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Summary 

The pattern of cell divisions provides crucial information to understand the mechanism of 

development in multicellular organisms. The pattern of cell divisions holds the position and time of 

individual cell and relationships between mother cells and their daughter cells. Many analyses of 

development often compare patterns of cell divisions, where differences of timings or orientations of 

cell divisions and/or positions of cells among wild-type and mutant embryos are investigated. The 

scales of these analyses are getting larger, so that the importance of objectivity and productivity in 

measuring the pattern of cell divisions are getting more critical. However, the patterns of cell 

divisions in Caenorhabditis elegans embryo has been manually measured by direct observation with 

a microscope, so that the objectivity and productivity of the measurement has been seriously low. 

Therefore, I developed a system that objectively and productively measures a pattern of cell 

divisions of C. elegans embryo. This system first automatically detects nuclei in a set of images 

recorded by the 4-dimensional differential interference contrast (DIC) microscope system using 

nuclear regions that are image regions detecting nuclei in DIC microscope images. The nuclear 

regions are produced using the difference in image textures between the nucleus and the cytoplasm 

distinguished by local image entropy. This system then automatically identifies the 3-dimensional 

(3D) region of individual nuclei by grouping nuclear regions, tracks these 3D regions, and outputs 

the tracking trajectory. This tracking trajectory is the measured pattern of cell divisions. This system 

measures a pattern of cell divisions from fertilization to the onset of gastrulation of a C. elegans 

embryo. This system is the first embodiment that enables the objective and productive measurement 

of the pattern of cell divisions, which would greatly contribute to the future studies of development 

in multicellular organism. 
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Chapter 1 Introduction 

The pattern of cell divisions is a crucial piece of information in studies of development in 

multicellular organisms (hereafter a pattern of cell divisions is called a cell division pattern (CDP)). 

CDP holds timings and orientation of cell divisions and relationships between mother cells and their 

daughter cells in terms of cell lineage information (Figure 1.1). CDP is described by following cells 

during embryogenesis in individual organisms (Sulston et al., 1983; reviewed by Stern and Fraser, 

2001; Chisholm, 2002). A fertilized egg—a single cell—develops into a multicellular organism 

through many spatially and temporally dynamic cellular activities, including cell division, cell 

migration, cell differentiation and cell death. In Caenorhabditis elegans, CDPs and cell fates are 

correlated (Sulston et al., 1983), where mutations affect CDPs such as timings and orientations of 

cell divisions. CDP is greatly contributing to understanding the mechanisms underlying the 

development of the organism. 

 

 
Figure 1.1 Cell division pattern. A conceptual schematic diagram is shown to 

the left. The cell division pattern corresponding to the conceptual schematic 

diagram is shown to the right. 

 

CDP is mostly the same as the cell lineage but more informative about the positions of cells. The cell 

lineage is described with timings and orientations of cell divisions and relationships between mother 

cells and their daughter cells (Sulston et al., 1983). The orientations of cell divisions are determined 

using positions of nuclei in cells, but positions of nuclei themselves are not described in the cell 

lineage. Because my system presented in this dissertation measures both the cell lineage and the 

positions of nuclei, I use the term “CDP” to call information holding both of them instead of the 

term “cell lineage”. 
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I chose C. elegans as a model in my work because of the importance of the animal in biology. C. 

elegans is the simplest multicellular organism that has been most extensively studied in biology 

(Wood, 1988; Riddle et al., 1997). The total number of cells is only about a thousand (Wood, 1988). 

In spite of the simplicity in number of cells, C. elegans has differentiated cells, such as an epidermis, 

intestine, excretory system, and nerve and muscle cells, which makes this animal an ideal model for 

anatomically analyzing the development of multicellular organisms. Besides, C. elegans is an ideal 

model for genetic analysis. C. elegans has a short life cycle; the embryogenesis takes about 12 hours 

and the generation cycle takes about 3 days (Wood, 1988). Thus, the animal is suited for genetic 

experiments. Functions of genes are conserved from C. elegans to mammals (Yuan et al., 1993; 

Hengartner and Horvitz, 1994), which makes the genetic analysis of this animal suggestive for 

understanding higher multicellular organisms. These features make C. elegans an excellent model 

for study in biology. Consequently, I considered that the animal is suited for a model in my work. 

 

CDP has been manually measured in C. elegans. Timings and orientations of cell divisions are 

manually identified by human recognition, where the orientations are determined using positions of 

nuclei because the nucleus is generally positioned at the center of a cell and is the most noticeable 

organelle in a cell (Sulston et al., 1983). The positions of nuclei are measured by direct observation 

or using recorded images with a Nomarski differential interference contrast (DIC) light microscope 

(hereafter this microscope is called a DIC microscope) (Nomarski and Weill, 1955). The four-

dimensional (4D) DIC microscope (Hird and White, 1993; Thomas et al., 1996) is usually used to 

automatically record a set of images in multiple focal planes and at multiple time points for a 

specimen (hereafter a set of these images is called a set of 4D DIC microscope images). Nuclei move 

3-dimensionally within a time interval of a set of 4D DIC microscope images. To measure CDP, 

individual nuclei at adjacent time points are identified and are followed, and the relationships 

between mother nuclei and their daughter nuclei are identified and are followed by eye observation. 

 

The objectivity and productivity in measuring CDP have been low because the measurement has 

been mostly a manual process as described above. Analyses of development often compare CDPs 

(such as timings, orientations of cell divisions and/or positions of nuclei) among wild-type and 

mutant embryos (Kemphues et al., 1988), where the high objectivity in the measurements is an 

important matter. C. elegans has about twenty thousand genes (The C. elegans Sequencing 

Consortium, 1998). The recent establishment of RNA interference (RNAi) has enabled us to make 

each of large numbers of genes silent (Fire et al., 1998). Using such a benefit of RNAi, large-scale 

functional genomic analyses have been initiated (Fraser et al., 2000; Gönczy et al., 2000; 
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Sönnichsen et al., 2005). To investigate the functions of genes using CDPs in such a large-scale 

manner, the high productivity of the measurement of CDP is an important matter, too. 

 

To help the manual measurement of CDP in C. elegans, two computer-aided systems have been 

developed, namely SIMI BioCell (Schnabel et al., 1997) and 3D-DIASemb (Heid et al., 2002). SIMI 

BioCell has a graphical user interface (GUI) that can display a set of 4D DIC microscope images, 

help identifying the positions of nuclei, and record these identified positions. 3D-DIASemb is 

similar to SIMI BioCell but can also record and display the perimeters of nuclei and cells. Although 

both of these systems help greatly to follow nuclei through time points in a set of 4D DIC 

microscope images, detecting and following nuclei are manually processed, where the positions of 

nuclei are determined by human recognition and those manual processes are time-consuming and 

labor-intensive. Therefore, the objectivity and productivity in measuring CDP are low in these 

systems. 

 

To increase the objectivity and productivity in measuring CDP, automating the processes in the 

measurement will be an effective strategy. If detecting nuclei is automated, the positions of nuclei 

are expected to be measured without human subjectivity and without time and labor, i.e. positions of 

nuclei will be measured objectively and productively. Similarly, if following nuclei is automated, the 

same nucleus in adjacent time points (in a set of 4D DIC microscope images) is identified 

objectively and productively. Yasuda et al. attempted to develop such an automated system (Yasuda 

et al., 1999). Yasuda et al.’s system automatically detects and follows nuclei in a set of 4D DIC 

microscope images. However, because their system can not detect nuclei that are in the process of 

cell division, their system can not measure the timing of cell division which is an important element 

of CDP. Furthermore, their system needs laborious hand-tuning of system’s parameters every time a 

new set of 4D DIC microscope images is applied, which is a serious problem in productivity of the 

measurement of CDP when the system is applied to large-scale analyses (Fraser et al., 2000; Gönczy 

et al., 2000; Sönnichsen et al., 2005). Besides, the maximum cell stage of their measured CDP is 

limited under eight-cell stage. Consequently, their system requires marked improvement before it 

becomes applicable to analyses that use CDPs. 

 

In this dissertation, I present a system that objectively and productively measures a CDP in a set of 

4D DIC microscope images of C. elegans embryo. Actually, I present three systems that I have 

developed during my work (Hamahashi and Onami, 2005; Hamahashi et al., 2005; Hamahashi et al., 

2006). The first system is a basic system that detects nuclei in C. elegans embryo. The second 

system is the main system that measures CDP in C. elegans embryo. The third system is a derivative 

system that measures spindle orientations in C. elegans embryo. The strategy to increase the 
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objectivity and productivity of the measurement in these systems is the automation of the 

measurements. 

 

Basic system: The first system attained the highly objective and productive detection of nuclei in a 

set of 4D DIC microscope images of C. elegans. This system automatically detects nuclei using a 

difference in image textures between the nucleus and the cytoplasm in DIC microscope images. The 

difference is distinguished by local image entropy (Handmann et al., 2000) which makes the system 

applicable to different sets of 4D DIC microscope images without the need of hand-tuning of 

system’s parameters. The system produces image regions that detect nuclei (hereafter an image 

region that detect a nucleus is called a nuclear region) but also produces image regions that do not 

detect nuclei (they detect such as the boundaries between cells and the spaces between the embryo 

and the eggshell). This system automatically selects nuclear regions from produced regions using an 

object-tracking algorithm (Geerts et al., 1987; Lee et al., 1991; Awasthi et al., 1994). The object-

tracking algorithm allows selecting nuclear regions detecting nuclei that are both in and not in the 

process of cell division, which makes this system possible to detect nuclei that are in the process of 

cell division. Details about this system are explained in Chapter 2. 

 

Main system: The second system attained the highly objective and productive measurement of CDP 

in C. elegans. This system is the main system to measure CDP. This system first produces nuclear 

regions from a set of 4D DIC microscope images using the basic system. Then, this system identifies 

the 3-dimensional (3D) region of each nucleus by a unit that groups nuclear regions detecting the 

same nucleus (explained in section 3.2.3). Finally, this system tracks units along a time line and 

outputs a tracking trajectory that is the measured CDP. If a unit groups inappropriate nuclear regions, 

this system detects the unit and corrects it (such as cuts and/or merges nuclear regions) to make a 

new unit that groups modified nuclear regions (explained in section 3.2.4). If this system 

inappropriately tracks units (nuclei detected by a tracker and a tracked units are different), this 

system detects this failure and corrects it (explained in section 3.2.4). This system allows almost 

automatically measuring a CDP in a C. elegans embryo from one- to 24-cell stages, where the 

objectivity and productivity of the measurement are high. 

 

Derivative system: The third system attained the objective and productive measurement of spindle 

orientation during second cell divisions in C. elegans embryo. This system is a derivative system 

that is developed based upon the main system, which demonstrates the applicability of the main 

system. Spindle orientations are often measured in many analyses of development (Kemphues et al., 

1988; Cheng et al., 1995; Watts et al., 1996), where the spindle orientation correlates with the 

orientation of cell division and is suggestive for understanding the mechanism of development. The 
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objectivity and productivity are the important matters in these analyses. This system first 

automatically detects spindle using nuclear region produced by a module (the nuclear detection 

module explained in section 3.2.2) in the main system, where the objectivity and productivity in 

detecting spindles are high. Then, this system measures the spindle orientation using the regression 

line (Montgomery and Peck, 1982), where the objectivity and productivity in acquiring the 

orientations are high. Consequently, this system objectively and productively measures the spindle 

orientation in C. elegans embryo. 
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Chapter 2 Basic system: a system detecting the 

nuclei 

2.1 Introduction 

Yasuda et al. attempted to automate nuclear detection (Yasuda et al., 1999). Their system detected 

nuclei from two- to eight-cell stages in a specific set of 4D DIC microscope images using several 

edge detection operators (Prewitt, 1970; Kirsch, 1971). However, their system requires laborious 

hand-tuning of parameters every time a new set of 4D DIC microscope images was applied, because 

the edge detection operators were very sensitive to differences in image quality (e.g., brightness, 

contrast) among sets of images; the differences could be controlled but not eliminated (see section 

2.2.4 and section 2.3.1). In addition, their system was not able to detect the nucleus that was in the 

process of cell division, because their detection of nucleus relied on the shape of nucleus being 

round (and therefore not in the process of division). 

  

In this chapter, I present a system that I have developed to automate the detection of nuclei in a set 

of 4D DIC microscope images of C. elegans embryo (Hamahashi et al., 2005). In this system, local 

image entropy is used to produce regions of the images that have the image texture of the nucleus. 

From these regions, those that actually detect nuclei are manually selected at the first and last time 

points of the image set, and an object-tracking algorithm (Geerts et al., 1987; Lee et al., 1991; 

Awasthi et al., 1994) then selects regions that detect nuclei in between the first and last time points. 

The use of local image entropy makes the system applicable to multiple image sets without the need 

to tune parameters. The use of an object-tracking algorithm enables the system to detect nuclei in the 

process of cell division. The system detected nuclei with high sensitivity and specificity from the 

one- to 24-cell stages. 
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2.2 Results 

2.2.1 Appearance of nuclei in a set of 4D DIC microscope images 

 

 
Figure 2.1 Overview of 4-dimensional differential interference contrast 

microscope images of Caenorhabditis elegans embryo. (A) Schematic of 4-

dimensional (4D) differential interference contrast (DIC) microscope images. 

Digital images of a developing embryo were recorded in multiple focal planes 

and a set of multifocal images was recorded with a fixed time interval, α. (B) 

Example of 4D DIC microscope images of a C. elegans embryo. Each column 

shows multifocal images recorded at a specific time point, with 3.5 µm 

between two focal planes. Each row shows time-lapse images recorded in a 

specific focal plane with 160 s between two time points. Bar is 10 µm. 
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The appearance of nuclei of C. elegans embryos in a set of 4D DIC microscope images (Figure 2.1) 

varies among different focus levels and different developmental stages. The nucleus appears as a 

smooth, round region in the center of the cell, the cytoplasm of which appears as a rough region at 

all developmental stages. The boundary of the nucleus is apparent when the focus level is close to 

the level of the center of the nucleus (0 µm, 0 s in Figure 2.1B). As the focus level becomes higher 

or lower, the nucleus becomes smaller, reflecting the 3D shape of the nucleus and the boundary of 

the nucleus becomes blurred (–3.5 µm and +3.5 µm in Figure 2.1B). The nucleus becomes invisible 

when the focus level goes beyond the level of the upper or lower end of the nucleus (–7.0 µm and 

+7.0 µm in Figure 2.1B). As the embryo develops, the number of cells in the embryo increases 

through repeated cell divisions, each of which produces two daughter cells from a single mother cell. 

