしてさらに、測定し た気液平衡性質より、硫化水素の純物質を含めた2成分系混合流体における臨界点を測定している.使 用した硫化水素の純度は 99.78 mol%である.圧力測定精度は±0.7 kPa,密度測定精度は液体域で±0.04 mol·dm⁻³, 蒸気域で±0.004 mol·dm⁻³と報告している. 硫化水素とプロパンの2成分系では共沸混合物になる ことを明らかにしている.

B) Clarke and Glew [85] (1970)の研究

Clarke and Glew は温度範囲 195-303 K の領域で硫化水素と硫化重水素の飽和蒸気圧の測定を行い,比 較検討を行なっている. 圧力測定精度は大気圧以下で 0.02%,大気圧以上で 0.03%と報告している. ま た硫化水素においては,これまでの実測値をもとに,温度範囲 193-323 K の領域で,飽和蒸気圧,飽和 液体密度,飽和蒸気密度の計算値を報告している.飽和蒸気圧においては,飽和蒸気圧相関式を作成し, その計算値を報告している.飽和液体密度においては,Reamer et al. [70]の実測値と Klemenc and Bankowski [78]の実測値を多項式によって相関し,この計算値を報告している.また,Clarke and Glew は気相域における密度を求めるため,Redlich-Kwong(RK)式を Wright and Maass [69], Reamer et al. [70] の *P*₀*T* 実測値を用いて作成した.またこれに伴い,飽和蒸気圧相関式とRK式を用いて飽和蒸気密度計算値を報告している.これらの値はGoodwin [57]によって,飽和蒸気圧相関式,飽和液体密度相関式, ならびに飽和蒸気密度相関式作成の入力値として用いられている.

C) Cubitt et al. [87] (1987)の研究

Cubitt et al.は Clarke and Glew [85]の研究同様,硫化水素と硫化重水素の飽和蒸気圧力差および飽和液体密度を温度範囲 188-270 K, 197-265 K の領域においてそれぞれ測定し,比較検討を行なっている.硫化水素の試料純度は 99.6 wt.%である.硫化水素と硫化重水素の飽和蒸気圧力差から,硫化水素の飽和蒸気圧相関式を用いて,硫化重水素の飽和蒸気圧を決定している.

D) Giauque and Blue [79] (1936)の研究

Giauque and Blue は、3 重点以下の温度を含め、温度範囲 165-213 K の領域において飽和蒸気圧を測定 した. 圧力測定には水銀を使用しており、水銀との反応を完全に避けることは出来なかったと報告して いる. また同時に、3 重点以下の温度である 17 K というかなりの低温域から標準沸点温度までの飽和状 態における定圧比熱や標準沸点温度における蒸発熱を測定している.

E) Baxter et al. [86] (1934)の研究

Baxter et al.は温度範囲 192-331 K の領域において飽和液体密度を測定した. 既知の内容積を持つ6つの試料容器を用意し、1 つの温度に対して同時に、6 点の飽和液体密度を測定することが出来る. 従って、最終的な結果はこの6 点の平均値を取ることで、信頼性を高めている. しかしながら、Baxter et al.の実測値は Fig. 4.2(b)の飽和密度における実測値分布から分かるように、他の実測値と異なる傾向を示している.

F) Clark et al. [80] (1951)の研究

Clark et al.は温度範囲 185-220 K の領域において飽和蒸気圧を測定した.温度測定精度は±0.05 K と報告している.論文には 188-218 K の範囲における飽和蒸気圧相関式が作成され、これによる計算値が載せられており、実測値自体は報告されていない.

G) Klemenc and Bankowski [78] (1932)の研究

Klemenc and Bankowski は温度範囲 188 - 212 K の領域において飽和蒸気圧を測定し、また温度範囲 190 - 212 K において飽和液体密度を測定した. 飽和蒸気圧では 153 K の固体が存在する領域から測定を行っており、3 重点および標準沸点温度も合わせて報告がなされている.

H) Reamer et al. [84]の研究

Reamer et al.は 1953 年に硫化水素とノルマルペンタンの2成分系混合流体における PpTx 性質ならびに気液平 衡性質に関して測定を行っており、硫化水素純物質に対しては、温度範囲 272-373 K において飽和蒸気圧を、 278-373 K において飽和蒸気密度ならびに飽和液体密度を報告している. 圧力測定精度は±0.1%、温度測定精 度±20 mK,密度測定精度は 0.25%と報告している.

I) Bierlein and Kay [81] (1953)の研究

Bierlein and Kay は石油精製において硫化水素と二酸化炭素の2成分系の物性が重要であるとし、この気液平衡 および臨界点を測定,報告している.硫化水素純物質に対しては,温度範囲 272-373 K において飽和蒸気圧を, 286-374 K において飽和蒸気密度ならびに飽和液体密度を報告している.圧力測定精度は0.1%,温度測定精度 ±20 mK,密度測定精度は0.5%と報告している.

J) Kay and Brice [82] (1953)の研究

Kay and Brice は硫化水素とエタンの2成分系において気液平衡および臨界点実測値を報告している.硫化水素 純物質に対しては、温度範囲 283-373 K において飽和蒸気圧を報告している.硫化水素とエタンの2成分系では 共沸混合物になることを明らかにしている.

4.1.3 臨界定数, 3 重点および標準沸点温度

純物質流体において,臨界点は気液平衡の限界点である.また3重点は固体,液体,気体が共存する 状態であり,そして標準沸点温度は大気圧下で沸騰する温度である.このような特徴的な物性は明確に 決定することが極めて重要である.とりわけ,臨界定数である臨界温度,臨界圧力,臨界密度を決定す ることは,飽和限界点を決定するだけでなく,状態方程式において,温度,圧力,密度を無次元化する 際に使用されたり,対応状態原理に用いられるなど,その決定は特に重要となる.

硫化水素における臨界定数に関する実測値情報を Table 4.2 に示す. 古くは Cardoso and Arni [92]によって 1912 年に臨界蛋白光による観察から臨界温度,臨界圧力の測定が行われている. しかしながら,臨界密度の測定は 1950 年に Reamer et al. [70]によって初めて行われた. Reamer et al.は飽和蒸気圧,飽和液体密度,飽和蒸気密度の測定と臨界点付近における詳細な $P\rhoT$ 測定を行い,これらより臨界点では $(\partial P/\partial \rho)_T = 0$ が成り立つという条件から臨界温度,臨界圧力,臨界密度を決定している. また Kay and Rambosek [83]も全く同様の方法を用いて臨界温度,臨界圧力,臨界密度を決定している. 1983 年にGoodwin [57]はこれらの情報から臨界点を決定している. Goodwin はまず,Cardoso and Arni [92]の値を参考にして臨界温度を373.37 K と決定した. そして,Reamer et al. [70]の気液平衡実測値より飽和蒸気 圧相関式を作成し、この式より臨界圧力を算出している.また,臨界密度についてはReamer et al.の飽和液体密度,ならびに飽和蒸気密度実測値より直径線の法則を用いて決定している.近年では 1995 年にJou et al. [93]が共沸混合物であるプロパン/硫化水素の2成分系混合流体の臨界曲線を臨界蛋白光より決定している.また,2000 年にはGuilbot et al. [94]によって硫化水素/硫化カルボニルの2成分系混合流体の気液平衡が測定され、そして臨界蛋白光およびメニスカスの消滅により臨界曲線が決定された.このように近年になって硫化水素ならびにその混合物に対する注目度がうかがえる.

Table 4.3 に 3 重点ならびに標準沸点温度における実測値情報を示す. 3 重点,標準沸点は Klemenc and Bankowski [78], Giauque and Blue [79], Clark et al. [80]によって測定されている. Goodwin はそれまでの 実測値情報から 3 重点ならびに標準沸点温度を決定している. Goodwin [57]は Gaiuque and Blue [79]の実 測値を参考にし,3 重点温度を決定した. また,3 重点圧力ならびに標準沸点温度は、いずれも作成した相関式より算出した値である.

Author	Year	Method ^c	Purity	<i>T</i> _c (K)	δT	P _c (MPa)	δP	$\rho_{\rm c}$ (mol·dm ⁻³)	δρ
Cardoso and Arni [92]	1912	1	n.a.	373.37	0.1 K	9.023	0.01 MPa	-	-
Cardoso [77]	1921	1	n.a.	373.37	0.1	9.008	0.01 MPa	-	
Reamer et al. [70]	1950	2	n.a.	373.51	n.a.	9.005	n.a.	10.23	n.a.
Bierlein and Kay [81]	1953	2	n.a.	373.50	n.a.	9.005	n.a.	10.24	n.a.
Kay and Brice [82]	1953	2	n.a.	373.05	n.a.	8.943	n.a.	10.17	n.a.
Kay and Rambosek [83]	1953	2	99.78 mol%	373.05	0.1K	8.943	n.a.	10.17	n.a.
Reamer et al. [84]	1953	2	n.a.	373.29	n.a.	9.005	n.a.	10.23	n.a.
Goodwin [57]	1983	3	-	373.37*	n.a.	8.96291*	n.a.	10.20*	n.a.
Jou et al. [93]	1995	1	99.5%	373.45	n.a.	9.000	n.a.	-	-
Guilbot et al. [94]	2000	1	99.5 vol.%	372.78	0.1 K	8.938	0.01 MPa	-	-

Table 4.2. 硫化水素の臨界点^{, b}

^a All temperature values in this table were converted to ITS-90.

^b Critical parameter values used for this study are denoted by *.

^c Method of decision of critical parameter was classified by three ways shown below.

1. Observation of the meniscus.

2. Pressure-volume-temperature relations: $(\partial P / \partial \rho)_T = 0$

3. Law of rectilinear diameters.

Author	Year	Property	<i>T</i> (K)	δT	P (MPa)	δP
Klemenc and Bankowski [78]	1932	$T_{ m tr}$	187.63	n.a.	0.0219	n.a.
Giauque and Blue [79]	1936	$T_{ m tr}$	187.70	n.a.	0.0232	n.a.
Clark et al. [80]	1951	$T_{ m tr}$	187.51	0.05 K	0.0227	n.a.
Goodwin [57]	1983	$T_{ m tr}$	187.67*	n.a.	0.0232	-
Klemenc and Bankowski [78]	1932	$T_{\rm nbp}$	212.50	n.a.	-	-
Giauque and Blue [79]	1936	$T_{\rm nbp}$	212.86	n.a.	-	-
Clark et al. [80]	1951	$T_{\rm nbp}$	213.01	0.05 K	-	-
Goodwin [57]	1983	$T_{\rm nbp}$	212.88*	n.a.	-	-

Table 4.3. 硫化水素の3重点および標準沸点温度^{, b}

^a All temperature values in this table were converted to ITS-90.

^b Triple point and normal boiling point temperatures used for this study are denoted by *.

4.1.4 その他の状態量

硫化水素における,比熱や音速といった誘導状態量に関する実測値はほとんど無い. Giauque and Blue [79]は飽和液体での定圧比熱 6 点を温度範囲 189-211 K において報告している. Giauque and Blue は飽和 蒸気圧を測定すると同時に定圧比熱を測定した. 同様の装置を用いて窒素の定圧比熱も測定している [95]. 窒素は他の研究者によって測定された定圧比熱実測値が豊富にあり,比較検討が行える. また, Span et al. [96]の窒素の状態方程式に対し,絶対値平均による偏差が 0.25%であることからも,Giauque and Blue [79]の実測値の信頼性について確認することが出来る. Clusius and Frank [89]も同様に飽和液体 での定圧比熱を温度範囲 194-209 K において測定している. Millar [88]は温度範囲 216-278 K,圧力 0.1 MPa の気体状態における定圧比熱を測定している.また,定積比熱を定圧比熱測定値から理論計算によ り算出している. Swamy and Rao [90]は温度範囲 188-213 K における液体の定圧比熱と定積比熱を理論 計算により報告している.

4.1.5 理想気体の定圧比熱

理想気体の定圧比熱 C_p^0 は、状態方程式から熱力学関係式により定圧比熱、定積比熱、音速、ジュール・トムソン係数、エンタルピー、エントロピー、内部エネルギーなどを算出する際に必ず必要となる。 例えば、圧力従属型の状態方程式から定圧比熱を算出する場合には式(4.1)による熱力学関係式を用い、 このとき C_p^0 が必要となる。内部エネルギーuやエンタルピーhを求める場合にも同様で、それぞれ理想 気体における内部エネルギーu⁰やエンタルピーh⁰が必要となる。しかし、u⁰やh⁰は、式(4.2)、(4.3)に示す 熱力学関係式より C_p^0 を用いて導出することができる。ここで C_p^0 は理想気体の定積比熱、Rはガス定数 を表す。

$$C_P = T \int_{-\infty}^{\nu} \left(\frac{\partial^2 P}{\partial T^2} \right)_{\nu} d\nu - T \left(\frac{\partial P}{\partial T} \right)_{\nu}^2 / \left(\frac{\partial P}{\partial T} \right)_{\nu} + C_P^0 - R$$
(4.1)

$$C_P^0 = \frac{dh^0}{dT} \tag{4.2}$$

$$C_V^0 = C_P^0 - R = \frac{du^0}{dT}$$
(4.3)

本研究で作成したHelmholtz関数型状態方程式の場合には、物性計算において理想項 ϕ^0 から熱力学関係 式より C_p^0 を求める.そこで ϕ^0 は C_p^0 を相関することによって作成する.これにより、状態方程式作成後 は、Helmholtz関数から他の熱力学諸性質を算出する際に、特別に C_p^0 を意識することなく、微分による 操作のみで比熱、内部エネルギー、エンタルピーといった物性を算出することができる. $C_p^0 \ge \phi^0$ の関 係は熱力学関係式より式(4.4)によって表される.ここで、下付きの"0"は、基準状態の温度 T_0 、圧力 P_0 に おける物性であることを表す.従って、 h_0^0 や s_0^0 はそれぞれ基準状態における理想気体のエンタルピー、 エントロピーを表し、 ρ_0 は基準状態における密度である. ρ_0 は $\rho_0 = P_0/RT_0$ により算出することができ る.

$$RT\phi^{0} = a(\rho, T) = \int_{T_{0}}^{T} C_{P}^{0} dT + h_{0}^{0} - RT - T \int_{T_{0}}^{T} \frac{C_{P}^{0} - R}{T} dT + RT [\ln(\rho / \rho_{0})] - Ts_{0}^{0}$$
(4.4)

このように C_p^0 は熱力学的に非常に重要な物性の 1 つであるが,これは分光学からの理論計算または 気相域の C_p ならびに音速Wの実測値より算出することができる.硫化水素の C_p^0 データの出典をTable 4.4 に示す. Jaeschke and Schley [26]は 1995 年に 19 種類に及ぶ天然ガス成分について式(4.5)により C_p^0 相関 式を作成している.ただし $B\sim J$ は係数である. Jaeschke and Schleyは硫化水素においては理論計算より導 出したJANAF [103]のデータを相関している.

$$\frac{C_P^0}{R} = B + C \left\{ \frac{D/T}{\sinh(D/T)} \right\}^2 + E \left\{ \frac{F/T}{\cosh(F/T)} \right\}^2 + G \left\{ \frac{H/T}{\sinh(H/T)} \right\}^2 + I \left\{ \frac{J/T}{\cosh(J/T)} \right\}^2$$
(4.5)

Table 4.4. 硫化水素における理想気体の定圧比熱

Author	Year	Number of data	Temperature Range <i>T</i> (K)
Millar [88]	1923	5	216 - 278
Cross [97]	1935	17	213 - 1800
Felsing and Drake [98]	1936	3	303 - 383
Barrow and Pitzer [99]	1949	8	298 - 1000
Evans and Wagman [100]	1952	14	298 - 1500
McBride and Gordon [101]	1961	42	100 - 6000
Baehr et al. [102]	1968	48	50 - 1300
JANAF [103]	1985	61	100 - 6000
TRC [104]	1993	29	50 - 5000

4.2 相関に用いた入力値

4.2.1 臨界定数, 3 重点および標準沸点温度

Helmholtz 関数型状態方程式の場合には臨界温度,臨界密度を用いて,独立変数である温度と密度を 無次元化する.従って,状態方程式に用いる臨界定数が異なると,状態曲面全体が変化することになる ため,臨界点の決定は非常に重要な問題である.そこで臨界点の決定には,報告されている実測値なら びに計算値の中で最も信頼性のある値を選ぶことになる.Table 4.2 に示したように,硫化水素の臨界温 度や臨界圧力は 1995 年の Jou et al. [93]や Guilbot et al. [94]など比較的最近測定されたものがあるが,臨 界密度の実測値は最も新しいもので 1953 年の Reamer et al. [84]であり,さらなる実測値報告が待たれる. また,臨界点は気液平衡状態の限界点であるから気液平衡実測値との連続性が認められなければならな い.1983 年の Goodwin [57]の報告以後臨界密度の報告はなく,また臨界点近傍における飽和液体,飽和 蒸気密度実測値も報告されていない.また,Goodwinの臨界点は気液平衡実測値との連続性も考慮した 上で決定されていることから,これまでの報告の中で最も信頼性が高いと考えられる.そこで,本研究 では Goodwin [57]の臨界温度,臨界圧力,臨界密度を採用した.ただし,臨界温度については ITS90 に 変換して用いた.また,3重点温度および標準沸点温度もGoodwin の報告以後測定値が報告されていな いことから,これらに関しても Goodwin [57]の値を用いた.

4.2.2 PρT 実測値

硫化水素の PpT 実測値について,最も注目すべき点は,2001 年というごく最近に Ihmels and Gmehling [76]によって,Fig. 4.1 の実測値分布から分るように,広範囲にわたる実測値が報告されたことである. 従って,より信頼性の高い状態方程式が作成できるようになった.本研究では入力値として Ihmels and Gmehlingの実測値と Straty [73]の実測値を主とし,重率を大きくした.Straty [73]の実測値は Goodwin [57] の状態方程式においても入力値とされている.最小二乗法では,重率を大きくすることでその入力値に 対し,相関を良くすることができる. Ihmels and Gmehling と Straty の実測値が重なる気相域の領域につ いては,Straty の実測値に合わせて相関を行った.その理由は Straty は他の物質に対しても状態方程式 作成における入力値として選定されているという実績があること,また Straty の測定はバーネット法で あるが,Ihemls and Gmehling の測定は振動管密度計であり,基準とする物質によって測定精度が変わっ てしまうこと,Ihmels and Gmehling の実測値に合わせて相関を行うと,気相域で系統的な偏差が見られ たことなどが挙げられる.その他の実測値については,Ihmels and Gmehling および Straty の実測値と重 なる領域については,入力値として使用しておらず,重ならない領域であっても,重率を低くして用い た.

Goodwin は Reamer et al. [70]と Straty の実測値を中心に相関を行っている. Lewis and Fredericks [71]や Rau and Mathia [72]の実測値は重率を低くして用いている. また, Wright and Maass [69]の実測値は相関 自体に用いていない. Lewis and Fredericks は温度測定精度が±0.5 K であり, Rau and Mathia の実測値は, 温度測定精度が明確には記されていないが, 熱電対の精度が±2 K 程度ある. 従って彼らの実測値は温度 制御幅が多少大きいように思われる. また, Reamer et al.の実測値は水銀変容法で測定しているので水銀 と硫化水素の反応の影響が懸念される.

4.2.3 飽和蒸気圧, 飽和液体密度および飽和蒸気密度

本研究では飽和蒸気圧,飽和液体密度ならびに飽和蒸気密度においてその実測値より相関式を作成し, これより算出した値を状態方程式作成の入力値とした.従って,相関式作成の段階で入力値の選定が必 要となる.本研究で作成した飽和蒸気圧相関式,飽和液体密度相関式,飽和蒸気密度相関式は,飽和に おける状態量の算出や状態方程式の入力値としてだけでなく,状態曲面計算の初期値として用いること ができるなど,非常に重要な式である. 気液平衡実測値は Goodwin の状態方程式作成以後, Cubitt et al. [87]によって低温における飽和液体密 度が測定されているだけである.従って、本研究では相関式作成に用いる入力値ならびに重率に際し, Goodwin の論文を参考にした.飽和蒸気圧では, Reamer et al. [70], Giauque and Blue [79], Clarke and Glew [85]のデータを入力値として使用した.また,飽和液体密度では Klemenc and Bankowski [78], Reamer et al. [70], Clarke and Glew [85]のデータを入力値とした.そして飽和蒸気密度では Clarke and Glew [85]の 計算値と Goodwin が作成した virial 式からの計算値を入力値とした.相関式作成に関して,Goodwin は Reamer et al. [70]の実測値を用いているが,Reamer et al.は水銀変容法を用いているため,反応の影響で ばらつきが大きく,その実測値の多くを十分ではないデータとして相関式作成には使用していない. Goodwin が用いた入力値を検討すると,飽和液体密度,飽和蒸気密度において,325 K以上の温度につ いては相関の際に実測値を用いていないことが分る.従って,臨界温度付近において,相関式より計算 される飽和液体密度,飽和蒸気密度は大きな不確かさを持つと考えられる.このような状況から,硫化 水素は気液平衡において,より信頼性の高い実測値情報の報告が待たれる.式(4.6)-(4.8)に本研究で作成 した飽和蒸気圧相関式,飽和蒸気密度相関式,飽和液体密度相関式を示す.飽和蒸気圧は Wagner 型の 飽和蒸気圧相関式によって作成した.Table 4.5 に式(4.6)-(4.8)の係数を示す.また式中の臨界定数は Table 4.6 に示した.

$$\ln\frac{P_{\rm S}}{P_{\rm c}} = \frac{1}{1-x} \left(A_1 x + A_2 x^{1.5} + A_3 x^2 + A_4 x^{4.5} \right) \tag{4.6}$$

$$\ln \frac{\rho^{\rm V}}{\rho_{\rm c}} = B_1 x^{0.354} + B_2 x^{5/6} + B_3 x^{3/2} + B_4 x^{5/2} + B_5 x^{25/6} + B_6 x^{47/6}$$
(4.7)

$$\ln \frac{\rho^{\rm L}}{\rho_{\rm c}} = C_1 x^{0.354} + C_2 x^{1/2} + C_3 x^{5/2} \tag{4.8}$$

ここで、
$$x=1-T/T_c$$
である.

i	A_i	B_i	C_i	D_i
1	- 6.423889	-2.001663	2.122841	0.1973031
2	1.699405	-3.339645	-0.8907727	-0.1594372
3	-1.211219	-0.6781599	0.1148276	-0.0570357
4	-2.217591	-13.33131		0.0066157
5		- 3.988066		0.0072839
6		-75.23041		-0.0000702
7				-0.0042857

Table 4.5. 式(4.6)-(4.9)における係数

4.2.4 その他の状態量

硫化水素は Table 4.1 に示したように比熱や音速といった誘導状態量における実測値情報がほとんどない.本論文では 4.1.4 節において述べたが,窒素の測定においてもわかるように実測値の信頼性が高いと考えられる Giauque and Blue [79]による飽和液体での定圧比熱 6 点を入力値として加えた. Millar [88]は気体の定圧比熱を測定し,同様にメタンも測定しているが,Setzmann and Wagner [15]の IUPAC 式には入力値として使用されてはいない. このことからも本研究では Millar [88]のデータを入力値としては用いなかった.

4.2.5 補助的な状態方程式

一般的に、大気圧以下の気相域は試料の容器への吸着などの影響が無視できなくなるなど測定が困難

となる. そこで本研究では、気相域の $P\rhoT$ 実測値より、実測値のない低密度域において高い補外性を有 しているとされる virial 状態方程式を作成し、これからの計算値を入力値とした. virial 状態方程式の作 成には式(4.9)に示す Zhang et al. [67]による式形を用いた. Zhang et al.の式形は Miyamoto and Watanabe [17-19]によって、プロパン、ノルマルブタン、イソブタンといった天然ガス成分に適用され、良好な成 果を得ている. 第4 virial 係数まで使用する場合には、 $\rho < (3/4)\rho_c$ の密度領域まで有効であるとされ、 従って本研究では $\rho < (3/4)\rho_c$ かつ臨界温度,臨界圧力以下における Wright and Maass [69] と Reamer et al. [70]の気相域 $P\rhoT$ 実測値を用いて virial 状態方程式を作成した. また、virial 係数の実測値は Dymond and Smith [48]によってまとめられている. しかしながら、高温における実測値は存在しない. 従って、本研 究では第2 virial 係数実測値のない高温の領域では Goodwin の値に合わせるように相関を行った. Table 4.5 に式(4.9)の係数を示す. また、Fig. 4.3 に $P\rhoT$ 実測値との偏差, Fig. 4.4(a)に第2 virial 係数の挙動, Fig. 4.4(b)に第3 virial 係数の挙動を示す. 式(4.9)は相関した Wright and Maass [69] と Reamer et al. [70]の 気相域 $P\rhoT$ 実測値に対し、概ね±0.5%の圧力偏差で一致している.また、第2 virial 係数は Reamer et al. [70] の実測値を用いて得られた Dymond and Smith [48]による第2 virial 係数に対して高い相関性を示し、挙動 も妥当であることが確認できる.また、第3 virial 係数も妥当な挙動を示している.

$$\frac{P}{\rho RT} = 1 + \left[D_1 + D_2 T_r^{-1} + D_3 \exp(T_r^{-1}) \right] \rho + \left[D_4 + D_5 T_r^{-5} + D_6 T_r^{-12} \right] \rho^2 + D_7 T_r^{-2.25} \rho^3$$
(4.9)

ここで $T_r = T/T_c$, Rはガス定数を表しR = 8.314472 J·mol⁻¹·K⁻¹[105]である.

4.3 状態方程式の関数形と係数の数値

本研究で作成した硫化水素のHelmholtz関数型状態方程式の式形を式(4.10)-(4.12)に示す. 剰余項は 23 項によって作成された. 硫化水素の臨界定数および基本物性をTable 4.6 に示す. 式(4.11), (4.12)に用いる 係数をTable 4.7, 4.8 に示す. また,式(4.11)においてエンタルピーならびにエントロピーの基準点を決定 する必要があるが,本研究ではメタンのIUPAC式[20]と同様に,理想気体 298.15 K, 0.1 MPaの状態でエントロピーが 0, 298.15 Kでエンタルピーが 0 になるようにこの基準点を決定している. この決定は式 (4.11)中の係数f₁, f₂に反映される.

$$\phi(\tau,\delta) = a / RT = \phi^0(\tau,\delta) + \phi^r(\tau,\delta)$$
(4.10)

$$\phi^{0}(\tau,\delta) = \ln(\delta) + f_{1} + f_{2}\tau + f_{3}\ln(\tau) + \sum_{i=4}^{5} f_{i}\ln\{1 - \exp(-g_{i}\tau)\}$$
(4.11)

$$\phi^{\mathrm{r}}(\tau,\delta) = \sum_{i=1}^{11} n_i \tau^{t_i} \delta^{d_i} + \sum_{i=12}^{16} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta) + \sum_{i=17}^{19} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^2) + \sum_{i=22}^{21} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^3) + \sum_{i=22}^{23} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^4)$$
(4.12)

ここで、 $\tau = T_c/T$, $\delta = \rho/\rho_c$, *R*はガス定数を表し*R* = 8.314472 J·mol·K⁻¹[105]である.

分子式	H_2S
モル質量[23], kg·mol ⁻¹	0.0340819
臨界圧力[57], MPa	8.96291
臨界密度[57], mol·dm ⁻³	10.20
臨界温度[57], K	373.37
標準沸点温度[57], K	212.88
3 重点温度[57], K	187.67

Table 4.6. 硫化水素の基本物性

Table 4.7. 式(4.11)の係数

i	fi	g_i
1	7.881037	-
2	- 3.209860	-
3	3.000000	-
4	0.9767422	4.506266
5	2.151898	10.15526

i	n _i	<i>d</i> _i	t _i
1	0.1545780×10^{0}	1	0.241
2	$-0.1717693 imes 10^{1}$	1	0.705
3	-0.1595211×10^{1}	1	1.000
4	0.2046589×10^{1}	2	0.626
5	-0.1690358×10^{1}	2	1.120
6	0.9483623×10^{0}	2	1.630
7	$-0.6800772 \times 10^{-1}$	3	0.210
8	0.4372273×10^{-2}	4	3.080
9	0.3788552×10^{-4}	8	0.827
10	$-0.3680980 imes 10^{-4}$	9	3.050
11	0.8710726×10^{-5}	10	3.050
12	0.6886876×10^{0}	1	0.110
13	0.2751922×10^{1}	1	1.070
14	-0.1492558×10^{1}	1	1.950
15	0.9202832×10^{0}	2	0.142
16	-0.2103469×10^{0}	5	2.130
17	0.1084359×10 ⁻²	1	4.920
18	0.3754723×10^{-1}	4	1.750
19	$-0.5885793 \times 10^{-1}$	4	3.970
20	$-0.2329265 \times 10^{-1}$	3	11.800
21	$-0.1272600 \times 10^{-3}$	8	10.000
22	$-0.1336824 \times 10^{-1}$	2	9.830
23	0.1053057×10^{-1}	3	14.200

Table 4.8. 式(4.12)の係数

4.4 作成した状態方程式の評価

4.4.1 理想気体の定圧比熱

Fig. 4.5 に本状態方程式からの理想気体定圧比熱における偏差を示す. Fig. 4.5(a)は-1%から+1%, Fig. 4.5(b)は-0.1%から+0.1%の範囲で示している.本状態方程式は Jaeschke and Schley [26]の相関式に対して±0.02%以内で一致しており,また JANAF [103]のデータに対しても同様に±0.02%以内で一致している. McBride and Gordon [101]および Baehr et al. [102]に対しては,温度が上がると偏差も大きくなる傾向にあり,1000 K では 0.3%の偏差がある. TRC [104]とは 1.9%以内で一致している. Cross [97]の値は本状態方程式よりも小さく,最大で-0.8%の偏差がある.また,Evans and Wagman [100]に対しては最大で+0.6%の偏差を示している. Millar [88], Felsing and Drake [98]と Barrow and Pitzer [99]に対しては±1%より大きな偏差を示す. Goodwin [57]は Baehr et al. [102]のデータをもとに作成しているが,その結果本状態方程式とは+0.1%から+0.3%大きい偏差を示している.

Fig. 4.5. 本状態方程式からの理想気体定圧比熱における偏差

4.4.2 PpT 性質

本状態方程式と PpT 実測値との偏差について述べる. 臨界密度以上の領域を液相として密度偏差をと り,臨界密度以下の領域を気相として圧力偏差をとった. Fig. 4.6 に気相域における本状態方程式からの 圧力偏差を, Fig. 4.7 に液相域における本状態方程式からの密度偏差を温度領域ごとに詳細に示す.まず 気相域について検討を行う.本状態方程式は気相域において Straty [73]の実測値に対し相関を行った. Straty [73]は気相域において温度範囲 493-523 K, 圧力範囲 31 MPa までを測定している.本状態方程式 は 20 MPa までの領域で±0.2%で Straty [73]の実測値を再現している. 20 MPa 以上の領域では圧力が高く なると偏差が大きくなる傾向が見られるが、しかしながら 420-520 K の温度領域において 1 点を除いて ±0.32%で再現しおり、420-520 Kの温度領域においても2点を除いて±0.3%以内で良好な一致を示して いる. Ihmels and Gmehling [76]は気相域に対して温度範囲 383-548 K, 圧力範囲 10-35 MPa で測定を行 っている.本研究では Straty [73]の実測値に対し相関を行った結果, Ihmels and Gmehling [76]の実測値と は、気相域において 20 MPa 付近で極大値を持つような系統的な偏差が見られ、全体として約 1%から 3%のずれが見られた. Ihmels and Gmehling [76]とは最大で 3.0%の偏差がある. Wright and Maass [69]は 温度範囲 238-320 K, 圧力範囲 0.03-0.4 MPa で測定している.本状態方程式は Wright and Maass [69]の実 測値に対し, 圧力偏差-0.13%から+0.26%で良好に一致している. Reamer et al. [70]の気相域における測 定範囲は温度 278-444 K, 圧力 0.1-19 MPa で, 1 MPa 以下の低圧域においては非常に一致しているが, 圧力の増加に伴い偏差が拡大し、10 MPa 付近で最も偏差が大きくなるような傾向を示している.しかし ながら全体として-1.2%から+1.4%で一致している. Rau and Mathia [72]による温度範囲 342-760 K, 圧力 範囲 6.0-60.0 MPa の実測値に対し、本状態方程式からの偏差は-3.6%から+11.7%ある. また、Lewis and Fredericks [71]の温度範囲 393-493 K, 圧力範囲 10-28 MPa の実測値に対し、±7.8%の本状態方程式から の偏差が見られた. Liu et al. [74]の測定は温度範囲 300-500 K, 圧力範囲 1.0-28 MPa である. また, Bailey et al. [75]の測定は温度範囲 284-501 K, 圧力範囲 0.2-22 MPa である. Liu et al.と Bailey et al.は同じ研究 グループで、本状態方程式からの圧力偏差は似たような傾向を示しており、±2.2%以内でその実測値の ほとんどを再現している.

次に液相域について述べる.本状態方程式は液相域において Ihmels and Gmehling [76]の実測値に対し

相関を行った. Ihmels and Gmehling [76]による温度範囲 274-548 K, 圧力範囲は 40 MPa までの実測値に 対し,臨界点近傍を除き,密度偏差-4.8%から+0.22%で一致している.相関過程において Ihmels and Gmehlingの液相域における PpT 実測値からの補外性と飽和液体密度との間に一貫性が見られなかった. 本研究では気液平衡性質を重視し、飽和液体密度の方に相関を行った.その結果、飽和液体密度付近で は密度偏差が大きくなる傾向にある.これに伴い, 330-350 K の温度範囲では 3 点の実測値が Fig. 4.7 に示した±1%の偏差範囲外にある.特に臨界温度に近い領域では PpT 実測値と飽和液体密度の違いによ る影響が大きく,310-373 Kの温度範囲において8点が1%の偏差範囲外にある.このような飽和付近の 数点を除くと概ね±0.7%以内で本状態方程式は Ihmels and Gmehling [76]の実測値を再現している. Straty [73]の測定は液相において温度範囲 493-523 K, 圧力範囲 38 MPa までで, Fig. 4.7 の 470-520 K および 520-760 K における偏差図から分かるように, Ihmels and Gmehling [76]の実測値より約 2%程度大きな偏 差が見られた. Reamer et al. [70]による測定は、温度範囲 278-444 K, 圧力範囲 69 MPa までで、本状態 方程式からの密度偏差は-2.4%から+2.0%であった. 270-290 K および 310-330 K における偏差図から Reamer et al. [70]の測定結果は Ihmels and Gmehling [76]の測定結果と系統的な偏差が見てとれる. Rau and Mathia [72]とは温度範囲 380-553 K 圧力範囲 60 MPa までの領域に対し,本状態方程式からの密度偏差は -3.3%から+2.5%であった. Lewis and Fredericks [71]の測定領域は温度範囲 373-493 K 圧力は 171 MPa ま でで、-2.0%から最大で+16%の偏差で本状態方程式は再現する. しかし、50 MPa 以上の高圧域では、 ±1.0% 以内で良好な一致を示している.

4.4.3 気液平衡性質

本状態方程式からの飽和における偏差を Fig. 4.8-4.10 に示す. Fig. 4.8 は飽和蒸気圧における偏差であ る.式(4.6)による飽和蒸気圧相関式作成には Reamer et al. [70], Giauque and Blue [79], Clarke and Glew [85] のデータを入力値として使用し, Helmholtz 関数型による本状態方程式作成時にはこの飽和蒸気圧相関 式からの計算値を入力値として使用した.本状態方程式は 1 点を除いて Clarke and Glew [85]に対して ±0.2%で一致している. Giauque and Blue [79]に対しては, Clarke and Glew [85]と重ならない領域につい ては±0.2%で一致しており,重なる 200 K 以下の領域では±0.4%で一致している.一般的に標準沸点温 度 212.88 K 以下では値の絶対値が小さいために相対偏差で表すと値が大きくなる. Reamer et al. [70]の 実測値に対しては,全体的にばらつきが大きいが,本状態方程式は 5 点を除いて±0.5%で一致している. Kay and Brice [82]および Kay and Rambosek [83]とは概ね±0.5%で一致している. Clark et al. [80]とは-0.4%から-1.5%の偏差を示す. Cardoso [77]は 273-373K の温度領域で測定しているが,低温へ行くほど本状 態方程式との偏差が徐々に大きくなり,288 K では最大-2.5%の偏差がある. Klemenc and Bankowski [78] とは最大偏差+2.8%, Bierlein and Kay [79]とは最大偏差+3.3%である. 式(4.6)による飽和蒸気圧相関式は Goodwin [57]の状態方程式と $\pm 0.1\%$ で一致しており,本状態方程式は、この相関式と $\pm 0.2\%$,Goodwin [57] の状態方程式と $\pm 0.1\%$ で一致している. Starling [56]の状態方程式とは大きな系統偏差が見てとれる.

Fig. 4.9 は本状態方程式からの飽和蒸気密度における偏差である.式(4.7)に示した飽和蒸気密度相関式には Clarke and Glew [85]を入力値として使用している.本状態方程式作成時には飽和蒸気圧同様この相関式から得られた計算結果を入力値として使用した.本状態方程式から計算した飽和蒸気密度の値は Clarke and Glew [85]の計算値に対して±1.0%で一致している. Reamer et al. [70], Bierlein and Kay [81], Kay and Rambosek [83], Reamer et al. [84]による水銀変容法で得られた 325 K 以上の実測値に対し、本状態方程式では±5.0%程度の偏差がある.また偏差は系統的にプラス側に分布している.本状態方程式での入力値は 1983 年までの研究をまとめた Goodwin [57]の実測値選定を参考にしている.本状態方程式では 325 K 以上の温度については高精度実測値が存在しないことから入力値として加えていないため,既存の実測値とは比較的大きな偏差を示している.臨界点近傍では入力値を用いていないことから不確かさが大きいものと推定される.これは後述する飽和液体密度に関しても同様である.式(4.7)の相関式は Clarke and Glew [85]の計算値に対して概ね±0.2%で一致しており,Goodwin [57]の状態方程式と±0.1%で一致している.本状態方程式は式(4.7)の相関式と臨界点近傍を除き,相関式,Goodwin の状態方程式とも±1%

で一致している.

最後に Fig. 4.10 は飽和液体密度における偏差である.式(4.8)における飽和液体密度相関式は, Klemenc and Bankowski [78], Reamer et al. [70], Clarke and Glew [85]のデータを入力値とした.325 K 以上の温度 については相関の際に実測値を用いていない.本状態方程式は Clarke and Glew [85]に対して±0.2%, Cubitt et al. [87]に対して±0.06%から±0.35%の偏差で再現している.また, Klemenc and Bankowski [78]とは±0.03%以内で一致している.本状態方程式は Bierlein and Kay [81]とは±1%から=2%, Kay and Rambosek [83]とは±2%から=1%, Reamer et al. [70]とは=2%の,一連のマイナス方向への系統的な偏差が見られる. Starling [56]の状態方程式はこれらの臨界点付近の実測値に対して比較的一致している.式(4.8)による相 関式は Klemenc and Bankowski [78]と±0.03%以内で一致し、Clarke and Glew [85]に対して±0.2%で一致し, Goodwin [57]の状態方程式と±0.2%で一致している.本状態方程式は式(4.8)の相関式ならびに Goodwin [57]の状態方程式と±0.2%で一致している.

4.4.4 その他の状態量

Fig. 4.11 に低温域における本状態方程式より計算した定圧比熱の状態曲面を実測値とともに示す.本 状態方程式は Giauque and Blue [79]および Clusius and Frank [89]の実測値と良く一致している.本状態方 程式作成には Giauque and Blue [79]の実測値を入力値として使用した. Fig. 4.12 は Giauque and Blue [79] および Clusius and Frank [89]の本状態方程式からの偏差を示したものである. Giauque and Blue とは±0.3% で, Clusius and Frank とは±2%で一致している. Millar [88]および Swamy and Rao [90]とは Fig. 4.11 に示 したように大きな差が見られる. Swamy and Rao [90]とは+11%から+19%の偏差があり, Millar [88]とは +8%から+21%の偏差がある. Fig. 4.13 に Fig. 4.11 同様,低温域における本状態方程式より計算した定積 比熱の状態曲面を実測値とともに示す. Millar [88]とは+11%から+27%, Swamy and Rao [90]とは+14%か ら+17%の偏差があった.

次に蒸発熱 Δh について述べる.本研究では標準沸点温度において式(4.13)に示すClausius-Clapeyron式を 用いて蒸発熱を計算した.ここで dP_S / dT は式(4.6)の飽和蒸気圧相関式より計算している.計算より得 られた値は 18.68 kJ·mol⁻¹であり,これはGiauque and Blue [79]の値 18.69±0.02 kJ·mol⁻¹と非常に良く一致 している.

$$\Delta h = T \frac{dP_{\rm S}}{dT} \left(\frac{1}{\rho^{\rm V}} - \frac{1}{\rho^{\rm L}} \right) \tag{4.13}$$

さらに式(4.10)より計算した標準沸点におけるエンタルピー差は18.63 kJ·mol⁻¹であり,これはGiauque and Blue [79]の値よりも 0.06 kJ·mol⁻¹小さい. Frank and Clusius [106]は蒸発熱を 188.7 Kにおいて 19.59 kJ·mol⁻¹ と報告しており,本状態方程式からの計算結果は 19.55 kJ·mol⁻¹であるから 0.2%で一致している.この結 果は,標準沸点温度ならびに 188.7 Kにおいて dP_{s}/dT ,および本状態方程式からの計算された ρ^{v} , ρ^{L} との 間に熱力学的な一貫性があることを示している.

