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Chapter 1

Introduction

1.1 Background: functional brain imaging

To precisely and smoothly control muscles in our bodies, to analyze information

from the surrounding environment, to handle languages skillfully and to produce

art, science and technology etc; those abilities characterize mind of human, namely

higher brain function. It fascinates people in history, and understanding the mecha-

nisms of human brain functions is one of the most ambitious and challenging subjects

today. At the same time, to overcome mental disorders such as Alzheimer’s disease,

researchers and medical doctors desire effective diagnosis methods, especially for

preventions and early detections of the diseases.

In this context, advances of the functional brain imaging techniques in recent

decades, e.g. positron emission tomography (PET) [3], functional magnetic reso-

nance imaging (fMRI) [4], [5] etc., are making it possible to understand how the

brain works and to offer diagnoses of neurological disorders. The PET forms im-

ages of the spatial distribution of the probes which are radioactively labeled organic

molecules, e.g. glucose. They are involved in the metabolism in the brain. The PET

measures both regional cerebral blood flow (rCBF) and the metabolic rate of glucose,

which relate to the neural activities. The fMRI can detect hemodynamic changes

by the MRI technology. The fMRI signal is called blood oxygen level dependent

(BOLD) signal, which reflects oxygen level in the blood. It includes complex mul-
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tiple factors such as blood flow, blood volume and blood oxygenation that depend

on the neural activities. Activations in neurons consume energy thereby increasing

the rCBF and the BOLD signal. The knowledge we have partly obtained about the

mechanisms of brain now contributes to not only clinical studies and treatments but

also several kinds of research fields. It enriches our mind and lives.

On the other hand, and an approach to measure the brain activities via elec-

trophysiology exists, that is to say, electroencephalography (EEG) born in 1924 [2].

The EEG measures the change of the electric potential produced by the neural cur-

rent flows in the brain. It has made great contributions to neurophysiology and

clinical treatment, particularly in the inspection of epilepsy. Recently, it is utilized

for Brain-computer interface (BCI) [6]-[10].

Among the modalities for functional brain imaging, magnetoencephalography

(MEG) measurement [1], [2], [11], [12], [13], which complements with the EEG,

began from the invention of the SQUID (Superconducting QUantum Interference

Device) [14] and the first MEG recording conducted by D.S. Cohen at MIT dur-

ing the term from late 1960s to early 70s. MEG has stimulated the researches of

the brain functions since then, and has confronted us with attractive and crucial

problems of signal processing and analyses [20]-[23].

1.2 Overview of MEG measurement

MEG (magnetoencephalography) has recently attracted attention as a technique

for researching human brain functions. MEG is the method used to measure the

magnetic field generated by electrical neural activities. SQUID gradiometers are

employed to detect a tiny magnetic flux density outside a skull such as sensory and

auditory evoked fields on the order of 10−13 T. MEG is a completely non-invasive

method and can be safely used for investigations of brain functions and for diagnoses

of neurological disorders, e.g. epilepsy [15], Alzheimer’s disease [17], Parkinson’s dis-

ease [16] and dyslexia [18]. The high temporal and spatial resolutions are the main

advantages of MEG, compared with other imaging methods, e.g., fMRI, PET and
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NIRS. MEG can catch rapid cortical activities [1], [2]. Similarly to EEG (electroen-

cephalography), MEG data directly reflects the activities of neurons; unlike EEG,

it is hard to be influenced by the structure of the head such as the conductivities of

the tissues [1], [19].

MEG has already been contributing to the neuroscience, providing new knowl-

edge about human brain functions, and is expected to play an increasingly important

role in clinical treatments and investigations of human brain. For any applications

of the MEG measurement, it is important to extract useful information from the

signals and to know which function of the human brain the information reflects and

originates from. Besides, handiness and stress-free use are essential to the further

contribution of MEG to the demands in neurology. In this point of view, there

are mainly two issues in MEG measurement, which must first be addressed to gain

the value of MEG, i.e. the issues of the low signal-to-noise ratio (SNR) and of the

ill-posed inverse problem.

In this study, for the improvements of MEG measurement, the author proposes

solutions comprehensively, a noise reduction method with a combination of some sig-

nal processing techniques and an approach to the inverse problem with a utilization

of a spatial filter.

1.3 Signal processing in MEG measurement

The signals due to brain activities are very weak, typically on the order of 50-500

fT [1]. Several kinds of noises and artifacts due to eye movements, blinking, heart-

beats, an electric power supply, earth magnetism, etc., influence the desired signals,

such as event-related responses. Band-pass filtering and stimulus-locked averaging

across many trials without contamination from artifact are usually required to re-

duce the sensor noise and spontaneous brain noises. Though these are powerful ways

to improve SNR, the imposition of many trials for averaging turns out not only a

considerable burden for patients or experimental subjects but the lost of important

temporal information.
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It must be also considered that the inverse problem in MEG measurement, which

is mentioned later, has a difficulty caused by its ill-posedness and underdetermina-

tion. And noises always aggravate the difficulty. Biological artifacts and sensor-

specific noise interfere with the estimation of the locations from which desired sig-

nals originate, and unwanted brain activities complicate the interpretations of the

inverse solutions from MEG data. Noise and artifacts cause trouble through out

MEG analyses.

To resolve the issue, independent component analysis (ICA) for MEG and EEG

analyses has been studied in recent years [24]-[31]. ICA is one of the blind signal

processing methods. It separates linearly mixed signals by the assumption of statis-

tical independence of the signals. Several kinds of algorithms have been proposed. If

the artifacts and brain signals are independent of each other, they can be separated

by ICA. Although ICA may be able to extract the signals from the data, including

noises and artifacts, it does not work correctly under additive independent Gaussian

sensor noise, especially in MEG data analysis.

ICA consists of a preprocessing and a main algorithm to estimate independent

components. The preprocessing with PCA (principal component analysis) obtains

orthogonalized signals before the main algorithm, thereby reducing the calculation

cost of the main algorithm.

In the preprocessing step, it is required to prescribe the number of independent

components. A large amount of sensor noise makes this decision difficult. Another

important issue is that an orthogonalization of signals excluding high level sensor

noise and the subsequent estimation of independent components are crucial in prac-

tical MEG analysis. It has been proposed that factor analysis be substituted for

PCA in the preprocessing [26], [30], [31]. The orthogonalization of signals may be

successful with factor analysis. The influence of noise, however, still seems serious

factor in MEG measurement, and factor analysis does not reduce the sensor noise

sufficiently. Thus, estimated independent components have low SNRs; furthermore,

the desired components often cannot be obtained.

ICA algorithms theoretically robust to noise have been proposed [32]. Some
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ICA algorithms based on higher order cumulants are theoretically robust to Gaus-

sian noise, and they estimate the inversion matrix which separates independent

components regardless of the existence of Gaussian noises. Based on the separat-

ing matrix, the Amari-Hopfield neural network estimates independent components,

in which the noises are canceled, by minimizing the entropy of the residual. The

residual is termed error components, and is assumed to correspond to the noises

and to be i.i.d. The algorithm minimizes the magnitude of the error components

as well [32]. Eventually, it may appraise the noises as smaller and not remove them

sufficiently. An effective noise reduction method for taking advantage of ICA in

MEG analysis and of the MEG data itself is thus needed.

1.4 Inverse problem in MEG measurement

Inverse problems appear universally in science and engineering fields from geophysics

to biomedical studies. They are exactly ubiquitous [36]. Many researchers in math-

ematics and engineering appreciate the importance of the inverse problems, and are

dedicated to solve them in their research fields. Inverse problems, which attract

people working on science and technology, raise an important question: what causes

the result we see? To solve the inverse problems is one side of the history of science.

Especially in engineering, we desire to know the physical mechanisms and charac-

teristics which lead to the observed data. In many physical problems, the observation

is described with a Fredholm integral equation of first kind [36], [37]:

ζ(x) =

∫ ∞

−∞
k(x − x′)ξ(x′)dx′, −∞ < x < ∞, (1.1)

where ζ(x) is the observation and ξ(x) is the function of sources generate the obser-

vation. k(x) is the kernel function which characterizes the model, and is determined

by the equation related to the physical phenomenon. An appropreate discretization

makes the equation into a vector-matrix linear equation as follows:

Kξ = ζ, (1.2)
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where ξ denotes the discretized sources and ζ represents the observed data. We want

to obtain ξ from given ζ and K. As well as inverse problems in several applications,

that in the MEG measurement is formulated similarly (see Section 2.3). Hence, a

study on the inverse problem in MEG measurement may make contribution to the

other fields and vice versa.

The inverse problem in MEG measurement is to estimate the current density

distribution in a brain which produces the magnetic field, and is mathematically

ill-posed and underdetermined. The problem is stated as follows:

m = LQ, (1.3)

where m denotes MEG data, L is the gain matrix called the lead field matrix, and

Q represents the current density distribution in a brain [2]-[41].

The solution, namely the current density distribution, obtained by the Moore-

Penrose pseudoinverse is the minimum norm least-square solution. It is given by

solving the following problem [42]:

min
Q

{‖Q‖2 + (m − LQ)TΛ
}

, (1.4)

where Λ is the Lagrange multiplier vector, and the solution is:

Q = LT (LLT )−1m. (1.5)

It explains the data with the smallest currents. Consequently, the current distribu-

tion is biased toward sensor array. It is difficult to estimate the depths of the brain

activities. Another general issue in inverse problems is the redundant expanse of the

solution. The estimated current distribution is always ambiguous due to the nature

of inverse problems. An adequate localization of a current distribution is required,

especially in clinical situations. Some kinds of regularizations are successfully used

to improve the estimation.

The least-squares methods with regularizations are generally applied to the in-
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verse problem. The Tikhonov regularization method is a typical example of them.

The problem is described as follows [36]:

min
Q

{‖LQ − m‖2 + α‖Q‖2
}

, (1.6)

where α is the regularization parameter. The solution is obtained as follows:

Q = (LT L + αI)−1LT m, (1.7)

where I is an identity matrix. It is equivalent to the Bayesian estimation with

the Gaussian prior. A truncated singular-value decomposition (TSVD) method,

which truncates smaller singular value of L, is another kind of regularization. The

regularization declines the instability, and gives a smooth solution. Unfortunately,

the method with the regularization shows low resolution [2]. Many regularization

techniques have been proposed, e.g. the method which utilizes the total variation

of the solution and minimizes it [36]. It is possible to refer to the accumulated

knowledge about those method [43]-[49]. However, to determine how to regularize

the solution is quite difficult. In cases of MEG analyses, it is also available recently

to take some information from other modalities, e.g. fMRI, in the regularization

terms or prior information [4], [44], [50]. The relationship between MEG and other

imaging methods is absorbing. Nonetheless, treating prior information involves some

difficulties and is controversial [5].

The moving-dipole method is widespread and commonly used in MEG analyses.

It searches an optimum solution minimizing the difference between a measurement

and a forward solution given by dipoles in the least-square sense. The locations and

orientations of dipoles are optimized by the Nelder-Meade simplex method, etc. The

moving-dipole method inadmissibly depends on prior information of the number of

dipoles and regions to be searched [1], [2].

MUSIC (multiple signal classification) is another approach; it determines the

dipole parameters by requiring the forward solutions of the dipoles to be orthogonal

to the noise subspace [51], [52], [53]. MUSIC utilizes the eigenvalue decomposition
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of the covariance matrix of the MEG data. It divides the data into the signal

subspace spanned by the eigenvectors corresponding to larger eigenvalues and the

noise subspace Pn with eigenvectors of smaller eigenvalues. MUSIC identifies the

locations and orientations of current dipoles in a brain may generate the observed

data basically by minimizing the following function:

J(r, φ) =
‖Pnl(r, φ)‖2

‖l(r, φ)‖2
, (1.8)

where l(r, φ) is a forward solution shows the contribution of the current dipole with

the specific location r and orientation φ to the observation. l(r, φ) in the signal

subspace must be orthogonal to Pn, and yield J(r, φ) = 0. This method needs to

assume that the number of the sources is less than that of the sensors, and that

the sources are uncorrelated. It is effective for localization of current distribution

without prior information. However, it highly relies on temporal information. It is

hard to resolve the correlate sources, and the spatial resolution declines in such a

case.

Meanwhile, beamformer approaches [54]-[63], e.g., LCMV (linearly constrained

minimum variance) beamformer [55] and SAM (synthetic aperture magnetometry)

[56] can be operated without prior information. They are basically adaptive spa-

tial filters to pass signals from specific locations and orientations while attenuating

interferences by minimizing a covariance matrix of filtered observation with linear

constraints. These spatial filters depend on prior or temporal information less than

the others. These adaptive beamformers are problematic when the current sources

in a brain have correlation; the spatial resolution declines due to the use of temporal

information.

Consequently, it can be said that an effective method with less reliance on prior

and temporal information is required for the inverse problem to take advantage of

the high temporal resolution of MEG and to improve MEG applications.
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1.5 Proposals for solutions

In this paper, the author proposes methods for both parts of the MEG analysis, the

signal processing and the inverse analysis.

To alleviate the above-described problems in MEG measurement and analysis

with ICA, the author proposes a signal processing technique that reduces the sensor

noise from MEG data. This method consists of a combination of factor analysis and

Kalman filtering [66]-[74]. A state-space model for the Kalman filter of the method

is constructed via the forward problem in MEG measurement. Factor analysis is

employed to estimate the system and observation noise covariance matrices. Then,

the Kalman filter is used to reduce sensor noise before the ICA procedure. The

proposed noise reduction method with factor analysis and Kalman filtering (FA-

processed Kalman filter) eliminates sensor noise effectively and supports ICA as a

preprocessing technique. Kalman filter is practically employed in several applica-

tions, and shows high performances to estimate or to predict the state of the system

and to smooth signals. The proposed noise reduction does not limit the choice of

ICA algorithm. Hence, it can be expected that the proposed combination increases

the effects of and reliance on any ICA algorithm for MEG analyses.

The reliabilities of the solutions of some estimation problems, e.g. the inverse

problems in MEG measurement, generally depend on prior information and assump-

tions. In cases where we cannot utilize reliable prior information, such as the cases of

neurophysiological researches in progress, that should be minimized and simplified

to obtain fair solutions. The proposed method is constructed by simple and mini-

mum assumptions which preserve its reliability and usability: the forward solution

of MEG is a linear system formula and suits a Kalman filtering problem. Thus the

state-space equations are naturally described with mild assumptions. The Kalman

filter does not need to identify specific probability distribution of noises. Though

estimation of noise covariances required by the Kalman filter is always controversial,

the proposed method provides them by well-known factor analysis, and the result

of the factor analysis is utilized while avoiding the difficulty related to the inverse
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problem in MEG, namely the direct estimation of the system noise which we assume

that current densities in a brain are driven by.

Additionally, for the inverse analysis, a current density estimation with a com-

bination of spatial filtering and a reconstruction utilizing multiple linear regression

(spatial filtered reconstruction: SFR) is proposed in this paper.

A spatial filter requiring no temporal information is focused on, and attempts,

with a single snapshot, a temporal slice of MEG data, to estimate a current density

distribution, i.e. current dipoles in a conductor [64]. The spatial filter in this study

is derived from a cost function that is different from that of the SAM and LCMV

beamformers. It complies with the requirements that ordinary spatial filters should

obey and is optimized with the second and fourth order cumulants [75], [76] of the

estimated current dipole, which statistically characterize the current density distri-

bution represented by the dipoles. The cost function suggests how to improve the

localization of the current distribution and the depths of the estimated dipoles.

Though non-adaptive spatial filter in MEG analysis is not paid attention, it

can be expected that the implementation of an improved non-adaptive spatial filter

extends the applications of MEG. Studying a time-invariant spatial filter provides

a new approach to inverse problems and helps guide the future progress in MEG

analysis.

Moreover, the current distribution estimated with spatial filtering will be recon-

structed in this study to increase the localization and obtain feasible distribution of

the dipoles. The reconstruction method utilizes a multiple linear regression tech-

nique: the regression model is constructed with the dipoles obtained by the spatial

filter. The Mallows Cp statistic [77], [78] localizes the current distribution. It is

commonly used for selections of variables in multiple linear regression.