When cell division begins, the nucleus begins to elongate and the boundary of the nucleus becomes 

blurred (160 s in Figure 2.1B). As cell division progresses, the nucleus continues to elongate (320 s 

in Figure 2.1B). The elongated nucleus is fragmented into several pieces (480 s in Figure 2.1B), 

which then form daughter nuclei in two daughter cells (640 s in Figure 2.1B). The size of the nuclei 

gradually decreases as the embryo develops and the number of nuclei increases (8 µm in diameter at 

the one-cell stage and 5 µm at the 24-cell stage). Although the appearance of the nuclei in the images 

varies among different focal planes and different developmental stages, a smooth image texture is a 

common feature of the appearance of nuclei. 

 

2.2.2 Detection of nuclei using regions of low local image entropy 

To detect nuclei in the 4D DIC microscope images, I used a common feature of nuclei in the images, 

that is, their smooth image texture (see previous section, Figure 2.1B). To quantify the smoothness 

of image texture in various regions of an image, I used local image entropy (Handmann et al., 2000), 

which computes the image entropy (Pratt, 1991) of a small area surrounding a point of interest in an 

image. Image entropy represents the smoothness of image texture; its value becomes high when the 

texture is rough and low when the texture is smooth. Because smooth image texture is a common 

feature of the appearance of nuclei in 4D DIC microscope images, I expected local image entropy to 

be lower in the nuclei than in the cytoplasm. An important feature of image entropy is low sensitivity 

to differences in image quality, particularly in terms of the brightness of the image. Therefore, I 

expected that local image entropy would quantify the smoothness of image texture in multiple 

images in a manner that was not sensitive to differences in quality among images. (The validity of 

choosing image entropy from widely-used texture measures is evaluated in section 2.2.3.) 
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Figure 2.2 Effect of window size and threshold value on production of low-

entropy regions. (A) Input image. Low-entropy regions were produced from 

an image of a four-cell-stage embryo using various window sizes and threshold 

values. (B–D) Effect of window size on image conversion using local image 

entropy. The input image was applied to the image conversion using window 

sizes of 4 × 4 (B), 10 × 10 (C), and 50 × 50 (D) pixels. Darker colors represent 

lower local image entropies. (E–M) Effect of window size and threshold value 

on low-entropy regions. Low-entropy regions (black) were produced using 

threshold values of 200 (E, H, K), 175 (F, I, L), or 150 (G, J, M) from the 

images resulting from the image conversion, using window sizes of 4 × 4 (E–

G), 10 × 10 (H–J) or 50 × 50 (K–M) pixels. A window of 10 × 10 pixels 

corresponds to that of 1 µm × 1 µm. 
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I defined an image conversion using local image entropy as follows. Let [xij] be the matrix 

representing a digitized input image. Then the result of image conversion using local image entropy 

in an X × Y pixel window is an image [yij], where the value of yij equals the entropy of the input 

image lying in the X × Y pixel window Wij whose top left is xij. The image entropy is 

, where N is the number of gray levels and P(k) is the probability of 

occurrence of gray level k in W

∑ −

=−= 1
0 2 )(log)(N

kij kPkPy

ij. Because of the presence of the window, the number of columns and 

rows of [yij] is smaller than those of [xij] by X – 1 and Y – 1, respectively. 

 

To determine whether local image entropy could effectively distinguish nuclei from cytoplasm in 4D 

DIC microscope images, I converted the images using various window sizes (from 2 × 2 to 50 × 50 

pixels, results for 4 × 4, 10 × 10 and 50 × 50 pixels are shown in Figure 2.2). As expected, local 

image entropy was lower (darker) in the nuclei than in the cytoplasm (e.g., 10 × 10 window size in 

Figure 2.2). When I used a large (50 × 50) window, the difference in local image entropy between 

nuclei and cytoplasm became smaller. When I used a small (4 × 4) window, high-entropy spots 

(bright spots) appeared throughout the images. These results indicate that local image entropy 

effectively distinguishes nuclei from cytoplasm in 4D DIC microscope images. For images prepared 

in my experiments, 10 × 10 pixels (1 µm × 1 µm) appeared likely to be the optimal size of the 

window. 

 

2.2.3 Evaluation of choosing image entropy from widely-used texture measures 

There is a huge body of literature on texture analysis (Pratt, 1991; Tuceryan and Jain, 1998; Jahne et 

al., 1999). To evaluate the validity of choosing image entropy from many texture measures, I 

investigated 25 widely-used texture measures selected from all four texture analysis methods 

categorized by Tuceryan and Jain (Tuceryan and Jain, 1998). The investigated texture measures are 

listed as follows: 

 

A. Statistical methods 

a. First-order statistics 

1. Mean 

2. Standard deviation 

3. Skewness 

4. Kurtosis 

5. Energy 

6. Entropy 

b. Second-order statistics 

1. Co-occurrence: energy 
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2. Co-occurrence: entropy 

3. Co-occurrence: contrast 

4. Co-occurrence: homogeneity 

5. Co-occurrence: correlation 

6. autocorrelation 

B. Geometrical methods 

1. Voronoi tessellation features 

2. Structural methods 

C. Model based methods 

1. Markov random fields 

D. Signal processing methods 

a. Spatial domain filters 

1. Laplacian operator 

2. Kirsch operator 

3. Prewitt operator 

4. Moment M00 

5. Moment M01 

6. Moment M02 

7. Moment M10 

8. Moment M11 

9. Moment M20 

b. Fourier domain filtering 

1. Radial features of power spectrum 

 

For the evaluation of the performance of each measure, I implemented them in accordance with 

methods given in the literature (Pratt, 1991; Tuceryan and Jain, 1998; Jahne et al., 1999) and applied 

them to my DIC microscope images of C. elegans embryos. The discriminability in image textures 

between the nucleus and the cytoplasm for each texture measure was judged using thresholding 

(Otsu, 1979) in which the value of each texture measure was binarized by its optimized threshold. 

The computation time for each texture measure was recorded. I did not implement the Geometrical 

methods measures, because my DIC microscope images were not composed of texture elements 

(Tuceryan and Jain, 1998). 

 

Of the resulting 23 measures, 11 measures discriminated between nucleus and cytoplasm in my DIC 

microscope images of a C. elegans embryo (standard deviation; energy; entropy; co-occurrence: 

energy; co-occurrence: entropy; co-occurrence: homogeneity; co-occurrence: correlation; Markov 
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random field; Kirsch operator; Prewitt operator; and Fourier domain filtering). I concluded that, 

among these 11 measures, entropy provided the best performance for the NDS, as follows. 

 

Entropy was better than the four second-order statistics measures (co-occurrence: energy; co-

occurrence: entropy; co-occurrence: homogeneity; co-occurrence: correlation) and the Fourier 

domain filtering measure in terms of computation time. The computation time was at least 6.5 times 

longer than that of entropy in the case of these second-order statistics measures, and more than 200 

times longer in the case of the Fourier domain filtering measure (Table 2.1). A shorter computation 

time is preferred in my system because my system was developed for detecting nuclei in 4D DIC 

microscope images of C. elegans embryos. A set of my 4D DIC microscope images usually consists 

of more than 6720 images from the one- to 24-cell stages. 

 

Texture measure Discriminability Computation Time
Statistical methods

first-order statistics
mean N 2.23
standard deviation Y 3.01
skewness N 3.84
kurtosis N 4.07
energy Y 2.19
entropy Y 2.53

second-order statistics
co-occurrence: energy Y 14.60
co-occurrence: entropy Y 16.50
co-occurrence: contrast N 16.28
co-occurrence: homogeneity Y 16.18
co-occurrence: correlation Y 35.88
autocorrelation N 16.30

Geometrical methods
Voronoi tessellation features N N/A
Structural methods N N/A

Model based methods
Markov random fields Y 5.20

Signal processing methods
spatial domain filters

Laplacian operator N 0.34
Kirsch operator Y 1.22
Prewitt operator Y 1.26
Moment M00 N 0.40
Moment M01 N 0.40
Moment M02 N 0.40
Moment M10 N 0.41
Moment M11 N 0.40
Moment M20 N 0.41

Fourier domain filtering
radial features of power spectrum Y 545.81

"Y" and "N" mean "discriminable" and "not discriminable" respectively. Computation times were
measured by a PC which used a 3.2 GHz Intel Pentium 4 processor with HT Technology and 2 GB of
SDRAM memory. All programs were written in a programming language C++.

Table 2.1 Discriminability and computation time of widely-used texture measures
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Entropy was better than the two spatial domain filters (Kirsch operator and Prewitt operator) and the 

Markov random field in terms of sensitivity to differences in image quality (see section 2.2.4 and 

section 2.3.1). For the Markov random field, in more than 10 different DIC microscope images of C. 

elegans embryos, I tried but could not find a set of parameters with which the measure successfully 

discriminated the image textures between the nucleus and the cytoplasm. 

 

Entropy was better than the two first-order statistics measures (standard deviation and energy) 

because entropy discriminated the image textures between the nucleus and the cytoplasm more 

clearly than did these two measures. Standard deviation, like entropy, is a texture measure widely-

used to quantify the smoothness of image texture. In my test images, the standard deviation in the 

cytoplasmic region varied widely, and many small regions in the cytoplasm had standard deviations 

as small as in the nucleus. This wide variation in standard deviation in the cytoplasmic region may 

come from the dependency of standard deviation on actual pixel values in texture. Entropy does not 

depend on actual values in texture, but it does depend on the smoothness of texture. Energy 

discriminated between nucleus and cytoplasm far more clearly than did standard deviation. However, 

the difference in energy between the nucleus and cytoplasm was smaller than the difference in 

entropy. 

 

2.2.4 Sensitivities to the image quality of local image entropy and Yasuda et al.’s 

measure 

I investigated whether local image entropy is less sensitive to image quality than Yasuda et al.’s 

measure, because less sensitivity is preferred to eliminate a laborious hand-tuning of system’s 

parameters. Yasuda et al.’s system (Yasuda et al., 1999) used a combination of edge-detection 

operator (the Kirsch or the Prewitt operators) and the blur filter to detect nuclei from DIC 

microscope images; the combination of the edge-detection operator and the blue filter was the 

Yasuda et al.’s measure. To investigate the sensitivities to the image quality of local image entropy 

and Yasuda et al.’s measure, I used both local image entropy and Yasuda et al.’s measure and 

quantified the smoothness of image texture (Figure 2.3).  

 

The gradient of Yasuda et al.’s measure at the boundary between nucleus and cytoplasm was easier 

than that of local image entropy (Figure 2.3). This result indicates that the nuclear detection using 

Yasuda et al.’s measure is more sensitive to the differences in image quality. 
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Figure 2.3 Values of local image entropy and Yasuda et al.’s measure. The 

upper figure shows values measured by local image entropy and Yasuda et al.’s 

measure. 175 is a threshold value to binarize the texture measures; the 

produced regions will consist of the positions having larger values than the 

threshold value. The horizontal position in the upper figure corresponds to the 

horizontal position in the lower picture of y = 170. In the upper figure, the solid 

line shows the values of local image entropy and the broken line shows the 

values obtained by our earlier system (Yasuda et al., 1999). Bar is 10 µm. 

 

2.2.5 Nuclear detection using low-entropy regions 

To detect nuclei, I produced low-entropy regions (Figure 2.2E–M) applying thresholding (Otsu, 

1979) to the images resulted from the image conversion of local image entropy. The low-entropy 

regions were produced as follows: neighboring pixels whose local image entropy was lower than the 

threshold were grouped, and the resulting group was defined as a low-entropy region. As expected, 

many of these low-entropy regions corresponded to nuclei in the original images, whereas the size 

and number of the regions depended on the threshold value. The shapes of the low-entropy regions 

approximated those of corresponding nuclei when the threshold value was set to 175 (Figure 2.2F, I, 

L). As the threshold value decreased, the regions became smaller and more fragmented (Figure 2.2G, 

J, M). As the threshold value increased, the regions became larger and more aggregated (Figure 2.2E, 
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H, K). These results indicate that low-entropy regions can be used to detect nuclei in 4D DIC 

microscope images. For images prepared in my experiments, 175 was likely to be the optimal 

threshold value. In addition to the low-entropy regions that corresponded to nuclei, many low-

entropy regions were produced that did not correspond to nuclei. These low-entropy regions 

corresponded to regions that have similar (smooth) image textures to that of the nucleus, such as the 

boundaries between cells and the spaces between the embryo and the eggshell. 

 

I evaluated the performance of nuclear detection in a set of 4D DIC microscope images by using 

low-entropy regions. For the evaluation, I produced low-entropy regions from five sets of images of 

C. elegans embryos using a 10 × 10 pixel window and a threshold value of 175 (Figure 2.4). Each 

set of images consisted of 10,080 images (56 focal planes × 180 time points = 10,080 images). I then 

calculated the sensitivity and specificity as measures of performance. 

 

Sensitivity was defined as the ratio of the sum of the number of nuclei detected at each time point to 

the sum of the number of nuclei existing at each time point. A nucleus was considered to be 

“detected” at a specific time point when it was detected by at least one low-entropy region at any 

focal plane at this specific time point. This definition of sensitivity is reasonable because of the 

difficulty in specifying the number of low-entropy regions that are expected to detect a given 

nucleus. The following three factors underlie this difficulty. First, a single nucleus is usually 

detected by several low-entropy regions in different focal planes at a single time point. Second, a 

single nucleus is sometimes detected by several low-entropy regions in the same focal plane at a 

single time point. Third, it is difficult to determine which focal plane is the top end and which is the 

bottom end of the focal planes at which a given nucleus is expected to be detected in low-entropy 

regions, because the appearance of the nucleus becomes gradually blurred as the focal plane 

becomes farther from the center of the nucleus (Figure 2.1B).  

 

Specificity was defined as the ratio of the number of low-entropy regions detecting nuclei to the 

number of low-entropy regions produced. Because local image entropy is not sensitive to differences 

in image quality, particularly in terms of the brightness of the image, I expected that the performance 

of nuclear detection by examination of low-entropy regions would differ little among sets of 4D DIC 

microscope images. 
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Figure 2.4 Low-entropy regions of different focal planes and different time 

points. (A–E and K–O) Input images. (F–J and P–T) Low-entropy regions 

(black) produced from the input images. Low-entropy regions were produced 

from multifocal images of an embryo at a specific time point in the four-cell 

stage with 4.5 µm between two focal planes (A–E) and from time-lapse images 

of an embryo at a specific focal plane with 30 min between two time points (K–

L). The low-entropy regions produced are displayed to the right of each input 

image. The window size was 10 × 10 pixels and the threshold value was 175. 