本研究では熱力学関係式を用いて、定圧比熱 C_P 、定積比熱 C_V 、音速,W、ジュール・トムソン係数 μ を188 Kから800 K、100 MPaまでにおいて計算した. これらの結果をFig. 4.14 - 4.17 に示す. Fig. 4.17 においては、350 K以下の低温域におけるジュール・トムソン係数の挙動も合わせて示した. また、Fig. 4.18 には、本状態方程式より計算した第2、第3 virial係数の挙動を示す. これらの挙動は物理的に妥当な状態曲面を示している.

4.5 補外域の挙動

Deiters and de Reuck [107]は状態方程式公表のガイドラインに関する提言を IUPAC によるテクニカル レポートとして 1997 年に報告している.これによると、補外域における状態方程式の挙動を調べるた めに、理想気体と同じ状態における特徴的な曲線を描くことが望ましいとある. これらは Ideal curves と呼ばれる.本研究では、作成した状態方程式における補外域での挙動が物理的に妥当であることを明 らかにするため、Ideal curve [式(4.14)], Boyle curve [式(4.15)], Joule-Thomson inversion curve [式(4.16)], Joule inversion curve [式(4.17)]の4つの Ideal curves を本状態方程式より計算し、Fig. 4.19 に示した.融解 曲線は Goodwin [57]の相関式より計算した. これら4つの曲線は、有効な実測値領域よりもはるかに高 い温度・圧力領域での挙動であるが、状態方程式の補外域での有効性を示す重要な指標であって、Fig. 4.19より本状態方程式は妥当な挙動を示していることがわかる.

$$\left(\frac{\partial \phi^{\mathrm{r}}}{\partial \delta}\right)_{\mathrm{r}} = 0 \tag{4.14}$$

$$\left(\frac{\partial \phi^{\mathrm{r}}}{\partial \delta}\right)_{\tau} + \delta \left(\frac{\partial^2 \phi^{\mathrm{r}}}{\partial \delta^2}\right)_{\tau} = 0 \tag{4.15}$$

$$\left(\frac{\partial \phi^{\mathrm{r}}}{\partial \delta}\right)_{\tau} + \delta \left(\frac{\partial^2 \phi^{\mathrm{r}}}{\partial \delta^2}\right)_{\tau} + \tau \left(\frac{\partial^2 \phi^{\mathrm{r}}}{\partial \delta \partial \tau}\right) = 0 \tag{4.16}$$

$$\left(\frac{\partial^2 \phi^{\rm r}}{\partial \delta \partial \tau}\right) = 0 \tag{4.17}$$

4.6 既存の状態方程式との比較

本研究では、これまでに報告されている硫化水素における他の状態方程式、Starlingの状態方程式[56] と Goodwinの状態方程式[57]について、統計的および状態曲面における挙動から比較検討を行った. Table 4.9 は、*P*ρT 性質における実測値との比較を AAD、BIAS、SDV、RMS、MAX%の 5 つの基準によって統計的に示したものである. AAD から RMS は式(4.18)-(4.21)によって算出されている. Table 4.9 より本状態方程式は統計的な側面から他の2 つの状態方程式よりも実測値との再現性に優れていることを示している.

$$AAD = \frac{1}{n} \sum_{i=1}^{n} \left| \% \Delta X \right|$$
(4.18)

$$BIAS = \frac{1}{n} \sum_{i=1}^{n} (\% \Delta X)$$
(4.19)

$$SDV = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\% \Delta X - BIAS)^2}$$
 (4.20)

RMS =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\% \Delta X)^2}$$
 (4.21)

ここで,

$$\% \Delta X = 100 \left(\frac{X_{\exp} - X_{cal}}{X_{cal}} \right)$$
(4.22)

である.

また Fig. 4.20, 4.21 は, Goodwin [57]と Starling [56]の各状態方程式から計算した定積比熱の挙動を示し

たものである.気相域においてはほとんどその挙動の違いはみられないが,液相はかなり異なっている. Goodwin の状態方程式においては、350 K 付近で大きく極小値をもつような挙動を示している. Starling [56]は論文中に C_p^0 における報告がなかったため、本状態方程式より算出した C_p^0 を用いて状態曲面を示 したが、Starlingの状態方程式では理想気体の定圧比熱よりも小さい値を示している.これより本研究 で作成した状態方程式は状態曲面の妥当性からもその優位性がうかがえる.

4.7 本状態方程式の不確かさ

これまでに述べた各種実測値情報に対する本状態方程式の再現性を検討し,実測値との比較を通じて 不確かさを見積もった. *PpT* 性質において,液相域では Ihmels and Gmehling [76]との密度偏差より密度 算出の不確かさ 0.7%と見積もった.また気相域では Straty [73]との圧力偏差より圧力算出の不確かさ 0.3%と見積もった.飽和に関しては,実測値が比較的豊富な飽和蒸気圧に対し,入力値とした Reamer et al. [70], Giauque and Blue [79], Clarke and Glew [85]の実測値との比較から 0.2%と見積もった.そして液 相域における定圧比熱では Giauque and Blue [79]との比較から不確かさ 1%と見積もった.本状態方程式 は実測値における報告領域から 3 重点温度(187.67 K)-760 K, 170 MPa までの領域において成立するもの と考える.

Fig. 4.6. PpT 実測値気相域における本状態方程式からの圧力偏差

P, MPa

Fig. 4.7. PpT 実測値液相域における本状態方程式からの密度偏差

Fig. 4.10. 本状態方程式からの飽和液体密度偏差

373.37

300

T, K

-1

200

Fig. 4.11. 低温域における本状態方程式から計算した定圧比熱の状態曲面

Fig. 4.12. 定圧比熱における本状態方程式からの実測値の偏差

Fig. 4.13. 低温域における本状態方程式から計算した定積比熱の状態曲面

Fig. 4.15. 本状態方程式から計算した定積比熱の状態曲面

Fig. 4.16. 本状態方程式から計算した音速の状態曲面

Fig. 4.17. 本状態方程式から計算したジュール・トムソン係数の状態曲面

Fig. 4.19. 本状態方程式から計算した Ideal curves

---- Goodwin (1983) ---- The present EOS Fig. 4.20. Goodwin [57]および本状態方程式から計算した定積比熱の状態曲面

Fig. 4.21. Starling [56]および本状態方程式から計算した定積比熱の状態曲面

Author ^b	Voor	Dhasa	No. of		The	present	EOS			Goodw	vin EOS	[57]			Starli	ng EOS	[56]	
Aution	Ical	1 nase	Data	BIAS	AAD	SDV	RMS	MAX%	BIAS	AAD	SDV	RMS	MAX%	BIAS	AAD	SDV	RMS	MAX%
Wright and Maass [69]	1931	V	54	0.05	0.08	0.09	0.10	0.26	-0.13	0.21	0.71	0.71	-4.04	-0.17	0.17	0.09	0.19	-0.43
Reamer et al. [70]	1950	V	152	0.07	0.25	0.38	0.38	1.36	-0.12	0.41	0.56	0.57	2.13	-0.48	0.66	0.87	0.99	-3.35
Lewis and Fredericks [71]	1968	V	18	- 1.40	2.48	3.21	3.42	- 7.79	0.10	2.99	3.73	3.63	- 7.17	- 3.86	3.86	2.12	4.37	-7.71
Rau and Mathia [72]	1982	V	48	1.98	3.06	3.61	4.09	11.74	3.20	3.24	2.60	4.10	11.67	- 1.28	5.53	6.64	6.69	- 14.39
Straty* [73]	1983	V	106	- 0.05	0.10	0.26	0.26	-2.16	-0.07	0.58	0.75	0.75	1.87	-0.07	0.87	1.63	1.62	-7.35
Liu et al. [74]	1986	V	70	- 1.16	1.16	0.74	1.37	-4.25	- 1.25	1.67	1.63	2.04	-4.09	- 1.99	1.99	1.52	2.49	- 7.01
Bailey et al. [75]	1987	V	78	- 0.94	1.00	0.78	1.22	-4.42	- 1.08	1.24	1.32	1.70	-4.80	- 1.34	1.34	1.07	1.71	-5.67
Ihmels and Gmehling [76]	2001	V	111	1.37	1.37	0.63	1.50	2.98	1.51	1.84	1.56	2.16	3.82	- 0.01	1.95	2.58	2.57	-7.36
Reamer et al. [70]	1950	L	123	0.02	0.37	0.52	0.52	-2.37	- 0.25	0.40	0.61	0.66	-3.12	2.77	3.11	2.79	3.93	9.89
Lewis and Fredericks [71]	1968	L	88	0.70	0.96	2.35	2.44	15.66	0.17	1.01	2.00	1.99	12.40	7.35	7.35	2.20	7.67	14.78
Rau and Mathia [72]	1982	L	19	1.20	1.70	1.41	1.83	-3.33	0.55	1.09	1.16	1.26	- 3.31	9.82	9.82	3.23	10.31	13.44
Straty [73]	1983	L	6	0.82	0.99	0.69	1.03	1.47	- 1.25	1.25	0.58	1.36	-2.00	8.34	8.34	0.90	8.38	9.60
Liu et al. [74]	1986	L	36	3.05	3.06	2.29	3.79	7.02	2.03	2.76	2.55	3.23	6.33	9.83	9.83	3.25	10.34	16.18
Bailey et al. [75]	1987	L	8	2.74	2.81	2.67	3.71	7.09	1.49	2.50	3.08	3.24	6.43	7.39	8.67	6.41	9.52	16.26
Ihmels and Gmehling* [76]	2001	L	357	-0.31	0.34	0.88	0.93	- 11.09	- 0.69	0.69	1.08	1.28	- 12.41	3.25	3.46	3.26	4.60	- 14.89

Table 4.9. PpT 性質における 3 つの状態方程式からの統計手法による偏差

^a Note that deviations of $P\rho T$ data are given with respect to densities in the liquid phase, whereas with respect to pressures in the vapor phase. ^b Data used as input data are denoted by *.

5 メタン/硫化水素2成分系混合流体のHelmholtz 関数型状態方程式

5.1 既存の実測値情報

メタン/硫化水素 2 成分系混合流体は気液液 3 相平衡や臨界曲線の発散といったような特異な挙動を 示し, Type III に分類される.以下にこの 2 成分系における実測値情報について述べる.一般的に混合 物の実測値情報は純物質に比べ少ないが,特にメタン/硫化水素 2 成分系混合流体の場合には,実測値 情報が非常に限られている現状にある.本研究では約 1900 点の実測値情報を収集した.収集した実測 値情報を Table 5.1 に示す.また,本論文中で使用する組成はメタンモル組成とする.

5.1.1 PpTx 性質

Fig. 5.1 に*PpTx*性質における実測値分布を*T-p*線図上に示す.メタン/硫化水素 2 成分系混合流体の *PpTx*測定は1951年, Reamer et al. [108]によって初めて行われた. Reamer et al.は水銀変容法により 9 組 成, 1127点もの*PpTx*実測値を報告している.また, *PpTx*性質のみならず, 76点の (*T*, *P*, ρ^{L} , ρ^{V} , *x*, *y*) VLE データ, 9点の臨界点を報告している.測定精度は温度 11 mK, 圧力 0.05%, 密度 0.1%, 組成 0.003 モ ル組成と報告している.温度範囲 278-444 K, 圧力範囲 1.4-69 MPa, 組成範囲 0.1-0.9 モル組成である. Bailey et al. [75]は1987年に0.5073モル組成の*PpTx*性質においてバーネット法により 65点測定している. 測定精度は,温度 10 mK, 圧力 0.1%,密度 1%, 組成 0.01%と報告している.温度範囲 299-501 K, 圧 力は 38 MPaまでの領域において測定が行われた.メタン/硫化水素 2 成分系混合流体の*PpTx*性質はこの 2 つのグループによってのみ現在のところ報告がなされている.

5.1.2 気液平衡性質および臨界曲線

Fig. 5.2 に気液平衡性質における実測値分布をP-x線図上に示す.また, Fig. 5.3 は飽和蒸気および飽和 液体密度における実測値分布である. 1958 年にKohn and Kurata [110]は温度範囲 189-366 Kにおいて気液 平衡測定を行った.しかしながら、測定結果の大部分はグラフのみによって与えられている.59点の(T. P,x,y)VLEデータのみ数値情報によって報告されている.278 Kより高い温度領域ではReamer et al. [108] によって測定され, Type Iのような通常の気液平衡の挙動を示す. Kohn and Kurata [110]は 190 K付近の 比較的低い温度で気液液3相平衡を観測し、また臨界曲線の発散を観測した.しかしそれらはグラフの みによって与えられている. 1959 年, Kohn and Kurata [110]は 35 点の(T, P, ρ^{L} , x)および(T, P, ρ^{V} , y) VLE データを温度範囲 192-353 Kで報告している. Reamer et al. [108]は9点の臨界点を報告しているが、そ のうち 0.55 と 0.6 モル組成の臨界点は, Kohn and Kurata [111]の測定によればこれらの臨界点は観測され なかったと述べられている. Reamer et al. [108]の臨界点は, 露点曲線と沸点曲線の補外より求められて いることが原因の1つとして挙げられる. 1957 年にRobinson and Bailey [109]はメタン,二酸化炭素,硫 化水素の 3 成分系について 311 KでVLE測定を行った. Robinson et al. [112]は 1959 年に 278 Kと 344 Kで 同様の3成分系に対して5点の(T, P, x, y) VLE測定を行った.これら3つの温度278,311,344 KはReamer et al. [108]が測定した温度と同じである. 1991 年 にYarym-Agaev et al. [113]は 124 点の(T, P, x)および(T, P, y) VLEと7点の臨界点を報告している. 臨界点は直接測定されておらず,気液平衡の補外性から決定さ れているが、臨界曲線はメタン、硫化水素の両臨界点を結ぶものとして仮定していることに注意すべき である.このように多数の研究グループによって気液平衡性質に関する実測値報告がなされているが, そのほとんどは(P, T, x)に関するもので, Fig. 5.3 からわかるように飽和蒸気ならびに飽和液体密度の実 測値情報はReamer et al. [108]とKohn and Kurata [111]によってのみしか報告されていない.以上述べてき た気液平衡性質における実測値分布から、今後VLLEが存在するような低温域、ならびに液液平衡が存 在するような高圧域, さらには飽和密度における気液平衡の実測値報告が待たれるところである.

				Р		ρ		Т		ŗ	c
Reference ^a	Property ^b	Year	No. of Data	Range (MPa)	<i>бР</i> (kPa)	Range (mol• dm ⁻³)	δρ (mol• dm ⁻³)	Range (K)	δT (mK)	Range (mole fraction)	<i>&x</i> (mole fraction)
Reamer et al.* [108]	$P\rho Tx$	1951	1127	1.4-69	0.05%	0.37-26	0.1%	278-444	11	0.10-0.90	0.003
Bailey et al. [75]	$P\rho Tx$	1987	65	0.21-38	0.1%	0.05-9.2	1%	299-501	10	0.5073	0.01%
Reamer et al.* [108]	VLE, y	1951	76	1.2-13	n.a.			278-344	n.a.	0.00-0.73	0.003
Reamer et al.* [108]	VLE, <i>x</i>	1951	76	1.2-13	n.a.			278-344	n.a.	0.00-0.70	0.003
Robinson and Bailey [109]	VLE, y	1957	3	4.1-12	20	-	-	311	56	0.29-0.51	n.a.
Robinson and Bailey [109]	VLE, <i>x</i>	1957	3	4.1-12	20	-	-	311	56	0.03-0.26	n.a.
Kohn and Kurata* [110]	VLE, y	1958	61	1.4-12	14	-	_	189-366	56	0.01-0.97	0.005
Kohn and Kurata* [110]	VLE, <i>x</i>	1958	59	1.4-12	14	-	_	189-366	56	0.00-0.24	0.005
Kohn and Kurata [111]	VLE, y	1959	26	0.05-7.5	14			192-353	n.a.	0.07-0.89	0.005
Kohn and Kurata [111]	VLE, <i>x</i>	1959	9	3.6-12	14			231-353	n.a.	0.07-0.23	0.005
Robinson et al. [112]	VLE, y	1959	5	2.8-11	n.a.	-	_	278-344	110	0.16-0.72	n.a.
Robinson et al. [112]	VLE, <i>x</i>	1959	5	2.8-11	n.a.	-	-	278-344	110	0.02-0.26	n.a.
Yarym-Agaev et al. [113]	VLE, y	1991	78	0.16-13	0.6%	-	_	222-273	n.a.	0.00-0.90	0.002
Yarym-Agaev et al. [113]	VLE, <i>x</i>	1991	46	0.16-12	0.6%	-	_	222-273	n.a.	0.00-0.36	0.002
Reamer et al. [108]	VLE, $\rho^{\rm V}$	1951	76	1.2-13	n.a.	0.59-15	0.3%	278-344	n.a.	0.00-0.73	0.003
Reamer et al. [108]	VLE, $\rho^{\rm L}$	1951	76	1.2-13	n.a.	9.0-24	0.3%	278-344	n.a.	0.00-0.70	0.003
Kohn and Kurata [111]	VLE, $\rho^{\rm V}$	1959	26	0.05-7.5	14	0.03-4.3	3%	192-353	n.a.	0.07-0.89	0.005
Kohn and Kurata [111]	VLE, $\rho^{\rm L}$	1959	9	3.6-12	14	13-26	3%	231-353	n.a.	0.07-0.23	0.005
Reamer et al.* [108]	С. Р.	1951	9	10-13	172	12-15	n.a.	267-361	1.1 K	0.10-0.60	n.a.
Kohn and Kurata [110]	С. Р.	1958	2	10-12	14	-	-	337-364	56	0.07-0.23	0.005
Yarym-Agaev et al. [113]	C. P.	1991	7	10-14	0.6%	_	_	229-349	n.a.	0.20-0.80	0.002
Barry et al. [114]	h^{E}	1982	39	0.5-1.5	n.a.	-	_	293-313	n.a.	0.18-0.85	n.a.

Table 5.1. メタン/硫化水素2成分系混合流体の実測値情報

^a Data used as input data are denoted by *. ^b "VLE, y" and "VLE, x" denote composition data of VLE, where y is the mole fraction of methane in the vapor phase and x is that in the liquid phase. "VLE, ρ^{V} " and "VLE, ρ^{L} " denote saturated density data of VLE, where ρ^{V} is the vapor density and ρ^{L} is the liquid density. "C. P." denotes critical-point data.

Barry et al. [114]は 1982 年に 39 点の気相域における過剰モルエンタルピーを 293, 305, 313 K の 3 温度 それぞれに対し, 0.5, 1.0, 1.5 MPa の 3 つの圧力で測定した. しかしこれ以外の誘導状態量に関する実測 値は報告されていない.

5.2 純物質流体の状態方程式

混合流体における Helmholtz 関数型状態方程式は式(1.16)式で表され、理想項 ϕ_{mix}^0 ,剰余項 ϕ_{mix}^r ともそれぞれ純物質流体の状態方程式における理想項 ϕ_i^0 と剰余項 ϕ_i^r をもとに作成される.

$$\phi_{\text{mix}} = a/RT = \phi_{\text{mix}}^0(\tau_i^{\text{pure}}, \delta_i^{\text{pure}}, x_i) + \phi_{\text{mix}}^r(\tau, \delta, x_i)$$
(1.16)

ここで、 $\tau_i^{\text{pure}} = T_{c,i}/T$, $\delta_i^{\text{pure}} = \rho/\rho_{c,i}$, ガス定数 $R = 8.314472 \text{ J·mol}^{-1} \cdot \text{K}^{-1}$ [105]であり、 τ , δ は, 偽臨界温度 $T_{c,\text{mix}}$ と偽臨界密度 $\rho_{c,\text{mix}}$ によって無次元化され $\tau = T_{c,\text{mix}}/T$, $\delta = \rho/\rho_{c,\text{mix}}$ である. そこで、メタン、硫化水素それぞれの純物質に対して用いる状態方程式を決定する必要がある.本研究では、メタンにはIUPACによって推奨されているSetzmann and Wagner [15]の状態方程式を用い、硫化水素には本研究により作成したSakoda and Uematsu [4]の状態方程式を採用した.これらの状態方程式はどちらもHelmholtz関数型によって作成されており、現存する状態方程式の中でもっとも実測値を高精度に再現する.また、その熱力学状態曲面も比熱や音速といった誘導状態量に対してまで確認されている.硫化水素の詳細な式形は第4章で述べたように、式(4.10)-(4.12)によって表される.係数はTable 4.7,4.8 に記した.

$$\phi(\tau,\delta) = a/RT = \phi^0(\tau,\delta) + \phi^r(\tau,\delta) \tag{4.10}$$

$$\phi^{0}(\tau,\delta) = \ln(\delta) + f_{1} + f_{2}\tau + f_{3}\ln(\tau) + \sum_{i=4}^{5} f_{i}\ln\{1 - \exp(-g_{i}\tau)\}$$
(4.11)

$$\phi^{\mathrm{r}}(\tau,\delta) = \sum_{i=1}^{11} n_i \tau^{t_i} \delta^{d_i} + \sum_{i=12}^{16} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta) + \sum_{i=17}^{19} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^2) + \sum_{i=22}^{21} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^3) + \sum_{i=22}^{23} n_i \tau^{t_i} \delta^{d_i} \exp(-\delta^4)$$
(4.12)

また,メタンの式形は第2章2.2節で述べたが,式(2.35)-(2.37)によって表される. 係数を Table 5.2, 5.3 に記した.

$$\phi(\tau,\delta) = a/(RT) = \phi^0(\tau,\delta) + \phi^r(\tau,\delta)$$
(2.35)

$$\phi^{0} = \ln(\delta) + f_{1} + f_{2}\tau + f_{3}\ln(\tau) + \sum_{i=4}^{8} f_{i}\ln\{1 - \exp(-g_{i}\tau)\}$$
(2.36)

$$\phi^{r} = \sum_{i=1}^{13} n_{i} \tau^{t_{i}} \delta^{d_{i}} + \sum_{i=14}^{20} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta) + \sum_{i=21}^{25} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{2}) + \sum_{i=26}^{29} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{3}) + \sum_{i=30}^{36} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp(-\delta^{4}) + \sum_{i=37}^{40} n_{i} \tau^{t_{i}} \delta^{d_{i}} \exp\left\{-\alpha_{i} (\delta - \Delta_{i})^{2} - \beta_{i} (\tau - \gamma_{i})^{2}\right\}$$
(2.37)

		-
i	f_i	g_i
1	9.91243972	-
2	-6.33270087	-
3	3.0016	-
4	0.008449	3.40043240
5	4.6942	10.26951575
6	3.4865	20.43932747
7	1.6572	29.93744884
8	1.4115	79.13351945

Table 5.2. 式(2.36)の係数

Table 5.3. 式(2.37)の係数

i	n _i	<i>d</i> _i	t_i
1	$0.4367901028 imes 10^{-1}$	1	-0.5
2	$0.6709236199 \times 10^{0}$	1	0.5
3	$-0.1765577859 \times 10^{1}$	1	1.0
4	$0.8582330241 \times 10^{0}$	2	0.5
5	$-0.1206513052 \times 10^{1}$	2	1.0
6	$0.5120467220 \times 10^{0}$	2	1.5
7	$-0.4000010791 \times 10^{-3}$	2	4.5
8	$-0.1247842423 \times 10^{-1}$	3	0.0
9	$0.3100269701 \times 10^{-1}$	4	1.0
10	$0.1754748522 \times 10^{-2}$	4	3.0
11	$-0.3171921605 \times 10^{-5}$	8	1.0
12	$-0.2240346840 \times 10^{-5}$	9	3.0
13	$0.2947056156 \times 10^{-6}$	10	3.0
14	$0.1830487909 \times 10^{0}$	1	0.0
15	$0.1511883679 \times 10^{0}$	1	1.0
16	$-0.4289363877 imes 10^{0}$	1	2.0
17	$0.6894002446 imes 10^{-1}$	2	0.0
18	$-0.1408313996 \times 10^{-1}$	4	0.0
19	$-0.3063054830 \times 10^{-1}$	5	2.0
20	$-0.2969906708 \times 10^{-1}$	6	2.0
21	$-0.1932040831 \times 10^{-1}$	1	5.0
22	$-0.1105739959 \times 10^{0}$	2	5.0
23	$0.9952548995 \times 10^{-1}$	3	5.0
24	$0.8548437825 imes 10^{-2}$	4	2.0
25	$-0.6150555662 \times 10^{-1}$	4	4.0
26	$-0.4291792423 \times 10^{-1}$	3	12.0
27	$-0.1813207290 \times 10^{-1}$	5	8.0
28	$0.3445904760 \times 10^{-1}$	5	10.0
29	$-0.2385919450 \times 10^{-2}$	8	10.0
30	$-0.1159094939 \times 10^{-1}$	2	10.0
31	$0.6641693602 \times 10^{-1}$	3	14.0
32	$-0.2371549590 \times 10^{-1}$	4	12.0
33	$-0.3961624905 \times 10^{-1}$	4	18.0
34	$-0.1387292044 \times 10^{-1}$	4	22.0
35	0.3389489599×10 ⁻¹	5	18.0
36	$-0.2927378753 \times 10^{-2}$	6	14.0

Table 5.3. (続き)

i	n _i	d _i	t_i	$lpha_i$	β_i	Υi	Δ_i
37	0.9324799946×10 ⁻⁴	2	2.0	20	200	1.07	1
38	$-0.6287171518 \times 10^{1}$	0	0.0	40	250	1.11	1
39	$0.1271069467 \times 10^{2}$	0	1.0	40	250	1.11	1
40	$-0.6423953466 \times 10^{1}$	0	2.0	40	250	1.11	1

5.3 混合流体の状態方程式

5.3.1 相関に用いた入力値

以上の実測値報告より、本研究ではメタン/硫化水素 2 成分系混合流体の状態方程式作成にあたり、 以下の実測値情報を入力値として相関に用いた.その他のデータは比較のみに用いた. *PpTx* 性質、気 液平衡性質ならびに臨界点と多くの実測値を報告している Reamer et al. [108]のデータを中心に相関を行 った.気液平衡性質において Reamer et al. [108]の実測値は 278 K 以上の比較的高温領域で測定が行われ ている.そこで、189-255 K の低温域について実測値が報告されている Kohn and Kurata [110]のデータを 入力値として加えた. Barry et al. [114]の過剰モルエンタルピーの実測値はその実測値分布から比較的ば らつきが大きく認められるため、入力値としては用いなかった.

入力値として用いたデータ

- (1) Reamer et al. [108]による温度範囲 278-444 K, 圧力範囲 1.4-69 MPa, 組成範囲 0.1-0.9 モル組成にお ける 1127 点の *PρTx* データ.
- (2) Reamer et al. [108]による 278, 311, 344 Kの 3 温度における 76 点の(*T*, *P*, ρ^L, ρ^V, *x*, *y*) VLEデータ. 圧 力範囲は 1.2-13 MPaである.
- (3) Kohn and Kurata [110]による温度範囲 189-255 K, 圧力範囲 1.4-4.1 MPa の 12 点の(*T*, *P*, *x*, *y*) VLE データ.
- (4) Reamer et al. [108]による 0.1-0.5 モル組成での 5 点の臨界点データ

Fig. 5.1. PpTx 性質実測値分布

Fig. 5.3. 飽和蒸気および飽和液体密度における実測値分布

5.3.2 混合則の関数形と係数の数値

本研究で決定したメタン/硫化水素 2 成分系混合流体のHelmholtz関数型状態方程式の式形を式 (5.1)-(5.11)に示す.また,決定した係数の数値をTable 5.4 に示す.式(5.1)に示した理想項 ϕ_{mix}^{0} における 独立変数は $\tau_{i}^{pure} = T_{c,i}/T$, $\delta_{i}^{pure} = \rho/\rho_{c,i}$ で, $T_{c,i} \geq \rho_{c,i}$ はそれぞれ成分iの純物質における臨界温度,臨界 密度である. x_{i} は混合流体中の成分iのモル組成である.式(5.3)で示した剰余項 ϕ_{mix}^{r} では $\phi_{i}^{r} = \phi_{11}^{r}$, $\phi_{2}^{r} = \phi_{22}^{r}$, $\phi_{12}^{r} = \phi_{21}^{r} \geq 0$ て扱っている. ϕ_{12}^{r} は式(5.4)で与えられており,純物質流体の剰余項 ϕ_{i}^{r} の算術平均をもとに して, F_{12} を導入している. F_{12} は実測値を高精度に再現するよう式(5.10)に示す温度と密度の関数であ る.剰余項における独立変数は $\tau = T_{c,mix}/T$, $\delta = \rho/\rho_{c,mix}$ であり,偽臨界温度 $T_{c,mix}$ と偽臨界密度 $\rho_{c,mix}$ に よって無次元化されている. $T_{c,mix}$ は式(5.5)で与えられ, $T_{c,12}$ は異種分子間相互作用のパラメータ k_{12} を 含む.偽臨界密度 $\rho_{c,mix}$ は偽臨界モル体積 $v_{c,mix}$ の逆数で,式(5.7),(5.8)によって与えられており, $v_{c,12}$ は パラメータ ξ_{12} を含む.また $v_{c,i}$ は成分iの臨界モル体積である.本研究では、メタンを第1成分とし、硫 化水素を第2成分とした.メタン/硫化水素の2成分系混合流体の状態方程式をまとめると式(5.11)と書 くことができる.

$$\phi_{\rm mix} = a / RT = \phi_{\rm mix}^0 + \phi_{\rm mix}^{\rm r}$$
(5.1)

$$\phi_{\text{mix}}^{0} = x_1 \phi_1^{0}(\tau_1^{\text{pure}}, \delta_1^{\text{pure}}) + x_2 \phi_2^{0}(\tau_2^{\text{pure}}, \delta_2^{\text{pure}}) + x_1 \ln(x_1) + x_2 \ln(x_2)$$
(5.2)

$$\phi_{\text{mix}}^{r} = \sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} x_{j} \phi_{ij}^{r}(\tau, \delta) = x_{1}^{2} \phi_{1}^{r}(\tau, \delta) + x_{2}^{2} \phi_{2}^{r}(\tau, \delta) + 2x_{1} x_{2} \phi_{12}^{r}(\tau, \delta)$$
(5.3)

$$\phi_{12}^{r}(\tau,\delta) = F_{12} \Big[\phi_{1}^{r}(\tau,\delta) + \phi_{2}^{r}(\tau,\delta) \Big] \Big/ 2$$
(5.4)

$$T_{\rm c,\,mix} = \sum_{i=1}^{2} \sum_{j=1}^{2} x_i x_j T_{\rm c,\,ij} = x_1^2 T_{\rm c,\,1} + x_2^2 T_{\rm c,\,2} + 2x_1 x_2 T_{\rm c,\,12}$$
(5.5)

$$T_{\rm c,12} = k_{12} \left(T_{\rm c,1} + T_{\rm c,2} \right) / 2 \tag{5.6}$$

$$v_{\rm c,\,mix} = 1/\rho_{\rm c,\,mix} \tag{5.7}$$

$$v_{\rm c,\,mix} = \sum_{i=1}^{2} \sum_{j=1}^{2} x_i x_j v_{\rm c,\,ij} = x_1^2 v_{\rm c,\,1} + x_2^2 v_{\rm c,\,2} + 2x_1 x_2 v_{\rm c,\,12}$$
(5.8)

$$v_{c,12} = \xi_{12} \left(v_{c,1}^{1/3} + v_{c,2}^{1/3} \right)^3 / 8$$
(5.9)

$$F_{12} = n_0 + n_1 \tau \delta \exp(-\delta) + n_2 \tau \delta^2 \exp(-\delta) + n_3 \tau \delta \exp(-\delta^2)$$
(5.10)

$$\phi_{\text{mix}} = x_1 \phi_1^0(\tau_1^{\text{pure}}, \delta_1^{\text{pure}}) + x_2 \phi_2^0(\tau_2^{\text{pure}}, \delta_2^{\text{pure}}) + x_1 \ln(x_1) + x_2 \ln(x_2) + x_1^2 \phi_1^r(\tau, \delta) + x_2^2 \phi_2^r(\tau, \delta) + 2x_1 x_2 \phi_{12}^r(\tau, \delta)$$
(5.11)

 $\label{eq:constraint} \mathbb{L} \subset \mathbb{C}, \quad \tau_i^{\text{pure}} = T_{\text{c},i}/T \;, \; \; \delta_i^{\text{pure}} = \rho/\rho_{\text{c},i} \;, \; \; \tau = T_{\text{c},\text{mix}}/T \;, \; \; \delta = \rho/\rho_{\text{c},\text{mix}} \;, \\ R = 8.314472 \; \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \ \mathbb{C} \ \mathbb{B} \ \mathbb{C} \;.$

偽臨界温度 $T_{c, mix}$ ならびに偽臨界モル体積 $v_{c, mix}$ における混合則は,臨界温度および臨界モル体積が組成 に対し、2次曲線によって相関できることが多いことから、対応状態原理の混合流体への応用として広 く用いられている関数形である.異種分子間相互作用パラメータとして導入される k_{12} 、 ξ_{12} は、2次曲線 を示す臨界曲線の曲率を変化させる効果がある.しかし $T_{c, mix}$ 、 $v_{c, mix}$ は、実際には臨界曲線と異なること に注意が必要である.メタン/硫化水素2成分系混合流体の場合には、Type IIIの挙動を維持したまま、 いかに実測値を高精度に相関するかという問題があった.この問題に対し、本研究では式(5.3)、(5.4)に示 すような、新たな混合則を剰余項 ϕ_{mix}^{r} に適用した.本混合則による新たな F_{12} の導入によって、剰余項 ϕ_{mix}^{r} における2成分系のTypeへの影響を考察可能にし、さらにType IIIの挙動を維持したままでの実測値の相 関を可能にした.

Parameters	Values
$T_{c,1}$	190.564 K
$T_{\rm c,2}$	373.37 K
$ ho_{ m c,1}$	10.139128 mol·dm ⁻³
$ ho_{ m c,2}$	10.20 mol·dm ⁻³
<i>k</i> ₁₂	0.90
ξ_{12}	1.00
n_0	0.90
n_1	0.5517080×10^{0}
n_2	$-0.3707104{ imes}10^{-1}$
n_3	$-0.4297850{ imes}10^{-1}$

Table 5.4. 式(5.1)-(5.11)中の係数

5.3.3 混合則の検討

Type III であるメタン/硫化水素 2 成分系混合流体の状態方程式作成に関して、これまで最も分からな かったことは、Helmholtz 関数型状態方程式で Type III のような気液液 3 相平衡が出現したり、臨界曲線 が発散するような複雑な系に対して作成できるのかということであった.純物質における Helmholtz 関 数型状態方程式により計算された等温線は、二相域において、3 次曲線の挙動を示す van der Waals ルー プにならず、多くの極値を持つ挙動を示す. Fig. 5.4 は(a)本状態方程式[4]から計算した硫化水素の *PpT* 性質の等温線と(b)遠藤らの PR 式[14]から計算した硫化水素の *PpT* 性質の等温線である. 250 K におい て、PR 式から計算した等温線は van der Waals ループとなっているが、本状態方程式から計算した等温 線は二相域で、多くの極値を持つことがわかる. この点が 2 成分系混合流体の状態方程式の作成を困難 にするのではないかと懸念された.

Fig. 5.4. (a)本状態方程式[4]から計算した硫化水素の*P*ρ*T*性質の等温線と(b)遠藤らのPR式[14]から計算した硫化水素の*P*ρ*T*性質の等温線

式(5.11)に示した,本研究によるメタン/硫化水素2成分系混合流体の状態方程式の作成過程において, 次のことが確認された.

- (1) Helmholtz 関数型状態方程式を混合系に適用しても気液平衡,気液液3相平衡,臨界曲線などの 挙動が適切に表現できる.
- (2) 式(5.6)に含まれる偽臨界温度中のパラメータ k_{12} を変化させることによって臨界曲線がType I Type II → Type IIIと連続的に変化する. Fig. 5.5 は ξ_{12} = 1, F_{12} = 1 としたときの k_{12} の変化に伴う臨界曲線の変化を示したものである.
- (3) 式(5.10)に示した関数F₁₂を導入することによりType IIIの様々な変化を表現できる. Fig. 5.6 はk₁₂ = 0.9, ξ₁₂ = 1 としたときのF₁₂の変化に伴うType IIIの臨界曲線の変化を示したものである. Fig. 5.6(b)はFig. 5.7 (a)の 3 相平衡部分の拡大図である.
- (4) 式(5.9)に含まれる偽臨界モル体積中のパラメータ *ξ*12を変化させることによって 20 MPa以上の高 圧域における偏差が変化する.

Fig. 5.5. *ξ*₁₂ = 1, *F*₁₂ = 1 での式(5.6)に含まれるパラメータ*k*₁₂の変化による臨界曲線の変化

Fig. 5.6. $k_{12} = 0.9, \xi_{12} = 1$ での式(5.10)に示される関数 F_{12} の変化による臨界曲線の変化

5.4 作成した状態方程式の評価

5.4.1 PpTx 性質

Fig. 5.7, 5.8 に*PpTx*性質における本状態方程式からの密度偏差を組成ごとに示す. Fig. 5.7 は横軸圧力, Fig. 5.8 は横軸温度である. Reamer et al. [108]は,組成範囲 0.1-0.9 モル組成までの9組成において,温 度範囲 278-444 K, 圧力範囲 1.4-69 MPaで測定を行った.本状態方程式は数点を除き,Reamer et al. [108] の*PpTx*データに対して±2.0%で一致している.また,BIASでは0.01%と非常に高い相関性を示している. しかしながら,40 MPa以上の高圧域かつ311 K以下の低温域では,0.2 から 0.4 モル組成において約 1% の系統的な偏差が見られる. Bailey et al. [75]は0.5073 モル組成において,温度範囲 299-501 K,圧力 38 MPaまでの範囲で*PpTx*データを報告している. 温度 300 K, 圧力 6-13 MPaにおける 6 点はReamer et al. [108]に合わせた本状態方程式より二相域であると推定される. Reamer et al. [108]とBailey et al. [75]のデータ では、5 MPa, 4.0 mol·dm⁻³以上の領域において異なった傾向が見られる. Bailey et al. [75]のデータ における最大偏差は-11%である. 統計手法による偏差をTable 5.5 に示す.

5.4.2 気液平衡および気液液3相平衡

Fig. 5.9 に沸点における本状態方程式からの組成の差を示す. Fig. 5.9(a)は横軸圧力, Fig. 5.9(b)は横軸 温度で示した. 沸点において本状態方程式は Reamer et al. [108]の 278, 311, 344 K の 3 つの等温線に対し て臨界点近傍を除き±0.02 モル組成で一致している. 臨界点付近ではわずかな圧力差が組成に大きな影 響を及ぼす. Kohn and Kurata [110]は温度範囲 189-366 K で測定しているが,数点を除き±0.02 で一致し ている. 本状態方程式は他の沸点における VLE データに対しても 10 MPa までにおいて±0.02 で一致し ている. 10 MPa 以上の領域においては,本研究で収集した実測値データは全て臨界点付近に位置するの で,それ故偏差が大きくなっている. しかしながら,ほとんどの VLE データに対して本状態方程式は ±0.04 モル組成以内で一致している.

Fig. 5.10 に露点における本状態方程式からの組成の差を示す. Fig. 5.10(a)は横軸圧力, Fig. 5.10(b)は横軸温度で示した. 露点において,本状態方程式は Reamer et al. [108]のデータならびに Kohn and Kurata [110]のデータに対して±0.03 モル組成内で一致している. 低圧では比較的大きな偏差を示しているが,これは臨界点同様に,わずかな圧力差が組成に大きな影響を及ぼすことが原因である. Yarym-Agaev et al. [113]とは±0.04 以内で一致している. Kohn and Kurata [111]とは±0.15 モル組成以内で一致している.

実測値が存在する 189, 278, 311, 344 Kの 4 つの等温線について本状態方程式より計算した結果をFig. 5.11 のP-x線図上に実測値データとともに示す.計算結果は実測値データと良く一致している.278, 311, 344 Kの 3 温度におけるVLEはType Iと同様の相平衡挙動を示している.しかし,189 KではVLLEが表れる.本状態方程式より計算したVLLEの 3 相平衡圧力は 3.712 MPaであった.Gibbsの相律より,3 相平衡の状態は温度を与えると状態が一義的に決定される.3 相平衡時の状態は組成 0.097, 0.897, 0.982 モル組成で,それぞれ 28.10, 18.07, 4.04 mol·dm⁻³の密度であった.189 Kの等温線において 3 相平衡圧力以下の領域では気液平衡の状態であり,3 相平衡以上の圧力においては,気液あるいは液液の平衡となる.189 Kにおいて,VLLEおよびLLEのデータは報告されていないが,Kohn and Kurata [110]が 2 点の(*T*, *P*, *x*, *y*)によるVLEのデータを報告している.Fig. 5.11 に示したように本状態方程式はこれらのデータと良く一致している.統計手法による露点・沸点における偏差をTable 5.6 に示す.

5.4.3 飽和液体密度および飽和蒸気密度

Fig.5.12 に飽和密度における計算結果を臨界曲線ならびに実測値とともにρ-x 線図上に示す. 臨界曲線 も同様に本状態方程式より計算したものである. Fig. 5.12 では 278, 311, 344 K の 3 つの等温線について 示した.本状態方程式は実測値と良く一致している. Reamer et al. [108]とは,臨界点近傍を除き,沸点 において 3%以内で,露点において 7%以内で一致している. Kohn and Kurata [111]は沸点で 5%,露点で 8%以内で一致している. 統計手法による偏差を Table 5.5 に示した.