A solution of an inverse problem is generally ambiguous due to its ill-posedness,

and in the interpretation of the solution, some kind of criterion such as a threshold

value is required, even if it is subjective. In this study, the ambiguity appears as

the redundant expansion of the current density distribution estimated by spatial

filtering. Decision of the range of the brain activity is always controversial in the
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inverse problem in MEG measurement. Based on multiple linear regression analysis

that is well-studied theory, the proposed method provides an objective criterion for

the decision of the activated region of the brain.

The SFR depends on the simple spatial filtering, and the reconstruction is equiv-

alent to the hypothesis tests for the estimated current dipoles. It can be regarded as

validation with a criterion. In this point of view, the proposed method follows ordi-

nary approach that is usually taken in inverse problems, especially in MEG analysis.

Nevertheless, while it takes advantages of spatial filtering, the SFR effectively clar-

ifies the interpretation of the solution and makes it fair with the objective criterion

and less dependence on prior information.

The proposals for the signal processing and the inverse analysis pursue the com-

mon ideals, that is to say, less dependence on prior information, maximization of the

advantage of high temporal resolution and usability in the practical MEG analysis.

In this study, the author proposes combining the FA-processed Kalman filter and

SFR.

In the latter chapters, the forward problem of the MEG measurement on which

the proposed methods are based is described in Section 2.3. Then the FA-processed

Kalman filter is detailed in Section 2.4. The spatial filters in MEG analysis, i.e. the

LCMV beamformer, SAM and the novel spatial filter, and the SFR are introduced

in Section 2.5. In Chapter 3, the numerical studies are shown to verify the effective-

ness of those methods. The proposals, in use for real MEG analysis, including the

combination of the FA-processed Kalman filter, ICA and the SFR are also discussed

in Chapter 4. Finally, the paper is concluded in Chapter 5.
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Chapter 2

Methods

2.1 Electrophysiology in MEG measurement

A brain consists of neurons and glial cells. The glia supports the structure of the

brain, maintains proper concentrations of ions and transports nutrients from blood

vessels to brain tissues. Neurons process the information. They are constructed

with the three components mainly: the soma which contains the nucleus and most

of the metabolic mechanism, the dendrites receive signals from other cells, and the

axon which transfers signals with action potentials from the soma to other cells.

The dendrites and the soma have typically thousands of connections with other

neurons, which are called synapses. The neurons pass the signals with the trans-

mitter molecules in the synapses. When the pulse of the action potential arrives the

presynaptic cells, the transmitter molecules are released and reach the postsynaptic

cells. Then the ion channels open, and as the result the potential in the membrane

changes at the dendrites (excitatory postsynaptic potentials: EPSPs) [1], [2].

The currents associated with the EPSPs are the main sources of most of the sig-

nals detected by MEG and EEG. The action potentials have the duration of about

1 ms, and it may be too short to measure in MEG. It is empirically known that

we observe the signal generated by the sources on the order of 10 nAm, which is

obtained by millions of synaptic junctions. According to the nominal calculation of

the density of the neurons and cortical thickness, the cortex approximately has a
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current density on the order of 100 nA/mm2. The cerebral cortex has the thickness

of 2-4 mm, therefore the area of the surface on the cortex with 5mm × 5mm is

involved at least to yield the current dipole of 10 nAm [2].

2.2 Instrumentation in MEG measurement

The key technology to implement the MEG measurement is the SQUID (Supercon-

ducting QUantum Interference Device), which is highly sensitive detector of mag-

netic flux and is the only device with sufficient sensitivity for biomagnetic measure-

ment [14]. A microscopic state of a superconductor is described by a wave function

that is well defined with a phase. This causes flux quantization: a superconducting

loop encloses the magnetic flux quantized in units of Φ0 ≡ h/2e [Tm2] where h

is Planck’s constant and e is the electron charge. The dc-SQUID which is mainly

employed nowadays is a loop of two superconductors weakly connected with two

Josephson junctions (Fig.2.1). The dc-SQUID is biased with a constant current Id

which is larger than the supercurrent. In this case, the voltage V is developed across

the junctions. The V − I characteristics are explained by the resistively and capac-

itively shunted junction model, in which the Josephson junction is parallel with a

resistance and a capacitance. It is known that the external magnetic flux Φe changes

the voltage V across the SQUID with the period of Φ0 (Fig.2.2). We can detect the

magnetic flux as the change of the voltage V [1], [14].

Meanwhile, the magnetic flux on the observation point is transferred by a gra-

diometer. Gradiometers measure the spatial gradient of the magnetic induction.

For instance, a first-order axial gradiometer has oppositely wounded coaxial pickup

and compensation coils. The distance between the coils, the baseline, is usually 4-5

cm. This arrangement is effective to measure the weak magnetic flux produced by

sources near the gradiometer, because the large homogeneous magnetic flux in the

background is canceled [1].

The electric current due to the change of the magnetic flux in the gradiometer

is transformed into Φe by the inductance and is transferred to the SQUID. The
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dc-SQUID is involved in the feedback circuit called flux locked loop (FLL) consists

of an amplifier, a lock-in detector and an oscillator (Fig.2.3). The output voltage

Vf of the FLL is fed back to the dc-SQUID as the magnetic flux modulated with

the amplitude of Φ0/2. By the feedback, the voltage V across the dc-SQUID due

to Φe eventually modulated, and it enable to reduce noises by the lock-in detector.

The feedback keeps the flux in the SQUID a constant at an optimum working point

on the V − Φe characteristic, and linearizes the SQUID response. The output of

the FLL Vf is proportional to the observed magnetic flux Φe. MEG measures the

magnetic flux by the principle basically, and we can obtain the readout of it.

In actual MEG measurement, sensing devices are cooled with liquid helium in a

Dewar to reduce thermal noises. Experiments and measurements are usually con-

ducted in a magnetically shielded room to attenuate environmental noises [1], [14].
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Figure 2.1: Schema of dc-SQUID: × rep-
resents the Josephson junction, and it is
parallel with a resistance and a capaci-
tance in the shunted junction model. Ib

represents a bias current.
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Figure 2.2: V −Φe characteristic. The ex-
ternal magnetic flux Φe changes the volt-
age V across the SQUID with the period
of Φ0.
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Figure 2.3: Schema of the Flux Locked Loop (FLL): (a) the first-order axial gra-
diometer, (b) the dc-SQUID, (c) amplifier, (d) lock-in detector and (e) oscillator
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2.3 Forward problem in MEG measurement

Electrophysiological phenomena caused by neural electrical activities and observed

with MEG and EEG can be described by the quasistatic approximation of Maxwell’s

equations, because their frequency spectrum is below 1 kHz and time-derivative

terms can be ignored. Therefore, a magnetic flux density B(r) generated by a

current flow in the brain is given by the Biot-Savart law [1], [2]:

B(r) =
µ0

4π

∫
Ω

J(r′) × r − r′

‖r − r′‖3dr′, (2.1)

where µ0 is the permeability of free space.

Current density in the brain is composed of two components, the primary and

volume currents:

J(r′) = Jp(r
′) + Jv(r

′)

= Jp(r
′) − σ(r′)∇V (r′). (2.2)

The volume current Jv(r
′) occurs with the macroscopic electric field on charge

carriers in the conducting medium. The primary current Jp(r
′) is considered to be

driven by neural activities. Equation (2.1) is transformed into

B(r) = Bp(r)

+
µ0

4π

∑
ij

(σi − σj)

∫
Sij

V (r′)
r − r′

‖r − r′‖3 × n(r′)dSij, (2.3)

where Bp(r) is the magnetic flux density generated by the primary current, σi is the

conductivity of the i-th region, Sij is the boundary surface between the i-th and j-th

regions, and n(r′) is the outer normal vector of the surface. The volume currents are

equivalently replaced by the current densities −(σi − σj)V (r′)n(r′) distributed on

the surface Sij. Equation (2.3) implies that the volume current does not contribute

to the radial magnetic flux for spherical brain [1].

When the conductor is spherically symmetric, a forward solution is analytically
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derived as follows [41]:

B(r) =
µ0

4π

Fqi × ri − (qi × ri · r)∇F (r, ri)

F (r, ri)2
, (2.4)

where qi is an equivalent current dipole at ri which approximates the primary

current as a point dipole, i.e. Jp(r
′) � qiδ(r

′ − r); δ(r) is the Dirac delta function,

F (r, ri) = a
(
ra + r2 − ri · r

)
, (2.5)

and

∇F (r, ri) = (r−1a2 + a−1a · r + 2a + 2r)r

−(a + 2r + a−1a · r)ri, (2.6)

with a = (r−ri), a = ‖a‖ and r = ‖r‖. From Eq.(2.4), radially oriented dipoles do

not produce any magnetic flux. Therefore, only a two-dimensional dipole moment

is considered in this case.

The magnetic flux is linearly related to the current dipole. When we assume

that gradiometers are arranged radially and are sensitive only to radial magnetic

flux, i.e., to primary currents, and that a conductor Ω discretized into N pieces ωi

and current dipoles qi on the grid points ri (i = 1, 2, · · · , N) constitute a current

density distribution, a measurement m ∈ �m×1 of m MEG sensors can be written

in a vector-matrix formula as a linear system:

m = LQ + ε =

N∑
i=1

Liqi + ε, (2.7)

where L = [L1, L2, · · · , LN ] ∈ �m×3N is a lead field matrix, Q ∈ �3N×1 has all

dipole moments qi ∈ �3×1 (i = 1, 2, · · · , N) as its components, and ε ∈ �m×1 is

observation noise.

When the conductor is a piecewise homogeneous, such as a model of real head

shape, and the sensors are sensitive to the magnetic flux by the volume currents, the
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magnetic flux of the primary current is simulated by the boundary element method

(BEM) considering the contribution of the volume current, and the lead field can be

calculated [1], [40], [39]. In the case of a spherically symmetric model, the matrices

and vectors are adjusted to the dipole moment qi ∈ �2×1.

The following proposals to MEG analysis, i.e. the noise reduction method and

the method for the estimation of the current density distribution, are based on

Eq.(2.7). In the numerical studies in Chapter 3 and the real MEG analyses in

Chapter 4, it was assumed that the conductor was a sphere and the sensors were

arranged radially. Hence, the conductivities are not required. The permeability µo

can be adopted regardless of the tissues in a head.

2.4 Reduction of noise from MEG data

2.4.1 Sensor noise reduction with Kalman filter

Kalman filtering is applied to several kinds of problems [72]-[74]. Estimation prob-

lems to which a Kalman filter is applied can be classified into three types: prediction,

filtering and smoothing problems. In this study a Kalman filter is applied to elimi-

nate the noise, which is specific for each sensor, from MEG signals. This procedure

supports successive ICA to reduce artifacts.

Kalman filtering is used to estimate the sequence of states of the dynamical sys-

tem described as a state-space model [66], [67].

Let us assume that the moments of dipoles Q(t) are driven by system noise v(t):

Q(t + 1) = Q(t) + v(t), (2.8)

where the first and second moments of v(t) are E{v(t)} = 0 and E{v(t)v(l)T} =

V (t)δtl. From the above assumption and the forward equation of MEG measurement,

Eq.(2.7), MEG data without observation noise, which may include artifacts, are
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described as follows:

x(t + 1) = LQ(t + 1)

= LQ(t) + Lv(t)

= x(t) + Lv(t). (2.9)

In this study, it is assumed that the observation is constructed by MEG signals

x(t) including desired signals and artifacts, e.g. unwanted brain activities, and

“sensor (observation) noise” ε(t) which is independently added to the signal of each

sensor.

Then, observed MEG data with sensor noise are given as

m(t) = x(t) + ε(t), (2.10)

where ε(t) is the sensor noise whose first and second moments are E{ε(t)} = 0 and

E{ε(t)ε(l)T} = W (t)δtl. Therefore, the author sets the state-space model for the

Kalman filter to be as follows:

x(t + 1) = x(t) + Lv(t) (2.11)

m(t) = x(t) + ε(t), (2.12)

where L is the lead field matrix.

Furthermore, it is assumed that an initial state x0 is uncorrelated to the system

and observation noises, E{x0} = x̄0 and V {x0} = X0. Under the prescribed as-

sumptions, the estimation of the state sequence, namely the sensor noise-free MEG

signals, is obtained by the recursive prediction and correction included in the fol-
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lowing algorithm:

x̃(t + 1) = x̂(t), (2.13)

M(t + 1) = P (t) + LV (t)LT , (2.14)

K(t + 1) = M(t + 1) (M(t + 1) + W (t + 1))−1 , (2.15)

x̂(t + 1) = x̃(t + 1) + K(t + 1) (m(t + 1) − x̃(t + 1)) , (2.16)

P (t + 1) = M(t + 1) − K(t + 1)M(t + 1), (2.17)

where x̂(0) = x̄0 and P (0) = X0.

In particular, when V (t) and W (t) are time-invariant in a state-space model

that is observable and controllable, P (t) converges to a constant value. Then, a

steady-state Kalman filter is obtained [69]:

x̂(t) = (I − K)x̂(t − 1) + Km(t) (2.18)

K = PW−1, (2.19)

P satisfies the following equation:

P =
[
(P + LV LT )−1 + W−1

]−1
. (2.20)

In this study, the system and observation noises are assumed to be station-

ary during the MEG measurement, thus a steady-state Kalman filter algorithm in

Eqs.(2.18) and (2.19) is adopted.

Kalman filtering requires knowledge of the system noise covariance matrix V and

observation noise covariance matrix W . Factor analysis is utilized to estimate the

noise covariances in the following section.
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2.4.2 Estimation of noise covariances with factor analysis

prior to Kalman filtering

Factor analysis (FA) is one of the methods for multivariate data analysis, and is

utilized in the preprocessing of ICA [26], [30].

In FA, factor loading matrix Λ and sensor noise covariance (covariance of unique

factors) matrix W are estimated. The observation m(t) is modeled as follows:

m(t) = Λf (t) + ε(t) (2.21)

f (t) = [f1(t), f2(t), · · · , fn(t)]T ,

E{fi(t)} = 0, E{fi(t)fj(t)} = δij ,

where fi and εi are called the common factor and unique factor. From Eqs.(2.7)

and (2.21), we can determine that x(t) = LQ(t) = Λf (t).

There are several methods to conduct FA, e.g., the unweighted least squares

method, principal factors method and maximum likelihood method [26], [30]. In

this study, I adopt the unweighted least squares method which can be used easily

due to its simplicities of the formulation and the algorithm. Besides, it requires

less prior conditions or assumptions, e.g. a probability distribution function, than

the others. However, any methods for FA can be applied to estimate the noise

covariances.

The estimation is achieved by solving the following problem:

min
Λ,W

tr{(S − ΛΛT ) − W}2, (2.22)

where S is an observed covariance matrix.

To minimize the cost function, the algorithm is derived as

Λ(t+1) = Λ(t) + η(S − Σ(t))Λ(t) (2.23)

W (t+1) = diag(S − Λ(t+1)Λ(t+1)T ) (2.24)

Σ(t+1) = Λ(t+1)Λ(t+1)T + W (t+1). (2.25)
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We can use the sensor noise covariance W estimated by FA for the Kalman filter

algorithm. On the other hand, it is impossible to estimate V directly, but LV LT in

Eq.(2.20) can be estimated from the result of FA as follows.

ΛΛT is the covariance of x(t). When the sample number of MEG data, τ , is

sufficiently large, the following relation holds, since E{v(k)v(l)T} = 0, (k �= l) and

state equation (2.11) hold.

ΛΛT =
1

τ

{ τ∑
t=1

x(t)x(t)T

}

� 1

τ
L
{
τv(1)v(1)T + (τ − 1)v(2)v(2)T + (τ − 2)v(3)v(3)T + · · ·+ v(τ)v(τ)T

}
LT

=
1

τ
L

{ τ∑
t=1

(τ + 1 − t)v(t)v(t)T

}
LT (2.26)

Normalizing the factor inside the braces {·} in the right-hand side of Eq.(2.26) by∑N
t=1 t = (1+τ)τ/2, we get the weighted average of v(t)v(t)T . Thus, the estimation

of LV LT required for Kalman filtering is obtained by the following normalization of

ΛΛT estimated with FA:

2

τ + 1
ΛΛT � LV LT . (2.27)

With this estimation, we can avoid the difficulty to estimate V directly; it includes

some issues related to the inverse problem in MEG measurement.

The combination of the Kalman filtering and factor analysis is mentioned as the

FA-processed Kalman filter hereafter.

