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Preface

This thesis is written on the subject “Cycles Containing Specified Vertices and Edges

and Trees with Bounded Degree in Graphs” and is to be submitted for the degree of

Doctor of Science at Keio University.

The basis of this thesis is formed by papers written during these four years. After

an introductory chapter, the reader will find six chapters. General terminology can be

found in Chapter 1. The other chapters can be read independently from one another.

This thesis consists of two parts. In the first part, I will present my work about

vertex-disjoint cycles containing specified vertices and edges. In Chapter 2, we study

partitions of a graph into vertex-disjoint cycles containing specified vertices and edges.

This work is a joint work with H. Enomoto. In Chapters 3 and 4, we will give minimum

degree and degree sum conditions for a general graph or a bipartite graph to have

vertex-disjoint short cycles containing specified edges.

In the second part, I will present my work about trees with bounded degree.

In Chapter 5, we will give two sufficient conditions, an Ore-type condition and a

Chvátal-Erdős-type condition, for a graph to have a spanning tree with bounded

degree containing the specified leaves. In Chapter 6, we investigate a tree with re-

strictions on the degrees of the specified vertices. These two works are joint works

with H. Matsuda.

Hajime Matsumura

2005
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Introduction

A salesman is to make a tour of n cities and he returns to the head office. The cost

of the journey between any two cities is known. The problem asks for an efficient

algorithm for finding a least expensive tour. This problem is called the traveling

salesman problem.

In a version of the traveling salesman problem, the route is required to be a cycle.

That is, the salesman is not allowed to visit the same city twice (except the city of

the head office). A cycle containing all the vertices of a graph is called a Hamilton

cycle If there are only two costs, 1 and ∞, then the question is whether or not the

graph formed by the edges with cost 1 contains a Hamilton cycle. Even this special

case of the traveling salesman problem is difficult to solve. No efficient algorithm is

known for constructing a Hamilton cycle. Also, it is not known whether there is such

a good algorithm or not. This fact gave rise to a number of sufficient conditions for

a graph to have a Hamilton cycle. In particular, the following sufficient condition is

well-known.

Theorem 0.1 (Ore [19]) Suppose that G is a graph of order n ≥ 3. If the minimum

degree sum of nonadjacent vertices is at least n, then G has a Hamilton cycle.

This degree sum condition is best possible in a sense that we cannot relax the

bound n to n− 1 without destroying the conclusion, however, it seems to be ‘strong’.

In fact, Brandt et al. proved the following theorem.

Theorem 0.2 (Brandt et al. [1]) Suppose that k ≥ 1 is an integer and G is a

graph of order n ≥ 4k. If the minimum degree sum of nonadjacent vertices is at least

n, then G can be partitioned into k cycles.

This theorem says that the condition of Ore’s theorem implies not only the exis-

tence of a Hamilton cycle but also the existence of a partition into a specified number

of cycles. With this result as a starting point, partitions of a graph into a specified

number of cycles have been studied.
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In [25], Wang considered partitions into cycles passing through specified edges, and

conjectured that if k ≥ 2, n is sufficiently large compared with k, and the minimum

degree sum of nonadjacent vertices is at least n + 2k − 2, then for any independent

edges e1, . . . , ek, G can be partitioned into cycles H1, . . . , Hk such that ei ∈ E(Hi).

This conjecture was completely solved by Egawa et al.

Theorem 0.3 (Egawa et al.[10]) Suppose that k ≥ 2 is an integer and G is a

graph of order n ≥ 4k − 1. If the minimum degree sum of nonadjacent vertices is at

least n + 2k − 2, then for any independent edges e1, . . . , ek, G can be partitioned into

cycles H1, . . . , Hk such that ei ∈ E(Hi).

Also, Egawa et al. considered partitions into cycles containing specified vertices,

and proved the following theorem.

Theorem 0.4 (Egawa et al. [9]) Suppose that k ≥ 1 and G is a graph of order

n ≥ 6k − 2. If the minimum degree is at least n/2, then for any distinct vertices

x1, . . . , xk, G can be partitioned into cycles H1, . . . , Hk such that xi ∈ V (Hi).

In Chapter 2, we consider the case where both vertices and edges are specified.

We prove the following.

Theorem 0.5 Suppose that k ≥ p + q, p ≥ 0, q ≥ 0 and G is a graph of order

n ≥ 10k. If either the minimum degree is at least

max

{
n + q

2
,
n + p + 2q − 3

2

}

or the minimum degree sum of nonadjacent vertices is at least

max{n + q, n + 2p + 2q − 2},

then for any distinct vertices x1, . . . , xp and any independent edges ep+1, . . . , ep+q, G

can be partitioned into cycles H1, . . . , Hk such that xi ∈ V (Hi) for 1 ≤ i ≤ p and

ei ∈ E(Hi) for p + 1 ≤ i ≤ p + q.

Not only partitions into cycles but also the existence of vertex-disjoint cycles has

been studied. In [10], Egawa et al. also considered the existence of vertex-disjoint

cycles containing specified edges.

Theorem 0.6 (Egawa et al. [10]) Suppose that k ≥ 1 and G is a graph of order

n ≥ 4k − 1. If the minimum degree sum of nonadjacent vertices is at least n +

2k− 2, then for any independent edges e1, . . . , ek, G contains k vertex-disjoint cycles

C1, . . . , Ck such that ei ∈ E(Ci) and |Ci| ≤ 4.
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In Theorem 0.6, we can replace the assumption ‘the minimum degree sum of

nonadjacent vertices is at least n + 2k − 2’ to ‘the minimum degree is at least (n +

2k−2)/2’ to get the same conclusion. The bound ‘n+2k−2’ is sharp but ‘(n+2k−2)/2’

is not sharp when n is odd. In Chapter 3, we consider this problem and give the sharp

minimum degree condition.

Theorem 0.7 Suppose that k ≥ 1 and G is a graph of order n ≥ max{6k, 4k + 6}.
If the minimum degree is at least (n + 2k − 3)/2, then for any independent edges

e1, . . . , ek, G contains k vertex-disjoint cycles C1, . . . , Ck such that ei ∈ E(Ci) for

1 ≤ i ≤ k and ‘|Ci| ≤ 4 for 1 ≤ i ≤ k’ or ‘|Ci| = 5 for some i and the rest are all

triangles’.

For bipartite graphs, partitions into a specified number of cycles have been also

studied. For example, see [4, 5, 15, 17, 27]. Among them, Wang and Chen et al.

independently proved the following analogue of Theorem 0.6 for bipartite graphs.

Theorem 0.8 (Wang [26],[29]; Chen et al. [3]) Suppose that k ≥ 1 and G is a

bipartite graph with partite sets V1 and V2 such that |V1| = |V2| = n ≥ 2k. If the

minimum degree sum of nonadjacent vertices in the different partite set is at least

max

{
n + k,

⌈
2n− 1

3

⌉
+ 2k

}

or the minimum degree is at least

max

{⌈
n + k

2

⌉
,

⌈
2n + 4k

5

⌉}
,

then for any independent edges e1, . . . , ek, G contains k vertex-disjoint cycles C1, . . . , Ck

such that ei ∈ E(Ci) and |Ci| ≤ 6.

In Chapter 4, we consider the existence of cycles of length 4 containing specified

edges.

Theorem 0.9 Suppose that k ≥ 1 and G is a bipartite graph with partite sets V1, V2

such that |V1| = |V2| = n ≥ 2k. If the minimum degree sum of nonadjacent vertices

in the different partite set is at least
⌈

4n + 2k − 1

3

⌉

or the minimum degree is at least
⌈

2n + 3k

4

⌉
,
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then for any independent edges e1, . . . , ek, G contains k vertex-disjoint cycles C1, . . . Ck

such that ei ∈ E(Ci) and |Ci| = 4.

Besides Hamilton cycles, Hamilton paths in graphs have been studied well. A

Hamilton path of a graph is a path containing all the vertices of the graph. Same as a

Hamilton cycle, no easily verifiable necessary and sufficient condition for a graph to

have a Hamilton path is known and many sufficient conditions were obtained. Among

them, the following two theorems are well-known.

Theorem 0.10 (Ore [19]) Suppose that G is a graph of order n and the minimum

degree sum of nonadjacent vertices is at least n− 1. Then G has a Hamilton path.

Theorem 0.11 (Chvátal and Erdős [6]) Suppose that G is a t-connected graph

and the independence number of G is at most t + 1. Then G has a Hamilton path.

Note that a Hamilton path is a spanning tree with the maximum degree two. In

this point of view, spanning trees with bounded maximum degree have been consid-

ered. For example, see [2, 7, 13, 14, 22]. Most of the results are based on results on a

Hamilton path. In this fashion, Win and Neumann-Lara and Rivera-Campo proved

the following.

Theorem 0.12 (Win [30]) Suppose that k ≥ 2 and G is a connected graph of order

n. If the minimum degree sum of pairwise nonadjacent k vertices is at least n − 1,

then G has a spanning tree with the maximum degree at most k.

Theorem 0.13 (Neumann-Lara and Rivera-Campo [18]) Suppose that k ≥ 2

and G is a t-connected graph. If the independence number of G is at most t(k−1)+1,

then G has a spanning tree with the maximum degree at most k.

In Chapters 5 and 6, we consider extensions of Theorems 0.12 and 0.13. A leaf is

a vertex of degree one in a tree. In Chapter 5, we give two sufficient conditions for a

graph to have a spanning tree with bounded degree containing the specified leaves.

Theorem 0.14 Suppose that k ≥ 2, 0 ≤ s ≤ k and G is an (s + 1)-connected graph

of order n. If the minimum degree sum of pairwise nonadjacent k vertices is at least

n + (k − 1)s − 1, then for any s distinct vertices, G has a spanning tree with the

maximum degree at most k such that the specified s vertices are contained in the set

of its leaves.
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Theorem 0.15 Suppose that k ≥ 2, 0 ≤ s ≤ k, t ≥ s + 1 and G is a t-connected

graph. If the independence number of G is at most (t− s)(k − 1) + 1, then for any s

distinct vertices, G has a spanning tree with the maximum degree at most k such that

the specified s vertices are contained in the set of its leaves.

As an extension of Hamilton cycles, cycles passing through all the specified vertices

were considered. In fact, the following theorem is known.

Theorem 0.16 (Shi [23], Ota [21]) Suppose that G is a 2-connected graph of order

n ≥ 3 and A is a vertex subset of G. If the minimum degree sum of nonadjacent

vertices of A is at least n, then G has a cycle containing all the vertices of A.

In Chapter 6, we consider analogues on trees with bounded degree. That is, we

investigate a tree with restrictions on the degrees of the specified vertices.

Theorem 0.17 Suppose that k ≥ 2, G is a connected graph of order n and A is a

vertex subset of G. If the minimum degree sum of pairwise nonadjacent k vertices of

A is at least n− 1, then G has a tree T with the maximum degree at most k such that

T contains all the vertices of A.

Theorem 0.18 Suppose that k ≥ 2, G is a connected graph of order n and A is a

vertex subset of G. Let t be the number of components of G−A. If t ≤ k− 1 and the

minimum degree sum of pairwise nonadjacent k − t vertices of A is at least |A| − 1,

then G has a spanning tree T such that the degree of each vertex in A is at most k.

Both of them are extensions of Theorem 0.12.
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Chapter 1

Fundamentals

In this chapter, we shall present basic terminology and notation of graph theory which

will be needed in the following chapters.

1.1 Graphs and directed graphs

A graph G is an ordered pair of disjoint sets (V,E) such that E is a subset of the set

V (2) of unordered pairs of V . In this thesis, we consider only finite graphs, that is, V

and E are always finite. The set V is the set of vertices and E is the set of edges.

Figure 1.1: A graph.

Given a graph G, V (G) denotes the vertex set of G and E(G) denotes the edge

set. An edge {x, y} is said to join the vertices x and y and is denoted by xy. Thus xy

and yx mean exactly the same edge. If xy ∈ E(G), then x and y are adjacent vertices

of G, and the vertices x and y are incident with the edge xy. Two edges are adjacent

if they have exactly one common vertex. The order of a graph G is the number of

vertices in G and is denoted by |G|.
For given disjoint subsets U and W of the vertex set of a graph, we write E(U,W )

for the set of edges joining a vertex in U to a vertex in W .
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A graph is complete if every two of its vertices are adjacent. We denote a complete

graph of order n by Kn.

If the edges are ordered pair of vertices, we get the notions of a directed graph. An

ordered pair (a, b) is said to be an edge or an arc directed from a to b and is denoted

by
−→
ab or simply ab.

By definition, a graph contains neither a loop, an edge joining a vertex to itself,

nor multiple edges, several edges joining the same two vertices. In a multigraph, both

multiple edges and loops are allowed.

Figure 1.2: A multigraph and a directed graph.

1.2 Subgraphs and operations on graphs

We say that G′ = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊂ V and E ′ ⊂ E and

every edge of E ′ joins two vertices of V ′. If G′ contains all edges of G that join two

vertices in V ′, then G′ is called the subgraph induced by V ′ and is denoted by 〈V ′〉.
If V ′ = V , then G′ is called a spanning subgraph of G.

Figure 1.3: A subgraph, an induced subgraph and a spanning subgraph of the graph

in Fig. 1.1.

We often construct new graphs from old ones by deleting or adding some vertices

and edges. For a subset W of V (G), we define G − W = 〈V (G) − W 〉. Similarly,

12



for a subset E ′ of E(G), G− E ′ = (V (G), E(G)− E ′). If W = {w} and E ′ = {xy},
then we denote simply by G− w and G− xy. If x and y are nonadjacent vertices of

G, then G + xy is obtained from G by joining x and y. For a subgraph H of G, we

define G−H = 〈V (G)− V (H)〉.
Let G and H be two graphs. If V (G) ∩ V (H) = ∅, then G and H are vertex-

disjoint. Similarly, if E(G) ∩ E(H) = ∅, then G and H are edge-disjoint. We shall

write G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)) for the union of G and H, and kG for

the union of k disjoint copies of G. We obtain the join G+H from the disjoint union

G ∪H by adding all edges between G and H.

Given an edge xy of a graph G, the graph G/xy is obtained from G by contracting

the edge xy. To get G/xy, we identify the vertices x and y and remove all resulting

loops and multiple edges. A graph obtained by a sequence of edge-contractions is

called a contraction of G.

G G/xy

x y xy

Figure 1.4: A graph G and its contraction G/xy.

1.3 Neighborhoods, degrees and independent sets

The set of vertices adjacent to a vertex x ∈ V (G) is the neighborhood of x and is

denoted by NG(x). Every vertex of NG(x) is the neighbor of x. The degree of x is

dG(x) = |NG(x)|. For a subgraph H of a graph G and a vertex x ∈ V (G) − V (H),

we denote NH(x) = NG(x) ∩ V (H) and dH(x) = |NH(x)|. For a subgraph H of G

and a subset S of V (G), we define dH(S) =
∑

x∈S dH(x) and NH(S) =
⋃

x∈S NH(x).

For a vertex x ∈ V (G) and a subset S of V (G), we define NG[x] = NG(x) ∪ {x} and

NG[S] = NG(S) ∪ S.

The term independent will be used in connection with vertices and edges of a

graph. A set of vertices (edges) is independent if no two elements of it are adjacent.

The independence number of G is the maximum size of an independent vertex set of

G and is denoted by α(G).
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The number δ(G) = min{dG(x) | x ∈ V (G)} is the minimum degree of G. The

maximum degree of G is defined analogously. For a graph G with α(G) ≥ k, we define

σk(G) = min

{∑
x∈S

dG(x)

∣∣∣∣∣ S is an independent subset of V (G) with |S| = k.

}

and σk(G) = ∞ if α(G) < k.

1.4 Paths and cycles

A walk W in a graph is an alternating sequence of vertices and edges, say x0, e1, x1, e2,

. . . , el, xl where ei = xi−1xi for 0 ≤ i ≤ l. This walk W is denoted by x0x1 · · · xl.

The vertices x0 and xl are endvertices of W and l = |E(W )| is the length of W . We

say that W is a walk connecting x0 and xl. Also, we say that W is an x0 − xl walk.

A walk with distinct vertices is called a path. If a walk W = x0x1 · · · xl is such that

l ≥ 3, x0 = xl and the vertices xi, 0 ≤ i < l, are distinct from each other, then W

is said to be a cycle. We call a cycle of length l an l-cycle. In particular, 3-cycle is

called a triangle.

Figure 1.5: A path, a triangle and a 4-cycle.

A cycle containing all the vertices of a graph is called a Hamilton cycle. A Hamilton

path is a path containing all the vertices of a graph.

A collection of paths is called internally-disjoint if any two of its elements does

not have vertices in common, other than their endvertices.

1.5 Connectivity

A graph is connected if any two of its vertices can be joined by a path, and otherwise

it is disconnected. A maximal connected subgraph of a graph G is a component of G.

If G is connected and G−W is disconnected for some vertex subset W , then we

say that W separates G and W is a separating set in G. For t ≥ 2, we say that a

14



graph G is t-connected if G has at least t + 2 vertices and no set of t − 1 vertices

separating it. A connected graph is said to be 1-connected. The maximal value of t

for which a connected graph G is t-connected is the connectivity of G.