5.4.4 臨界曲線

5.4.5 過剰モルエンタルピー

Fig. 5.14 に本状態方程式より計算した過剰モルエンタルピーの挙動を Barry et al. [114]の実測値ととも に示す. Barry et al. [114]は 293, 305, 313 K の 3 温度について, 0.5, 1.0, 1.5 MPa の 3 圧力で気相域におけ る過剰モルエンタルピーを報告している. Fig. 5.14 より実測値自体のばらつきが確認されるが,本状態 方程式は実測値に対し良好な挙動を示している. 統計手法を用いた偏差を Table 5.5 に示す.

5.5 既存の状態方程式との比較

3 次型状態方程式は少ないパラメータで複雑な系の相平衡ならびに臨界曲線を再現することができる. 本研究では、遠藤ら[14]によって作成された Peng-Robinson(PR)式との比較を行った. Fig. 5.11 に PR 式 から計算したメタン/硫化水素 2 成分系混合流体の相平衡を破線で示す. 278 K より高い温度領域では、 PR 式、本状態方程式とも Reamer et al. [108]の実測値に良く一致している. しかし、PR 式は臨界点近傍 で Reamer et al. [108]の実測値との比較から十分ではない. 189 K では Kohn and Kurata [110]の気液平衡実 測値 2 点が存在する.本状態方程式はそれらの実測値を良好に再現しているが、PR 式は組成の大きい(メ タンリッチ側)気相線上の実測値については良好に再現しているものの、組成の小さい(硫化水素リッチ 側)液相線については実測値の挙動よりも大きな組成となっている. Table 5.7 に 189 K における気液液 3 相平衡に関する本状態方程式と PR 式による計算結果を示した. 3 相平衡圧力は本状態方程式が PR 式よ り 0.4%大きな値であり、気相の組成は一致しているものの、2 つの液相の組成は大きく異なっている. 本状態方程式と PR 式との統計手法を用いた比較を Table 5.6 に示す. Table 5.6 中では全て計算値からの 組成差で表している. PR 式は本状態方程式と同等の一致性を示しているが、臨界点付近では本状態方 程式はより良好な一致性を示している.

Fig. 5.13 に PR 式により求めた臨界曲線の挙動を示した.本状態方程式は実測値を良好に再現しているが, PR 式は発散する挙動は示しているものの,実測値の挙動を十分再現しているとは言えない.3次型状態方程式は,密度の再現性が十分でないことが知られている.Fig. 5.15 に*p-x*線図上の250,300,350Kの等温線と臨界曲線の挙動を示す.PR式の等温線の挙動は本状態方程式と気相域で良く一致している.しかしながら液相域で違いが見られ,特に250Kは大きな差が見られる.また臨界曲線については特に大きな違いが見られる.

5.6 本状態方程式の不確かさ

これまでに述べた各種実測値情報に対する本状態方程式の再現性を検討し、主に実測値との比較によって不確かさを見積もった. *PpTx* 性質において、入力値である Reamer et al. [108]との密度偏差より密度 算出の不確かさを 2%と見積もった.また、気液平衡計算では、Reamer et al. [108]および Kohn and Kurata [110]の実測値と比較を行った結果から、液相域で 0.02 モル組成、気相域で 0.03 モル組成と見積もった. 最後に臨界点について、Reamer et al. [108]との偏差から臨界温度は 2%、臨界圧力は 3%と見積もった.

,

Fig. 5.7. 本状態方程式からの PpTx 密度偏差(圧力基準)

Fig. 5.8. 本状態方程式からの PpTx 密度偏差(温度基準)

• Reamer et al. (1951)

- Robinson and Bailey (1957)
- Kohn and Kurata (1958)□ Kohn and Kurata (1959)
- Robinson et al. (1959)
- \triangle Yarym-Agaev et al. (1991)

*T***,K** Fig. 5.9. 沸点における本状態方程式からの組成の差

- O Reamer et al. (1951)Ø Robinson and Bailey (1957)
- X Kohn and Kurata (1958)
- □ Kohn and Kurata (1959)
- + Robinson et al. (1959)
- △ Yarym-Agaev et al. (1991)

Fig. 5.12. 本状態方程式による飽和密度計算結果

× Reamer et al. (1951)
 △ Kohn and Kurata (1958)
 ○ Yarym-Agaev et al. (1991)
 ● Critical point of pure component
 Fig. 5.13. 本状態方程式および PR 式による臨界曲線計算結果

G Barry et al. (1982), 0.5 MPa
 △ Barry et al. (1982), 1.0 MPa
 □ Barry et al. (1982), 1.5 MPa
 Fig. 5.14. 本状態方程式よる過剰モルエンタルピー計算結果

Fig. 5.15. 本状態方程式および PR 式による飽和密度計算結果

Table 5.5. 統計手法による本状態方程式からの $P\rho Tx$ 性質,飽和密度,臨界点および過剰モルエンタルピーの偏差

Author ^a	Property	Year	No. of Data	BIAS%	AAD%	SDV%	RMS%	MAX%
Reamer et al.* [108]	$P\rho Tx$	1951	1127	0.01	0.60	0.87	0.87	9.73
Bailey et al. [75]	$P\rho Tx$	1987	65	-1.45	1.53	2.41	2.80	-10.7
Reamer et al. [108]	VLE, $\rho^{\rm V}$	1951	76	0.91	2.62	3.55	3.64	-12.8
Reamer et al. [108]	VLE, ρ^{L}	1951	76	0.38	1.11	2.20	2.22	10.7
Kohn and Kurata [111]	VLE, ρ^{V}	1959	26	5.49	7.98	10.8	11.9	36.0
Kohn and Kurata [111]	VLE, ρ^{L}	1959	9	4.59	8.10	12.5	12.6	30.9
Reamer et al.* [108]	$P_{\rm c}$	1951	9	1.55	1.62	1.42	2.04	2.98
Kohn and Kurata [110]	$P_{\rm c}$	1958	2	5.00	5.00	0.87	5.04	5.61
Yarym-Agaev et al. [113]	$P_{\rm c}$	1991	7	1.13	1.16	1.57	1.76	3.37
Reamer et al.* [108]	$T_{\rm c}$	1951	9	-0.86	1.00	0.94	1.22	-1.90
Kohn and Kurata [110]	$T_{\rm c}$	1958	2	-1.10	1.10	1.33	1.44	-2.03
Yarym-Agaev et al. [113]	$T_{\rm c}$	1991	7	-0.82	0.98	0.94	1.15	-1.96
Barry et al. [114]	$h^{ m E}$	1982	39	-0.77	12.7	16.1	15.9	39.9

^a Data used as input data are denoted by *.

Author ^a	Property Ve		No. of		Th	e present E	OS			The I	PR type EO	S [14]	
Aution	Toperty	Ital	Data	BIAS	AAD	SDV	RMS	MAX	BIAS	AAD	SDV	RMS	MAX
Reamer et al.* [108]	VLE, y	1951	76	-0.005	0.012	0.015	0.016	0.059	-0.008	0.015	0.022	0.023	-0.098
Reamer et al.* [108]	VLE, x	1951	76	-0.003	0.007	0.009	0.009	-0.028	0.012	0.015	0.028	0.030	0.140
Robinson and Bailey [109]	VLE, y	1957	3	-0.009	0.017	0.020	0.019	-0.028	-0.007	0.018	0.027	0.023	-0.037
Robinson and Bailey [109]	VLE, x	1957	3	-0.020	0.023	0.023	0.028	-0.043	-0.002	0.008	0.011	0.009	-0.014
Kohn and Kurata* [110]	VLE, y	1958	61	-0.008	0.014	0.015	0.016	0.050	-0.005	0.012	0.015	0.015	0.042
Kohn and Kurata* [110]	VLE, x	1958	59	-0.008	0.009	0.011	0.014	-0.035	-0.009	0.010	0.013	0.016	-0.066
Kohn and Kurata [111]	VLE, y	1959	26	0.006	0.037	0.050	0.049	0.149	-0.000	0.034	0.045	0.044	0.133
Kohn and Kurata [111]	VLE, x	1959	9	-0.023	0.024	0.022	0.031	-0.054	-0.024	0.026	0.027	0.035	-0.091
Robinson et al. [112]	VLE, y	1959	5	-0.002	0.010	0.012	0.011	-0.015	-0.002	0.009	0.011	0.010	0.018
Robinson et al. [112]	VLE, x	1959	5	-0.011	0.011	0.009	0.014	-0.023	-0.003	0.005	0.007	0.007	-0.011
Yarym-Agaev et al. [113]	VLE, y	1991	78	-0.020	0.027	0.023	0.031	0.105	-0.025	0.028	0.018	0.031	0.090
Yarym-Agaev et al. [113]	VLE, x	1991	46	0.000	0.004	0.007	0.007	0.036	-0.011	0.014	0.018	0.021	0.062

Table 5.6. 統計手法による本状態方程式からの気液平衡における偏差

^a Data used as input data are denoted by *.

		The present EOS	The PR type EOS [14]
温月	度 K	188.749 ^a	188.749
圧フ	ウ MPa	3.712	3.698
第I相	密度 mol·dm ⁻³	28.10	30.47
(L2)	モル組成	0.097	0.186
第 II 相	密度 mol·dm ⁻³	18.07	20.08
(L1)	モル組成	0.897	0.875
第 III 相	密度 mol·dm ⁻³	4.04	4.15
(V)	モル組成	0.982	0.983

Table 5.7. 189 K における気液液 3 相平衡に関する本状態方程式と PR 式[14]との比較

^a温度は比較に使用したKohn and Kurata [110]の実測値(気-液の相平衡部分に限る)と一致させている.

6 メタン/エタン系とメタン/硫化水素系の状態曲面の比較

本研究では、作成した Helmholtz 関数型状態方程式を用い、Type III の挙動を示すメタン/硫化水素 2 成分系混合流体の状態曲面を、相平衡や臨界曲線のみならず、*P*ρ*Tx* 性質、定圧比熱、定積比熱、音速、ジュール・トムソン係数に対して詳細に明らかにした。全ての状態曲面は熱力学関係式を用いて本状態 方程式より導出している。Type III のような複雑な系に対してはこれまで全流体域にわたってその状態 曲面が明らかにされたことはなかった。本研究では、Lemmon and Jacobsen [37]の状態方程式から計算し た、Type I であるメタン/エタンとの比較を通して、Type III であるメタン/硫化水素の *P*ρ*Tx* 性質、定圧 比熱、定積比熱、音速、ジュール・トムソン係数における状態曲面の特徴を明らかにしたので、その結 果を以下に述べる。

6.1 相平衡と臨界曲線

Fig. 6.1 にメタン/硫化水素とメタン/エタンの両臨界曲線を示す.メタン/エタンの臨界曲線は純物質の臨界点を結ぶ連続した曲線によって表されるが、メタン/硫化水素の臨界曲線は、メタンの臨界点から出発した臨界曲線は気液液3相平衡線と交わる Upper critical end point で終点を向かえ、一方硫化水素の臨界点から出発した臨界曲線は、メタン臨界点に収束せず、高圧域へと発散する.

O Critical point of the pure components Triple point of hydrogen sulfide

 Δ Upper critical end point of methane + hydrogen sulfide system ---- Melting curve of hydrogen sulfide

--- Vapor pressure curve of the pure components --- Critical curve of methane and ethane system

--- Critical curve of methane and hydrogen sulfide system

--- VLLE three-phase curve of methane + hydrogen sulfide system

Fig. 6.1. メタン/硫化水素およびメタン/エタンの臨界曲線

続いてメタン/硫化水素の相平衡について考察する. Fig. 6.2 に(a)メタン/硫化水素と(b)メタン/エタン の組成一定における相平衡を P-T線図上に示す.組成は 0.1, 0.5, 0.8 モル組成である.組成一定におけ るメタン/エタンの露点・沸点曲線は臨界点で交わる.一方,メタン/硫化水素の組成一定における露点・ 沸点曲線は、0.1 モル組成のときはメタン/エタンと同様の挙動を示すが、0.5, 0.8 モル組成においては、 全く異なる挙動を示す.0.5 モル組成の場合には、2 つの臨界点を持ち高圧域へと発散する.また、0.8 モル組成の場合には臨界点を全く持たず、0.5 モル組成同様に高圧域へと発散する.このとき露点曲線 と沸点曲線とを区別し、命名することは難しい. 0.5 モル組成のように、同一組成において臨界点を 2 つ持つ場合には、高温側の臨界点は気液の臨界点であり、低温側は液液の臨界点であると考えられる. 実際には気体・液体あるいは超臨界流体における区別は Type III のような複雑な系では必ずしも明確で はない. Fig. 6.3 は、メタン/硫化水素における 0.95 モル組成での臨界点付近を拡大したものである. 露 点曲線において気液液 3 相平衡と交わるところでくぼみが見られるところが特徴的である.

Fig. 6.2. (a)メタン/硫化水素および(b)メタン/エタンの組成一定における相平衡

--- VLLE three-phase curve

Fig. 6.4 は温度一定における(a)メタン/硫化水素と(b)メタン/エタンの相平衡を P-x 線上に示したもの である.また同時に臨界曲線も赤の破線で示した.Fig. 6.4 の縦軸は対数によって表している.メタン/

硫化水素の相平衡において、190K, 200K では気液液3相平衡が表れることから、この3相平衡圧力で は Tie-line を黒の2 点鎖線で引いている.3 相を区別するため, Fig. 6.4(a)では"L1"はメタンリッチの液体 を示し、"L2"は硫化水素リッチの液体を示す.そして"V"は気体を示している.硫化水素の臨界点から出 発した臨界曲線は、0.512 モル組成までは Type I と類似しており、このときの圧力、温度は 13.378 MPa、 278.892 K であるが、その後組成を減少させながら高圧域へと発散している. そして 0.513 モル組成から Upper critical endpoint の組成である 0.909 モル組成までは臨界点が存在しない. また 280 K より高温域で は相平衡も Type I と同様の挙動が現れる. Fig. 6.2(a)で硫化水素から出発し, 発散する臨界曲線は, 57.214 MPa で温度 236.354 K の極小点を持ち、その後はより高温・高圧域へと延びている.従って、230 K で は臨界点が全く存在せず、一方で 300 MPa までの領域において、236.354~250 K の温度領域では、臨界 点は2つ存在する.そして、236.354~250Kでは、高圧側の臨界点が出発点となり、新たな相平衡が生 じている.これは Fig. 6.4(a)で示した 237 K, 245 K の 100 MPa 以上の高圧域に見られる相平衡を指して おり、この現象は Type III の1つの特徴であって、従来気気平衡と呼ばれている相平衡である.後述す るが、この気気平衡は実際には高密度における相平衡であって、液液平衡と呼ぶ方がふさわしい. Fig. 6.5 に3相平衡部分を詳細に計算した拡大図を示す. Fig. 6.5 では190, 195, 200, 205, 210 K の気液液3相平衡 が現れる 5 温度について示した. Upper critical end point (△)の温度に近づくにつれ, L1 と V による相平 衡部分の領域が狭くなっていく様子が分かる.

Fig. 6.4. (a)メタン/硫化水素および(b)メタン/エタンの温度一定における相平衡

Fig. 6.5. メタン/硫化水素の一定温度における気液液3相平衡

Fig. 6.6 は圧力一定における(a)メタン/硫化水素と(b)メタン/エタンの相平衡を *T*-x 線上に示したもの である.メタン/硫化水素の相平衡における等圧線はメタン/エタンとはかなり異なっていることが分か る.メタン/硫化水素における 8,10,12,13 MPa の等圧線は気側,液側それぞれ"S"字の形状をしており, くびれを形成している.13.5 MPa では,気側と液側のくびれがくっつき,等圧線を分断したかのように, 2 つの等圧線が存在する. つまり 1 つは 50 MPa の等圧線に見られるような開曲線であって,もう 1 つは 300 K 付近に見られる閉曲線である.また, Fig. 6.6(a)より明らかになるメタン/硫化水素の臨界曲線に おける挙動も興味深い.硫化水素から出発した臨界曲線は温度を下げながら組成と圧力を増やしていく.しかし, 13.5 MPa の閉曲線を通過した後は,組成に対し極大値を持つ.臨界曲線はその後高圧域へと発散するが, Fig. 6.6(a)より,温度をさらに下げつつ,しかし組成も減らしながら発散していることが分か る.そして 57.214 MPa で温度は極小値をとり,その後は温度を上昇させながらさらに高圧域へと延びている.

Type IIIの相平衡を議論する上で,これまで述べてきたような考察は3次型状態方程式を用いて議論す ることも可能である.しかし,3次型状態方程式は密度の再現性が良くないため,飽和密度に関して検 討されることはなかった.本研究で作成したHelmholtz関数型状態方程式は密度を始め,各種物性の実測 値を高精度に再現することができることから飽和密度等の考察が可能である.Fig.6.7 に(a)メタン/硫化 水素および(b)メタン/エタンの温度一定における飽和密度の挙動を示す.Fig. 6.4(a)のP-x線図における 相平衡で少し述べたが,237 Kや245 Kで現れる高圧域での気気平衡と呼ばれる相平衡は,Fig.6.7(a)より 25 mol·dm⁻³以上のかなり高密度な状態での相平衡であることが分かる.従って,液液平衡と呼ぶ方がふ さわしい.Fig.6.7(a)によって飽和密度における等温線の挙動は明確になった.しかし相平衡では,温度・ 圧力を独立変数とするために,相平衡状態において共存する各相の密度の値を特定するためには,等温 線に加え等圧線を記入する必要がある.そこでFig. 6.7(a)に等圧線を入れた飽和密度における相平衡を Fig. 6.8 に示す.これにより,相平衡状態にある,各相の密度の値を把握することができる.例えば,Fig. 6.8 から 350 K, 10 MPaの状態では図中の"A"と"B"の状態が共存し,気液の相平衡が起こっていることが 分かる.

Type IIIの中には、水素/ヘリウム、ネオン/メタン、アンモニア/アルゴン、アンモニア/窒素、水/ア ルゴン、水/二酸化炭素の2成分系混合流体のように、気液平衡状態において、等温場で昇圧すると、 ある圧力で気相と液相の密度が逆転し、重力の影響によって上下が入れ替わる圧力反転が起こるものが ある. 圧力反転は,液液平衡が存在するような高圧域で起こると考えられる. Fig. 6.8 に示した飽和密度 において,例えば 230 Kの等温場における昇圧過程を考える. 50 MPaでは 0.298 モル組成, 25.68 mol·dm⁻³ の液相と 0.604 モル組成, 23.47 mol·dm⁻³の液相が共存する液液平衡が存在する. このとき 0.298 モル組 成の液体の方が 0.604 モル組成の液体よりも密度が大きいために下側に位置する. 200 MPaでは, 0.223 モル組成, 29.50 mol·dm⁻³の液相と 0.672 モル組成, 28.17 mol·dm⁻³の液相が共存する液液平衡となる. 従 って 200 MPaでも硫化水素リッチの 0.223 モル組成の液体が下側に位置している. しかしながら, 圧力 を上昇させると,共存する液体の密度の差がなくなりつつある. そこで,本研究ではさらに高圧域での 計算を 230 Kで行ってみた. その結果, 570 MPaで 0.152 モル組成, 33.03 mol·dm⁻³の液相と 0.722 モル組 成, 33.08 mol·dm⁻³の液相による共存状態となった. これはこれまでの傾向と異なり,硫化水素リッチの 液体である 0.152 モル組成の液相の方が,メタンリッチの液体である 0.722 モル組成の液相よりも密度 が小さくなっている. 従って, 570 MPaで固相が出現してないと仮定すると,このとき重力の影響によ って圧力反転が起こると推定される. メタン/硫化水素において高圧の液液平衡に関する実測値報告は 得られていないことから,この領域での実測値ならびに圧力反転が起こることが予想されるような超高 圧域での液液平衡および固液平衡に関する実測値の報告が待たれるところである.

--- Critical curve of the mixtures --- VLLE three-phase curve of methane + hydrogen sulfide system

Fig. 6.6. (a)メタン/硫化水素および(b)メタン/エタンの圧力一定における相平衡

△ Upper critical end point of methane + hydrogen sulfide system — Constant temperature VLE and LLE --- Critical curve of the mixtures — VLLE three-phase curve of methane + hydrogen sulfide system

Fig. 6.7. (a)メタン/硫化水素および(b)メタン/エタンの温度一定における飽和密度

Fig. 6.8. メタン/硫化水素の等温線ならびに等圧線による飽和密度

6.2 PpTx 性質, 定圧比熱, 定積比熱, 音速およびジュール・トムソン係数

本研究では、さらに作成した状態方程式によってメタン/硫化水素における PpTx 性質、定圧比熱、定 積比熱、音速およびジュール・トムソン係数の状態曲面を明らかにした.本研究では2通りの方法によ って各種状態曲面を明らかにした.1つは組成一定での等圧線による状態曲面である.このように組成 一定で状態曲面を描くと純物質の状態曲面との比較から、混合による状態曲面の変化を明らかにするこ とができる.混合流体の場合、等温場で気体が昇圧によって気液平衡による二相域の状態になると、再 び一相域に入るまで気液はそれぞれ露点、沸点曲線に沿うように状態が変化していく.これは Fig. 6.4 のような P-x 線図で相平衡を描いたときに、その挙動を把握することができる.または Fig. 6.8 のよう に p-x 線図で描いた相平衡に圧力の情報を入れても可能である.露点・沸点曲線に沿った変化では共存 する気液の組成も変化する.従って、メタン/硫化水素において PpTx 性質や比熱、音速等の状態曲面を 議論する際に、組成一定での図を描くと露点・沸点曲線に沿って変化している間の挙動は全く把握する ことができない.そこで、温度一定での等圧線による状態曲面を描いた.このとき横軸に組成を、縦軸 に明らかにしたい物性をとる.これにより露点・沸点曲線に沿った挙動における物性の変化を明示する ことが可能となる.

6.2.1 組成一定での状態曲面

まずは組成一定での状態曲面から示していく. Fig. 6.9-6.13 にメタン/硫化水素における,組成一定の *PpTx* 性質,定圧比熱,定積比熱,音速,ジュール・トムソン係数の状態曲面を示す.硫化水素の3重 点は187.67 K であるので,固相が出現しないであろうと推定される190 K 以上の温度領域で計算を行っ た.メタン/硫化水素では0,0.1,0.5,0.8,0.95,1 の6つのモル組成について示した.モル組成0のときは 硫化水素純物質流体の状態曲面であり,またモル組成1のときはメタン純物質流体の状態曲面である. また,比較として,Fig. 6.14-6.18 にメタン/エタンにおける,組成一定の*PpTx* 性質,定圧比熱,定積 比熱,音速,ジュール・トムソン係数の状態曲面を示した.混合流体の組成一定の状態曲面において注 意すべきことは,相平衡線は,Tie-line で結ぶ気液の状態で相平衡が起こるわけではないということであ る.

Fig. 6.9 にメタン/硫化水素における組成一定における PoTx 性質の状態曲面を T-o線図上に示した. Fig. 6.14 はメタン/エタンの組成一定における PpTx 性質の状態曲面であるが,メタン/エタンの場合に は組成が変化しても純物質とほとんど変わらない挙動を示す.純物質流体では等圧の状態で高温の一相 域から降温過程を経ると、あるところで二相域に入り、再び一相域になるときは、二相域に入ったとき と同じ温度である.しかし混合流体の場合には、二相域に入る温度と再び一相域になる温度は異なる. 従って Tie-line を引くと水平にはならない.メタン/硫化水素の場合には, Fig. 6.9(b) 0.1 モル組成の場合 には Type I と同様の挙動を示すが, Fig. 6.9(c) 0.5 モル組成では臨界点を 2 つ持ち, Fig. 6.9(d) 0.8 モル組 成では臨界点を全く持たない.また,0.5,0.8 モル組成における相平衡線は高密度域で極小値を持つとい う特異性が明らかになった. これは Fig. 6.2(a)で 0.5, 0.8 モル組成の組成一定の相平衡において, 高圧域 へ発散する液側が、臨界曲線と同じく温度に対して極小値を持つことに起因している. Type I の場合、 二相域に入る大抵の等圧線は固相が出現しない限り再び一相域へ戻る.しかしメタン/硫化水素の 0.5 モル組成の等圧線は、Fig. 6.9(c)から分かるように、一度二相域に入ると一相域には戻らない. またさら に複雑なのは, Fig. 6.9(d) 0.8 モル組成 10 MPa の等圧線である. この等圧線は, 高温の一相域から温度 を下げていくと, 一回二相域に入るが, さらに温度を下げると再び一相域に戻る. そこでさらに 10 MPa のまま温度を下げると再び二相域に入って、これ以上温度を下げても二相域のままであるという特異な 挙動を示す.これは, Fig. 6.2(a)に示した 0.8 モル組成の組成一定の相平衡において, 10 MPa では相平衡 線と3つの交点を持つことに起因している.これらの状態曲面からわかることは、どのモル組成におい ても等圧線は純物質と同じ挙動を示していることである.ただ異なるのは,相平衡が複雑であるために, 組成一定の状態曲面で描かれる相平衡線が見慣れない形状をしているという点である.

Fig. 6.10 にメタン/硫化水素の組成一定における定圧比熱の状態曲面を示す.また, Fig. 6.11 にメタン

/硫化水素の組成一定における定積比熱の状態曲面を示す. Fig. 6.15 は比較として示したメタン/エタン の組成一定での定圧比熱における状態曲面であり、Fig. 6.16 はメタン/エタンの組成一定での定積比熱 における状態曲面である. Sengers and Levelt Sengers [115]は、臨界現象を磁性体との類似性から議論し、 混合流体において定圧比熱は弱く発散すると述べている.メタン/エタンでは, Sengers and Levelt Sengers [115]が述べているように、臨界点で定圧比熱は弱く発散する特徴を持っている.また Fig. 6.16 より、メ タン/エタンにおいて定積比熱も臨界点で弱く発散している.一方,メタン/硫化水素の場合には,Fig. 6.10(b), (e)に示したように、0.1 モル組成および 0.95 モル組成の定圧比熱は、メタン/エタン同様に臨界 点で弱く発散している. Fig. 6.11(b), (e)に示すように、定積比熱の場合にも、0.1 モル組成および 0.95 モ ル組成では、臨界点で弱く発散しており、0.1、0.95 モル組成では、定圧比熱・定積比熱において Type I と類似している. メタン/硫化水素は, 0.1 モル組成および 0.95 モル組成において, メタン/エタン同様, 気液の臨界点を1つ持つ.しかし,0.8 モル組成の場合には,臨界点を持たない. Fig. 6.10(d)に示すよう に、0.8 モル組成の定圧比熱は、相平衡線において 250 K 付近で極大となっている. また、Fig. 6.11(d) に示すように、0.8 モル組成の定積比熱も、相平衡線において 230 K 付近で極大となっている. 定積比 熱の場合には、200 K 付近で相平衡線は高圧域へと延びているが、純物質流体の液相における定積比熱 と同様, 圧力が大きくなると定積比熱の値も大きくなる. メタン/硫化水素 0.5 モル組成の場合には, 気 液ならびに液液の2つの臨界点を持つ特異性が現れる. Fig. 6.10(c)に示すように, 0.5 モル組成の定圧比 熱における相平衡線は, 臨界点とは異なる 310 K 付近で極大となっている. メタン/硫化水素において, 0.8 モル組成と 0.5 モル組成では、臨界点の有無に関して大きな違いがあるにも関わらず、定圧比熱およ び定積比熱は似たような挙動を示す結果が得られた. 0.5 モル組成の場合, 臨界点において臨界異常が 現れるとすれば、どのような臨界異常が現れるのかといったことを実験により検証することは、今後の 研究課題として非常に興味深い.

Lemmon and Jacobsen [37]のメタン/エタンにおける状態方程式は、エタン純物質流体に対し、Friend et al. [16]の状態方程式を用いているが、Fig. 6.15(a)に示したエタン純物質流体の定圧比熱では、飽和蒸気において、150 K付近で理想気体の定圧比熱より小さい値を持ち、物理的に妥当な挙動を示していない. この影響はFig. 6.16 に示した定積比熱において定圧比熱よりも大きく見られ、またジュール・トムソン 係数の状態曲面にも見られる.これらは、実測値の過剰相関による結果であると考えられるが、状態方程式作成の難しさがうかがえる.

Fig. 6.12, 13 は, メタン/硫化水素における, 音速とジュール・トムソン係数の状態曲面である. また, Fig. 6.17, 18 は比較として示した, メタン/エタンにおける, 音速, ジュール・トムソン係数の状態曲面 である. メタン/エタンの場合には, ジュール・トムソン係数で, 定圧比熱・定積比熱と同様に飽和蒸 気部分でおかしな挙動を示しているが, 純物質と近い状態曲面を示している. メタン/硫化水素は, 定 積比熱では 0.5 モル組成の 230 K付近, あるいは 0.8 モル組成の 200 K付近において, 液相の相境界線が 温度の極小値を持ち, 定積比熱の高い値へ発散するような形状を示している. 音速においても定積比熱 同様, 0.5, 0.8 モル組成において相平衡線が温度の極小値を持っている. これはFig. 6.2(a)で 0.5, 0.8 モル 組成の組成一定の相平衡において, 高圧域へ発散する液側が, 臨界曲線と同じく温度に対して極小値を 持つことに起因している. ジュール・トムソン係数では, 0.95 モル組成の相平衡線においてμ=8 K·MPa⁻¹ 付近で"S"字の形状を示している. これはFig. 6.3 の 0.95 モル組成における組成一定の相平衡でくぼみが 見られることに起因する特異な挙動であると考えられる.

6.2.2 温度一定での状態曲面

次に温度一定での状態曲面について考察する.温度一定での状態曲面は,一相域における挙動のみならず,気液平衡あるいは気液液3相平衡といった相平衡での各相における挙動も把握することができるという利点がある.温度一定の状態曲面では,350,310,250,237,230,200 Kの6温度について示した. Fig. 6.4 の *P*-*x* 線図上に示した温度一定の相平衡から,350 K および 310 K は Type I と同様の挙動を示している.280 K より低い温度になると,臨界曲線は発散し始める.250 K の相平衡線は上に凸の極大値 を持つような形状をし、Type I の形状とはやや異なる. 237 K では 80 MPa より高圧域で従来気気平衡と 呼ばれている、新たな液液平衡を生じる.また、230 K では臨界点が存在せず、Fig. 6.4(a)に示したよう に 300 MPa の高圧域まで相平衡線が延びている.低圧域ではメタンリッチの気体と硫化水素リッチの液 相の気液平衡が起こり、高圧域ではメタンリッチの液体と硫化水素リッチの液体の液液平衡が起こるが、 メタンリッチの相は気体から液体へ連続的に変化している.200 K では、4.898 MPa で気液液 3 相平衡が 存在する.3 相平衡圧力以下の低圧では、メタンリッチの気体と硫化水素リッチの液体の気液平衡が起 こる.3 相平衡圧力以上では、仕込みモル組成が 0.118~0.886 の間であれば、硫化水素リッチの液体と メタンリッチの液体の液液平衡の状態になる.一方で仕込みモル組成が 0.886~0.965 の間であれば、気 体とメタンリッチの液体の気液平衡の状態になるが、気液臨界点の圧力である 5.324 MPa 以上の圧力で は一相域の状態になる.このような特徴を持つ各等温場での *PpTx* 性質、定圧比熱、定積比熱、音速、 ジュール・トムソン係数における挙動について考察する.

Fig. 6.19 はメタン/硫化水素の温度一定におけるPpTx性質の状態曲面である.温度一定における状態 曲面は、例えばある仕込みモル組成を決め、この混合流体を気体の状態から昇圧する過程を考えること で、その有意性を示すことができる. Fig. 6.19(a)に示すように、350 Kの温度一定において、仕込みモル 組成を 0.1 としたときの気体の状態からの昇圧過程を考える. 350 K, 5 MPaのときには, 0.1 モル組成の 混合流体は 2.28 mol·dm⁻³の気体として存在している.しかし, 7.133 MPaで 4.24 mol·dm⁻³の飽和蒸気にな る. その後の昇圧過程では気,液がそれぞれ露点,沸点曲線に沿って変化する.8 MPaでは 0.050 モル組 成, 16.66 mol·dm⁻³の液体と 0.152 モル組成, 4.97 mol·dm⁻³の気体の共存状態となる. しかし, 9.593 MPa では 14.93 mol·dm⁻³の飽和液体となって,再び一相域の状態になる.仕込みモル組成が 0~0.214 の場合 には、気体の状態からの昇圧過程において、0.1 モル組成で述べたような気液平衡状態を経ることにな るが、仕込みモル組成が 0.214 よりもメタンリッチの場合には、どんなに昇圧しても一相域のままであ る. 与えた仕込みモル組成での混合流体が、気体の状態からの昇圧過程において、気液平衡状態になる かどうかの判断は、Fig. 6.4のP-x線図に示した温度一定の相平衡でも可能であるが、Fig. 6.19を描くこ とによって、共存する密度の値までも把握することが可能となる.350 K以外の温度も同様の考察でそ の変化を把握することができる.310Kの等温場におけるPpTx性質の状態曲面は, Fig. 6.19(b)に示したよ うに、350 KのPpTx性質の状態曲面と同様の挙動を示す.そして、310 Kの場合には、仕込みモル組成が 0.547~1のとき、どんな圧力でも相分離せず一相域の状態になる.

Fig. 6.19(c)に示すように、250 Kの温度一定において、仕込みモル組成 0.8 の場合には、昇圧過程において露点曲線と2回交わるために、逆行凝縮が起こる.250 K、1 MPaのとき 0.8 モル組成の混合流体は0.50 mol·dm⁻³の気体として存在している.3.076 MPaのとき 1.72 mol·dm⁻³の飽和蒸気になる.8 MPaのときには0.179 モル組成、23.74 mol·dm⁻³の液体と0.851 モル組成、6.24 mol·dm⁻³の気体の共存状態にあるが、10.133 MPaになったところで昇圧しているにも関わらず液相部分が消えて、10.51 mol·dm⁻³の気体状態での一相域となる.逆行凝縮は、仕込みモル組成が臨界点の組成よりも大きく、昇圧過程で2回露点曲線と交わる場合に起こる.350 Kでは0.182~0.214 モル組成、310 Kでは0.420~0.547 モル組成、250 Kでは0.422~0.857 モル組成のときに逆行凝縮は起こる.また、250 Kにおいて0.857~1 モル組成のときには、気体の状態から昇圧しても相分離しない.

237 Kの温度一定における相平衡では、Fig. 6.19(d)に示すように、0.446 モル組成・41.665 MPaと 0.442 モル組成・79.320 MPaの 2 つの臨界点を持つ、79.320 MPaより高圧域では新たな液液平衡が生じる。例 えば仕込みモル組成 0.6 の混合流体は、0.785 MPaで 0.42 mol·dm⁻³の飽和蒸気となり、1 MPaにおいて 0.014 モル組成、26.41 mol·dm⁻³の液体と 0.680 モル組成、0.54 mol·dm⁻³の気体が共存する気液平衡状態になる。これを昇圧すると、21.079 MPaで飽和密度 20.58 mol·dm⁻³の一相域になるが、189.220 MPaになると 27.91 mol·dm⁻³の密度で、再び飽和状態となり、これより高圧域では液液平衡の状態となる. 237 Kの場合にも、仕込みモル組成が 0.442~0.899 の間であるとき逆行凝縮が起こる。0.899~1 モル組成のときには、完全 なー相域である。

Fig. 6.19(e)に示すように,230 Kの温度一定における相平衡では臨界点を持たない.0.5 モル組成の混 合流体は,0.461 MPaで 0.25 mol·dm⁻³の飽和蒸気となり,相平衡状態になると,その後どんなに昇圧して

も固相が出現するまで液液平衡が続く. 1 MPaでは 0.016 モル組成, 26.77 mol·dm⁻³の硫化水素リッチの 相と 0.757 モル組成, 0.56 mol·dm⁻³のメタンリッチの相が共存する. 8.207 MPaでは 0.187 モル組成, 24.93 mol·dm⁻³の硫化水素リッチの相と 0.872 モル組成, 10.14 mol·dm⁻³のメタンリッチの相が共存する. この ときメタンリッチ相の密度はメタン純物質流体の臨界密度と等しくなる. 10 MPaでは 0.207 モル組成, 24.78 mol·dm⁻³の硫化水素リッチの相と 0.782 モル組成, 15.66 mol·dm⁻³のメタンリッチの相が共存する. そして, 50 MPaでは 0.298 モル組成, 25.68 mol·dm⁻³の硫化水素リッチの相と 0.604 モル組成, 23.47 mol·dm⁻³のメタンリッチの相が共存する. これらの密度が示すように, 昇圧過程において, 硫化水素リ ッチの相は一貫して液体であるが, メタンリッチの相は密度が連続的に増加し, 気体から液体へと変化 する. 0.918~1 モル組成の領域では一相域となる.

Fig. 6.19(f) 200 Kのときには、気液液 3 相平衡が出現する.3 相平衡圧力である 4.898 MPa以下では、 気液平衡が起こる.仕込みモル組成が 0.071~0.972 の間では、3 MPaにおいて 0.07 モル組成、27.78 mol·dm⁻³の液体と 0.972 モル組成、2.36 mol·dm⁻³の気体での気液平衡状態になる.3 相平衡圧力において 3 相平衡点はそれぞれ、0.118 モル組成・27.31 mol·dm⁻³の液相、0.886 モル組成・16.08 mol·dm⁻³の液相、 0.965 モル組成・6.02 mol·dm⁻³の気相の 3 相が共存する.仕込みモル組成が 0.118~0.965 の間であれば 3 相平衡が起こる.しかし 3 相平衡圧力以上になると仕込みモル組成によって挙動が異なってくる.0.118 ~0.886 モル組成の間であれば、3 相平衡圧力以上で、硫化水素リッチの液体とメタンリッチの液体の液 液平衡の状態になる.一方で 0.886~0.965 モル組成の間であれば、3 相平衡圧力以上で、気体とメタン リッチの液体の気液平衡の状態になる.この気液平衡における領域は狭く、200 Kであれば、気液臨界 点の圧力である 5.324 MPa以上で一相域の状態になる.0.973~1 モル組成の領域では一相域の状態で存 在する.

Fig. 6.20 は、Fig.6.19 と同様にして描いた、メタン/硫化水素の温度一定における定圧比熱の状態曲面 である.また, Fig. 6.21 はメタン/硫化水素の定積比熱における状態曲面である.相平衡線および等圧 線は Fig. 6.19の PpTx 性質と対応している. 例えば Fig. 6.20(a) 350 K の定圧比熱における密度の値は Fig. 6.19(a) 350 Kの PpTx 性質の状態曲面から得ることができる. 定圧比熱の状態曲面では縦軸を対数表示 で表した. Fig. 6.20(a) 350 K では, 12 MPa および 15 MPa の一相域の等圧線において 0.2 モル組成付近 で極大値が見られる. Fig. 6.20(a)-(f)を見ると、温度が低くなるにつれ、極大値をとる組成は、メタンリ ッチの方へ移動している. 350 K, 310 K, 250 K は気液の臨界点が存在する温度であり、相平衡は Type I と同様の気液平衡のみが起こるが、臨界曲線が発散し始める 250 K では、定圧比熱および定積比熱の状 態曲面の挙動が,350 K や 310 K とは異なってくる.定圧比熱では,Fig. 6.20(c) 250 K で,相平衡線にお いても気相側の0.7~0.8 モル組成付近で極大値を持つ挙動を示している.この相平衡線における極大値 はFig. 6.20(c)-(e)に示したように、250 K 以下の237 K,230 K にも見られる. Fig. 6.20(c) 250 K では10 MPa 付近で相平衡線の極大値をとるのに対し, Fig. 6.20(e) 230 K では 8 MPa 付近で極大値をとっており,温 度が下がると極大値をとる圧力も下がる傾向がある.また、相平衡線上で極大値をとる組成は、温度が 下がるとメタンリッチの方へ移動している. 定積比熱の場合にも, Fig. 6.21(c)-(e)に示すように, 250, 237, 230 K において、気相側の相平衡線は、0.7~0.8 モル組成付近で弱く極大値を示す挙動を示している. そして、極大値をとる組成は、定圧比熱と同様に、メタンリッチの方へ移動している. 250, 237, 230 K では、Fig. 6.19 に示した PoTx 性質の相平衡線上の最大組成付近において、定圧比熱および定積比熱の 相平衡線は、組成に対する比熱の変化率が非常に大きくなっている傾向にある.200Kでは、Fig. 6.20(f) および Fig. 6.21(f)に示したように、定圧比熱、定積比熱ともに気液の臨界点で極大値を示している.こ のように、相平衡線上において極大値が現れる現象を実験により検証することは、臨界異常とともに非

相平衡線において極大値をとったあと、定圧比熱は減少していくが、高圧の液液平衡部分では、圧力の増加に伴い定圧比熱の値が小さくなっている. Fig. 6.10(a)および Fig. 6.10(f)の硫化水素、メタンの両純物質流体から分かるように、純物質流体において臨界温度以下の液相域では、圧力の増加にともない、 定圧比熱の値が小さくなる傾向があり、230 K 高圧域での液液平衡部分における定圧比熱の挙動も、この傾向を反映していると考えられる.

常に興味深い研究課題と言える.

Fig. 6.22, 6.23 はそれぞれ温度一定の音速,ジュール・トムソン係数である. Fig. 6.22 の音速の温度一定における状態曲面は定積比熱と同様に,高圧の液液平衡部分において,圧力が高くなるほど値が大きくなる傾向がある. Fig. 6.23(e)から,230 K でのジュール・トムソン係数は定積比熱や音速とは逆に高圧での液液平衡において,圧力の増加にともない値は小さくなる傾向にある. これらの傾向も,純物質流体の臨界温度以下の液相域における挙動と類似している.