2.4.3 Independent component analysis following the sensor

noise reduction

Independent component analysis (ICA) is a method for extracting independent com-

ponents based only on observation [33]. The observation data are modeled as a

mixture of unknown sources. If artifacts and desired signals are independent, we

can separate the artifacts from the signals through ICA [32]-[35].
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A preprocessing with principal component analysis (PCA) is usually conducted

to reduce the dimension and to make signals uncorrelated. After the noise reduc-

tion by the combination of FA and Kalman filtering, it is also possible to apply the

following procedure for the PCA:

y(t) =
(
ΛTΛ

)−1
ΛT x̂(t). (2.28)

Then, ICA estimates independent components under the assumption that the

signals are described as follows:

y(t) = Hs(t), (2.29)

where y(t) is interpreted as the mixed data which by an unknown matrix H that

mixes unknown independent components s(t).

The goal of ICA is to estimate an unmixing matrix U that is a generalized inverse

of H , so that the estimated independent components ŝ(t) can be obtained as

ŝ(t) = Uy(t). (2.30)

Several algorithms have been shown to be effective for estimating U . This study

adopts the FastICA algorithm based on a fixed-point method, since it has advantages

of fast convergence, lack of a learning rate, etc. This algorithm extracts independent

components one by one using the row vector uT of U calculated by the following

algorithm:

ũ(t) = u(t) − E[yg(u(t)Ty)] − βu(t)

E[g′(u(t)Ty)] − β
, (2.31)

u(t+1) =
ũ(t)∥∥ũ(t)

∥∥ , (2.32)

where g(z) = z3 or g(z) = tanh(z). Some independent components may not be re-

lated to the responses we expect from the stimulus which is given to the experimental

subject. They can be artifacts and be reduced here. The independent components
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except for the artifacts are projected to the sensor space through the inverse of the

above procedures and utilized for further analyses.

2.5 Estimation of current density distribution

2.5.1 Spatial filters in MEG analysis

2.5.1.1 LCMV beamformer

A spatial filter is a signal processing technique that attempts to separate a desired

signal from interferences by utilizing the differences of the locations from which they

originate. There are several applications that employ spatial filters, e.g., RADAR,

SONAR, imaging, etc [54]. A spatial filter employed in this study is a linear projec-

tion operator that transforms the MEG signals to an estimation of a specific dipole

moment:

q̂k = W T
k m = W T

k

N∑
i=1

Liqi + ε, (2.33)

where Wk ∈ �m×3 or �m×2 is the spatial filtering matrix and q̂k is the estimated

dipole at rk. The sizes of the matrices and vectors depend on the models including

the sensor array and the shape of the conductor. They are appropriately adjusted

to the model. The current distribution is estimated with N spatial filters for the

grid points.

A spatial filter for the location of interest rk should obey the following con-

straints:

W (rk)
T L(r) =




I, ‖r − rk‖ ≤ δ

0, ‖r − rk‖ > δ,
(2.34)

where δ represents a small distance, and I represents an identity matrix.

The LCMV beamformer, one of the representatives of the methods for MEG anal-

ysis, is designed with temporal information. It minimizes the covariance of the
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estimated dipole and satisfies the above requirements as much as possible by solving

the problem as follows [55]:

min
Wk

tr
{
W T

k CmWk

}
, (2.35)

subject to W T
k Lk = I,

where tr{·} denotes trace, and Cm is the covariance matrix of MEG data. The

beamformer is obtained as follows:

Wk =
[
LT

k C−1
m Lk

]−1
LT

k C−1
m , (2.36)

The activities of interest are estimated by the LCMV beamformer taking noise into

account. The neural activity index defined as follows is adopted as the evalua-

tion of the activities. It is similar to the signal-to-noise ratio of the output of the

beamformer:

V̂ar (q�) =
tr

{[
LT

k C−1
m Lk

]−1
}

tr
{

[LT
k C−1

n Lk]
−1

} , (2.37)

where Cn is the covariance matrix of noises. The LCMV beamformer localizes

current density distribution effectively. However, the minimization of the covariance

ends unsuccessfully when multiple sources are activated with extreme correlations.

2.5.1.2 SAM

SAM (synthetic aperture magnetometry) [56] is an adaptive beamformer and is

based on minimum variance principle that is adopted in the LCMV beamformer.

The SAM targets the dipole amplitude qk(φ) with a specific direction φ on a location

rk; the SAM searches dipole parameters in a location rk and the orientation φ:

qk(φ) = wk(φ)Tm, (2.38)
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where wk(φ) ∈ �m×1 is the SAM beamformer. The beamformer is computed by

minimizing the variance with the constraint:

min
wk(φ)

wk(φ)T Cmwk(φ), subject to wk(φ)T lk(φ) = 1, (2.39)

where lk(φ) ∈ �m×1 is the lead field for the dipole with the specific location and

orientation, and the SAM beamformer is proposed as follows:

wk(φ) =
[Cm + λCn]

−1lk(φ)

lk(φ)T [Cm + λCn]−1lk(φ)
. (2.40)

The formula is similar to the LCMV beamformer, though the SAM is modified

to minimize the influence of the noise by introducing the noise covariance Cn. λ

is the regularization parameter to adjust the effect of the modification. As well as

the neural activity index of the LCMV beamformer, the following ratio ρk(φ) of the

source power to the noise (or the square root of it which is called a pseudo-Z) is

utilized for the evaluation:

ρk(φ) =
S2

k(φ)

σ2
k(φ)

, (2.41)

S2
k(φ) =

{
lk(φ)T (Cm + λCn)

−1 lk(φ)
}−1

, (2.42)

σ2
k(φ) = wk(φ)T Cnwk(φ). (2.43)

2.5.2 Proposed spatial filter without temporal information

2.5.2.1 Concept of the proposed spatial filter

This paper proposes a non-adaptive spatial filter which does not require temporal

information, unlike the LCMV beamformer and the SAM. For the design of the

spatial filter, we consider the probability density function (pdf) of the output of the

spatial filter. When the current dipole is regarded as a random variable and has

its pdf, the output of the spatial filter should obey the pdf and be optimized to

reproduce it. Therefore, if the pdf has its probability density strongly concentrated

around zero, the dipole estimated by the spatial filter should inherit the character.
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As the result, the amplitude of the current dipoles is suppressed in the total current

distribution estimated by the spatial filter. It can be interpreted as the improvement

of the localization. This prospect can be introduced to a modification of the spatial

filter to reduce the redundant expansion of the current density distribution, though

identifying the pdf of the dipole is to depend on a prior information.

In this study, using some small assumptions and the cumulant expansion, the

objective function for the optimization of the spatial filter is derived with less depen-

dence on the identification of the pdf of the current dipole; the objective function is

constructed with the second and fourth order cumulants.

Let us regard the current dipoles qi as random variables and introduce the prob-

ability density functions (pdfs), fi(q̃i) and g(q̂k) of:

q̃i = W T
k Liqi, (2.44)

q̂k = W T
k

N∑
i=1

Liqi =

N∑
i=1

q̃i, (2.45)

where q̂k is the estimated current dipole, i.e. the output of the spatial filter, and

q̃i is the contribution to q̂k of the dipoles qi including the target dipole qk and

non-target dipoles qi (i �= k).

We assume the current dipoles are i.i.d. Then the pdf g(q̂k) can be written as the

convolutions of fi(q̃i) since q̂k is the sum of q̃i. Utilizing the characteristic functions

G(t) and Fi(t), or the logarithms of them, of g(q̂k) and f(q̃i), we obtain simpler

formulas as follows:

Fi(t) = E
{
exp

(√−1 tT q̃i

)}
=

∫ ∞

−∞
fi(q̃i) exp

(√−1 tT q̃i

)
dq̃i, (2.46)

G(t) = E
{
exp

(√−1 tT q̂k

)}
=

N∏
i=1

Fi(t), (2.47)
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or

log G(t) =
N∑

i=1

log Fi(t). (2.48)

Since the spatial filter is wanted to minimize the contribution q̃i (i �= k) and extract

that of the target dipole q̃k, the spatial filter coefficients Wk should get rid of the

contribution Fi(t) (i �= k) in G(t) as much as possible. Therefore, the requirement

for the design of the spatial filter is described as follows:

log G(t) −→
N∑

i=1

δik log Fi(t), (2.49)

where δik is the Kronecker delta.

To achieve the above requirement, we can utilize the cumulants which are the

coefficients in the Taylor expansion of the logarithm of the characteristic function

and determine G(t) and equivalently g(q̂k). In this study, we use the second and

fourth order cumulants. The second order cumulants correspond to the variance of

the estimated dipole, and the fourth order cumulants are called the kurtosis. The

cumulants of higher order than the second show non-Gaussianity since the Gaussian

pdf has the higher order cumulants equal to zero.

We set the objective function with the cumulants and solve the following min-

imiazation problem to optimize the spatial filter:

min
Wk

Ĝ, (2.50)

Ĝ = (1 − λ) · tr(C2) + λ · tr(C4), (2.51)

subject to
∥∥W T

k Lk

∥∥2

Fro
= const., (2.52)

where 0 ≤ λ ≤ 1, and C2 and C4 are the matrices and have the second and fourth

order cumulants of q̂k as their elements respectively. ‖A‖Fro =
√

tr(AAT ), which

is called the Frobenius norm. Note that the matrices of the cumulants depend on

Wk. λ is the parameter to regulate the effect of the fourth order cumulants in the
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optimization.

2.5.2.2 Derivation of the optimization problem of the spatial filter

Here, we assume that the components qiθ (θ = 1, 2, 3) of the current dipole qi are

i.i.d. Thus the cumulant of rth order for the cumulant expansion of log Fi(t), the

logarithm of the charateristic function of the pdf which the contribution q̃i of the

i-th dipole to the spatial filter output has, is obtained as follows :

Cum(q̃r1
i1 , q̃r2

i2 , q̃r3
i3 ) =

∑
θ

ar1

1θa
r2

2θa
r3

3θCum(qr
iθ), (2.53)

r = r1 + r2 + r3, r1, r2, r3 ∈ N

where

q̃i = [q̃i1, q̃i2, q̃i3]
T , (2.54)

aθ̃θ = wT
kθ̃

liθ, (2.55)

wkθ̃ and liθ are the vectors of the columns of Wk and Li, respectively.

For instance,

Cum(q̃2
i1, q̃i2, q̃i3)

= Cum(a11qi1 + a12qi2 + a13qi3, a11qi1 + a12qi2 + a13qi3, a21qi1 + a22qi2 + a23qi3,

a31qi1 + a32qi2 + a33qi3)

= Cum(a11qi1, a11qi1, a21qi1, a31qi1) + Cum(a12qi2, a12qi2, a22qi2, a32qi2)

+ Cum(a13qi3, a13qi3, a23qi3, a33qi3)

= a2
11a21a31Cum(q4

i1) + a2
12a22a32Cum(q4

i2) + a2
13a23a33Cum(q4

i3)
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Here, we use the following identities:

Cum(x1 + y1, x2 + y2, · · · , xn + yn)

= Cum(x1, x2, · · · , xn) + Cum(y1, y2, · · · , yn), (2.56)

Cum(a1x1, a2x2, · · · , anxn)

= a1a2 · · ·anCum(x1, x2, · · · , xn), (2.57)

where {x1, x2, · · · , xn} and {y1, y2, · · · , yn} are independent sets of random vari-

ables, and a1, · · · , an are constants [75], [76].

Under the assumption of i.i.d., we notice Cum(qr
i1) = Cum(qr

i2) = Cum(qr
i3), and

it is obvious that they are equally included in the elements among rth order cumu-

lants. Thus, the cumulant tensors for Fi(t), which are defined with Cum(q̃r1
i1 , q̃r2

i2 , q̃r3
i3 ),

are essentially determined with aθ̃θ, i.e. Wk and Li, and the cumulant tensors for

the characteristic function G(t) of the spatial filter output are represented by the

sum of those of Fi(t).

We construct the respective cumulant matrices, C2 and C4 of the second and the

fourth orders for G(t), which have the cumulants as their elements. The cumulant

matrix of the second order is identical to the second order cumulant tensor, and

that of the fourth order is arranged to have identical eigenvalues with the fourth

order cumulant tensor [33]. The spatial filter is designed to minimize the sum of the

eigenvalues of C2 and C4. Finally, we can describe the objective function positively,

and the optimization problem of the spatial filter is stated as follows:

min
Wk

Ĝ (2.58)

Ĝ = (1 − λ) · tr(C2) + λ · tr(C4) (2.59)

= (1 − λ) ·
N∑

i=1

∑
θ

∑
θ̃

(
wT

kθ̃
liθ

)2
+ λ ·

N∑
i=1

∑
θ




∑
θ̃

(
wT

kθ̃
liθ

)2




2

,

(2.60)

subject to ‖W T
k Lk‖2

Fro = const.,

where 0 ≤ λ ≤ 1.
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The spatial filter which minimizes the interferences of the non-target dipoles in the

output, the estimation of the target dipole, is obtained by solving the above prob-

lem. It approximately accomplishes the purpose of the design, Eq.(2.49). Ignoring

Cum(qr
iθ) makes it possible to construct a non-adaptive spatial filter.

2.5.2.3 Effect of the fourth order cumulant

In Eq.(2.60), with λ, we can adjust the weight of the fourth order cumulants in

the optimization. The characteristics of the spatial filter and the current density

distribution estimated with it vary, depending on λ. The objective function Ĝ pro-

vides the approximation of the characteristic function assuming the symmetric pdf,

i.e. Cum(qr
iθ) = 0 for odd r, and the approximation with the cumulant expansion

terminated at the fourth order. λ prescribes the ratio of Cum(q2
iθ) to Cum(q4

iθ).

When we set larger λ, it implies that the pdf of the output of the spatial filter is

characterized dominantly with the fourth order cumulants. They are the criteria of

non-Gaussianity, λ > 0 is equivalent to the positive kurtosis, and the respective pdf

is supergaussian. It has a sharper peak and longer tails than the Gaussian pdf [33].

In this interpretation, the optimization is to obtain Wk which approximates Fk(t)

in a parametric model. The larger the λ is, the higher degree of non-Gaussianity

the pdf f(q̃k) is assumed to possess. The spatial filter attempts to reproduce it as

much as possible. Thus it means that the current dipole estimated by the spatial

filter with larger λ possesses strong non-Gaussianity and has smaller entropy; it is

relatively not random, and its probability densities tend to concentrate and takes

larger value in limited intervals around zero. The current density distribution con-

structed with the dipoles which have such characters should show highly localized

activated regions.

Moreover, the spatial filter makes the contribution of qi (i �= k) to the pdf of q̂k

smaller as much as possible. It means that q̂k tends to be independent from qi, and

the estimated dipoles q̂k and q̂i (i �= k) consequently attempt to be independent

from each other. It indicates that the number of the current dipoles activated at

the same time decreases in the current density distribution estimated by the spatial
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filter. The central limit theorem tells the sum of the independent random variables

each has finite variance approaches a Gaussian distributed random variable. There-

fore, non-Gaussianity shows independence. Larger λ, the enhancement of the fourth

order cumulants in the objective function, offers the estimated dipole q̂k a higher

degree of independence.

The above considerations indicate that it is expected that the fourth order cu-

mulants increase the localization of the current density distribution estimated by

the spatial filter. The second order cumulants should be minimized enough to sup-

press the interferences especially when the multiple dipoles are activated, though.

Independent current dipoles with larger variances may not localize the current dis-

tribution in some cases.

2.5.2.4 Normalization of the spatial filter

Finally, to satisfy the equality of the variances of the current dipoles estimated by

the spatial filters as well as the assumption, we normalize the optimum spatial filter

as follows:

Wk =
Wk

‖W T
k L‖Fro

. (2.61)

This normalization results the correction of the depth of the current density esti-

mated by the spatial filter.