 

Low-entropy regions that actually detected nuclei were manually selected in five sets of 4D DIC 

microscope images of an embryo. The resulting five sets of low-entropy regions were used as 

references to calculate the sensitivity and specificity of nuclear detection. Sensitivity was calculated 

using low-entropy regions of all time points from time point 0 to that corresponding to the end of the 

24-cell stage. Specificity was calculated using low-entropy regions at 11 time points, obtained by 

sampling every 10 time points from the beginning of the two-cell stage to the end of the 24-cell stage. 

The number of time points from the beginning of the two-cell stage to the end of the 24-cell stage 

was 106 on average. 
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I obtained perfect (= 1.0) sensitivity for all sets of images from the one- to the 24-cell stages (Table 

2.2). All nuclei were detected at any time point independently of whether or not they were in the 

process of cell division. To confirm that this perfect sensitivity was not solely a feature of the five 

sets of images examined, I produced low-entropy regions from 44 sets of images of C. elegans 

embryos using 10 × 10 pixel windows and threshold values of 175, and then calculated the 

sensitivity. I obtained perfect sensitivity for all 44 sets of images of embryos from the one- to the 24-

cell stages (data not shown). Sensitivity became imperfect in the later stages of embryogenesis, i.e., 

around the 44-cell stage or later (data not shown). In contrast, very low (< 0.10) specificity was 

obtained for all sets of images (Table 2.2). In summary, low-entropy regions could be used to detect 

nuclei in a set of 4D DIC microscope images of C. elegans embryos from the one- to 24-cell stages 

with very high sensitivity and very low specificity. The performance of nuclear detection by low-

entropy regions differed little among sets of images. 

 

 

 

Low-entropy regions 0.06 (1.0) 0.08 (1.0) 0.06 (1.0) 0.08 (1.0) 0.08 (1.0)
Forward tracking 0.38 (1.0) 0.48 (1.0) 0.55 (1.0) 0.44 (1.0) 0.53 (1.0)
Forward and backward
trackings 0.44 (1.0) 0.55 (1.0) 0.67 (1.0) 0.5 (1.0) 0.63 (1.0)

Table 2.2 Performance of nuclear detection by low-entropy regions and those
selected forward and backward trackings

set 5

Data are specificity and (sensitivity) for five sets of 4D DIC microscope images of a C. elegans
embryo from the one- to 24-cell stages (1 set = 56 focal planes × ~120 time points = ~6720 images).

set 1 set 2 set 3 set 4

 
 

 

 

1 pixel 4% 8% 12% 16% 20%
1 pixel 5 5 5 4 4 4
30% 5 5 4 4 4 3
50% 5 5 4 4 2 1
70% 5 5 4 4 2 1
90% 1 1 1 1 0 0

Sensitivities of nuclear detection by low-entropy regions selected by advanced forward and backward
trackings were calculated for five sets of 4D DIC microscope images of a C. elegans embryo from the one-
to 24-cell stages. Number of image sets for which sensitivity of nuclear detection were 1.0 is shown.

TtTf

Table 2.3 Number of image sets for which advanced trackings detected nuclei with
perfect sensitivity
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2.2.6 Selection of low-entropy regions using object-tracking algorithm in the forward 

direction of time 

The very high sensitivity and very low specificity of nuclear detection by using low-entropy regions 

motivated me to develop a process that selected low-entropy regions that actually detected nuclei. To 

develop this process, I used spatial and temporal information on the nucleus. In terms of spatial 

information, I expected the nucleus to be detected by several low-entropy regions, each of which 

would overlap with another region in an adjacent focal plane at the same time point, because the 

radius of the nucleus (> 2.5 µm) was much larger than the distance between two adjacent focal 

planes (0.5 µm). Therefore, a low-entropy region would be more likely to detect a nucleus than 

others when it overlapped with a region that detected the nucleus in an adjacent focal plane at the 

same time point. In terms of temporal information, I expected the nucleus to be detected by several 

low-entropy regions, each of which would overlap with another region in the same focal plane at an 

adjacent time point, because the nucleus rarely moves more than a distance equal to its diameter (> 5 

µm) within the time equal to the interval between two adjacent time points (40 s). Therefore, a low-

entropy region would be more likely to detect a nucleus than others when the region overlapped with 

a region that detected the nucleus in the same focal plane at an adjacent time point. 

 

To select low-entropy regions by using this spatial and temporal information, I used an object-

tracking algorithm (Geerts et al., 1987; Lee et al., 1991; Awasthi et al., 1994) (Figure 2.5). The 

tracking algorithm was composed of the following two recursive processes. First, a low-entropy 

region in focal plane f at time point t is selected if the region overlaps with a region that has been 

selected in either focal plane f – 1 or f + 1 at time point t. Second, a low-entropy region at focal plane 

f at time point t is selected if the region overlaps with a region that has been selected in focal plane f 

at time point t – 1. Manual selection of a low-entropy region at time point 0 triggers these processes. 

I call this algorithm forward tracking because it tracks nuclei in the forward direction of time. 

 

To examine whether forward tracking effectively selects low-entropy regions that can actually detect 

nuclei, I applied this algorithm to the low-entropy regions produced from five sets of 4D DIC 

microscope images of C. elegans embryos from the one- to 24-cell stages (Table 2.2). As expected, I 

obtained perfect sensitivity for nuclear detection by the selected low-entropy regions. All nuclei 

were detected at any time point, independently of whether or not they were in the process of cell 

division. Specificity was about 6.7 times better than before selection, although it was still far from 

perfect. These results indicate that forward tracking effectively selects low-entropy regions that can 

actually detect nuclei. 
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Figure 2.5 Overview of forward and backward trackings. Low-entropy 

regions selected by forward tracking are shown in the left column and those 

selected by backward tracking after the selection by forward tracking are 

shown in the right column. These low-entropy regions (white) are overlaid on 

their corresponding input images. Solid arrows represent the tracking of low-

entropy regions. The broken arrow represents a dead-end branch of tracking. 

 

2.2.7 Further selection of low-entropy regions using object-tracking algorithm in the 

backward direction of time 

To further select low-entropy regions, I used another tracking algorithm. This algorithm, called 

backward tracking, used the same recursive processes as forward tracking, with the exception of the 

direction of tracking, i.e., it tracked nuclei in the backward direction of time (Figure 2.5). I expected 

that this backward tracking would be effective for selecting low-entropy regions after forward 

tracking, because forward tracking usually creates many dead-end branches (Figure 2.5), which 
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consist of low-entropy regions that do not detect nuclei. Backward tracking selected low-entropy 

regions that were not included in these dead-end branches (Figure 2.5). 

 

Backward tracking was composed of the following two recursive processes. First, a low-entropy 

region in focal plane f at time point t is selected if the region overlaps with a region that has been 

selected in either focal plane f – 1 or f + 1 at time point t. Second, a low-entropy region in focal 

plane f at time point t is selected if the region overlaps with a region that has been selected in focal 

plane f at time point t + 1. Manual selection of low-entropy regions at the last time point triggers the 

processes. 

 

To examine whether backward tracking is effective for selection of low-entropy regions after 

forward tracking, I applied backward tracking to the five sets of low-entropy regions selected by 

forward tracking (Table 2.2). Again, I obtained perfect sensitivity for nuclear detection by low-

entropy regions selected by backward tracking. All nuclei were detected at any time point 

independently of whether or not they were in the process of cell division. Sensitivity was markedly 

better than before backward tracking, although it was still far from perfect. These results indicate 

that backward tracking is effective for selection of low-entropy regions after forward tracking. 

 

2.2.8 Excellent selection of low-entropy regions using object-tracking algorithm, 

depending on the extent of overlap between two regions 

The very high sensitivity but far lower perfect specificity (0.56 in average) of low-entropy regions 

selected by the combination of forward and backward trackings motivated me to develop a process 

that would more effectively select low-entropy regions that could detect nuclei. To develop this 

process, I used more detailed spatial and temporal information on the nucleus. In terms of more 

detailed spatial information, I expected the nucleus to be detected by several low-entropy regions, 

each of which overlapped to a large extent with one of the others in an adjacent focal plane at the 

same time point, because the 3D shape of the nucleus is usually simple. Therefore, a low-entropy 

region would become more likely to detect a nucleus when the region overlapped to a large extent 

with a region that detected the nucleus in an adjacent focal plane at the same time point. In terms of 

more detailed temporal information, I expected that a nucleus would be detected by several low-

entropy regions, each of which overlapped to a certain extent with another in the same focal plane at 

two adjacent time points, because the nucleus usually moves much less than a distance equal to its 

diameter within the time equal to the interval between two adjacent time points. Therefore, a low-

entropy region would become more likely to detect a nucleus when the region overlapped with a 

region that detected the nucleus in the same focal plane at two adjacent time points, and when both 

regions overlapped by a large extent. 
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To select low-entropy regions using this more detailed spatial and temporal information, I introduced 

a minimum overlap ratio to the forward and backward trackings. The minimum overlap ratio 

between two low-entropy regions was defined as the smallest ratio of the number of pixels shared by 

these two regions to the number of pixels making up each region. Thus, when the minimum overlap 

ratio between two overlapping regions increases, the two regions overlap to a greater extent, i.e., the 

two regions are more likely to detect the same nucleus. In the forward and backward trackings, I 

used this minimum overlap ratio to select pairs of low-entropy regions that overlapped to an extent 

greater than a prefixed value—i.e., pairs of low-entropy regions that were more likely to detect the 

same nucleus than a prefixed likelihood. 

 

Forward tracking with a minimum overlap ratio was composed of the following two recursive 

processes. First, a low-entropy region in focal plane f at time point t is selected if the region overlaps 

with a region that has been selected either at focal plane f – 1 or f + 1 at time point t by a minimum 

overlap ratio more than the threshold Tf. Second, a low-entropy region in focal plane f at time point t 

is selected if the region overlaps with a region that has been selected in focal plane f at time point t – 

1 by a minimum overlap ratio more than the threshold Tt. Manual selection of a low-entropy region 

at time point 0 triggers the processes in the same way as with the original forward tracking.  

 

Backward tracking with a minimum overlap ratio is composed of the same recursive processes as 

forward tracking with a minimum overlap ratio, except that the direction of tracking is reversed—i.e., 

it tracks nuclei in the backward direction of time in the same way as with the original backward 

tracking. Manual selection of low-entropy regions at the last time point triggers the processes in the 

same way as with the original backward tracking. I expected that, as Tf and Tt increased, the selected 

low-entropy regions would become more likely to detect nuclei. 

 

1 pixel‡ 0.48 (0.06) 0.54 (0.11) 0.56 (0.11) 0.56 (0.10) 0.58 (0.10) 0.59 (0.10)
30% 0.57 (0.08) 0.69 (0.11) 0.74 (0.11) 0.78 (0.10) 0.84 (0.09) 0.87 (0.07)
50% 0.66 (0.11) 0.79 (0.11) 0.84 (0.08) 0.87 (0.07) 0.90 (0.06) 0.94 (0.03)
70% 0.74 (0.12) 0.86 (0.08) 0.90 (0.07) 0.93 (0.05) 0.94 (0.05) 0.97 (0.03)
90% 0.83 (0.10) 0.93 (0.04) 0.95 (0.03) 0.98* (0.01*) 0.99* (0.01*) 1.00* (0.00*)
1 pixel‡ 0.56 (0.08) 0.62 (0.13) 0.64 (0.13) 0.65 (0.12) 0.67 (0.13) 0.69 (0.13)
30% 0.70 (0.10) 0.83 (0.12) 0.87 (0.09) 0.90 (0.07) 0.93 (0.05) 0.95 (0.03)
50% 0.82 (0.12) 0.91 (0.07) 0.93 (0.05) 0.95 (0.05) 0.97 (0.04) 0.98 (0.02)
70% 0.87 (0.11) 0.96 (0.05) 0.97 (0.04) 0.99 (0.02) 0.99 (0.01) 1.00 (0.00)
90% 0.93 (0.08) 0.99 (0.01) 1.00 (0.00) 1.00* (0.00*) 1.00* (0.00*) 1.00* (0.00*)

Table 2.4 Specificity of nuclear detection by low-entropy regions selected by advanced
forward and backward trackings

TtTf

Forward and
backward trackings

Forward tracking

1 pixel† 4% 8% 12% 16% 20%

Data are mean and (SD) for five sets of 4D DIC microscope images of a C. elegans embryo from the one- to 24-cell stages. *Data are for four sets of
DIC microscope images, because no low-entropy regions were selected in one image set. †Low-entropy regions were selected when they shared at
least one pixel with regions already selected in the same focal plane at an adjacent time point, i.e., the same condition as used for the original
forward and backward trackings. ‡Low-entropy regions were selected when they shared at least one pixel with regions already selected in an adjacent
focal plane at the same time point, i.e., the same condition as used for the original forward and backward trackings.
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To examine whether the combination of forward and backward trackings with minimum overlap 

ratio (hereafter called advanced forward and backward trackings) would more effectively select low 

entropy regions than a combination of the original forward and backward trackings, I applied this 

combination of advanced forward and backward trackings to the low-entropy regions produced from 

five sets of 4D DIC microscope images of C .elegans embryos from the one- to 24-cell stages. 

Various sets of Tf and Tt were examined (Table 2.3 and Table 2.4). As expected, as Tf and Tt 

increased, the specificity of detection by the selected low-entropy region increased, whereas the 

sensitivity of detection by the region decreased. I found many sets of Tf and Tt that provided very 

high specificity (= 1.0), and several of them also provided perfect sensitivity (for example, Tf = 70% 

and Tt = 4% in Table 2.4). In this set of Tf and Tt, the selected low-entropy regions nearly perfectly 

detected all nuclei at any time point, independently of whether or not the nuclei were in the process 

of cell division. These results indicate that the combination of advanced forward and backward 

trackings more effectively selected low-entropy regions than did the combination of original forward 

and backward trackings. When an optimal set of Tf and Tt was applied, the combination of advanced 

forward and backward trackings nearly perfectly selected low-entropy regions that could detect 

nuclei. 

 

2.3 Discussion 

2.3.1 Less sensitivity of this system to differences in image quality than that of Yasuda et 

al.’s system 

This system is less sensitive than Yasuda et al.’s system to differences in image quality (Yasuda et 

al., 1999). The difference in local image entropy (the image texture measure used in the new system) 

between nucleus and cytoplasm is remarkably greater than that in the image texture measure used in 

Yasuda et al.’s system (hereafter called Yasuda et al.’s measure) (Figure 2.3). The difference in 

local image entropy at the boundary between nucleus and cytoplasm is remarkably greater than that 

in Yasuda et al.’s measure. 