Fig. 6.24 に 200 Kにおける*PpTx*性質,定圧比熱,定積比熱,音速,ジュール・トムソン係数の全てに ついて示した. Fig. 6.24(a),(b)は*PpTx*性質である. Fig. 6.24(a)は 0~0.15 モル組成まで,Fig. 6.24(b)は 0.8 ~1 モル組成までを示しており,図中に示していない 0.15~0.8 モル組成の間は相平衡状態になる.縦軸 においては、挙動が見やすいように、Fig. 6.24(a),(b)それぞれ範囲が異なっている. Fig. 6.24(a)の密度範囲は 27~30 mol·dm⁻³, Fig. 6.24(b)の密度範囲は 0~30 mol·dm⁻³である. 200 Kにおける*PpTx*性質の全体は, Fig. 6.19(f)に示したとおりである. Fig. 6.24(c),(d)は 200 Kにおける定圧比熱の状態曲面である. Fig. 6.24(c)はFig.6.24(a)に示したモル組成範囲と等しく、0~0.15 モル組成である. また、Fig. 6.24(d)も同様 にFig. 6.24(b)のPpTx性質と同じ 0.8~1 モル組成までを示した.定圧比熱は液相域では比較的変化が小さ いため、Fig. 6.24(c)では 60~70 J·mol⁻¹·K⁻¹の範囲で示し、変化が大きく見られる気相側のFig. 6.24(d)では 30~700 J·mol⁻¹·K⁻¹の範囲で示している. 定積比熱,音速,ジュール・トムソン係数もまた、組成 はPpTx性質や定圧比熱と一致しているが、図中に示したそれぞれの物性範囲は 0~0.15 モル組成の場合 と,0.8~1 モル組成の場合で異なっている. Fig.6.25 は 230 Kにおける各物性についての状態曲面, Fig.6.26 は 237, 250 Kの状態曲面, Fig. 6.27 は 310, 350 Kの状態曲面である.

本研究では様々な状態曲面を描くとによってType IIIメタン/硫化水素の状態曲面をPpTx性質,定圧比 熱,定積比熱,音速およびジュール・トムソン係数といった物性に対して詳細に明らかにした.メタン /硫化水素は第5章のTable 5.1 に示したように,実測値が十分でない現状にある. PpTx性質では278 K 以下の低温域ならびに 501 K以上の高温域と,70 MPa以上の高圧域で実測値が不足しており,また比熱 や音速といった誘導状態量に関して実測値が報告されていないため,今後の研究が待たれるところであ る.最後に計算より得られたメタン/硫化水素の臨界点におけるPpTx性質,定圧比熱,定積比熱,音速 およびジュール・トムソン係数の値を組成基準でTable 6.1 に,温度基準でTable 6.2 に示す.また,3 相 平衡時におけるPpTx性質,定圧比熱,定積比熱,音速およびジュール・トムソン係数の値を温度基準に よってTable 6.3 に示す.

6.3 メタン/硫化水素2成分系混合流体の状態曲面における特徴のまとめ

第6章では、本研究によって作成したメタン/硫化水素2成分系混合流体のHelmholtz 関数型状態方程 式により、その状態曲面を明らかにしてきた.本研究によって得られたメタン/硫化水素の状態曲面に おける特徴および新しく得られた知見についてまとめる.

Type III の特徴である臨界曲線の発散は、気液の臨界点と液液の臨界点がつながったものである. Fig. 6.2(a)に示したように、組成一定の相平衡において、0.1 モル組成のときは気液の臨界点を1つ持ち、Type I と同様な挙動を示すが、0.5 モル組成の場合は気液と液液の2 つの臨界点を持ち、高圧域へと発散している. また、0.8 モル組成の場合には、臨界点を全く持たずに高圧域へと発散している. Fig. 6.4 の *P*-*x* 線図における相平衡で示したように、280 K 以上の温度での臨界曲線および、温度一定の相平衡線は Type I と類似しているものの、280 K 以下の温度になると、臨界曲線は高圧・高密度 側へ発散し始める. Upper critical end point の温度である 210.919 K 以下の温度になると、再び気液の臨界曲線がメタン純物質の臨界点との間で生じる. Fig. 6.15 に示したように、メタン/エタンにおける組成の臨界曲線がメタン純物質の臨界点との間で生じる. Fig. 6.15 に示したように、臨界点において弱く発散 する特徴を持っている. メタン/硫化水素における組成一定の定圧比熱の場合には、Fig. 6.10 に示したように、気液の臨界点を持つ 0.1 モル組成および 0.95 モル組成では、メタン/エタン同様に臨界点で弱く発散しているが、0.5 モル組成のように、臨界曲線が発散し始めるところの気液の臨界点および液液の臨界点になると必ずしもそうとは限らない計算結果が得られた. 臨界異常を経験的な状態方程式で表
すことは困難であるが、0.5 モル組成の組成一定における定圧比熱の挙動は、臨界点を全く持たない0.8 モル組成の組成一定における定圧比熱の挙動と類似しており、0.5 モル組成の臨界点において、臨界異 常が現れるとすれば、どのような臨界異常が現れるのかといったことは、今後の研究課題として非常に 興味深い.

メタン/硫化水素の相平衡における挙動は複雑なため,Fig. 6.2~6.8 に示したように,P-T線図,P-x 線図,T-x線図, p-x線図といった多くの切り口から相平衡の全容を明らかにしていった.気液液3相平 衡の影響により、メタン純物質に近い0.95 モル組成であっても,Fig. 6.3 に示したように、組成一定の 相平衡線は、3 相平衡線と交わるところでくぼみがみられるという特徴が現れた.また,Fig. 6.7 のp-x 線図における相平衡より、Type IIIの1つの特徴である、従来気気平衡と呼ばれている高圧域で発生する 新たな相平衡は、実際には25 mol·dm⁻³以上の高密度であり、液液平衡に近いことを示した.Fig. 6.8 で は、p-x線図における相平衡に等圧線を加え、相平衡時に共存する密度を把握できるようにした.この 結果、50 MPa以上の高圧域において、等圧線は徐々に傾きが水平になっていく傾向を示した.これは、 相平衡時に共存する2 相の密度差がなくなっていくことを意味している.そこで、230 Kにおいて 570 MPaという、超高圧での相平衡計算を行った結果、上下の相の密度の大小が逆転した.570 MPaでは実 際には固相が既に現れている可能性が高いが、流体域だとすれば、上下の相が入れ替わる圧力反転が起 こると推定される.

6.4 天然ガスにおける硫化水素の影響

実際の天然ガスには、Table 1.1 に示したように、インドネシアのArunのように硫化水素を 0.01 mol% しか含まないものや、カナダのRainbowのように 2.95 mol%含むもの、ドイツのBuchhorst-Siedenburgのよ うに 6.70 mol%含むものや、フランスLacq profondのように 15.30 mol%と硫化水素を多量に含むものなど がある.そこで,天然ガスを主成分であるメタンとして近似し,硫化水素がTable1.1に示した組成だけ 含まれていた場合, つまりカナダのRainbowでは 0.9705 メタンモル組成, ドイツのBuchhorst-Siedenburg では 0.933 メタンモル組成,フランスLacq profondでは 0.847 モル組成として考えた場合の硫化水素によ る影響を考察する. Fig. 6.5 のP-x線図における相平衡より 190 Kの最もメタンリッチ側の 3 相平衡点の 組成は 0.981 モル組成であり、195 Kでは 0.974 モル組成、200 Kでは 0.965 モル組成であるために、カナ ダのRainbowは190~197 Kで気液液3相平衡が起こるものと推定される.3相平衡圧力以上の圧力領域 においては、メタンリッチの液体L1と気体Vの気液平衡が起こり、さらに高圧域では一相域になる.し かし、ドイツのBuchhorst-Siedenburgのように0.847 モル組成の場合には、Fig. 6.5 右図で示した青一点鎖 線とUpper critical end pointで囲まれる領域の外であるため、190~210 Kで3相平衡が起こり、さらにそ れぞれの3相平衡圧力以上の圧力領域ではメタンリッチの液体と硫化水素リッチの液体による液液平衡 が起こる. また, Fig. 6.4(a)のP-x線図における相平衡より 250 Kであっても 5~8 MPaで二相域になるも のと考えられる. 二相域での密度の変化は, Fig. 6.19(c)の 250 Kにおける温度一定のPpTx性質の状態曲 面から把握することが可能であり、5 MPaでは、0.848 モル組成、58 kg·m⁻³の気体と 0.097 モル組成、799 kg·m⁻³の液体の共存状態となり, 8 MPaでは 0.851 モル組成, 117 kg·m⁻³の気体と 0.179 モル組成, 732 kg·m⁻³ の液体の共存状態になる.また、0.847 モル組成の場合、Fig. 6.6(a)の圧力一定のT-x線図より、8 MPaの 気側の等圧線は、"S"字の曲線をしているために、例えば400 Kから降温過程を考えると、250 K付近で 二相域になり、223 Kで一相域になる.しかしさらに温度が下がると 219 Kで再び二相域に入ることが想 定される.このような複雑な挙動は、例えば現在天然ガス開発が行われているシベリア等の極寒地域に おいて、フランスLacq profondのように硫化水素を15 mol%も含むような天然ガスが採掘された場合には、 実際に起こる可能性があるために、パイプラインの設計等には硫化水素に対する影響を考慮する必要が 出てくる.

Fig. 6.9. メタン/硫化水素の組成一定における PpTx 性質の状態曲面

Fig. 6.10. メタン/硫化水素の組成一定における定圧比熱の状態曲面

Fig. 6.12. メタン/硫化水素の組成一定における音速の状態曲面

Fig. 6.19. メタン/硫化水素の温度一定における PpTx 性質の状態曲面

Fig. 6.20. メタン/硫化水素の温度一定における定圧比熱の状態曲面

Fig. 6.21. メタン/硫化水素の温度一定における定積比熱の状態曲面

Fig. 6.23. メタン/硫化水素の温度一定におけるジュール・トムソン係数の状態曲面

Fig. 6.24. メタン/硫化水素の 200 K における *PpTx* 性質,定圧比熱,定積比熱,音速,ジュール・トムソン係数の状態曲面

Fig. 6.25. メタン/硫化水素の 230 K における *PpTx* 性質,定圧比熱,定積比熱,音速,ジュール・トムソン係数の状態曲面

Fig. 6.26. メタン/硫化水素の 230 K, 250 K における *PpTx* 性質,定圧比熱,定積比熱,音速,ジュール・トムソン係数の状態曲面

Fig. 6.27. メタン/硫化水素の 310 K, 350 K における *PpTx* 性質,定圧比熱,定積比熱,音速,ジュール・トムソン係数の状態曲面

Composition, mole fraction of methane	Critical temperature, [K]	Critical pressure, [MPa]	Critical density, [mol ∙ dm ⁻³]	Critical isobaric heat capacity, [J · mol ^{−1} · K ^{−1}]	Critical isochoric heat capacity, [J•mol ⁻¹ •K ⁻¹]	Critical speed of sound, [m · s ⁻¹]	Critical Joule-Thomson coefficient, [K · MPa ⁻¹]	
0.00	373.370	8.9629	10.200	divergence	40.05	257.33	6.301	
0.05	366.879	9.400	10.42	728.64	40.02	261.75	5.616	
0.10	360.504	9.901	10.61	378.56	39.50	269.94	5.004	
0.15	354.135	10.448	10.82	262.39	38.98	280.01	4.446	
0.20	347.560	11.028	11.09	204.27	38.44	292.19	3.921	
0.25	340.534	11.622	11.44	169.34	37.91	306.58	3.427	
0.30	332.840	12.206	11.86	146.11	37.41	323.04	2.969	
0.35	324.250	12.746	12.36	129.56	36.98	341.60	2.549	
0.40	314.460	13.198	12.95	117.10	36.60	362.73	2.158	
0.45	302.897	13.494	13.70	107.00	36.29	388.09	1.777	
0.50	287.142	13.505	14.92	96.69	36.09	427.93	1.308	
0.512	278.892	13.378	15.81	91.18	36.14	458.22	1.028	
0.512	275.415	13.324	16.29	88.55	36.21	475.68	0.893	
0.50	267.022	13.326	17.66	81.79	36.50	533.25	0.554	
0.48	258.317	13.959	19.16	75.40	36.97	612.61	0.253	
0.45	241.618	24.073	22.22	65.11	38.35	840.15	-0.157	
0.43	245.555	208.329	28.52	54.78	41.71	1617.58	-0.431	
0.909^{a}	210.919	6.195	11.30	272.33	36.56	295.95	4.595	
0.95	202.267	5.496	10.66	473.08	38.42	272.01	5.567	
1.00	190.564	4.5992	10.139	divergence	57.42	205.95	6.888	

Table 6.1. メタン/硫化水素の組成基準による臨界点物性

^a Upper critical end point

Temperature, [K]	Composition, mole fraction of methane	Critical pressure, [MPa]	Critical density, [mol ∙ dm ⁻³]	Critical isobaric heat capacity, [J · mol ⁻¹ · K ⁻¹]	Critical isochoric heat capacity, [J · mol ⁻¹ · K ⁻¹]	Critical speed of sound, [m · s ⁻¹]	Critical Joule-Thomson coefficient, [K · MPa ⁻¹]	
190.564	1.000	4.5992	10.139	divergence	57.42	205.95	6.888	
195.000	0.983	4.952	10.24	1305.72	44.40	241.32	6.424	
200.000	0.960	5.324	10.51	589.74	39.47	264.40	5.836	
205.000	0.937	5.710	10.86	382.89	37.60	280.01	5.251	
210.000	0.913	6.118	11.23	285.07	36.69	293.45	4.696	
210.919 ^a	0.909	6.195	11.30	272.33	36.56	295.95	4.595	
250.000	0.422	290.790	29.75	54.09	42.66	1808.27	-0.440	
245.000	0.431	199.373	28.36	54.88	41.60	1594.64	-0.430	
240.000	0.438	125.901	26.85	56.18	40.62	1379.87	-0.405	
237.000	0.443	79.327	25.50	57.92	39.88	1201.70	-0.366	
237.000	0.446	41.654	23.77	61.17	39.07	996.73	-0.280	
240.000	0.448	27.504	22.63	63.98	38.54	878.55	-0.194	
245.000	0.454	19.660	21.50	67.22	38.01	777.67	-0.082	
250.000	0.462	16.263	20.59	70.18	37.58	706.44	0.031	
260.000	0.484	13.747	18.87	76.55	36.87	595.90	0.305	
270.000	0.506	13.288	17.15	84.19	36.38	510.41	0.672	
280.000	0.511	13.397	15.68	91.97	36.12	453.36	1.069	
290.000	0.493	13.533	14.67	98.47	36.11	419.66	1.395	
300.000	0.461	13.529	13.90	104.93	36.23	394.70	1.690	
310.000	0.420	13.343	13.23	112.78	36.46	372.40	2.003	
320.000	0.373	12.964	12.61	123.54	36.80	350.77	2.370	
330.000	0.317	12.399	12.02	139.83	37.26	329.18	2.821	
340.000	0.254	11.666	11.46	167.34	37.87	307.71	3.392	
350.000	0.182	10.813	10.98	221.80	38.64	287.48	4.109	
360.000	0.104	9.943	10.63	365.23	39.45	270.68	4.958	
370.000	0.026	9.179	10.33	1387.93	40.19	258.86	5.933	
373.370	0.000	8.9629	10.200	divergence	40.05	257.33	6.301	

Table 6.2. メタン/硫化水素の温度基準による臨界点物性

^a Upper critical end point

		Liquid 2		Liquid 1			Vapor			
Temperature, [K]	Pressure of VLLE, [MPa]	Composition, mole fraction of methane	р, С _Р , С _V , W, Щ	[mol · dm ⁻³] [J · mol ⁻¹ · K ⁻¹] [J · mol ⁻¹ · K ⁻¹] [m · s ⁻¹] [K · MPa ⁻¹]	Composition, mole fraction of methane	р, С _Р , С _V , W, Щ	$\begin{array}{c} [mol \cdot dm^{-3}] \\ [J \cdot mol^{-1} \cdot K^{-1}] \\ [J \cdot mol^{-1} \cdot K^{-1}] \\ [m \cdot s^{-1}] \\ [K \cdot MPa^{-1}] \end{array}$	Composition, mole fraction of methane	р, С _Р , С _V , W, Щ	[mol · dm ⁻³] [J · mol ⁻¹ · K ⁻¹] [J · mol ⁻¹ · K ⁻¹] [m · s ⁻¹] [K · MPa ⁻¹]
190.000	3.835	0.099	ρ	28.02	0.896	ρ	17.87	0.981	ρ	4.22
			C_P	68.46		C_P	96.75		C_P	111.69
			C_V	43.71		C_V	33.35		C_V	32.80
			W	1320.75		W	518.95		W	274.63
			μ	-0.320		μ	0.940		μ	11.441
195.000	4.351	0.108	ρ	27.67	0.890	ρ	17.05	0.974	ρ	5.02
			C_P	68.34		C_P	108.08		C_P	141.47
			C_V	43.59		C_V	33.79		C_V	33.68
			W	1275.15		W	469.45		W	272.67
			μ	-0.314		μ	1.262		μ	10.449
200.000	4.898	0.118	ρ	27.31	0.886	ρ	16.08	0.965	ρ	6.02
			C_P	68.23		C_P	124.94		C_P	187.15
			C_V	43.42		C_V	34.40		C_V	34.64
			Ŵ	1231.77		Ŵ	420.12		W	271.51
			μ	-0.308		μ	1.699		μ	9.302

Table 6.3. メタン/硫化水素の温度基準による3相平衡物性

		Liquid 2			Liquid 1			Vapor		
Temperature, [K]	Pressure of VLLE, [MPa]	Composition, mole fraction of methane	$\rho, [\text{mol} \cdot \text{dm}^{-3}]$ $C_{P}, [\mathbf{J} \cdot \text{mol}^{-1} \cdot \mathbf{K}^{-1}]$ $C_{V}, [\mathbf{J} \cdot \text{mol}^{-1} \cdot \mathbf{K}^{-1}]$ $W, [\mathbf{m} \cdot \mathbf{s}^{-1}]$ $\mu, [\mathbf{K} \cdot \mathbf{MPa}^{-1}]$		Composition, mole fraction of methane	р, С _Р , С _V , W,	$[mol \cdot dm^{-3}] [J \cdot mol^{-1} \cdot K^{-1}] [J \cdot mol^{-1} \cdot K^{-1}] [m \cdot s^{-1}] [K \cdot MPa^{-1}]$	Composition, mole fraction of methane	р, С _Р , С _V , W, Ц	$[mol \cdot dm^{-3}] [J \cdot mol^{-1} \cdot K^{-1}] [J \cdot mol^{-1} \cdot K^{-1}] [m \cdot s^{-1}] [K \cdot MPa^{-1}]$
205.000	5.475	0.128	ρ	26.94	0.886	ρ	14.84	0.951	ρ	7.34
			C_P	68.14		C_P	153.26		C_P	254.59
			C_V	43.20		C_V	35.24		C_V	35.65
			W	1190.22		W	370.52		W	272.19
			μ	-0.300		μ	2.344		μ	7.922
210.000	6.081	0.139	ρ	26.56	0.896	ρ	12.71	0.925	ρ	9.73
			C_P	68.09		C_P	221.07		C_P	309.99
			C_V	42.95		C_V	36.38		C_V	36.55
			W	1150.09		W	316.56		W	281.68
			μ	-0.292		μ	3.625		μ	5.795
210.919 ^a	6.195	0.141	ρ	26.49	0.909	ρ	11.30	0.909	ρ	11.30
			C_P	68.08		C_P	272.33		C_P	272.33
			C_V	42.89		C_V	36.56		C_V	36.56
			W	1142.84		W	295.95		W	295.95
			μ	-0.290		μ	4.595		μ	4.595

Table 6.3. (続き)

^a Upper critical end point

7 結論

本研究では、硫化水素純物質流体ならびにメタン/硫化水素2成分系混合流体の Helmholtz 関数型状態 方程式を作成した.硫化水素は、近年次世代エネルギーとして注目されている天然ガス成分の1つであ り、主成分であるメタンとの2成分系において臨界曲線の発散や気液液3相平衡が現れるなど、天然ガ スの物性値に及ぼす影響が大きく、硫化水素およびこれを含む天然ガスにおける熱力学性質の解明が求 められている. Scott and van Konynenburg [1,2]の分類法に従うと、2 成分系混合流体はその臨界曲線や3 相平衡線の挙動から大きくわけて6つの Type に分類することができる. 天然ガス成分であるメタン/エ タンのような単純な分子同士の2成分系は、臨界曲線が両純物質の臨界点をつなぐ連続した曲線として 描かれる.多くの2成分系ではこのような挙動を示し、これは Type I として分類される.しかし、メタ ン/硫化水素2成分系混合流体のように臨界曲線の発散や気液液3相平衡が現れる2成分系はType III として分類される. Type III のような複雑な系はこれまで van der Waals 式に代表される 3 次型状態方程 式によって相平衡ならびに臨界曲線が P-T線図上で議論されてきたが[14],密度をはじめ,比熱や音速 といった他の物性における議論は行われておらず、状態曲面が全流体域に渡って正確に研究しつくされ ているとは言い難い状況にある.また、国際状態方程式として多成分系への拡張が期待される Helmholtz 関数型状態方程式であるが,この Helmholtz 関数型状態方程式が Type III のような複雑な系に適用可能 であるかどうかは明らかではなかった.そこで本研究でメタン/硫化水素2成分系混合流体の状態方程 式を Helmholtz 関数型で作成し、これによって種々の物性を計算することで、全流体域における状態曲 面を明らかにするべく研究を行った.

本研究ではまず、これまで高精度な状態方程式が作成されていなかった硫化水素純物質流体に対して Helmholtz関数型によって状態方程式を作成した.混合流体におけるHelmholtz関数型状態方程式は純物 質流体の状態方程式を用いて作成される.本研究では、メタンにはIUPAC式でもあるSetzmann and Wagner のHelmholtz関数型状態方程式[15]を用い、硫化水素には本状態方程式[4]を用いた.次に、本研究では混 合流体におけるHelmholtz関数型の関数形に対する解析を行い,偽臨界温度のパラメータk12を変えること によって、Type IからType II,そしてType IIIへの連続的な移行が起こることを明らかにした.これによ ってType IIIに対するHelmholtz関数型状態方程式の作成が可能であることを明らかにした. また, 剰余 項 𝑘 μmix における臨界曲線への影響を 2 次式による新しい混合則を用いることで検討し、この 2 次式を用 いた方法で状態方程式が作成可能であることを明らかにした.以上の結果から、本研究ではHelmholtz 関数型によるメタン/硫化水素2成分系混合流体の状態方程式[5]を作成するに至った.本研究ではさら に, Lemmon and Jacobsen [37]の状態方程式から計算したType Iであるメタン/エタン系との比較を通して, Type IIIであるメタン/硫化水素系のPoTx性質,定圧比熱,定積比熱,音速,ジュール・トムソン係数の 状態曲面とその特徴を、本状態方程式からの計算により明らかにした[6].メタン/硫化水素は、PpTx性 質では 278 K以下の低温域ならびに 501 K以上の高温域と、70 MPa以上の高圧域で実測値が不足してお り、また比熱や音速といった誘導状態量に関して実測値が報告されていないため、今後のさらなる研究、 発展が待たれるところである. Type IIIの状態曲面はこれまで詳しく議論されたことが無かったことから, 本研究の成果は多成分系の熱力学の確立への一助となるものである.

本研究で得られた成果を以下に総括する.

(1) 硫化水素純物質流体において,約1600点の実測値情報を収集し, *PpT* 性質,飽和蒸気圧,飽和 液体密度,飽和蒸気密度,定圧比熱などの物性を同時相関することによって,状態方程式を Helmholtz 関数型により作成した.作成した状態方程式は,既存の実測値とグラフによる比較および統計的な 比較を行うことによって,その再現性を評価した.また,既存の状態方程式との比較により,本状 態方程式の優位性を示した.さらに *PpT* 性質,定圧比熱,定積比熱,音速,ジュール・トムソン係 数,第2,第3virial 係数の各状態曲面についても全流体域にわたって物理的に妥当な挙動を示して いる.

- (2) 混合流体における Helmholtz 関数型状態方程式 ϕ_{mix} において、剰余項 ϕ_{mix}^r ならびに偽臨界温度 $T_{e,mix}$,偽臨界密度 $\rho_{e,mix}$ に対し、2 次式による混合則を適用し、これらの 2 成分系の Type に対する 影響を検討した. この結果、偽臨界温度が 2 成分系の Type に大きな影響を与えることを明らかに し、異種分子間のパラメータを変化させることによって、 ϕ_{mix} から計算される臨界曲線が Type I から Type II を経て Type III へと連続的に変化する様子を明らかにした. これによって Helmholtz 関数 型によって Type II および Type III の状態方程式作成が可能であることを明らかにした. さらに、 ϕ_{mix}^r に 2 次の混合則を適用し、この異種分子間によるパラメータを変化させても Type III を表現できる ことが明らかになった. そこでこのパラメータを温度・密度の関数として実測値に相関することで、 Type III に対する状態方程式の高精度相関を実現した.
- (3) 臨界曲線ならびに相平衡計算は、与えた初期値から逐次近似法を用いて行われるのが通常であり、 この初期値が収束の際の重要な要因となる.しかし Type III のような複雑な系の場合、同一組成に 対して、気液の臨界点と液液の臨界点との2つの臨界点が存在する場合があったり、または全く臨 界点が存在しない組成があるなど、適切な初期値を与えることは困難である.そこで本研究では Heidemann and Khalil の方法を用いた.この方法により Type III のような系に対しても臨界点算出が 可能となった.一方で、相平衡計算においては、3 相平衡が出現する場合には、ある温度・圧力に 対して、気液と液液の2つの相平衡が存在したり、3 相平衡である場合がある.このときも初期値 を適切に与えることは困難である.本研究では、複雑な相平衡計算に対しては、安定性解析を用い た Michelsen の方法を用いた.安定性解析は、ある温度・圧力に対して仕込み組成が安定か不安定 かを混合による Gibbs の自由エネルギー変化*Ag* 用いて判断する方法で、同時に初期値を与えるのに 極めて有効な方法である.
- (4) メタン/硫化水素2成分系混合流体において、約1900点の実測値情報を収集し、この状態方程式をHelmholtz 関数型により作成した.相関には臨界点実測値も加えた.相関過程において、臨界点付近における相平衡は実測値に合わせづらい傾向が見られた.しかし、臨界点の条件を相関に加えることにより、臨界点はもとより、臨界点付近の相平衡においても相関精度の向上が確認された.3次型状態方程式との(P, T, x)における相平衡の比較により、同程度以上の相関精度が認められた.
- (5) 本研究によって作成したメタン/硫化水素2成分系混合流体のHelmholtz関数型状態方程式により, その状態曲面を明らかにした. Type IIIの特徴である臨界曲線の発散は、気液の臨界点と液液の臨界 点がつながったものである. 組成一定の相平衡において、0.1 モル組成のときは気液の臨界点を1 つ持つ.0.5 モル組成の場合は気液と液液の2つの臨界点を持ち,高圧域へと発散している.また, 0.8 モル組成の場合には、臨界点を全く持たずに高圧域へと発散している.気液の臨界点ではType I であるメタン/エタンと同じような挙動をしているのに対し, 液液の臨界点ではType Iと異なる挙動 を示している.この部分に関する臨界異常は今後の研究対象として非常に興味深い.また,複雑な 相平衡の挙動を示すメタン/硫化水素に対して、P-T線図、P-x線図、T-x線図、ρ-x線図といった多 くの切り口から相平衡の全容を明らかにしていった.気液液3相平衡の影響により,メタン純物質 に近い 0.95 モル組成であっても、組成一定の相平衡線は、3 相平衡線と交わるところでくぼみがみ られるという特徴が現れた. ρ-x線図よって、Type IIIの1つの特徴である、従来気気平衡と呼ばれ ている高圧域で発生する新たな相平衡は,実際には 25 mol·dm⁻³以上の高密度であり,液液平衡に近 いことを示した. さらに、230 Kを対象として 570 MPaという、超高圧での相平衡計算を行った結 果、実際には固相が既に現れている可能性が高いが、流体域だとすれば、上下の相が入れ替わる圧 力反転が起こることを示唆した.

最後に、これらの状態曲面における詳細な計算結果から、実際に天然ガス中に含まれる硫化水素

が、天然ガスに及ぼす影響を考察した結果、硫化水素が 0.03 モル組成含まれていても 190~197 K で気液液 3 相平衡が起こることが明らかになり、また硫化水素が 0.15 モル組成含まれていた場合に は、190~210 K で 3 相平衡が起こり、さらにそれぞれの 3 相平衡圧力以上の圧力領域ではメタンリ ッチの液体と硫化水素リッチの液体による液液平衡が起こることが明らかとなった.

謝 辞

本研究の遂行および本論文の作成にあたり,6年間にわたる懇切な御指導,御鞭撻を賜り,また多く の御尽力を頂きました慶應義塾大学理工学部 上松公彦教授に深甚なる感謝の意を表します.

本論文の作成にあたり,多くの適切な御助言を賜りました慶應義塾大学理工学部 佐藤春樹教授,長 坂雄次教授,泰岡顕治助教授に深い感謝の意を表します.

本研究の遂行にあたり,親身なる御指導,御助言を賜りました慶應義塾大学理工学部 宮本泰行博士 に厚く感謝の意を表します.また,著者が学部4年時よりご指導頂きました,いわき明星大学科学技術 学部 田中勝之研究助手に心より感謝致します.

本研究の遂行にあたり,経済的支援を賜りました日本学生支援機構および慶應工学会に厚く感謝の意 を表します.また平成15,16年度において,慶應義塾先端科学技術研究センターによる後期博士課程研 究助成金からの御支援を頂きました.ここに感謝の意を表します.さらに,平成17年度において,慶 應義塾大学21世紀 COE プログラム「知能化から生命化へのシステムデザイン」の Research Assistant とし て御支援頂いたことをここに記し,深い感謝の意を表します.

学部4年生の頃から現在に至るまで長い研究生活の間,寝食を共にし,お世話になりました慶應義塾 大学理工学部機械工学科上松研究室の皆様に深く感謝致します.(株)日立製作所機械研究所 安川義人 氏には,浅野中学・高校から始まり,慶應義塾大学理工学部機械工学科,そして学部4年時より修士課 程までにおける上松研究室での研究生活と,12年間もの長きにわたり,共に学びあうことができたこと, 支えて頂いたことに深く感謝致します.安川氏には,修士課程修了後も,頻繁に支えて頂きました.本 当にありがとうございました.

本論文をまとめるにあたりご協力頂いた,修士課程2年 久米大輔氏,竹村淳氏,本多裕介氏,和地 淳史氏,修士課程1年 佐藤隆彦氏,藤田郁生氏,学部4年 大塚崇弘氏,佐藤尚哉氏,坂部昭憲氏, 増田直人氏に感謝の意を表します.

最後に,著者にこのような機会を与えて下さり,多大なる経済的御支援を頂いた父 肇一郎に厚く御 礼申し上げます.また,著者を心から支えて下さり,温かく見守って頂きました,母 雅子,姉 真由 子に深く感謝致します.そして,著者が幼い頃より,多大なる経済的,精神的な御支援を頂き,常に励 まして頂いた,祖父 山鹿正雄,祖母 山鹿嘉恵に深い感謝の意を表します.

参考文献

- [1] R. L. Scott and P. H. van Konynenburg, Discuss. Faraday Soc. 49 (1970) 87-97.
- [2] P. H. van Konynenburg and R. L. Scott, Trans. R. Soc. A298 (1980) 495-540
- J. S. Rowlinson and F. L. Swinton, *Liquids and Liquid Mixtures* (Butterworth Scientific, London, 1982), pp. 191-229.
- [4] N. Sakoda and M. Uematsu, Int. J. Thermophys. 25 (2004) 709-737.
- [5] N. Sakoda and M. Uematsu, Int. J. Thermophys. 26 (2005) 1303-1325.
- [6] N. Sakoda and M. Uematsu, Zeit. Phys. Chem. 219 (2005) 1299-1319.
- [7] 石油技術協会編, 石油地質・探鉱用語集 (1989).
- [8] 市川勝 監修, 天然ガスの高度利用技術 (NTS, 2001).
- [9] 尹性二,山田達也,エネルギー経済 25 (1999) 22-48.
- [10] C. H. Chiu, Hydrocarbon Processing 57 (1978) 266-272.
- [11] N. Nakićenović et al., Global Energy Perspective (Cambridge University Press, 1998).
- [12] 鶴田東洋彦, 天然ガス新時代 (にっかん書房, 1993).
- [13] 天然ガス工業会, 天然ガス, 23 (1980) 17-30.
- [14] 遠藤, 荒井, 上松, 日本機械学会論文集 B 編, 59 (1993) 529-534.
- [15] U. Setzmann and W. Wagner, J. Phys. Chem. Ref. Data 20 (1991) 1061-1155.
- [16] D. G. Friend, H. Ingham, and J. F. Ely, J. Phys. Chem. Ref. Data, 20 (1991) 275-347.
- [17] H. Miyamoto and K. Watanabe, Int. J. Thermophys. 21 (2000) 1045-1072.
- [18] H. Miyamoto and K. Watanabe, Int. J. Thermophys. 22 (2001) 459-475.
- [19] H. Miyamoto and K. Watanabe, Int. J. Thermophys. 23 (2002) 477-499.
- [20] W. Wagner and K. M. de Reuck, Methane, International Thermodynamic Tables of the Fluid State, Vol. 13 (Blackwell Science, 1996).
- [21] IUPAC Commission on Atomic Weights and Isotopic Abundances, Pure Applied Chem. 58 (1986) 1677-1692.
- [22] IUPAC Commission on Atomic Weights and Isotopic Abundances, Pure Applied Chem. 60 (1988) 842.
- [23] T. B. Coplen, J. Phys. Chem. Ref. Data 26 (1997) 1239-1253.
- [24] M. Jaeschke, and A.E. Humphreys, *The GERG databank of high accuracy compressibility factor measurements*, (GERG technical monograph, 1990).
- [25] M. Jaeschke, P Schley, and C Bush, GWF Gas Erdgas 139 (1998) 714-719.
- [26] M. Jaeschke and P. Schley, Int. J. Thermophys. 16 (1995) 1381-1392.
- [27] J. W. Magee, W. M. Haynes, and M. J. Hiza, J. Chem. Thermodyn. 29 (1997) 1439-1454.
- [28] C. A. Hwang, P. P. Simon, H. Hou, K. R. Hall, J. C. Holste, and K. N. Marsh, J.Chem.Thermodyn. 29 (1997) 1455-1472.
- [29] スミス, 猪股, 王, 化学工学物性定数, 20 (1999) 45-75.
- [30] D. Furman, S. Dattagupta, and R. B. Griffiths, Phys. Rev. B 15 (1977) 441-464.
- [31] V. A. Mazur, L. Z. Boshkov, and V. G. Murakhovsky, Physics Letters A 104 (1984) 415-418.
- [32] V. A. Mazur, L. Z. Boshkov, and V. B. Fedorov, Dokl. Akad. Nauk SSSR 282 (1985) 137-140.
- [33] L. Z. Boshkov and V. A. Mazur, Russ. J. Phys. Chem. 60 (1986) 16.
- [34] L. Z. Boshkov, Dokl. Akad. Nauk SSSR 294 (1987) 901-905.
- [35] A. van Pelt, C. J. Peters, and J. de Swaan Arons, J. Chem. Phys. 95 (1991) 7569-7575.
- [36] A. Bolz, U. K. Deiters, C. J. Peters, and T. W. de Loos, Pure and Appl. Chem. 70 (1998) 2233-2257.
- [37] E. W. Lemmon and R. T. Jacobsen, Int. J. Thermophy. 20 (1999) 825-835.
- [38] R. Tillner-Roth and D. G. Friend, J. Phys. Chem. Ref. Data. 27 (1998) 63-96.
- [39] H. Miyamoto and K. Watanabe, Int. J. Thermophys. 24 (2003) 1007-1031.
- [40] M. L. Michelsen, Fluid Phase Equilib. 9 (1982) 1-19.

- [41] R. A. Heidemann and A. M. Khalil, AIChE J. 26 (1980) 769-779.
- [42] J. D. van der Waals, Doctoral Dissertation, Leiden (1873).
- [43] O. Redlich and J. N. S. Kwong, Chem. Rev. 44 (1949) 233-244.
- [44] G. Soave, Chem. Eng. Sci. 27 (1972) 1197-1203.
- [45] D. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15 (1976) 59-64.
- [46] 斉藤正三郎, 統計力学による平衡物性推算の基礎 (培風館, 1983).
- [47] K. S. Pitzer, J. Amer. Chem. Soc., 77 (1955) 3427-3433.
- [48] J. H. Dymond and E. B. Smith, *The Virial Coefficients of Pure Gasses and Mixtures*, (Oxford Science Research Papers, 1980).
- [49] M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys. 8 (1940) 334-345.
- [50] B. Plazer and G. Maurer, Fluid Phase Equilib. **51** (1989) 223-236.
- [51] E. Bender, Kältetechnik-Klimatisierung 23 (1971) 258-264.
- [52] J. H. Keenan, F. G. Keyes, P. G. Hill, J. G. Moore, *Steam tables thermodynamic properties of water including vapor, liquid, and solid phases,* (John Wiley & Sons, 1969).
- [53] L. Haar, J. S. Gallagher, and G. S. Kell, *NBS/NRC Steam tables thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units*, (Hemisphere Publishing Corporation, 1984).
- [54] J. E. Ursell and M.G. Mayer, Statistical Mechanics, (Wiley, 1940).
- [55] R. Schmidt and W. Wagner, Fluid Phase Equilib. 19 (1985) 175-200.
- [56] K. E. Starling, Fluid thermodynamic properties for light petrolem systems, (Gult Publishing Co., 1973)
- [57] R. D. Goodwin, Hydrogen Sulfide Provisional Thermophysical Properties from 188 to 700 K at Pressures to 75 MPa, NBSIR 83-1694, Nat. Bureau Stds., Boulder, Colorado (1983).
- [58] E. Sarashina, J. Nohka, Y. Arai and S. Saito, J. Chem. Eng. Japan 7 (1974) 219-222.
- [59] F. N. Tsai and J. H. Shyu, J. Chin. Inst. Chem. Eng. 16 (1985) 157-163.
- [60] 鈴木, 上松, 機械学会論文集 66 (1999) 201-206.
- [61] 吉田, 佐薙, 上松, 日本機械学会論文集 B 編 61 (1995) 226-233.
- [62] 吉田, 上松, 日本機械学会論文集 B 編 62 (1995) 278-283.
- [63] 吉田高明, 分子シミュレーションによる天然ガスの熱力学性質の推算, 修士論文, 慶應義塾大学 (1995).
- [64] J. Davalos, and W. R. Anderson, R. E. Phelps, and A. J. Kidnay, J. Chem. Eng. Data 21 (1976) 81-84.
- [65] W. Wagner, Fortschr.-Ber. VDI-Z. 3, No. 39 (VDI, Düsseldorf) (1974).
- [66] R. Span, Multiparameter Equation of State An Accurate Source of Thermodynamic Property Data, (Springer, Berlin, 2000).
- [67] H. L. Zhang, H. Sato and K. Watanabe, J. Chem. Eng. Data 41 (1996) 1401-1408.
- [68] 佐藤郁郎, 最小二乗法その理論と実際, (山海堂, 1997).
- [69] R. H. Wright and O. Maass, Can. J. Res. 5B (1931) 442-447.
- [70] H. H. Reamer, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem. 42 (1950) 140-143.
- [71] L. C. Lewis and W. J. Fredericks, J. Chem. Eng. Data 13 (1968) 482-485.
- [72] H. Rau and W. Mathia, Ber. Bunsenges. Phys. Chem. 86 (1982) 108-109.
- [73] G. C. Straty : cited as Ref. 43 in Ref. 57.
- [74] C. H. Liu, D. M. Bailey, J. C. Holste, P. T. Eubank, and K. R. Hall, Hydrocarbon Process. 65 (1986) 41-43.
- [75] D. M. Bailey, C. H. Liu, J. C. Holste, K. R. Hall, P. T. Eubank, and K. M. Marsh, GPA Research Report 107, Gas Processors Assoc., Tulsa, Oklahoma (1987).
- [76] E. C. Ihmels and J. Gmehling, Ind. Eng. Chem. Res. 40 (2001) 4470-4477.
- [77] E. Cardoso, Gazz. Chim. Ital. 51 (1921) 153-164.
- [78] A. Klemenc and O. Bankowski, Z. Anorg. Chem. 208 (1932) 348-366.