In the optimization of the spatial filter, the contributions q̃i (i �= k) to the vari-

ance of the estimated current dipole are minimized. The normalization transforms

the filter coefficients to the solution which maximizes the contribution of the variance

of qk to the estimation q̂k under the constraint tr(C2) = ‖W T
k L‖2

Fro = 1, though

the term of the fourth order cumulants also works as a constraint. In other words,

especially in the case of the optimization only with the second order cumulants, the
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optimum spatial filter can be interpreted as the solution of the following problem:

max
Wk

∥∥W T
k Lk

∥∥2

Fro
, (2.62)

subject to
∥∥W T

k L
∥∥2

Fro
= 1. (2.63)

Since all of the spatial filters for the dipoles satisfy the same constraints and are the

members of the same set of the matrices, the maximization let the spatial filter Wk

output the larger norm with Lk, with the contribution to the observation m of the

target dipole, than the other filters Wi (i �= k). Therefore, the following inequality

holds among the spatial filters:

∥∥W T
k Lk

∥∥
Fro

≥ ∥∥W T
i Lk

∥∥
Fro

, (i �= k). (2.64)

The above relation illustrates that when Lk contributes significantly to the ob-

servation m, the spatial filter Wk corresponding to Lk tends to output larger dipole

amplitude than the other spatial filters Wi (i �= k). This indicates that even if the

spatial filters cannot sufficiently inhibit undesirable signals from locations that are

different from their own targets, the true activated dipoles must exist near the region

where maximal current density is estimated by the spatial filters. It is also indicated

that the depths of the estimated current densities are improved by the normaliza-

tion. In the optimization with the fourth order cumulants, it can be expected that

the inequality is hold since the same constraints, in which the minimization of the

fourth order cumulants is included, are satisfied among the spatial filters.
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2.5.2.5 Spatial filter only with the second order cumulants

The optimization of the spatial filter only with the second order cumulants, i.e. λ=0

in Eq.(2.60), is expressed as follows:

min
Wk

Ĝ, (2.65)

Ĝ = tr(C2) =
∥∥W T

k L
∥∥2

Fro
, (2.66)

subject to
∥∥W T

k Lk

∥∥2

Fro
= const. (2.67)

The solution may be obtained using the method of Laglange mutipliers. Let c1 and

c2 be Lagrange multipliers, and we add one more subject which maintains the rank

of the spatial filter Wk full. Assume that the conductor is spherically symmetric,

that is qi ∈ �2×1 and Wk, Lk ∈ �m×2, and note the following equation:

∥∥W T
k L

∥∥2

Fro
= tr

(
W T

k LLT Wk

)
= wk1LLT wk1 + wk2LLT wk2, (2.68)

where Wk = [wk1, wk2], and
∥∥W T

k Lk

∥∥2

Fro
can be expressed similarly. Then, the

optimization problem of the spatial filter can be rewritten as follows:

min
wk1,wk2

G̃ (2.69)

G̃ = wk1LLT wk1 + wk2LLT wk2

+c1

(
const. − wk1LkL

T
k wk1

)
+ c2

(
const. − wk2LkL

T
k wk2

)
,

(2.70)

subject to wk1 �= c3wk2, ∀c3 ∈ �. (2.71)

The optimal spatial filter coefficients satisfy the following equations:

∂G̃

∂wk1

= LLT wk1 − c1LkL
T
k wk1 = 0, (2.72)

∂G̃

∂wk2
= LLT wk2 − c2LkL

T
k wk2 = 0. (2.73)
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We should find vectors which minimize Eq.(2.71) and satisfy the above equations.

Therefore the optimization of the spatial filter is transformed into the following

eigenvalue problems:

c′1wk1 =
(
LLT

)−1
LkL

T
k wk1, (2.74)

c′2wk2 =
(
LLT

)−1
LkL

T
k wk2, (2.75)

where c′1 = 1/c1 and c′2 = 1/c2. The optimal solution of Eqs.(2.67)-(2.71) can be ob-

tained, taking the eigenvectors corresponding to the largest and the second-largest

eigenvalues c′1 and c′2, as the spatial filter coefficients wk1 and wk2.

It is obvious that the eigenvector corresponding to the maximum eigenvalue min-

imizes the cost function Ĝ if there is not the constraint (2.71), and the spatial filter

Wk has the column vectors wk1 = wk2. As a result, the current dipole estimated by

the spatial filter loses the information of its orientation and it can not be recovered,

since rank (Wk) = 1.

In the spatial-filter optimizations with the fourth order cumulants, λ �= 0, the

spatial filter optimized only with the second order cumulants is adopted as the initial

value for the iterative algorithms in the latter numerical studies. The optimization

is regarded as a modification.

2.5.3 Reconstruction of current distribution estimated by

the spatial filters

A general concern with a current distribution estimated by spatial filters is its re-

dundant expansion. It appears not only when the proposed spatial filter estimates

current distribution but also when the LCMV and SAM beamformers estimate mul-

tiple correlated activities in a brain. The poor resolving power of spatial filtering

is due to the strong ill-posedness of the inverse problem in MEG measurement. A

reconstruction of current density distribution for localization and elimination of the

redundant expansion is described in this section.

The orientation of each dipole estimated by the proposed spatial filter is cor-
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rected first. Since the spatial filter Wk is designed to attenuate the contributions

of Li (i �= k) to the observation as much as possible, multiplying
(
W T

k Lk

)−1
by

Eq.(2.33) gives an estimation of the dipole orientation. To conserve the amplitude

of the dipole appraised by the spatial filter, the dipole moment is corrected as follows:

q̃k = αk

(
W T

k Lk

)−1
q̂k, (2.76)

αk = ‖q̂k‖
/ ∥∥∥(

W T
k Lk

)−1
q̂k

∥∥∥ . (2.77)

Because of Eq.(2.64), we can assume that actual activated regions in a brain are in-

cluded in the regions with larger current densities estimated by the proposed spatial

filter. Hence, the observation is composed of the following components calculated

with the estimated dipoles:

gi = Liq̃i, (2.78)

‖q̃1‖ ≥ ‖q̃2‖ ≥ · · · ≥ ‖q̃p‖, p < m. (2.79)

where the subscripts of q̃i are renumbered in decreasing-norm order. With the above

prospect, a multiple linear regression model is constructed as follows:

m = Gps + ε̂, (2.80)

Gp =
[
g1, g2, · · · , gp

]
, (2.81)

where it is assumed that there are no current densities at the locations corresponding

to q̃i (i > p) or that their contributions to the observation can be ignored.

Localization of the current density distribution is accomplished by removing

unnecessary components in Gp with the Mallows Cp criterion [77], [78].

The Cp statistic selects the optimal model in a linear regression problem, i.e., that

fits data well with the fewest variables in a way similar to AIC (Akaike’s information

criterion). The Cp statistic is defined as Eq.(2.82), and the model which gives the
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minimum Cp is the best one:

Cp =
‖ep‖2

σ̂2
+ 2p − m, (2.82)

ep = m − Gpŝ, (2.83)

ŝ =
(
GT

p Gp

)−1
GT

p m (2.84)

= [ŝ1, ŝ2, · · · , ŝp]
T , (2.85)

where σ̂ is the estimated variance of the error ε̂. When the model with Gp−1 requires

fewer dipoles to compose the observation and gives smaller a Cp than the model with

Gp, and σ̂2 = ‖ep‖2/(m − p), the following relation holds:

ω =
‖ep−1‖2 − ‖ep‖2

‖ep‖2/(m − p)
≤ 2 (2.86)

where ep−1 is the error of the model with Gp−1. The model with Gp−1 is constructed

by setting gi = 0 for every i = p, p− 1, · · · , 2, 1. Each component gi will be deleted

when Gp−1 satisfies Eq.(2.86). It is determined that there is no current dipole in

the position ri corresponding to the deleted gi, and Gp is updated to Gp−1. The

localization of the current density distribution estimated by the spatial filters is

completed when the redundant current dipoles have been eliminated as much as

possible in the sense of the minimization of the Cp statistic. Finally, the current

density distribution is reconstructed with ŝ given by Eq.(2.84) with the optimal Gp,

q̄i =




ŝiq̃i (i = 1, 2, · · · , p)

0 (i = p + 1, · · · , N).
(2.87)

The method including the proposed spatial filtering and the reconstruction with

multiple linear regression is proposed as the spatial-filtered reconstruction (SFR).

In Chapter 3, the proposals for the phases of the signal processing and inverse

analysis of the MEG measurement, i.e. the FA-processed Kalman filter, the spatial

filter with the higher order cumulants and the SFR, are numerically studied to verify

the effectiveness and to be shown with their features in practical uses.
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Chapter 3

Numerical studies

3.1 Reduction of noise from MEG data

3.1.1 Experimental conditions

Numerical experiments were done to investigate the performance of the proposed

method. Results of the noise reduction with the FA and Kalman filter combination

(FA-processed Kalman filter) and of ICA following the noise reduction were com-

pared to those with band-pass filtering, which is the usual noise reduction method

used in MEG data processing.

In each experiment, MEG data were simulated by the forward equation of MEG

measurement. Gaussian noises were added to the simulated MEG data as sensor

noises. It was assumed that the conductor was a homogeneous spherical object with

a radius of 8 cm, and data were obtained with the whole head type MEG system

with 64 sensors. The locations of the conductor and sensors are illustrated in Fig.3.1.

The sensor numbers are shown in Fig.3.2.

3.1.2 FA-processed Kalman filter

In the first experiment, a single dipole on (x, y, z) = (0, 4, 0) was placed in the con-

ductor to simulate brain activity in a lateral lobe, e.g., an auditory evoked response.

The maximum strength of the dipole in temporal series was set as 100 nAm. The
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SNRs of the sensors are shown in Fig.3.3. We examine and discuss the effectiveness

of the proposed method and the robustness to errors in the number of common

factors by the simulation. The sampling rate was 1024Hz. The noise reduction by

an ideal low-pass filter whose cutoff was at 40Hz (40Hz LPF) was implemented as

a reference.

The proposed method reduced the sensor noise significantly. Figure 3.4 shows

the superimposed 64 original noise-free signals which are normalized by the maxi-

mum value of the original signals. The examples of the observed signals are shown in

Fig.3.5, and MEG signals obtained by the FA-processed Kalman filter is illustrated

in Fig.3.6. They are normalized by the maximum of the original signals as well

as Fig.3.4 for comparison. An approximately 0.01 s time delay and attenuation of

the amplitude occurred by the proposed method. The amplitude of the estimated

signals at their peak latency are about 50-80% of the original ones, e.g. in 20th

and 25th sensors (Fig.3.7). However, the FA-processed Kalman filter was able to

extract the features of the original noise-free MEG data despite this noisy situation.

On the other hand, a considerable amount of noise still remained in the MEG data

processed with 40Hz LPF. They are normalized and shown in Fig.3.8.

The proposed method succeeded in the noise reduction even when the number

of common factors was incorrect. Figure 3.9 shows the eigenvalues of the covariance

matrix of the MEG data after the noise reduction by the FA-processed Kalman filter

with one common factor, that is, with the correct number of common factors. The

largest eigenvalue contributes to a 98.8 % of the total value. Figure 3.10 shows the

eigenvalues of the covariance matrix of the data processed by the method with five

common factors. Even though the number of common factors was set wrongly as

five, the maximum eigenvalue contributed 85.4 % of the total value. This indicated

that the sensor noises and the redundant factors were eliminated effectively.
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Figure 3.1: 64 sensors and a conductor for the numerical experiments for the FA-
processed Kalman filter: the small circles represent the sensor locations. The con-
ductor has the radius of 8 cm.
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Figure 3.2: Locations and numbers for 230 sensors: the sensor numbers are shown
in the regions with (a) y ≥ 0 and (b) y ≤ 0.
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Figure 3.3: SNR of each sensor in the single dipole case
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Figure 3.4: 64 noise-free MEG signals in the first numerical experiment
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Figure 3.5: Examples of the observed MEG signals in the first numerical experiment:
the signals observed with 21th, 25th and 62th sensors are shown.
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Figure 3.6: 64 FA-processed Kalman filtered signals in the first numerical experiment
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Figure 3.7: signal amplitude of the original and FA-processed Kalman filtered signal
at the latency with the maximum norm of the data: the dashed and solid lines
illustrate the original and Kalman filtered signals, respectively
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Figure 3.8: MEG signals processed with a 40Hz low-pass filter in the first numerical
experiment
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Figure 3.9: Eigenvalues of the covariance matrix of the FA and Kalman-filtered
MEG data with one common factor in the first numerical experiment
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Figure 3.10: Eigenvalues of the covariance matrix of FA and Kalman-filtered MEG
data with five common factors in the first numerical experiment
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3.1.3 ICA followiong FA-processed Kalman filtering

The author also demonstrated the noise reduction in a case of multiple independent

components (ICs) in a second numerical experiment to investigate the influence of

the FA-processed Kalman filtering as a method for preprocessing ICA. Dipoles were

located at (x, y, z) = (0, 4, 0), (0,−3, 0), (0, 0, 5), and (−7, 0, 3). Figure 3.11 shows

the time series of each dipole activity. The SNR of each sensor is shown in Fig.3.12.

The examples of the observed signals are illustrated in Fig.3.13

The sampling rate was 512Hz. Two kinds of filters, i.e., 40Hz LPF and an ideal

band-pass filter whose passband was from 1 to 100Hz (1-100Hz BPF) were compared

to the filter used in the proposed method. Both of these filters are conventionally

used in MEG measurement. The number of the common factors was given as four.

The issue of the number of common factors was excluded to investigate the effect

of the connection between Kalman filter and ICA. After each noise reduction, four

independent components (ICs) were estimated by the FastICA algorithm.

Four ICs that agreed with the original signals were able to be obtained by ICA

after each noise reduction. Figures 3.14, 3.15 and 3.16 show the ICs estimated

by the proposed method, the 40Hz LPF method and the 1-100Hz BPF method,

respectively. The estimated ICs in Fig.3.14 coincided well with the original signals.

It is confirmed that the state-space model constructed with the forward equation of

MEG measurement and the estimation of the system noise covariance are reasonable.

There were high correlations between the ICs estimated by the proposed noise

reduction and ICA and the corresponding original signals. Figure 3.17 shows the

autocorrelation function of (s1) and the cross-correlation functions between (s1) and

corresponding ICs(a1), (b1) and (c1). They were normalized by the maximum of the

autocorrelation function. In addition, the maximum absolute values of the cross-

correlation functions between the original signals and the corresponding estimated

ICs are shown in Table 1.

52



0 0.25 0.50 0.75 1.00

0

2

4

0 0.25 0.50 0.75 1.00
-3
-2
-1
0
1

0 0.25 0.50 0.75 1.00
-4
-2
0
2

0 0.25 0.50 0.75 1.00
-1

0

1

[s] 

(s1) 

(s2) 

(s3) 

(s4) 

Latency

N
o

rm
al

iz
ed

 a
m

p
li

tu
d

e

Figure 3.11: Original signals. The signals (s1)-(s4) are located at (x, y, z) =
(0, 4, 0), (0,−3, 0), (0, 0, 5), and (−7, 0, 3), respectively.
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Figure 3.12: SNR of each sensor in the case of multiple ICs
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Figure 3.13: Examples of the observed signals in the multiple IC case: the signals
observed with 20th, 7th and 56th sensors are illustrated.
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Figure 3.14: Independent components estimated from FA-processed, Kalman-
filtered MEG data
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Figure 3.15: Independent components estimated from 40Hz low-pass filtered MEG
data
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Figure 3.16: Independent components estimated from 1-100Hz band-pass filtered
MEG data
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Figure 3.17: Cross-correlation functions between (s1) and (a1) (solid line), (s1) and
(b1) (heavy broken line) and (s1) and (c1) (light broken line). The dashed line
represents autocorrelation of (s1).

59



Table 1 Maximum absolute values of cross-correlation functions

ai bi ci
(proposed) (40Hz LPF) (1-100Hz BPF)

i=1 0.938 0.909 0.844
si 2 0.879 0.692 0.526

3 0.968 0.954 0.919
4 0.989 0.939 0.985

3.1.4 Discussion

The proposed method was shown to eliminate sensor noise significantly. In the first

numerical experiment, the maximal SNR of the simulated MEG data was −10dB

and agree with that of typical evoked fields on the order of 102fT, such as auditory

and sensory evoked fields. This can be estimated from the fact that in the case of the

typical evoked field, we attain a 90 % GOF (goodness-of-fit) in dipole fitting after

averaging on the order of 102 trials. This estimation suggests that the FA-processed

Kalman filter method can at least significantly reduce the number of trials required

for averaging; in addition, the method may extract desired signals from unaveraged

MEG data.

The FA-processed Kalman filter is robust to the error in the number of common

factors to some extent. This constitutes an advantage of the proposed method for

the preprocessing of ICA.