1.6 Trees, matchings and bipartite graphs

A graph without any cycles is a forest and a tree is a connected forest. We can say

that a forest is a graph each of whose components is a tree. A tree with the maximum

degree at most k is called a k-tree. A spanning tree is a tree containing every vertex

of a graph. A leaf is a vertex of degree one in a tree.

Figure 1.6: A forest.

Sometimes it is convenient to consider one vertex of a tree as a special. Such a

vertex is called the root of this tree. A tree with a fixed root is a rooted tree. An

outdirected tree
−→
T is a rooted tree in which all the edges are directed away from the

root. When
−→
T is an outdirected tree with the vertex set V (

−→
T ) and the arc set A(

−→
T )

and S is a subset of V (
−→
T ), we denote by N+

T (S) the set of vertices w ∈ V (
−→
T ) for

which there is an arc uw ∈ A(
−→
T ) for some u ∈ S.

root

Figure 1.7: An outdirected tree.
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A set M of independent edges in a graph G is called a matching. We say M covers

U ⊆ V (G) if every vertex in U is incident with an edge in M .

U

Figure 1.8: A matching which covers U .

A graph G is a bipartite graph with partite sets V1 and V2 if V (G) = V1 ∪ V2,

V1 ∩ V2 = ∅ and every edge joins a vertex of V1 to a vertex of V2. If every pair of

a vertex in V1 and a vertex in V2 is joined, then G is said to be a complete bipartite

graph, and is denoted by Km,n if |V1| = m and |V2| = n.
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Chapter 2

Cycle-Partitions with Specified

Vertices and Edges

In this chapter, we consider the cycle-partition problems which deal with the case

where both vertices and edges are specified and we require that they should belong

to different cycles. Minimum degree and degree sum conditions are given, which are

best possible.

2.1 Introduction

In this chapter, ‘disjoint’ means ‘vertex-disjoint’ since we only deal with partitions of

the vertex set, and n always denotes the order of a graph G. Suppose that C1, . . . , Ck

are disjoint cycles of a graph G. Then {C1, . . . , Ck} is called a k-cycle-packing of G.

Moreover, if V (G) =
⋃k

i=1 V (Ci), {C1, . . . , Ck} is called a k-cycle-partition of G.

The following result is the first step of the research on a k-cycle-partition.

Theorem 2.1 (Brandt et al. [1]) Suppose that n ≥ 4k and σ2(G) ≥ n. Then G

has a k-cycle-partition.

Egawa et al. considered the cycle-partition with specified vertices. When k ver-

tices x1, . . . , xk are specified, a cycle C is called admissible if |V (C)∩{x1, . . . , xk}| = 1.

A k-cycle-packing {C1, . . . , Ck} is admissible if each Ci is admissible. They proved

the following theorem.

Theorem 2.2 (Egawa et al. [9]) Suppose that n ≥ 6k − 2 and δ(G) ≥ n/2. Then

G has an admissible k-cycle-partition for any k distinct vertices.
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When k independent edges e1 = x1y1, . . . , ek = xkyk are specified, a cycle C is

called admissible if |E(C)∩{e1, . . . , ek}| = 1 and |V (C)∩{x1, . . . , xk, y1, . . . , yk}| = 2.

A k-cycle-packing {C1, . . . , Ck} is admissible if each Ci is admissible. In this case,

the following result is obtained.

Theorem 2.3 (Egawa et al. [10]) Suppose that k ≥ 2, n ≥ 4k − 1 and σ2(G) ≥
n + 2k− 2. Then G has an admissible k-cycle-partition for any k independent edges.

In this chapter, we consider the case where both vertices and edges are specified.

Let S = {v1, . . . , vp} be a subset of V (G), F = {e1 = x1y1, . . . , eq = xqyq} be a

subset of E(G), and V (F ) = {x1, . . . , xq, y1, . . . , yq}. If |V (F )| = 2q (that is, F is

independent) and S∩V (F ) = ∅, then S∪F is called feasible. A cycle C of G is called

admissible if one of the following holds:

(a) V (C) ∩ (S ∪ V (F )) = ∅,

(b) |V (C) ∩ S| = 1 and V (C) ∩ V (F ) = ∅,

(c) |E(C) ∩ F | = 1 and |V (C) ∩ (S ∪ V (F ))| = 2.

If C1, . . . , Ck are admissible disjoint cycles and S ∪ V (F ) is contained in
⋃k

i=1 V (Ci),

{C1, . . . , Ck} is called an admissible k-cycle-packing. An admissible k-cycle-partition

is defined similarly.

The main result of this chapter is the following theorem.

Theorem 2.4 Suppose that n ≥ 10k, k ≥ p + q, p ≥ 0, q ≥ 0 and either

δ(G) ≥ max

{
n + q

2
,
n + p + 2q − 3

2

}
,

or

σ2(G) ≥ max{n + q, n + 2p + 2q − 2}.
Then for any feasible set S ∪ F with |S| = p and |F | = q, G has an admissible

k-cycle-partition.

To prove Theorem 2.4, we first solve the packing problem.

Theorem 2.5 Suppose that n ≥ 9k, k ≥ p + q, p ≥ 0, q ≥ 0 and either δ(G) ≥
max{n/2, (n + p + 2q − 3)/2} or σ2(G) ≥ n + 2p + 2q − 2. Then for any feasible set

S ∪ F with |S| = p and |F | = q, G has an admissible k-cycle-packing.

18



Note that the assumption n ≥ 9k is not sharp, but it cannot be dropped in a sence

that we need the assumption n ≥ 3k at least. The degree conditions in Theorem 2.5

are sharp when q ≥ 1 in the following sense.

Example 2.1. Let m ≥ 1 and G = 2Km + Kp+2q−2 with an edge e1 which joins two

Kms. Take p distinct vertices v1, . . . , vp and q − 1 independent edges e2, . . . , eq in

Kp+2q−2 so that {v1, . . . , vp, e1, . . . , eq} is feasible. Then there is not an admissible

k-cycle-packing, while δ(G) = (n + p + 2q − 4)/2.

Km KmKp+2q−2

+ +

Figure 2.1: The graph G in Example 2.1.

Example 2.2. Let m ≥ 1 and G = (Kp+q ∪Km) + K2p+2q−1. Take p distinct vertices

v1, . . . , vp in Kp+q and q independent edges e1, . . . , eq between Kp+q and K2p+2q−1

so that {v1, . . . , vp, e1, . . . , eq} is feasible. Then G does not contain an admissible

k-cycle-packing, while σ2(G) = n + 2p + 2q − 3.

Kp+q KmK2p+2q−1

+ +

Figure 2.2: The graph G in Example 2.2.

Next, we extend a packing to a partition.
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Theorem 2.6 Let S ∪ F be a feasible set with |S| = p and |F | = q. Suppose that

n ≥ 10k, k ≥ 1, k ≥ p + q, p ≥ 0, q ≥ 0, δ(G) ≥ p + q + 1, σ2(G) ≥ n + q, and G has

an admissible k-cycle-packing. Then G has an admissible k-cycle-partition.

The assumption n ≥ 10k is not sharp, but it cannot be dropped again. The degree

conditions in Theorem 2.6 are sharp in the following sense.

Example 2.3. Let m ≥ 2p + 2q and G = (K1 ∪Km) + Kp+q. Take p distinct vertices

in Kp+q and q independent edges between Kp+q and Km so that these p vertices and

q edges form a feasible set. Then G has an admissible k-cycle-packing but has no

admissible k-cycle-partition, while δ(G) = p + q.

K1 KmKp+q

+ +

Figure 2.3: The graph G in Example 2.3.

Example 2.4. Let m ≥ 2p + q and G = Km+q + (m + 1)K1. Take p distinct vertices

and q independent edges in Km+q so that these p vertices and q edges form a feasible

set. Then G has an admissible k-cycle-packing but does not contain an admissible

k-cycle-partition, while σ2(G) = n + q − 1.

(m + 1)K1Km+q

+

Figure 2.4: The graph G in Example 2.4.
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By Theorem 2.5 and Theorem 2.6, we get Theorem 2.4 as a corollary.

If we put p = 0 and q = k in Theorem 2.4, we get the following.

Corollary 2.7 Suppose that n ≥ 10k, k ≥ 2, and either

σ2(G) ≥ n + 2k − 2

or

δ(G) ≥ n + 2k − 3

2
.

Then G has an admissible k-cycle-partition for any k independent edges.

This corollary gives an improvement of Theorem 2.3 on the minimum degree

condition when n is odd.

For a path P = x1x2 · · · xl, we use the notation P [xi, xj], 1 ≤ i < j ≤ l, for

a subpath of P from xi to xj. We also use C[x, y] to denote the segment of the

cycle C from x to y (including u and v) under some orientation of C, and C[x, y) =

C[x, y]−{y} and C(x, y) = C[x, y]−{x, y}. Given a cycle C with an orientation, we

let v+ (resp. v−) denote the successor (resp. the predecessor) of v along C according

to this orientation.

2.2 Proof of Theorem 2.5

To prove Theorem 2.5, we first prove the following two theorems.

Theorem 2.8 Suppose that n ≥ 9p+8q−2, p+q ≥ 1 and δ(G) ≥ (n+p+2q−3)/2.

Then for any feasible set S ∪ F with |S| = p and |F | = q, G has an admissible

(p + q)-cycle-packing such that all p + q cycles are length at most 5.

Theorem 2.9 Suppose that n ≥ 4p + 4q− 1, p + q ≥ 1 and σ2(G) ≥ n + 2p + 2q− 2.

Then for any feasible set S ∪ F with |S| = p and |F | = q, G has an admissible

(p + q)-cycle-packing such that all p + q cycles are length at most 4.

The sharpness of the assumptions in Theorems 2.8 and 2.9 is already shown in

Section 2.1.

In this section, we will use the following results to prove the above theorems.

Theorem 2.10 (Egawa et al. [10]) Suppose that k ≥ 1, n ≥ 4k − 1 and σ2(G) ≥
n + 2k − 2. Then for any k independent edges, G has an admissible k-cycle-packing

such that each cycle is length at most 4.
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Theorem 2.11 (Enomoto [11], Wang [28]) Suppose that k ≥ 1, n ≥ 3k and

σ2(G) ≥ 4k − 1. Then G has a k-cycle-packing.

Let S ∪ F be a feasible set with S = {v1 . . . , vp} ⊆ V (G) and F = {e1, . . . , eq} ⊆
E(G). If C1, . . . , Ch are admissible disjoint cycles and S∪V (F )−{vi} for some vi ∈ S

or S∪V (F )−V (ej) for some ej ∈ F is contained in
⋃h

l=1 V (Cl), {C1, . . . , Ch} is called

a semi-admissible h-cycle-packing.

2.2.1 Proof of Theorem 2.8

Let G be an edge-maximal counterexample to Theorem 2.8, S ∪ F be a feasible set

with S = {v1, . . . , vp} ⊆ V (G) and F = {ep+1, . . . , ep+q} ⊆ E(G), and ei = xiyi for

p + 1 ≤ i ≤ p + q. In the rest of the proof, a cycle is called short if its length is

at most 5. Since if G is a complete graph, G contains an admissible (p + q)-cycle-

packing, G is not complete. Let x and y be nonadjacent vertices of G and define

G′ = G + xy, the graph obtained from G by adding the edge xy. Then G′ is not a

counterexample by the maximality of G, and so G′ contains an admissible (p + q)-

cycle-packing {C1, . . . , Cp+q}. Since xy ∈ E(Ci) for some i, 1 ≤ i ≤ p + q, G has

a semi-admissible (p + q − 1)-cycle-packing. We take these p + q − 1 cycles so that

admissible cycles which contain specified edges are as many as possible. Subject to

this, we take these cycles so that the sum of the length of cycles is as small as possible.

We consider the following two cases.

Case 1 Some specified edge is not contained in the admissible cycles.

We may assume that G contains a semi-admissible (p + q − 1)-cycle-packing

{C1, . . . , Cp+q−1} such that vi ∈ V (Ci) for 1 ≤ i ≤ p, ei ∈ E(Ci) for p+1 ≤ i ≤ p+q−1

and |Ci| ≤ 5 for 1 ≤ i ≤ p + q − 1. Let L = 〈⋃p+q−1
i=1 V (Ci)〉, M = G − L, and

D = M − {xp+q, yp+q}.

Claim 2.2.1.1 For any z ∈ V (D), dCi
(z) ≤ 3 for 1 ≤ i ≤ p + q − 1.

Proof. If dCi
(z) ≥ 4, 〈V (Ci) ∪ {z}〉 contains a cycle passing through vi or ei which

is shorter than Ci. 2

Claim 2.2.1.2 dD(xp+q) ≥ 2 and dD(yp+q) ≥ 2.

Proof. Suppose that dD(xp+q) ≤ 1. Then

n + p + 2q − 3

2
≤ dG(xp+q) ≤ |L|+ 2 ≤ 5(p + q − 1) + 2.
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Hence we get

n ≤ 9p + 8q − 3.

This is a contradiction. 2

Take any z1, z2 ∈ ND(xp+q) and z′1, z
′
2 ∈ ND(yp+q) and let S = {xp+q, yp+q, z1, z2,

z′1, z
′
2}. Since M has no short cycle passing through ep+q, dS(y) ≤ 3 for any y ∈

V (M)− S. Then,

dM(S) ≤ 3(|M | − 6) + 14 = 3|M | − 4.

Therefore,

dL(S) ≥ 6δ(G)− (3|M | − 4)

= 3n + 3p + 6q − 9− 3|M |+ 4

= 3|L|+ 3p + 6q − 5

>

p∑
i=1

(3|Ci|+ 3) +

p+q−1∑
i=p+1

(3|Ci|+ 6).

Hence dCi
(S) ≥ 3|Ci| + 4 for some i, 1 ≤ i ≤ p, or dCi

(S) ≥ 3|Ci| + 7 for some i,

p + 1 ≤ i ≤ p + q − 1.

Case 1.1 dCi
(S) ≥ 3|Ci|+ 4 for some i, 1 ≤ i ≤ p.

Suppose that dCi
({a, b}) ≥ |Ci| + 2 for a ∈ {xp+q, z1, z2} and b ∈ {yp+q, z

′
1, z

′
2}.

Then we can find some c ∈ NCi
(a)∩NCi

(b)−{vi} and this makes an admissible short

cycle passing through ep+q. Hence dCi
({a, b}) ≤ |Ci|+1 and dCi

(S) ≤ 3|Ci|+3. This

is a contradiction.

Case 1.2 dCi
(S) ≥ 3|Ci|+ 7 for some i, p + 1 ≤ i ≤ p + q − 1.

Since dCi
({z1, z

′
1, z2, z

′
2}) ≤ 12, dCi

({xp+q, yp+q}) ≥ 10 if |Ci| = 5 and dCi
({xp+q, yp+q})

≥ 7 if |Ci| = 4. These mean that there is an admissible triangle passing through ep+q.

If |Ci| = 3, dCi
(S) ≥ 16. Suppose that dCi

(xp+q) = dCi
(yp+q) = 3. Then dCi

(a) = 3

for some a ∈ {z1, z
′
1, z2, z

′
2}, but this means that there are two admissible triangles

passing through ei and ep+q. Otherwise, since dCi
({z1, z

′
1, z2, z

′
2}) ≥ 11, we may

assume that dCi
(z1) = dCi

(z′1) = dCi
(z2) = 3. Then there are two admissible cycles

passing through ei and ep+q. This completes the proof of Case 1.

Case 2 Some specified vertex is not contained in the admissible cycles.

We may assume that G has a semi-admissible (p+q−1)-cycle-packing {C2, . . . , Cp+q}
such that vi ∈ V (Ci) for 2 ≤ i ≤ p, ei ∈ E(Ci) for p + 1 ≤ i ≤ p + q and |Ci| ≤ 5 for

2 ≤ i ≤ p + q. Let L = 〈⋃p+q
i=2 V (Ci)〉 and M = G− L.
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Claim 2.2.2.3 dCi
(x) ≤ 3 for x ∈ V (M) and 2 ≤ i ≤ p. Moreover, if x 6= v1,

dCi
(x) ≤ 3 for p + 1 ≤ i ≤ p + q.

Proof. If x 6= v1, the proof is similar to that of Claim 2.2.1.1. Suppose that dCi
(v1) ≥

4 for 2 ≤ i ≤ p. Then, 〈V (Ci) ∪ {v1} − {vi}〉 contains a cycle passing through vi and

shorter than Ci. 2

Claim 2.2.2.4 dM(v1) ≥ 3.

Proof. Suppose that dM(v1) ≤ 2. Then,

n + p + 2q − 3

2
≤ dG(v1) ≤ 3(p− 1) + 5q + 2 = 3p + 5q − 1

by Claim 2.2.2.3. Hence we get

n ≤ 5p + 8q + 1.

This is a contradiction. 2

Take z1, z2, z3 ∈ NM(v1) and let S = {v1, z1, z2, z3}. Since M has no short cycle

passing through v1, dS(y) ≤ 1 for any y ∈ V (M)− S. Then

dM(S) ≤ (|M | − 4) + 6 = |M |+ 2.