- [79] W. F. Giauque and R. W. Blue, J. Am. Chem. Soc. 58 (1936) 831-837.
- [80] A. M. Clark, A. H. Cockett, and H. S. Eisner, Proc. Roy. Soc. London Ser. A 209 (1951) 408-415.
- [81] J. A. Bierlein and W. B. Kay, Ind. Eng. Chem. 45 (1953) 618-624.
- [82] W. B. Kay and D. B. Brice, Ind. Eng. Chem. 45 (1953) 615-618.
- [83] W. B. Kay and G. M. Rambosek, Ind. Eng. Chem. 45 (1953) 221-226.
- [84] H. H. Reamer, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem. 45 (1953) 1805-1809.
- [85] E. C. W. Clarke and D. N. Glew, Can. J. Chem. 48 (1970) 764-775.
- [86] J. P. Baxter, L. J. Burrage, and C. C. Tanner, J. Soc. Chem. Ind. 53 (1934) 410-412.
- [87] A. G. Cubitt, C. Henderson, L. A. K. Staveley, I. M. A. Fonseca, A. G. M. Ferreira, and L. Q. Lobo, J. Chem. Thermodyn. 19 (1987) 703-710.
- [88] R. W. Millar, J. Am. Chem. Soc. 45 (1923) 874-881.
- [89] K. Clusius and A. Frank, Z. Phys. Chem. **34B** (1936) 420-431.
- [90] K. N. Swamy and R.V. G. Rao, Z. Phys. Chem. 71 (1970) 218-229.
- [91] R. W. Bach, H. A. Friedrichs, and H. Rau, High Temp. High Press. 9 (1977) 305-312.
- [92] E. Cardoso and E. Arni, J. Chim. Phys. 10 (1912) 504-508.
- [93] F. Y. Jou, J. J. Carroll, and A. E. Mather, Fluid Phase Equilib. 109 (1995) 235-244.
- [94] P. Guilbot, P. Théveneau, A. Baba-Ahmed, S. Horstmann, K. Fischer, and D. Richon, Fluid Phase Equilib. 170 (2000) 193-202.
- [95] W. F. Giauque and J. O. Clayton, J. Am. Chem. Soc. 55 (1933) 4875-4889.
- [96] R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki, J. Phys. Chem. Ref. Data 29 (2000) 1361-1433.
- [97] P. C. Cross, J. Chem. Phys. 3 (1935) 168-169.
- [98] W. A. Felsing and G. W. Drake, J. Am. Chem. Soc. 58 (1936) 1714-1717.
- [99] G. M. Barrow and K. S. Pitzer, Ind. Eng. Chem. 41 (1949) 2737-2740.
- [100] W. H. Evans and D. D. Wagman, J. Res. Natl. Bur. Stand. 49 (1952) 141-148.
- [101] B. J. McBride and S. Gordon, J. Chem. Phys. 35 (1961) 2198-2206.
- [102] H. D. Baehr, H. Hartmann, H. C. Pohl, and H. Schomäcker, *Thermodynamic Functions of Ideal Gases for Temperatures up to 6000* K (Thermodynamische Funktionen idealer Gase für Temperaturen bis 6000 K) (Springer, Berlin, 1968).
- [103] JANAF, Thermodynamic Tables, 3rd. Ed., M. W. Chase, J. L. Curnutt, J. R. Downey, R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, J. Phys. Chem. Ref. Data 14 (1985) Suppl. 1.
- [104] TRC, *Thermodynamic Tables* (Thermodynamic Research Center, Texas A&M University, College Station, Texas, 1972-1993).
- [105] P. J. Mohr and B. N. Taylor, J. Phys. Chem. Ref. Data, 28 (1999) 1713-1852.
- [106] A. Frank and K. Clusius, Z. Phys. Chem. B42 (1939) 395-421.
- [107] U. K. Deiters and and K. M. de Reuck, Pure and Appl. Chem. 69 (1997) 1237-1249.
- [108] H. H. Reamer, B. H. Sage, and W. N. Lacy, Ind. Eng. Chem. 43 (1951) 976-981.
- [109] D. B. Robinson and J. A. Bailey, Can. J. Chem. Eng. 35 (1957) 151-158.
- [110] J. P. Kohn and F. Kurata, AIChE J. 4 (1958) 211-217.
- [111] J. P. Kohn and F. Kurata, J. Chem. Eng. Data 4 (1959) 33-36.
- [112] D. B. Robinson, A. P. Lorenzo, and C. A. Macrygeorgos, Can. J. Chem. Eng. 37 (1959) 212-217.
- [113] N. L. Yarym-Agaev, L. D. Afanasenko, V. G. Matvienko, Y. Y. Ryabkin, and G. B. Tolmacheya, Ukrainskii Khimicheskii Zhurnal (Russian Edition) 57 (1991) 701-704.
- [114] A. O. Barry, S. C. Kaliaguine, and R. S. Ramalho, J. Chem. Eng. Data 27 (1982) 436-439.
- [115] J. V. Sengers and J. M. H. Levelt Sengers, Ann. Rev. Phys. Chem. 37 (1986) 189-222.

参考論文一覧

1. 定期刊行誌掲載論文

- 1-1. <u>N. Sakoda</u> and M. Uematsu, A Thermodynamic Property Model for the Binary Mixture of Methane and Hydrogen Sulfide, International Journal of Thermophysics, Vol.26, pp. 1303-1325, (2005).
- 1-2. <u>Naoya Sakoda</u> and Masahiko Uematsu, Thermodynamic Properties of the Binary Mixture of Methane and Hydrogen Sulfide, Zeitschrift für Physikalische Chemie, Vol.219, pp. 1299-1319, (2005).
- **1-3.** <u>N. Sakoda</u> and M. Uematsu, A Thermodynamic Property Model for Fluid Phase Hydrogen Sulfide, International Journal of Thermophysics, Vol.25, pp. 709-737, (2004).

2. 国際会議発表

2-1. *D. Kume, <u>N. Sakoda</u>, M. Uematsu An Equation of State for Thermodynamic Properties of Methanol Book of Abstracts, The 17th European Conference on Thermophysical Properties, Bratislava, Slovak Republic, September 4-8, p.292, (2005).

2-2. *<u>N. Sakoda</u>, M. Uematsu

Thermophysical Properties of the Binary Mixture of Methane and Hydrogen Sulfide Abstracts of Thermodynamics 2005, Sesimbra, Portugal, April 6-8, p.50, (2005).

- 2-3. *<u>N. Sakoda</u>, M. Uematsu A Thermodynamic Property Model for the Binary Mixture of Methane and Hydrogen Sulfide Abstract book, The 18th IUPAC International Conference on Chemical Thermodynamics, Beijing, China, August 17-21, p.140, (2004).
- 2-4. *<u>N. Sakoda</u>, M. Uematsu Thermodynamic Property Model for Binary Mixtures of Methane and Hydrogen Sulfide Abstracts of the 15th Symposium on Thermophysical Properties, Boulder, Colorado, USA, June 22-27, p.20, (2003).
- 2-5. *K. Tanaka, N. Sakoda, M. Uematsu Development of a Calorimeter for Measurements of Isobaric Heat Capacity for Fluids and Fluid Mixtures in a Wide Range of Temperatures and Pressures Book of Abstracts, 9th International Conference on Properties and Phase Equilibria for Product and Process Design, Kurashiki, Japan, May 20-25, p.126, (2001).

*は口頭発表者

- 3. 国内学会発表
- **3-1.** *<u>迫田直也</u>, 上松公彦 メタン/硫化水素2成分系混合流体の熱力学状態曲面 第26回日本熱物性シンポジウム講演論文集(2005-11), pp. 298-300.
- 3-2. *<u>迫田直也</u>, 上松公彦 メタン/硫化水素2成分系混合流体の熱力学性質 化学工学会第37回秋季大会研究発表講演要旨集(2005-9), T108.
- 3-3. *<u>迫田直也</u>, 上松公彦
 メタン/硫化水素2成分系混合流体に対する Helmholtz 関数型熱力学モデルの開発と高圧相平衡
 第25回日本熱物性シンポジウム講演論文集(2004-10), pp. 11-13.
- 3-4. *久米大輔,<u>迫田直也</u>,上松公彦
 メタノールの熱力学状態方程式
 第45回高圧討論会講演要旨集(2004-10), p. 43.

- 3-5. *<u>迫田直也</u>, 上松公彦
 メタン/硫化水素2成分系混合流体の熱力学モデル
 第44回高圧討論会講演要旨集(2003-11), p. 233.
- 3-6. *<u>迫田直也</u>, 上松公彦 メタン/硫化水素2成分系混合流体の熱力学モデル 第24回日本熱物性シンポジウム講演論文集(2003-10), pp. 168-170.
- 3-7. *<u>迫田直也</u>, 上松公彦 硫化水素の熱力学的モデル
 第23回日本熱物性シンポジウム講演論文集(2002-11), pp. 172-174.
- **3-8.** *田中勝之,<u>迫田直也</u>,上松公彦 高温高圧水溶液測定用カロリーメーターの開発 第38回日本伝熱シンポジウム講演論文集 vol. II (2001-5), pp. 547-548.
- 3-9. *田中勝之,<u>迫田直也</u>,上松公彦 高温高圧水溶液の定圧比熱測定用熱量計の開発 化学工学会 第66 年会研究発表講演要旨集(2001-4), p. 164.

*は口頭発表者

以上

付録

メタン/硫化水素2成分系混合流体における相平衡計算ならびに臨界曲線計算 Program

```
С
                                             C
*******
C
C
C
С
           CH4 - H2S
                                               CLOSE(11)
                                             C
C
                                                DO J=1.40
C
C
 **********
                                               TI(J)=COEFR(3,J)
C
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DIMENSION PVT(3,310),COEFR(8,40),COEFO(40,40),RNIA(1,40)
 DIMENSION RNI1(40), RNI2(40)
 DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40),
        BETA(40),GAMMA(40),RNLAD(40)
                                               END DO
 DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40)
                                             С
 DIMENSION CI2(40), DI2(40), TI2(40), PI2(40)
                                              С
 DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40)
C
 DIMENSION PODATA(5,1000)
С
 CHARACTER*30 NNNN, M1
                                               CLOSE(14)
C
                                                DO J=1,40
 C
C
                                               END DO
 R=8.314472D+00*1.0D-03
                                             С
 NR=40
C
                                               CLOSE(13)
С
         以下 臨界定数のならびに関数形の決定
                                                DO J=1,8
C
C
END DO
C ******** CH4 臨界定数 T/K, P/MPa
                     *****
                                             С
C **** NCOD=1
                *****
 TC1=190.564D+00
 PC1=4.5992D+00
                                               NSUB=2
 RHOC1=0.10139128D+02
```

C ファイル読み込み CH4 の指数 OPEN(11.FILE='COEFR.txt'.STATUS='OLD') READ(11,*)((COEFR(I,J),I=1,8), J=1,40) 係数の当てはめ CI(J)=COEFR(1,J) DI(J)=COEFR(2,J) ALPHA(J)=COEFR(4,J)BETA(J)=COEFR(5,J) GAMMA(J)=COEFR(6,J) RNLAD(J)=COEFR(7,J) PI(J)=COEFR(8,J)***** C ファイルからの読み込み:係数 CH4 OPEN(14.FILE='Ch4 coef.txt'.STATUS='OLD') READ(14,*)((RNIA(I,J),I=1,1), J=1,40) RNI1(J)=RNIA(1,J) C ファイルからの読み込み: αO CH4 OPEN(13,FILE='CH4 COEFO.txt',STATUS='OLD') READ(13,*)((COEFO(I,J),I=1,2), J=1,8) AI1(J)=COEFO(1,J)THETA1(J)=COEFO(2,J) CH4 END ***** C ******* H2S 臨界定数 T/K, P/MPa ***** ***** C **** NCOD=3 12 TC2=373.37D+00 PC2=8.96291D+00 RHOC2=10.20D+00 C C ********* C ファイルからの読み込み: 作成された係数:指数 NR=23OPEN(11,FILE='Int. J. coefr revision',STATUS='OLD') READ(11,*)((COEFR(I,J),I=1,4), J=1,NR) CLOSE(11) С C 係数の当てはめ DO J=1.36 CI2(J)=CI(J)DI2(J)=DI(J)TI2(J)=TI(J)PI2(J)=PI(J)END DO DO J=1.NR CI2(J)=COEFR(1,J)DI2(J)=COEFR(2,J) TI2(J)=COEFR(3,J)PI2(J)=COEFR(4,J) END DO C 予め係数 40 個を0 に設定しておく DO N=1.40 RNI2(N)=0.0D+00 END DO С C ファイルからの読み込み:係数 H2S OPEN(12,FILE='Int J COEF RNI revision',STATUS='OLD') READ(12,*)((RNIA(I,J),I=1,1), J=1,NR) CLOSE(12) DO J=1,NR RNI2(J)=RNIA(1,J) END DO C CC ファイルからの読み込み: αO H2S OPEN(13,FILE='Int J H2s Coefo revision.txt',STATUS='OLD')

READ(13,*)((COEFO(I,J),I=1,2), J=1,8) CLOSE(13) DO J=1.8 AI2(J)=COEFO(1,J) THETA2(J)=COEFO(2,J) END DO ****** C С ***** С С C ******* C ******** A=0.90D+00 C NFR=3 C ファイルからの読み込み:係数 FIJ, RNIF OPEN(12,FILE='FIJ NEW COEF Int J RNIF',STATUS='OLD') READ(12,*)((RNIA(I,J),I=1,1), J=1,NFR) CLOSE(12) DO J=1.NFR RNIF(J)=RNIA(1,J) END DO ******* OPEN(11,FILE='FIJ NEW COEFR Int J ALL',STATUS='OLD') READ(11,*)((COEFR(I,J),I=1,4), J=1,NFR) CLOSE(11) C 係数の当てはめ DO J=1.NFR DIF(J)=COEFR(1,J) TIF(J)=COEFR(2,J) CIF(J)=COEFR(3,J) PIF(J)=COEFR(4,J) END DO C ******** С С *********************** COEFFICIENTS OF MIXTURE ***** ******* C С С С 関数形の係数読み込み END С

C C C C C C C C C C C	***************************************	WRITE(*,*) 'MU 組成一定 等圧線 =56, WRITE(*,*) 'TCONST CAL VLE W =58, WRITE(*,*) 'TCONST CAL VLE MU =60, WRITE(*,*) 'ML 一定 CP, CV at PVLLE =62' WRITE(*,*) 'UCEP SYMMETRY =63, WRITE(*,*) 'CP CRITCAL POINT =65 WRITE(*,*) 'SPDL =67' WRITE(*,*) 'SPDL =67' MU 組成一定 VLE =57' W 温度一定 等圧線 =59' MU 温度一定 等圧線 =61' W 温度一定 等圧線 =66'						
C	NITAL DDODEDTV 計管	С						
C	以十加49 FROFERIT 时异	READ(*,*) JUDGE						
c		IF (JUDGE. EQ. 1) GO TO 1						
c		IF (JUDGE. EQ. 2) GO TO 2						
č		IF (JUDGE. EQ. 3) GO TO 3						
Č	***************************************	IF (JUDGE. EQ. 4) GO TO 4						
C	***************************************	IF (JUDGE, EQ. 5) GO TO 5						
С		IF (JUDGE, EQ. 6) GO TO 6						
С		IF (JUDGE, EQ. /) GO TO / IE (JUDGE, EQ. 8) GO TO 8						
С		IF (JUDGE, EQ. 8) GO TO 8 IF (JUDGE, EQ. 9) GO TO 9						
	WRITE(*,*) 'VLE =1, DG =2'	IF (JUDGE, EQ. 10) GO TO 1101						
	WRITE(*,*) 'PRhoT =3, 実測値との比較 =4'	IF (JUDGE, EQ. 11) GO TO 1102						
	WRITE(*,*) 'VLLE =5, 偽臨界値 =6'	IF (JUDGE, EQ. 12) GO TO 1103						
	WRITE(*,*) '組成一定気液平衡計算 =7, Critical curve =8'	IF (JUDGE. EQ. 13) GO TO 1104						
	WRITE(*,*)'3 相平衡圧力 =9, 圧力連続計算 =10'	IF (JUDGE. EQ. 14) GO TO 1105						
	WRITE(*,*) 'P-RHO 線図 =11, PR による密度偏差 =12'	IF (JUDGE. EQ. 15) GO TO 1106						
	WRITE(*,*) 'VLE 組成偏差 =13, 臨界点偏差 =14'	IF (JUDGE. EQ. 16) GO TO 1107						
	WRITE(*,*) 'Nonlinear fitting= 15'	IF (JUDGE. EQ. 17) GO TO 1108						
	WRITE(*,*) 'Excess Enthaply =16, 臨界点 Gibbs =17'	IF (JUDGE. EQ. 18) GO TO 1109						
	WRITE(*,*) 'Excess Enthaply 偏差 =18, PVTX 偏差組成別 =19'	IF (JUDGE, EQ. 19) GO TO 1110						
	WRITE(*,*) 'PVTX 偏差 SDV =20, PR VLE =21'	IF (JUDGE, EQ. 20) GO TO 1111 IF (JUDGE, EQ. 21) CO TO 1112						
	WRITE(*,*) '安定性解析 =22, UECP =23'	IF (JUDGE, EQ. 21) GO TO 1112 IF (JUDGE, EQ. 22) GO TO 1113						
	WRITE(*.*) '温度指定による臨界点 =24. 臨界点付近 VLE =25'	IF (JUDGE, EQ. 22) GO TO 1113 IF (JUDGE, EQ. 23) GO TO 1114						
	WRITE(**) 'VLEX 偏差 SDV =26 VLEY 偏差 SDV =27'	IF (JUDGE, EQ. 24) GO TO 1115						
	WRITE(*,*) 'VLERHOL $(=\pm SDV = 28)$ VLERHOV $(=\pm SDV = 29)$	IF (JUDGE, EO. 25) GO TO 1116						
	WRITE(**) 'PCP 偏差 SDV =30 TCP 偏差 SDV =31'	IF (JUDGE. EQ. 26) GO TO 1117						
	WRITE(**)'FH 偏差 SDV =32 PR VI FX 偏差 SDV =32'	IF (JUDGE. EQ. 27) GO TO 1118						
	WRITE(**) 'PR VI EV 信羊 SDV =34 T and X CONST 1POINT =35'	IF (JUDGE. EQ. 28) GO TO 1119						
	WRITE(,) TR VEET 福星 5DV 54, Tand A CONST TION 1 55	IF (JUDGE. EQ. 29) GO TO 1120						
	WRITE((\cdot, \cdot) VLL 組成 \mathcal{L} 通及指定 -30 , $\Gamma VIA FCONSI 可异 -37$	IF (JUDGE. EQ. 30) GO TO 1121						
	WRITE(',') Γ VIA 租政連続計 \overline{P} -30, VLE 守江禄 -39 WRITE(**) CAL Cn -40 7CONST CAL VIE Cn -41'	IF (JUDGE. EQ. 31) GO TO 1122						
	WRITE(*,*) CALCP=40, ZCONSTCALVECP=41 WRITE(*,*) Cn 泪度一定 笙压迫 =42 DP Critical Point =42	IF (JUDGE, EQ. 32) GO TO 1123						
	WRITE(*,*) CP 值及一定 守江秋 -42 , PR Clitical Point -43	IF (JUDGE, EQ. 33) GO TO 1124 IF (JUDGE, EQ. 24) GO TO 1125						
	WRITE(*,*) PR 女正性脾析 =44, PR DG =45	IF (JUDGE, EQ. 34) GO TO 1125 IE (JUDGE, EQ. 35) GO TO 1126						
	WKITE(*,*) PK UECP =40, PK 5 相半衡圧刀=47	IF (JUDGE, EQ. 35) GO TO 1120 IF (JUDGE, FO, 36) GO TO 1127						
	WKIIE(*,*) VLE 組成一正 注刀指正 =48, Crit. Point FILE ALL =49	IF (IUDGE EO 37) GO TO 1128						
	WRITE(*,*) 'Cp 組成一定 等上線=50, Cp IDEAL GAS =51'	IF (JUDGE, EQ. 38) GO TO 1129						
	WRITE(*,*) TCONST CAL VLE Cp =52, TCONST CAL VLE Cv =53'	IF (JUDGE, EO. 39) GO TO 1130						
	WRITE(*,*)'W 組成一定 等上線 =54, W 組成一定 VLE =55'							
IF (JUDGE, EO, 40) GO TO 1131 IF (JUDGE, EO, 41) GO TO 1132 IF (JUDGE. EQ. 42) GO TO 1133 IF (JUDGE, EQ. 43) GO TO 1134 IF (JUDGE, EO, 44) GO TO 2001 IF (JUDGE. EQ. 45) GO TO 2002 IF (JUDGE. EQ. 46) GO TO 2003 IF (JUDGE, EQ. 47) GO TO 2004 IF (JUDGE, EO, 48) GO TO 2005 IF (JUDGE, EO, 49) GO TO 2006 IF (JUDGE. EQ. 50) GO TO 2007 IF (JUDGE, EQ. 51) GO TO 2008 IF (JUDGE, EO, 52) GO TO 2009 IF (JUDGE. EQ. 53) GO TO 2010 IF (JUDGE, EQ. 54) GO TO 2011 IF (JUDGE. EQ. 55) GO TO 2012 IF (JUDGE, EO, 56) GO TO 2013 IF (JUDGE, EO, 57) GO TO 2014 IF (JUDGE, EQ. 58) GO TO 2015 IF (JUDGE, EO, 59) GO TO 2016 IF (JUDGE, EO, 60) GO TO 2017 IF (JUDGE, EQ. 61) GO TO 2018 IF (JUDGE, EQ. 62) GO TO 2019 IF (JUDGE, EO, 63) GO TO 2020 IF (JUDGE. EQ. 64) GO TO 2021 IF (JUDGE. EQ. 65) GO TO 2022 IF (JUDGE, EQ. 66) GO TO 2023 IF (JUDGE. EQ. 67) GO TO 2024 STOP 1 CALL VLE (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP C C 2 CALL DG (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP C C 3 CALL CALPRHOT(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, DIF,TIF,CIF,PIF,RNIF,A,NFR)

STOP С С 4 CALL DEVRHO(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR) STOP С 5 CALL VLLE (TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF.TIF.CIF.PIF.RNIF.A.NFR.NSUB) STOP С 6 CALL CALPRECURVE(TC1,PC1,RHOC1,TC2,PC2,RHOC2) STOP C С ****** 7 CALL VLEXC (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP C 8 CALL CRITICAL(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP С 9 CALL PVLLE (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP С 1101 CALL CONTINUP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, * CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP C 1102 CALL PRHODIA2(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)

C STOP

CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF,TIF,CIF,PIF,RNIF,A,NFR) STOP C 1104 CALL DEVVLE (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF.TIF.CIF.PIF.RNIF.A.NFR.NSUB) STOP C 1105 CALL DEVCRITICAL(TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP 1106 CALL NONLINEAR (DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF,TIF,CIF,PIF,RNIF,A,S1,S2,NFR) STOP C 1107 CALL EXCESSH(TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP C 1108 CALL CPGIBBS(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP C 1109 CALL DEVEH(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP С 1110 CALL DEVRHOX(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR) STOP C 1111 CALL STCOMPPVTX(DELTA,TAU,TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,

CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,

1103 CALL DEVRHOPR(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R.

```
HOC2,R, * CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,

* RNI1,RNI2,CI2,DI2,TI2,PI2,

* DIF,TIF,CIF,PIF,RNIF,A,NFR)

STOP

C

1119 CALL STCOMPVLERL(DELTA,TAU,TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
```

*

*

STOP

C

RNI1.RNI2.CI2.DI2.TI2.PI2.

DIF.TIF.CIF.PIF.RNIF.A.NFR)

1112 CALL PRVLE (TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP С 1113 CALL ANALYSG (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP С 1114 CALL UECP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF.TIF.CIF.PIF.RNIF.A.NFR.NSUB) STOP C 1115 CALL CPDPENDT(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP C 1116 CALL VLEXCMOD (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB) STOP С 1117 CALL STCOMPVLEX(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * * RNI1, RNI2, CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR) STOP C 1118 CALL STCOMPVLEY(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,

CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,

RNI1, RNI2, CI2, DI2, TI2, PI2,

A-5

*

*

```
*
               DIF.TIF.CIF.PIF.RNIF.A.NFR)
  STOP
C
 1120 CALL STCOMPVLERV(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
               CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
     *
     *
               RNI1, RNI2, CI2, DI2, TI2, PI2,
     *
               DIF,TIF,CIF,PIF,RNIF,A,NFR)
  STOP
C
 1121 CALL STCOMPPCP(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R.
               CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
     *
               RNI1, RNI2, CI2, DI2, TI2, PI2,
               DIF.TIF.CIF.PIF.RNIF.A.NFR)
  STOP
 1122 CALL STCOMPTCP(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
               CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
     *
     *
               RNI1, RNI2, CI2, DI2, TI2, PI2,
     *
               DIF,TIF,CIF,PIF,RNIF,A,NFR)
  STOP
C
1123 CALL STCOMPEH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
               CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
     *
               RNI1.RNI2.CI2.DI2.TI2.PI2.
     *
               DIF,TIF,CIF,PIF,RNIF,A,NFR)
  STOP
C
1124 CALL PRSTCOMPVLEX(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
     *
               CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
     *
               RNI1, RNI2, CI2, DI2, TI2, PI2,
     *
               DIF,TIF,CIF,PIF,RNIF,A,NFR)
  STOP
C
1125 CALL PRSTCOMPVLEY(DELTA,TAU,TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
     *
               CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
     *
               RNI1, RNI2, CI2, DI2, TI2, PI2,
     *
               DIF,TIF,CIF,PIF,RNIF,A,NFR)
  STOP
C
1126 CALL VLECT(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
             CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
     *
             RNI1.RNI2.CI2.DI2.TI2.PI2.
     *
             DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
  STOP
C
1127 CALL VLECT(TC1.PC1.RHOC1.TC2.PC2.RHOC2.R.
             CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
     *
             RNI1, RNI2, CI2, DI2, TI2, PI2,
             DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
```

```
STOP
С
1128 CALL RHODETAIL(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
    *
            CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
    *
            RNI1.RNI2.CI2.DI2.TI2.PI2.
    *
            DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
  STOP
C
1129 CALL PVTXFTP(TC1.PC1.RHOC1.TC2.PC2.RHOC2.R.
            CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
    *
    *
            RNI1, RNI2, CI2, DI2, TI2, PI2,
    *
            DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
  STOP
С
1130 CALL VLECONSTP (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
            CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
    *
            RNI1.RNI2.CI2.DI2.TI2.PI2.
    *
            DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
  STOP
С
1131 CALL RHCP(TC1.PC1.RHOC1.TC2.PC2.RHOC2.R.
            CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
    *
            RNI1, RNI2, CI2, DI2, TI2, PI2,
    *
            DIF.TIF.CIF.PIF.RNIF.A.NFR.NSUB)
  STOP
С
1132 CALL RHCPVLEC(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
            CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
    *
    *
            RNI1, RNI2, CI2, DI2, TI2, PI2,
    *
            DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
  STOP
С
1133 CALL RHCPFIXEDTP2(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
    *
            CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
    *
            RNI1.RNI2.CI2.DI2.TI2.PI2.
    *
            DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
  STOP
С
1134 CALL PRCP (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
    *
            CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
    *
            RNI1, RNI2, CI2, DI2, TI2, PI2,
    *
            DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
  STOP
С
 2001 CALL ANALYSGPR (TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
    *
            CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
    *
            RNI1, RNI2, CI2, DI2, TI2, PI2,
```

* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)

```
STOP
```

С	2010 CALL VLERHCV(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2002 CALL PRDG (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* RNI1,RNI2,CI2,DI2,TI2,PI2,
* RNI1,RNI2,CI2,DI2,TI2,PI2,	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	STOP
STOP	С
С	2011 CALL WTP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2003 CALL PRUECP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* RNI1,RNI2,CI2,DI2,TI2,PI2,
* RNI1,RNI2,CI2,DI2,TI2,PI2,	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	STOP
STOP	С
C	2012 CALL WVLEC(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2004 CALL PRPVLLE (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* RNI1,RNI2,CI2,DI2,TI2,PI2,
* RNI1,RNI2,CI2,DI2,TI2,PI2,	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	STOP
STOP	С
C	2013 CALL RMUTP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2005 CALL VLECP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* RNI1,RNI2,CI2,DI2,TI2,PI2,
* RNI1,RNI2,CI2,DI2,TI2,PI2,	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	STOP
STOP	С
С	2014CALL RMUVLEC(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2006 CALL CAPCPFILEALL (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* RNI1,RNI2,CI2,DI2,TI2,PI2,
* RNI1,RNI2,CI2,DI2,TI2,PI2,	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	STOP
STOP	С
С	2015 CALL VLEWFILE(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2007 CALL RHCPTP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* RNI1,RNI2,CI2,DI2,TI2,PI2,
* RNI1,RNI2,CI2,DI2,TI2,PI2,	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	STOP
STOP	С
C	2016 CALL WFIXEDTP2(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2008 CALL RHCPID(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* RNI1,RNI2,CI2,DI2,TI2,PI2,
* RN11,RN12,C12,D12,T12,P12,	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	STOP
STOP	
	2017 CALL VLEMUFILE(IC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
2009 CALL VLEKHCP(1C1,PC1,KHOC1,TC2,PC2,KHOC2,K,	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
 CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, DNU DNU CHA DIA DIA DIA 	* KN11,KN12,C12,D12,T12,P12,
 KNI1,KNI2,CI2,DI2,TI2,PI2, BUTTE OF DUE DUE A MED MOUD 	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
 DIF,TIF,CIF,PIF,KNIF,A,NFK,NSUB) 	STOP
STOP	
C	2018 CALL RMUFIXED TP2(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,

A-7

* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	C C
 KNI1,KNI2,CI2,DI2,I12,PI2, NIE TIE CIE DIE DNIE A NED NSUB) 	$C \qquad \qquad$
STOP	C
C	
2019 CALL VLECPFILE(TC1 PC1 RHOC1 TC2 PC2 RHOC2 R	
* CLDLTLALPHA PLBETA GAMMA RNLAD	
* RNI1, RNI2, CI2, DI2, TI2, PI2,	C
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	C
C	C
2020 CALL SYMUCEP (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	C サブルーチン群
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	C
* RNI1,RNI2,CI2,DI2,TI2,PI2,	Ĩ
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	c
	C
2021 CALL CALMPC (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	С
* CI,DI, II,ALPHA,PI,BEIA,GAMMA,RNLAD,	C ************************************
* RN11,RN12,C12,D12,112,P12,	C ************************************
TOP	C
STOP	C
2022 CALL RHCPCRITICAL (TC1 PC1 RHOC1 TC2 PC2 RHOC2 R	C
* CI DI TI AI PHA PI BETA GAMMA RNI AD	C サブルーチン ライブラリー
* RN1 RN12 C12 D12 T12 T12	С
* DIE TIE CIE PIE RNIE A NER NSUB)	С
STOP	C ************************************
C	0
2023 CALL CALPUREPROCP(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	C
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	
* RNI1,RNI2,CI2,DI2,TI2,PI2,	
* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)	C C ***********************************
STOP	C
	c
2024 CALL CALSPDL (1C1,PC1,RHOC1,1C2,PC2,RHOC2,R,	C 気液平衡計算、VLLE も計算できる。
 CI,DI,II,ALPHA,PI,BEIA,GAMMA,KNLAD, NULL DNU2 CI2 DI2 TI2 DI2 DIE TIE CIE DIE DNUE A NED 	C
* KNII,KNI2,CI2,DI2,I12,PI2,DIF,IIF,CIF,PIF,KNIF,A,NFK, * V1 TCDDCDDUCCDNCD)	C
STOP	C *************
C	C **************
STOP	SUBROUTINE VLLE (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
END	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
С	* RNI1,RNI2,CI2,DI2,TI2,PI2,
C	* DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
C	IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
C ************************************	DIMENSION RNI1(40),RNI2(40)
C ************************************	DIMENSION $U(40), U(40), U(40), ALPHA(40), PI(40),$
C	DIMENSION A II (40), THETA 1(40), A I2(40), THETA 2(40)
C	DIMENSION AII(40), I DE IAI(40), AI2(40), I DE IA2(40) DIMENSION CI2(A 0) DI2(A 0) TI2(A 0) DI2(A 0)
C	DiviEnsion Ci2(40),Di2(40),Ti2(40),Fi2(40)

DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) READ(*.*)PMIN. PMAX. DP DIMENSION ANSX1A(2), ANSY1A(2), ANSRHOL(2), ANSRHOV(2) DO P=PMIN. PMAX. DP CHARACTER*30 NNNN. M1 С C CALL CALVLLE (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, WRITE(*,*)'気液平衡 T=' CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1, RNI2, CI2, DI2, TI2, PI2, READ(*,*) T * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB, WRITE(*,*)'CAL VLE C1H2S USING VLLE aa + FILE NAME=' * T,P,ANSX1A,ANSY1A,ANSRHOL,ANSRHOV,IJKL) READ(*,*) M1 C C DO J=1.IJKL NF=300 WRITE(*,9000) T,P,ANSX1A(J),ANSY1A(J) CALL CALCPFILE(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, WRITE(*,*)" CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, WRITE(NF.9900) T.P.ANSX1A(J), ANSY1A(J), ANSRHOL(J), ANSRHOV(J) RNI1, RNI2, CI2, DI2, TI2, PI2, FORMAT(' ','ANS=>',4D13.6) * 9000 DIF.TIF.CIF.PIF.RNIF.A.NFR.NSUB. * T, Y1ANS, PANS, RHOANS, Y1ANS2, PANS2, RHOANS2, NCPANS) 9900 FORMAT(6F15.5) C END DO IF (NCPANS .EQ. 1) THEN END DO WRITE(*.*)'C.P.近似計算值' С WRITE(*,*)'T,Y1,P' RETURN WRITE(*,3)T,Y1ANS,PANS END WRITE(*,*)" END IF ***** C IF (NCPANS .EQ. 2) THEN С WRITE(*,*)'C.P.近似計算值' C WRITE(*.*)'T.Y1.P' С WRITE(*,3)T,Y1ANS,PANS С WRITE(*,3)T,Y1ANS2,PANS2 C WRITE(*,*)" C END IF *********** C C С IF (NSUB. EQ. 2) THEN С NCOD=3 С VLLE 気液平衡計算実行部分。 END IF С 103 CALL H2SANC(TC2,PC2,RHOC2,R,T,PS2,RHOL2,RHOV2) C X1I=0.0D+00 ******** C Y1I=0.0D+00 \mathbf{C} WRITE(*.2) T.PS2.X1I.Y11 SUBROUTINE CALVLLE (TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, WRITE(NF,22) T,PS2,X1I,Y1I,RHOL2,RHOV2 CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * GO TO 100 * RNI1, RNI2, CI2, DI2, TI2, PI2, С * DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB, 2 FORMAT('','',5F15.5) * T,P,ANSX1A,ANSY1A,ANSRHOL,ANSRHOV,IJKL) 3 FORMAT('','',3F15.5) IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) FORMAT(' ',' ',6F15.5) 22 DIMENSION RNI1(40), RNI2(40) С DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), 100 OPEN(NF,FILE='CAL VLE C1H2S USING VLLE '//M1) BETA(40),GAMMA(40),RNLAD(40) С DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) C DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) WRITE(*,*)'PMIN, PMAX, DP' DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40)

DIMENSION ANSX1A(2), ANSY1A(2), ANSRHOL(2), ANSRHOV(2) CHARACTER*30 NNNN. M1

С С IJKL=0 ANSX1A=0.0D+00 ANSY1A=0.0D+00 ANSRHOL=0.0D+00 ANSRHOV=0.0D+00 C 101 DZZ1=0.01D+00 ZZ1=0.00D+00 800 ZZ1=ZZ1+DZZ1 ZZ2=1.00D+00-ZZ1 С IF(ZZ1 .GE. 1.00D+00) GOTO 999 WRITE(*,7000) T, P, ZZ1, ZZ2 CC 7000 FORMAT(' ','T P ZZ', 4D13.6) С С C///////// 仕込みモル組成(Z1,Z2)での Gibbs の自由エネルギー ///////// 50 CALL MIXPHIH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, * CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, ZZ1, ZZ2, CI2, DI2, TI2, PI2, DIF,TIF,CIF,PIF,RNIF,A,NFR, T.P.RHO.MIXPZ1.MIXPZ2.ZPHASE) C С C ///////// 初期値2(純成分1からの解) C ******** ***** 逐次近似の出発点が成分1 INITIA=2 ICOMP=1 TROLD1=0.999D+00 TROLD2=0.001D+00

RNI1, RNI2, ZZ1, ZZ2, * CI2, DI2, TI2, PI2, DIF.TIF.CIF.PIF.RNIF.A.NFR. T,P,RHO,MIXPZ1,MIXPZ2,TROLD1,TROLD2,TRSTL1,TRSTL2, KAIL, HANTEI, ICOMP, NSUB) TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1 WRITE(*,*)'初期值 2' WRITE(*,6000) INITIA, KAIL, HANTEI, TR1 6000FORMAT('','HANTEI=>',2I2,1X,2D13.6) IF(HANTEI .LT. -1.00D-07) THEN TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1 GOTO 1100 ELSE END IF C ///////// 初期値3(純成分2からの解) C ********* INITIA=3 ICOMP=2 TROLD1=0.001D+00 TROLD2=0.999D+00 CALL SHOKILH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1.RNI2.ZZ1.ZZ2. CI2.DI2.TI2.PI2. DIF,TIF,CIF,PIF,RNIF,A,NFR, T,P,RHO,MIXPZ1,MIXPZ2,TROLD1,TROLD2,TRSTL1,TRSTL2, KAIL.HANTELICOMP.NSUB) TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1

CALL SHOKILH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,

CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.

```
WRITE(*,*)'初期值 3'
       WRITE(*,6100) INITIA, KAIL, HANTEI, TR1
6100FORMAT(' ','HANTEI=>',2I2,1X,2D13.6)
С
```

IF(HANTEI .LT. -1.00D-07) THEN

C

С

C

С

С

С

С

С

С

С	1300 CALL MIXPHIH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
TR1=TRSTL1/(TRSTL1+TRSTL2)	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
TR2=1.00D+00-TR1	* RNI1,RNI2,X1,X2,
GOTO 1100	* CI2,DI2,TI2,PI2,
ELSE	* DIF,TIF,CIF,PIF,RNIF,A,NFR,
END IF	* T,P,RHOL,MIXPX1,MIXPX2,XPHASE)
C	С
GOTO 800	CALL MIXPHIH(DELTA,TAU,TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
C	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
C	* RNI1,RNI2,Y1,Y2,
C	* CI2,DI2,TI2,PI2,
C	* DIF,TIF,CIF,PIF,RNIF,A,NFR,
C	* T,P,RHOV,MIXPY1,MIXPY2,YPHASE)
C/////////////////////////////////////	С
C/////////////////////////////////////	FUGX1=X1*P*DEXP(MIXPX1)
C////////////////////////////////////	FUGX2=X2*P*DEXP(MIXPX2)
C/////////////////////////////////////	FUGY1=Y1*P*DEXP(MIXPY1)
C/////////////////////////////////////	FUGY2=Y2*P*DEXP(MIXPY2)
C	C
C	С
C/////////////////////////////////////	2100 IF(100.0*DABS((FUGX1-FUGY1)/FUGX1).GI.1.00D-06) GOTO 2200
C///////////// 相平衡計算の初期値を与える ////////////////////////////////////	IF(100.0*DABS((FUGX2-FUGY2)/FUGX2).G1. 1.00D-06) GOTO 2200
C/////////////////////////////////////	
1100 X1=TR1	
X2=TR2	WRITE(*,*)'XI,YI',XI,YI
Y1=ZZ1	GOTO 2400
Y2=ZZ2	
C	$\frac{2200}{AK_{1}^{2} = \Gamma(GX_{1}^{2} \times 1)(\Gamma(GY_{1}^{2} \times X))}$
GOTO 1300	AK2=FUGX2*Y2/(FUGY2*X2)
C	G0101200
C	
	2400 HANSY1-DMINI(X1 V1)
C////////////////////////////////////	HANSY2 = 1 00D+00.HANSY1
C/////////////////////////////////////	
1200 CALL VMOLFRH(ZZ1,ZZ2,AK1,AK2,VMOL)	HANSY = 1 00D+00.HANSY 1
IF((VMOL.GT. 0.00D+00)).AND.	IF (HANSX1 EQ X1) THEN
1 (VMOL.LI. 1.00D+00)) GOTO 1400	RHOLANS=RHOL
WRITE(*,*)'VMOL<0 OR VMOL>1'	RHOVANS=RHOV
STOP COTTO DOD	ELSE
G010 999	RHOLANS=RHOV
	RHOVANS=RHOL
$U = \frac{1400}{2} = \frac{11}{271} \frac{1}{100} = \frac{100}{100} $	END IF
1400 $A1 = LZ1/(1.00D \pm 00\pm(AK1 - 1.00D \pm 00)^{\circ} VMOL)$ $X2 = 1.00D \pm 00 \times 1$	С
$\Lambda 2 = 1.00D \pm 00 - \Lambda 1$ V1 = $\Lambda V 1 + 771/(1.00D \pm 0.0 \pm (\Lambda V 1.1.00D \pm 0.0) * VMOV)$	С
$11 - AK1^{+}LL1/(1.00D + 000 + (AK1 - 1.00D + 00)^{+} VIVIOL)$ V2-1.00D+00 V1	CALL MIXPHIH(DELTA,TAU,TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
12-1.00DT00-11	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
	* RNI1,RNI2,HANSY1,HANSY2,