The number of ICs must be decided before a preprocessing, however, high level

noise makes this decision difficult. The number of ICs is usually determined by

referring to the contribution ratios of PCs. In Section 3.1.3., although the true

number of ICs was four, we needed nine PCs to achieve an 80 % contribution in

40Hz LPF data. 25 PCs were needed in 1-100Hz BPF data. Some criteria, such

as MDL (minimum description length) or AIC (Akaike’s information criteria) [79],

have been shown to be useful to refine the number of ICs [26]. However, to determine

the actual number of ICs is impossible, especially in practical MEG analysis. The

proposed method is also able to utilize those criteria in the FA step to estimate
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the number of common factors. Moreover, it does not tend to be influenced by an

incorrect number of common factors, as shown in Section 3.1.2.

The proposed method overcomes the issue of the orthogonalization of signals

under independent additive noises, and obtains high SNR ICs through sensor noise

reduction with Kalman filtering. Sensor noise causes unsuccessful orthogonalization

of signals, with the eventual result that the desired ICs cannot be obtained. With its

powerful noise reduction, the proposed method allows extractions of ICs from low

SNR data. In Section 3.1.3, the dipole generated the original signal (s2) in Fig.3.11

was located at the position (x, y, z) = (0,−3, 0), which was further from the sensor

array than the other dipoles. Therefore, it was weaker and had lower SNR than the

other signals. We were able to obtain IC (a2), the estimation of (s2), which showed

high correlation with the original signal (s2). In addition, the FA-processed Kalman

filter eliminated the sensor noise without any difficulty of choosing a frequency band.

3.2 Proposed spatial filter with higher order statis-

tics

3.2.1 Experimental conditions

The features of the proposed spatial filtering with higher order cumulants, especially

the second and fourth order cumulants were investigated in the numerical experi-

ments, which were conducted for the single and multiple dipole cases. Four kinds of

the spatial filters optimized with λ = 0, 1/3, 1/2, 1 were prepared for the following

numerical studies. MEG data were simulated with Eq.(2.7). A 160ch whole-head

type MEG system was adopted in these numerical experiments. The conductor was

a homogeneous sphere with a radius of 8 cm, which is discretized, and the dipoles

estimated by the spatial filters were on the grid points positioned at intervals of

1cm. The locations of the sensors and the grid points are shown in Fig.3.18.
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3.2.2 Current density estimation under single dipole

Some examples of the estimation results are shown in Figs.3.19-3.21. In these ex-

periments, the true single dipoles were assumed at (x, y, z) = (0, 0, 6), (0, 0,−1) and

(0, 0,−4), respectively. The orientation of the dipole was (x, y, z) = (1, 0, 0) for each

case. No observation noises were added to the simulated MEG data. Figures show

the dipole amplitude ‖q̂i‖2 in decreasing order. The amplitude is normalized by the

maximum value. The dipole estimated at the true dipole position was represented by

the marks +, �,© and � corresponding to the spatial filtering with λ = 0, 1/3, 1/2

and 1 respectively.

In each case, the maximum dipole was estimated at the position of the true

dipole. The figure shows that the spatial filters with λ > 0 appraised the dipoles as

smaller at the locations except for the correct one. This indicates that the fourth

order cumulants are effective to improve the locations of localization of the current

density distribution. However, the effect depends on the cases. Figures 3.22 and

3.23 show the normalized dipole amplitude in decreasing order averaged over 1000

single dipole cases. Figure 3.23 is the enlargement of Fig.3.22. The locations and the

orientations were randomly selected, and the averaged position of the single dipoles

was (x, y, z) = (0.096,−0.15,−0.001). These figures show that the degree of the

localization was increased by larger λ on average. More weight on the fourth order

cumulants we put, more localized the estimated current density distribution is in

single dipole case.

Robustness of the spatial filtering to noises in single dipole case was investigated.

This can serve as a reference in multiple dipole case. We estimated current distribu-

tion by the spatial filtering for 100 single dipole cases which were chosen randomly.

The average dipole position was (x, y, z) = (−0.62, 0.45, 0.35). For each signle dipole

case, the signal-to-noise ratio (SNR) was varied, and 100 tirals with Gaussian noise

ε were conducted in every SNR. The SNR is defined as ‖LQ‖2/‖ε‖2 here. Figure

3.24 shows, for various SNRs, the frequencies of the successful estimation in which

the maximum current dipole was estimated at the location of the true dipole. The

frequencies were averaged over 100 single dipole cases.
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This result indicates that the spatial filter minimized the second order cumulants

possesses the robustness to the noises. The frequency of the successful estimation

with the spatial filter only with the second order cumulants exceeded the others by

about 5-10% in the SNR less than 101. In the practical uses, the observation noise

can be assumed as Gaussian. When the noises are Gaussian, for the robust estima-

tion, it seems important to minimize the second order cumulants similarly in this

numerical experiment. It was shown that the other spatial filters with the fourth

order cumulants function well while the noises were sufficiently removed. Though

the robustness to noises is inferior to that of the spatial filter only with the second

order cumulants, they are still robust to noises to some extent.
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Figure 3.18: Locations of the sensors and grid points: © and · represent the locations
of the sensors and the grid points. The dipoles were estimated on the grid positions.
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Figure 3.19: Example of single dipole estimation with the proposed spatial filter:
the true dipole was at (x, y, z) = (0, 0, 6) and its orientation was (x, y, z) = (1, 0, 0).
The strengths of the current dipoles estimated by the spatial filtering are plotted
in decreasing order. They are shown with the respective lines and symbols, i.e. the
results of spatial filtering with λ = 0 (dashed line with +), λ = 1/3 (heavy broken
line with �), λ = 1/2 (solid line with ©) and λ = 1 (light broken line with �). The
symbols indicate the dipole estimated at the location of the true dipole.
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Figure 3.20: Example of single dipole estimation with the proposed spatial filter: the
true dipole was at (x, y, z) = (0, 0,−1) and its orientation was (x, y, z) = (1, 0, 0).
The strengths of the current dipoles estimated by the spatial filtering are plotted
in decreasing order. They are shown with the respective lines and symbols, i.e. the
results of spatial filtering with λ = 0 (dashed line with +), λ = 1/3 (heavy broken
line with �), λ = 1/2 (solid line with ©) and λ = 1 (light broken line with �). The
symbols indicate the dipole estimated at the location of the true dipole.
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Figure 3.21: Example of single dipole estimation with the proposed spatial filter: the
true dipole was at (x, y, z) = (0, 0,−4) and its orientation was (x, y, z) = (1, 0, 0).
The strengths of the current dipoles estimated by the spatial filtering are plotted
in decreasing order. They are shown with the respective lines and symbols, i.e. the
results of spatial filtering with λ = 0 (dashed line with +), λ = 1/3 (heavy broken
line with �), λ = 1/2 (solid line with ©) and λ = 1 (light broken line with �). The
symbols indicate the dipole estimated at the location of the true dipole.
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Figure 3.22: Normalized dipole amplitude estimated with the proposed spatial fil-
ter: the normalized dipole amplitude in decreasing order was averaged over 1000
single dipole cases. The average true dipole was at (x, y, z) = (0.10,−0.15, 0). The
strengths of the current dipoles in the decreasing order are plotted with the respec-
tive lines, i.e. the results of spatial filtering with λ = 0 (dashed line), λ = 1/3
(heavy broken line), λ = 1/2 (solid line) and λ = 1 (light broken line).

68



2 3 4 5 6 7 8 9 10
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Order

N
o
rm

al
iz

ed
 d

ip
o
le

 a
m

p
li

tu
d
e

Figure 3.23: Normalized dipole amplitude estimated with the proposed spatial fil-
ter: The normalized dipole amplitude in decreasing order was averaged over 1000
single dipole cases. The average true dipole was at (x, y, z) = (0.10,−0.15, 0). The
amplitude from the second to tenth in the order is shown. The strengths of the
current dipoles in the decreasing order are plotted with the respective lines, i.e. the
results of spatial filtering with λ = 0 (dashed line), λ = 1/3 (heavy broken line),
λ = 1/2 (solid line) and λ = 1 (light broken line).
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Figure 3.24: Frequencies of the successful estimation in single dipole cases for various
SNRs: the frequency of the successful estimation, in which the largest dipole was
estimated at the true dipole location, is shown. For each single-dipole estimation,
100 trials were conducted. The frequency is averaged over 100 single dipole cases
selected randomly. The frequencies are show for the respective spatial filters with
λ = 0 (dashed line, +), λ = 1/3 (heavy broken line, �), λ = 1/2 (solid line, ©) and
λ = 1 (light broken line, �)
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3.2.3 Current density estimation under multiple dipole

As well as in the single dipole cases, Figures.3.25-3.30 show some examples of

the estimation results with the spatial filters. Figures 3.25-3.27 show the dipole

strengths in the decreasing order in the two-dipole cases where the true dipoles

were the pairs of the locations (x, y, z) = (0,±6, 0), (0,±3, 0) and (0,±1, 0), and

Figures 3.28-3.30 illustrate the four-dipole cases, where the four true dipoles were

at the locations (x, y, z) = (0, 6, 0), (0,−6, 0), (−6, 0, 0) and (0, 0, 6) (Fig.3.28),

(x, y, z) = (0, 3, 0), (0,−3, 0), (−3, 0, 0) and (0, 0, 3) (Fig.3.29) and (x, y, z) =

(0, 1, 0), (0,−1, 0), (−1, 0, 0) and (0, 0, 1) (Fig.3.30). Following the manner in the

single dipoe cases, the symbols in the figures correspond to the dipole estimated at

the location of the true dipoles. In every estimation, larger dipoles were appraised

at the true-dipole positions.

It is recognized that the fourth order cumulants improve the localization of the

estimated current distribution. Through the results shown in Figs.3.19-3.21 and

3.25-3.30, the improvements of the localization with the fourth order cumulants

were more remarkable in the cases where the dipoles were farther from the center of

the spherical conductor.

To investigate the effectiveness of the fourth order cumulants in multiple dipole

cases, the estimation of the current density distribution was conducted, in which the

dipoles at all of the locations in the discrete conductor were activated randomly: the

activities of the dipoles were Gaussian. Therefore, we can not specify the number

of the dipoles, and there were no specified location on average where the current

density distribution was localized. However, the strengths of the dipoles in the

decreasing order should decline steeplier if the spatial filter has more localization

power.

Figures 3.31 and 3.32 show the strengths of the dipoles in the decreasing order

of the above-described estimation. The strengths were normalized and averaged

over ten thousands of trials. Figure 3.32 focused on a part of Fig.3.31. The result

shows that the spatial filter which minimized both of the second and fourth order

cumulants localizes the current distribution more effectively in multiple dipole cases.
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Figure 3.25: Example of multiple dipole estimation with the proposed spatial filter:
the true dipoles were at (x, y, z) = (0,−6, 0), (0, 6, 0). The strengths of the current
dipoles estimated by the spatial filtering are plotted in decreasing order. They are
shown with the respective lines and symbols, i.e. the results of spatial filtering with
λ = 0 (dashed line with +), λ = 1/3 (heavy broken line with �), λ = 1/2 (solid
line with ©) and λ = 1 (light broken line with �). The symbols indicate the dipole
estimated at the location of the true dipole.
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Figure 3.26: Example of multiple dipole estimation with the proposed spatial filter:
the true dipoles were at (x, y, z) = (0,−3, 0), (0, 3, 0). The strengths of the current
dipoles estimated by the spatial filtering are plotted in decreasing order. They are
shown with the respective lines and symbols, i.e. the results of spatial filtering with
λ = 0 (dashed line with +), λ = 1/3 (heavy broken line with �), λ = 1/2 (solid
line with ©) and λ = 1 (light broken line with �). The symbols indicate the dipole
estimated at the location of the true dipole.
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Figure 3.27: Example of multiple dipole estimation with the proposed spatial filter:
the true dipoles were at (x, y, z) = (0,−1, 0), (0, 1, 0). The strengths of the current
dipoles estimated by the spatial filtering are plotted in decreasing order. They are
shown with the respective lines and symbols, i.e. the results of spatial filtering with
λ = 0 (dashed line with +), λ = 1/3 (heavy broken line with �), λ = 1/2 (solid
line with ©) and λ = 1 (light broken line with �). The symbols indicate the dipole
estimated at the location of the true dipole.
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Figure 3.28: Example of multiple dipole estimation with the proposed spatial filter:
the true dipoles were at (x, y, z) = (0,−6, 0), (0, 6, 0), (−6, 0, 0) and (0, 0, 6). The
strengths of the current dipoles estimated by the spatial filtering are plotted in
decreasing order. They are shown with the respective lines and symbols, i.e. the
results of spatial filtering with λ = 0 (dashed line with +), λ = 1/3 (heavy broken
line with �), λ = 1/2 (solid line with ©) and λ = 1 (light broken line with �). The
symbols indicate the dipole estimated at the location of the true dipole.
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Figure 3.29: Example of multiple dipole estimation with the proposed spatial filter:
the true dipoles were at (x, y, z) = (0,−3, 0), (0, 3, 0), (−3, 0, 0) and (0, 0, 3). The
strengths of the current dipoles estimated by the spatial filtering are plotted in
decreasing order. They are shown with the respective lines and symbols, i.e. the
results of spatial filtering with λ = 0 (dashed line with +), λ = 1/3 (heavy broken
line with �), λ = 1/2 (solid line with ©) and λ = 1 (light broken line with �). The
symbols indicate the dipole estimated at the location of the true dipole.
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Figure 3.30: Example of multiple dipole estimation with the proposed spatial filter:
the true dipoles were at (x, y, z) = (0,−1, 0), (0, 1, 0), (−1, 0, 0) and (0, 0, 1). The
strengths of the current dipoles estimated by the spatial filtering are plotted in
decreasing order. They are shown with the respective lines and symbols, i.e. the
results of spatial filtering with λ = 0 (dashed line with +), λ = 1/3 (heavy broken
line with �), λ = 1/2 (solid line with ©) and λ = 1 (light broken line with �). The
symbols indicate the dipole estimated at the location of the true dipole.
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Figure 3.31: Normalized dipole amplitude estimated with the proposed spatial filter
in multiple dipole case: the normalized dipole amplitude in decreasing order was
averaged over 10000 cases where all of the dipoles were activated randomly. The
dipole activities were Gaussian. The strengths of the current dipoles in the decreas-
ing order are plotted with the respective lines, i.e. the results of spatial filtering
with λ = 0 (dashed line), λ = 1/3 (heavy broken line), λ = 1/2 (solid line) and
λ = 1 (light broken line).
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Figure 3.32: Normalized dipole amplitude estimated with the proposed spatial filter
in multiple dipole case: the normalized dipole amplitude in decreasing order was
averaged over 10000 cases where all of the dipoles were activated randomly. The
dipole activities were Gaussian. The amplitude from the 200th to 250th in the order
is shown. The strengths of the current dipoles in the decreasing order are plotted
with the respective lines, i.e. the results of spatial filtering with λ = 0 (dashed line),
λ = 1/3 (heavy broken line), λ = 1/2 (solid line) and λ = 1 (light broken line).
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3.2.4 Discussion

In this section, the current density estimation with the proposed spatial filter is

numerically illustrated. The numerical experiments show that the fourth order cu-

mulants in the optimization of the spatial filter improve the localization. The current

distribution estimated with the spatial filter enhanced the fourth order cumulants

was localized well. As mentioned in Section 2.5.2, the output of the spatial filter

inherits the statistical character of the prescribed pdf, i.e. the smaller entropy and

the higher degree of independence, and the amplitude of the current densities is

suppressed. It is indicated that the minimization of the second order cumulants is

crucial to increase the localization in multiple dipole cases. The spatial filter should

inhibit the interference in the variance to get rid of the influences of the non-target

dipoles from the estimation q̂k.

Through the numerical experiments, it is verified that the depths of the current

dipoles are correctly estimated with the proposed spatial filter. The normalization

of the spatial filter enables the estimation of the depths. Especially in the single

dipole cases, as shown in Fig.3.24, the current dipole was estimated on the correct

location regardless of its depth with the robustness to the noises. Larger current

dipoles were successfully located on the positions of the true dipoles in the multiple

dipole cases, though the estimation may be not successful when the dipole does not

contribute sufficiently to the MEG data among the other dipoles which simultane-

ously exist. The investigation of the robustness to the noise will be a reference.