 

Yasuda et al.’s system (Yasuda et al., 1999) used edge-detection operators, that is, Kirsch and the 

Prewitt operators, to detect nuclei from DIC microscope images. Because these edge-detection 

operators are very sensitive to differences in the intensity of local pixels, the output values of these 

operators varied widely in both the nucleus and cytoplasm. Therefore, application of thresholding 

directly to the images resulting from image conversion using these operators did not effectively 

discriminate between nucleus and cytoplasm. 
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To deal with this problem, Yasuda et al.’s system applied a blur filter to the images resulted from 

image conversion. The combination of the edge-detection operator and the blue filter was the 

Yasuda et al.’s measure. The blur filter reduced the variation of the output values of the edge-

detection operators, so that the thresholding of the resulting images allowed discriminating the image 

textures of the nucleus and the cytoplasm. However, the gradient at the boundary between nucleus 

and cytoplasm becomes easier than that of local image entropy (Figure 2.3). Thus, the nuclear 

detection using Yasuda et al.’s measure was more sensitive to the differences in image quality, so 

that size of nuclear region with Yasuda et al.’s measure would change greater than that of my system 

when the threshold values are changed by the same value. Yasuda et al.’s system therefore required 

laborious hand-tuning of the thresholding each time a new image set was applied. 

 

2.3.2 Advantage of this system 

One major advantage of this system is the use of local image entropy to quantify the appearance of 

the nucleus in the images. Yasuda et al.’s system used edge detection operators to quantify the 

appearance of the nucleus (Yasuda et al., 1999). Because these operators were sensitive to 

differences in image quality (e.g., brightness, contrast) among sets of images, Yasuda et al.’s system 

required laborious hand-tuning of system parameters each time a new image set was used (section 

2.2.4 and section 2.3.1). Local image entropy is not sensitive to differences in image quality among 

sets of images because it represents the smoothness of the image texture (section 2.2.1). Therefore, 

my system can be applied to different image sets without the need to change the system parameters. I 

applied five sets of 4D DIC microscope images to my system, and the system detected the nuclei in 

these sets with similar sensitivity and specificity when I used the same parameter values (Table 2.2). 

This reduced sensitivity to differences in image quality makes my system applicable to research. I 

can apply this system to sets of 4D DIC microscope images of mutant C. elegans embryos (Figure 

2.6) and embryos in which specific genes are silenced by RNA interference (Figure 2.7). 
 

Another major advantage of my system is the use of object-tracking algorithms to examine all 

regions with the features of the image texture of the nucleus (i.e., low local image entropy) in a set of 

4D DIC microscope images and to select regions that can actually detect nuclei. A DIC microscope 

image of a C. elegans embryo contains many regions that have similar (smooth) image textures to 

that of the nucleus but that do not actually correspond to the nucleus, such as the boundaries between 

cells and the spaces between the embryo and the eggshell (Figure 2.4). Thus, in addition to image 

texture, other features of the nucleus are needed to completely distinguish the nucleus. Yasuda et 

al.’s system used the (round) shape of the nucleus that was not in the process of cell division in 

addition to the feature of image texture, as quantified by edge detection operators (Yasuda et al., 

1999). Yasuda et al.’s system could not detect nuclei in the process of cell division. The object-
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tracking algorithm in my system uses spatial and temporal information on the nucleus, and this 

information is independent of the process of cell division. Thus, my system detects all nuclei—

whether or not the cell is dividing—at every time point from one- to 24-cell stages. This continuous 

detection of nuclei is a great help in following the CDP. 

 

 

 
Figure 2.6 Low-entropy regions in a par-1 embryo. Input images of a par-1 

embryo are shown in the left column and low-entropy regions (black) are 

shown in the right column. Bar is 10 µm. 
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Figure 2.7 Low-entropy regions in a tba-2(RNAi) embryo. Input images are 

shown in the left column and low-entropy regions (black) are shown in the 

right column. Bar is 10 µm. 

 

My system effectively detected nuclei over a markedly longer developmental period than Yasuda et 

al.’s system did, i.e., from the one- to 24-cell (Table 2.3 and Table 2.4) stages compared with only 

the two- to eight-cell stages (Yasuda et al., 1999). This extension of the period of effective nuclear 

detection primarily results from the very high sensitivity of nuclear detection by low-entropy regions 

before forward and backward trackings (Table 2.2). The sensitivity and specificity of nuclear 

detection by these “original” low-entropy regions depend on the parameters used to produce the 

regions (i.e., window size and entropy threshold): the higher the sensitivity, the lower the specificity. 

My system uses a set of values for these parameters that provides very high sensitivity and very low 

specificity of nuclear detection by the original low-entropy regions (Table 2.2), because subsequent 

forward and backward trackings effectively distinguish those regions that actually detect nuclei from 

those that do not. 
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Yasuda et al.’s system used a two-step strategy similar to my system: i.e., regions that had the image 

texture of the nucleus were produced using edge detection operators, and from these “likely nuclear” 

regions, those that actually detected nuclei were selected using the shape of the nucleus. The 

sensitivity and specificity of nuclear detection by these “original” likely nuclear regions depended on 

the parameters used to produce the regions. However, the shape-dependent selection of likely 

nuclear regions was far less effective than the selection of low-entropy regions by forward and 

backward trackings. Thus, Yasuda et al.’s system used a set of parameter values that provided 

markedly lower sensitivity and markedly higher specificity of nuclear detection by the original likely 

nuclear regions than by the original low-entropy regions. In the current study, I found very high 

sensitivity of nuclear detection by the original low-entropy regions up to the 44-cell stage (data not 

shown). Thus, improvement in the selection of low-entropy regions will further extend the period of 

effective nuclear detection. I am developing an improved system that uses both a tracking algorithm 

and the known shape and size of nuclei in non-dividing cells to select low-entropy regions. 

 

Fluorescent labeling of nuclei is a method that has recently been developed for identifying the 

positions of the nuclei in living C. elegans embryos (Kelly et al., 1997; Praitis et al., 2001). With 

this method, the genetic information of an embryo is artificially modified so that the embryo 

expresses nuclear protein fused with fluorescent protein, such as histone H2B fused with green 

fluorescent protein (GFP) (Praitis et al., 2001); the embryo is illuminated by excitatory light (e.g., 

blue or UV light for GFP), and the expressed fusion protein produces light of a specific color (e.g., 

green for GFP). Because the nuclei are labeled with a specific color, detection of the nuclei is much 

easier than that using the DIC microscope. However, the development of the embryo expressing the 

fusion protein may differ from that of the intact embryo because of the presence of GFP or the 

modification of genetic information (Fire, 1986; Liu et al., 1999; Zhang et al., 2002). Fluorescent 

labeling can be used to visualize nuclei for a markedly shorter period than with the DIC microscope 

because of photobleaching: i.e., the intensity of fluorescence of the fusion protein decreases because 

of exposure of the protein to the excitatory light (Strome et al., 2001), although the amount of 

photobleaching can be reduced by the use of multiphoton fluorescence imaging (Denk et al., 1990). 

In contrast, the DIC microscope can be used to visualize the nuclei of an intact embryo throughout 

the development of C. elegans. Therefore, to describe the precise position of nuclei in living C. 

elegans embryos, identification of the position of the nucleus using the DIC microscope seems more 

suitable than that using fluorescent labeling of nuclei.  
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2.3.3 Drawback of this system 

A major drawback of my system is the need for manual selection of low-entropy regions at the first 

and last time points. These manual operations may reduce the objectivity and productivity of my 

system, because selection is determined by the operator. However, slight differences in manual 

selection at the first and the last time points does not influence the automated selection of low-

entropy regions in between these points, because the automated selections select all regions that 

overlap with other selected regions in the adjacent focal plane at the same time point or in the same 

focal plane at the adjacent time point. Thus, usually my system objectively detects nuclei in between 

the first and last time points. Manual selection of low-entropy regions at the first and the last time 

points could still reduce the productivity of my system, because these manual selections usually take 

about 10 min. However, my system still markedly increases the productivity of identification of the 

positions of the nuclei in C. elegans embryos, because manual selection of low-entropy regions for 

all time points from the one- to 24-cell stages (56 focal planes × ~120 time points = ~6720 images) 

takes more than 50 h. My system needs about 135 min for computation (120 min for the production 

of low-entropy regions and 15 min for the forward and backward trackings) and 10 min for manual 

operations to detect all the nuclei in a set of 4D DIC microscope images of a C. elegans embryo 

recorded from the one- to 24-cell stages. These times for computation and manual operations are 

acceptable in research. The selection of low-entropy regions at the first and last time points will be 

automated, most likely by using known properties of nuclei, such as the known shapes and sizes of 

nuclei in non-dividing cells. 

 

2.3.4 Limitation of nuclear detection 

The low-entropy regions before selection by the forward and backward trackings failed to detect 

nuclei at around the 44-cell stage or later. Because the window size (10 × 10 pixels) and the 

threshold value (175) used in this experiment appear likely to be optimal for my system, the result 

indicates that the limit of my system is around the 44-cell stage. I believe that this limit comes from 

the reduction in size of the cells during embryogenesis. As the size of the cells decreases during 

embryogenesis, the distance between the nucleus and cell membrane decreases. Usually at around 

the 44-cell stage, some nuclei are positioned so close to the cortex of the embryo that a 10 × 10 pixel 

window cannot produce a high-entropy (> 175) boundary between the nucleus and the image 

background; the texture of the image background is smooth (Figure 2.2), and thus the local image 

entropy in the image background is as low as that in the nucleus. In this situation, the low-entropy 

regions corresponding to the cortically positioned nucleus merge with the low-entropy regions 

corresponding to the image background. Because my system removes the low-entropy regions 

corresponding to the image background, the low-entropy regions produced by my system fail to 

detect the cortically positioned nucleus. To overcome this limitation, modulation of the window size 
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and/or the threshold value depending on the embryonic stage and/or position of the nucleus within 

the embryo (central or cortical) might be effective. I observed that low-entropy regions produced 

using a smaller (< 10 × 10 pixel) window size and/or smaller (< 175) threshold value successfully 

discriminated between such cortically positioned nuclei and the image background in the later stages 

of embryogenesis. 

 

2.3.5 Applicability 

This system is applicable to research programs that require high objectivity and/or productivity of 

identification of the positions of the nuclei in C. elegans embryos. Because the sensitivity and 

specificity of nuclear detection in this system depend on the thresholds for minimum overlap ratios 

(Tf and Tt), the values of these thresholds should be specified when the system is applied to a specific 

study. I often use Tf = 70% and Tt = 4%, because sensitivity is often more important than specificity 

in research programs. I applied this system to an automated CDP measurement system for C. elegans 

embryos (Hamahashi et al., 2006) (explained in Chapter 3). In addition, this system has been used to 

measure the positions of the male pronucleus (the sperm-derived nucleus) in a very early C. elegans 

embryo; the measurements were compared with computer simulations to determine the mechanism 

that specifies the positions of the male pronucleus during the very early period of C. elegans 

development (Kimura and Onami, 2005). 

 

2.4 Summary 

In this chapter, I presented a system that I have developed to automate the detection of nuclei in a set 

of 4D DIC microscope images of C. elegans embryo. This system can be applied to multiple image 

sets without the need to change parameter values. This system can detect nuclei that are in and not in 

the process of cell division from fertilization to the onset of gastrulation, i.e., from the one- to 24-cell 

stages. 

 

Methods 

Preparation of 4D DIC microscope images of C. elegans embryos 

The Bristol N2 C. elegans was cultured under standard conditions (Brenner, 1974). An embryo 

immediately after fertilization (before meeting of the female and male pronuclei) was dissected from 

a hermaphrodite and mounted on a 2% agar pad on a glass slide, covered with a coverslip, and sealed 

with petroleum jelly. Nomarski DIC microscope images were obtained using a Leica DMRE 

microscope equipped with an HCX PL APO 100×/1.40 NA objective, whose illumination intensity 

and objective-side Wollaston prism were adjusted to obtain images of the same quality. Digital 
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images of 600 × 600 pixels with 256 gray levels (0.1 µm per pixel) were recorded with an ORCA 

CCD Camera (Hamamatsu Photonics), and the recording system was controlled by IP Lab 3.5 

software (Scanalytics). Digital images of the developing embryo were recorded at 22°C in 56 focal 

planes, with a distance of 0.5 µm between two focal planes, and a set of 56 focal plane images was 

recorded every 40 s for 2 h. 

 

Hardware and software environment 

Because I needed to process many images, low-entropy regions were produced from sets of 4D DIC 

microscope images using a Beowulf-class PC cluster (Sterling et al., 1995) consisting of 48 nodes, 

each of which used a 2 GHz Intel Pentium 4 processor, 1 GB of SDRAM memory, and a 100 Base-

TX Ethernet card. Parallel Virtual Machine software (Sunderam, 1990) was used for 

communications between the nodes. In my implementation, each image in a set of 4D DIC 

microscope images was sent to a node that used a single CPU. The forward and backward trackings 

for selection of low-entropy regions were processed on a single processor PC that used a 2.2 GHz 

Intel Pentium 4 processor and 1 GB of RDRAM memory. The programs were written in C and C++. 
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Chapter 3 Main system: a system measuring 

the pattern of cell divisions 

3.1 Introduction 

Yasuda et al. attempted to develop a system that would measure a CDP in a C. elegans embryo 

(Yasuda et al., 1999). Their system first detects nuclei by producing image regions that are 

candidates of nuclear regions and by selecting nuclear regions from candidates. Then, their system 

identifies a CDP by tracking nuclear region along a time line from 2- to 8-cell stages. Though their 

system identifies a CDP, their system can not measure a timing of cell division. Because their system 

selects nuclear regions based on the roundness of the shape of nuclear region, their system can not 

select nuclear regions whose shapes are not round. Because the shapes of nuclei that are in the 

process of cell division usually are not rounded shaped, their system can not detect such nuclei. 

Therefore, their system can not measure the timing at which the cell division occurs. In addition, the 

maximum cell stage of their tracking is limited under eight-cell stage. Because their system can not 

detect the nuclei that are in the process of cell division, their system can not continue to track nuclear 

regions when nuclei start dividing. To continue to track nuclear regions, their system infers the most 

likely region detecting a daughter nucleus to be tracked from a nuclear region detecting a mother 

nucleus, based on the nearest-neighbor rule of 3D distance and time between nuclear regions. 

Because of their inference basis, their system is hard to infer a proper nuclear region to be tracked, if 

many cells (after the 8-cell stage) divide almost at the same time and/or the distances between cells 

become short. 

 

To measure a CDP of a C. elegans embryo, I first developed a system (Hamahashi et al., 2005) that 

detects nuclei in a set of 4D DIC microscope images of C. elegans embryo from one- to 24-cell 

stages (hereafter this system is called a nuclear detection system (NDS)) (presented in Chapter 2). 