Hence

dL(S) ≥ 4δ(G)− (|M |+ 2)

= 2n + 2p + 4q − 6− |M | − 2

= 2|L|+ 2p− 2 + 4q + |M | − 6

> 2|L|+ 2p− 2 + 4q + 4(p− 1)

= 2|L|+ 6p− 6 + 4q

=

p∑
i=2

(2|Ci|+ 6) +

p+q∑
i=p+1

(2|Ci|+ 4) (2.1)

since

|M | − 6 ≥ n− 5p− 5q + 5− 6 ≥ 9p + 8q − 2− 5p− 5q − 1

= 4p + 3q − 3 > 4(p− 1).

Claim 2.2.2.5 dCi
(S) ≤ 2|Ci|+ 4 for p + 1 ≤ i ≤ p + q.
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Proof. Suppose that dCi
(S) ≥ 2|Ci|+ 5 for some i, p + 1 ≤ i ≤ p + q.

If |Ci| = 5, dCi
(S) ≥ 15. But this contradicts Claim 2.2.2.3.

If |Ci| = 4, dCi
(S) ≥ 13. Then, dCi

(v1) = 4 and dCi
(z1) = dCi

(z2) = dCi
(z3) = 3.

This means that there are two admissible short cycles passing through v1 and ei.

If |Ci| = 3, dCi
(S) ≥ 11. In this case, we may assume that dCi

(z1) = dCi
(z2) = 3.

Then, dCi
(z3) ≤ 1. But this is a contradiction. 2

By (2.1) and Claim 2.2.2.5, we may assume that dCi
(S) ≥ 2|Ci| + 7 for some

i, 2 ≤ i ≤ p. Clearly, this contradicts Claim 2.2.2.3. This completes the proof of

Theorem 2.8.

2.2.2 Proof of Theorem 2.9

Let S ∪F be a feasible set with S = {v1, . . . , vp} ⊆ V (G) and F = {ep+1, . . . , ep+q} ⊆
E(G). Since σ2(G) ≥ n+2p+2q−2, δ(G) ≥ 2p+2q. Then we can take p independent

edges e1, . . . , ep such that vi ∈ V (ei) for 1 ≤ i ≤ p and {e1, . . . , ep+q} is also a set

of independent edges. Therefore, we can apply Theorem 2.10 and obtain a required

(p + q)-cycle-packing. 2

2.2.3 Proof of Theorem 2.5

The case p = q = 0 follows from Theorem 2.11. Thus we may assume that p + q ≥ 1.

Let S ∪ F be a feasible set with |S| = p and |F | = q. By Theorem 2.8 and Theorem

2.9, G has an admissible (p + q)-cycle-packing {C1, . . . , Cp+q} such that |Ci| ≤ 5 for

1 ≤ i ≤ p + q. If k = p + q, this is a required k-cycle-packing. Hence we may assume

that k > p+q. Then we take these cycles so that |⋃p+q
i=1 V (Ci)| is as small as possible.

Let L = 〈⋃p+q
i=1 V (Ci)〉 and H = G− L. Note that dCi

(x) ≤ 3 for any x ∈ V (H) and

1 ≤ i ≤ p + q. Then |H| ≥ n− 5(p + q) ≥ 3(k − p− q) and

σ2(H) ≥ n + 2p + 2q − 3− 6(p + q) ≥ 4(k − p− q)− 1.

Therefore, we can apply Theorem 2.11 and we get a (k − p − q)-cycle-packing of

H. Hence we get an admissible k-cycle-packing of G. This completes the proof of

Theorem 2.5.
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2.3 Proof of Theorem 2.6

2.3.1 Preliminary Lemmas

Before proving the theorem, we prepare several definitions and lemmas.

Let D be a cycle (resp. a path) of G and x ∈ V (G−D). We say x can be inserted

into D if 〈V (D)∪ {x}〉 has a cycle (resp. a path) D′ such that V (D′) = V (D)∪ {x}.
Moreover, if D contains a specified edge e, D′ has to contain e, and if D is a u-v path,

then D′ also has to be a u-v path.

Lemma 2.1 Let C be a cycle of G and x ∈ V (G − C). Suppose that C does not

contain a specified edge and dC(x) ≥ (|C|+ 1)/2. Then x can be inserted into C.

Proof. Since dC(x) ≥ (|C| + 1)/2, NC(x) contains two consecutive vertices of C.

Hence x can be inserted into C. 2

Lemma 2.2 Let P = u1u2 · · ·ul be a path of G and x ∈ V (G− P ). Suppose that P

does not contain a specified edge and dP (x) ≥ |P |/2 + 1. Then x can be inserted into

P .

Proof. Since dP (x) ≥ |P |/2+1, NP (x) contains two consecutive vertices of P . Hence

x can be inserted into P . 2

Lemma 2.3 Let C be a cycle of G and x ∈ V (G− C). Suppose that e ∈ E(C) is a

specified edge and dC(x) ≥ |C|/2 + 1. Then x can be inserted into C.

(Proof.) Let e = aa+. Since dC(x) ≥ |C|/2 + 1, NG(x) ∩ C[a+, a−] contains two

consecutive vertices of C. Then x can be inserted into C. 2

Lemma 2.4 Let P = u1u2 · · ·ul be a path of G and x ∈ V (G − P ). Suppose that

e ∈ E(P ) be a specified edge and dP (x) ≥ (|P |+3)/2. Then x can be inserted into P .

Proof. Let e = uiui+1, 1 ≤ i ≤ l− 1. Since dP (x) ≥ (|P |+3)/2, NG(x)∩P [u1, ui] or

NG(x) ∩ P [ui+1, ul] contains two consecutive vertices of P . Hence x can be inserted

into P . 2

Let C1, . . . , Ck be disjoint subgraphs such that Ch is a u-v path for some h, 1 ≤
h ≤ p + q, the rest are all cycles, and vi ∈ V (Ci) for 1 ≤ i ≤ p and ei ∈ E(Ci) for

p + 1 ≤ i ≤ p + q. Let also L = 〈⋃k
i=1 V (Ci)〉 and M ⊆ V (G− L), M 6= ∅. Then we

say M can be inserted into L if 〈V (L) ∪M〉 contains disjoint subgraphs C ′
1, . . . , C

′
k
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such that C ′
h is a u-v path, the rest are all cycles, vi ∈ V (Ci) for 1 ≤ i ≤ p and

ei ∈ E(Ci) for p + 1 ≤ i ≤ p + q, and
⋃k

i=1 V (C ′
i) = V (L) ∪M .

Lemma 2.5 Let L be a subgraph of G defined in the above definition, M ⊆ V (G−L)

and M 6= ∅. Suppose that NG(M) ⊆ V (L) ∪M and

dG(x) ≥ |L|+ q

2
+ (|M | − 1) +

3

2

for any x ∈ V (M). Then M can be inserted into L.

Proof. Take any x ∈ V (M). Then

dL(x) ≥ |L|+ q

2
+ (|M | − 1) +

3

2
− (|M | − 1) =

|L|+ q

2
+

3

2

=

p∑
i=1

|Ci|
2

+

p+q∑
i=p+1

|Ci|+ 1

2
+

k∑
i=p+q+1

|Ci|
2

+
3

2
.

Hence one of the following holds.

(a) 1 ≤ h ≤ p and dCh
(x) ≥ |Ch|

2
+ 1.

(b) p + 1 ≤ h ≤ p + q and dCh
(x) ≥ |Ch|+3

2
.

(c) dCi
(x) ≥ |Ci|+1

2
for some i 6= h, 1 ≤ i ≤ p or p + q + 1 ≤ i ≤ k.

(d) dCi
(x) ≥ |Ci|

2
+ 1 for some i 6= h, p + 1 ≤ i ≤ p + q.

Then, by Lemmas 2.1, 2.2, 2.3, and 2.4, x can be inserted into Ch or Ci.

Let L′ = 〈V (L) ∪ {x}〉 and M ′ = M − {x}, and suppose that M ′ 6= ∅. Then

NG(M ′) ⊆ V (L′) ∪M ′ and for any y ∈ V (M ′),

dG(y) ≥ |L|+ q

2
+ (|M | − 1) +

3

2

=
|L′| − 1 + q

2
+ (|M ′|+ 1− 1) +

3

2

=
|L′|+ q

2
+ (|M ′| − 1) + 2.

Again, y can be inserted into L′. By repeating this operation, M can be inserted into

L. 2
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2.3.2 Proof of Theorem 2.6

Suppose that C = {C1, . . . , Ck} and C ′ = {C ′
1, . . . , C

′
k} are two admissible k-cycle-

packing. We say C is larger than C ′ if |⋃k
i=1 V (Ci)| > |⋃k

i=1 V (C ′
i)|.

In the rest of this section, N(x) and N(H) will be used instead of NG(x) and

NG(H) for x ∈ V (G) and a subgraph H of G.

Let S∪F be a feasible set with S = {v1, . . . , vp} ⊆ V (G) and F = {ep+1, . . . ep+q} ⊆
E(G), and ei = xiyi for p + 1 ≤ i ≤ p + q. Since G contains an admissible k-cycle-

packing, we take an admissible k-cycle-packing {C1, . . . , Ck} such that |⋃k
i=1 V (Ci)|

is as large as possible. We may assume that vi ∈ V (Ci) for 1 ≤ i ≤ p and ei ∈ E(Ci)

for p + 1 ≤ i ≤ p + q. Let L = 〈⋃k
i=1 V (Ci)〉 and H = G − L. If H = ∅, we have

nothing to prove. Hence we may assume that H 6= ∅.
By Lemmas 2.1 and 2.3, the next claim holds.

Claim 2.3.1 For x ∈ V (H), dCi
(x) ≤ |Ci|/2 for 1 ≤ i ≤ p and p + q + 1 ≤ i ≤ k,

and dCi
(x) ≤ (|Ci|+ 1)/2 for p + 1 ≤ i ≤ p + q.

Claim 2.3.2 H is connected.

Proof. Let H0 be a connected component of H, x ∈ V (H0) and y ∈ V (H − H0).

Then,

n + q ≤ dG(x) + dG(y)

≤ |H0| − 1 +
k∑

i=1

dCi
(x) + |H −H0| − 1 +

k∑
i=1

dCi
(y)

≤ |H| − 2 +
k∑

i=1

|Ci|+ q = n + q − 2

by Claim 2.3.1. But this is a contradiction. 2

Claim 2.3.3 Suppose that b1, b2 ∈ N(H) ∩ V (Ci), b1 6= b2, and vi /∈ V (Ci(b1, b2)) if

1 ≤ i ≤ p and ei /∈ E(Ci[b1, b2]) if p + 1 ≤ i ≤ p + q. Then V (Ci(b1, b2)) 6= ∅.
Proof. Take a1, a2 ∈ V (H) such that a1b1, a2b2 ∈ E(G) (possibly a1 = a2) and

suppose that b2 = b+
1 . Then we can get an admissible cycle b1a1Pa2b2Ci(b2, b1)b1

which is longer than Ci, where P is a path in H connecting a1 and a2. This contradicts

the maximality of L. 2

Claim 2.3.4 |N(H) ∩ V (Ci)| ≤ 1 for 1 ≤ i ≤ k.
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Proof. Suppose that |N(H)∩V (Ci)| ≥ 2 for some i, 1 ≤ i ≤ k. Choose two vertices

b1, b2 ∈ V (Ci) and vertices a1, a2 ∈ V (H) (possibly a1 = a2) such that ajbj ∈ E(G)

for j = 1, 2, vi /∈ V (Ci(b1, b2)) if 1 ≤ i ≤ p, ei /∈ E(Ci[b1, b2]) if p + 1 ≤ i ≤ p + q and

N(H) ∩ V (Ci(b1, b2)) = ∅. Take x ∈ V (H) and y ∈ V (Ci(b1, b2)). Then,

n + q ≤ dG(x) + dG(y)

≤ |H| − 1 +

p∑

h=1

|Ch|
2

+

p+q∑

h=p+1

|Ch|+ 1

2
+

k∑

h=p+q+1

|Ch|
2

− |Ci(b1, b2)|
2

+
1

2
+ dG(y)

≤ |H| − 1

2
+
|L|
2

+
q

2
− |Ci(b1, b2)|

2
+ dG(y).

Hence

dG(y) = dL(y) ≥ |L|+ q + |Ci(b1, b2)|+ 1

2
. (2.2)

Let L′ = 〈V (Ci[b2, b1]) ∪ (
⋃k

h=1 V (Ch)− V (Ci))〉. Then by (2.2),

dG(y) ≥ |L|+ q + |Ci(b1, b2)|+ 1

2
=
|L′|+ |Ci(b1, b2)|+ q + |Ci(b1, b2)|+ 1

2

=
|L′|+ q

2
+ (|Ci(b1, b2)| − 1) +

3

2
.

Hence by Lemma 2.5, V (Ci(b1, b2)) can be inserted into L′. By adding b1a1Pa2b2

where P is a path in H connecting a1 and a2, we get a larger admissible k-cycle-

packing. This is a contradiction. 2

Claim 2.3.5 |N(H) ∩ V (Ci)| = ∅ for p + q + 1 ≤ i ≤ k.

Proof. Suppose that |N(H) ∩ V (Ci)| 6= ∅ for some i, p + q + 1 ≤ i ≤ k. Without

loss of generality, we may assume that i = k. Take y ∈ N(H) ∩ V (Ck).

Subclaim 2.3.5.1 |N(H) ∩ V (Ci)| 6= ∅ and dCi
(y+) + dCi

(y−) ≥ 2|Ci| − 1 for some

i, 1 ≤ i ≤ p or p + q + 1 ≤ i ≤ k − 1.

Proof. Suppose that the subclaim does not hold. Let r = |{h|N(H) ∩ V (Ch) 6=
∅, 1 ≤ h ≤ p, p + q + 1 ≤ h ≤ k}|, r′ = |{h|N(H) ∩ V (Ch) 6= ∅, p + 1 ≤ h ≤ p + q}|.
Then

dL(y+) + dL(y−) ≤
k∑

h=1

2|Ch| − 2r = 2|L| − 2r.
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Without loss of generality, we may assume that dL(y+) = dG(y+) ≤ |L| − r. Take

any x ∈ V (H), then

n + q ≤ dG(x) + dG(y+) ≤ |H| − 1 + r + r′ + |L| − r

= n + r′ − 1.

Hence we get q ≤ r′ − 1, but this is a contradiction. 2

We may assume that N(H) ∩ V (Ci) 6= ∅ and dCi
(y+) + dCi

(y−) ≥ 2|Ci| − 1 for

some i, 1 ≤ i ≤ p or p + q + 1 ≤ i ≤ k − 1. Take z ∈ N(H) ∩ V (Ci). By symmetry,

we may assume that y+z−, y+z+, y−z ∈ E(G). Let ya1, za2 ∈ E(G), a1, a2 ∈ V (H)

(possibly a1 = a2). We replace Ci to C ′
i = y+z+Ci(z

+, z−)z−y+ and, let P = yy−z,

L′ = 〈(⋃k
h=1 V (Ch) − V (Ci ∪ Ck)) ∪ V (C ′

i ∪ P )〉 and M = V (Ck) − {y, y+, y−}. For

any x ∈ M , since dG(a1) ≤ |H| − 1 + k and xa1 /∈ E(G),

dG(x) ≥ n + q − (|H| − 1 + k) = |L|+ q − k + 1

= |L′|+ |M |+ q − k + 1

≥ |L′|+ q

2
+ (|M | − 1) +

3(k − 1)

2
+

q

2
− k + 2

=
|L′|+ q

2
+ (|M | − 1) +

k + q + 3

2

>
|L′|+ q

2
+ (|M | − 1) +

3

2
.

Then by Lemma 2.5, M can be inserted into L′. By adding za2P
′a1y where P ′ is a

path in H connecting a1 and a2, we get a larger admissible k-cycle-packing. 2

Let N(H) ∩ V (Ch) = {uh} for 1 ≤ h ≤ r1 and p + 1 ≤ h ≤ r2 and N(H) ∩
V (Ch) = ∅ for r1 + 1 ≤ h ≤ p and r2 + 1 ≤ h ≤ p + q. Since σ2(G) ≥ n + q, G

is (q + 2)-connected. Hence r1 ≥ 2. Let also |N(uh) ∩ V (H)| ≥ 2 for 1 ≤ h ≤ s1,

|N(uh)∩V (H)| = 1 for s1 +1 ≤ h ≤ r1 and r = r1 +r2−p. Let U1 = {u1, . . . us1} and

U = {u1, . . . , ur1 , up+1, . . . , ur2}. If r2 does not exist, let r = r1 and U = {u1, . . . , ur1}.

Claim 2.3.6 ui 6= vi for ui ∈ U1.

Proof. Suppose that ui = vi for some i ∈ U1. Without loss of generality, we may

assume that i = 1. Let a1, a2 ∈ N(v1) ∩ V (H) and L′ = 〈⋃k
i=2 V (Ci)〉. Since
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d(x) ≤ |H| − 1 + k and xv /∈ E(G) for any x ∈ V (H) and v ∈ V (C1)− {v1},

dG(v) ≥ n + q − (|H| − 1 + k)

= |L|+ q − k + 1

= |L′|+ |C1|+ q − k + 1

≥ |L′|+ q

2
+

3(k − 1)

2
+

q

2
+ (|C1| − 1)− k + 2

=
|L′|+ q

2
+ (|C1| − 1) +

k

2
+

q

2
+

1

2

≥ |L′|+ q

2
+ (|C1| − 1) +

3

2

Since N(v) ⊆ V (L), V (C1) − {v1} can be inserted into L′ by Lemma 2.5. Let

C ′
1 = v1a1Pa2v1, where P is a path in H connecting a1 and a2. Then we get a larger

admissible k-cycle-packing. 2

Claim 2.3.7 For v ∈ V (H), |N(v) ∩ L| ≥ q + 2.