The current density distribution estimated by the spatial filter is increasingly

complex against the number of the true dipoles and loses the localization. The na-

ture of the underdetermined problem aggravates the estimation in multiple dipole

case. Though we need to contrive the techniques in the experiment with MEG, the

reconstruction of the current dipoles estimated by the proposed spatial filtering, the

SFR, alleviates the issue.
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3.3 Spatial filtered reconstruction (SFR)

3.3.1 Experimental conditions

Here, the performances of the SFR, i.e. the spatial filtering and successive re-

construction with multiple linear regression, were investigated through numerical

experiments. The reconstruction of the current distribution estimated with the spa-

tial filter only with the second order cumulants is evaluated in this section. For the

spatial filter with the fourth order cumulants, similar discussion can be applied.

The conductor was a homogeneous sphere with a radius of 8 cm, which is dis-

cretized, and dipoles were assumed on the grid points positioned at intervals of 1

cm. A 160ch whole-head type MEG system was adopted in these numerical studies.

The positions of the sensors and the grid points are shown in Fig.3.18. MEG data

were obtained from Eq.(2.7). The additive sensor noises ε are Gaussian.

3.3.2 Examples of the estimations with SFR

Figures 3.33-3.35 are the examples of the estimation of the current density distri-

bution with the SFR. In these estimations, the initial number of the dipoles p was

prescribed as 10, and redundant dipoles were removed in the sense of minimization

of the Mallows Cp. The signal-to-noise ratio (SNR) was defined as ‖LQ‖2
/
‖ε‖2 in

the following simulations.

The result when the true dipoles were at (x, y, z) = (0, 6, 0) and (0, 7, 0) with

an SNR of 10 is shown in Fig.3.33. The orientations of the true dipoles were

(x, y, z) = (1, 0, 0). The true dipoles had same strengths. Though some small re-

dundant dipoles appeared except for in the true dipole positions, the current density

distribution was well localized. This result also shows that the spatial resolution is 1

cm and worse in the conditions of the simulation. It depends on several conditions,

e.g. the number of sensors, locations of sensors, number of dipoles, orientations of

dipoles, and methods for discretizing the conductor and SNR, etc. Mallows Cp se-

lects the model that fits the data with the fewest dipoles; therefore, dipoles that do

not make much differences to the data will be removed from the estimated current
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distribution.

Figure 3.34 shows the current distribution estimated by the SFR when the true

current dipoles were at (x, y, z) = (0,−4, 0) and (0, 4, 0) with SNR of 10. The true

dipole orientations were (x, y, z) = (1, 0, 0). The true dipoles had same strengths.

Even if the dipoles existed apart from each other, the SFR could pick up the dipoles

in the true positions. If there is a dipole that is further from the sensor array than

the others and does not contribute sufficiently to the data, estimating the dipole is

difficult.

The estimation result in the case of four true dipoles at (x, y, z) = (−6, 0, 0),

(0,−6, 0), (0, 6, 0) and (0, 0, 6) with an SNR of 100 is shown in Fig.3.35. The orien-

tations of the true dipoles were (x, y, z) = (0, 1, 0), (−1, 0, 0), (1, 0, 0) and (0,−1, 0),

respectively. The true dipoles had same strengths. Prior information is less of a con-

cern in the SFR than in the other methods such as the Moving-dipole method. Thus,

we can appraise more complex current distributions such as those it is possible to

confront in actual neurological studies.
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Figure 3.33: Example of dipole estimation with the SFR: the case of two adjacent
dipoles with a SNR of 10. The locations of the true dipoles were at (x, y, z) = (0, 6, 0)
and (0, 7, 0). The true dipole orientations were (x, y, z) = (1, 0, 0).

83



-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

x [cm]

y
 [

cm
]

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

y [cm]

z 
[c

m
]

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

x [cm]

z 
[c

m
]

-8
-6

-4
-2

0
2

4
6

8

-8
-6

-4
-2

0
2

4
6

8
-8

-4

0

4

8

x [cm]y [cm]

z 
[c

m
]

(x,y,z)=(0,-4,0)

(0,4,0)

Figure 3.34: Example of dipole estimation with the SFR: the case of two distant
dipoles with a SNR of 10. The locations of the true dipoles were at (x, y, z) =
(0,−4, 0) and (0, 4, 0). The true dipole orientations were (x, y, z) = (1, 0, 0).
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Figure 3.35: Example of dipole estimation with the SFR: the case of two dis-
tant dipoles with a SNR of 100. The locations of the true dipoles were at
(x, y, z) = (0, 6, 0), (0, 0, 6), (0,−6, 0) and (−6, 0, 0). The true dipole orientations
were (x, y, z) = (1, 0, 0), (0,−1, 0), (−1, 0, 0) and (0, 1, 0), respectively.
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3.3.3 Influences of noises to SFR

The performances of the SFR in single-dipole cases with noise were investigated.

The influence of noise in the case of multiple dipoles must be more complicated due

to several factors to be considered. However, the following numerical studies illus-

trate the performances of the SFR we can expect generally, even in multiple-dipole

cases.

A hundred trials of estimations with the SFR were implemented for each SNR,

and the results were averaged over a hundred single-dipole cases with different lo-

cations and orientations of dipoles. The locations and orientations were selected

randomly. The average of the locations was (x, y, z) = (0.36,−0.15,−0.52).

The frequencies of the occurrence of three cases in the current density estimation

with the SFR for various SNRs are shown in Fig.3.36. The three cases are; the case

(i) where the maximum current density was estimated at the correct location by the

proposed spatial filter, the case (ii) where the maximum dipole was estimated at the

correct location by the SFR and the case (iii) where the dipole located at the posi-

tion of the true dipole was included in the current dipoles reconstructed by the SFR.

Additionally, the contribution rate of the dipole on the correct position, q̄true, to the

total dipoles in the estimated current distribution, that is, ‖q̄true‖2
/ ∑p

i=1 ‖q̄i‖2, is

plotted for each SNR in Fig.3.37. It was averaged over cases (ii). For each SNRs,

the average number of the current dipoles reconstructed by the SFR is appended in

Fig.3.37.

With the SNR at 101 and above, we obtained steady performance of the SFR

(Fig.3.36). The proposed spatial filter identified the true dipole locations correctly,

and the SFR localized the current distribution. Figures 3.36 and 3.37 indicate that

there were no redundant dipoles in the estimation results. This implies that the

SFR estimation is conducted stably with usual noise reduction, e.g. averaging over

about 102 trials which gives 90 % GOF (goodness-of-fit) in ordinary MEG analysis

such as AEF (auditory evoked field) and SEF (somatosensory evoked field). In cases

with SNRs smaller than 101, the effect of the proposed reconstruction was remark-

able. While the proposed spatial filter estimated the maximum current on the right
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position for about 70 % of the estimation trials, the reconstruction with multiple

linear regression improved the ratio of successful reconstruction, the case (ii), by

nearly 10%, and almost 20 % for the case (iii). The SFR often captures the true

dipole position even when the proposed spatial filter misses it. The reconstruction

also strengthens the robustness of the estimation to noises.

Furthermore, the SFR gets the current distribution sufficiently localized toward

the correct location, as shown in Fig.3.37. The dipole on the correct position con-

tributed to more than 75 % of the total dipoles even when the SNR was 101 and

below. Localization is improved with higher SNRs.

Figure 3.38 shows the average errors in positions of the maximum current dipoles

estimated by the SFR. The positions of the marks show the mean values of the errors

for the axes. The larger the SNR is, the smaller the standard deviation of the error

is. The mean error for each axis and standard deviations were less than 2 cm. The

difference between the true and the estimated maximum dipole location was within

1 or 2 grid points on average. When the SNR was more than 101, the noise did not

cause error in position.
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Figure 3.36: Frequencies of the cases for SNRs: case (i) where the maximum current
density was estimated at the correct location by the proposed spatial filter (�), case
(ii) where the maximum dipole was estimated at the correct location by the SFR
(�), and case (iii) where the dipole on the correct location was reconstructed by the
SFR (©). 100 trials were conducted for each SNR in the single-dipole estimation,
and the frequencies are averaged across the 100 single-dipole cases.
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3.3.4 Effect of spatial discretization

In actual MEG analysis, current dipoles are hardly located on the discrete grid

points. We need to estimate the dipoles out of the grid points. In this section, we

researched the influence of the out-of-grid dipoles to the SFR.

The location and the orientation of the dipole were chosen randomly without

concerning whether the dipole was on the grid point or not. A thousand trials of

the current dipole estimation with the SFR were conducted. The average dipole

location was (x, y, z) = (0.02, 0.03, 0, 06). Figure 3.39 shows that the average dif-

ference between the positions of the true dipole and of the reconstructed dipoles.

r̄max represents the average difference of the locations of the maximum dipole recon-

structed by the SFR, and r̄2, r̄3 and r̄4 correspond to the scond, third and fourth

largest dipoles respectively. r̄true shows the origin. Note that the dipoles were esti-

mated on the grid points by the SFR, actually.

The reconstructed dipoles tended to appear the locations farther from the sensor

array. The density of the sensors was low in the region with x > 0 and z < 0 in

which the current dipoles were reconstructed on average. The current distribution

was reconstructed with the current dipoles on deeper position. The distances be-

tween the true and estimated dipoles (Table 2) approximately concurred with halves

of the length of the diagonals or the edges, e.g.
√

3/2,
√

2/2 and 1/2, in the cube

composed of the grid points with the intervals of 1cm. The maximum dipole was

estimated on the farthest grid points, on average, in the cube which the true dipole

was enclosed. The contribution of the dipole located deeply is weak. Therefore,

the amplitude has no choice but becomes larger to make significant contribution.

The result in Table 2 shows that the redundant expanse of the current distribution

appears with the estimation of the dipoles which are not on the grid points. It will

be relieved, increasing the number of the grid points.
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Table 2 Average distance between the true and reconstructed dipole, and ratio of
the dipole amplitude of the reconstructed dipole

r̄max r̄2 r̄3 r̄4

‖r̄‖ [cm] 0.87 0.70 0.48 0.26

‖q̄k‖2/
∑p

i=1 ‖q̄i‖2 0.45 0.22 0.14 0.09
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Figure 3.39: Differences between the true position and the reconstructed dipoles
averaged over 1000 trials.
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3.3.5 Comparison of SFR, LCMV beamformer and SAM

The main difference among the spatial filters, i.e, the LCMV beamformer, the SAM

and the spatial filter proposed in this paper, is the usage of temporal information.

The LCMV beamformer and the SAM utilize the covariance matrix of MEG data

as described in Section 2.3.1. They localize current distribution effectively, and

reflect actual neural activities due to the use of observed covariances. However, the

temporal correlation of the source activities depresses the spatial resolution of the

estimation with the LCMV beamformer, the SAM and MUSIC.

We conducted numerical experiments, in which the two true dipoles were located

at (x, y, z) = (0,−4, 0) and (0, 4, 0), and MEG data were simulated by Eq.(2.7). The

SNR at the peak latency of the MEG signals LQ was 101 , and the noise strength

‖ε‖2 was constant for each temporal sample.

Estimation with the LCMV beamformer and the SAM were implemented in two

cases: when the dipole activities were perfectly correlated (case (a)) and when they

were partially correlated (case (b)). The covariance matrices of the simulated data

and noise were utilized for the LCMV beamformer and the SAM. Besides, the SFR

was applied for the case (a). The estimation with the SFR used only the snapshot

of simulated MEG data at the peak latency.

Figure 3.40 shows the estimation results with the LCMV beamformer. The

neural activity indexes, Eq.(2.37), on the plane with z = 0 of the estimation in

the case (a) are shown in Fig.3.40 (a). The estimated activities were expanded in

the whole of the conductor, while the neural activity indexes in the case (b) were

localized better.

The results in the cases (a) and (b) with the SAM are shown in Fig.3.41. They are

similar to the results with the LCMV beamformer. However, the spatial resolution

with the LCMV beamformer is slightly better than with the SAM, and it seems

not to consist with [58]. In [58], the spatial resolution is compared based on the

pseudo-Z of the SAM, that is, Z2
LCMV = tr

(
W T

k CmWk

)
/tr

(
W T

k CnWk

)
substitutes

for the neural activity index in Eq.(2.37). Following this manner, the SAM showed

better spatial resolution than the LCMV beamformer in the simulations. Here, we
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obeyed the original methods of the LCMV and SAM beamformers described in [55]

and [56].

On the other hand, as shown in Fig.3.42, the SFR successfully localized the

current densities in the case (a). Although the LCMV beamformer and the SAM

are superior to the SFR in their robustness to noise, the SFR can offer better

spatial resolution since it does not rely on temporal information to localize current

distribution. This suggests that avoiding dependence on temporal information is

a choice to improve the localization and spatial resolution in MEG analysis. The

SFR, or a spatial filter that does not use any prior and temporal information but

incorporates other methods, can be one of the options. Furthermore, reconstruction

with multiple linear regression technique can cooperate with other spatial filters to

obtain localized current distribution and convincing estimations in MEG analysis.
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Figure 3.40: Estimation results with the LCMV beamformer: the neural activity
indexes on plane z = 0 are shown for two cases where the activities of two dipoles
at (x, y, z) = (0,−4, 0) and (0, 4, 0) are correlated (a) perfectly and (b) partially.
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Figure 3.41: Estimation results with the SAM beamformer: ρk =
argmaxφ S2

k(φ)/σ2
k(φ) on plane z = 0 are shown for two cases where the activi-

ties of two dipoles at (x, y, z) = (0,−4, 0) and (0, 4, 0) are correlated (a) perfectly
and (b) partially.
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Figure 3.42: Current density distribution estimated in case (a) by the proposed SFR
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3.3.6 Impact of combination of FA-processed Kalman filter

and SFR

The SFR after the FA-processed Kalman filtering is considered through the follow-

ing numerical experiment.

The dipole was assumed at the location (x, y, z) = (0, 0, 1) and the orientation

was (x, y, z) = (1, 0, 0). The location and the orientation did not make much dif-

ference in the result of the following numerical experiment. The time series of the

dipole activity was given similarly to the numerical experiment in Section 3.1.1.

The SNR of the pre- and post-Kalman filtering were investigated. The SNR of pre-

Kalman filtering was defined as ‖LQ‖2/‖ε‖2 at the latency tmax with the maximum

of the MEG signals, and noises with same level at tmax were added to each temporal

slice of the MEG signals. The noise ε̂ included in the estimated MEG signals m̂

at tmax was calculated as ε̂ = m̂ − (m̂T m̄true)m̄true where m̄true = LQ/‖LQ‖ at

tmax, that is to say, the component orthogonal to the noiseless MEG signals which

affects the estimation with the SFR. The SNR of post-Kalman filter was defined as

‖m̂ − ε̂‖2/‖ε̂‖2. A hundred trials of the FA-processed Kalman filtering were con-

ducted for each SNR, and Figure 3.43 shows the average SNRs obtained after the

Kalman filtering.

The result indicates that the SNR was improved and became ten times larger

than the SNR of the post-Kalman filter. As referred in the discussion in Section

3.1.5., the SNR of typical raw MEG data can be estimated as approximately 10−1,

assuming that averaging over about 102 trials offers a 90 % GOF in a conventional

estimation. Therefore, after FA-processed Kalman filtering, it is expected that the

SNR of the MEG data increase to the order of 100. The result shown in Fig.3.36

indicates that the SFR may estimate the true dipole location with the probability

around 85 %.

The possibility that the combination of the FA-processed Kalman filter and the

SFR estimates the current dipole on the correct location from raw MEG data was

indicated through the numerical experiment in this section. At least, it is verified
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that the robust estimation is available by the combination in MEG analysis with

low SNR.
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Figure 3.43: SNRs of pre- and post FA-processed Kalman filter: the SNRs are
averaged across 100 trials. The location of the single dipole was (x, y, z) = (1, 0, 0).
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3.3.7 Discussion

The main advantage of the spatial filtered reconstruction (SFR) is the powerful lo-

calization with the objective criterion, the Cp statistic. In the numerical experiments

in this section, the current density distribution was well reconstructed by the SFR.

The spatial filter improves the localization with the fourth order cumulants. In cases

where the true dipole distribution is not so complex, the estimation only with the

proposed spatial filter identifies the locations of the dipoles clearly. Besides, the

spatial filtering easy-to-use, and it can be prepared in advance of the analysis.