* CI2.DI2.TI2.PI2. X2=HANSY2 * DIF.TIF.CIF.PIF.RNIF.A.NFR. Y1=TR1 * T,P,RHO,MIXPY1,MIXPY2,YPHASE) Y2=TR2С END IF CALL MIXPHIH(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. **GOTO 1300** CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, ELSE RNI1, RNI2, HANSX1, HANSX2, END IF CI2, DI2, TI2, PI2, С * DIF.TIF.CIF.PIF.RNIF.A.NFR. С T,P,RHO,MIXPX1,MIXPX2,XPHASE) C //////// 初期値3 (純成分2からの解) 202 FORMAT(4F 15.5) С INITIA=3 С ICOMP=2 TROLD1=0.001D+00 C ///////// 初期値2(純成分1からの解) TROLD2=0.999D+00 CALL SHOKILH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, INITIA=2 CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, ICOMP=1 * RNI1, RNI2, HANSY1, HANSY2, TROLD1=0.999D+00 CI2, DI2, TI2, PI2, TROLD2=0.001D+00 DIF, TIF, CIF, PIF, RNIF, A, NFR, CALL SHOKILH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, T,P,RHO,MIXPY1,MIXPY2,TROLD1,TROLD2,TRSTL1,TRSTL2, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, KAIL, HANTEI, ICOMP, NSUB) RNI1, RNI2, HANSY1, HANSY2, С CI2, DI2, TI2, PI2, TR1=TRSTL1/(TRSTL1+TRSTL2) DIF,TIF,CIF,PIF,RNIF,A,NFR, TR2=1.00D+00-TR1 T,P,RHO,MIXPY1,MIXPY2,TROLD1,TROLD2,TRSTL1,TRSTL2, С KAIL, HANTEL, ICOMP, NSUB) С С IF(HANTEI .LT. -1.00D-07) THEN С TR1=TRSTL1/(TRSTL1+TRSTL2) TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1 TR2=1.00D+00-TR1 ANAIX1=HANSY1-ZZ1 С ANAIX2=HANSY2-ZZ2 С ANAIY1=TR1-ZZ1 IF(HANTEI .LT. -1.00D-07) THEN ANAIY2=TR2-ZZ2 ANAISE=ANAIX1*ANAIY1+ANAIX2*ANAIY2 TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1 IF(ANAISE .GE. 0.00D+00) THEN ANAIX1=HANSY1-ZZ1 X1=HANSX1 ANAIX2=HANSY2-ZZ2 X2=HANSX2 ANAIY1=TR1-ZZ1 Y1=TR1 ANAIY2=TR2-ZZ2 Y2=TR2 ANAISE=ANAIX1*ANAIY1+ANAIX2*ANAIY2 ELSE IF(ANAISE .GE. 0.00D+00) THEN X1=HANSY1 X1=HANSX1 X2=HANSY2 X2=HANSX2 Y1=TR1 Y1=TR1 Y2=TR2 Y2=TR2END IF ELSE GOTO 1300 X1=HANSY1 ELSE

END IF	ANSX2=1.00D+00-ANSX1
С	ANSY2=1.00D+00-ANSY1
C	С
C ////////////////////////////////////	C ************************************
C //////// 初期値4(中点からの解) ////////////////////////////////////	C ************************************
6	IJKL=IJKL+1
INITIA=4	С
TROLD1= $(HANSX1+HANSY1)/2.00D+00$	ANSX1A(IJKL)=ANSX1
	ANSY1A(IJKL) = ANSY1
	ANSRHOL (IIKL)=RHOLANS
CALL SHOKIMH(DELTA TAU TC1 PC1 RHOC1 TC2 PC2 RHOC2 R	ANSRHOV(IIKI)=RHOVANS
* CIDITATION DI CI, CI, RIOCI, CI, RIOCI, CI, RIOCI, K,	
$* \qquad \text{DNI1} \text{DNI2} \text{IANSY1} \text{IANSY2}$	WRITE(* 9000) TPANSX1 ANSY1
	9000 FORMAT(''ANS=' 4D13.6)
* DIE TIE CIE DIE DNIE & NED	
* $DII, III, CII, FIF, NNIF, A, NY K,$ * T D DI O MIVDVI MIVDVI TO OL DI TO OL DI TO STMI TO STMO	ZZ1=HANSV1
* I,F,KHU,MIAF 12, IKOLD1, IKOLD2, IKSIMI, IKSIM2,	
C KAIM, HAN IEI)	COTO 800
TRI = TRSTM1/(TRSTM1+TRSTM2)	
1R2=1.00D+00-1R1	$\gamma \gamma $
IF(HAN 1E1, L1, -1, 00D-07) I HEN	
IRI=IRSIMI/(IRSIMI+IRSIM2)	END
1R2=1.00D+00-1R1	
ANAIX1=HANSY1-ZZ1	*
ANAIX2=HANSY2-ZZ2	*
ANAIY1=TR1-ZZ1	
ANAIY2=TR2-ZZ2	*****
ANAISE=ANAIX1*ANAIY1+ANAIX2*ANAIY2	*
IF(ANAISE .GE. 0.00D+00) THEN	C
X1=HANSX1	
X2=HANSX2	
Y1=TR1	
Y2=TR2	C
ELSE	
X1=HANSY1	С
X2=HANSY2	***************************************
Y1=TR1	*
Y2=TR2	C
END IF	***************************************
GOTO 1300	*
ELSE	C
END IF	C SUBROUTINE MIXPHIH
C ************************************	C
C ************************************	C
C	************************************
ANSX1=HANSX1	*
ANSY1=HANSY1	C

****** DELTAV=RHOV/RNV TAUV=TNV/T С SUBROUTINE MIXPHIH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, С CLDI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * C 換算量の再計算 * RNI1,RNI2,Z1,Z2,CI2,DI2,TI2,PI2, DELTAV=RHOV/RNV * DIF TIF CIF PIF RNIF A NFR. TAUV=TNV/T T,P,RHO,MIXPZ1,MIXPZ2,ZPHASE) C С C 部分フガシティーの計算 C CALL PFCTY(DELTAV, TAUV, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), * RNI1,RNI2,Z1,Z2,T,P,RHOV,FV1,FV2,RNV,TNV, * BETA(40).GAMMA(40).RNLAD(40) * CI2.DI2.TI2.PI2. DIMENSION RNI1(40), RNI2(40) DIF, TIF, CIF, PIF, RNIF, A, NFR) DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) С DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) ******* С DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) C ***** C С CALL CALRHODETAILN(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R, MXPLZ1=DLOG(FL1/(Z1*P)) CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. MXPVZ1=DLOG(FV1/(Z1*P)) RNI1.RNI2.CI2.DI2.TI2.PI2. MXPLZ2=DLOG(FL2/(Z2*P)) DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB, MXPVZ2=DLOG(FV2/(Z2*P)) Z1,T,P,RHOV,RHOL) С C C C 101 FORMAT(3F 15.4, 2D 15.5) C// DELGLZ=Z1*(MXPLZ1-PURP1+DLOG(Z1)) ||| C// +Z2*(MXPLZ2-PURP2+DLOG(Z2)) /// C// DELGVZ=Z1*(MXPVZ1-PURP1+DLOG(Z1)) /// 液相換算量の計算です。 C C// +Z2*(MXPVZ2-PURP2+DLOG(Z2)) /// CALL CALRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2,Z1,Z2,RNL,TNL,T) DELTAL=RHOL/RNL DELGLZ=Z1*MXPLZ1+Z2*MXPLZ2 TAUL=TNL/T DELGVZ=Z1*MXPVZ1+Z2*MXPVZ2 C CC C IF(DELGLZ .LT. DELGVZ) GOTO 300 C 換算量の再計算 **GOTO 200** DELTAL=RHOL/RNL С TAUL=TNL/T 200 MIXPZ1=MXPVZ1 C MIXPZ2=MXPVZ2 ZPHASE=-1.00D+00 C 部分フガシティーの計算 RHO=RHOV CALL PFCTY(DELTAL.TAUL.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. RETURN CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, С * RNI1,RNI2,Z1,Z2,T,P,RHOL,FL1,FL2,RNL,TNL, 300 MIXPZ1=MXPLZ1 CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR) MIXPZ2=MXPLZ2 C ZPHASE=1.00D+00 ***** RHO=RHOL C RETURN C 気相換算量の計算です。 END CALL CALRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2,Z1,Z2,RNV,TNV,T) ***** CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. С RNI1.RNI2.Z1.Z2. С CI2.DI2.TI2.PI2. С DIF,TIF,CIF,PIF,RNIF,A,NFR, ****** T.P.RHO.MIXPZ1.MIXPZ2.MIXPT1.MIXPT2. ********* TROLD1.TROLD2.TRST11.TRST12.KAI1.HANTED C C C RETURN SUBROUTINE SHOKIVH END C ///// 初期値 V (理想気体からの蒸気解(V)のため) C ******* END ***** C C C С *********** С С С SUBROUTINE SHOKIVH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, C CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, ******** RNI1,RNI2,Z1,Z2,CI2,DI2,TI2,PI2, C DIF,TIF,CIF,PIF,RNIF,A,NFR, C T,P,RHO,MIXPZ1,MIXPZ2,TRST11,TRST12,KAI1,HANTEI) С SUBROUTINE REPEATH C IMPLICIT DOUBLE PRECISION (A-H.M.O-Z) DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), C /////// 逐次代入法で 停留点を求める BETA(40),GAMMA(40),RNLAD(40) DIMENSION RNI1(40), RNI2(40) C DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) C ********* DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) C DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) SUBROUTINE REPEATH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, C CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, TROLD1=EXP(LOG(Z1)+MIXPZ1) * RNI1, RNI2, Z1, Z2, CI2, DI2, TI2, PI2, DIF,TIF,CIF,PIF,RNIF,A,NFR, TROLD2=EXP(LOG(Z2)+MIXPZ2) С T,P,RHO,MIXPZ1,MIXPZ2,MIXPT1,MIXPT2, TR1=TROLD1/(TROLD1+TROLD2) TROLD1.TROLD2.TRSTN1.TRSTN2.KAI.HANTEI) TR2=1.00D+00-TR1 C С IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) CALL MIXPHIH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, BETA(40),GAMMA(40),RNLAD(40) * RNI1,RNI2,TR1,TR2, DIMENSION RNI1(40), RNI2(40) CI2, DI2, TI2, PI2, DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) DIF,TIF,CIF,PIF,RNIF,A,NFR, DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) T,P,RHO,MIXPZ1A,MIXPZ2A,ZPHASE) DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) С С MXPVT1=MIXPZ1A HANMIN=1.00D+06 MXPVT2=MIXPZ2A IREPT=0 C 300 IREPT=IREPT+1 С MIXPT1=MXPVT1 MIXPT2=MXPVT2 IF(IREPT .GT. 10000) THEN WRITE(*,*)'IREPT > 10000 In Subroutine REPEATH' CALL REPEATH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, GO TO 400

E	ND IF	2	200	TRSTN1=TROLD1
С				TRSTN2=TROLD2
С				HANTEI=1.00D+00-(TRSTN1+TRSTN2)
TR	R1=TROLD1/(TROLD1+TROLD2)			KAI=1
TR	R2=1.00D+00-TR1		R	ETURN
С			E	ND
CALL N	MIXPHIH(DELTA,TAU,TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	C	****	***************************************
*	CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	C	****	**************************************
*	RNI1,RNI2,TR1,TR2,	C		
*	CI2,DI2,TI2,PI2,	С		
*	DIF,TIF,CIF,PIF,RNIF,A,NFR,	C		
*	T,P,RHO,MIXPT1,MIXPT2,TPHASE)	С	****	***************************************
С		C	****	***************************************
С		С		
350 CAL	L GBSTARH(Z1,Z2,TROLD1,TROLD2,	C		SUBROUTINE GBSTARH
1	MIXPZ1,MIXPZ2,MIXPT1,MIXPT2,GSTAR,GANMA)	С	//	
С		C	//	////// G*の計算 ////////
CA	LL TRNEWH(Z1,Z2,TROLD1,TROLD2,MIXPZ1,MIXPZ2,	С	//	
1	MIXPT1,MIXPT2,TRNEW1,TRNEW2,DALPH)	С		
C ******	***************************************	С	*****	***************************************
С		C	****	***************************************
С	判定条件	C		
С			S	UBROUTINE GBSTARH(Z1,Z2,TROLD1,TROLD2,
C ******	******************		1	MIXPZ1,MIXPZ2,MIXPT1,MIXPT2,GSTAR,GANMA)
IF	((GSTAR .LT. 1.00D-03) .AND.		П	MPLICIT DOUBLE PRECISION (A-H,M,O-Z)
1	(DABS(GANMA-1.00D+00) .LT. 2.00D-01)) GOTO 100	С		
С			IF	(TROLD1 .EQ. 0.00D+00) THEN
IF	(DALPH .LT. 1.00D-08) GOTO 200 !! 1.0D-08 に変更			DGSTR1=MIXPT1-MIXPZ1
C ******	****************		EI	SE
C ******	******************			DGSTR1=DLOG(TROLD1/Z1)+MIXPT1-MIXPZ1
С			EN	ND IF
600	TROLD1=TRNEW1		IF	(TROLD2 .EQ. 0.00D+00) THEN
	TROLD2=TRNEW2			DGSTR2=MIXPT2-MIXPZ2
	GOTO 300		EI	SE
C *****	***************************************			DGSTR2=DLOG(TROLD2/Z2)+MIXP12-MIXPZ2
C *****	***************************************	C	Eľ	ND IF
С		C		CCTAP1-TPOID1*(DCCTP1 1 00D 00)
400	TRSTN1=TROLD1			GSTART=TROLDT*(DGSTR1-1.00D+00)
	TRSTN2=TROLD2	C		GS1AR2 = 1ROLD2*(DGS1R2 - 1.00D+00)
	HANTEI=1.00D+00-(TRSTN1+TRSTN2)	C		CSTAD = 1.00D + 00 + CSTAD1 + CSTAD2
	KAI=-1	C		U\$1AK=1.00D+00+U\$1AK1+U\$1AK2
G	RETURN	C		DET = (TDOI D1 71) * DOCTD1
100	TD (TD) 11 71			DETAT-(TROEDT-ZI) DOSTRI DETA 2-(TDAI D2 72)*DASTD2
100	$1KS1N1=Z1$ TRUE_100D 00 71			$BETA = RETA 1 \pm RETA 2$
	1 KS 1 NZ=1.00 D + 00 (TP CTN1 + TP CTN2)	C		DETA-DETAT DETAZ
	HAN1EI=1.00D+00-(1KS1NI+1KS1N2)	C		GANMA=2.00D+0.0*GSTAR/BETA
				GANNA 2.00D+00 GOTAN/DETA
C	KE I UKIN	C		
C		C		

A-16

```
RETURN
  END
C ******* END
               *****
С
C
 C
 ******
C
С
C
     SUBROUTINE TRNEW
C
C
  ///////
       DALPH は\Sigma(\angle \alpha i)^2の計算です。
                        ////////
C
C
*********
C
C
  SUBROUTINE TRNEWH(Z1,Z2,TROLD1,TROLD2,
         MIXPZ1,MIXPZ2,MIXPT1,MIXPT2,
  1
         TRNEW1, TRNEW2, DALPH)
  IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
С
   TRNEW1=DEXP(-MIXPT1+MIXPZ1+DLOG(Z1))
   TRNEW2=DEXP(-MIXPT2+MIXPZ2+DLOG(Z2))
   APOLD1=2.00D+00*DSQRT(TROLD1)
   APOLD2=2.00D+00*DSORT(TROLD2)
   APNEW1=2.00D+00*DSQRT(TRNEW1)
   APNEW2=2.00D+00*DSQRT(TRNEW2)
С
   DALP1=APNEW1-APOLD1
   DALP2=APNEW2-APOLD2
   DALPH1=DALP1*DALP1
   DALPH2=DALP2*DALP2
С
    DALPH=DALPH1+DALPH2
С
  RETURN
  END
C
C
С
C
 ******
C
```

```
С
         SUBROUTINE SHOKILH
C /////////
         初期値L(純成分1からの液体解(L)のため)
                                            ////////
С
 С
 SUBROUTINE SHOKILH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
           CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
           RNI1, RNI2, Z1, Z2,
           CI2.DI2.TI2.PI2.
           DIF, TIF, CIF, PIF, RNIF, A, NFR,
           T,P,RHO,MIXPZ1,MIXPZ2,TROLD1,TROLD2,TRSTI1,TRSTI2,
           KAII.HANTEI.ICOMP.NSUB)
C
    IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
 DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40),
           BETA(40),GAMMA(40),RNLAD(40)
 DIMENSION RNI1(40), RNI2(40)
 DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40)
 DIMENSION CI2(40), DI2(40), TI2(40), PI2(40)
 DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40)
С
    TR1=TROLD1/(TROLD1+TROLD2)
    TR2=1.00D+00-TR1
С
 IF (ICOMP .EQ. 1) GO TO 101
 IF (ICOMP .EQ. 2) GO TO 102
 STOP
C
101 NCOD=1
 IF (T.GT. TC1) THEN
   CALL PURERHO(TC1,PC1,RHOC1,R,CI,DI,TI,ALPHA,PI
   *
           ,BETA,GAMMA,RNLAD,RNI1,T,P,RHO1,NCOD)
   IF (RHO1 .GT. RHOC1) GO TO 1150
 ELSE
    CALL C1ANC(TC1.PC1.RHOC1.R.T.PSAT.RHOL.RHOV)
    CALL PURERHO(TC1,PC1,RHOC1,R,CI,DI,TI,ALPHA,PI
           ,BETA,GAMMA,RNLAD,RNI1,T,P,RHO1,NCOD)
   IF(RHO1 .GT. RHOL) GOTO 1150
 END IF
С
   IF(T .GT. TC1) GOTO 1000
   TDASH=T
    PDASH=PC1
       GOTO 1050
```

```
A-17
```

С

1000 TDASH=0.9D+00*TC1 PDASH=PC1 C 1050 CALL PURERHO(TC1,PC1,RHOC1,R,CI,DI,TI,ALPHA,PI .BETA.GAMMA.RNLAD.RNI1.TDASH.PDASH.RHO1.NCOD) С CALL PUREF(TC1,PC1,RHOC1,R,CI,DI,TI,ALPHA,PI * ,BETA,GAMMA,RNLAD,RNI1,TDASH,PDASH,RHO1,PUREF1) С 3000 MXPLT1=DLOG(PUREF1/PDASH) MXPLT2=0.00D+00 GOTO 1110 С 1150 CALL PUREF(TC1,PC1,RHOC1,R,CI,DI,TI,ALPHA,PI ,BETA,GAMMA,RNLAD,RNI1,T,P,RHO1,PUREF1) С 5000 MXPLT1=DLOG(PUREF1/P) MXPLT2=0.00D+00 GOTO 1110 С 1110 MIXPT1=MXPLT1 MIXPT2=MXPLT2 C С 以下によって停留点を探索します。 CALL REPEATH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1, RNI2, Z1, Z2, CI2, DI2, TI2, PI2, DIF,TIF,CIF,PIF,RNIF,A,NFR, T,P,RHO1,MIXPZ1,MIXPZ2,MIXPT1,MIXPT2, TROLD1, TROLD2, TRSTI1, TRSTI2, KAII, HANTEI) RETURN C C IF (T.GT. TC2) THEN CALL PURERHO(TC2,PC2,RHOC2,R,CI2,DI2,TI2,ALPHA,PI2 * ,BETA,GAMMA,RNLAD,RNI2,T,P,RHO2,NCOD) IF (RHO2 .GT. RHOC2) GO TO 1152 ELSE ***** 1022 CALL H2SANC(TC2,PC2,RHOC2,R,T,PSAT,RHOL,RHOV) GO TO 200 ****** 200 CALL PURERHO(TC2,PC2,RHOC2,R,CI2,DI2,TI2,ALPHA,PI2 * ,BETA,GAMMA,RNLAD,RNI2,T,P,RHO2,NCOD) IF(RHO2 .GT. RHOL) GOTO 1152 END IF

С IF(T .GT. TC2) GOTO 1002 TDASH=T PDASH=PC2 **GOTO 1052** С 1002 TDASH=0.9D+00*TC2 PDASH=PC2 С 1052 CALL PURERHO(TC2.PC2.RHOC2.R.CI2.DI2.TI2.ALPHA.PI2 ,BETA,GAMMA,RNLAD,RNI2,TDASH,PDASH,RHO2,NCOD) С CALL PUREF(TC2.PC2.RHOC2.R.CI2.DI2.TI2.ALPHA.PI2 ,BETA,GAMMA,RNLAD,RNI2,TDASH,PDASH,RHO2,PUREF2) * С 4002 MXPLT1=0.00D+00 MXPLT2=DLOG(PUREF2/PDASH) GOTO 1112 С 1152 CALL PUREF(TC2,PC2,RHOC2,R,CI2,DI2,TI2,ALPHA,PI2 * ,BETA,GAMMA,RNLAD,RNI2,T,P,RHO2,PUREF2) С 6002 MXPLT1=0.00D+00 MXPLT2=DLOG(PUREF2/P) GOTO 1112 С 1112 MIXPT1=MXPLT1 MIXPT2=MXPLT2 С CALL REPEATH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1, RNI2, Z1, Z2, CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR, T.P.RHO2.MIXPZ1.MIXPZ2.MIXPT1.MIXPT2. TROLD1, TROLD2, TRSTI1, TRSTI2, KAII, HANTEI) RETURN END C ***** С С C С C C C С С

C SUBROUTINE SHOKIMH	С
C ////////////////////////////////////	C ////////////////////////////////////
C ///////// 初期値M(中点(M)からの解のため) ///////	C //////// 体積モル分率の計算 ///////
C ////////////////////////////////////	C ////////////////////////////////////
C	SUBROUTINE VMOLFRH(Z1,Z2,BK1,BK2,VMOL)
C ************************************	IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
C ************************************	C
SUBROUTINE SHOKIMH(DELTA,TAU,TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,	VMOL=(1.00D+00-Z1*BK1-Z2*BK2)/((BK1-1.00D+00)*(BK2-1.00D+00))
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	С
* RNI1,RNI2,HANSY1,HANSY2,	RETURN
* C12,D12,T12,P12,	END
* DIF, TIF, CIF, PIF, RNIF, A, NFR,	
* I,P,RHO,MIXPY1,MIXPY2,1KOLD1,1KOLD2,1KS131,1KS132,	VLLE END
* KAI3,HANTEI)	
IMPLICIT DOUDLE DECISION (A. U.M.O. 7)	
INIPLICIT DOUBLE PRECISION (A- π , NI, O- L) DIMENSION CI(40) DI(40) TI(40) AI DHA(40) DI(40)	
* $\operatorname{BETA}(40), \operatorname{ALCMA}(40), \operatorname{PNI}(40), $	C
DIMENSION RNI1(40) RNI2(40)	
DIMENSION AI1(40), H(12(40))	C の計算
DIMENSION CI2(40), $\Pi = \Pi \Pi (40), \Pi = \Pi \Pi (40), \Pi = \Pi \Pi$	
DIMENSION RNIF(40) DIF(40) TIF(40) CIF(40) PIF(40)	$egin{array}{c} & & & & & & & & & & & & & & & & & & &$
C	C ************************************
TR1=TROLD1	č
TR2=TROLD2	SUBROUTINE PECTY(DELTA TAU TC1 PC1 RHOC1 TC2 PC2 RHOC2 R
C	* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
CALL MIXPHIH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,	* RNI1,RNI2,Z1,Z2,T,P,RHO,F1,F2,RN,TN,
* CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,	* CI2,DI2,TI2,PI2,DIF,TIF,CIF,PIF,RNIF,A,NFR)
* RNI1,RNI2,TR1,TR2,	С
* CI2,DI2,TI2,PI2,	IMPLICIT DOUBLE PRECISION (A-H,O-Z)
* DIF,TIF,CIF,PIF,RNIF,A,NFR,	DIMENSION CI(40),DI(40),TI(40),ALPHA(40),PI(40),
* T,P,RHO,MIXPT1,MIXPT2,TPHASE)	* BETA(40),GAMMA(40),RNLAD(40)
	DIMENSION RNI1(40),RNI2(40)
CALL REPEATH(DELTA, TAU, TCT, PCT, RHOC1, TC2, PC2, RHOC2, R,	DIMENSION A11(40),THETA1(40),A12(40),THETA2(40)
* CI,DI, II,ALPHA,PI,BEIA,GAMMA,KNLAD,	DIMENSION C12(40),D12(40),T12(40),P12(40)
* KINII,KINIZ,HAINS Y I,HAINS Y Z, * CID DID TID DID	DIMENSION RNIF(40),DIF(40),TIF(40),CIF(40),PIF(40)
* DIE TIE CIE DIE DNIE A NED	
* T P P H () M I Y P V 1 M I Y P V 2 M I Y P T 1 M I Y P T 2	CALL DARNWEETA TAUTTEL DEL DUOCL TEL DEL DUOCL TEL DEL DUOCL D
* TROLD1 TROLD2 TRST31 TRST32 KAI3 HANTED	* CIDITI AI DHA DI DETA CAMMA DNI AD
(* CI,DI, II,ALFIIA, FI,DETA, OAMMIA, NILAD, * RNII RNIZ CIZ DIZ TIZ DIZ DIE TIE CIE DIE RNIE & NER
RETURN	
END	C
C ************************************	- C ARの計算 ************************************
C ************************************	CALL CALAR/DELTA TAUR CI DI TI
С	* ALPHA PI BETA GAMMA RNLAD
C	* RNI1.ARD1.ARD1.AR1)
C	CALL CALAR(DELTA, TAU, R, CI2, DI2, TI2,
C	

* ALPHA.PI2.BETA.GAMMA.RNLAD. RNI2.ARD2.ARDD2.AR2) CALL CALFIJA(DELTA.TAU.A. DIF, TIF, CIF, PIF, RNIF, NFR, FIJ, FIJD) AR=Z1**2.0D+00*AR1 + Z2**2.0D+00*AR2 + 2.0D+00*Z1*(1.0D+00-Z1) *FLJ*(AR1+AR2)/2.0D+00 ***** END ***** C DNARDN1=AR+DARN1 DNARDN2=AR+DARN2 F1=Z1*RHO*R*T*EXP(DNARDN1) F2=Z2*RHO*R*T*EXP(DNARDN2) RETURN END ********** C METHANE 相関式の計算 SUBROUTINE C1ANC(TC,PC,RHOC,R,T,PSAT,RHOL,RHOV) IMPLICIT DOUBLE PRECISION (A-H,O-Z) TR=T/TC X=1.0D+00-TR C ******** CH4 ****** A1=-6.036219D+00 A2=1.409353D+00 A3=-0.4945199D+00 A4=-1.443048D+00 PSAT=PC*EXP(TC/T*(A1*X+A2*X**1.5D+00+A3*X**2.0D+00+A4*X**4.5D+00)) B1=1.9906389D+00 С B2=-0.78756197D+00

C

C

C

С

С

C

C

C

C

С

C

C

C

B3=0.036976723D+00 RHOL=RHOC*EXP(B1*X**0.354D+00+B2*X**0.5D+00+B3*X**2.5D+00) С C1=-1.8802840D+00 C2=-2.8526531D+00 C3=-3.0006480D+00 C4=-5.2511690D+00 C5=-13.191859D+00 C6=-37.553961D+00 RHOV=RHOC*EXP(C1*X**0.354D+00+C2*X**(5.0D+00/6.0D+00) * +C3*X**1.5D+00+C4*X**2.5D+00 * +C5*X**(25.0D+00/6.0D+00)+C6*X**(47.0D+00/6.0D+00))RETURN END *********** C С С HYDROGNE SULFIDE 相関式の計算 C С ******* ******** C C SUBROUTINE H2SANC(TC,PC,RHOC,R,T,PSAT,RHOL,RHOV) IMPLICIT DOUBLE PRECISION (A-H,O-Z) C TR=T/TC X=1.0D+00-TR C ***********H2S ***** -0.6423889D+01 A1= A2 =0.1699405D+01 A3 =-0.1211219D+01 A4= -0.2217591D+01 PSAT=PC*EXP(TC/T*(A1*X+A2*X**1.5D+00+A3*X**2.0D+00+A4*X**4.5D+00)) C B1= 0.2122841D+01 B2=-0.8907727D+00 0.1148276D+00 B3= RHOL=RHOC*EXP(B1*X**0.354D+00+B2*X**0.5D+00+B3*X**2.5D+00) С C1= -0.2001663D+01 $C_{2}=$ -0.3339645D+01 -0.6781599D+00 C3=C4=-0.1333131D+02 C5=-0.3988066D+01 C6= -0.7523041D+02 RHOV=RHOC*EXP(C1*X**0.354D+00+C2*X**(5.0D+00/6.0D+00) * +C3*X**1.5D+00+C4*X**2.5D+00 +C5*X**(25.0D+00/6.0D+00)+C6*X**(47.0D+00/6.0D+00))

A-20

C ************************************	
C ************************************	
C AR に関する自由エネルギー、δ微分等の計算 END DO C C	
C ARDD2=0.0D+00 C DO N=37,40 C ARDD2=ARDD2+	
CAKD2-AKD2+CSUBROUTINE CALAR(DELTA, TAU, R, CI, DI, TI, * ALPHA, PI, BETA, GAMMA, RNLAD, RNI, ARD, ARDD, AR)- DELTA**(-2.0D+00 + DI(N))** ALPHA, PI, BETA, GAMMA, RNLAD, RNI, ARD, ARDD, AR)- ALPHA(N)*(DELTA - RNLAD(N))**2.0D+00) - * ALPHA(N)*(DELTA - RNLAD(N))*2.0D+00))*TAU**TI(N)*IMPLICIT DOUBLE PRECISION (A-H, O-Z)- ALPHA(N)*((-1.0D+00 + DI(N))*DI(N) - 2.0D+00*DELTA*ALPHA(N)*DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), * BETA(40), GAMMA(40), RNLAD(40)- 2.0D+00*DELTA*ALPHA(N)* * (DELTA + 2.0D+00*DI(N)*(DELTA - RNLAD(N)))) +DIMENSION RNI(40)- (DELTA + 2.0D+00*DI(N)*(DELTA - RNLAD(N)))) +DIMENSION RNI(40)- 4.0D+00*DELTA*2.0D+00*ALPHA(N) * 2.0D+00*DELTA * 2.0D+00*ALPHA(N)	
DIMENSION AI(40),THETA(40) C C **********************************	
C ************************************	
END DO DO N=37,40 ARD2=0.0D+00 ARD2=ARD2+ MRD2=ARD2+ * RNI(1)*DELTA**(DI(1)-1.0D+00)*TAU**TI(1) * * *EXP(-ALPHA(1)*(DELTA-RNLAD(1))*2.0D+00) * *eETURN * *eETURN * *(-2.0D+00*ALPHA(1)*(DELTA-RNLAD(1))) END DO C ARD=ARD1+ARD2 END	****
AKD AKD: AKD2 * C ************************************	

С	С
C ************************************	C
C	C
	C
C AR $c \tau$ 微分等の計算	C
C	C
C	\mathcal{C}
C ************************************	C ************************************
C ************************************	C
C	C
SUBROUTINE CALAR2(DELTA,TAU,R,CI,DI,TI,	C FIJ の計算, 係数引数
* ALPHA,PI,BETA,GAMMA,RNLAD,RNI,ART)	C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)	C
DIMENSION CI(40),DI(40),TI(40),ALPHA(40),PI(40),	C ************************************
* BETA(40),GAMMA(40),RNLAD(40)	C ************************************
DIMENSION RNI(40)	C
DIMENSION AI(40),THETA(40)	SUBROUTINE CALFIJA(DELTA,TAU,A,
C	* DIF,TIF,CIF,PIF,RNIF,NFR,FIJ,FIJD)
ART1=0.0D+00	IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DO 101 N=1,36	DIMENSION RNIF(40),DIF(40),TIF(40),CIF(40),PIF(40)
ART1=ART1+	C
- (DELTA**DI(N)*TAU**(-1.0D+00 + TI(N))*RNI(N)*TI(N))/	C
- EXP((DELTA**CI(N)*PI(N)))	FIJ=A
101 CONTINUE	DO N=1,NFR
C	FIJ=FIJ + RNIF(N) * DELTA**DIF(N) * TAU**TIF(N) *
ART2=0.0D+00	* EXP(-PIF(N)*DELTA**CIF(N))
DO 102 N=37,40	END DO
ART2=ART2+	С
(DELTA**DI(N)*EXP(FIJD=0.0D+00
- (-(BETA(N)*(TAU - GAMMA(N))**2.0D+00) -	DO N=1,NFR
- ALPHA(N)*(DELTA - RNLAD(N))**2.0D+00))*	FIJD=FIJD+
$- TAU^{**}(-1.0D+00 + TI(N))^{*}RNI(N)^{*}$	- $(DELTA^{**}(-1.0D+00 + DIF(N))^{*}TAU^{**}TIF(N)^{*}$
- (2.0D+00*TAU*BETA(N)*(TAU - GAMMA(N)) - TI(N)))	- (DIF(N) - DELTA**CIF(N)*CIF(N)*PIF(N))*RNIF(N))
102 CONTINUE	- /EXP((DELTA**CIF(N)*PIF(N)))
ART=ART1+ART2	END DO
	CC
RETURN	RETURN
END	END
C	С ************************************
C	C ************************************
*****	C .
*	U ~ ************************************
	· ····································
	C
	していた。「日本の強人社会」を教司者
U C ************************************	し FIJ の () が 別 分 前 早, 1 が 級 り 級
U END	

C ************************************	END DO
C ************************************	С
C	FIJTTT=0.0D+00
SUBROUTINE CALFIJDA(DELTA,TAU,A,DIF,TIF,CIF,PIF,RNIF,NFR,	DO N=1,NFR
* FIJDD,FIJDDD,FIJT,FIJTT,FIJDT,FIJDDT,FIJDTT)	FIJTTT=FIJTTT+
IMPLICIT DOUBLE PRECISION (A-H,O-Z)	- (DELTA**DIF(N)*TAU**(-3.0D+00 + TIF(N))*RNIF(N)*
DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40)	-(-2.0D+00+TIF(N))*(-1.0D+00+TIF(N))*TIF(N))/
C	- EXP((DELTA**CIF(N)*PIF(N)))
FIJDD=0.0D+00	END DO
DO N=1 NFR	C
FIIDD=FIIDD+	FIIDT=0 0D+00
(DELTA**(-2 0 0 + 0 + 0 1)*TAU*TIF(N)*	DO N=1 NFR
(DECN) * 2 (D+00) -	FIDT=FIDT+
$DF(N) \times (10D+00 + 20D+00) DELTA **CIF(N) *CIF(N) * PIF(N)) +$	(DEITA**(-1)D+00 + DIF(N))*TAU**(-1)D+00 + TIF(N))*
	$(\text{DEF}(\mathbf{N}) \rightarrow \text{DEF}(\mathbf{X}) + \text{DEF}(\mathbf{N}) + D$
- DEFINE $CIr((x) = CIr((x) + Ir((x)))$ (1 OD+O0 + $CIr((x) + Ir((x)))$	- (DI (N) - DELIA CI (N) CI (N) III (N) KIII (N) TIE(N) (EVD(DELIA *CI (N) *DIE(N)))
= (1.01+00+00+00+00+00+00+00+00+00+00+00+00+0	
$= KINF(N)/EAF((DELIA \cdot CIF(N) \cdot FIF(N)))$	
END DO	
	DU N=1,NFK
DO N=1,NFK	
	$- (DELIA^{*}(-2.0D+00+DIF(N))^{*}IAU^{*}(-1.0D+00+IIF(N))^{*}$
$= (DELIA^{*}(-3.0D+00+DIF(N))^*IAU^{**}IIF(N)^*$	$- (DF(N)^{*}2.0D+00 - 2.0D+00 + 2.0D+00 + 0.0D+00 + 0.0D+000 + 0.0D+00 + 0.0D+000 + 0.0D+00 + $
- (DIF(N)**3.0D+00 -	- $DIF(N)*(I.0P+00+2.0D+00*DELIA**CIF(N)*CIF(N)*PIF(N)) +$
- 3.0D + 00*DIF(N)**2.0D + 00*	- DELIA**CIF(N)*CIF(N)*PIF(N)*
- $(1.0D+00 + DELTA**CIF(N)*CIF(N)*PIF(N)) +$	- (1.0D+00 + CIF(N)*(-1.0D+00 + DELTA**CIF(N)*PIF(N))))*
- $DIF(N)*(2.0D+00+6.0D+00*DELTA**CIF(N)*CIF(N)*PIF(N)+$	- RNIF(N)*TIF(N))/EXP((DELTA**CIF(N)*PIF(N)))
- 3.0D+00*DELTA**CIF(N)*CIF(N)**2.0D+00*PIF(N)*	END DO
- (-1.0D+00 + DELTA**CIF(N)*PIF(N))) -	C
- DELTA**CIF(N)*CIF(N)*PIF(N)*	FIJDTT=0.0D+00
- $(2.0D+00+3.0D+00*CIF(N)*(-1.0D+00+DELTA**CIF(N)*PIF(N)) +$	DO N=1,NFR
- CIF(N)**2.0D+00*	FIJDTT=FIJDTT+
- (1.0D+00 - 3.0D+00*DELTA**CIF(N)*PIF(N) +	- $(DELTA^{*}(-1.0D+00 + DIF(N))^{TAU^{*}(-2.0D+00 + TIF(N))^{*}})$
- DELTA**(2.0D+00*CIF(N))*PIF(N)*2.0D+00)))*RNIF(N))	- (DIF(N) - DELTA**CIF(N)*CIF(N)*PIF(N))*RNIF(N)*
- /EXP((DELTA**CIF(N)*PIF(N)))	- (-1.0D+00 + TIF(N))*TIF(N))/EXP((DELTA**CIF(N)*PIF(N)))
END DO	END DO
C	С
FIJT=0.0D+00	RETURN
DO N=1,NFR	END
FIJT=FIJT+	C ************************************
- (DELTA**DIF(N)*TAU**(-1.0D+00 + TIF(N))*RNIF(N)*	C ***************************** END **********
- TIF(N)/EXP((DELTA**CIF(N)*PIF(N)))	С
END DO	С
C	С
FIJTT=0.0D+00	Č
DO N=1.NFR	C ************************************
FIJTT=FIJTT+	C ************************************
- (DELTA**DIF(N)*TAU**(-2.0D+00 + TIF(N))*RNIF(N)*	С
- (-1.0D+00 + TIF(N))*TIF(N))/EXP((DELTA**CIF(N)*PIF(N)))	C 偽臨界値に関する計算

```
С
C
 SUBROUTINE CALRNTN(TC1.PC1.RHOC1.TC2.PC2.RHOC2.Z1.Z2.RN.TN.T)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C パラメータ RN TN
 101 CALL CALKIJ101(RKIJ,RKSI)
 RC12=RKSI*((1.0D+00/RHOC1)**(1.0D+00/3.0D+00) +
     (1.0D+00/RHOC2)**(1.0D+00/3.0D+00))**3.0D+00
  *
     / 8.0D+00
 RN=1.0D+00/(Z1**2.0D+00/RHOC1 + Z2**2.0D+00/RHOC2 +
  * 2.0D+00 * Z1 * (1.0D+00-Z1) * RC12)
C
 TC12=RKIJ*(TC1+TC2)/2.0D+00
 TN=Z1**2.0D+00*TC1+Z2**2.0D+00*TC2+
      2.0D+00*Z1 * (1.0D+00-Z1) *TC12
C
С
 10 RETURN
 END
*******
C
C
 ******
C
С
     偽臨界値の組成微分に関する計算 気液平衡計算用
C
 ******
C
 SUBROUTINE CALDRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2,
              Z1,Z2,DRNDZ1,DRNDZ2,DTNDZ1,DTNDZ2,T)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C パラメータ 組成微分
 101 CALL CALKIJ101(RKIJ,RKSI)
C
 RC12=RKSI*((1.0D+00/RHOC1)**(1.0D+00/3.0D+00) +
     (1.0D+00/RHOC2)**(1.0D+00/3.0D+00))**3.0D+00
  *
     / 8.0D+00
   TC12=RKIJ*(TC1+TC2)/2.0D+00
```

```
С
 DRNDZ1=
     (2.0D+00*RHOC1*RHOC2*
      (-(RHOC2*Z1) +
       RHOC1*(1.0D+00 - Z1 + RC12*RHOC2*(-1.0D+00 + 2.0D+00*Z1))))
     /(RHOC2*Z1**2.0D+00 -
      RHOC1*(-1.0D+00 + Z1)*
       (1.0D+00+(-1.0D+00+2*RC12*RHOC2)*Z1))**2.0D+00
С
 DRNDZ2=-DRNDZ1
С
   DTNDZ1=
   -2.0D+00*(TC12+TC2*(-1.0D+00+Z1)+TC1*Z1-2.0D+00*TC12*Z1)
С
 DTNDZ2=-DTNDZ1
С
 10 RETURN
 END
 ********
\mathbf{C}
 ********
C
C
C
C
C
           偽臨界値の組成微分に関する計算 臨界曲線用
 *******
C
 C
C
        偽臨界値の組成微分に関する計算 臨界曲線用
C
 *******
С
С
 *******
C
 SUBROUTINE DRNTNZ(TC1,PC1,RHOC1,TC2,PC2,RHOC2,
                Z1,Z2,TNZ1,TNZ11,TNZ111,RNZ1,RNZ11,RNZ111,T)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
С
C パラメータ 組成微分
 101 CALL CALKIJ101(RKIJ,RKSI)
С
 RC12=RKSI*((1.0D+00/RHOC1)**(1.0D+00/3.0D+00) +
      (1.0D+00/RHOC2)**(1.0D+00/3.0D+00))**3.0D+00
   *
      / 8.0D+00
   TC12=RKIJ*(TC1+TC2)/2.0D+00
С
```

```
A-24
```

TNZ1=

A-25

$200 \pm 0.0*(TC12 \pm TC2*(1.00 \pm 71) \pm TC1*71 = 2.00 \pm 0.0*TC12*71)$	END
C	C ************************************
TNZ11=	č ************************************
- 2.0D+00*(TC1 - 2.0D+00*TC12 + TC2)	C
C	С
TNZ111=0.0D+00	С
C	С
RNZ1=	C ************************************
- (2.0D+00*RHOC1*RHOC2*	C ************************************
- $(-(RHOC2*ZI) + RHOC2*ZI) + RHOC2*(10RHOC2*(10RHOC2*ZI)))$	
- $KHOC1^{(1.0D+00-Z1+KC12^{K}HOC2^{(-1.0D+00+Z.0D+00^{Z1})))}$	C 偽臨界値のハフメータ
$= \frac{1}{(\text{KHOC2} \cdot 2.1 \cdot 2.0 \text{D} + 00 - 2.0$	
- (1 0D+00 + (-1 0D+00 + 2*RC12*RHOC2)*Z1))**2 0D+00	C ************************************
C	C
RNZ11=	SUBROUTINE CALKULOL(RKILRKSD)
- (-2.0D+00*RHOC1*RHOC2*	IMPLICIT DOUBLE PRECISION (A-H.O-Z)
- (3.0D+00*RHOC2**2.0D+00*Z1**2.0D+00 -	С
- RHOC1*RHOC2*	RKIJ=0.90D+00
- (1.0D+00 + (6.0D+00 - 6.0D+00*RC12*RHOC2)*Z1 +	С
- 6.0D+00*(-1.0D+00 + 2.0D+00*RC12*RHOC2)*Z1**2.0D+00) +	RKSI=1.00D+00
- RHOC1**2.0D+00*(3.0D+00*(-1.0D+00+Z1)**2.0D+00 - CONTRACT - CO	C
- 6.0D+00*RC12*RHOC2*(1.0D+00 - 3.0D+00*Z1 + 2.0D+00*Z1 + 2.0D+00*Z1)	RETURN
- 2.0D+00*Z1**2.0D+00) + 4.0D+00*D10C2**2.0D+00*	END
$- 4.0D+00^{\circ}KC12^{\circ}2.0D+00^{\circ}KC02^{\circ}2.0D+00^{\circ}$ $(1.0D+00^{\circ}-3.0D+00*71+3.0D+00*71**2.0D+00)))/$	C
- (-(RHOC2*Z1**2.0D+00) + (-(RHOC2*Z1**2.0D+00))) + (-(RHOC2*Z1**2.0D+00)) + (-(RHOC2*Z1**2.0D+00)) + (-(RHOC2*Z1**2.0D+00))) + (-(RHOC2*Z1**2.0D+00)) + (-(RHOC2*Z1**2.0D+00))) + (-(RHOC2*Z1**2.0D+00)))) + (-(RHOC2*Z1**2.0D+00)))) + (-(RHOC2*Z1**2.0D+00)))) + (-(RHOC2*Z1**2.0D+00)))) + (-(RHOC2*Z1**2.0D+00))))) + (-(RHOC2*Z1**2.0D+00))))))))))))))))))))))))))))))))))	C
- BHOC1*(-1 0D+00 + Z1)*	\mathcal{C}
- (1.0D+00 + (-1.0D+00 + 2.0D+00*RC12*RHOC2)*Z1))**3.0D+00	C C ***********************************
C	C ************************************
RNZ111=	C
- (24.0D+00*RHOC1*RHOC2*	С
- (-(RHOC2*Z1) +	C PRHOT
- RHOC1*(1.0D+00 - Z1 + RC12*RHOC2*(-1.0D+00 + 2.0D+00*Z1)))*	С
- (RHOC2**2.0D+00*Z1**2.0D+00 -	С
- RHOC1*RHOC2* $(1.0D+0.0+(2.0D+0.0+DC12*DU0C2)*71+$	C ************************************
- (1.0D+00 + (2.0D+00 - 2.0D+00*KC12*KHOC2)*Z1 + (2.0D+00 + 4.0D+00*RC12*RHOC2)*Z1**2.0D+00) +	C ************************************
$= (-2.0D^{+}00^{+} + 4.0D^{+}00^{+} KC12^{+} KC12^{+} KC0C2)^{+}21^{+} + 2.0D^{+}00)^{+}$	
= 2.0D+00*RC12*RHOC2*(1.0D+00+21)*2.0D+00=	SUBROUTINE CALPRHUT(DELTA, TAU, TCT, PCT, RHOCT, TC2, PC2, RHOC2, R,
- 2.00 + 00 + RC12 + RTOC22 + (1.00 + 00 + 5.00 + 00 + 21 + 200 + 00 + 21 + 200 + 00 +	* CI,DI, II,ALPHA,PI,DETA,UAMMA,KNLAD, * PNIL PNI2 CI2 DI2 TI2 DI2
- 2.0D+00*RC12**2.0D+00*RHOC2**2.0D+00*	* DIF TIF CIF PIF RNIF A NFR)
- (1.0D+00 - 2.0D+00*Z1 + 2.0D+00*Z1**2.0D+00))))/	С
- (RHOC2*Z1**2.0D+00 -	IMPLICIT DOUBLE PRECISION (A-H.O-Z)
- $RHOC1*(-1.0D+00+Z1)*$	DIMENSION CI(40),DI(40),TI(40),ALPHA(40),PI(40),
- (1.0D+00 + (-1.0D+00 + 2.0D+00*RC12*RHOC2)*Z1))**4.0D+00	* BETA(40),GAMMA(40),RNLAD(40)
C	DIMENSION RNI1(40),RNI2(40)
C	DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40)
10 RETURN	DIMENSION CI2(40),DI2(40),TI2(40),PI2(40)

DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) C 10 WRITE(*,*) 'X OF METHANE=, T=, P=, ' READ(*,*)Z1,T,P С Z2=1.0D+00-Z1 С C C PR EOS より初期値の計算 CALL ENDOPRV(Z1,T,P,RHOL,RHOV) IF (RHOL .NE. RHOV) THEN WRITE(*.*)'RHOL =/ RHOV' WRITE(*,*)RHOL, RHOV WRITE(NF,*)'RHOL =/ RHOV',Z1 С STOP END IF С RHO=RHOL С CALL CALRHO(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1,RNI2,Z1,Z2,T,P,RHO,CI2,DI2,TI2,PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR) С WRITE(*,21)Z1,T, P, RHO 21 FORMAT(4F 20.5) GO TO 10 С 600 RETURN END C *********** ***** END C ****** C 密度計算実行部分, NEWTON 法を使用 С C С С RHO 計算実行部分, NEWTON 法を使用 C ***** C C SUBROUTINE CALRHODETAILN(TC1.PC1.RHOC1.TC2.PC2.RHOC2.R.

CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. RNI1.RNI2.CI2.DI2.TI2.PI2. DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB, Z1,T,P,RHOV,RHOL) IMPLICIT DOUBLE PRECISION (A-H.M.O-Z) DIMENSION RNI1(40), RNI2(40) DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), BETA(40),GAMMA(40),RNLAD(40) DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) CHARACTER*30 NNNN, M1 Z2=1.0D+00-Z1 IV=0 IL=0******* DO RHO=0.001D+00, 30.0D+00, 0.5D+00 CALL CALPDPDR(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. RNI1,RNI2,Z1,Z2,T,PCAL,DPDR,RHO,CI2,DI2,TI2,PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR) IF (DPDR. LT. -1.0D-04) THEN GO TO 10 END IF IF (PCAL. GT. P) THEN IV=1 RHOA=RHO-0.5D+00 CALL CALRHON(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1,RNI2,Z1,Z2,T,P,RHOA,CI2,DI2,TI2,PI2, DIF,TIF,CIF,PIF,RNIF,A,NFR) RHOV=RHOA GO TO 10 END IF END DO 10 DO RHO=30.0D+00, 0.01D+00, -0.5D+00 CALL CALPDPDR(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, Z1, Z2, T, PCAL, DPDR, RHO, CI2, DI2, TI2, PI2, * DIF,TIF,CIF,PIF,RNIF,A,NFR)

```
IF (DPDR. LT. -1.0D-04) THEN
    GO TO 11
  END IF
  IF (PCAL, LT, P) THEN
    IL=1
    RHOA=RHO+0.5D+00
    CALL CALRHON(DELTA.TAU.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R.
       CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
       RNI1, RNI2, Z1, Z2, T, P, RHOA, CI2, DI2, TI2, PI2,
       DIF,TIF,CIF,PIF,RNIF,A,NFR)
    RHOL=RHOA
    GO TO 11
  END IF
 END DO
11 IF ((IV.EQ. 1) .AND. (IL.EQ. 0)) THEN
    RHOL=RHOV
 END IF
 IF ((IV .EQ. 0) .AND. (IL .EQ. 1)) THEN
    RHOV=RHOL
 END IF
C
 RETURN
 END
C
 ******
C
C
C
         CRITICUL CURVE
C
         HEIDEMANN 法 + 安定性解析
 ************
 ******
С
C
 SUBROUTINE CRITICAL(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
      CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
       RNI1, RNI2, CI2, DI2, TI2, PI2,
      DIF,TIF,CIF,PIF,RNIF,A,NFR,NSUB)
   IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
```

```
DIMENSION RNI1(40).RNI2(40)
 DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40),
           BETA(40),GAMMA(40),RNLAD(40)
    DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40)
 DIMENSION CI2(40), DI2(40), TI2(40), PI2(40)
 DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40)
С
 DIMENSION TINT(10), RHOINT(10)
 DIMENSION TCP(3), PCP(3), RHOCP(3)
 CHARACTER*30 NNNN, M1
С
С
С
 *****
        出力ファイル指定
С
 WRITE(*.*)'臨界曲線 CAL CRITICAL HEIDEMANN C1H2S + FILE NAME='
 READ(*.*)M1
 NF=300
 OPEN(NF,FILE='CAL CRITICAL HEIDEMANN C1H2S '//M1)
 *****
C
 *****
С
DO 1234 Y1=0.01D+00, 0.99D+00, 0.01D+00
С
 Y2=1 0D+00-Y1
 ******
C
С
 -----
 CALL CALCRCURVE(TC1,PC1,RHOC1,TC2,PC2,RHOC2,R,
         CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
         RNI1,RNI2,CI2,DI2,TI2,PI2,DIF,TIF,CIF,PIF,RNIF,A,NFR,
         Y1,TCP,PCP,RHOCP,NCP)
С
 -----
 DO J=1.NCP
      WRITE(*,820) Y1,TCP(J),PCP(J),RHOCP(J)
      WRITE(NF,8212) Y1,TCP(J),PCP(J),RHOCP(J)
 END DO
8212 FORMAT (4F 15.9)
8211 FORMAT (F 15.6, F 15.3, F15.3, F15.2)
 GO TO 1234
С
 *******
C
C
 C
С
С
             安定性解析
C
C
C
 *******
```

С

С

DO 1235 J=1.NCP С T=TCP(J) С P=PCP(J) C ZZ1=Y1 ZZ2=1.00D+00-ZZ1 DZZ1=0.01D+00 C WRITE(*,*)'安定性解析, ZZ1, T, P' WRITE(*,*) ZZ1, T, P C///////// 仕込みモル組成(Z1,Z2)での Gibbs の自由エネルギー ///////// С 50 CALL MIXPHIH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, * CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1,RNI2,ZZ1,ZZ2, CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR, T,P,RHO,MIXPZ1,MIXPZ2,ZPHASE) C С С C ///////// 初期値2(純成分1からの解) C ******** ***** 逐次近似の出発点が成分1 INITIA=2 ICOMP=1 С TROLD1=0.999D+00 TROLD2=0.001D+00 С CALL SHOKILH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1,RNI2,ZZ1,ZZ2, CI2, DI2, TI2, PI2, С DIF, TIF, CIF, PIF, RNIF, A, NFR, T,P,RHO,MIXPZ1,MIXPZ2,TROLD1,TROLD2,TRSTL1,TRSTL2, KAIL, HANTEI, ICOMP, NSUB) C С C TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1 WRITE(*,*)'初期值 2' WRITE(*,6000) INITIA, KAIL, HANTEI, TR1 6000 FORMAT(' ','HANTEI=>',2I2,1X,2D13.6) С С С IF(HANTEI .LT. -1.00D-06) THEN C ********** TR1=TRSTL1/(TRSTL1+TRSTL2)

TR2=1.00D+00-TR1 **GOTO 1235** ELSE END IF 初期値3(純成分2からの解) C ///////// C ********* ***** 逐次近似の出発点が成分2 INITIA=3 ICOMP=2 TROLD1=0.001D+00 TROLD2=0.999D+00 CALL SHOKILH(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1, RNI2, ZZ1, ZZ2, CI2, DI2, TI2, PI2, DIF,TIF,CIF,PIF,RNIF,A,NFR, T.P.RHO.MIXPZ1.MIXPZ2.TROLD1.TROLD2.TRSTL1.TRSTL2. KAIL, HANTEI, ICOMP, NSUB) TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1 WRITE(*,*)'初期值 3' WRITE(*,6100) INITIA, KAIL, HANTEI, TR1 6100FORMAT(' ','HANTEI=>',2I2,1X,2D13.6) IF(HANTEI .LT. -1.00D-06) THEN TR1=TRSTL1/(TRSTL1+TRSTL2) TR2=1.00D+00-TR1 **GOTO 1235** ELSE END IF GOTO 95 ***** 95 WRITE(*,820) Y1,TCP(J),PCP(J),RHOCP(J) WRITE(NF,821) Y1,TCP(J),PCP(J),RHOCP(J) 820 FORMAT(' ','ANS=>', 5D12.5) 821 FORMAT(4F 20.9) 1235 CONTINUE 1234 CONTINUE

	RETURN	CC
C	END	
C	, 1	DUC
C	**************************************	C
C	CRITICAL CORVE END	C
C		200
C		C 200
C		C
C	` ' ************************************	C
Č	************************	STOP
Č		C
Č		C
C	臨界占計算 V1 のみ入力	C
C		C
C	1	
C	, ,	C/////////////////////////////////////
C	` ' ************************************	C/////////////////////////////////////
C		100 1
C	SUBROUTINE CALCRCURVE(TC1 PC1 RHOC1 TC2 PC2 RHOC2 R	C 100 1
	* CI DI TI ALPHA PI BETA GAMMA RNI AD	C ******
	* RNI1 RNI2 CI2 DI2 TI2 PI2 DIF TIF CIF PIF RNIF A NFR	т
	* Y1 TCP CP R HOCPNCP)	I D
	IMPLICIT DOUBLE PRECISION (A-H M Q-Z)	C ******
С		C
e	DIMENSION RNI1(40) RNI2(40)	Г
	DIMENSION CI(40) DI(40) TI(40) ALPHA(40) PI(40).	L k
	* BETA(40) GAMMA(40) RNLAD(40)	I
	DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40)	1
	DIMENSION CI2(40), DI2(40), TI2(40), PI2(40)	С
	DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40)	110
С		C
	DIMENSION TINT(10), RHOINT(10)	č
	DIMENSION TCP(3), PCP(3), RHOCP(3)	C *****
	CHARACTER*30 NNNN, M1	C *****
С		Ċ
	NCP=0	Ċ
С		C
С	X/////// モル分率の設定 ////////////////////////////////////	C
С		C ******
С		C ******
С	CN DY: 組成の刻み	C
	DY1=1 00D-02	0
C		10
č	******	10
č		
-	Y2=1.0D+00-Y1	C
		Č

T=TC2 P=PC2 O=RHOC2 CUBOLD=0.00D+00 IF(Y2 .GT. 0.00D+00) GOTO 100 終了 ------ISHOKI=-1 ************************ $\Gamma = 1.2D + 00^{*}(Y1^{*}TC1 + Y2^{*}TC2)$ RHO=0.8D+00*(RHOC1*Y1+RHOC2*Y2) DRHO=1.0D-02*RHO K=0 L=0 GOTO 10 ******* det(Q)=0 の解 ニュートン・ラプソン法で温度Tを求める ****** ******* !臨界点の解の数 L=L+1 DT=T*1.0D-05 TDT1=T+DT TDT2=T-DT

CALL CALRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2, * Y1.Y2.RN.TN.T) DELTA=RHO/RN TAU=TN/T CALL DETO(DELTA.TAU.T.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1 RNI2 CI2 DI2 TI2 PI2 * DIF,TIF,CIF,PIF,RNIF,A,NFR, * RN,TN,Y1,Y2,Q11,Q12,Q21,Q22) С C CALL CALRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2, * Y1, Y2, RN1, TN1, TDT1) TAU1=TN1/TDT1 CALL DETO(DELTA, TAU1, TDT1, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF, TIF, CIF, PIF, RNIF, A, NFR, RN1,TN1,Y1,Y2,D1011,D1012,D1021,D1022) C CALL CALRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2, Y1, Y2, RN2, TN2, TDT2) TAU2=TN2/TDT2 CALL DETO(DELTA.TAU2.TDT2.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, * RNI1, RNI2, CI2, DI2, TI2, PI2, * DIF, TIF, CIF, PIF, RNIF, A, NFR, * RN2,TN2,Y1,Y2,D2Q11,D2Q12,D2Q21,D2Q22) C С DET= Q11*Q22-Q12*Q21 DDET1= D1011*D1022-D1012*D1021 DDET2= D2Q11*D2Q22-D2Q12*D2Q21 С DTDET=(DDET1-DDET2)/(2.00D+00*DT) С С С TNEW=T-DET/DTDET ERRORT=DABS((TNEW-T)/T) IF(DABS(DET) .LT. 1.00D-06) GOTO 30 T=TNEW GOTO 10 C C///////// ----

C///////// ---C////////// $\triangle n \implies DNi$ C///////// C 30 DNN2=1.00D+00 DNN1=-012*DNN2/011 DN1=DNN1/DSQRT(DNN1**2.0+DNN2**2.0) DN2=DNN2/DSQRT(DNN1**2.0+DNN2**2.0) С С 101 FORMAT(4F 13.6) CC STOP С CALL CALRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2, * Y1, Y2, RN, TN, T) DELTA=RHO/RN TAU=TN/T С CALL CALCUB(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD. * RNI1.RNI2.CI2.DI2.TI2.PI2. * DIF, TIF, CIF, PIF, RNIF, A, NFR, * RN,TN,Y1,Y2,DN1,DN2,CUB) CC С IF(ISHOKI .EQ. -1) GOTO 75 С ******* C IF(IRHOM .EQ. 1) GOTO 500 С CUB1=CUB IRHOM=1 RHOM=(RHO1+RHO2)/2.0D+00 RHO=RHOM GOTO 10 С 500 CUBM=CUB RHO=RHOM IF(DABS(CUBM) .LT. 1.00D-06) GOTO 75 С NIBUN=NIBUN+1

IF(NIBUN .GT. 20) THEN WRITE(1688.*) Y1 95 NCP=NCP+1 END IF TCP(NCP)=T С PCP(NCP)=P IF(NIBUN .GT. 2000) GOTO 700 RHOCP(NCP)=RHO С C ************ IF(CUB1*CUBM .GT. 0.00D+00) THEN С RHO1=RHOM 700 ISHOKI=1 RHO2=RHO2 IF(K .EQ. 0) GOTO 999 ELSE IF(L.EO.K) GOTO 999 RHO1=RHO1 NIBUN=0 RHO2=RHOM T=TINT(L+1)END IF RHO=RHOINT(L+1) С RHO1=RHO IRHOM=0 RHO2=RHO-DRHO RHO=RHO1 IRHOM=0 GOTO 10 GOTO 9 С С C *********** 999 CONTINUE C C ********** 75 CALL CALRNTN(TC1,PC1,RHOC1,TC2,PC2,RHOC2, * Y1, Y2, RN, TN, TRETURN DELTA=RHO/RN END TAU=TN/T CALL CALP(DELTA, TAU, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, C * С ************ RNI1,RNI2,Y1,Y2,T,P,RHO,CI2,DI2,TI2,PI2, ***** ***** * DIF,TIF,CIF,PIF,RNIF,A,NFR) С MAINE END С C 106 FORMAT(4F 10.5) С С С С IF(ISHOKI .EQ. 1) GOTO 95 С C IF(P.LE. 0.00D+00) GOTO 900 C С IF(CUB*CUBOLD .GE. 0.00D+00) GOTO 900 C K=K+1С TINT(K)=T С RHOINT(K)=RHO С С SUBROUTINE C С 900 CUBOLD=CUB С C RHO=RHO+DRHO С IF(RHO .GE. 25.0D+00) GOTO 700 C GOTO 10 С

С C С С DARNI С Det(O)の計算 C C C ***** C SUBROUTINE DARNI(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, SUBROUTINE DETO(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, RNI1.RNI2.CI2.DI2.TI2.PI2. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, DIF,TIF,CIF,PIF,RNIF,A,NFR, RNI1.RNI2.CI2.DI2.TI2.PI2. RN,TN,Z1,Z2,DARN1,DARN2) DIF,TIF,CIF,PIF,RNIF,A,NFR, IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) RN,TN,Z1,Z2,O11,O12,O21,O22) С IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) С DIMENSION RNI1(40), RNI2(40) DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), DIMENSION RNI1(40), RNI2(40) BETA(40),GAMMA(40),RNLAD(40) DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) BETA(40),GAMMA(40),RNLAD(40) DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) С DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) CHARACTER*30 NNNN, M1 C С CHARACTER*30 NNNN, M1 CALL DELTATAU(DELTA.TAU.T.TC1.PC1.RHOC1.TC2.PC2.RHOC2.Z1.Z2. C TAUN1, TAUN2, TAUN11, TAUN12, TAUN22, CALL DARNI(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, * TAUN111, TAUN112, TAUN122, TAUN222, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, DELTAN1, DELTAN2, DELTAN11, DELTAN12, DELTAN22, RNI1, RNI2, CI2, DI2, TI2, PI2, DIF,TIF,CIF,PIF,RNIF,A,NFR, DELTAN111, DELTAN112, DELTAN122, DELTAN222) RN,TN,Z1,Z2,DARN1,DARN2) C CALL CALAR(DELTA, TAU, R, CI, DI, TI, CALL DARNII(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R, * ALPHA, PI, BETA, GAMMA, RNLAD, CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1, ARD1, ARD1, AR1) RNI1, RNI2, CI2, DI2, TI2, PI2, CALL CALAR(DELTA, TAU, R, CI2, DI2, TI2, DIF,TIF,CIF,PIF,RNIF,A,NFR, ALPHA, PI2, BETA, GAMMA, RNLAD, RN,TN,Z1,Z2,DARN11,DARN12,DARN22) RNI2, ARD2, ARDD2, AR2) C CALL CALFIJA(DELTA, TAU, A, Q11=1.0D+00/Z1+2.0D+00*DARN1+DARN11 DIF,TIF,CIF,PIF,RNIF,NFR,FIJ,FIJD) Q12=DARN1+DARN2+DARN12 CALL CALFIJDA(DELTA, TAU, A, DIF, TIF, CIF, PIF, RNIF, NFR, Q21=DARN1+DARN2+DARN12 FIJDD,FIJDDD,FIJT,FIJTT,FIJTT,FIJDT,FIJDDT,FIJDTT) Q22=1.0D+00/Z2+2.0D+00*DARN2+DARN22 AR=Z1**2.0D+00*AR1 + Z2**2.0D+00*AR2 RETURN * +2.0D+00*Z1*(1.0D+00-Z1)* END *FIJ*(AR1+AR2)/2.0D+00 ARD= - ARD2*(-1.0D+00 + Z1)**2.0D+00 -С - (ARD1 + ARD2)*FIJ*(-1.0D+00 + Z1)*Z1 -С - (AR1 + AR2)*FIJD*(-1.0D+00 + Z1)*Z1 + ARD1*Z1**2.0D+00 **** C *********** END C ********** CALL CALAR2(DELTA, TAU, R, CI, DI, TI,

```
RNI1.ART1)
 CALL CALAR2(DELTA.TAU.R.CI2.DI2.TI2.
   *
         ALPHA, PI2, BETA, GAMMA, RNLAD,
   *
         RNI2.ART2)
 ART=
   - ART2*(-1.0D+00 + Z1)**2.0D+00 -
   - (ART1 + ART2)*FIJ*(-1.0D+00 + Z1)*Z1 -
   - (AR1 + AR2)*FIJT*(-1.0D+00 + Z1)*Z1 + ART1*Z1**2.0D+00
C ******
                    ******
               END
CALL CALARNI(Z1,Z2,AR1,AR2,ARD1,ARD2,ART1,ART2,ARN1,ARN2,
       ARN11,ARN12,ARN22,ARDN1,ARDN2,ARTN1,ARTN2,
   *
      FIJ.FIJD.FIJT)
С
C D[ AR[DELTA[N1, N2], TAU[N1, N2], N1, N2], N1]
 DARN1=
                    ! DELTA, TAU, N2 は定数
   - (ARN1 + ARD*DELTAN1 + ART*TAUN1)
C D[ AR[DELTA[N1, N2], TAU[N1, N2], N1, N2], N2]
 DARN2=
                    !DELTA, TAU, N1 は定数
     (ARN2 + ARD*DELTAN2 + ART*TAUN2)
С
 RETURN
 END
С
С
C
 ***********
C
C
           DARNII
C
 *******
 SUBROUTINE DARNII(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
        CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
   *
        RNI1, RNI2, CI2, DI2, TI2, PI2,
        DIF,TIF,CIF,PIF,RNIF,A,NFR,
        RN,TN,Z1,Z2,DARN11,DARN12,DARN22)
   IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
C
   DIMENSION RNI1(40), RNI2(40)
```

ALPHA.PI.BETA.GAMMA.RNLAD.

*

```
DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40),
    *
              BETA(40).GAMMA(40).RNLAD(40)
     DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40)
  DIMENSION CI2(40), DI2(40), TI2(40), PI2(40)
  DIMENSION RNIF(40).DIF(40).TIF(40).CIF(40).PIF(40)
C
  CHARACTER*30 NNNN, M1
С
  CALL DELTATAU(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, Z1, Z2,
          TAUN1.TAUN2.TAUN11.TAUN12.TAUN22.
    *
         TAUN111, TAUN112, TAUN122, TAUN222,
    *
          DELTAN1, DELTAN2, DELTAN11, DELTAN12, DELTAN22,
          DELTAN111.DELTAN112.DELTAN122.DELTAN222)
С
С
  CALL CALAR(DELTA, TAU, R, CI, DI, TI,
    *
             ALPHA, PI, BETA, GAMMA, RNLAD,
    *
              RNI1, ARD1, ARDD1, AR1)
  CALL CALAR(DELTA, TAU, R, CI2, DI2, TI2,
             ALPHA, PI2, BETA, GAMMA, RNLAD,
    *
             RNI2, ARD2, ARDD2, AR2)
  CALL CALFIJA(DELTA.TAU.A.
             DIF,TIF,CIF,PIF,RNIF,NFR,FIJ,FIJD)
  CALL CALFIJDA(DELTA, TAU, A, DIF, TIF, CIF, PIF, RNIF, NFR,
    *
               FIJDD,FIJDDD,FIJT,FIJTT,FIJTTT,FIJDT,FIJDDT,FIJDTT)
С
  AR=Z1**2.0D+00*AR1 + Z2**2.0D+00*AR2
    *
               +2.0D+00*Z1*(1.0D+00-Z1)
    *
                          *FIJ*(AR1+AR2)/2.0D+00
  ARD=
    - ARD2*(-1.0D+00 + Z1)**2.0D+00 -
    - (ARD1 + ARD2)*FIJ*(-1.0D+00 + Z1)*Z1 -
    - (AR1 + AR2)*FIJD*(-1.0D+00 + Z1)*Z1 + ARD1*Z1**2.0D+00
С
  ARDD=
    - ARDD2*(-1.0D+00 + Z1)**2.0D+00 -
    - (ARDD1 + ARDD2)*FIJ*(-1.0D+00 + Z1)*Z1 -
    - 2.0D+00*(ARD1 + ARD2)*FIJD*(-1.0D+00 + Z1)*Z1 -
    - (AR1 + AR2)*FIJDD*(-1.0D+00 + Z1)*Z1 + ARDD1*Z1**2.0D+00
C *********
                     END
                               *****
C **********
                   CALL CALAR2(DELTA, TAU, R, CI, DI, TI,
    *
             ALPHA.PI.BETA.GAMMA.RNLAD.
    *
              RNI1,ART1)
  CALL CALAR2(DELTA, TAU, R, CI2, DI2, TI2,
    *
             ALPHA, PI2, BETA, GAMMA, RNLAD,
    *
             RNI2, ART2)
  ART=
```

```
A-33
```

- ART2*(-1.0D+00 + Z1)**2.0D+00 -

- (ART1 + ART2)*FIJ*(-1.0D+00 + Z1)*Z1 - - (AR1 + AR2)*FIJT*(-1.0D+00 + Z1)*Z1 + ART1*Z1**2.0D+00	 ARDD*DELTAN2**2.0D+00 + ARD*DELTAN22 + 2 0D+00*ARTN2*TAUN2 + 2 0D+00*ARDT*DELTAN2*TAUN2 +
C ************************************	- ARTT*TAUN2**2.0D+00 + ART*TAUN22)
C ************* ARTT, ARDT 微分量の計算 ************************************	RETURN
CALL CALAR3(DELTA, TAU, R, CI, DI, TI,	END
* ALPHA,PI,BETA,GAMMA,RNLAD,	C ************************************
* RNI1,ARTT1,ARDT1)	C *********************** END ***********
CALL CALAR3(DELTA,TAU,R,CI2,DI2,TI2,	С
* ALPHA,PI2,BETA,GAMMA,RNLAD,	c ************************************
* RNI2,ARTT2,ARDT2)	\mathcal{C}
$ART = \frac{1}{2} \frac{1}{2$	C
- $ARTT2*(-1.0D+00 + Z1)**2.0D+00 -$	C DZNIII 知己のN1 N2 にたる独小
- (AKIII + AKII2)*FIJ*(-1.0D+00 + ZI)*ZI - 2.0D+00*(ADT1 + ADT2)*EUT*(-1.0D+00 + ZI)*ZI	C DZNIII 組成のN1, N2による版力。
$- 2.0D^{+}00'(AK11 + AK12)'FIJ1'(-1.0D^{+}00 + Z1)'Z1 - (AP1 + AP2)*EUTT*(-1.0D^{+}00 + Z1)*Z1 + APTT1*Z1**2.0D+00$	\mathcal{C}
C = (AK1 + AK2) TIJT (-1.0D+00 + 21) Z1 + AK111 Z1 - 2.0D+00	C C ***********************************
ARDT=	C
- ARDT2* $(-1.0D+00 + Z1)$ **2.0D+00 -	SUBROUTINE DZNIII(Z1 Z2 Z1N1 Z1N2 Z1N11 Z1N12 Z1N22
- $(ARDT1 + ARDT2)*FIJ*(-1.0D+00 + Z1)*Z1 -$	* Z1N111,Z1N112,Z1N122,Z1N222)
- (ART1 + ART2)*FIJD*(-1.0D+00 + Z1)*Z1 -	IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
- (AR1 + AR2)*FIJDT*(-1.0D+00 + Z1)*Z1 -	С
- (ARD1+ARD2)*FIJT*(-1.0D+00+Z1)*Z1+ARDT1*Z1**2.0D+00	Z1N1=Z2
C ************ END **********************	Z1N2=-Z1
C ************************************	Z1N11=-2.0D+00*Z2
CALL CALARNI(Z1,Z2,AR1,AR2,ARD1,ARD2,ART1,ART2,ARN1,ARN2,	Z1N12=Z1-Z2
* ARN11,ARN12,ARN22,ARDN1,ARDN2,ARTN1,ARTN2,	Z1N22=2.0D+00*Z1
* FIJ,FIJD,FIJT)	ZINIII=6.0D+00*Z2
$C = (d\Delta 2(\Delta \mathbf{D})/d(\Delta 1)\Delta 2)$	Z1N112=-2.0D+00*(Z1-2.0D+00*Z2) Z1N122=-4.0D+00*Z1+2.0D+00*Z2
C = D[AR[DELTA[N1, N2] TALIEN1, N2] N1, N2] N1, N1]	$Z_{11122} = 4.0D + 00^{+}Z_{112} = 00^{+}Z_{22}$ $Z_{11122} = -6.0D + 0.0*Z_{112}$
DARN11=	
- $(ARN11 + 2.0D+00*ARDN1*DELTAN1 +$	RETURN
- ARDD*DELTAN1**2.0D+00 + ARD*DELTAN11 +	END
- 2.0D+00*ARTN1*TAUN1 + 2.0D+00*ARDT*DELTAN1*TAUN1 +	C ************************************
- ARTT*TAUN1**2.0D+00 + ART*TAUN11)	C *********************** END ***********
С	С
$C (d^{2}(AR)/d(N1)d(N2))$	С
C D[AR[DELTA[N1, N2], TAU[N1, N2], N1, N2], N1, N2]	C ************************************
DARN12=	C ************************************
- (ARN12 + ARD*DELTAN12 + ARDN1*DELTAN2 +	C
- ARI*IAUNI2 + ARINI*IAUN2 +	
- DELIANI*(AKDN2 + AKDD*DELIAN2 + AKDI*IAUN2) +	C DELIAIAU
- $IAUN1*(AKIN2 + AKD1*DELIAN2 + AKI1*IAUN2))$	C DELIA, IUA を NI, N2 による (限分
C	
$C \left(\frac{d^2}{(AR)} \right)$	C D[DLE IA[Z1[N1,N2], Z2[N1,N2]], N1, N2] C DI TATI[[Z1[N1 N2], Z2[N1 N2]] N1, N2]
C D[AR[DELTA[N], N2], TAU[N1, N2], N1, N2], N2, N2]	$C \qquad D[IA0[21[N1,N2], 22[N1,N2]], N1, N2]$
DARN22=	C C ***********************************
- (ARN22 + 2*ARDN2*DELTAN2 +	č ************************************

SUBROUTINE DELTATAU(DELTA,TAU,T,TC1,PC1,RHOC1,TC2,PC2,RHOC2,Z1,Z2, * TAUN1,TAUN2,TAUN11,TAUN12,TAUN22, * TAUN111,TAUN112,TAUN122,TAUN222, * DELTAN1,DELTAN2,DELTAN11,DELTAN12,DELTAN22, * DELTAN111,DELTAN112,DELTAN122,DELTAN222) IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) C	- RNZ1*(Z1N1 + Z1N12 + Z1N2))))/RN**2.0D+00) C DELTAN22= ((DELTA*(-2.0D+00*RNZ1**2.0D+00*Z1N2**2.0D+00 + - RN*(RNZ11*Z1N2**2.0D+00 + RNZ1*(2.0D+00*Z1N2 + Z1N22))) -)/RN**2.0D+00) C
CALL CALRNIN(TC1,PC1,RHOC1,TC2,PC2,RHOC2,	DEL[AN1] = ((DELTA*((OD + 00*PN)71**2 OD + 00*71N1**2 OD + 00))))
CALL DRNTNZ(TC1 PC1 RHOC1 TC2 PC2 RHOC2 Z1 Z2	
* TNZ1,TNZ11,TNZ111,RNZ1,RNZ11,RNZ111,T)	- (RNZ11*Z1N1**2.0D+00 + RNZ1*(Z1N1 + Z1N11)) +
CALL DZNIII(Z1,Z2,Z1N1,Z1N2,Z1N11,Z1N12,Z1N22,	- RN**2.0D+00*(RNZ111*Z1N1**3.0D+00+3.0D+00*RNZ1*Z1N11+
* Z1N111,Z1N112,Z1N122,Z1N222)	- 3.0D+00*RNZ11*Z1N1*(Z1N1 + Z1N11) +
C	- RNZ1*Z1N111)))/RN**3.0D+00)
$C D[TN[71[N] \ N2]]/T \ N1 \ N2]$	DELTAN112=
TAUN1=(TNZ1*Z1N1)/T	((DELTA*(6.0D+00*RNZ1**3.0D+00*Z1N1**2.0D+00*Z1N2 -
TAUN2 = (TNZ1 * Z1N2)/T	- 2.0D+00*RN*RNZ1*
C	- (3.0D+00*RNZ11*Z1N1**2.0D+00*Z1N2 +
TAUN11=(TNZ11*Z1N1**2.0D+00 + TNZ1*Z1N11)/T	- RNZ1*(Z1N1*2.0D+00+Z1N11*Z1N2+
IAUN12=(INZ1*ZIN12 + INZ11*ZIN1*ZIN2)/I TAUN22=(TNZ11*ZIN2**2 0D±00 + TNZ1*ZIN22)/T	- 2.0D+00*Z1N1*(Z1N12 + Z1N2))) + PN**2 0D+00*(PN71*(71N11 + 71N112 + 2.0D+00*71N12) +
$\frac{1}{C}$	- RNZ111*Z1N1**2.0D+00*Z1N2+
TAUN111=(TNZ111*Z1N1**3.0D+00 + 3.0D+00*TNZ11*Z1N1*Z1N11 +	- RNZ11*
- TNZ1*Z1N111)/T	- (Z1N1**2.0D+00 + Z1N11*Z1N2 +
	- 2.0D+00*Z1N1*(Z1N12 + Z1N2))))/RN**3.0D+00)
IAUNI12= (TN71*71N112 + TN7111*71N1**2 0D+00*71N2 +	DELTAN122=
$- \frac{1}{12} - \frac{1}{12$	((DELTA*(6.0D+00*RNZ1**3.0D+00*Z1N1*Z1N2**2.0D+00 +
C	- RN**2.0D+00*(RNZ111*Z1N1*Z1N2**2.0D+00 +
TAUN122=	- RNZ1*(2.0D+00*Z1N12 + Z1N122 + Z1N22) +
- $(TNZ1*Z1N122 + TNZ111*Z1N1*Z1N2*2.0D+00 + TNZ111*(2.0D+002*Z1N12*Z1N2+Z1N12*Z1N22))/T$	- RNZ11*
- INZ11*(2.0D+00*Z1N12*Z1N2 + Z1N1*Z1N22))/1 TAUN222=(TNZ111*Z1N2**3 0D+00 + 3 0D+00*TNZ11*Z1N2*Z1N22 +	$- (2.0D+00*Z1N1*Z1N2 + 2.0D+00*Z1N12*Z1N2 + - 71N2**2 0D+00 + 71N1*71N2?))_{-}$
- TNZ1*Z1N222)/T	- 2.0D+00*RN*RNZ1*
C	- (3.0D+00*RNZ11*Z1N1*Z1N2**2.0D+00 +
C D[RHO[N1, N2]/RN[Z1[N1, N2]], N1]	- RNZ1*(Z1N2*(2.0D+00*Z1N12 + Z1N2) +
C $RN*\%/. \{V \rightarrow 1/DELTA, RHO[N1, N2] \rightarrow DELTA\}$	- Z1N1*(2.0D+00*Z1N2 + Z1N22))))/RN**3.0D+00)
DELIANI=DELIA - (DELIA*KNZI*ZINI)/KN DELTAN2=DELTA - (DELTA*RNZI*ZIN2)/RN	DELTAN222=
C	((DELTA*(6.0D+00*RNZ1**3.0D+00*Z1N2**3.0D+00 -
DELTAN11=	- 6.0D+00*RN*RNZ1*Z1N2*
((DELTA*(-2.0D+00*RNZ1**2.0D+00*Z1N1**2.0D+00+	- (RNZ11*Z1N2**2.0D+00 + RNZ1*(Z1N2 + Z1N22)) +
$- \frac{\text{RN}^{*}(\text{RNZ}11^{*}\text{Z}1\text{N}1^{**}2.0\text{D}+00 + \text{RNZ}1^{*}(2.0\text{D}+00^{*}\text{Z}1\text{N}1 + \text{Z}1\text{N}11)))}{(\text{DN}^{**}2.0\text{D}+00)}$	- $RN^{*2.0D+00*}(RNZ111*Z1N2^{*3.0D+00} + 3.0D+00*RNZ1*Z1N22 + 2.0D+00*RNZ1*Z1N2*(Z1N2+Z1N22) + 2.0D+00*RNZ1*Z1N2+(Z1N2+Z1N22) + 2.0D+00*RNZ1*Z1N2+(Z1N2+Z1N2+Z1N2+Z1N2+Z1N2+Z1N2+Z1N2+(Z1N2+Z1N2+Z1N2+Z1N2+Z1N2+Z1N2+Z1N2+Z1N2+$
-)/KN**2.0D+00) C	- $5.0D+00^{*}KNZ11^{*}Z1N2^{*}(Z1N2 + Z1N22) +$ - RN71*71N222)))/RN**3.0D+00)
DELTAN12=	RETURN
((DELTA*(-2.0D+00*RNZ1**2.0D+00*Z1N1*Z1N2 +	END
- RN*(RNZ11*Z1N1*Z1N2 +	C ************************************

***** 2.0D+00*(ART1 + ART2 - (AR1 + AR2)*FIJT)*Z1 -. С (ART1 + ART2)*FIJ*(-1.0D+00 + 2.0D+00*Z1))*Z1N2 С С ARN11= С - AR2*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N1**2.0D+00 + DELTA, TAU を独立変数とした N1, N2 による微分。 C CALARNI (-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N11) + С - AR1*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N1**2.0D+00 + С (FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N11) С ARN12= SUBROUTINE CALARNI(Z1,Z2,AR1,AR2,ARD1,ARD2,ART1,ART2,ARN1,ARN2, -AR2*((-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N12 -ARN11, ARN12, ARN22, ARDN1, ARDN2, ARTN1, ARTN2, 2.0D+00*(-1.0D+00 + FIJ)*Z1N1*Z1N2) + * FU FUD FUT) - AR1*((FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N12 -IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) 2.0D+00*(-1.0D+00 + FIJ)*Z1N1*Z1N2) С С CALL DZNIII(Z1,Z2,Z1N1,Z1N2,Z1N11,Z1N12,Z1N22, ARN22= Z1N111,Z1N112,Z1N122,Z1N222) - AR2*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N2**2.0D+00 + C (-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N22) + С - AR1*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N2**2.0D+00 + (FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N22) С D[Z1[N1, N2]^2*AR1[DELTA, TAU] + (1 - Z1[N1, N2])^2*AR2[DELTA, TAU] + CC RETURN 2*Z1[N1, N2]*(1 - Z1[N1, N2])* CC END CC FIJ[DELTA, TAU]*(AR1[DELTA, TAU] + AR2[DELTA, TAU])/2, N1] ARN1= ******* END ***** (AR1*(FIJ*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*Z1) +С AR2*(-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1))*Z1N1 C С *********** \mathbf{C} ARN2= (AR1*(FIJ*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*Z1) + AR2*(-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1))*Z1N2 _____ -С C ARDN1= - (-2.0D+00*ARD2 + AR1*FIJD + AR2*FIJD + C С 以上が2階微分 2.0D+00*(ARD1 + ARD2 - (AR1 + AR2)*FIJD)*Z1 -(ARD1 + ARD2)*FIJ*(-1.0D+00 + 2.0D+00*Z1))*Z1N1 以下に3階微分を始める C C C ARDN2= (-2.0D+00*ARD2 + AR1*FIJD + AR2*FIJD +2.0D+00*(ARD1 + ARD2 - (AR1 + AR2)*FIJD)*Z1 -(ARD1 + ARD2)*FIJ*(-1.0D+00 + 2.0D+00*Z1))*Z1N2 ****** C C ARTN1= С (-2.0D+00*ART2 + AR1*FIJT + AR2*FIJT +C *********** 2.0D+00*(ART1 + ART2 - (AR1 + AR2)*FIJT)*Z1 -******* С (ART1 + ART2)*FIJ*(-1.0D+00 + 2.0D+00*Z1))*Z1N1 С С С ARTN2= С DARNIII - (-2.0D+00*ART2 + AR1*FIJT + AR2*FIJT +