Proof. Take v ∈ V (H) and y ∈ V (Ci)− {ui} for 1 ≤ i ≤ r1. Then vy /∈ E(G), and

n + q ≤ dG(v) + dG(y) ≤ |H| − 1 + |N(v) ∩ L|+ |L| − 1

= n− 2 + |N(v) ∩ L|.

Therefore, |N(v) ∩ L| ≥ q + 2. 2

Claim 2.3.8 s1 ≥ 2.

Proof. Suppose that s1 ≤ 1. Then |H| ≤ r − (q + 1) ≤ r1 − 1 by Claim 2.3.7. Note

that |H|(p+q+1−(|H|−1)) ≤ |E(H, L)| ≤ s1|H|+(r1−s1)+q|H|. (This inequality

will be used several times.) Then |H|(p + q + 2 − |H|) ≤ s1(|H| − 1) + r1 + q|H| ≤
|H| − 1 + p + q|H| and (p + q)|H| + 2|H| − |H|2 ≤ |H| − 1 + p + q|H|. Hence

|H|2 − |H| − 1 ≥ p(|H| − 1) ≥ r1(|H| − 1) ≥ (|H| + 1)(|H| − 1) = |H|2 − 1. This is

impossible. 2

Claim 2.3.9 |H| > r1 − s1.

Proof. Suppose that |H| ≤ r1 − s1 ≤ p− s1. Then, |H|(p + q + 2− |H|) ≤ s1(|H| −
1) + r1 + q|H| ≤ (p− |H|)(|H| − 1) + p + q|H|. This shows 2|H| ≤ |H|, but this is a

contradiction. 2

Claim 2.3.10 dG(y) = dL(y) ≥ |L| − s1 + 1 for any y ∈ V (L− U).
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Proof. For any x ∈ V (H), xy /∈ E(G). Since

∑

x∈V (H)

dG(x) ≤ |H|(|H| − 1) + s1|H|+ r1 − s1 + q|H|,

we get

dG(y) ≥ n + q − (|H| − 1)− s1 − q − r1 − s1

|H|
> |L| − s1

by Claim 2.3.9. Hence the claim holds. 2

Claim 2.3.11 N(v1) ∩ (U1 − {u1}) 6= ∅.
Proof. If N(v1) ∩ (U1 − {u1}) = ∅, dG(v1) ≤ |L| − 1 − (s1 − 1) = |L| − s1. On the

other hand, dG(v1) ≥ |L| − s1 + 1 by Claim 2.3.10. This is a contradiction. 2

Without loss of generality, we may assume that u2 ∈ N(v1) ∩ (U1 − {u1}). Give

orientations to C1 and C2 such that C1(v1, u1) 6= ∅ and C2(v2, u2) 6= ∅, and take

z = u−1 ∈ C1(v1, u1) and y = v+
2 ∈ C2[u

+
2 , u−2 ]. Here and in the following, Cj[v

+
j , u−j ]

will be used as the abbreviation for V (Cj[v
+
j , u−j ]).

Claim 2.3.12 There exist no disjoint subgraphs C ′
1, C

′
2, . . . , C

′
k in L satisfying C ′

1 is a

path connecting u1 and u2, C ′
2, . . . , C

′
k are cycles, vi ∈ V (Ci) for 1 ≤ i ≤ p, ei ∈ E(Ci)

for p + 1 ≤ i ≤ p + q and |⋃p+q
i=1 V (C ′

i) ∩ U | ≥ r − 1.

Proof. Let L′ = 〈⋃k
i=1 V (C ′

i)〉 and M = V (L) − ⋃k
i=1 V (C ′

i) − U . For any x ∈ M ,

dG(x) = dL(x) and by Claim 2.3.10,

dL(x) ≥ |L| − s1 + 1 ≥ |L|+ q − k + 1

≥ |L′|+ |M |+ q − k + 1

≥ |L′|+ q

2
+ (|M | − 1) +

3(k − 1) + 2

2
+

q

2
− k + 2

=
|L′|+ q

2
+ (|M | − 1) +

k + q + 3

2

>
|L′|+ q

2
+ (|M | − 1) +

3

2
.

Then by Lemma 2.5, M can be inserted into L′. Choose any y ∈ NH(u1). Then there

exists y′ ∈ NH(u2)−{y}. By adding a path connecting y and y′ in H, we get a larger

admissible k-cycle-packing. This contradicts the minimality of |L|. (We may miss

one vertex in U , but they contain two vertices in H.) 2
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Claim 2.3.13 dC1(z) + dC1(y) + dC1(v2) ≤ 2|C1|+ 1.

Proof. N(y) ∩ N(v2) ∩ (V (C1) − {u1, v1}) = ∅ (otherwise, we get a disjoint path

P connecting u1 and u2 through v1 and a cycle C ′
2 through v2 in 〈V (C1) ∪ V (C2)〉,

contradicting Claim 2.3.12). Then dC1(z) + dC1(y) + dC1(v2) ≤ |C1| − 1 + |C1|+ 2 ≤
2|C1|+ 1. 2

Claim 2.3.14 dC2(z) + dC2(y) + dC2(v2) ≤ 2|C2|+ 1.

Proof. We may assume that N(y)∩C2(u2, v2) = ∅ and N(v2)∩ (C2(y, v−2 )−{u2}) =

∅, since otherwise we get a disjoint u1–u2 path C ′
1 passing through v1 and a cycle

C ′
2 passing through v2 in 〈V (C1) ∪ V (C2)〉, contradicting Claim 2.3.12. Therefore,

NC2(y) ⊆ C2[v2, u2] − {y} and NC2(v2) ⊆ {u2, y, v−2 }. If NC2(z) ∩ C2(u2, v2] 6= ∅ and

NC2(z) ∩ C2(v2, u2) 6= ∅, we get a disjoint u1–u2 path C ′
1 passing through v1 and

a cycle C ′
2 passing through v2. Then NC2(z) ⊆ {u2, v2} or C2[u2, v2) or C2(v2, u2].

Hence

dC2(z) + dC2(y) + dC2(v2) ≤ |C2| − 1 + |C2| − 1 + 3

= 2|C2|+ 1.

2

Claim 2.3.15 dCi
(z) + dCi

(y) + dCi
(v2) ≤ 2|Ci|+ 2 for 3 ≤ i ≤ p + q.

Proof. Suppose that dCi
(z) + dCi

(y) + dCi
(v2) > 2|Ci| + 2 for some i, 3 ≤ i ≤

p + q. Then dCi
(z) ≥ 3. Take w1, w2 ∈ NCi

(z) such that Ci(w1, w2) ∩ N(z) = ∅
and vi ∈ Ci[w1, w2) if 3 ≤ i ≤ p and ei ∈ E(Ci[w1, w2]) if p + 1 ≤ i ≤ p + q. Then

N(v2) ∩N(y) ∩ Ci(w2, w1) = ∅ and

dCi
(z) + dCi

(y) + dCi
(v2) ≤ |Ci[w2, w1]|+ |Ci(w2, w1)|+ 2|Ci[w1, w2]|

= 2|Ci|+ 2.

This is a contradiction. 2

Claim 2.3.16 dCi
(z) + dCi

(y) + dCi
(v2) ≤ 2|Ci|+ 1 for p + q + 1 ≤ i ≤ k.

Proof. If dCi
(z) ≤ 1, the claim holds. Suppose that dCi

(z) = t ≥ 2 and let

w1, w2, . . . , wt ∈ NCi
(z) = W . If t ≥ 3, only v2 or y can have neighbors on Ci(wj, wl)

for 1 ≤ j 6= l ≤ t by Claim 2.3.12. Furthermore, NW (v2) ∩NW (y) = ∅. Then,

dCi
(z) + dCi

(y) + dCi
(v2) ≤ 2|Ci|.
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If t = 2, at least one of N(y) ∩ Ci(w1, w2) and N(v2) ∩ Ci(w1, w2) is empty, and

also at least one of N(y) ∩ Ci(w2, w1) and N(v2) ∩ Ci(w2, w1) is empty. Hence

dCi
(z) + dCi

(y) + dCi
(v2) ≤ |Ci|+ 4 ≤ 2|Ci|+ 1.

2

Claim 2.3.17 L− U is not complete.

Proof. z /∈ N(y) ∩N(v2). 2

Claim 2.3.18 |L| ≥ (n + q + 4)/2.

Proof. By Claim 2.3.17, 2(|L| − 2) ≥ σ2(G) = n + q. Hence |L| ≥ (n + q + 4)/2. 2

By Claim 2.3.10,

dG(z) + dG(y) + dG(v2) ≥ 3|L| − 3s1 + 3. (2.3)

On the other hand, by Claims 2.3.13, 14, 15 and 16,

dG(z) + dG(y) + dG(v2) ≤
2∑

i=1

(2|Ci|+ 1) +

p+q∑
i=3

(2|Ci|+ 2) +
k∑

i=p+q+1

(2|Ci|+ 1)

= 2|L|+ 2 + 2(p + q − 2) + (k − p− q)

= 2|L|+ k + p + q − 2. (2.4)

By (2.3) and (2.4),

|L| ≤ k + p + q + 3s1 − 5.

By Claim 2.3.18,

(n + q + 4)/2 ≤ k + p + q + 3s1 − 5.

Then,

n ≤ 2k + 2p + q + 6s1 − 14

≤ 2k + 8p + q − 14

≤ 10k − 14.

But this is a contradiction. This completes the proof of Theorem 2.6.
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Chapter 3

Vertex-Disjoint Short Cycles

Containing Specified Edges in a

Graph

We say that a cycle is short when its length is at most 5. In this chapter, we consider

the existence of short cycles containing specified edges in a graph. We obtain a sharp

minimum degree condition, which is an improvement of that of the result in [10].

3.1 Introduction

In this chapter, ‘disjoint’ means ‘vertex-disjoint’, since we only deal with partitions

of the vertex set, and n always denotes the order of a graph.

In [10], Egawa et al. considered the partition of a graph into cycles passing through

specified edges and proved the following theorem.

Theorem 3.1 (Egawa et al. [10]) Suppose that k ≥ 2, n ≥ 4k − 1 and σ2(G) ≥
n + 2k− 2. Then for any independent edges e1, . . . , ek ∈ E(G), G contains k disjoint

cycles H1, . . . , Hk such that ei ∈ E(Hi) and
⋃k

i=1 V (Hi) = V (G).

The proof of Theorem 3.1 consists of two steps, solving a packing problem and

then extending a packing to a partition. The result of a packing problem is the next

theorem.

Theorem 3.2 (Egawa et al. [10]) Suppose that k ≥ 1, n ≥ 4k − 1 and σ2(G) ≥
n + 2k− 2. Then for any independent edges e1, . . . , ek ∈ E(G), G contains k disjoint

cycles C1, . . . , Ck such that ei ∈ E(Ci) and |Ci| ≤ 4.
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The following corollary is immediate from Theorem 3.2.

Corollary 3.3 Suppose that k ≥ 1, n ≥ 4k − 1 and δ(G) ≥ 1
2
(n + 2k − 2). Then

for any independent edges e1, . . . , ek ∈ E(G), G contains k disjoint cycles C1, . . . , Ck

such that ei ∈ E(Ci) and |Ci| ≤ 4.

The result of extending a packing to a partition is the following.

Theorem 3.4 (Egawa et al. [10]) Suppose that k ≥ 1, n ≥ 3k, σ2(G) ≥ n + k,

and e1, . . . , ek ∈ E(G) are independent edges. Moreover, G contains k disjoint cycles

C1, . . . , Ck such that ei ∈ E(Ci). Then G contains k disjoint cycles H1,. . .,Hk such

that ei ∈ E(Hi) and
⋃k

i=1 V (Hi) = V (G).

In [10], the next two examples are shown for Theorem 3.2 and Corollary 3.3.

Example 3.1. Let G = (K1 ∪Kn−2k) + K2k−1 and V (K1) = {x}. Take any k indepen-

dent edges e1, . . . , ek in 〈{x} ∪ NG(x)〉, and let x be an endvertex of e1. Then there

is no cycle through e1 avoiding any endvertices of e2, . . . , ek and σ2(G) = n + 2k − 3.

K1 K2k−1 Kn−2k

+ +x

e1

Figure 3.1: The graph G in Example 3.1.

Example 3.2. Let G = (A ∪ B) + K2k−2 with an edge e1 joining A and B, where A

and B are complete graphs with |A| = dn/2e − k + 1 and |B| = bn/2c − k + 1. Take

any k − 1 independent edges e2, . . . , ek in K2k−2. Then e1, . . . , ek are k independent

edges, but there is no cycle through e1 avoiding any vertices in K2k−2, while δ(G) =

bn/2c+ k − 2 = bn+2k−4
2

c.

Example 3.2 gives the sharpness of the assumption in Corollary 3.3 only for the

case n is even.

In this chapter, we will prove the following theorem.
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A K2k−2 B

+ +

e1

Figure 3.2: The graph G in Example 3.2.

Theorem 3.5 Suppose that n ≥ max{6k, 4k + 6}, k ≥ 1 and δ(G) ≥ (n + 2k− 3)/2.

Then for any independent edges e1, . . . , ek, G contains k disjoint cycles C1, . . . , Ck

such that ei ∈ E(Ci) for 1 ≤ i ≤ k, and ‘|Ci| ≤ 4 for 1 ≤ i ≤ k’ or ‘|Ci| = 5 for some

i, 1 ≤ i ≤ k and the rest are all triangles’.

By Theorem 3.5, the degree condition in Theorem 3.1 can be slightly improved

when n is sufficiently large.

Theorem 3.6 Suppose that n ≥ 6k + 2, k ≥ 2 and either σ2(G) ≥ n + 2k − 2 or

δ(G) ≥ (n+2k−3)/2. Then for any independent edges e1, . . . , ek ∈ E(G), G contains

k disjoint cycles H1, . . . , Hk such that ei ∈ E(Hi) and
⋃k

i=1 V (Hi).

The following example shows that the conclusion ‘|Ci| = 5 for some i, 1 ≤ i ≤ k

and the rest are all triangles’ in Theorem 3.5 is necessary.

Example 3.3. Suppose that n is odd. Let G be a graph obtained from G′ = (A ∪
B) + K2k−2, where A and B are complete graphs with |A| = |B| = (n − 2k − 1)/2,

by adding new three vertices x, y and z with an edge yz and joining x to A, B and

K2k−2, y to A and K2k−2, and z to B and K2k−2. Take any k − 1 independent edges

e2, . . . , ek in K2k−2 and let e1 = yz. Then e1, . . . , ek are k independent edges, but e1

can not be contained in a cycle of length 3 or 4 avoiding the vertices of K2k−2, while

δ(G) = (n + 2k − 3)/2.

For k independent edges e1 = x1y1, . . . , ek = xkyk, a cycle C is called admissible if

|E(C) ∩ {e1, . . . , ek}| = 1 and |V (C) ∩ {x1, . . . , xk, y1, . . . , yk}| = 2. For 1 ≤ r ≤ k, a

set of cycles {C1, . . . , Cr} is admissible if each Ci is admissible, mutually disjoint, and

|Ci| ≤ 4 for 1 ≤ i ≤ r or |Ci| = 5 for some i, 1 ≤ i ≤ r and the rest are all triangles.

If we say ‘r admissible cycles’, it means that a set of these r cycles is admissible.
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Figure 3.3: The graph G in Example 3.3.

3.2 Proof of Theorem 3.5

We distinguish two cases according to the value of k.

A BK2k−2

x

y ze1

Case 1 k ≥ 2.

Let G be an edge-maximal counterexample and ei = xiyi for 1 ≤ i ≤ k. Since if G

is a complete graph, G contains k admissible cycles, G is not complete. Let x and y

be nonadjacent vertices of G and define G′ = G + xy, the graph obtained from G by

adding the edge xy. Then G′ is not a counterexample by the maximality of G, and so

G′ has k admissible cycles C1, . . . , Ck. Without loss of generality, we may assume that

xy ∈ E(Ck). Then G has k − 1 admissible cycles C1, . . . , Ck−1. We take these cycles

such that |⋃k−1
i=1 V (Ci)| is as small as possible. We may assume that ei ∈ E(Ci). Let

L = 〈⋃k−1
i=1 V (Ci)〉, M = G− L, D = M − {xk, yk}.

Claim 3.2.1 dCi
(z) ≤ 3 for any z ∈ V (D) and 1 ≤ i ≤ k − 1.

Proof. Let z ∈ V (D). If dCi
(z) ≥ 4 for some i, 1 ≤ i ≤ k−1, 〈V (Ci)∪{z}〉 contains

a cycle passing through ei which is shorter than Ci. 2

Claim 3.2.2 dD(xk) ≥ 2 and dD(yk) ≥ 2.

Proof. Suppose that dD(xk) ≤ 1. Then

n + 2k − 3

2
≤ dG(xk) ≤ |L|+ 2 ≤ max{4k − 4, 3k − 1}+ 2.