However, the redundant dipole activities are not able to be ignored in the es-

timation of the complex current distribution. The effect of the modification is not

standardized for each spatial filter: the localization of the current distribution de-

pends on the cases. To resolve the issue, the Cp statistic can be a reliable criterion

for localization of the current distribution. The reconstruction with the multiple

linear regression effectively supports the spatial filter, especially in noisy MEG anal-

yses. It modifies the error in position of the dipole estimated by the spatial filter,

and offers higher possibility of the successful estimation of the brain activity from

raw data, combined with the FA-processed Kalman filter. It will be discussed in the

next section.

The SFR implemented without temporal information shows the effect which is

different from that of the conventional spatial filters such as the SAM and the LCMV

beamformer using temporal information as shown in Section 3.3.5. It is another im-

portant advantage of the SFR.
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Chapter 4

Real MEG data analysis

4.1 Experimental conditions

Analyses with the FA-processed Kalman filter, ICA and the SFR were applied to

real MEG data. The current distribution was estimated from averaged AEF data

in which the noises were reduced sufficiently. The combination of the FA-processed

Kalman filter, ICA and the SFR processed the simulated raw AEF data consisted

of real MEG noises and simulated AEF. The proposed combination was employed

for real AEF data analyses, such as unaveraged single trial AEF data.

AEF data were acquired with using 230 gradiometers of whole-head MEG system

(Yokogawa, Japan). A subject was 27-year-old male. 1000Hz tone bursts with the

duration of 100 ms were presented to both ears simultaneously. The sampling rate

was 1000 Hz, and a data set of the trial had its length of 1000 ms, 500ms for pre-

and post-stimulus terms each. The data were filtered online to a bandwidth of 0.03

to 200Hz.

4.2 SFR in AEF analysis

The current density distribution was estimated with the SFR for the averaged AEF

data. The AEF data were averaged over 169 trials, and processed with the off-line

low pass filter whose cut-off frequency was 40 Hz (Fig.4.1). The MEG signals have
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the peak at the latency of 100 ms, which is called N1m and characterizes typical

AEF [80], [81].

In this analysis, the conductor was assumed as a homogeneous sphere with a

radius of 8.1 cm, and the dipoles were estimated on N = 2204 discrete points

with the intervals of 1 cm as in Section 3.2.1. The location of the sensors and the

conductor are shown in Fig.4.2. The sensor index numbers are described in Fig.4.8.

The estimation by the SFR was conducted for the MEG data at the latency of 85

ms. The initial number of the dipoles in the reconstruction was prescribed as 10.

As a result, the four dipole were estimated as shown in Fig.4.3. Figures 4.4, 4.5

and 4.6 show the dipole locations superimposed to the MR image. The estimation

with the SFR successfully indicated the bilateral activities in the brain, around the

auditory cortexes.
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Figure 4.1: AEF signals averaged across 169 trials
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Figure 4.2: Locations of the sensors and the conductor: © show 230 sensor positions
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Figure 4.3: Current dipoles reconstructed from the averaged AEF data by the SFR
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Figure 4.4: Locations of the dipoles in the MR image estimated from the averaged
AEF data by the SFR (axial)
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Figure 4.5: Locations of the dipoles in the MR image estimated from the averaged
AEF data by the SFR (cornal)
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Figure 4.6: Locations of the dipoles in the MR image estimated from the averaged
AEF data by the SFR (sagittal)
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4.3 Combination of FA-processed Kalman filter,

ICA and SFR in AEF analysis

With the combination of the FA-processed Kalman filter, ICA and the SFR, the

author attempted to appraise the activities in the brain from the AEF data averaged

across the lower number of the trials than usual, and single-trial unaveraged AEF

data. The result of processing the simulated AEF data in the following Section 4.3.1

will support the latter real AEF data analyses.

In the estimation introduces in the following sections, the SFR was conducted

with the assumptions that the conductor was a homogeneous sphere with a radius

of 8.1 cm and discretized with the same manner as in Section 4.3. The region

for the estimation of the current dipole distribution was restricted with in Ω =

{r = (x, y, z) | 4 < ‖r‖ ≤ 8.1, z > −4}. The locations of the sensors and the region

for the estimation are shown in Fig.4.7. The sensors are numbered as shown in

Fig.4.8.

4.3.1 Simulated AEF data analysis

Unaveraged AEF data were simulated with the phantom dipoles located at (x, y, z) =

(−2, 5,−1) and (0,−6, 1) in which the larger dipoles were estimated in the aver-

aged AEF analysis in the previous section. The dipole orientations were set as

(x, y, z) = (−0.87,−0.33, 0.067) and (−1.00, 0, 0), and the amplitude was adjusted

to produce the simulated AEF data with the maximum amplitude of 250 fT, simi-

larly to the dipoles reconstructed by the SFR in Section 4.2. The simulated noise-free

AEF data are shown in Fig.4.9. The real MEG noises were added to the simulated

AEF data. The data in the pre-stimulus terms in the experiment (see Section 4.1)

were utilized for the noises which consisted of the real sensor noises and may include

artifacts. The data includes the simulated AEF and the real MEG noises are termed

as the simulated raw AEF data (Fig.4.10). The SNR for each sensor is shown in

Fig.4.11. The maximum SNR was −6.1 dB.

The factor analysis was conducted to estimate the covariance matrices for the
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Kalman filter. In the FA step, the number of the common factors was determined

from referring to the variation of the error between the estimated and observed co-

variances, Eq(2.22) namely. While the number of the common factors was 10 or

more, the estimation errors were adequately minimized less than 1 % in Fig.4.12.

This indicates that the model with 10 common factors explained the observation co-

variance sufficiently. With more than 30 common factors, the variation of the error

converged. And hence the noise covariances estimated with 40 common factors were

adopted. The FA-processed Kalman filtering was implemented with the estimated

noise covariances. The sensor noises were effectively eliminated by the FA-processed

Kalman filter as shown in Fig.4.13.

In the ICA step, 30 PCs contributed a 99.8 % to the total value in the Kalman

filtered data covariance. The result of the noise reduction with the FA-processed

Kalman filter was successful. The number of the PCs was able to be significantly

reduced. The ICA step needed fewer ICs after the proposed noise reduction. 30 ICs

were estimated with the FastICA. One of the estimated ICs shown in Fig.4.14 has

its peak around 100 ms, and it can be interpreted as a component originated from

the simulated AEF data, the simulated typical N1m. The current dipole estimation

was conducted for the extracted IC.

The current dipoles reconstructed by the SFR are shown in Fig.4.15. The initial

number of the dipoles was prescribed as 10, and 6 dipoles were estimated. Although

there exsit some redundant dipoles that may be caused by the artifacts ICA could

not separate, we can find the dipoles estimated at the true locations. In this case,

the estimation error rate, i.e. ‖mest − mobs‖2/‖mobs‖2 with the MEG data mest

caluculated with the estimated dipoles and observation mobs, was 0.1727. When

the initial number of the dipoles was prescribed as 3, 3 dipoles were survived the

elimination. As shown in Fig.4.16, the redundant dipoles were removed. The error

rate remained small. The orientations of the dipoles were well reconstructed. This

simulation shows that the FA-processed Kalman filter reduces noises in real MEG

data, ICA can extract the signal components due to the dipoles of interest, and the

SFR can reconstruct the dipoles.
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The estimation only with the SFR and the combinations of the SFR and each of

the noise reductions, an ideal band-pass filter with a bandwidth of 1-40 Hz (1-40Hz

BPF), the FastICA, the 1-40Hz BPF and FastICA, and the FA-processed Kalman

filter without ICA, were investigated. The processed signals and the estimated cur-

rent distribution are shown in Figs.4.17-4.21. In those cases, the current dipole at

the location of (x, y, z) = (−2, 5,−1), which had been set deeply in the spherical

conductor and farther from the sensor array, was not estimated by the SFR, even

though the independent components with the peak at the latency of 100 ms were ex-

tracted in the reconstructions accompanying ICA. The error rates were quite large.

In this numerical experiment, the combination of the FA-processed Kalman filter

supported well the successive ICA. The importance of the sensor noise reduction was

confirmed. The SFR was able to pick up the dipole with the lower SNR component

after the proposed noise reduction. The proposed combination was the most robust

method in this case.

The estimation with the combination of the SFR, the FA-processed Kalman filter

and ICA was applied for the analysis of the simulated AEF data averaged over 10

trials. The conditions of the analysis were set similarly in the previous experiment.

The averaged data and the SNRs are shown in Fig.4.23. The maximum SNR was

2.56 dB. The FA-processed Kalman filtered data and the IC extracted after Kalman

filtering are illustrated in Fig.4.23. The proposed combination succeeded in the lo-

calization of the dipoles as shown in Fig.4.24. Without any noise reduction, the

SFR estimated the dipoles in the true positions (Fig.4.25). This result shows the

robustness of the SFR to the noise. The combinations of the SFR and the other

noise reductions reconstructed the dipoles in the locations of the true dipoles. The

processed signals and the reconstructed dipole distribution with each combination

are shown in Figs.4.26-4.29.
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Figure 4.7: Locations of the sensors and the conductor. The region where the current
distribution was estimated was bounded by the solid and broken lines.
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Figure 4.8: Locations and numbers for 230 sensors: the sensor numbers are shown
in the regions with (a) y ≥ 0 and (b) y ≤ 0.

114



-500 -250 0 100 250 500
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-13
[T]

[ms]Latency

A
m

p
li

tu
d
e

Figure 4.9: Simulated noise-free AEF data. The signals were originated from the
dipoles on (x, y, z) = (−2, 5,−1) and (−1,−6, 0)
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Figure 4.10: The simulated raw AEF data including real MEG noises and the sim-
ulated AEF data
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Figure 4.13: FA-processed Kalman filtered 230 signals in the simulated raw AEF
data analysis
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Figure 4.14: One of the independent components estimated by the FastICA following
the FA-processed Kalman filter
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Figure 4.15: Dipoles reconstructed by the combination of the FA-processed Kalman
filter, the FastICA and the SFR in the simulated raw AEF data analysis: ◦ represents
the true dipole locations. The initial number of the dipoles was prescribed as 10 in
the proposed reconstruction, and the 6 dipoles were estimated. The error rate was
0.173.
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Figure 4.16: Dipoles reconstructed by the combination of the FA-processed Kalman
filter, the FastICA and the SFR in the simulated raw AEF data analysis: ◦ represents
the true dipole locations. The initial number of the dipoles was prescribed as 3 in
the proposed reconstruction, and the 3 dipoles were estimated. The error rate was
0.332.
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Figure 4.17: Dipoles reconstructed only by the SFR in the simulated raw AEF data
analysis: ◦ represents the true dipole locations. The initial number of the dipoles was
prescribed as 10 in the proposed reconstruction, and the 6 dipoles were estimated.
The error rate was 0.702.
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Figure 4.18: Band-pass filtered signals (upper left) and dipoles reconstructed by
the combination of the 1-40Hz BPF and the SFR in the simulated raw AEF data
analysis: ◦ represents the true dipole locations. The initial number of the dipoles was
prescribed as 10 in the proposed reconstruction, and the 8 dipoles were estimated.
The error rate was 0.607.
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Figure 4.19: Dipoles reconstructed by the combination of the FA-processed Kalman
filter without ICA and the SFR in the simulated raw AEF data analysis: ◦ represents
the true dipole locations. The initial number of the dipoles was prescribed as 10 in
the proposed reconstruction, and the 5 dipoles were estimated. The error rate was
0.480. The FA-processed Kalman filtered data are shown in Fig.4.13.
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Figure 4.20: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the FastICA and the SFR in the simulated raw
AEF data analysis: ◦ represents the true dipole locations. The 30 PCs with a 90.4
% contribution were utilized in ICA. The initial number of the dipoles was pre-
scribed as 10 in the proposed reconstruction, and the 8 dipoles were estimated. The
error rate was 0.433.
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Figure 4.21: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the 1-40Hz BPF, the FastICA and the SFR in the
simulated raw AEF data analysis: ◦ represents the true dipole locations. The band-
pass filtered data are shown in Fig.4.18. The 30 PCs with a 97.7 % contribution
were utilized in ICA. The initial number of the dipoles was prescribed as 10 in the
proposed reconstruction, and the 7 dipoles were estimated. The error rate was 0.356.
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Figure 4.22: (a) Simulated AEF data averaged across 10 trials and (b) SNR of each
sensor
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Figure 4.23: (a) Simulated AEF data after averaging across 10 trials and the FA-
processed Kalman filtering and (b) Extracted independent component. The covari-
ance matrices were estimated with 40 common factors. 30 PCs with a 99.82 %
contribution were utilized in ICA. The IC has a sharp peak at the latency of 100
ms.
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Figure 4.24: Dipoles reconstructed by the combination of the FA-processed Kalman
filter, ICA and the SFR in the analysis of the simulated AEF data averaged across 10
trials: ◦ represents the true dipole locations. The initial number of the dipoles was
prescribed as 10 in the proposed reconstruction, and the 7 dipoles were estimated.
The error rate was 0.096.
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Figure 4.25: Dipoles reconstructed only by the SFR in the analysis of the simulated
AEF data averaged across 10 trials: ◦ represents the true dipole locations. The
initial number of the dipoles was prescribed as 10 in the proposed reconstruction,
and the 6 dipoles were estimated. The error rate was 0.109.
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Figure 4.26: Band-pass filtered signals (upper left) and dipoles reconstructed by the
combination of the 1-40Hz BPF and the SFR in the analysis of the simulated AEF
data average across 10 trials: ◦ represents the true dipole locations. The initial
number of the dipoles was prescribed as 10 in the proposed reconstruction, and the
5 dipoles were estimated. The error rate was 0.119.

132



-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x [cm]

y
 [

cm
]

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

y [cm]

z 
[c

m
]

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x [cm]

z 
[c

m
]

Figure 4.27: Dipoles reconstructed by the combination of the FA-processed Kalman
filter without ICA and the SFR in the simulated AEF data analysis: ◦ represents
the true dipole locations. The initial number of the dipoles was prescribed as 10 in
the proposed reconstruction, and the 6 dipoles were estimated. The error rate was
0.0944. The FA-processed Kalman filtered data are shown in Fig.4.23.

133



-500 -250 0 100 250 500

-1

0

1

2

3

4

5

Latency

N
o

rm
al

iz
ed

 a
m

p
li

tu
d

e

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x [cm]

y
 [

cm
]

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

y [cm]

z 
[c

m
]

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x [cm]

z 
[c

m
]

Figure 4.28: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the FastICA and the SFR in the analysis of the
simulated AEF data averaged across 10 trials: ◦ represents the true dipole loca-
tions. The 30 PCs with a 91.32 % contribution were utilized in ICA. The initial
number of the dipoles was prescribed as 10 in the proposed reconstruction, and the
7 dipoles were estimated. The error rate was 0.063.
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Figure 4.29: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the 1-40Hz BPF, the FastICA and the SFR in the
analysis of the simulated AEF data averaged across 10 trials: ◦ represents the true
dipole locations. The band-pass filtered data are shown in Fig.4.26. The 30 PCs with
a 97.88 % contribution were utilized in ICA. The initial number of the dipoles was
prescribed as 10 in the proposed reconstruction, and the 6 dipoles were estimated.
The error rate was 0.1123.
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4.3.2 Real AEF data analysis

The signal processing and the current dipole estimation for real MEG data were

conducted with the FA-processed Kalman filter, ICA and the SFR. The estimation

with the proposed combination was employed for 5 kinds of AEF data, namely a

single-trial unaveraged AEF data and the AEF data averaged across 10, 20, 40 and

80 trials. In the FA step, the number of the common factors was set as 40, and the

number of the components was reduced to 20 in the ICA step in the each estima-

tion.