NDS detects nuclei with low-entropy regions (section 2.2.1) that are candidates of nuclear regions 

produced by binarizing the local image entropy (Handmann et al., 2000). Among low-entropy 

regions, nuclear regions and the other image regions (i.e. boundaries between cells and spaces 

between the embryo and the eggshell; hereafter these regions are called non-nuclear regions) are 

involved. NDS, differently from Yasuda et al.’s system, does not use the shapes of nuclear regions to 

select nuclear regions from low-entropy regions, but uses the forward and backward trackings 

(section 2.2.6, section 2.2.7 and section 2.2.8). These trackings allow selecting nuclear regions that 
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detect nuclei that are in and not in the process of cell division. Then, I developed a system that 

measures a CDP of a C. elegans embryo (Hamahashi et al., 2006). 

 

In this chapter, I present a system that measures a CDP in C. elegans embryo from one- to 24-cell 

stages (Hamahashi et al., 2006). This system objectively and productively detects nuclei using 

nuclear regions produced by NDS (Chapter 2). This system first produces nuclear regions from a set 

of 4D DIC microscope images using the basic system. Then, this system identifies the 3-dimensional 

(3D) region of each nucleus by a unit that groups nuclear regions detecting the same nucleus 

(explained in section 3.2.3). Finally, this system tracks units along a time line and outputs a tracking 

trajectory that is the measured CDP. If a unit groups inappropriate nuclear regions, this system 

detects the group and corrects it (such as cuts and/or merges nuclear regions) to make a new group of 

modified nuclear regions (explained in section 3.2.4). If this system inappropriately tracks units 

(nuclei detected by a tracker and a tracked units are different), this system detects this failure and 

corrects it (explained in section 3.2.4). GUIs have been implemented in this system to enable 

manually assisting automated tasks in case those tasks fail. This system allows almost automatically 

measuring a CDP in a C. elegans embryo from one- to 24-cell stages, where the objectivity and 

productivity of the measurement are high. 

 

3.2 Results 

3.2.1 Overview of the main system measuring CDP 

The system, which I have developed (Hamahashi et al., 2006) to measure CDP of C. elegans 

embryos, consists of a 4D DIC microscope system, image analysis software, statistical analysis 

software, and visualization software (Figure 3.1A). The 4D DIC microscope system records a set of 

multifocal time-lapse images of a C. elegans embryo. The image analysis software measures a CDP 

from a set of 4D DIC microscope images. The image analysis software consists of three modules 

designed for nuclear detection, nuclear lineaging, and error-correction. The statistical analysis 

software analyses CDPs among wild-type and mutant embryos using the statistical package R (R-

project). The visualization software visualizes a CDP in a computer display and 3-dimensionally 

rotates the CDP to view from any angle (Figure 3.1B). 
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Figure 3.1 Overview of the system and the visualization software. 

 

3.2.2 Nuclear detection module 

The nuclear detection module (NDM) detects nuclei in a set of 4D DIC microscope images of C. 

elegans embryo (Figure 2.1B) using NDS (Hamahashi et al., 2005) (Chapter 2). NDM is mostly the 

same as NDS, but has a GUI (Figure 3.2). To detect nuclei, NDM produces low-entropy regions 

(Figure 3.3) that are candidates of nuclear regions. These candidates consist of nuclear regions and 

non-nuclear regions. NDM selects nuclear regions from candidates using the forward and backward 

trackings (Hamahashi et al., 2005) (section 2.2.6, section 2.2.7 and section 2.2.8). GUI has been 

implemented to allow manually selecting nuclear regions in case nuclear regions are not selected by 

forward and backward trackings, or allow manually removing remaining non-nuclear regions in case 

non-nuclear regions are selected by the trackings. 
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Figure 3.2 Snapshot of graphical user interface in the nuclear detection 

module. 
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Figure 3.3 Low-entropy regions produced by local image entropy. The 

white lines enclose low-entropy regions. 
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Figure 3.4 Nuclear regions after the removal of non-nuclear regions. The 

white lines enclose nuclear regions. 
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3.2.3 Nuclear lineaging module 

The nuclear lineaging module (NLM) measures a CDP using nuclear regions through two steps 

(detailed procedures of these steps are explained in this section). In the step 1, NLM identifies a 3D 

region of each nucleus. Each 3D region is called a unit that groups nuclear regions that detect the 

same nucleus at each time point. In the step 2, NLM tracks units along a time line to obtain the 

tracking trajectory. This tracking trajectory is the measured CDP. NLM involves the error-correction 

module (ECM) (explained in section 3.2.4) which automatically corrects errors occurred in the step 1 

and 2. 

 

The concept of unit has been specially designed to identify a 3D region of each nucleus, because 

there are complications in this identification using nuclear regions. Usually, several nuclear regions 

detect the same nucleus at a single time point, because the diameter (> 5 µm) is larger than the 

distance between adjacent focal planes (0.5 µm) and NDM produces nuclear regions in focal planes 

for each nucleus. Furthermore, even in a single focal plane, NDM sometimes separately produces 

nuclear regions that detect the same nucleus (Figure 3.5). Among these nuclear regions, NLM had to 

identify nuclear regions that detected the same nucleus. Because each unit groups nuclear regions 

that detect the same nucleus, it can represent a 3D region of each nucleus. Once units are produced, 

CDP is expected to be measured as a tracking trajectory obtained by tracking units along a time line 

from one-cell stage. 

 

 
Figure 3.5 Nuclear regions separately produced by the nuclear detection 

module. The white lines enclose nuclear regions. The nuclear detection module 

separately produced nuclear regions that detected the same nucleus. 

 

Step 1: This step identifies 3D regions of each nucleus using nuclear regions. The nuclear regions 2-

dimensionally detect nuclei in a set of 4D DIC microscope images. To identify 3D regions of 

nucleus, I used spatial information on the nucleus, similarly to the forward tracking algorithm 
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(section 2.2.6). I expected that the nucleus should be detected by several nuclear regions each of 

which would overlap with a region detecting the same nucleus in an adjacent focal plane at the same 

time point, because the radius of the nucleus (> 2.5 µm) was larger than the distance between two 

adjacent focal planes (0.5 µm). Therefore, nuclear regions detecting the same nucleus are expected 

to be produced at almost the same XY-position in focal planes. Thus, this step checked every 

combination of nuclear regions over all focal planes at each time point to find out which nuclear 

regions overlapped when they were projected onto the XY-plane (Figure 3.6A). This step groups 

overlapping regions; each group is called a unit (hereafter each nucleus is considered to be 

“detected” by each unit). 

 

Step 2: This step tracks units along a time line to obtain a tracking trajectory. To track units, I used 

temporal information on the nucleus, similarly to the forward tracking algorithm (section 2.2.6). I 

expected that the nucleus should be detected by several nuclear regions each of which would overlap 

with a nuclear region detecting the same nucleus in the same focal plane at an adjacent time point, 

because the nucleus rarely moves more than a distance equal to its diameter (> 5 µm) within the 

interval between two adjacent time points (40 s). Therefore, a nuclear region would be more likely to 

detect a nucleus than others when the nuclear region overlapped with a nuclear region that detected 

the nucleus in the same focal plane at an adjacent time point. Thus, this step checked every 

combination of nuclear regions, one of which was grouped in a unit Ut at a time point t and the other 

of which was grouped in a unit Ut+1 at the time point t + 1, in each focal plane to find out which 

nuclear regions overlapped when they were projected onto the XY-plane. If nuclear regions overlap, 

Ut and Ut+1 were considered to detect the same nucleus (hereafter this situation is referred to as “Ut 

tracks Ut+1”; Ut and Ut+1 are called a tracker unit and a tracked unit, respectively). 

 

After processing the step 1 and 2, NLM outputs a tracking trajectory of units as the measured CDP. 

In the tracking trajectory, NLM describes the time point, the tracker unit’s ID, the tracked unit’s ID, 

and the 3D position of the tracked unit. In NLM, GUI has been implemented to enable us to 

manually trigger the tracking of units from any unit; the front end of this GUI is the same as that 

implemented in NDM (Figure 3.2). This GUI also enables the step 2 to continue tracking units when 

the step 2 fails to track units automatically. This failure is occurred when no nuclear regions in the 

same focal plane are produced in both Ut and Ut+1, even if Ut and Ut+1 detect the same nucleus, or 

when the nucleus moves more than a distance equal to its diameter within one time interval. 
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Figure 3.6 Step 1 and step 2 in the nuclear lineaging module. (A) Step 1: 

NLM produces units by checking whether nuclear regions in adjacent focal 

planes overlap or not. (B) Step 2: NLM tracks units by checking whether 

nuclear regions in the same focal plane at adjacent time points overlap or not. 

 

3.2.4 Error-correction module 

The error-correction module (ECM) automatically corrects making of units (in the step 1) and 

tracking of units (in the step 2) by referring a resulted tracking trajectory. Because of the design 

concept of unit to obtain a tracking trajectory as a CDP, as described in section 3.2.3, each nucleus 

has to be detected by only one unit, and each unit has to detect only one nucleus. In addition, 

because the CDP is expected to be obtained by tracking units along a tine line from one-cell stage, 

the units have to be tracked properly; in other words, a tracker unit and its tracked unit have to detect 

the same nucleus. However, following three types of errors occurred in step 1 and 2; (1) a nucleus is 

sometimes detected by more than one unit, (2) a unit sometimes detects more than one nucleus, and 

(3) a tracker unit and its tracked unit detect different nuclei. The error (1) occurs because nuclear 

regions that detect the same nucleus are separately produced by NDM (Figure 3.5) and units that 

detect the same nucleus will be separately made. The error (2) occurs because falsely merged nuclear 

regions each of which detects more than two nuclei are produced by NDM (Figure 3.7) and units 

each of which detects more than two nuclei are made. The error (3) occurs because nuclei are 

positioned closely and some nuclear regions that detect different nuclei, falsely overlap. To measure 

CDP, therefore, ECM that automatically corrects those errors was needed. Especially for the error 
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(3), it was conditioned that the tracker unit always tracks both two units, one of which detects a 

different nucleus from that detected by the tracker unit, and the other of which detects the same 

nucleus as that detected by the tracker unit. (This condition is empirically natural because all CDPs 

(N = 23) satisfied this condition.) 

 

 
Figure 3.7 Falsely merged nuclear region produced by the nuclear 

detection module. The white line encloses a nuclear region. The nuclear 

detection module falsely merged nuclear regions that should be separately 

produced. 

 

3.2.4.1 Protocol of error correction 

First, ECM detects an error without discriminating errors (1), (2) and (3). Let  be a unit detecting 

a nucleus A at a time point t. If any error does not present in a tracking trajectory,  should track a 

single unit  when the detected nucleus is not in the process of cell division, or  should track 

two units,  and , when the detected nucleus is in the process of cell division where a' and a'' 

are A’s daughter nuclei. (That is to say, one unit always tracks one or two units if no errors present in 

a tracking trajectory.) Consider the case that the error (1) presents in a tracking trajectory, in which a 

nucleus x at a time point t is detected by more than one unit; hereafter two units such as  and 

 are used for the simplification of explanation.  and  should track the same unit  

(Figure 3.8A). (If  and  track  and  respectively, their tracked units  and  

always track the same unit within a few time points. In other words, except for the set of 4D DIC 

microscope images whose recording is finished at a time point just after a nucleus is detected by 

more than one unit, the units detecting the same nucleus always track the same unit within a few 

time points.) Consider the case that the error (2) presents in a tracking trajectory, in which nuclei x 

and y at a time point t are detected by a single unit . In this case,  and , which detect x 

and y respectively at a time point t – 1, should track . Consider the case that the error (3) 
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presents in a tracking trajectory, in which  detecting a nucleus x at a time point t tracks  

detecting a nucleus y at a time point t + 1. In this case, because of the condition of error (3) described 

in the previous paragraph,  should be tracked by not only  but also  detecting a nucleus y 

at a time point t (Figure 3.8C). Consequently, viewing errors (1), (2) and (3) together, any of errors 

(1), (2) and (3) can be detected, if a case that more than one unit in a time point 

x
tU y

tU 1+

y
tU 1+

x
tU y

tU

τ  track the same 

unit in a time point τ + 1 is detected. (In this dissertation, a unit tracked by more than one unit is 

called “merged unit”, because this unit merges the more than one pathway in a tracking trajectory.) 

 

Next, ECM discriminates the detected error as the error (1), (2) and (3). Usually, several merged 

units are presented in a tracking trajectory. ECM focuses on a merged unit  that presents at the 

earliest time point among all merged units. Then, ECM detects singular units among all units. The 

singular unit is defined as the unit which detects only one nucleus and whose detected nucleus is 

detected by only this unit (the method to detect the singular units is explained in section 

0t
U

3.2.4.2). 

After the detection of singular units, ECM checks whether  and , both of which track , 

detect the same nucleus or not. When either or both of  and  are singular units, ECM 

determines that  and  detect different nuclei. When both  and  are not singular 

units, ECM finds singular units at a time point t
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tracked by  and  respectively, and the other case is that  and  are tracked by the 

same unit . ECM determines that  and  detect the same nucleus when  and 

 are tracked by the same unit . ECM determines that  and  detect different 

nuclei when either or both of  and  are singular units. When both  and  are not 

singular units, ECM finds singular units at a time point t
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ECM uses singular units at the earlier time points than t0 until the completion of this check. 
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Figure 3.8 Overview of the error-correction module. 

 

After the check whether  and  detect the same nucleus or not, ECM starts to discriminates 

the detected error as the error (1), (2) and (3), depending on whether  is a singular unit or not. 