Then n ≤ max{6k − 1, 4k + 5}. This is a contradiction. 2
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Take any z ∈ ND(xk) and z′ ∈ ND(yk), and let S = {xk, yk, z, z
′}. Since M does

not contain an admissible cycle passing through ek length at most 4 (if such cycle

exists, it contradicts G does not contain k admissible cycles or the minimality of |L|),
zz′, xkz

′, ykz /∈ E(G), and dS(w) ≤ 2 for any w ∈ V (M)− S. Then

dM(S) ≤ 2(|M | − 4) + 6 = 2|M | − 2.

Therefore,

dL(S) ≥ 4δ(G)− (2|M | − 2) = 2n + 4k − 6− 2(n− |L|) + 2

= 2|L|+ 4k − 4 =
k−1∑
i=1

(2|Ci|+ 4). (3.1)

Claim 3.2.3 dCi
(S) ≤ 2|Ci|+ 4 for 1 ≤ i ≤ k − 1.

Proof. Suppose that |Ci| ≥ 4. By Claim 3.2.1, dCi
({z, z′}) ≤ 6. If dCi

({xk, yk}) ≥
|Ci|+3, there is a triangle xkykaxk for some a ∈ V (Ci)−{xi, yi}. Hence dCi

({xk, yk}) ≤
|Ci|+ 2, and we get dCi

(S) ≤ 2|Ci|+ 4 if |Ci| = 4 and dCi
(S) ≤ 2|Ci|+ 3 if |Ci| = 5.

Suppose that |Ci| = 3, Ci = xiyiaxi and dCi
(S) ≥ 2|Ci|+5 = 11. If {zxi, zyi, xka, z′a} ⊆

E(G), then xiyizxi and xkykz
′axk are two admissible cycles. Then, since dCi

(S) ≥ 11,

we may assume that {za, yka, z′xi, z
′yi} ⊆ E(G). But this means that there are two

admissible cycles xiyiz
′xi and xkykazxk. 2

By Claim 3.2.3, the equality holds for (3.1), that is, dCi
(S) = 2|Ci| + 4 for all i,

1 ≤ i ≤ k − 1.

Claim 3.2.4 |Ci| = 3 for 1 ≤ i ≤ k − 1.

Proof. By the proof of Claim 3.2.3, we only consider the case |Ci| = 4. Let Ci =

xiyiabxi. Since dCi
({z, z′}) = 6, dCi

(z) = dCi
(z′) = 3 and each of NCi

(z) and NCi
(z′)

is {a, b, xi} or {a, b, yi}. Hence we may assume that {za, z′a, zb, z′b, zyi} ⊆ E(G)

by symmetry. Then xka /∈ E(G) and since dCi
({xk, yk}) = 6, we may assume that

yka ∈ E(G). (Otherwise, we get an admissible triangle xkykbxk.) By Claim 3.2.2, we

can take z′′ ∈ ND(xk)−{z}. Since also dCi
({z′′, z′}) = 6, z′′a ∈ E(G). Then xiyizbxi

and xkykaz′′xk are admissible cycles. 2

Claim 3.2.5 dCi
({z, z′}) = 6 for some i, 1 ≤ i ≤ k − 1.

Proof. Suppose that dCi
({z, z′}) ≤ 5 for 1 ≤ i ≤ k − 1. Then dL({z, z′}) ≤ 5k − 5.

Since ND(z) ∩ND(z′) = ∅,

dM({z, z′}) ≤ |M | − 2 = n− 3(k − 1)− 2 = n− 3k + 1.
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Hence we get

dG({z, z′}) ≤ (5k − 5) + (n− 3k + 1) = n + 2k − 4 < 2δ(G).

This is a contradiction. 2

Without loss of generality, we may assume that dC1({z, z′}) = 6. This means that

NC1(z) = NC1(z
′) = V (C1). Let C1 = x1y1ax1 and take any z′′ ∈ ND(xk)− {z}. Let

S ′ = {xk, yk, z
′, z′′}. Then, since NC1(S

′) = 2|C1| + 4 = 10 also holds, dC1(z
′′) ≥ 2.

Hence x1y1zx1 and xkykz
′az′′xk or x1y1z

′′x1 and xkykz
′azxk are two admissible cycles,

and this gives k admissible cycles which consist of k − 1 admissible triangles and an

admissible cycle of length 5. This completes the proof of Case 1.

Case 2 k = 1.

In this case, the assumption is δ(G) ≥ (n − 1)/2. Let e1 = xy, x, y ∈ V (G) and

M = V (G)−{x, y}. We may assume that N(x)∩N(y) = ∅, since otherwise there is an

admissible triangle. If there are z ∈ NM(x) and z′ ∈ NM(y) such that N(z)∩N(z′) 6=
∅, there is an admissible cycle. Hence we may assume that N(z) ∩N(z′) = ∅ for any

z ∈ NM(x) and z′ ∈ NM(y). Let D = V (G)− (N(x)∪N(y)) and take any z ∈ NM(x)

and z′ ∈ NM(y). Then

n ≥ 2 + |NM(x)|+ |NM(y)|+ |ND(z)|+ |ND(z′)|
≥ 2 + |NM(x)|+ |NM(y)|

+

(
n− 1

2
− (|NM(x)| − 1)− 1

)
+

(
n− 1

2
− (|NM(y)| − 1)− 1

)

= n + 1.

This is a contradiction. This completes the proofs of Case 2 and Theorem 3.5.
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Chapter 4

Vertex-Disjoint 4-Cycles

Containing Specified Edges in a

Bipartite Graph

In this chapter, degree conditions are given for a bipartite graph to contain vertex-

disjoint 4-cycles each of which contains a previously specified edge.

4.1 Introduction

In this chapter, ‘disjoint’ means ‘vertex-disjoint’, since we only deal with partitions

of the vertex set. For a bipartite graph G with partite sets V1 and V2, we define

σ1,1(G) = min{dG(x) + dG(y)|x ∈ V1, y ∈ V2, xy /∈ E(G)}.

(When G is a complete bipartite graph, we define σ1,1(G) = ∞.)

For a packing of cycles in a graph, Dirac settled the case of triangles.

Theorem 4.1 (Dirac [8]) Suppose that |G| = n ≥ 3k and δ(G) ≥ (n + k)/2. Then

G contains k disjoint triangles.

Egawa et al. [10] considered partitions into cycles passing through specified edges

and proved the following theorem.

Theorem 4.2 (Egawa et al. [10]) Suppose that k ≥ 2, |G| = n ≥ 3k and either

σ2(G) ≥ max
{

n + 2k − 2,
⌊n

2

⌋
+ 4k − 2

}
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or

δ(G) ≥ max

{⌈n

2

⌉
+ k − 1,

⌈
n + 5k

3

⌉
− 1

}
.

Then, for any independent edges e1, . . . , ek, G can be partitioned into cycles H1, . . . , Hk

such that ei ∈ E(Hi).

Theorem 4.2 is proved by first solving packing and then extending a packing to a

partition. Results of packing problems are next two theorems.

Theorem 4.3 (Egawa et al. [10]) Suppose that k ≥ 1, |G| = n ≥ 4k − 1 and

σ2(G) ≥ n+2k− 2. Then for any independent edges e1, . . . , ek, G contains k disjoint

cycles C1, . . . , Ck such that ei ∈ E(Ci) and |Ci| ≤ 4.

Theorem 4.4 (Egawa et al. [10]) Suppose that k ≥ 2, 3k ≤ |G| = n ≤ 4k−2 and

either

σ2(G) ≥
⌊n

2

⌋
+ 4k − 2

or

δ(G) ≥
⌈

n + 5k

3

⌉
− 1.

Then for any independent edges e1, . . . , ek, G contains k disjoint cycles C1,. . .,Ck such

that ei ∈ E(Ci) and |Ci| ≤ 4.

In this chapter, we consider the problem of packing in a bipartite graph with

specified edges. In the rest of this chapter, G denotes a bipartite graph with partite

sets V1 and V2 satisfying |V1| = |V2| = n.

For packing of cycles in a bipartite graph, Wang [24] and Li et al. [16] obtained

the following conditions on δ(G) and σ1,1(G), respectively.

Theorem 4.5 (Wang [24]) Suppose that n ≥ 2k + 1 and δ(G) ≥ k + 1. Then G

contains k disjoint cycles.

Theorem 4.6 (Li et al. [16]) Suppose that n ≥ 2k+1 and σ1,1(G) ≥ 2k+2. Then

G contains k disjoint cycles.

The case where edges are specified, Wang [29] and Chen et al.[3] independently

obtained the degree conditions. In [3], their proof consists of two steps like that of

Theorem 4.2, that is, packing cycles and extending a packing to a partition. The

result of a packing problem is the following.
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Theorem 4.7 (Chen et al. [3]) Suppose that n ≥ 2k, and either

σ1,1(G) ≥ max

{
n + k,

⌈
2n− 1

3

⌉
+ 2k

}

or

δ(G) ≥ max

{⌈
n + k

2

⌉
,

⌈
2n + 4k

5

⌉}
.

Then for any independent edges e1, . . . , ek, G contains k disjoint cycles C1,. . .,Ck such

that ei ∈ E(Ci) and |Ci| ≤ 6.

In this chapter, we get analogous results of Theorem 4.7, that is, we specify the

number of 4-cycles. First we consider a condition on σ1,1(G).

Theorem 4.8 Suppose that k ≥ 1, 1 ≤ s ≤ k, n ≥ 2k, and

σ1,1(G) ≥ max

{⌈
4n + 2s− 1

3

⌉
,

⌈
2n− 1

3

⌉
+ 2k

}
.

Then for any independent edges e1, . . . , ek, G contains k disjoint cycles C1,. . .,Ck such

that ei ∈ E(Ci), |Ci| ≤ 6, and there are at least s 4-cycles in {C1, . . . , Ck}.
In the case of δ(G), another conclusion is obtained.

Theorem 4.9 Suppose that k ≥ 1, 0 ≤ s ≤ k, n ≥ 2k, and

δ(G) ≥ max

{⌈
2n + 2k + s

4

⌉
,

⌈
2n + 4k

5

⌉}
.

Then for any independent edges e1, . . . , ek, G contains k disjoint cycles C1,. . .,Ck such

that ei ∈ E(Ci), |Ci| = 4 for 1 ≤ i ≤ s, and |Ci| ≤ 6 for s + 1 ≤ i ≤ k.

Note that a part of Theorem 4.7 is a special case of Theorem 4.9 where s = 0.

The next theorem is a corollary of Theorems 4.8 and 4.9.

Theorem 4.10 Suppose that k ≥ 1, n ≥ 2k, and either

σ1,1(G) ≥
⌈

4n + 2k − 1

3

⌉

or

δ(G) ≥
⌈

2n + 3k

4

⌉
.

Then for any independent edges e1, . . . , ek, G contains k disjoint 4-cycles C1, . . . , Ck

such that ei ∈ E(Ci).
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Note that (4n + 2k − 1)/3 ≥ d(2n − 1)/3e + 2k and (2n + 3k)/4 ≥ d(2n + 4k)/5e
always hold.

The degree conditions of Theorem 4.8 and 4.9 are sharp in the following sense.

(In the following, Ei,j = {xy|x ∈ Wi, y ∈ Wj}.)
Example 4.1. Suppose that n ≥ 2k, and let V (G) =

⋃8
i=1 Wi, where |W1| = |W2| =

s − 1, |W3| = |W4| = k − s + 1, |W5| = |W8| = (n − s + 1)/3, and |W6| = |W7| =

(2n− 3k + s− 1)/3 and E(G) =
⋃4

i=1 E1,2i ∪
⋃3

i=1 E2,2i+1 ∪
⋃7

i=3 Ei,i+1 ∪E3,8. Let F1

be any perfect matching in 〈W1 ∪W2〉 and F2 be any perfect matching in 〈W3 ∪W4〉.
Then for any edge e of F2, we cannot take a 4-cycle containing e without using the

vertices of F1 ∪ F2 − {e}, while σ1,1(G) = (4n + 2s− 2)/3.

F1

W8

W5

W1

W2

W4

W3

W7

W6

F2

Figure 4.1: The graph G in Example 4.1.

Example 4.2. Suppose that n ≥ 2k, and let V (G) =
⋃8

i=1 Wi, where |W1| = |W2| =

(s − 1)/2, |W3| = |W4| = k, |W5| = |W6| = |W7| = |W8| = (2n − 2k − s + 1)/4 and

E(G) =
⋃4

i=1 E1,2i ∪
⋃3

i=1 E2,2i+1 ∪
⋃7

i=3 Ei,i+1 ∪E3,8. Let F be any perfect matching

in 〈W3 ∪W4〉. Then since we must use at least one vertex in V1 ∪ V2 to make 4-cycle

passing through an edge in F , we cannot make s 4-cycles each of which contains

exactly one edge in F , while δ(G) = (2n + 2k + s− 1)/4.

Other examples are shown in [3].
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W8

W5

W1

W2

W4

W3

W7

W6

F

Figure 4.2: The graph G in Example 4.2.

We will use the notation C[x, y] to denote the segment of the cycle C from x to

y (including u and v) under some orientation of C, and C[x, y) = C[x, y] − {y} and

C(x, y) = C[x, y]− {x, y}.
Let F = {e1, . . . , ek} be a set of independent edges, where ei = xiyi, xi ∈ V1, yi ∈

V2, and set T = {x1, y1, . . . , xk, yk}. A cycle C is called admissible if |E(C) ∩ F | = 1,

|V (C)∩T | = 2 and |C| ≤ 6, and a set of disjoint cycles {C1, . . . , Cr} is admissible for

r ≤ k if each Ci is admissible.

4.2 Proof of Theorem 4.8

The next lemma will be used several times in Sections 4.2 and 4.3.

Lemma 4.1 Let C be a cycle in G, e ∈ E(C), u ∈ V (G−C)∩V1, v ∈ V (G−C)∩V2

and dC(u) + dC(v) ≥ |C|/2 + 2. Then, either 〈V (C) ∪ {v}〉 contains a shorter cycle

than C passing through e, or there exists w ∈ NC(u) such that 〈V (C) ∪ {v} − {w}〉
contains a cycle passing through e.

Proof. We may assume dC(v) ≤ 2 (otherwise, 〈V (C)∪ {v}〉 contains a shorter cycle

than C passing through e). Then dC(v) = 2 and dC(u) = |C|/2. This means that

NC(u) = V (C) ∩ V2. Also, we may assume NC(v) = {a, b} with e ∈ E(C[b, a]). Take

any w ∈ NC(u)∩C(b, a). Then 〈V (C)∪{v}−{w}〉 contains a cycle passing through

e. 2
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We consider two cases according to the value of k.

Case 1 k ≥ 2.

Let G be an edge-maximal counterexample to Theorem 4.8. We assume ei = xiyi,

xi ∈ V1 and yi ∈ V2 for 1 ≤ i ≤ k. Clearly, since G is not a complete bipartite

graph, there are nonadjacent vertices x ∈ V1 and y ∈ V2. Let G′ be the graph

obtained from G by adding the new edge xy. Then G′ contains k admissible cycles

C1, . . . , Ck including at least s 4-cycles. Without loss of generality, we may assume

xy ∈ E(Ck). Then G has k− 1 admissible cycles C1, . . . , Ck−1. We choose admissible

cycles C1, . . . , Ck−1 so that
∑k−1

i=1 |Ci| is as small as possible. Note that there are at

least s − 1 4-cycles. We may also assume that ei ∈ E(Ci) for 1 ≤ i ≤ k − 1. Let

L = 〈⋃k−1
i=1 V (Ci)〉, M = G− L, |M | = 2m, and D = M − {xk, yk}.

We consider the following two cases according to the number of 4-cycles.

Case 1.1 There are s or more 4-cycles in {C1, . . . , Ck−1}.

Claim 4.2.1 We may assume dD(xk) > 0 and dD(yk) > 0.

(Proof.) Suppose that dD(xk) = 0 and take any z ∈ V (D) ∩ V2. Then

dM(xk) + dM(z) ≤ 1 + (m− 1) = m.

This implies that

dL(xk) + dL(z) ≥ 2n− 1

3
+ 2k −m =

k−1∑
i=1

|Ci|
2

+ 2k − n + 1

3

>

k−1∑
i=1

( |Ci|
2

+ 1

)

when n ≤ 3k and

dL(xk) + dL(z) ≥ 4n + 2s− 1

3
−m =

k−1∑
i=1

|Ci|
2

+
n + 2s− 1

3

>

k−1∑
i=1

( |Ci|
2

+ 1

)

when n ≥ 3k. Thus

dCi
(xk) + dCi

(z) ≥ |Ci|
2

+ 2

for some Ci, 1 ≤ i ≤ k − 1. By Lemma 4.1, there exists w ∈ NCi
(xk) such that

〈V (Ci) ∪ {z} − {w}〉 contains a cycle passing through ei.
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Similarly, we may assume that ND(yk) 6= ∅. 2

Take any z ∈ ND(xk) and z′ ∈ ND(yk). Then z and z′ are nonadjacent.

We consider two cases according to the value |D|.

Case 1.1.1 |D| ≥ 4.

Claim 4.2.2 We may assume that dD(z) > 0 and dD(z′) > 0.

Proof. Suppose that ND(z) = ∅ and take w ∈ V (D) ∩ V1 − {z′}. Then

dM(z) + dM(w) ≤ 1 + (m− 1) = m.