The single-trial AEF data were illustrated in Fig.4.30. The 230 signals were

superimposed. After the FA-processed Kalman filtering, the noises were reduced

(Fig.4.31). In the ICA step, 20 PCs contributed a 98.4 % to the total value in

the Kalman filtered data covariance, while 130 PCs were needed to achieve a 98.2

% contribution in the raw data covariance. 20 ICs were estimated with ICA. The

IC with the peak around the latency of 100 ms, which must be originated from

the N1m in AEF, was extracted (Fig.4.32). For the IC in the single-trial raw AEF

data analysis, the isofield contour map of the magnetic field pattern of the IC is

shown in Fig.4.33, which suggests that the existence of the bilateral brain activities

in the neighborhood of the auditory cortexes. The current dipole distribution was

reconstructed for the IC. The initial number of the dipoles for the reconstruction

was prescribed as 25, and 10 dipoles survived the elimination to minimize the Cp

statistic. Figure 4.34 shows the current dipole distribution estimated by the SFR. In

the result of the estimation with the proposed combination, the current dipoles were

localized similarly to the result in the analysis for the AEF data averaged across 169

trials shown in the previous section. Some dipoles were not related to the activities

in the auditory cortexes were estimated, though. They seem to be caused by the

artifacts correlated to the AEF component.

The combinations of the other noise reductions and the SFR, and the estimation

only with the SFR were studied as well as the simulated AEF analyses. Figures

4.35-4.39 show the processed data and the reconstructed dipoles. In this unaver-

aged AEF data analysis, the SNR seems worse than that in the simulated data.
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The SFR after the noise reduction with each of the 1-40Hz BPF, the FastICA and

the FA-processed Kalman filter, hardly reconstructed the current dipole distribution

(Figs.4.36-4.38). The activities in the right hemisphere was barely estimated in the

reconstruction with the combination of the 1-40Hz BPF and the FastICA as shown

in Fig.4.39. These results indicate that the noise reduction with the FA-processed

Kalman filter and ICA is more effective than the conventional noise reductions. The

combination of the proposed noise reduction and the SFR shows high performance

in real MEG analyses.

The results of the dipole reconstructions, for the real AEF data averaged across

10 trials, with the SFR and the noise reductions, the proposed method and the oth-

ers are shown in Figs.4.40-4.46. Figures 4.40 and 4.41 show that the combination

of the FA-processed Kalman filter and ICA extracted the signals with N1m, and

the SFR was able to estimate the dipoles. The dipole on the left hemisphere was

not reconstructed only with the SFR in the case as shown in Fig.4.42. The other

combinations worked well. The noise reduction with the FA-processed Kalman filter

and the proposed combination enable to estimate the current dipoles with the SFR

in real MEG analysis. The SFR is robust in real MEG analyses with the adequate

noise reduction.

The estimation results are illustrated for the AEF data averaged over 20, 40

and 80 trials in Figs.4.47-4.52. For each result, the AEF data before the proposed

processing, the FA-processed Kalman filtered data, the estimated IC with the peak

around 100 ms and the current dipole distribution reconstructed by the SFR are

shown. In the each estimation, the FA-processed Kalman filter reduced noises ef-

fectively, and succeeded in refining the number of the ICs. The contributions of the

20 PCs to pre- and post-Kalman filtered data in the each estimation are described

in Table 3. In the pre-Kalman filtering, more than 120 components were needed to

obtain the contribution of about 99 % which is the same level of the contribution of

20 PCs in the post-Kalman filtered data. The current dipole distribution was clearly

reconstructed in the estimation for the AEF data averaged over 10 trials as well as

for the AEF data with more averaging. This indicates that the steady performance
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of the proposed noise reduction and SFR can be obtained in lower SNRs cases in

real MEG analyses. It is apparent that the dipoles were estimated around the lo-

cations where the dipoles were reconstructed in the high SNR data analysis shown

in Section 4.1. The estimation with the proposed combination of the FA-processed

Kalman filter, ICA and the SRF captured the activities in the auditory cortexes in

the real MEG analyses with low SNRs.

Table 3 Contributions of 20 eigenvalues of the covariance matrix to the total value
in pre and post FA-processed Kalman filter

averaging [trials] 1 10 20 40 80

pre-Kalman filter [%] 86.4 89.4 91.4 93.1 94.5

post-Kalman filter [%] 98.4 98.9 99.4 99.5 99.6

4.4 Discussion

In these numerical studies in which the real MEG data were employed, the FA-

processed Kalman filter and ICA extracted the desired signals such as the AEF

signal from the real MEG data. The results show that the proposed method is

robust to sensor noises in real MEG measurement and certify the practical utility

of the proposed method. The robustness to the error of the number of common

factors was also confirmed. By the Kalman filtering, the redundant factors were

reduced sufficiently enough to ignore as with the case of the incorrect number of

common factors in the numerical experiment in Section 3.1.2., and we succeeded to

refine the number of components in the ICA step. Those results not only show the

effectiveness of the FA-processed Kalman filter but also support the validities of the

numerical studies. We assumed the sensor noise was Gaussian in the previous nu-

merical experiments. However, even if sensor noises in real MEG data do not satisfy

the assumption of Gaussianity, the proposed method still retains its effectivity since
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Kalman filter is the optimal linear minimum variance filter regardless of Gaussianity

of noises. The effect of the FA-processed Kalman filter is more significant in analyses

with lower SNRs as shown in the previous sections.

The SFR localized the current densities around the auditory cortexes for the av-

eraged AEF data. Accompanying the sufficient noise reduction, the SFR estimated

the current dipoles reasonably in the real MEG analysis. The robustness of the

SFR to real MEG noises was indicated in Sections 4.3.1. and 4.3.2. In the AEF

analysis, the SFR succeeded in localizing the bilateral current dipoles from the data

averaged across 10 trials. The current density estimation for the raw AEF data with

the combination of the FA-processed Kalman filter and the SFR was also successful.

There were the redundant expansions of the current distribution estimated by the

combination. It was due to the noise, errors due to the dipoles out of the grids, and

the artifacts. However, the combination of the FA-processed Kalman filter, ICA and

the SFR successfully located the current dipoles. Though some pieces of prior infor-

mation, i.e. the region for the estimation and the initial number of the dipoles for

the reconstruction with multiple linear regression, were needed, they can be deemed

acceptable. Compared with the conventional estimation such as the moving-dipole

method, the dependence on the prior information declines by the proposed method.

The proposed combination of the FA-processed Kalman filter, ICA and the SFR

solves the issues, such as the patients’ burden for the noise reduction with averag-

ing and the dependence on prior and temporal information in the estimation of the

dipoles. The usability and reliability will be gained in practical MEG analyses.
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Figure 4.30: Single-trial unaveraged MEG data: 230 signals are superimposed.
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Figure 4.31: FA-processed Kalman filtered MEG data in the raw AEF data analysis:
230 signals are superimposed.
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Figure 4.32: Extracted independent components after the FA-processed Kalman
filter in the raw AEF data analysis. The current dipoles were reconstructed for this
component.
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Figure 4.33: Isofield contour map of the magnetic field pattern of the extracted
independent component; red and green regions show positive and negative magnetic
fields, respectively.
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Figure 4.34: Dipole reconstructed by the combination of the FA-processed Kalman
filter, ICA and the SFR in the raw AEF data analysis. The initial number of the
dipoles were 25 and 10 dipoles remained. The error rate was 0.237.
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Figure 4.35: Dipoles reconstructed only by the SFR in the analysis of the real raw
AEF data. The initial number of the dipoles was prescribed as 25 in the proposed
reconstruction, and the 10 dipoles were estimated. The error rate was 0.571.
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Figure 4.36: Band-pass filtered signals (upper left) and dipoles reconstructed by
the combination of the 1-40Hz BPF and the SFR in the analysis of the real raw
AEF data. The initial number of the dipoles was prescribed as 25 in the proposed
reconstruction, and the 10 dipoles were estimated. The error rate was 0.42.
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Figure 4.37: Dipoles reconstructed by the combination of the FA-processed Kalman
filter without ICA and the SFR in the real raw AEF data analysis. The initial
number of the dipoles was prescribed as 25 in the proposed reconstruction, and the
12 dipoles were estimated. The error rate was 0.34. The FA-processed Kalman
filtered data are shown in Fig.4.31.
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Figure 4.38: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the FastICA and the SFR in the analysis of the
real raw AEF data. The 20 PCs with a 86.41 % contribution were utilized in ICA.
The initial number of the dipoles was prescribed as 25 in the proposed reconstruc-
tion, and the 4 dipoles were estimated. The error rate was 0.426.
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Figure 4.39: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the 1-40Hz BPF, the FastICA and the SFR in the
analysis of the real raw AEF data. The band-pass filtered data are shown in Fig.4.36.
The 20 PCs with a 95.1 % contribution were utilized in ICA. The initial number of
the dipoles was prescribed as 25 in the proposed reconstruction, and the 8 dipoles
were estimated. The error rate was 0.39.
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Figure 4.40: MEG data in the analysis of the real AEF averaged over 10 trials:
(a) the AEF signals averaged across 10 trials, (b) the FA-processed Kalman filtered
signals with 40 common factors and (c) the extracted IC with the peak due to N1m.
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Figure 4.41: Dipoles reconstructed by the combination of the FA-processed Kalman
filter, ICA and the SFR in the analysis of the real AEF data averaged 10 trials. The
initial number of the dipoles were 20 and 7 dipoles remained. The error rate was
0.247.
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Figure 4.42: Dipoles reconstructed only by the SFR in the analysis of the real AEF
data averaged across 10 trials. The initial number of the dipoles was prescribed as
20 in the proposed reconstruction, and the 3 dipoles were estimated. The error rate
was 0.615.
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Figure 4.43: Band-pass filtered signals (upper left) and dipoles reconstructed by the
combination of the 1-40Hz BPF and the SFR in the analysis of the real AEF data
average across 10 trials. The initial number of the dipoles was prescribed as 20 in
the proposed reconstruction, and the 9 dipoles were estimated. The error rate was
0.299.
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Figure 4.44: Dipoles reconstructed by the combination of the FA-processed Kalman
filter without ICA and the SFR in the real AEF data analysis. The initial number
of the dipoles was prescribed as 20 in the proposed reconstruction, and the 8 dipoles
were estimated. The error rate was 0.289. The FA-processed Kalman filtered data
are shown in Fig.4.40.
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Figure 4.45: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the FastICA and the SFR in the analysis of the
real AEF data averaged across 10 trials. The 20 PCs with a 89.41 % contribution
were utilized in ICA. The initial number of the dipoles was prescribed as 20 in the
proposed reconstruction, and the 7 dipoles were estimated. The error rate was 0.252.
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Figure 4.46: Extracted independent component (upper left) and dipoles recon-
structed by the combination of the 1-40Hz BPF, the FastICA and the SFR in the
analysis of the real AEF data averaged across 10 trials. The band-pass filtered
data are shown in Fig.4.26. The 20 PCs with a 96.27 % contribution were utilized
in ICA. The initial number of the dipoles was prescribed as 20 in the proposed
reconstruction, and the 7 dipoles were estimated. The error rate was 0.26.
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Figure 4.47: MEG data in the analysis of the real AEF averaged over 20 trials:
(a) the AEF signals averaged across 20 trials, (b) the FA-processed Kalman filtered
signals with 40 common factors and (c) the extracted IC with the peak due to N1m.
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Figure 4.48: Dipoles reconstructed by the combination of the FA-processed Kalman
filter, ICA and the SFR in the analysis of the real AEF data averaged 20 trials. The
initial number of the dipoles were 20 and 8 dipoles remained. The error rate was
0.183.
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Figure 4.49: MEG data in the analysis of the real AEF averaged over 40 trials:
(a) the AEF signals averaged across 40 trials, (b) the FA-processed Kalman filtered
signals with 40 common factors and (c) the extracted IC with the peak due to N1m.
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Figure 4.50: Dipoles reconstructed by the combination of the FA-processed Kalman
filter, ICA and the SFR in the analysis of the real AEF data averaged 40 trials. The
initial number of the dipoles were 23 and 8 dipoles remained. The error rate was
0.204.
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Figure 4.51: MEG data in the analysis of the real AEF averaged over 80 trials:
(a) the AEF signals averaged across 80 trials, (b) the FA-processed Kalman filtered
signals with 40 common factors and (c) the extracted IC with the peak due to N1m.
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Figure 4.52: Dipoles reconstructed by the combination of the FA-processed Kalman
filter, ICA and the SFR in the analysis of the real AEF data averaged 40 trials. The
initial number of the dipoles were 20 and 12 dipoles remained. The error rate was
0.115.
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Chapter 5

Conclusion

In this paper, a noise reduction method and an estimation of brain activity in MEG

measurement are proposed.

In the signal processing in MEG analysis, the imposition of the burden to the

patients due to the noise reduction with averaging across many trials is the issue.

Though the MEG analysis with ICA, which extracts the independent signals from

the data contaminated by the noises and artifacts, may resolve the issue, it is slightly

problematic by the influence of the independent sensor noise.

A sensor-noise reduction method, which is a combination of a Kalman filter and

factor analysis (FA-processed Kalman filter), is proposed. The Kalman filter power-

fully eliminates the sensor noise in MEG data: the state-space model for the Kalman

filter is constructed with the forward solution of the MEG measurement. The ap-

proximations of the noise covariance matrices are provided by factor analysis. Some

numerical experiments show that the FA-processed Kalman filter effectively elimi-

nates the sensor noise, and it is robust to the error in the number of the common

factors in factor analysis. These features relieve the issues in the preprocessing step

in ICA. It makes the decision of the number of the independent components easier,

and the orthognalization of the signals with PCA becomes more successful with

less independent additive noises. In addition, the noise reduction can be conducted

without concerning the frequency range of the signals required in usual band-pass

filtering, and the FA-processed Kalman filter can get along with band-pass filtering.
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It was illustrated through the numerical experiments that the FA-processed

Kalman filter greatly supports ICA. The independent components had higher signal-

to-noise ratios (SNRs) in ICA following the FA-processed Kalman filtering. The

FA-processed Kalman filter and ICA succeeded to extract AEF signal from the un-

averaged single-trial MEG data.

In the inverse analysis, i.e. the estimation of the current density distribution

in a brain, the dependence on prior information such as the number of the dipoles

and on temporal information, the covariance of the MEG data is the issue to be

addressed.

In the studies of the neuroscience, it is preferable not to depend on prior infor-

mation to obtain fair results. The reasonable localization of the current distribution

is necessary especially in the clinical applications also. In the inverse problems,

the redundant expansion, ambiguity of the solution appears due to the nature of

the problems. The use of temporal information in the LCMV beamformer and the

SAM aggravates the issue in the cases where the some activities in the brain have

correlations; the spatial resolution declines in such cases.

The spatial filter without using temporal information is proposed. The current

dipoles are regarded as random variables, and the characteristic functions of their

probability density functions are introduced into the design of the spatial filter. In

the actual objective function to optimize the spatial filter, the cumulants of the sec-

ond and fourth orders are employed. As the result of the consideration of the higher

order statistics, the dipoles estimated by the spatial filter possess the characteristics

of non-Gaussianity, i.e. independence and smaller entropy, and the current density

distribution constructed with them indicates the higher localization, as shown in the

numerical experiments.

The reconstruction of the current distribution estimated by the spatial filter with

multiple linear regression (spatial filtered reconstruction: SFR) assists the spatial

filtering. With the Cp statistic which is a criterion to select the regression model

fitting the data better with fewer variables, the redundant dipoles in the distribution

are removed. Moreover, it even corrects the error in the current distribution. In the
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numerical experiments, the current density distribution was localized effectively and

reasonably by the reconstruction with the objective criterion. The reconstruction

showed its ability in the real MEG analysis. The current dipoles localized in the

auditory cortexes precisely in the averaged-AEF data analysis.

Furthermore, the combination of the FA-processed Kalman filter and the SFR

was performed in the single-trial AEF analysis. The activities in the brain were

successfully estimated by the combination.

The proposals for solutions of the issues in MEG analysis are shown in this paper.

They achieve to alleviate the issues of low SNR and of the inverse problem. The

implementation of them will gain the usability and reliability of MEG for uses in the

clinical applications and researches. They will make a deep impact on MEG analy-

ses, and consequently contribute to the further progress of the neuroscience and to

all of the societies hope understanding the human brain functions and making good

use of it in the future.
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dent Component Approach to Analysis of EEG and MEG Recordings.”, IEEE

Trans. Biomed. Eng., 47, pp.589-593, 2000.

[26] S. Ikeda, K. Toyama, “ICA for noisy neurobiological data”, Proc. Int. Joint

Conf. of Neural Networks(IJCNN2000), Como, Italy, 2000.

169



[27] R. N. Vigário, “Eatraction of ocular artefacts from EEG using indepen-

dent component analysis”, Electroencephalogr. clinic. Neurophysiol., Vol.102,

pp.395-404, 1997.
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