When  and  detect different nuclei, ECM discriminates the error as the error (2) if  is 

not a singular unit, or as the error (3) if  is a singular unit. When  and  detect the same 

nucleus, ECM discriminates the error as the error (1) regardless of whether  is a singular unit or 

not. 
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After the discrimination of the error (1), (2) and (3), ECM corrects the detected error. For the error 

(1), ECM re-groups nuclear regions involved in  and  into a single unit. For the error (2), 

ECM cuts  using a cutting plane and makes two units which should be tracked by  and 

 respectively; the cutting plane is determined such that its normal is the line segment between 

the centroids of  and , and the cutting position is determined as the position where the size 
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of the cross-section of  become the smallest. For the error (3), ECM removes the tracking 

pathway of either between  and  or between  and . The determination of removed 

pathway is as follows: ECM calculates the number of pixels shared by image regions in each focal 

plane involved in  and . Similarly, ECM calculates that of  and . After these 

calculations, ECM determines that the tracking pathway between units whose number of shared 

pixels is smaller than that of the other two units should be removed. 
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3.2.4.2 Detection of the singular unit 

I empirically found that the nuclei that are not in the process of cell division are mostly detected by 

singular units. The 3D shapes of these nuclei look sphere (0 µm, in Figure 3.4). Thus, I expected to 

detect singular units, if spherical units are detected. To detect spherical units, I introduced two ratios 

which measure the sphericity of unit; one is defined as a ratio of the number of pixels in regions that 

are part of a sphere to the ideal number of pixels that are part of the sphere, and the other is defined 

as a ratio of the number of pixels in regions not part of the sphere to the ideal number of pixels 

forming part of the sphere. The radius of the sphere is determined as the radius of the minimal 

enclosing circle (Welzl, 1991), and its center is determined as the centroid of a special region (as 

described follows) in each unit. The special region is determined as the largest one in the middle 

focal plane or planes among all the focal planes in each unit; a single focal plane is used when the 

number of focal planes in the unit is odd, or two focal planes are used when the number of focal 

planes in the unit is even. I searched the thresholds for these two ratios to detect every error in 

tracking trajectories (N = 5). I found that every merged unit was detected when the former ratio was 

larger than 0.37 and the latter ratio was smaller than 0.05. Therefore, ECM determines such units as 

singular units. Besides, GUI has been implemented in ECM, to enable a manual detection of singular 

units in case singular units are not enough to detect all merged units in a tracking trajectory. 

 

3.2.5 Required time for measuring a CDP 

To examine whether the system reduces the time and labor in the measurement of CDP, I compared 

the required times of the system and human for obtaining a CDP from a set of 4D DIC microscope 

images of C. elegans embryo from one- to 24-cell stages (Table 3.1). The system took about 2 hours 

to produce low-entropy regions. Because human would not be able to objectively produce low-

entropy regions, human’s required time for production of low-entropy regions was not measured 

(imaginably, the time would be much more than 2 hours). The system took about 25 minutes 

(including 10 min for manual operations to trigger the forward and backward trackings) to remove 

non-nuclear regions from low-entropy regions, and human took more than 50 hours to remove non-

nuclear regions from low-entropy regions. The system took about 12 min (including the error 
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correction) to track units, and human took more than 6 hours to track units in which a human used a 

mouse, clicked nuclear regions to make units and related a tracker- and tracked-units (not including 

the error correction). 

 

Task System Human
Production of low-entropy regions 2 h
Removal of non-nuclear regions 25 min > 50 h
Tracking of units 12 min > 6 h

Table 3.1 Required time for measuring a cell division pattern of wild-
type embryo from one- to 24-cell stages

 
 

3.2.6 Verification of this system 

 

From This x y z
(unit id) (unit id) (µm) (µm) (µm)

30 29000 30000 24.9 27.9 10.8
30 29001 30001 44.0 35.2 10.5
31 30001 31000 41.2 37.5 11.0
31 30000 31001 26.5 24.2 12.6
32 31000 32000 40.1 38.5 11.5
32 31001 32001 26.0 24.1 11.7
33 32001 33000 27.2 24.1 11.4
33 32000 33001 39.8 38.1 12.1
34 33000 34000 28.3 23.8 11.5
34 33001 34001 38.7 38.3 12.0
35 34000 35000 20.6 24.9 10.7
35 34001 35001 36.8 37.9 12.0
35 34000 35002 35.7 22.9 12.9

Time point

The origin of the XY plane was defined as the top left corner of the
image. The origin of the Z axis was defined as the first focal plane of the
set of images of 4-dimensional differential interference microscope.

Figure 3.2 A part of a cell division pattern from 2- to 3-cell stages of
a wild-type embryo

 
 

To verify whether this system can measure CDP, I applied multiple number of CDPs (N = 23) of 

wild-type embryos to this system. The system measured a CDP from one- to 24-cell stages for each 

set of 4D DIC microscope images. Each entry in CDP consisted of a time point, tracker unit’s ID, 

tracked unit’s ID, and the 3D position of the tracked unit (Table 3.2). To confirm that the resulted 

CDP was proper, I checked about following two matters. The first matter was whether each unit was 

properly produced after the measurement of CDP. This matter checked whether at least but no more 

than one unit was produced for each nucleus at each time point. The second matter was whether 

units were properly tracked. This matter checked whether nuclei of tracker unit and tracked unit 

were the same (if in the process of cell division, a mother nucleus and its daughter nucleus were 

regarded as the same nucleus). Checking by looking through every image one by one (the number of 
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images was about 154,560; each set of images consisted of about 6,720 images), I confirmed that all 

CDPs from one- to 24-cell stages were proper about both matters (Table 3.3). 

 

Image set Proper
Set 1 Y
Set 2 Y
Set 3 Y
Set 4 Y
Set 5 Y
Set 6 Y
Set 7 Y
Set 8 Y
Set 9 Y
Set 10 Y
Set 11 Y
Set 12 Y
Set 13 Y
Set 14 Y
Set 15 Y
Set 16 Y
Set 17 Y
Set 18 Y
Set 19 Y
Set 20 Y
Set 21 Y
Set 22 Y
Set 23 Y

Table 3.3 Verification of measured cell division patterns
from one- to 24-cell stages of wild-type embryos

"Y" means that the cell division pattern from 1- to 24-cell
stages was proper.  

 

3.2.7 Comparison of CDPs of wild-type embryo with those of par-1 embryos 

To demonstrate a possibility of a quantitative phenotype analysis of CDPs, I compared CDPs of 

wild-type embryos with those of mutant embryos. For the demonstration, I used par-1 mutant that is 

known to show different phenotypes in timing of cell divisions and size of cells in 2-cell stage from 

those of wild-type embryo (Kemphues et al., 1988). First, I focused on the timing of cell divisions. 

In the wild-type embryo, the anterior cell in the 2-cell stage (celled AB) always divides earlier than 

the posterior cell (called P1) does (Deppe et al., 1978). In the 4-cells stage, AB’s daughter cells 

(called ABa and ABp) always divide earlier than P1’s daughter cells (called EMS and P2) (Deppe et 

al., 1978). On the other hand, in par-1 embryo, cells in 2-cell and 4-cell stages divide synchronously 

(Kemphues et al., 1988). Therefore, if the time period from the time point at which the 2-cell-stage 

embryo started dividing to the time point at which the embryo became 4-cell stage was measured, it 

was expected that the time period of wild-type should be shorter than that of par-1. Similarly, if the 

time period from time point at which the 4-cell-stage embryo started dividing to the time point at 
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which the embryo becomes the 8-cell stage was measured, it was also expected that the time period 

of wild-type should be shorter than that of par-1. Thus, I used CDPs of wild-type and par-1 embryos, 

measured those time periods of wild-type embryos (N = 23) and par-1 embryos (N = 9), and 

compared them statistically. In this comparison, the normality among time periods was checked by 

the Shapiro-Wilk’s normality test. If the normality was not rejected, the significance was examined 

by the Student’s t test; otherwise, it was examined by the Mann-Whitney’s U test. From 2- to 4-cell 

stages, I found that the time period of wild-type was not significantly shorter than that of par-1 (Pt > 

0.9 in Table 3.4). On the other hand, from 4- to 8-cell stages, I found that the time period of wild-

type was significantly shorter than that of par-1 (Pu < 0.0001 in Table 3.4). 

 

wt par-1
(time point ± sd) (time point ± sd)

2 - 4 -0.33 ± 2.60 -0.39 ± 2.73 P t  > 0.9
4 - 8 12.4 ± 2.68 5.22 ± 2.15 P u  < 0.0001

Pt was obtained by the Student's t test. Pu was obtained by the Mann-Whitney's
U test. The t test was used when the distribution was assumed to be a normal
distribution (by the Shapiro-Wilk test); otherwise the U test was used.

Cell stage Significance

Table 3.4 Time periods between cell stages in wild-type and par-1 embryos

 
 

 
Figure 3.9 Images of wild-type and par-1 embryos in 2- and 4-cell stages. 

 

Next, I focused the size of cells, AB and P1, in wild-type and par-1 embryos. The size of AB is 

larger than that of P1 in wild-type, but they are almost the same in par-1 (Kemphues et al., 1988) 

(Figure 3.9). According to this, it was expected that this difference in cell size should affect the 

arrangement of cells in the 4-cell-stage embryo. Thus, I used CDPs of wild-type (N = 23) and par-1 

(N = 9), calculated the distance between centroids of nuclei, averaged each distance in wild-type 

embryos and in par-1 embryos respectively, and compared the averaged distances. Consequently, I 

found that the distances between ABa and ABp and between ABp and EMS in wild-type embryos 

were significantly shorter than those in par-1 (P < 0.01 in Table 3.5). 
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wt (ave) par-1 (ave)
(µm ± sd) (µm ± sd)

ABa-ABp 19.8 ± 1.0 21.2 ± 1.4 P u  < 0.01
ABa-EMS 21.5 ± 1.2 21.0 ± 1.8 P t  > 0.4

ABa-P2 36.5 ± 1.2 35.2 ± 2.1 P t  > 0.09
ABp-EMS 18.3 ± 1.3 21.6 ± 2.0 P t  < 0.001

ABp-P2 19.9 ± 0.9 20.5 ± 1.1 P t  > 0.1
EMS-P2 21.0 ± 1.6 20.1 ± 1.9 P t  > 0.2

Distance

P t was obtained by the Student's t test. Pu was obtained by the Mann-Whitney's
U test. The t test was used when the distribution was assumed to be a normal
distribution (by the Shapiro-Wilk test); otherwise the U test was used. Distances
were measured at the middle time point of the 4-cell stage of each embryo.

Table 3.5 Comparison of distance between nuclei of 4-cell stage in wild-type
and par-1  embryos

Significance

 
 

3.3 Discussion 

3.3.1 Advantage of this system 

I consider that this system has three major advantages. The first advantage is that this system 

objectively measures the positions of nuclei in a set of 4D DIC microscope images. Because the 

positions of nuclei have been measured by eye observation (Sulston et al., 1983; Schnabel et al., 

1997; Heid et al., 2002), the measured positions of nuclei have been affected by human’s 

subjectivity. To eliminate such subjectivity, in this system, tasks to measure positions of nuclei have 

been automated. The nuclear detection is automated in NDM that uses NDS (Hamahashi et al., 

2005). Identification of 3D regions of nuclei is automated in NLM introducing an idea of unit that 

groups nuclear regions detecting the same nucleus (section 3.2.3). If errors present in making and 

tracking units, ECM automatically corrects errors (section 3.2.4). Though this system needs some 

manual operations, the human subjectivity in such operations has little affect on the objectivity in 

measuring positions of nuclei. In NDM, human selects nuclear regions at the first and last time 

points of each set of 4D DIC microscope images to trigger the forward and backward trackings. 

After this manual selection, nuclear regions are selected from whole low-entropy regions at those 

time points by objectively examining the overlap of low-entropy regions (section 2.2.6, section 2.2.7 

and section 2.2.8). In NLM, human also selects nuclear regions at the first time point of each set of 

4D DIC microscope images to trigger the step 1 that makes units each of which groups nuclear 

regions detecting the same nucleus (section 3.2.3). In this step, after the manual selection, units are 

made by objectively examining the overlap of nuclear regions. Consequently, all processes in 

relation to the measurement of nuclear positions are objectively operated; this system can objectively 

measure the positions of nuclei.  
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The second advantage is that this system reduces the time and labor in the measurement of CDP. 

Because CDP has been measured manually (Sulston et al., 1983; Schnabel et al., 1997; Heid et al., 

2002), the measurement has required a lot of time and labor. To address this problem, most of tasks 

in measurement of CDP have been automated. The required time of this system was about 160 

minutes to measure a CDP, but that of human was more than 50 hours (section 3.2.5). Though this 

system needed manual operations to trigger the forward and backward trackings in NDS and to 

trigger the tracking of units, these manual operations took about 10 minutes (section 3.2.5). These 

results indicate that the system solves the problem of time and labor in the measurement of CDP. 

 

The third advantage is that this system measures the timing of cell division (the precise timing of cell 

division is difficult to be measured by this system, which is a drawback discussed in the section 

3.3.2). Yasuda et al.’s system (Yasuda et al., 1999) is hard to measure the timing of cell division. 

Their system detects nuclei with two processes, similarly to my system; one is the production of 

image regions that are candidates of nuclear regions, and the other is the selection of nuclear regions 

from candidates. In this selection process, Yasuda et al.’s system selects nuclear regions using the 

roundness of candidates. Thus, the nuclear regions, detecting nuclei that are in the process of cell 

division, can not be selected by their system, because the shapes of such nuclei often become long 

(320 s in Figure 2.1B). If the nucleus that is in the process of cell division is not detected, the timing 

of cell division can not be measured. To measure the timing of cell division, this system has been 

designed to detect nuclei that are in the process of cell division. In the detection of nuclei, NDM uses 

NDS (Hamahashi et al., 2005) which can detect nuclei that are in and not in the process of cell 

division; in the selection of nuclear regions, NDM does not use the shape of nuclear regions for a 

criterion of the selection, but it tracks the nuclear regions examining whether nuclear regions overlap 

or not. NLM makes units and tracks them, which is independent of whether a nucleus is in or not in 

the process of cell division. Consequently, my system can measure the timing of cell division. 

 

3.3.2 Drawback of this system 

The major drawback of this system is a difficulty of measuring the precise timing of cell division. 

Though this system told the difference of time periods from 4- to 8-cell stages (about 9 minutes) 

among wild-type and par-1, it did not tell the difference from 2- to 4-cell stages (about 1 minute) 

(Table 3.4); the timing of cell division of AB was measured earlier than that of P1 in several sets of 

4D DIC microscope images (8/23). Because of the limitation of experimental environments, the time 

interval between time points of 4D DIC microscope images was settled as 40 seconds. This 

limitation was based on the maximum performance of the microscope used in this system, to record 

an embryo into multi-focal images of 56 focal planes with a distance of 0.5 µm between two focal 

planes at each time point. Besides, this system defines the timing of cell division as the time point 
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when a unit tracked two units, which made the measured timing imprecise. During the tracking 

process, when a nucleus was in the process of cell division, sometimes a unit once tracked two units, 

and the two units tracked the same unit. The timing of cell division was therefore determined when a 

unit finally tracked two units. Thus, the measured timing of cell division became vague and was hard 

to match the precise timing at which actually what occurs in the process of cell division. This 

problem would be resolved by shortening the interval of time points in recording the 4D DIC 

microscope images and changing the threshold value of local image entropy to produce more broken 

nuclear regions than the current NDM does. 