The rest of the proof is similar to that of Claim 4.2.1. 2

Take any w ∈ ND(z) and w′ ∈ ND(w′). Let

D1 = ND(yk) ∩ND(w′)− {z′},

and

D2 = ND(xk) ∩ND(w)− {z}.
Note that |Di| ≤ m− 3 for i = 1, 2.

Claim 4.2.3 We may assume |D1|+ |D2| ≤ m− 3.

(Proof.) Suppose that |D1|+ |D2| ≥ m− 2. Then D1 6= ∅ and D2 6= ∅. Take u ∈ D2

and u′ ∈ D1. Since ND1(u) = ∅ and ND2(u
′) = ∅,

dM(u) + dM(u′) ≤ (m− |D1| − 1) + (m− |D2| − 1) ≤ m.

By Lemma 4.1, we can replace the cycles to decrease |D1|+ |D2|. 2

Let S = {xk, yk, z, z
′, w, w′}. Since

dM(S) = 10 + |E(S, M − S)| ≤ 10 + |M − S|+ |D1|+ |D2| ≤ 3m + 1,

we get

dL(S) ≥ 3

(
2n− 1

3
+ 2k

)
− (3m + 1)

=
k−1∑
i=1

3

2
|Ci|+ 6k − n− 2 >

k−1∑
i=1

(
3

2
|Ci|+ 3

)
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when n ≤ 3k and

dL(S) ≥ 3

(
4n + 2s− 1

3

)
− (3m + 1)

=
k−1∑
i=1

3

2
|Ci|+ n + 2s− 2 >

k−1∑
i=1

(
3

2
|Ci|+ 3

)

when n ≥ 3k. This implies that

dCi
(S) ≥ 3

2
|Ci|+ 4

for some Ci, 1 ≤ i ≤ k − 1.

Suppose that Ci = xiyiaa′xi and dCi
(S) ≥ 10. Since if {wa′, yka, xiw

′, z′yi} ⊂
E(G), 〈S∪V (Ci)〉 contains two admissible cycles xkykaa′wzxk and xiyiz

′w′xi, |E(G)∩
{wa′, yka, xiw

′, z′yi}| ≤ 3. Similarly, |E(G) ∩ {w′a, xka
′, yiw, zxi}| ≤ 3. This means

za, z′a′ ∈ E(G). Also, if {xka
′, xiz} ⊂ E(G), there are two admissible cycles xkykz

′a′xk

and xiyiazxi in 〈S ∪ V (Ci)〉. Therefore, |E(G) ∩ {xka
′, xiz}| ≤ 1. Similarly, |E(G) ∩

{yka, yiz
′}| ≤ 1. This means {wa′, wyi, w

′xi, w
′a} ⊂ E(G). Then there are two

admissible cycles xkykz
′ a′wzxk and xiyiaw′xi in 〈S ∪ V (Ci)〉.

Next, suppose that Ci = xiyia
′bb′axi and dCi

(S) ≥ 13. By the minimality of the

number of 4-cycles, dCi
(s) ≤ 2 for every s ∈ S − {xk, yk}. By symmetry, we may

assume dCi
(xk) = 3 and dCi

(z′) = 2 since dCi
({xk, yk, z, z

′}) ≤ 9. Then xkb and z′b

are edges and there are two admissible cycles xkykz
′bxk which is shorter than Ci. 2

Case 1.1.2 |D| = 2.

Claim 4.2.4 For some Ci, |Ci| = 4 and dCi
(z) = dCi

(z′) = 2.

(Proof.) Since dM(z) = dM(z′) = 1,

dL(z) + dL(z′) ≥ 2n− 1

3
+ 2k − 2

=
k−1∑
i=1

|Ci|
2

+ 2k − n− 1

3
≥

k−1∑
i=1

( |Ci|
2

+ 1

)

when n ≤ 3k and

dL(xk) + dL(z) ≥ 4n + 2s− 1

3
− 2

=
k−1∑
i=1

|Ci|
2

+
n + 2s− 1

3
>

k−1∑
i=1

( |Ci|
2

+ 1

)
.
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when n ≥ 3k. Hence, dCi
({z, z′}) ≥ |Ci|/2 + 2 for some Ci. On the other hand, by

the minimality of L, dCi
({z, z′}) ≤ 4. Therefore |Ci| = 4 and dCi

(z) = dCi
(z′) = 2. 2

We may assume dC1(z) = dC1(z
′) = 2 and C1 = x1y1ww′x1. Let L′ = L − C1,

M ′ = G− L′ and S = {xk, yk, z, z
′, w, w′}.

Since wyk, w
′xk, zz

′ /∈ E(G),

dG(S) ≥ 3

(
2n− 1

3
+ 2k

)
= 2n + 6k − 1.

Since dM ′(S) ≤ 18,

dL′(S) ≥ 2n + 6k − 19 =
k−1∑
i=2

|Ci|+ 6k − 11 >

k−1∑
i=2

(|Ci|+ 6).

This implies dCi
(S) ≥ |Ci|+ 7 for some Ci, 2 ≤ i ≤ k − 1.

Suppose thatCi = xiyiaa′xi and dCi
(S) ≥ 11. By symmetry, we may assume

dCi
(xk) = dCi

(z′) = dCi
(w′) = 2. Then there are three admissible cycles xkykz

′a′xk, x1y1wzx1,

and xiyiaw′xi.

Next, suppose that Ci = xiyiabb′a′xi and dCi
(S) ≥ 13. By symmetry, we may

assume dCi
(xk) = 3 and dCi

(z′) = 2. Then xkb and z′b are edges and xkykbzxk is an

admissible cycle shorter than Ci.

This completes the proof of Case 1.1.

Case 1.2 There are exactly s− 1 4-cycles in {C1, . . . , Ck−1}.

We may assume |Ci| = 4 for 1 ≤ i ≤ s − 1 and |Ci| = 6 for s ≤ i ≤ k − 1. Note

that |L| = 4(s− 1) + 6(k − s) = 6k − 2s− 4 and |M | = 2m = 2n− 6k + 2s + 4.

Claim 4.2.5 We may assume dM(xk) ≥ (2n − 6k + s + 11)/6 and dM(yk) ≥ (2n −
6k + s + 11)/6.

(Proof.) Suppose thatdM(xk) ≤ (2n− 6k + s + 10)/6. Since m− dM(xk) ≥ (n− 3k +

s + 2) − (2n− 6k + s + 11)/6 = (4n− 8k + 5s + 2)/6 > 1, V (D) ∩ V2 −N(xk) 6= ∅.
Take any z ∈ V (D) ∩ V2 −N(xk). Then,

dM(xk) + dM(z) ≤
(

2n− 6k + s + 10

6

)
+ (m− 1)

=
2n− 6k + s + 4

6
+ m.
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Therefore,

dL(xk) + dL(z) ≥ 4n + 2s− 1

3
−

(
2n− 6k + s + 4

6
+ m

)

=
k−1∑
i=1

|Ci|
2

+ k +
s

2
− 1 >

k−1∑
i=1

( |Ci|
2

+ 1

)
.

Hence, for some Ci, dCi
({xk, z}) ≥ |Ci|/2 + 2. By Lemma 4.1, we can replace the

cycles to increase dM(xk).

Similarly, we may assume that dM(yk) ≥ (2n− 6k + s + 11)/6. 2

We may assume that z ∈ NM(xk) and z′ ∈ NM(yk).

Claim 4.2.6 For some Ci, |Ci| = 4 and dCi
({z, z′}) = 4.

Proof. By Claim 4.2.5,

dM(z) + dM(z′) ≤ (m− dM(yk) + 1) + (m− dM(xk) + 1)

≤ 2m−
(

2n− 6k + s + 11

3

)
+ 2

= 2m− 2n− 6k + s + 5

3
.

Then,

dL(z) + dL(z′) ≥ 4n + 2s− 1

3
−

(
2m− 2n− 6k + s + 5

3

)

=
k−1∑
i=1

|Ci| − 2k + s +
4

3
>

s−1∑
i=1

(|Ci| − 1) +
k−1∑
i=s

(|Ci| − 2)

=
k−1∑
i=1

( |Ci|
2

+ 1

)
.

This implies that for some Ci, dCi
(z) + dCi

(z′) ≥ |Ci|/2 + 2. On the other hand,

dCi
({z, z′}) ≤ 4. Hence |Ci| = 4 and dCi

(z) = dCi
(z′) = 2. 2

We may assume that dC1({z, z′}) = 4 and C1 = x1y1ww′x1. Let L′ = L − C1,

M ′ = G− L′, S = {xk, yk, z, z′, w, w′} and D′ = M ′ − S − {x1, y1}.

Claim 4.2.7 For some Ci, dCi
(S) ≥ |Ci|+ 7, 2 ≤ i ≤ k − 1.

(Proof.) Since

dM ′(S) ≥ 18 + 2|D′| = 18 + 2(2n− 6k + 2s)

= 4n− 12k + 4s + 18,
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we get

dL′(S) ≥ 3

(
4n + 2s− 1

3

)
− (4n− 12k + 4s + 18)

= 12k − 2s− 19.

On the other hand,

k−1∑
i=2

(|Ci|+ 6) = |L′|+ 6(k − 2) = (6k − 2s− 8) + 6k − 12

= 12k − 2s− 20.

Therefore, dL′(S) >
∑k−1

i=2 (|Ci| + 6) and this implies that dCi
(S) ≥ |Ci| + 7 for some

Ci, 2 ≤ i ≤ k − 1. 2

The rest of the proof is similar to that of Case 1.1.2 and this completes the proof

of Case 1.

Case 2 k = 1.

In this case, the assumption is σ1,1(G) ≥ (4n + 1)/3. Let e1 = xy, x ∈ V1 and

y ∈ V2, and M = V (G)− {x, y}.

Claim 4.2.8 dM(x) ≥ (n + 1)/3 and dM(y) ≥ (n + 1)/3.

Proof. Suppose thatdM(x) ≤ n/3. Take any z ∈ V2 ∩ M such that xz /∈ E(G).

Then,
4n + 1

3
≤ dG(x) + dG(z) ≤

(n

3
+ 1

)
+ (n− 1) =

4n

3
.

This is a contradiction. 2

If there are adjacent vertices z ∈ NM(x) and z′ ∈ NM(y), we obtain a cycle

of length 4 passing through e1. Hence we may assume that zz′ /∈ E(G) for any

z ∈ NM(x) and z′ ∈ NM(y). Let D = V (G)− (N(x)∪N(y)) and take any z ∈ NM(x)

and z′ ∈ NM(y). Then

2n ≥ 2 + |NM(x)|+ |NM(y)|+ |ND(z)|+ |ND(z′)|
≥ 2 +

n + 1

3
+

n + 1

3
+

(
4n + 1

3
− 2

)

= 2n + 1.

This is a contradiction. This completes the proofs of Case 2 and Theorem 4.8.

51



4.3 Proof of Theorem 4.9

We distinguish three cases according to the value of k and s.

Case 1 k ≥ 2.

Let G be an edge-maximal counterexample to Theorem 4.9. We assume ei =

xiyi, xi ∈ V1 and yi ∈ V2 for 1 ≤ i ≤ k. Let F ′ = {e1, . . . , es}. We define a set of

admissible cycles C = {C1, . . . , Cr} is saturated if
⋃r

i=1 E(Ci) ⊃ F ′ and |Ci| = 4 for all

Ci which contains an edge of F ′ and C is nearly-saturated if |⋃r
i=1 E(Ci)∩F ′| = s− 1

and |Ci| = 4 for all Ci which contains an edge of F ′. Clearly, G is not a complete

bipartite graph. Let G′ be the graph obtained from G by adding a new edge xy,

x ∈ V1 and y ∈ V2. Then G′ contains admissible and saturated cycles C1, . . . , Ck.

We may assume xy ∈ E(Ci) for some i, 1 ≤ i ≤ k. This means that G has k − 1

admissible cycles. We distinguish two cases according as these cycles are saturated

or nearly-saturated.

Case 1.1 k − 1 admissible cycles are saturated.

We choose admissible and saturated cycles C1, . . . , Ck−1 so that
∑k−1

i=1 |Ci| is as

small as possible. Without loss of generality, we may also assume that ei ∈ E(Ci) for

1 ≤ i ≤ k − 1.

Let L = 〈⋃k−1
i=1 V (Ci)〉, M = G− L, |M | = 2m and D = M − {xk, yk}.

Claim 4.3.1 We may assume dD(xk) > 0 and dD(yk) > 0.

Proof. Suppose thatdD(xk) = 0 and take any z ∈ V (D) ∩ V2. Then,

dM(xk) + dM(z) ≤ 1 + (m− 1) = m,

and

dL(xk) + dL(z) ≥ 2n + 2k + s

2
−m =

k−1∑
i=1

|Ci|
2

+
2k + s

2
>

k−1∑
i=1

( |Ci|
2

+ 1

)
.

This means that for some Ci, 1 ≤ i ≤ k − 1,

dCi
(xk) + dCi

(z) ≥ |Ci|
2

+ 2.

By Lemma 4.1, there are w ∈ NCi
(xk) such that 〈V (Ci)∪{z}−{w}〉 contains a cycle

passing through ei.

Similarly, we may assume that ND(yk) 6= ∅. 2
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Take any z ∈ ND(xk) and z′ ∈ ND(yk). Clearly, z and z′ are nonadjacent.

We consider two cases according to the value |D|.

Case 1.1.1 |D| ≥ 4.

Claim 4.3.2 We may assume dD(z) > 0 and dD(z′) > 0.

(Proof.) Suppose thatdD(z) = 0 and take any w ∈ D ∩ V1. Then,

dM(z) + dM(w) ≤ 1 + (m− 1) = m.

The rest of the proof is similar to that of Claim 4.3.1. 2

Take any w ∈ ND(z) and w′ ∈ ND(z′). Let

D3 = ND(yk) ∩ND(w′)− {z′},

and

D4 = ND(xk) ∩ND(w)− {z}.

Claim 4.3.3 We may assume that |D3|+ |D4| ≥ m− 3.

(Proof.) Similar to the proof of Claim 4.2.3. 2

Let S = {xk, yk, z, z
′, w, w′}. Then,

dM(S) = 10 + |E(S, M − S)| ≤ 10 + |M − S|+ |D3|+ |D4| ≤ 3m + 1.

Therefore, we get

dL(S) ≥ 6

(
2n + 2k + s

4

)
− (3m + 1)

=
k−1∑
i=1

3

2
|Ci|+ 3k +

3

2
s− 1 >

k−1∑
i=1

(
3

2
|Ci|+ 3

)
.

This means that for some Ci, 1 ≤ i ≤ k − 1,

dCi
(S) ≥ 3

2
|Ci|+ 4.

The rest of the proof is similar to that of Case 1.1.1 of Theorem 4.8. (Note that every

exchange of cycles only produces 4-cycles containing ei = xiyi.)

Case 1.1.2 |D| = 2.
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Claim 4.3.4 For some Ci, |Ci| = 4 and dCi
(z) = dCi

(z′) = 2.

Proof. Since dM(z) = dM(z′) = 1,

dL(z) + dL(z′) ≥
(

2n + 2k + s

2

)
− 2 =

k−1∑
i=1

|Ci|
2

+
2k + s

2
>

k−1∑
i=1

( |Ci|
2

+ 1

)
.

This implies that dCi
({z, z′}) ≥ |Ci|/2 + 2 for some Ci. On the other hand,

dCi
({z, z′}) ≤ 4. Hence |Ci| = 4 and dCi

(z) = dCi
(z′) = 2. 2

We may assume that dCj
(z) = dCj

(z′) = 2 and Cj = xjyjww′xj for some j,

1 ≤ j ≤ k − 1. Let L′ = L− Cj, M ′ = G− L′ and S = {xk, yk, z, z′}.
By using the assumption δ(G) ≥ 2n+4k

5
,

dL′({w,w′}) + 2dL′(S) ≥ 10δ(G)− 30 ≥ 4n− 8k − 30

= 2
k−1∑
i=1

|Ci|+ 8k − 14 >

k−1∑
i=1

(2|Ci|+ 8).

This implies that

dCi
({w, w′}) + 2dCi

(S) ≥ 2|Ci|+ 9

for some Ci, 1 ≤ i ≤ k − 1.

Suppose thatCi = xiyiaa′xi and dCi
({w,w′}) + 2dCi

(S) ≥ 17. In particular,

dCi
(S) ≥ 7. By symmetry, we may assume that dCi

(xk) = dCi
(z′) = 2. If zxi and

za are edges, 〈V (M ′) ∪ V (Ci)〉 contains three admissible 4-cycles. Similarly, if w′xi

and w′a are edges, 〈V (M ′) ∪ V (Ci)〉 contains three admissible 4-cycles. Therefore

|E(G) ∩ {zxi, za}| ≤ 1 and |E(G) ∩ {w′xi, w
′a}| ≤ 1. This implies that wa′, wyi, yka

are edges. Furthermore, either za or zxi is an edge, but in either case 〈V (M ′)∪V (Ci)〉
contains three admissible 4-cycles.