С С SUBROUTINE DARNIII(DELTA.TAU.T.TC1.PC1.RHOC1.TC2.PC2.RHOC2.R. CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD, RNI1, RNI2, CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF. RNIF. A. NFR. RN,TN,Z1,Z2,DARN111,DARN112,DARN122,DARN222) IMPLICIT DOUBLE PRECISION (A-H.M.O-Z) С DIMENSION RNI1(40), RNI2(40) DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40), BETA(40).GAMMA(40).RNLAD(40) DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40) DIMENSION CI2(40), DI2(40), TI2(40), PI2(40) DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40) C CHARACTER*30 NNNN, M1 C CALL DELTATAU(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, Z1, Z2, TAUN1.TAUN2.TAUN11.TAUN12.TAUN22. TAUN111, TAUN112, TAUN122, TAUN222, * DELTAN1, DELTAN2, DELTAN11, DELTAN12, DELTAN22, * DELTAN111.DELTAN112.DELTAN122.DELTAN222) C CALL CALAR(DELTA, TAU, R, CI, DI, TI, * ALPHA, PI, BETA, GAMMA, RNLAD, RNI1, ARD1, ARDD1, AR1) CALL CALAR(DELTA, TAU, R, CI2, DI2, TI2, * ALPHA, PI2, BETA, GAMMA, RNLAD, RNI2, ARD2, ARDD2, AR2) CALL CALFIJA(DELTA, TAU, A, DIF,TIF,CIF,PIF,RNIF,NFR,FIJ,FIJD) CALL CALFIJDA(DELTA, TAU, A, DIF, TIF, CIF, PIF, RNIF, NFR, FIJDD,FIJDDD,FIJT,FIJTT,FIJTT,FIJDT,FIJDDT,FIJDTT) AR=Z1**2.0D+00*AR1 + Z2**2.0D+00*AR2 * +2.0D+00*Z1*(1.0D+00-Z1)* *FIJ*(AR1+AR2)/2.0D+00 ARD= - ARD2*(-1.0D+00 + Z1)**2.0D+00 -- (ARD1 + ARD2)*FIJ*(-1.0D+00 + Z1)*Z1 -(AR1 + AR2)*FIJD*(-1.0D+00 + Z1)*Z1 + ARD1*Z1**2.0D+00 C ARDD= ARDD2*(-1.0D+00 + Z1)**2.0D+00 -- (ARDD1 + ARDD2)*FIJ*(-1.0D+00 + Z1)*Z1 -- 2.0D+00*(ARD1 + ARD2)*FIJD*(-1.0D+00 + Z1)*Z1 -

C *********** **** END C ********** CALL CALAR2(DELTA, TAU, R, CI, DI, TI, * ALPHA, PI, BETA, GAMMA, RNLAD, RNI1,ART1) CALL CALAR2(DELTA, TAU, R, CI2, DI2, TI2, ALPHA.PI2.BETA.GAMMA.RNLAD. * RNI2, ART2) ART= - ART2*(-1.0D+00 + Z1)**2.0D+00 -- (ART1 + ART2)*FIJ*(-1.0D+00 + Z1)*Z1 -- (AR1 + AR2)*FIJT*(-1.0D+00 + Z1)*Z1 + ART1*Z1**2.0D+00 **** C ********** END C *********** CALL CALAR3(DELTA.TAU.R.CI.DI.TI. ALPHA, PI, BETA, GAMMA, RNLAD, * RNI1, ARTT1, ARDT1) CALL CALAR3(DELTA, TAU, R, CI2, DI2, TI2, * ALPHA, PI2, BETA, GAMMA, RNLAD, * RNI2.ARTT2.ARDT2) ARTT= - ARTT2*(-1.0D+00 + Z1)**2.0D+00 -- (ARTT1 + ARTT2)*FIJ*(-1.0D+00 + Z1)*Z1 -- 2.0D+00*(ART1 + ART2)*FIJT*(-1.0D+00 + Z1)*Z1 -- (AR1 + AR2)*FIJTT*(-1.0D+00 + Z1)*Z1 + ARTT1*Z1**2.0D+00 С ARDT= ARDT2*(-1.0D+00 + Z1)**2.0D+00 -- (ARDT1 + ARDT2)*FIJ*(-1.0D+00 + Z1)*Z1 -- (ART1 + ART2)*FIJD*(-1.0D+00 + Z1)*Z1 -- (AR1 + AR2)*FIJDT*(-1.0D+00 + Z1)*Z1 -- (ARD1 + ARD2)*FIJT*(-1.0D+00 + Z1)*Z1 + ARDT1*Z1**2.0D+00 C ********** END ***** C ***************** ARDDD, ARDDT, ARTTT 微分量の計算 ****** CALL CALAR4(DELTA, TAU, R, CI, DI, TI, * ALPHA.PI.BETA.GAMMA.RNLAD. RNI1, ARDDD1, ARDDT1, ARDTT1, ARTTT1) CALL CALAR4(DELTA, TAU, R, CI2, DI2, TI2, ALPHA.PI2.BETA.GAMMA.RNLAD. * RNI2, ARDDD2, ARDDT2, ARDTT2, ARTTT2) ARDDD= - ARDDD2*(-1.0D+00 + Z1)**2.0D+00 -- (ARDDD1 + ARDDD2)*FIJ*(-1.0D+00 + Z1)*Z1 -- 3.0D+00*(ARDD1 + ARDD2)*FIJD*(-1.0D+00 + Z1)*Z1 -- 3.0D+00*(ARD1 + ARD2)*FIJDD*(-1.0D+00 + Z1)*Z1 -

- (AR1+AR2)*FIJDDD*(-1.0D+00+Z1)*Z1+ARDDD1*Z1**2.0D+00

- (AR1 + AR2)*FIJDD*(-1.0D+00 + Z1)*Z1 + ARDD1*Z1**2.0D+00

A-37

С

A-38

C

C

DARN122=

DARN112=

3.0D+00*ARDT*DELTAN11*TAUN1 + 3.0D+00*ARTTN1*TAUN1**2.0D+00 +

3.0D+00*ARDTT*DELTAN1*TAUN1**2.0D+00 + ARTTT*TAUN1**3.0D+00 +

! DELTA, TAU は定数

3.0D+00*ARTN1*TAUN11 + 3.0D+00*ARDT*DELTAN1*TAUN11 +

3.0D+00*ARTT*TAUN1*TAUN11 + ART*TAUN111)

ARDDN2*DELTAN1**2.0D+00 + ARDN2*DELTAN11 +

2.0D+00*ARDD*DELTAN1*DELTAN12 + ARDN11*DELTAN2 +

ARDD*DELTAN11*DELTAN2 + 2.0D+00*ARTN12*TAUN1 +

ARTN11*TAUN2 + 2.0D+00*ARDTN1*DELTAN1*TAUN2 +

ARTTT*TAUN1**2.0D+00*TAUN2 + ARTT*TAUN11*TAUN2)

ARTTN2*TAUN1**2.0D+00 + ARDTT*DELTAN2*TAUN1**2.0D+00 +

ARDDT*DELTAN1**2.0D+00*TAUN2 + ARDT*DELTAN11*TAUN2 +

2.0D+00*ARDT*DELTAN1*TAUN12 + 2.0D+00*ARTT*TAUN1*TAUN12 +

! DELTA, TAU は定数

2.0D+00*ARDN12*DELTAN2 + 2.0D+00*ARDDN2*DELTAN1*DELTAN2 +

2.0D+00*ARDD*DELTAN12*DELTAN2 + ARDDN1*DELTAN2**2.0D+00 +

ARDDD*DELTAN1*DELTAN2**2.0D+00 + ARDN1*DELTAN22 +

ARDDT*DELTAN2**2.0D+00*TAUN1 + ARDT*DELTAN22*TAUN1 +

2.0D+00*ARTN2*TAUN12 + 2.0D+00*ARDT*DELTAN2*TAUN12 +

2.0D+00*ARTT*TAUN12*TAUN2 + ARTTN1*TAUN2**2.0D+00 +

ARD*DELTAN112 + 2 0D+00*ARDN1*DELTAN12 +

2.0D+00*ARDDT*DELTAN1*DELTAN2*TAUN1 +

ARTN2*TAUN11 + ARDT*DELTAN2*TAUN11 +

ART*TAUN112 + 2.0D+00*ARTN1*TAUN12 +

2.0D+00*ARDTT*DELTAN1*TAUN1*TAUN2+

2.0D+00*ARDN2*DELTAN12 + ARD*DELTAN122 +

ARDD*DELTAN1*DELTAN22 + ARTN22*TAUN1 +

C D[AR[DELTA[N1, N2], TAU[N1, N2], N1, N2], N1, N1, N2]

2.0D+00*ARDDN1*DELTAN1*DELTAN2 +

ARDDD*DELTAN1**2 0D+00*DELTAN2 +

2.0D+00*ARDTN2*DELTAN1*TAUN1 +

2.0D+00*ARDT*DELTAN12*TAUN1 + 2.0D+00*ARDTN1*DELTAN2*TAUN1 +

2.0D+00*ARTTN1*TAUN1*TAUN2 +

C D[AR[DELTA[N1, N2], TAU[N1, N2], N1, N2], N1, N2, N2]

2.0D+00*ARDTN2*DELTAN2*TAUN1 +

2.0D+00*ARDTN2*DELTAN1*TAUN2 +

2.0D+00*ARDTN1*DELTAN2*TAUN2 +

2.0D+00*ARDT*DELTAN12*TAUN2 +

2.0D+00*ARTTN2*TAUN1*TAUN2 +

ART*TAUN122 + 2.0D+00*ARTN12*TAUN2 +

2.0D+00*ARDDT*DELTAN1*DELTAN2*TAUN2 +

2.0D+00*ARDTT*DELTAN2*TAUN1*TAUN2 +

- (ARN122 + ARDN22*DELTAN1 +

- (ARN112 + 2.0D+00*ARDN12*DELTAN1 +

- 3.0D+00*ARDDT*DELTAN1**2.0D+00*TAUN1 +

! DELTA. TAU は定数

3.0D+00*ARDDN1*DELTAN1**2.0D+00 + ARDDD*DELTAN1**3.0D+00 +

- 6.0D+00*ARDTN1*DELTAN1*TAUN1 +
- 3.0D+00*ARDN1*DELTAN11 + 3.0D+00*ARDD*DELTAN1*DELTAN11 + ARD*DELTAN111 + 3.0D+00*ARTN11*TAUN1 +
- C D[AR[DELTA[N1, N2], TAU[N1, N2], N1, N2], N1, N1, N1]

- (ARN111 + 3.0D+00*ARDN11*DELTAN1 +

- CC 102 FORMAT(2F 20.9) С
- CC WRITE(155.102)ARN111.ARN222

DARN111=

- CC WRITE(155,*)'ARN111,ARN222'
- C
- FIJ,FIJD,FIJDD,FIJT,FIJTT,FIJDT)
- ARDDN1.ARDDN2.ARDTN1.ARDTN2.ARTTN1.ARTTN2. *
- * ARDN11, ARDN12, ARDN22, ARTN11, ARTN12, ARTN22, *
- ARN111, ARN112, ARN122, ARN222,
- CALL CALARNI2(Z1,Z2,AR1,AR2,ARD1,ARD2,ART1,ART2, ARDD1,ARDD2,ARDT1,ARDT2,ARTT1,ARTT2,
- FIJ, FIJD, FIJT)
- ARN11, ARN12, ARN22, ARDN1, ARDN2, ARTN1, ARTN2, * *
- CALL CALARNI(Z1,Z2,AR1,AR2,ARD1,ARD2,ART1,ART2,ARN1,ARN2,

- C *********
- (AR1 + AR2)*FIJTTT*(-1.0D+00 + Z1)*Z1 + ARTTT1*Z1**2.0D+00
- 3.0D+00*(ART1 + ART2)*FIJTT*(-1.0D+00 + Z1)*Z1 -
- 3.0D+00*(ARTT1 + ARTT2)*FIJT*(-1.0D+00 + Z1)*Z1 -
- (ARTTT1 + ARTTT2)*FIJ*(-1.0D+00 + Z1)*Z1 -
- ARTTT2*(-1.0D+00 + Z1)**2.0D+00 -

- ARTTT=

- ARDTT2*(-1.0D+00 + Z1)**2.0D+00 -

- ARDDT2*(-1.0D+00 + Z1)**2.0D+00 -

- (ARDDT1 + ARDDT2)*FIJ*(-1.0D+00 + Z1)*Z1 -

- (ART1 + ART2)*FIJDD*(-1.0D+00 + Z1)*Z1 -- (AR1 + AR2)*FIJDDT*(-1.0D+00 + Z1)*Z1 -

- 2.0D+00*(ARDT1 + ARDT2)*FIJD*(-1.0D+00 + Z1)*Z1 -

- 2.0D+00*(ARD1 + ARD2)*FUDT*(-1.0D+00 + Z1)*Z1 -

- (ARDTT1 + ARDTT2)*FIJ*(-1.0D+00 + Z1)*Z1 -

- (ARD1+ARD2)*FIJTT*(-1.0D+00+Z1)*Z1+ARDTT1*Z1**2.0D+00

ARDDT=

ARDTT=

С

С

- (AR1 + AR2)*FUDTT*(-1.0D+00 + Z1)*Z1 -- 2.0D+00*(ARDT1 + ARDT2)*FIJT*(-1.0D+00 + Z1)*Z1 -

- (ARDD1 + ARDD2)*FIJT*(-1.0D+00 + Z1)*Z1 + ARDDT1*Z1**2.0D+00

- (ARTT1 + ARTT2)*FIJD*(-1.0D+00 + Z1)*Z1 -- 2.0D+00*(ART1 + ART2)*FIJDT*(-1.0D+00 + Z1)*Z1 - C D[AR[DELTA[N1, N2], TAU[N1, N2], N1, N2], N2, N2, N2] DARN222= !DELTA TAU は定数 (ARN222 + 3.0D+00*ARDN22*DELTAN2 + 3.0D+00*ARDDN2*DELTAN2**2.0D+00 + ARDDD*DELTAN2**3.0D+00 + 3.0D+00*ARDN2*DELTAN22 + 3.0D+00*ARDD*DELTAN2*DELTAN22 + ARD*DELTAN222 + 3 0D+00*ARTN22*TAUN2 + 6.0D+00*ARDTN2*DELTAN2*TAUN2 + 3.0D+00*ARDDT*DELTAN2**2.0D+00*TAUN2 + 3.0D+00*ARDT*DELTAN22*TAUN2 + 3.0D+00*ARTTN2*TAUN2**2.0D+00 + 3.0D+00*ARDTT*DELTAN2*TAUN2**2.0D+00 + ARTTT*TAUN2**3.0D+00 + 3.0D+00*ARTN2*TAUN22 + 3.0D+00*ARDT*DELTAN2*TAUN22 + 3.0D+00*ARTT*TAUN2*TAUN22 + ART*TAUN222) RETURN END CALARNI2 DELTA. TAU を独立変数とした N1. N2 による微分。 SUBROUTINE CALARNI2(Z1,Z2,AR1,AR2,ARD1,ARD2,ART1,ART2, ARDD1, ARDD2, ARDT1, ARDT2, ARTT1, ARTT2, * ARN111,ARN112,ARN122,ARN222, * ARDN11.ARDN12.ARDN22.ARTN11.ARTN12.ARTN22. ARDDN1.ARDDN2.ARDTN1.ARDTN2.ARTTN1.ARTTN2. FLI FLID FLIDD FLIT FLITT FLIDT) IMPLICIT DOUBLE PRECISION (A-H,M,O-Z) CALL DZNIII(Z1.Z2.Z1N1.Z1N2.Z1N11.Z1N12.Z1N22. * Z1N111,Z1N112,Z1N122,Z1N222) C D[Z1[N1, N2]^2*AR1[DELTA, TAU] + (1 - Z1[N1, N2])^2*AR2[DELTA, TAU] + 2*Z1[N1, N2]*(1 - Z1[N1, N2])*

ARDTT*DELTAN1*TAUN2**2.0D+00+

С

C

C

С

C

C

C

C

C

C

С

С

ARTTT*TAUN1*TAUN2**2.0D+00 + ARTN1*TAUN22 + ARDT*DELTAN1*TAUN22 + ARTT*TAUN1*TAUN22)

> (ARDD1 + ARDD2)*FIJ*(-1.0D+00 + Z1) -2.0D+00*(ARD1 + ARD2)*FIJD*(-1.0D+00 + Z1) -(AR1 + AR2)*FIJDD*(-1.0D+00 + Z1) + 2.0D+00*ARDD1*Z1 -(ARDD1 + ARDD2)*FIJ*Z1 -2.0D+00*(ARD1 + ARD2)*FIJD*Z1 - (AR1 + AR2)*FIJDD*Z1)*Z1N1 С ARDDN2= (2.0D+00*ARDD2*(-1.0D+00+Z1) ---(ARDD1 + ARDD2)*FIJ*(-1.0D+00 + Z1) -2.0D+00*(ARD1 + ARD2)*FUD*(-1.0D+00 + Z1) -(AR1 + AR2)*FIJDD*(-1.0D+00 + Z1) + 2.0D+00*ARDD1*Z1 -(ARDD1 + ARDD2)*FIJ*Z1 -2.0D+00*(ARD1 + ARD2)*FIJD*Z1 - (AR1 + AR2)*FIJDD*Z1)*Z1N2 С ARDTN1= (-2.0D+00*ARDT2 + ARDT1*FIJ + ARDT2*FIJ + ART2*FIJD + AR1*FIJDT + AR2*FIJDT + ART1*FIJD*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*ARDT1*Z1 + 2.0D+00*ARDT2*Z1 - 2.0D+00*ARDT1*FIJ*Z1 -2.0D+00*ARDT2*FIJ*Z1 - 2.0D+00*ART2*FIJD*Z1 -2.0D+00*AR1*FIJDT*Z1 - 2.0D+00*AR2*FIJDT*Z1 -(ARD1 + ARD2)*FIJT*(-1.0D+00 + 2.0D+00*Z1))*Z1N1 С ARDTN2= - (-2.0D+00*ARDT2 + ARDT1*FIJ + ARDT2*FIJ + ART2*FIJD + AR1*FIJDT + AR2*FIJDT + ART1*FIJD*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*ARDT1*Z1 + 2.0D+00*ARDT2*Z1 - 2.0D+00*ARDT1*FIJ*Z1 -2.0D+00*ARDT2*FIJ*Z1 - 2.0D+00*ART2*FIJD*Z1 -2.0D+00*AR1*FIJDT*Z1 - 2.0D+00*AR2*FIJDT*Z1 -(ARD1 + ARD2)*FIJT*(-1.0D+00 + 2.0D+00*Z1))*Z1N2 С ARTTN1= (2.0D+00*ARTT2*(-1.0D+00+Z1) -(ARTT1 + ARTT2)*FIJ*(-1.0D+00 + Z1) -2.0D+00*(ART1 + ART2)*FIJT*(-1.0D+00 + Z1) -(AR1 + AR2)*FIJTT*(-1.0D+00 + Z1) + 2.0D+00*ARTT1*Z1 -(ARTT1 + ARTT2)*FIJ*Z1 -2.0D+00*(ART1 + ART2)*FIJT*Z1 - (AR1 + AR2)*FIJTT*Z1 -)*Z1N1 C ARTTN2=

FIJ[DELTA, TAU]*(AR1[DELTA, TAU] + AR2[DELTA, TAU])/2, DELTA, DELTA, N1]

- (2.0D+00*ARTT2*(-1.0D+00 + Z1) -

С

С

ARDDN1=

- (2.0D+00*ARDD2*(-1.0D+00 + Z1) -

A-39
2=	- $(AK1 + AK2)^*F1J^*(-1.0D+00 + Z1)^*Z1N122 +$
2.0D+00*(ARD1*(-1.0D+00 + FIJ) + ARD2*(-1.0D+00 + FIJ) +	- 2.0D+00*AR1*Z1*Z1N122 - (AR1 + AR2)*FIJ*Z1*Z1N122 +
(AR1 + AR2)*FIJD)*Z1N2**2.0D+00 +	- 4.0D+00*AR1*Z1N12*Z1N2 + 4.0D+00*AR2*Z1N12*Z1N2 -
20D+00*ARD2 + AR1*FUD + AR2*FUD +	- 4 0D+00*(AR1 + AR2)*FU*Z1N12*Z1N2 +
$2 0\text{D} + 00^{*}(\text{ARD1} + \text{ARD2} - (\text{AR1} + \text{AR2})^{*}\text{FIID})^{*}\text{Z1}$	- 2 0D+00*AB1*71N1*71N22 + 2 0D+00*AB2*71N1*71N22 -
(ARD1 + ARD2)*FII*(-1.0D+00 + 2.0D+00*71))*71N22	-2.0D+00*(AR1 + AR2)*FU*71N1*71N22
=	ARN222=
((AR1 + AR2)*FIJT*)	- AR2*(-6.0D+00*(-1.0D+00 + FIJ)*Z1N2*Z1N22 +
(2.0D+00*Z1N1**2.0D+00+(-1.0D+00+2.0D+00*Z1)*Z1N11)) +	- $(-2 0D+00 + FIJ + 2 0D+00*ZI - 2 0D+00*FIJ*ZI)*ZIN222) +$
RT1*(-2.0D+00*(-1.0D+00+FL)*Z1N1**2.0D+00+	- AR1*(-6.0D+00*(-1.0D+00+FID)*Z1N2*Z1N22 +
(FII*(1 0D+00 - 2 0D+00*Z1) + 2 0D+00*Z1)*Z1N11) +	- (EII + 2 0D+00*Z1 - 2 0D+00*EII*Z1)*Z1N222)
$RT^{*}(-2.0D+00*(-1.0D+00+FI))*2.0D+00*DI)*2.0D+00+$	
(-2)(D+00 + FII + 2)(D+00*71 - 2)(D+00*FII*71)*71N11)	RETURN
(2.00,00,00,00,00,00,00,00,00,00,00,00,00,	FND
)=	
$((\Lambda D1 + \Lambda D2))*EUTT*$	C ************************************
((AX1 + AX2) + 1) ((AX1 + AX2) + 2) (((AX1 + AX2) + 2) (((AX1 + AX2) + 2)) + (((AX1 + AX2) + 2)) + (((AX1 + AX2) + 2)) + (((AX1 + AX2) + 2))) + (((AX1 + AX2) + 2)))) + (((AX1 + AX2) + 2))) + (((AX1 + AX2) + 2))) + (((AX1 + AX2) + 2)))) + (((AX1 + AX2) + 2))))) + (((AX1 + AX2) + 2)))))))))))))))))))))))))))))))))	C END
((-1.0D+00+2.0D+00-2.0D+0.0*71) + 2.0D+0.0*71)*71N12	
$\frac{1}{2} \frac{1}{10} \frac{1}{100} \frac{1}{100} - \frac{1}{200} \frac{1}{100} \frac{1}{210} \frac{1}{2100} \frac{1}{2$	
$2.0D+00^{\circ}(-1.0D+00+FIJ)^{\circ}ZINI^{\circ}ZIN2) +$	
$R12^{*}((-2.0D+00 + FIJ + 2.0D+00^{*}Z1 - 2.0D+00^{*}FIJ^{*}Z1)^{*}Z1N12 - 2.0D+00^{*}(-1.0D+00 + FID^{*}Z1)14^{*}Z1N12)$	
2.0D+00*(-1.0D+00+FIJ)*Z1N1*Z1N2)	\mathbf{C}
	C
/=	C
((AR1 + AR2)*FIJT*)	C AR に関する自由エネルギー, δ 微分等
(2.0D+00*Z1N2**2.0D+00+(-1.0D+00+2.0D+00*Z1)*Z1N22)) +	С

- ART1*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N2**2.0D+00 +

- ART2*(-2.0D+00*(-1 + FIJ)*Z1N2**2.0D+00 +

- AR2*(-6.0D+00*(-1.0D+00 + FIJ)*Z1N1*Z1N11 +

- AR1*(-6.0D+00*(-1.0D+00 + FIJ)*Z1N1*Z1N11 +

С

A-40

ARN111=

(FIJ*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*Z1)*Z1N22) +

(-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N22)

(-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N111) +

(2.0D+00*Z1N1**2+(-1.0D+00+2.0D+00*Z1)*Z1N11)) +(FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N111) -С - ARD1*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N1**2.0D+00 + ARN112= (FIJ*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*Z1)*Z1N11) +- ARD2*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N1**2.0D+00 + - 2.0D+00*AR2*(-1.0D+00 + Z1)*Z1N112 -(-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N11) - (AR1 + AR2)*FIJ*(-1.0D+00 + Z1)*Z1N112 + - 2.0D+00*AR1*Z1*Z1N112 - (AR1 + AR2)*FIJ*Z1*Z1N112 + ARDN12= - 4.0D+00*AR1*Z1N1*Z1N12 + 4.0D+00*AR2*Z1N1*Z1N12 -- (-2.0D+00*ARD2 + AR1*FIJD + AR2*FIJD + - 4.0D+00*(AR1 + AR2)*FIJ*Z1N1*Z1N12 + 2.0D+00*(ARD1 + ARD2 - (AR1 + AR2)*FIJD)*Z1 -- 2.0D+00*AR1*Z1N11*Z1N2 + 2.0D+00*AR2*Z1N11*Z1N2 --(ARD1 + ARD2)*FIJ*(-1.0D+00 + 2.0D+00*Z1))*Z1N12 -- 2.0D+00*(AR1 + AR2)*FIJ*Z1N11*Z1N2 - 2.0D+00*(ARD1*(-1.0D+00 + FIJ) + ARD2*(-1.0D+00 + FIJ) + С (AR1 + AR2)*FIJD)*Z1N1*Z1N2 ARN122= - 2.0D+00*AR2*(-1.0D+00 + Z1)*Z1N122 - $(AD1 \perp AD2) * EU*(10D \perp 00 \perp 71) * 71N122 \perp$ ARDN22= - -2.0D+00*(ARD1*(-1.0D+00 + FIJ) + ARD2*(-1.0D+00 + FIJ) + (AR1 + AR2)*FIJD)*Z1N2**2.0D+00 + -- (-2.0D+00*ARD2 + AR1*FIJD + AR2*FIJD + 2.0D+00*(ARD1 + ARD2 - (AR1 + AR2)*FIJD)*Z1 -(ARD1 + ARD2)*FIJ*(-1.0D+00 + 2.0D+00*Z1))*Z1N22 ARTN11= - -((AR1 + AR2)*FIJT* (2.0D+00*Z1N1**2.0D+00 + (-1.0D+00 + 2.0D+00*Z1)*Z1N - ART1*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N1**2.0D+00 + (FIJ*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*Z1)*Z1N11) +- ART2*(-2.0D+00*(-1.0D+00 + FIJ)*Z1N1**2.0D+00 + (-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N11) ARTN12= - -((AR1 + AR2)*FIJT*

C

(ARTT1 + ARTT2)*FIJ*Z1 -

(ARTT1 + ARTT2)*FIJ*(-1.0D+00 + Z1) -

2.0D+00*(ART1 + ART2)*FIJT*(-1.0D+00 + Z1) -

(AR1 + AR2)*FIJTT*(-1.0D+00 + Z1) + 2.0D+00*ARTT1*Z1 -

2.0D+00*(ART1 + ART2)*FIJT*Z1 - (AR1 + AR2)*FIJTT*Z1

((-1.0D+00+2.0D+00*Z1)*Z1N12+2.0D+00*Z1N1*Z1N2)) - ART1*((FIJ*(1.0D+00 - 2.0D+00*Z1) + 2.0D+00*Z1)*Z1N12 -2.0D+00*(-1.0D+00 + FIJ)*Z1N1*Z1N2) +

- ART2*((-2.0D+00 + FIJ + 2.0D+00*Z1 - 2.0D+00*FIJ*Z1)*Z1N1

С

С

C

C

С

ARTN22=

-

- -((AR1 + AR2)*FIJT*

)*Z1N2

- -((AR1 + AR2)*FIJD*

-

-

ARDN11=

C ************************************	 ALPHA(N)*(DELTA - RNLAD(N))*2.0D+00))* TAU**(-1.0D+00 + TI(N))*RNI(N)* (-DI(N) + 2.0D+00*DELTA*ALPHA(N)*(DELTA - RNLAD(N)))* (2 0D+00*TAU*BETA(N)*(TAU - GAMMA(N)) - TI(N))
SUBROUTINE CALAR3(DELTA TAU R CI DI TI	END DO
* AI PHA PI BETA GAMMA RNI AD	ARDT=ARDT1+ARDT2
* RNIARTTARDT)	C ************************************
IMPLICIT DOUBLE PRECISION (A-H O-Z)	C ************************************
DIMENSION $CI(40)$ $DI(40)$ $TI(40)$ AI $PHA(40)$ $PI(40)$	RETURN
* BETA(40) GAMMA(40) RU AD(40)	END
DIMENSION RNI(40)	C ************************************
DIMENSION AI(40) THETA(40)	
C	· ************************************
C ************************************	*
· ************************************	C
ARTT1=0.0D+0.0	č
DO I=1 36	C
ARTT1=ARTT1+	
* RNI(1*DELTA**DI(1)*TI(1)*(TI(1)-1.0D+00)*TAU	C ************************************
* **(TI(I)-2.0D+00)*EXP(PI(I)*-DELTA**CI(I))	C ************************************
END DO	С
С	С
ARTT2=0.0D+00	C AR に関する自由エネルギー、δ 微分等
DO I=37.40	
ARTT2=ARTT2+	Ĩ
- DELTA**DI(I)*EXP(C ************************************
- (-(BETA(I)*(TAU - GAMMA(I))**2.0D+00) -	C ************************************
- ALPHA(I)*(DELTA - RNLAD(I))**2.0D+00))*	Č
- TAU**(-2.0D+00 + TI(I))*RNI(I)*	SUBROUTINE CALAR4(DELTA.TAU.R.CI.DI.TI.
- (4.0D+00*TAU**2.0D+00*BETA(I)**2.0D+00*(TAU -	* ALPHA,PI,BETA,GAMMA,RNLAD,
- GAMMA(I))**2.0D+00 + (-1 + TI(I))*TI(I) -	* RNLARDDD.ARDDT.ARDTT.ARTTT)
- 2.0D+00*TAU*BETA(I)*(TAU + 2.0D+00*(TAU - GAMMA(I))*TI(I)))	IMPLICIT DOUBLE PRECISION (A-H,O-Z)
END DO	DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40),
ARTT=ARTT1+ARTT2	* BETA(40),GAMMA(40),RNLAD(40)
C ************************************	DIMENSION RNI(40)
C ************************************	DIMENSION AI(40), THETA(40)
ARDT1=0.0D+00	С
DO N=1,36	C ************************************
ARDT1=ARDT1+	C *************
- $(DELTA^{*}(-1.0D+00 + DI(N))^{TAU^{*}}(-1.0D+00 + TI(N))^{*}$	ARDDD1=0.0D+00
- (DI(N) - DELTA**CI(N)*CI(N)*PI(N))*RNI(N)*TI(N))	DO N=1,36
 /EXP((DELTA**CI(N)*PI(N))) 	ARDDD1=ARDDD1+
END DO	- (DELTA**(-3.0D+00 + DI(N))*TAU**TI(N)*
C	- (DI(N)**3.0D+00 - 3.0D+00*DI(N)**2.0D+00*
ARDT2=0.0D+00	- (1.0D+00 + DELTA**CI(N)*CI(N)*PI(N)) +
DO N=37,40	- DI(N)*(2.0D+00 + 6.0D+00*DELTA**CI(N)*CI(N)*PI(N) +
ARDT2=ARDT2+	- 3.0D+00*DELTA**CI(N)*CI(N)**2.0D+00*PI(N)*
- $DELTA^{**}(-1.0D+00 + DI(N))^{*}$	- (-1.0D+00 + DELTA**CI(N)*PI(N))) -
- EXP((-(BETA(N)*(TAU - GAMMA(N))**2.0D+00) -	- DELTA**CI(N)*CI(N)*PI(N)*

- 4.0D+00*DELTA**2.0D+00*ALPHA(N)**2.0D+00*(DELTA -
- (DELTA + 2.0D+00*DI(N)*(DELTA RNLAD(N))) +
- 2.0D+00*DELTA*ALPHA(N)* -
- ((-1.0D+00 + DI(N))*DI(N) -
- TAU**(-1.0D+00 + TI(N))*RNI(N)*
- ALPHA(N)*(DELTA RNLAD(N))**2.0D+00))*
- (-(BETA(N)*(TAU GAMMA(N))**2.0D+00) -
- EXP(
- -(DELTA**(-2.0D+00 + DI(N))*
- ARDDT2=ARDDT2+
- DO N=37.40
- ARDDT2=0.0D+00
- END DO C
- RNI(N)*TI(N))/EXP((DELTA**CI(N)*PI(N)))
- (1.0D+00 + CI(N)*(-1.0D+00 + DELTA**CI(N)*PI(N))))*
- DELTA**CI(N)*CI(N)*PI(N)*
- (1.0D+00+2.0D+00*DELTA**CI(N)*CI(N)*PI(N)) +
- (DI(N)**2.0D+00 DI(N)*
- (DELTA**(-2.0D+00 + DI(N))*TAU**(-1.0D+00 + TI(N))*
- ARDDT1=ARDDT1+
- DO N=1.36
- ARDDT1=0.0D+00
- ARDDD=ARDDD1+ARDDD2
- END DO
- (DI(N)*(DELTA RNLAD(N)) + RNLAD(N))))
- 6.0D+00*DELTA*ALPHA(N)*DI(N)*
- (DELTA RNLAD(N))**3.0D+00 +
- 8.0D+00*DELTA**3.0D+00*ALPHA(N)**3.0D+00*
- (DELTA RNLAD(N)) +
- (DELTA + DI(N)*(DELTA RNLAD(N)))*
- 12.0D+00*DELTA**2.0D+00*ALPHA(N)**2.0D+00*
- RNI(N)*(-(DI(N)*(2.0D+00 3.0D+00*DI(N) + DI(N)*2.0D+00)) -
- ALPHA(N)*(DELTA RNLAD(N))**2.0D+00))*TAU**TI(N)*
- (-(BETA(N)*(TAU GAMMA(N))**2.0D+00) -
- EXP(
- -(DELTA**(-3.0D+00 + DI(N))*
- ARDDD2=ARDDD2+
- DO N=37.40
- ARDDD2=0.0D+00
- C
- END DO
- EXP((DELTA**CI(N)*PI(N)))
- DELTA**(2.0D+00*CI(N))*PI(N)**2.0D+00)))*RNI(N))/
- (1.0D+00 3.0D+00*DELTA**CI(N)*PI(N) +
- CI(N)**2.0D+00*
- (2.0D+00 + 3.0D+00*CI(N)*(-1.0D+00 + DELTA**CI(N)*PI(N)) +

-(DELTA**(-1.0D+00 + DI(N))* EXP((-(BETA(N)*(TAU - GAMMA(N))**2.0D+00) -ALPHA(N)*(DELTA - RNLAD(N))**2.0D+00))* TAU**(-2.0D+00 + TI(N))*RNI(N)* (-DI(N) + 2.0D+00*DELTA*ALPHA(N)*(DELTA - RNLAD(N)))* (4.0D+00*TAU**2.0D+00*BETA(N)**2.0D+00*(TAU -GAMMA(N))**2.0D+00+ (-1.0D+00 + TI(N))*TI(N) -2.0D+00*TAU*BETA(N)*(TAU + 2.0D+00*(TAU - GAMMA(N))*TI(N)))) END DO ARDTT=ARDTT1+ARDTT2 ARTTT1=0.0D+00 DO N=1.36 ARTTT1=ARTTT1+ (DELTA**DI(N)*TAU**(-3.0D+00 + TI(N))*RNI(N)* (-2.0D+00 + TI(N))*(-1.0D+00 + TI(N))*TI(N))/- EXP((DELTA**CI(N)*PI(N))) END DO C ARTTT2=0.0D+00 DO N=37.40 ARTTT2=ARTTT2+ -(DELTA**DI(N)*EXP((-(BETA(N)*(TAU - GAMMA(N))**2.0D+00) -ALPHA(N)*(DELTA - RNLAD(N))**2.0D+00))*

TAU**(-3.0D+00 + TI(N))*RNI(N)*

(8.0D+00*TAU**3.0D+00*BETA(N)**3.0D+00*(TAU -

GAMMA(N))**3.0D+00 -

- ARDTT2=0.0D+00 ARDTT2=ARDTT2+
- END DO С

DO N=37,40

- (-1.0D+00 + TI(N))*TI(N))/EXP((DELTA**CI(N)*PI(N)))
- (DI(N) DELTA**CI(N)*CI(N)*PI(N))*RNI(N)*
- ARDTT1=ARDTT1+ $(DELTA^{**}(-1.0D+00 + DI(N))^{TAU^{*}(-2.0D+00 + TI(N))^{*})$
- DO N=1.36
- ARDTT1=0.0D+00
- ***** C
- ARDDT=ARDDT1+ARDDT2
- END DO
- -(2.0D+00*TAU*BETA(N)*(TAU - GAMMA(N)) - TI(N)))
- RNLAD(N))**2.0D+00)*

```
12.0D+00*TAU**2.0D+00*BETA(N)**2.0D+00*(TAU - GAMMA(N))*
                                                                             RNI1, RNI2, CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR,
   -
                                                                       *
         (TAU + (TAU - GAMMA(N))*TI(N)) +
                                                                             RN.TN.Z1.Z2.DARN11.DARN12.DARN22)
                                                                   С
        6.0D+00*TAU*BETA(N)*TI(N)*
   -
         (GAMMA(N) + TAU*TI(N) - GAMMA(N)*TI(N)) -
                                                                     CALL DARNIII(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
        TI(N)*(2.0D+00 - 3.0D+00*TI(N) + TI(N)**2.0D+00)))
                                                                       *
                                                                             CI.DI.TI.ALPHA.PI.BETA.GAMMA.RNLAD.
                                                                       *
 END DO
                                                                             RNI1, RNI2, CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR,
                                                                       *
    ARTTT=ARTTT1+ARTTT2
                                                                             RN, TN, Z1, Z2, DARN111, DARN112, DARN122, DARN222)
С
С
                                                                     F111=-1.0D+00/Z1**2.0D+00+3.0D+00*DARN11+DARN111
 RETURN
 END
                                                                     F112=2.0D+00*DARN12+DARN11+DARN112
*****
                       END
                                                                     F122=2.0D+00*DARN12+DARN22+DARN122
С
                                                                     F222=-1.0D+00/Z2**2.0D+00+3.0D+00*DARN22+DARN222
  ******************
                                                                   С
                                                                   С
                                                                   С
С
                                                                     CUB=F111*DN1*DN1*DN1
C
                                                                       * + 3.0D+00*F112*DN1*DN1*DN2
 *******
                                                                       * + 3.0D+00*F122*DN1*DN2*DN2
C
 ******
                                                                       * + F222*DN2*DN2*DN2
                                                                   С
С
С
                                                                   С
         キュービックフォームの計算
                                                                     RETURN
С
                                                                     END
C
                                                                   C
                                                                   С
С
 SUBROUTINE CALCUB(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
                                                                   С
         CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
                                                                   С
   *
         RNI1, RNI2, CI2, DI2, TI2, PI2, DIF, TIF, CIF, PIF, RNIF, A, NFR,
         RN,TN,Z1,Z2,DN1,DN2,CUB)
    IMPLICIT DOUBLE PRECISION (A-H,M,O-Z)
C
    DIMENSION RNI1(40), RNI2(40)
 DIMENSION CI(40), DI(40), TI(40), ALPHA(40), PI(40),
           BETA(40),GAMMA(40),RNLAD(40)
    DIMENSION AI1(40), THETA1(40), AI2(40), THETA2(40)
 DIMENSION CI2(40), DI2(40), TI2(40), PI2(40)
  DIMENSION RNIF(40), DIF(40), TIF(40), CIF(40), PIF(40)
С
 CHARACTER*30 NNNN, M1
C
 CALL DARNI(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,
         CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,
   *
         RNI1,RNI2,CI2,DI2,TI2,PI2,DIF,TIF,CIF,PIF,RNIF,A,NFR,
         RN,TN,Z1,Z2,DARN1,DARN2)
C
```

CALL DARNII(DELTA, TAU, T, TC1, PC1, RHOC1, TC2, PC2, RHOC2, R,

CI,DI,TI,ALPHA,PI,BETA,GAMMA,RNLAD,

*