 

3.3.3 Measurable cell stage exceeding that of Yasuda et al.’s system 

The measurable cell stage of my system exceeds that of Yasuda et al.’s system (Yasuda et al., 1999); 

my system can measure CDP from one- to 24-cell stages (Table 3.3), but their system is hard to 

measure CDP after 8-cell stage. Though their system can track nuclear regions whose detecting 

nuclei are not in the process of cell division, it can not track nuclear regions whose detecting nuclei 

are in the process of cell division, because it can not detect such nuclei (as described in the previous 

paragraph). When a nucleus is in the process of cell division, their system focuses on an nuclear 

region at the final time point among all nuclear regions which have been already tracked as detecting 

the same nucleus, regards the focused region as the region detecting a mother nucleus, and searches 

the nearest-neighbor nuclear regions as the regions detecting daughter nuclei, using the 3D 

Euclidean distance and the time points between nuclear regions. This method would be expected to 

become hard to track nuclei as the embryo grows. For example, in the 4-cell-stage wild-type embryo, 

new four cells (called ABal, ABar, ABpl and ABpr) are born almost synchronously after divisions of 

ABa and ABp. About 7 minutes later, EMS divides and new two cells (called MS and E) are born. 

Then, about 9 minutes later, ABal, ABar, ABpl and ABpr divide almost synchronously. (The timings 

of cell divisions described here were measured in my experiments; they are defined as the timing 

when a unit tracks two units in a tracking trajectory. Each timing was the averaged value of wild-

type embryos (N = 23).) In this manner, as the embryo grows and the number of cells increases, 

more cells divide almost at the same time and the distance between nuclei gets shorter, so that 

Yasuda et al.’s system become harder to infer the nearest-neighbor nuclear regions detecting 

daughter nuclei from a nuclear region detecting a mother nucleus. To get rid of this problem, this 

system has been designed to track units (nuclei) successively along a time line without giving up 

detecting nuclei that are in the process of cell division. NDM in this system uses NDS (Hamahashi et 

al., 2005) which can detect all nuclei that are in and not in the process of cell division from one- to 

24-cell stages. Thus, NLM can make units that detect nuclei that are in the process of cell division. 

In the process of tracking units, if the nucleus is in the process of cell division, the nuclear region 

detecting a mother nucleus whose shape is a long shape overlaps the nuclear region detecting a 
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daughter nucleus. Thus, to track units, NLM does not have to infer nuclear regions detecting 

daughter nuclei at several time points later from a nuclear region detecting their mother nucleus, but 

does check whether nuclear regions in adjacent time points overlap or not. This method would allow 

tracking units if the number of cells increases (more than 8-cell stage) and many cells divide at 

almost the same time. According to the difference of tracking methods, NLM would measure CDP 

until the longer cell stage than Yasuda et al.’s system does. 

 

The maximum cell stage that my system can measure would be currently limited until about the 44-

cell stage. This limitation comes from the limitation of nuclear detection using NDS (the limitation 

of nuclear detection is discussed in section 2.3.4). The system presented in this chapter has GUIs that 

enable measuring a CDP if the automated measurement fails. Thus, the maximum cell stage of 

nuclear detection is the limitation of measurable cell stage of this system. As discussed in section 

2.3.4, the limitation of nuclear detection would be overcome. 

 

3.3.4 Applicability 

This system has already been applied to the other researches, in which the objectivity and 

productivity are required. The high objectivity and productivity of this system are used in a large-

scale gene-knockout analysis of CDPs in C. elegans (Onami et al., 2001; the related works has been 

presented by Onami S., Urai M., Masuda E., Nagai Y., Oguro T., Kimura A. and Hamahashi S. at a 

conference named “The 27th Annual Meeting of the Molecular Biology Society of Japan” held in 

2004, by Kyoda K., Hamahashi S., Urai M., Masuda E., Nagai Y., Oguro T. and Onami S. at a 

conference named “The 15th Biennial International C. elegans Conference” held in 2005 and by 

Kyoda K., Hamahashi S., Urai M. and Onami S. at a conference named “The 28th Annual Meeting 

of the Molecular Biology Society of Japan” held in 2005). The analysis using the objective and 

productive measurement of CDPs will provide new opportunities for bioinformatics in studies of the 

development of multicellular organisms (Braun et al., 2003).  

 

When the shapes and/or positions of nuclei themselves are the targets to be measured, this system 

should be carefully used. Because the angle makes a substantial artifact in DIC microscope images 

(Preza et al., 1999), a consideration of the DIC shear angle would be required to calculate the precise 

3D shape and/or position of a nucleus detected by nuclear regions. 

 

When the cell fusion is followed, this system will need an additional extension. This system follows 

cell divisions along a time line using an idea of unit that detects 3D regions of each nucleus (3.2.3). 

This idea may also allow following cell fusions. However, the current system is hard to follow them 

because ECM confuses the cell fusion and the errors occurred in step 1 and 2 in the NLM (explained 
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in section 3.2.4). ECM detects errors when a unit tracks more than two units in a tracking trajectory 

(section 3.2.4.1). The cell fusion will cause the same situation in tracking trajectory. To follow the 

cell fusion, the more sophisticated idea of error correction will be required than that of current 

system. 

 

3.4 Summary 

In this chapter, I presented a system that objectively and productively measures a CDP in C. elegans 

embryo. This system consists of NDM, NLM and ECM. NDM is developed base upon NDS 

(Chapter 2). NLM identifies the 3D region of each nucleus by unit that groups nuclear regions, 

tracks units along a time line, and outputs a tracking trajectory that is the measured CDP (section 

3.2.3). ECM automatically corrects nuclear regions to make each nuclear region detect a single 

nucleus (section 3.2.4). This system allows measuring CDP from one- to 24-cell stages (Table 3.3). 

This system can detect nuclei that are both in and not in the process of cell division, so that this 

system can measure the timing of cell division (Table 3.4). Because most of tasks in this system 

have been automated, this system objectively and productively measures a CDP. In case automated 

tasks fail, GUIs enable manually assisting the automated tasks to continue the measurement. 

 

Methods 

Preparation of 4D DIC microscope images of C. elegans embryos 

The Bristol N2 C. elegans was cultured under standard conditions (Brenner, 1974). An embryo 

immediately after fertilization (before meeting of the female and male pronuclei) was dissected from 

a hermaphrodite and mounted on a 2% agar pad on a glass slide, covered with a coverslip, and sealed 

with petroleum jelly. Nomarski DIC microscope images were obtained using a Leica DMRE 

microscope equipped with an HCX PL APO 100×/1.40 NA objective, whose illumination intensity 

and objective-side Wollaston prism were adjusted to obtain images of the same quality. Digital 

images of 600 × 600 pixels with 256 gray levels (0.1 µm per pixel) were recorded with an ORCA 

CCD Camera (Hamamatsu Photonics), and the recording system was controlled by IP Lab 3.5 

software (Scanalytics). Digital images of the developing embryo were recorded at 22°C in 56 focal 

planes, with a distance of 0.5 µm between two focal planes, and a set of 56 focal plane images was 

recorded every 40 s for 2 h. 

 

Hardware and software environment 

The task in NDM to produce low-entropy regions was implemented in a Beowulf-class PC cluster 

(Sterling et al., 1995) consisting of 48 nodes, each of which used a 2 GHz Intel Pentium 4 processor, 
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1 GB of SDRAM memory, and a 100 Base-TX Ethernet card. Parallel Virtual Machine software 

(Sunderam, 1990) was used for communications between the nodes. In the production of low-

entropy regions, a window of 10 × 10 pixels was used to calculate the local image entropy 

(Handmann et al., 2000), and a value of 175 was used for the threshold of local image entropy. To 

remove non-nuclear regions by the forward and backward trackings, the minimum overlap ratios of 

73% and 8% were used for Tf and Tt (section 2.2.8) respectively. The tasks in NDM to select nuclear 

regions from low-entropy regions, in NLM and in ECM were implemented in a single processor PC 

that used a 2.2 GHz Intel Pentium 4 processor and 1 GB of RDRAM memory. All programs were 

written in programming languages C and C++. 

 

58 



Chapter 4 Derivative system: a system 

measuring the spindle orientation 

4.1 Introduction 

The spindle orientation during the cell division provides important information to understand the 

development of embryos. The spindle forms during cell division and the cell divides along the 

spindle axis. In C. elegans embryo, the germ-line cells divide along the anterior-posterior axis, 

whereas the somatic cells divide orthogonally to the previous division (Riddle et al., 1997). The 

pattern of cell divisions from one-cell stage to the adult is roughly the same among the wild-type 

embryos (Sulston et al., 1983). Many mutants were identified in which the pattern of cell divisions is 

remarkably different from that in wild-type. Spindle orientations are measured in many different 

mutant embryos (Kemphues et al., 1988; Cheng et al., 1995; Watts et al., 1996). 

 

The spindle orientation has been manually measured at a single time point (Sulston et al., 1983; 

Cheng et al., 1995; Watts et al., 1996; Schnabel et al., 1997). Two methods have been used to 

measure the spindle orientation, namely that using positions of nuclei and that using positions of 

centrosomes. The orientation of cell division axis, which is parallel to the spindle orientation, was 

measured using a line connecting the positions of daughter nuclei. In this method, nuclei were 

visualized in a living embryo through a Nomarski differential interference contrast (DIC) 

microscope (Nomarski and Weill, 1955) and the positions of the nuclei were determined manually at 

the birth of these nuclei (Sulston et al., 1983; Schnabel et al., 1997). The spindle orientation was 

measured using a line connecting the positions of centrosomes. In this method, centrosomes were 

visualized either by using a DIC microscope (Watts et al., 1996; Gomes et al., 2001) or by 

immunostaining (Cheng et al., 1995; Watts et al., 1996), and the positions of centrosomes were 

determined manually at a single time point. Because the positions of nuclei or centrosomes are 

determined manually, the objectivity and productivity of the measurement are low in these methods. 

In addition, because the spindle orientation has been measured in a single time point in these 

methods, the time-transition of the spindle orientation remains to be measured. 

 

To detect spindles, I considered that NDM (section 3.2.2) would be an appropriate method; NDM is 

involved in the CDP measurement system (Chapter 3) and detects nuclei in DIC microscope images 

of C. elegans embryos. NDM uses the local image entropy (Handmann et al., 2000) to discriminate 
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the image texture of nuclei from that of cytoplasm. Because the image texture of spindle is similar to 

that of nucleus (Figure 4.1, see also Figure 2.1B), and because NDM can detect nuclei that are in the 

process of cell division, NDM detects not only nuclei but also spindles. GUI, which is implemented 

in NDM, allows handling a specific nuclear region. In addition, because NDM almost automatically 

detects spindles, the objectivity and productivity of the detection of spindles are high. Consequently, 

NDM is an appropriate method to be used in developing a system that objectively measures the 

spindle orientation. 

 

In this chapter, I present a system that objectively measures the spindle orientation during cell 

divisions in C. elegans embryo. I have developed this system (Hamahashi and Onami, 2005) using 

the CDP measurement system (Hamahashi et al., 2006) (explained in Chapter 3) and the regression 

line (Montgomery and Peck, 1982). The CDP measurement system was used to objectively detect 

spindle in DIC microscope images, and the regression line was used to objectively calculate the 

orientation of nuclear region that detected the spindle (hereafter a nuclear region that detects a 

spindle is called a nuclear region of spindle). The development of this system shall demonstrate the 

applicability of the CDP measurement system to research programs that require the objectivity of 

nuclear detection in C. elegans embryo. 

 

4.2 Results 

4.2.1 Spindle orientation measured by regression line 

 

 
Figure 4.1 Detection of spindles in a Caenorhabditis elegans embryo. In the 

middle panel, the darker color represents the lower local image entropy and the 

brighter color represents the higher local image entropy. In the right panel, the 

white regions show nuclear regions of spindles. 

 

The spindle starts to form at prometaphase of cell cycle, when the centrosomes move at the spindle 

poles (Figure 4.1). The spindle orientation was defined using the line connecting two positions of 

centrosomes at the spindle poles. To measure the spindle orientation using nuclear regions, I 

assumed that the orientation of nuclear region of spindle should correlate with the line connecting 
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two positions of centrosomes. With this assumption, the spindle orientation was calculated using the 

regression line of nuclear region of spindle (Figure 4.2). 

 

The calculation of the angle of regression line for a nuclear region is as follows: All pixels in a 

nuclear region of spindle were used to calculate the angle of the regression line. When Sxx is the sum 

of squared errors in x and Sxy is the sum of cross-products of x and y, Sxx and Sxy are described as 

follows: ∑ −= 2)( xxS xx  and ∑ −−= ))(( yyxxS xy , where Nxx /∑= , Nyy /∑=  and N is the 

number of data (number of pixels in the nuclear region). The angle of the regression line is 

calculated as Sxx/Sxy and the angle θ (degree) is described as follows: . )/arctan( xxxy SS=θ

 

 
Figure 4.2 Orientation of nuclear region of spindle. The squares in gray 

show a nuclear region. The line with the angle θ to the anterior-posterior axis is 

the regression line. 

 

4.2.2 Production of nuclear regions of spindles using a system measuring CDP 

Sets of single-focal time-lapse DIC microscope images of C. elegans embryo were applied to NDM 

(Hamahashi et al., 2006) (Chapter 3), and image regions consisting of pixels whose local image 

entropy is lower than the threshold were produced. The window size for calculating the local image 

entropy was 10 × 10 pixels. The value of threshold to binarize the local image entropy was 95 for 

DIC microscope images of wild-type embryos and 110 for those of par-2(RNAi) and par-3(RNAi) 

embryos. Nuclear regions were automatically selected from the produced regions using an object-

tracking algorithm (Hamahashi et al., 2005) (Chapter 2). If the object-tracking algorithm falsely 

selected image regions of cytoplasm, I manually removed these regions through GUI in NDM 

(Chapter 3). The time point 0 of each set of images was set to the earliest time point after the 

centrosomes’ movement. 

 

4.2.3 Spindle orientations in wild-type C. elegans embryo 

I measured the spindle orientation of wild-type C. elegans embryos using the system. In this work, I 

focused on the second cell divisions of embryo because the entire shape of the spindles during the 
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second cell divisions, in which the embryo grows from 2-cell to 4-cell embryo, can be observed in a 

single focal plane of the DIC microscope. During the second cell divisions, the spindle in the 

anterior cell (called AB) forms transversely along the anterior-posterior (called AP) axis, whereas 

the spindle orientation in the posterior cell (called P1) is parallel to the AP axis (Riddle et al., 1997). 

I recorded DIC microscope images of wild-type embryos and examined whether the entire shape of 

spindles were observed. In the most of recorded sets (8/10) of DIC microscope images, both AB 

spindle and P1 spindle were observed in a single focal plane. In the other sets (2/10), one of the poles 

of AB spindle went to a different focal level, so that the entire spindle was not observed in a single 

focal plane. 