Next, suppose that Ci = xiyiabb′a′xi and dCi
({w, w′}) + 2dCi

(S) ≥ 21. By sym-

metry, we may assume that dCi
(xk) = 3 and dCi

(z′) = 2. Then xkb and z′b are edges,

and xkykz
′bxk is an admissible cycle shorter than Ci.

This completes the proof of Case 1.1

Case 1.2 k − 1 admissible cycles are nearly-saturated.

We choose admissible and nearly-saturated cycles C2, . . . , Ck so that
∑k

i=2 |Ci| is

as small as possible. Without loss of generality, we may also assume ei ∈ E(Ci) for

2 ≤ i ≤ k.

Let L = 〈⋃k
i=2 V (Ci)〉, M = G− L, |M | = 2m, and D = M − {x1, y1}.
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Claim 4.3.5 We may assume that dD(x1) > 0 and dD(y1) > 0.

(Proof.) Suppose that dD(x1) = 0 and take any z ∈ V (D) ∩ V2. Then,

dM(x1) + dM(z) ≤ 1 + (m− 1) = m.

The rest of the proof is similar to that of Claim 4.3.1. 2

Take any z ∈ ND(x1) and z′ ∈ ND(y1) and let S = {x1, y1, z, z
′}. Since ND(x1) ∩

ND(z′) = ∅ and ND(y1) ∩ND(z) = ∅,

dL(S) ≥ 4

(
2n + 2k + s

4

)
− 2(m + 1) =

k∑
i=2

|Ci|+ 2k + s− 2

=
k∑

i=2

(|Ci|+ 2) + s >

s∑
i=2

(|Ci|+ 3) +
k∑

i=s+1

(|Ci|+ 2).

Since dCi
(S) ≤ 7 for 2 ≤ i ≤ s, dCi

(S) ≥ |Ci|+ 3 for some Ci, s + 1 ≤ i ≤ k.

Suppose that Ci = xiyiabb′a′xi and dCi
(S) ≥ 9. By symmetry, we may assume

that dCi
(x1) = 3 and dCi

(z′) = 2. Then x1b and z′b are edges, and x1y1z
′bx1 is an

admissible cycle shorter than Ci.

This completes the proof of Case 1.

Case 2 k = 1 and s = 0.

In this case, the assumption is δ(G) ≥ (n + 1)/2 and we must show that for any

e1 ∈ E(G), G contains a cycle C such that e ∈ E(C) and |C| ≤ 6. Let e1 = xy, x ∈ V1

and y ∈ V2, and M = V (G) − {x, y}. If there are adjacent vertices z ∈ NM(x) and

z′ ∈ NM(y), we obtain a cycle of length 4 passing through e1. Hence we may assume

that zz′ /∈ E(G) for any z ∈ NM(x) and z′ ∈ NM(y). Let D = V (G)− (N(x)∪N(y))

and take any z ∈ NM(x) and z′ ∈ NM(y). Again, if there are adjacent vertices

w ∈ ND(z) and w′ ∈ ND(z′), we obtain a cycle of length 6 passing through e1.

Hence we may assume that ww′ /∈ E(G) for any w ∈ ND(z) and w′ ∈ ND(z′). Let

H = D − (NM(z) ∪NM(z′)) and take any w ∈ ND(z) and w′ ∈ ND(z′). Then

2n ≥ 2 + |NM(x)|+ |NM(y)|+ |ND(z)|+ |ND(z′)|+ |NH(w)|+ |NH(w′)|
≥ 2 + |NM(x)|+ |NM(y)|+

(
n + 1

2
− 1

)
+

(
n + 1

2
− 1

)

+

(
n + 1

2
− |NM(x)|

)
+

(
n + 1

2
− |NM(y)|

)

= 2n + 2.
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This is a contradiction. This completes the proof of Case 2.

Case 3 k = 1 and s = 1.

In this case, the assumption is δ(G) ≥ (2n + 3)/4 and we must show that for any

e1 ∈ E(G), G contains a cycle C such that e ∈ E(C) and |C| = 4. Let e1 = xy, x ∈ V1

and y ∈ V2, and M = V (G) − {x, y}. If there are adjacent vertices z ∈ NM(x) and

z′ ∈ NM(y), we obtain a cycle of length 4 passing through e1. Hence we may assume

that zz′ /∈ E(G) for any z ∈ NM(x) and z′ ∈ NM(y). Let D = V (G)− (N(x)∪N(y))

and take any z ∈ NM(x) and z′ ∈ NM(y). Then

2n ≥ 2 + |NM(x)|+ |NM(y)|+ |ND(z)|+ |ND(z′)|
≥ 2 +

(
2n + 3

4
− 1

)
+

(
2n + 3

4
− 1

)
+

(
2n + 3

4
− 1

)
+

(
2n + 3

4
− 1

)

= 2n + 1.

This is a contradiction. This completes the proofs of Case 3 and Theorem 4.9.
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Chapter 5

On a Spanning k-tree Containing

Specified Leaves in a Graph

In this section, we give sufficient conditions for a graph G to have a spanning k-tree

with specified leaves: Let k, s, and t be integers such that k ≥ 2, 0 ≤ s ≤ k, and

t ≥ s + 1. Suppose that (1) G is (s + 1)-connected and the degree sum of any k

independent vertices of G is at least |G| + (k − 1)s − 1, or (2) G is t-connected and

the independence number of G is at most (t− s)(k − 1) + 1. Then for any specified

s vertices of G, G has a spanning k-tree containing them as leaves. We also discuss

the sharpness of the results.

5.1 Introduction

We first introduce well-known theorems which provide sufficient conditions for graphs

to have Hamilton paths or Hamilton cycles.

Theorem 5.1 (Ore [19, 20]) Let s be an integer with 0 ≤ s ≤ 2. Suppose that G

is a graph of order n ≥ 3 satisfying σ2(G) ≥ n + s− 1. Then the following hold:

(i) if s = 0, then G has a Hamilton path,

(ii) if s = 1, then G has a Hamilton cycle, and

(iii) if s = 2, then G has a Hamilton path connecting any two vertices of G.

Theorem 5.2 (Chvátal and Erdős [6]) Let t and s be integers with t ≥ 1 and

0 ≤ s ≤ 2. Suppose that G is an t-connected graph satisfying α(G) ≤ t− s + 1. Then

(i) if s = 0, then G has a Hamilton path,

(ii) if s = 1, then G has a Hamilton cycle, and

(iii) if s = 2, then G has a Hamilton path connecting any two vertices of G.
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Theorems 5.1 and 5.2 have lead to many new results and conjectures concerning

paths and cycles in graphs. One theme to this research concentrates on Hamilton

cycles. Another direction is motivated by the fact a Hamilton path is a spanning

tree with the maximum degree at most two. So it is natural to ask for how the

preceding theorems might be generalized to guarantee the existence of a spanning

tree with maximum degree at most k ≥ 3. The following results give the answer to

this question.

Theorem 5.3 (Win [30]) Let k ≥ 2 be an integer and let G be a connected graph

of order n. If

σk(G) ≥ n− 1,

then G has a spanning k-tree.

Theorem 5.4 (Neumann-Lara and Rivera-Campo [18]) Let t ≥ 1 and k ≥ 2

be integers and let G be an t-connected graph. If

α(G) ≤ t(k − 1) + 1,

then G has a spanning k-tree.

On the other hand, a graph satisfying the conditions of Theorem 5.1 or 5.2 with

s = 2 has a Hamilton path which contains two specified endvertices. The aim of this

paper is to show sufficient conditions for the existence of a spanning k-tree such that

the specified s vertices are contained in the set of its leaves.

5.2 Main results and sharpness

We prove the following two results, which are extensions of Theorems 5.1-5.4.

Theorem 5.5 Let k and s be integers with k ≥ 2 and 0 ≤ s ≤ k. Suppose that a

graph G is (s + 1)-connected of order n and satisfies

σk(G) ≥ n + (k − 1)s− 1.

Then for any s distinct vertices of G, G has a spanning k-tree such that the specified

s vertices are contained in the set of its leaves.

Theorem 5.6 Let k, s and t be integers with k ≥ 2, 0 ≤ s ≤ k and t ≥ s + 1.

Suppose that a graph G is t-connected and satisfies

α(G) ≤ (t− s)(k − 1) + 1.
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Then for any s distinct vertices of G, G has a spanning k-tree such that the specified

s vertices are contained in the set of its leaves.

In Theorems 5.5 and 5.6, the condition ‘G is (s + 1)-connected’ is necessary.

Example 5.1 Consider the graph G = 2Km + Ks. Then G is s-connected but not

(s + 1)-connected. Moreover, σk(G) = ∞ > n + (k − 1)s − 1 hold if k ≥ 3 and

α(G) = 2 ≤ (t− s)(k− 1)+1 hold. However, G has no spanning k-tree such that the

s vertices of Ks are contained in the set of its leaves.

KmKsKm

+ +

Figure 5.1: The graph G in Example 5.1.

The degree sum condition in Theorem 5.5 is best possible.

Example 5.2 Consider the complete bipartite graph G with partite sets A and B

such that |A| = t + s and |B| = (k − 1)t + 2, where t is a sufficiently large integer.

Then G is (s+1)-connected, |G| = n = kt+s+2, and σk(G) = k|A| = n+(k−1)s−2.

Suppose that G has a spanning k-tree T such that the s specified vertices in A are

contained in the set of leaves of T . Then the number of the edges in T between A and

B is at most kt + s. However, this is a contradiction since kt + s < |E(T )| = |G| − 1

hold. Therefore G has no desired spanning k-tree.

Theorem 5.6 is best possible in the following sense.

Example 5.3 Consider the graph G = ({(t− s)(k− 1) + 1}K1 ∪Km) + Kt, where m

is a sufficiently large integer. Then G is t-connected and α(G) = (t − s)(k − 1) + 2.

Suppose that G has a spanning k-tree T such that the s specified vertices in Kt are

contained in the set of leaves. Then the number of edges in T incident with V (Kt) is

at most s+(t−s)k. Hence |E(T )| ≤ s+(t−s)k+|E(T )∩E(Km)| ≤ s+(t−s)k+m−1.

This contradicts |E(T )| = |G|−1 = (t−s)k+s+m. Hence G has no desired spanning

k-tree.
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{(t− s)(k − 1) + 2}K1 Kt Km

+ +

Figure 5.2: The graph G in Example 5.3.

In Theorems 5.5 and 5.6, the condition ‘s ≤ k’ is natural when k = 2, but it might

not be sharp for k ≥ 3.

5.3 Proof of Theorem 5.5

The case k = 2 and the case s = 0 follow from Theorems 5.1 and 5.3, respectively.

Thus we may assume that k ≥ 3 and s ≥ 1. Let U = {u1, . . . , us} be the set of

specified s vertices in G, and put H = G−U . Note that H is connected since |U | = s

and G is (s + 1)-connected.

Claim 5.3.1 H has a spanning k-tree.

Proof. If α(H) < k, then the claim is true by Theorem 5.4. Hence we may assume

that α(H) ≥ k. Since the number of edges in G joining U to any k vertices in H is

at most sk, we obtain σk(H) ≥ σk(G) − sk ≥ n − s − 1 = |H| − 1. Hence H has a

spanning k-tree by Theorem 5.3. 2

We consider the following two cases according to the value of n.

Case 5.3.1 n ≤ 2s.

Take a spanning k-tree T of H and we add the vertices of U to T as many as

possible in such a way that the maximum degree of the resulting tree is at most k

and each added vertex is a leaf. Let T ′ be the resulting tree. If U − V (T ′) = ∅,
then we have nothing to prove. Hence without loss of generality, we may assume

that u1 /∈ V (T ′). Since G is (s + 1)-connected, u1 has at least two neighbors v1, v2

in T . Note that dT ′(vi) = k for i = 1, 2, since otherwise we can add u1 to T ′. Then
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|T ′| ≥ 2(k − 1) + 2 = 2k ≥ 2s, which implies n ≥ 2s + 1, a contradiction. This

completes the proof of Case 1.

Case 5.3.2 n ≥ 2s + 1.

Claim 5.3.2 There exists a matching joining U to H, which covers U .

Proof. Consider the bipartite graph B with partite sets U and V (H), where a vertex

in U and one in V (H) are joined by an edge of B if and only if they are adjacent in

G. If there exists a subset U ′ ⊆ U such that |NB(U ′)| < |U ′|, then (U −U ′)∪NB(U ′)

is a separating set of G with cardinality less than s. This contradicts the assumption

G is (s + 1)-connected. Hence we have |NB(U ′)| ≥ |U ′| for all U ′ ⊆ U . By Hall’s

Marriage Theorem [12], we find the desired matching. 2

Let T be a spanning k-tree of H and let M = {u1v1, . . . , usvs} be a matching of

G which covers U , where {v1, v2, . . . , vs} = NM(U) ⊆ V (H).

In order to have the desired spanning k-tree of G, we claim that there exists a pair

of T and M such that T ∪M is the desired spanning k-tree of G. Note that T ∪M is

a spanning (k + 1)-tree of G. Choose a spanning k-tree T of H and a matching M so

that the number of vertices in NM(U) of degree k+1 in T ∪M is as small as possible.

Let T ′ = T ∪M . If dT ′(vi) ≤ k for each i = 1, . . . , s, then T ′ is the desired spanning

k-tree of G. Thus without loss of generality, we may assume that dT ′(v1) = k + 1.

We denote by T1, T2, . . . , Tk the components of T − v1 and by T ′
1, T

′
2, . . . , T

′
k the

components of T ′ − v1 such that Ti ⊆ T ′
i for 1 ≤ i ≤ k. For each i = 1, . . . , k, let ti

be the vertex of Ti which is adjacent to v1 in T and let pi be a leaf of T contained

in V (Ti). Note that ti = pi holds for the case |Ti| = 1 and that some vertices in

{p1, . . . , pk} might belong to NM(U). Put P = {p1, . . . , pk}.

Claim 5.3.3 P is an independent set of G.

Proof. If pipj ∈ E(G) for some pi, pj ∈ P , then T + pipj − v1ti is a spanning k-tree

of H such that (T + pipj − v1ti) ∪M has fewer vertices of degree k + 1 than T ∪M ,

which contradicts the choice of T . Thus P is an independent set of G. 2

Let

W1 =

(
k⋃

i=2

NG(pi)

)
∩ V (T1).

Claim 5.3.4 t1 /∈ W1.
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Proof. Suppose that t1 ∈ W1. Since t1pi ∈ E(G) for some pi ∈ P−{p1}, T−v1t1+t1pi

is a spanning k-tree of H such that (T − v1t1 + t1pi)∪M has fewer vertices of degree

k + 1 than T ∪M . This contradicts the choice of T . Hence t1 /∈ W1. 2

Claim 5.3.5 dT ′(w) ≥ k for all w ∈ W1.

Proof. Suppose that there exists a vertex w ∈ W1 such that dT ′(w) < k. Since

wpi ∈ E(G) for some pi ∈ P − {p1}, T − v1t1 + wpi is a spanning k-tree of H. Then

(T −v1t1 +wpi)∪M has fewer vertices of degree k +1 than T ∪M , which contradicts

the choice of T . Therefore dT ′(w) ≥ k holds for all w ∈ W1. 2

Let PT (a, b) denote the unique path in T connecting two vertices a and b of T .

Claim 5.3.6 For each w ∈ W1, no vertex in NT (w) − V (PT (w, p1)) is adjacent to

p1.

Proof. Suppose that z ∈ NG(p1) ∩ (NT (w)− V (PT (w, p1))) for some w ∈ W1. Since

wpi ∈ E(G) for some pi ∈ P − {p1}, T − wz − v1t1 + p1z + wpi is a spanning k-tree

of H. This contradicts the choice of T . 2

We divide W1 into three subsets as follows:

W1,1 := {w ∈ W1 | w /∈ NM(U)},
W1,k := {w ∈ W1 | w ∈ NM(U) and dT ′(w) = k}, and

W1,k+1 := {w ∈ W1 | w ∈ NM(U) and dT ′(w) = k + 1}.

Claim 5.3.7
∣∣⋃

w∈W1
NT (w)−NG[p1]| ≥ (k − 1)(|W1,1|+ |W1,k+1|) + (k − 2)|W1,k

∣∣.
Proof. If W1 = ∅, then the above inequality obviously holds. Thus we may assume

that W1 6= ∅. Note that v1 /∈ ⋃
w∈W1

NT (w) since t1 6∈ W1 by Claim 5.3.4.

We consider T1 as an outdirected tree with root p1. For any w0 ∈ W1 and

z ∈ N+
T1

(w0), we have z /∈ NG[p1] by Claim 5.3.6. This implies that N+
T1

(w0) ⊆
(
⋃

w∈W1
NT (w))−NG[p1] for any w0 ∈ W1. Moreover, for any two distinct vertices w1

and w2 of W1, N+
T1

(w1) ∩N+
T1

(w2) = ∅. Consequently,

∣∣∣∣∣

( ⋃
w∈W1

NT (w)

)
−NG[p1]

∣∣∣∣∣ ≥
∣∣∣∣∣

⋃
w∈W1

N+
T1

(w)

∣∣∣∣∣ =
∑

w∈W1

|N+
T1

(w)|

=
∑

w∈W1,1

|N+
T1

(w)|+
∑

w∈W1,k

|N+
T1

(w)|+
∑

w∈W1,k+1

|N+
T1

(w)|

= (k − 1)(|W1,1|+ |W1,k+1|) + (k − 2)|W1,k|.
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Hence the claim holds. 2

By Claim 5.3.7, we obtain

|V (T ′
1) ∩NG(p1)| ≤ |T ′

1| − |{p1}| −
∣∣∣∣∣

( ⋃
w∈W1

NT (w)

)
−NG[p1]

∣∣∣∣∣
≤ |T ′

1| − 1− (k − 1)(|W1,1|+ |W1,k+1|)− (k − 2)|W1,k|. (5.1)

On the other hand, it follows from the definition of W1 that

k∑
i=2

|V (T ′
1) ∩NG(pi)| ≤ (k − 1)|W1|+ (k − 1)|V (T ′

1) ∩ U |.