 

 
Figure 4.3 Spindle orientations in a wild-type embryo. Panels in the top row 

show time-series DIC images of the same wild-type Caenorhabditis elegans 

embryo. Each panel in the second row shows local image entropy 

corresponding to the DIC image at the top panel in each column. The brighter 

color represents the higher local image entropy. White regions in the third row 

show nuclear regions of spindles. Measured orientations of spindles are shown 

with angles (degree) and lines in the bottom row in each column. The axes of 

reference orientation to calculate the spindle orientation are shown as white 

arrows in the third top panel at time 0 s. The anterior-posterior axis of the 

reference orientation is parallel to a line connecting centroids of nuclear regions 

of AB and P1 at the last time point before spindle formations. 

 

I selected DIC microscope images in which the entire shape of spindles were observed, applied these 

images to the NDS, and obtained nuclear regions of spindles (Figure 4.3). The system presented in 

this chapter calculated the angle of the regression line of these nuclear regions (Figure 4.3). I 

obtained the angles of the spindle orientations during the second divisions of embryo’s development 

(Figure 4.3). For example, I obtained 86° (40 s in Figure 4.3) for the AB spindle that is known to be 
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transverse along the AP axis, and –20° (40 s in Figure 4.3) for the P1 spindle that is known to be 

parallel to the AP axis. From the viewpoint of the measurement system, I examined the 

reproducibility of values measured by this system. I confirmed that the measured values were 

completely the same when I measured the spindle orientation many times (more than 10 times) at the 

same time point using the same set of images. 

 

4.2.4 Spindle orientations in RNAi embryos 

To examine if this system can measure the spindle orientations in mutant embryos, I measured 

spindle orientations of par-2(RNAi) and par-3(RNAi) embryos using this system. The spindle 

orientations in these embryos are different from that in wild-type embryo (Kemphues et al., 1988; 

Gomes et al., 2001). In the par-2(RNAi) embryo, both AB and P1 spindles are transverse along the 

AP axis (Kemphues et al., 1988). In the par-3(RNAi) embryo, both AB and P1 spindles are parallel 

to the AP axis (Kemphues et al., 1988). 

 

DIC microscope images of par-2(RNAi) and par-3(RNAi) embryos were recorded and applied to the 

system. I obtained the angles of the spindle orientations of par-2(RNAi) and par-3(RNAi) embryos. 

Figure 4.4 shows results of a par-3(RNAi) embryo. In this example, I obtained 23° (0 s in Figure 4.4) 

for the orientation of AB spindle and 14° (0 s in Figure 4.4) for the orientation of P1 spindle. 

 

4.2.5 Time-transition of spindle orientation 

Figure 4.5 shows the time-transitions of the spindle orientations during the second divisions of 

embryo’s development in wild-type, par-2(RNAi) and par-3(RNAi) embryos. For each condition of 

embryos, the spindle orientations were measured in five embryos and the results were averaged in 

each time point. I found clear differences in time-transitions among these embryos. In wild-type 

embryos, the orientation of AB spindle was about 85° (transverse to the AP axis) and that of P1 

spindle was about –5° (parallel to the AP axis) at the beginning of cell division. As the cell division 

proceeded, the orientation of AB spindle decreased and the P1 orientation increased, so that 

orientations gradually became nearly parallel. In par-2(RNAi) embryos, orientations of both AB and 

P1 spindles were about 89° and 91° respectively (almost transverse to the AP axis) at the beginning 

of cell division, and did not change a lot within 120 s. In par-3(RNAi) embryos, orientations of both 

AB and P1 spindle were about 2° and 9° respectively (almost parallel to the AP axis) at the 

beginning of cell division, and did not change a lot within 120 s. 
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Figure 4.4 Spindle orientations in a par-3(RNAi) embryo. Panels in the top 

row show time-series DIC images of the same par-3(RNAi) embryo. Each panel 

in the second row shows local image entropy corresponding to the DIC image 

at the top panel in each column. The brighter color represents the higher value 

of the local image entropy. White regions in the third row show nuclear regions 

of spindles. Measured orientations of spindles are shown with angles (degree) 

and lines in the bottom row in each column. The axes of reference orientation 

to calculate the spindle orientation are shown as white arrows in the third panel 

at time 0 s. The anterior-posterior axis of the reference orientation is parallel to 

a line connecting centroids of nuclear regions of AB and P1 at the last time 

point before spindle formations. 
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Figure 4.5 Time-transitions of spindle orientations. Time-transitions of 

spindle orientations in wild-type, par-2(RNAi) and par-3(RNAi) are displayed. 

Horizontal value represents the averaged orientation of spindles (N = 5), and 

the error bar represents the standard deviation. Time point 0 was defined as the 

time point when all centrosomes in AB and P1 cell positioned on the cell-

division axis. 
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4.3 Discussion 

4.3.1 Advantage of this system 

I consider that this system has three main advantages. The first advantage is the high objectivity of 

the measurement of spindle orientation. The spindle orientation has been manually measured by 

discriminating the difference of image texture between spindle and cytoplasm in DIC microscope 

images (Watts et al., 1996; Gomes et al., 2001) or detecting the spindles stained using 

immunostaining technique (Cheng et al., 1995; Watts et al., 1996), where the objectivity of the 

measurement has been low. To address this problem, I used NDM (Hamahashi et al., 2006) (Chapter 

3) and the regression line (Montgomery and Peck, 1982). NDM can objectively produce nuclear 

regions of spindles. The regression line can objectively calculate the angle of nuclear region. 

Because all tasks in the measurement are carried out objectively in this system, I consider that this 

system can objectively measure the spindle orientation. 

 

The second advantage is the high productivity of the measurement of spindle orientations. The 

spindle orientation has been measured by manually looking at images one by one to discriminate the 

image texture of spindle from that of cytoplasm or to determine the positions of centrosomes (Cheng 

et al., 1995; Watts et al., 1996; Gomes et al., 2001). Because the measurement of spindle orientation 

has been laborious, the productivity of the measurement has been low. To address this problem, I 

automated most of tasks in the measurement of spindle orientation. My system used NDM, which 

automatically produces nuclear regions of spindles, so that the productivity of producing nuclear 

regions of spindles is high. In addition, my system used the regression line, which automatically 

calculates the spindle orientation from nuclear regions of spindles. I demonstrated that my system 

measured spindle orientations in multiple numbers of wild-type, par-2(RNAi) and par-3(RNAi) 

embryos (N = 5 for each embryo) (Figure 4.5). These results indicate that my system productively 

measures the spindle orientations. This productivity will allow a large-scale analysis of spindle 

orientation. Because of a benefit of 4D DIC microscope system (Hird and White, 1993; Thomas et 

al., 1996), numbers of DIC microscope images of C. elegans embryos can be recorded automatically. 

In addition, many sets of time-lapse DIC microscope images of RNAi embryos for many genes have 

been available from an online database (Sönnichsen et al., 2005). Appling these data to my system, a 

systematic analysis of spindle orientations will become practicable. 

 

The third advantage of my system is that the system enables the analysis of time-transitions of 

spindle orientations. Although the spindle orientation changes during cell division (Figure 4.5), the 

spindle orientation has been usually measured at a single time point during cell division (Cheng et 

al., 1995; Watts et al., 1996; Gomes et al., 2001). Because this system can measure spindle 

orientation during cell division in a highly automated manner, this system enables the measurement 

66 



of time-transitions of spindle orientations (Figure 4.5). Though I demonstrated an analysis of time-

transitions using 4 time points (Figure 4.5), this demonstration indicates that the analysis using a lot 

of time points with a very short time interval would be practical. 

 

4.3.2 Limitation of this system 

The limitation of this system is that the current system is applicable to the measurement of 2D 

spindle orientations. Before developing the system to measure the 3D orientation of spindle, I 

focused on the 2D orientation of spindle to simplify the problem that was to develop a system 

measuring the spindle orientation. Because the entire shape of spindle in 2- to 4-cell stages can be 

viewed in a single focal plane of a microscope, I used these cell stages. The results of this system 

indicate that this system will be a possible approach to measure the spindle orientation in a C. 

elegans embryo. The 3D orientation of spindle would be measured by a combination of 2D 

regression lines that are obtained by projections of spindle onto the XY-plane, the YZ-plane and the 

ZX-plane. 

 

4.4 Summary 

In this chapter, I presented a system that measures the spindle orientation in C. elegans embryo. 

Using the CDP measurement system presented in Chapter 3 and the regression line, this system 

objectively and productively measures spindle orientations during second cell divisions in embryos. 

The objective and productive measurement of spindle orientations helped to discriminate the 

differences in phenotypes among wild-type, par-2(RNAi) and par-3(RNAi). 

 

Methods 

Preparation of DIC microscope images of C. elegans embryos 

Embryo immediately after fertilization (before meeting of the female and male pronuclei) were 

dissected from a gonad, placed on a slide coated with 0.01% poly-L-lysine (Sigma) in M9 solution, 

covered with a coverslip, and sealed with petroleum jelly. DIC images were obtained using a Leica 

DMRE microscope equipped with a HCX PL APO 100×/1.40 NA objective, whose illumination 

intensity and objective-side Wollaston prism were adjusted to obtain images of the same quality. 

Digital images of 600 × 600 pixels with 256 gray levels (0.1 µm per pixel) were recorded with an 

ORCA CCD Camera (Hamamatsu Photonics), and the recording system was controlled by IP Lab 

3.5 software (Scanalytics). Digital images of the developing embryo were recorded at 22°C. The 

time interval between time points in each set of images was 40 s. 
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Production of nuclear regions of spindle using NDS 

DIC images were applied to NDS (Chapter 2) and nuclear regions were produced. The window size 

for calculating the local image entropy was 10 × 10 pixels. The value of threshold to binarize the 

local image entropy was 95 for images of wild-type embryos and 110 for those of par-2(RNAi) and 

par-3(RNAi) embryos. 
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Chapter 5 Conclusion 

5.1 Summary of results 

I developed a system that objectively and productively measures a CDP in a C. elegans embryo. I 

have focused the objectivity and productivity of measurement in embryogenesis of C. elegans 

through my work. In this dissertation, I presented three systems that I have developed during my 

work; the basic system that detects nuclei (NDS) (Hamahashi et al., 2005) (Chapter 2), the main 

system that measures a CDP (Hamahashi et al., 2006) (Chapter 3) and a derivative system that 

measures a spindle orientation (Hamahashi and Onami, 2005) (Chapter 4). 

 

The basic system objectively and productively detects nuclei in a set of 4D DIC microscope images 

of C. elegans embryo. This system automatically detects nuclei using a difference in image textures 

between the nucleus and the cytoplasm in DIC microscope images (section 2.2.1). The difference is 

distinguished by local image entropy (Handmann et al., 2000) that makes the system applicable to 

different sets of 4D DIC microscope images without the need of hand-tuning of system’s parameters 

(section 2.2.4 and section 2.3.1). The system first produces nuclear regions and non-nuclear regions 

(section 2.2.5). Then, this system automatically selects nuclear regions from produced regions using 

an object-tracking algorithm (Geerts et al., 1987; Lee et al., 1991; Awasthi et al., 1994) (section 

2.2.6, section 2.2.7 and section 2.2.8). The use of object-tracking algorithm allows selecting nuclear 

regions detecting nuclei that are both in and not in the process of cell division, which makes this 

system possible to detect nuclei that are in the process of cell division (section 2.3.2). 

 

The main system objectively and productively measures a CDP in a C. elegans embryo. This system 

first automatically produces nuclear regions from a set of 4D DIC microscope images using the basic 

system (section 3.2.2). Then, this system identifies 3-dimensional regions of nuclei using units, and 

tracks units along a time line to output a tracking trajectory that is the measured CDP (section 3.2.3). 

If a unit groups inappropriate nuclear regions, this system detects the group and corrects it (section 

3.2.4). If this system inappropriately tracks units (nuclei detected by a tracker and a tracked units are 

different), this system detects this failure and corrects it (section 3.2.4). Because this system can 

detect nuclei that are both in and not in the process of cell division, this system can measure the 

timing of cell division (section 3.2.7). This system measures CDP from one- to 24-cell stages. 

Because most of tasks in this system have been automated, the objectivity and productivity of this 

system are high. 
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The derivative system objectively and productively measures a spindle orientation in a C. elegans 

embryo. This system uses NDM (section 3.2.2) to detect spindles and the main system to handle 

each nuclear region through GUIs (Chapter 3). For the calculation of the spindle orientation, this 

system uses the regression line (Montgomery and Peck, 1982). The system measures a spindle 

orientation in second cell divisions in a C. elegans embryo (section 4.2.3 and section 4.2.4). Most of 

tasks in this system have been automated, so that the objectivity and productivity of this system are 

high. 

 

5.2 Prospects 

The systems presented in this dissertation might be applicable to research programs analyzing not 

only C. elegans but also some other animals though the animals are limited. The systems are 

developed using special features of the embryo. The C. elegans embryo is transparent through its life 

(Wood, 1988), which allows monitoring individual cells by direct observation with a DIC 

microscope (Nomarski and Weill, 1955). The nuclear detection is allowed by the difference in image 

textures between the nucleus and the cytoplasm in DIC microscope images (section 2.2.1). The 

embryos are also transparent in some species, such as zebrafish and sea urchin. Individual cells in 

these embryos can be monitored by a DIC microscope, where the difference in image textures 

between the nucleus and the cytoplasm might be usable to distinguish them and my systems might 

be applied to these animals. Actually, for example, the image textures in sea urchin embryo look 

similar to those of C. elegans embryo (Scott, 1997). On the contrary, embryos in the other most 

species are not transparent, so that my systems would not be directly applicable to these animals. 

 

The significance of the systems is that they enable objective and productive measurements in 

embryogenesis in a multicellular organism, C. elegans. These objective and productive 

measurements will allow a large-scale and quantitative phenotype evaluation. Analyses of 

development often compare CDPs, such as timings or orientations of cell divisions and/or positions 

of nuclei, among wild-type and RNAi-treated embryos (Fraser et al., 2000; Gönczy et al., 2000; 

Sönnichsen et al., 2005), where the problems of objectivity and productivity in the measurements are 

often faced. Because C. elegans has about twenty thousand genes (The C. elegans Sequencing 

Consortium, 1998), an manual analysis with eye observation has a limitation. For example, it would 

be almost impossible that phenotypes of all genes are analyzed based on the assumption that an 

observer would notice the anomaly at the first place and recognize that anomaly is beyond the range 

expected as wild-type individual variations. The systems presented in this dissertation enable highly 

objective and productive measurement of CDPs, so that possible anomalies are all data-logged and 
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evaluated with statistical significance, instead of relying upon experience of individual observers. 

The systems presented in this dissertation open the way to the future analysis of multicellular 

organism in developmental biology. 
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