This inequality with (5.1) implies that

k∑
i=1

|V (T ′
1) ∩NG(pi)| ≤ |T ′

1| − 1 + |W1,k|+ (k − 1)|V (T ′
1) ∩ U |.

Similarly, we define Wj, Wj,1, Wj,k and Wj,k+1 for each j = 2, . . . , k as follows:

Wj =

(
k⋃

i=1,i6=j

NG(pi)

)
∩ V (Tj),

Wj,1 = {w ∈ Wj | w /∈ NM(U)},
Wj,k = {w ∈ Wj | w ∈ NM(U) and dT ′(w) = k}, and

Wj,k+1 = {w ∈ Wj | w ∈ NM(U) and dT ′(w) = k + 1}.

By the symmetry, we obtain

k∑
i=1

|V (T ′
j) ∩NG(pi)| ≤ |T ′

j| − 1 + |Wj,k|+ (k − 1)|V (T ′
j) ∩ U |

for each j = 2, . . . , k. Since dG(pi) ≤ |E({pi}, {v1})| +
∑k

j=1 |V (T ′
j) ∩ NG(pi)| +

|E({pi}, {u1})|,
k∑

i=1

dG(pi) ≤
k∑

i=1

(
|E({pi}, {v1})|+

k∑
j=1

|V (T ′
j) ∩NG(pi)|+ |E({pi}, {u1})|

)

≤ k +
k∑

j=1

(
|T ′

j| − 1 + |Wj,k|+ (k − 1)|V (T ′
j) ∩ U |

)
+ |E(P, {u1})|

=
k∑

j=1

|T ′
j|+

k∑
j=1

|Wj,k|+ (k − 1)
k∑

j=1

|V (T ′
j) ∩ U |+ |E(P, {u1})|. (5.2)
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Since pu1 /∈ E(G) for every p ∈ P − NM(U), we have |E(P, {u1})| ≤ s − 1 −∑k
j=1 |Wj,k|. This inequality together with (5.2) and s ≤ k implies

k∑
i=1

dG(pi) ≤
k∑

j=1

|T ′
j|+

k∑
j=1

|Wj,k|+ (k − 1)
k∑

j=1

|V (T ′
j) ∩ U |+ s− 1−

k∑
j=1

|Wj,k|

≤ n− 2 +
k∑

j=1

|Wj,k|+ (k − 1)(s− 1) + s− 1−
k∑

j=1

|Wj,k|

= n + (k − 1)s− k + s− 2 < n + (k − 1)s− 1.

Since P = {p1, . . . , pk} is an independent set of G by Claim 5.3.3, this contradicts

the assumption of this theorem. This completes the proof of Theorem 5.

5.4 Proof of Theorem 5.6

In order to prove Theorem 5.6, we need the following lemma.

Lemma 5.1 Let T be a tree and {v1, v2, . . . , vl} an independent set of T . Then

T − {v1, v2, . . . , vl} has exactly dT (v1) + dT (v2) + · · ·+ dT (vl)− l + 1 components.

Proof. For l = 1, clearly T − v1 has exactly dT (v1) components. Hence we may

assume that l ≥ 2. By the induction hypothesis, T − {v1, . . . , vl−1} has exactly

dT (v1)+ · · ·+dT (vl−1)−(l−1)+1 components and vl is contained in some component

T ′. Note that dT ′(vl) = dT (vl) since {v1, . . . , vl} is independent and NT (vl) ⊂ V (T ′).

By the induction hypothesis, T ′ − vl has exactly dT ′(vl) components, and this means

that T − {v1, . . . , vl} has exactly dT (v1) + · · ·+ dT (vl)− l + 1 components. 2

Proof of Theorem 5.6. The case k = 2 and the case s = 0 follow from Theorems

5.2 and 5.4, respectively. Hence we may assume that k ≥ 3 and s ≥ 1. If |G| = s+2,

then G is Ks+2, and the result follows immediately. Consequently |G| ≥ s + 3. Let

U = {u1, . . . , us} be the set of s specified vertices in G.

We define a (k, U)-tree of G to be a k-tree T of G satisfying the following condi-

tions;

(i) U ⊆ V (T ), and every vertex of U is a leaf of T ; and

(ii) |NT (w) ∩ U | < k − 1 for any w ∈ NT (U).

Claim 5.4.1 G contains a (k, U)-tree.
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Proof. Since G is (s + 1)-connected, for any v ∈ V (G) − U and any edge e, G − e

contains s internally-disjoint paths connecting v and U . These paths form a k-tree

satisfying (i). If there exists a vertex v ∈ V (G) − U such that |NG(v) ∩ U | ≤ k − 1,

then taking an edge e joining v and U if any, we have obtained the desired tree. Thus,

we may assume that k = s and NG(v) ⊇ U for every v ∈ V (G)− U .

Since G is (s + 1)-connected, G− U is connected. By |G| ≥ s + 3, we can take a

path v1v2v3 of length two in G− U . This path with the edges

{v1ui | 1 ≤ i ≤ s− 2} ∪ {v2us−1, v3us}

forms a (k, U)-tree of G. 2

We take a (k, U)-tree T of maximum order among all (k, U)-trees of G. If V (T ) =

V (G), we have nothing to prove. Therefore we may assume that V (G)− V (T ) 6= ∅.

Claim 5.4.2 |T | ≥ t + 1.

Proof. Suppose that |T | ≤ t. Since G is t-connected, every vertex in T has at least

one neighbor in G − T . If there exists x ∈ V (T ) − U with dT (x) < k, we obtain a

(k, U)-tree of order more than |T |. This contradicts the choice of T . Hence dT (x) = k

for each x ∈ V (T )− U and

2(|T | − 1) =
∑

x∈V (T )

dT (x) = k(|T | − |U |) + |U | = k|T | − (k − 1)s,

which implies (k−2)|T | = (k−1)s−2. On the other hand, |T | > s+1 by the definition

and the maximality of T . This inequality together with (k − 2)|T | = (k − 1)s − 2

yields s > k, which contradicts the assumption s ≤ k. 2

Since G is t-connected and |T | ≥ t + 1 by Claim 5.4.2, there exist t internally-

disjoint paths in G connecting v ∈ V (G)−V (T ) and t distinct vertices of T . We may

assume that each path contains exactly one vertex in V (T ). For i = 1, . . . , t, each path

is denoted by PG(v, zi), where zi is the endvertex other than v. Put Z = {z1, . . . , zt}.

Claim 5.4.3 Z is an independent set of T .

Proof. Suppose that zizj ∈ E(T ) for some zi, zj ∈ Z. Then (T − zizj) ∪ PG(v, zi) ∪
PG(v, zj) is a (k, U)-tree of order more than |T |, which contradicts the choice of T . 2

By Claim 5.4.3, we get |NT [ui] ∩ Z| ≤ 1 for all ui ∈ U with 1 ≤ i ≤ s. Hence we

have

|Z ∩ (V (T )−NT [U ])| ≥ t− s.
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Without loss of generality, we may assume that z1, . . . , zt−s ∈ Z ∩ (V (T ) − NT [U ]).

Note that dT (zi) = k for any i = 1, . . . , t − s since otherwise T ∪ PG(v, zi) is a

(k, U)-tree of G larger than T .

By Lemma 5.1, T−{z1, . . . , zt−s} has (t−s)(k−1)+1 components T1, . . . , T(t−s)(k−1)+1.

Note that each Ti contains a vertex not in U by the choice of z1, . . . , zt−s.

Let T ′ = T −U . We consider T as an outdirected tree
−→
T with root z1. We denote

the arc set of
−→
T by A(

−→
T ). For every component Ti with i = 1, . . . , (t− s)(k− 1) + 1,

take an arc xiz
′
i, if any, such that xi ∈ V (Ti) and z′i ∈ {z1, . . . , zt−s}, and otherwise

take a vertex xi of Ti such that xi is a leaf of T ′. Moreover, for every Ti, there exists

exactly one arc z′′i yi ∈ A(
−→
T ) such that z′′i ∈ {z1, . . . , zt−s} and yi ∈ V (Ti).

If xi is a leaf of T ′, then dT (xi) ≤ dT ′(xi) + |NT (xi) ∩ U | ≤ 1 + k − 2 = k − 1 by

the condition (iii) for a (k, U)-tree.

Let PT (a, b) denote the unique path in T connecting two vertices a and b of T .

Claim 5.4.4 {xi | 1 ≤ i ≤ (t− s)(k − 1) + 1} ∪ {v} is an independent set of G.

Proof. Suppose first that vxi ∈ E(G). If xi is a leaf of T ′, then T + vxi is a (k, U)-

tree, which is a contradiction. If xi is not a leaf of T ′, then xiz
′
i is an arc of

−→
T , and

(T − xiz
′
i + vxi) ∪ PG(v, z′i) is a (k, U)-tree, a contradiction.

Next, suppose that xixj ∈ E(G). Note that either z′′i ∈ V (PT (xi, xj)) or z′′j ∈
V (PT (xi, xj)) holds since T is a tree. We consider three cases.

Case 5.4.1 Both xi and xj are leaves of T ′.

Without loss of generality, we may assume that z′′j ∈ V (PT (xi, xj)). Then (T −
z′′j yj + xixj) ∪ PG(v, z′′j ) is a (k, U)-tree larger than T . This contradicts the choice of

T .

z′′j

yj

xjxi

v

Figure 5.3:

Case 5.4.2 xi is a leaf of T ′ but not xj.
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In this case, xjz
′
j ∈ A(

−→
T ). If z′j ∈ V (PT (z1, z

′′
i )), then (T −xjz

′
j +xixj)∪PG(v, z′j)

is a (k, U)-tree, a contradiction.

v
zj

z1

yj

xj

xi

z′j

Figure 5.4:

Hence we may assume that z′j /∈ V (PT (z1, z
′′
i )). Then

T ′ =

{
(T − z′′j yj − xjz

′
j + xixj) ∪ PG(v, z′′j ) ∪ PG(v, z′j) if z′′j ∈ V (PT (xi, xj)),

(T − z′′i yi − xjz
′
j + xixj) ∪ PG(v, z′′i ) ∪ PG(v, z′j) otherwise,

is a (k, U)-tree. This is a contradiction.

v v

z′′j

xi

yj

xj

z′j

xi

yi

z′′i

xj

z′j

Figure 5.5: Figure 5.6:

Case 5.4.3 Neither xi nor xj is a leaf of T ′.

In this case, xiz
′
i, xjz

′
j ∈ A(

−→
T ). By the symmetry, we may assume that z′′j ∈

V (PT (xi, xj)).

If z′i ∈ V (PT (z1, z
′′
j )), then (T − xiz

′
i − xjz

′
j + xixj) ∪ PG(v, z′i) ∪ PG(v, z′j) is a

(k, U)-tree, which is a contradiction.
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z′j

xj

z1

v

xi

z′i

Figure 5.7:

If z′i /∈ V (PT (z1, z
′′
j )), then (T − z′′j yj − xiz

′
i− xjz

′
j + xixj)∪PG(v, z′′j )∪PG(v, z′i)∪

PG(v, z′j) is a (k, U)-tree. This contradicts the choice of T .

yj

z′i z′j

xi xj

z′′j

v

Figure 5.8:

Hence the claim is proved. 2

Therefore, by Claim 5.4.4, we obtain α(G) ≥ (t−s)(k−1)+1+1 = (t−s)(k−1)+2,

which contradicts the assumption. This completes the proof.
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Chapter 6

Trees with Bounded Degree

Covering Specified Vertices

In this chapter, we give sufficient conditions for a graph to have a tree with bounded

degree. Let G be a connected graph and A a vertex subset of G. We denote by σk(A)

the minimum value of the degree sum in G of any k independent vertices in A and by

w(G − A) the number of components in G − A. Our main results are the following:

(i) If σk(A) ≥ |G| − 1, then G contains a tree T with maximum degree at most k and

A ⊆ V (T ). (ii) If σk−w(G−A)(A) ≥ |A| − 1, then G contains a spanning tree T such

that dT (x) ≤ k for every x ∈ A. These are generalizations of a result by Win [30]

and degree conditions are sharp.

6.1 Introduction

In this chapter, we use the following notation.

Let G be a graph. For a subset A of V (G), α(A) denotes the independence number

of 〈A〉. For 1 ≤ k ≤ α(A), define

σk(A) = min

{ ∑
x∈S

dG(x)
∣∣∣ S is an independent subset of A with |S| = k.

}

and σk(A) = ∞ if α(A) < k. Note that σk(G) = σk(V (G)).

We begin with the well-known theorem on the existence of a Hamilton cycle.

Theorem 6.1 (Ore [19]) Let G be a graph of order n ≥ 3 and σ2(G) ≥ n. Then G

has a Hamilton cycle.
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This theorem has been generalized in many directions. For example, a cycle con-

taining all the prescribed vertices was considered since a Hamilton cycle is a cycle

which contains every vertex of a graph. In particular, the following result was ob-

tained.

Theorem 6.2 (Shi [23], Ota [21]) Let G be a 2-connected graph of order n and

A ⊆ V (G). If σ2(A) ≥ n, then G has a cycle containing all vertices of A.

In this paper, we consider analogous extension on degree bounded trees. The

starting point is the following result by Win.

Theorem 6.3 (Win [30]) Let k ≥ 2 be an integer and G a connected graph of order

n. If σk(G) ≥ n− 1, then G has a spanning k-tree.

Note that Theorem 6.3 is an extension of the following one since a spanning 2-tree

is nothing but a Hamilton path.

Theorem 6.4 (Ore [19]) Let G be a graph of order n with σ2(G) ≥ n− 1. Then G

has a Hamilton path.

6.2 Main results

We consider two types of extensions of Theorem 6.3. One is on a tree with bounded

degree containing all the prescribed vertices.

Theorem 6.5 Let k ≥ 2 be an integer, G a connected graph of order n, and A ⊆
V (G). If σk(A) ≥ n− 1, then G has a k-tree T with A ⊆ V (T ).

The degree condition in Theorem 6.5 is sharp in the sense that we cannot replace

the lower bound to n− 2, which is shown in the following example.

Example 6.1. Consider a complete bipartite graph G with partite sets X and Y

such that |Y | = (k − 1)|X| + 2 ≥ k + 1. Let A = V (G) − {x}, where x is any

vertex in X. Then |G| = n = k|X| + 2 and σk(A) = n − 2. Suppose that G has

a tree T with the property that A ⊆ V (T ) and dT (v) ≤ k for all v ∈ V (T ). If

x ∈ V (T ), then n − 1 = |E(T )| ≤ k|X| = n − 2, a contradiction. If x 6∈ V (T ), then

n− 2 = |E(T )| ≤ k(|X| − 1) = n− 2− k, which is also a contradiction. Hence G has

no desired tree.
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The other one is on a spanning tree with bounded degrees on the prescribed

vertices. For a graph G and A ⊆ V (G), we denote by w(G − A) the number of

components of the subgraph G−A. Note that we define w(G−A) = 0 if A = V (G).

Theorem 6.6 Let k ≥ 2 be an integer, G a connected graph of order n and A ⊆
V (G). Suppose that w(G−A) ≤ k−1 and σk−w(G−A)(A) ≥ |A|−1. Then G contains

a spanning tree T with dT (x) ≤ k for every x ∈ A.

The degree condition in Theorem 6.6 is also sharp.

Example 6.2. Let G be a complete bipartite graph with partite sets X and Y , where

X = {x} and Y = {y1, . . . , yk+1}. Define A = {x, y1, . . . , yt} with 2 ≤ t ≤ k+1. Then

G cannot have a spanning tree T such that dT (x) ≤ k, while w(G − A) = k + 1 − t

and σk−w(G−A)(A) = t− 1 = |A| − 2.

A
x

y1 yt yk+1

Figure 6.1: The graph G in Example 6.2.

6.3 Proof of Theorem 6.5

Recall that a k-tree is a tree T which satisfies dT (x) ≤ k for all x ∈ V (T ). Choose a

k-tree T of G such that

(a) |A ∩ V (T )| is as large as possible and

(b) subject to (a), |T | is as small as possible.

If A ⊆ V (T ), then we have nothing to prove. Hence we may assume that there

exists a vertex x ∈ A − V (T ). Since G is connected, there exists a path P which
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connects x and a vertex of V (T ). We may assume that |V (P ) ∩ V (T )| = 1 and let

{v} = V (P ) ∩ V (T ). By the choice of T , we obtain dT (v) = k.

Let T1, . . . , Tk be the components of T − {v}. For each i = 1, . . . , k, let ti be the

vertex of Ti which is adjacent to v in T and let ui be a vertex of Ti with dT (ui) = 1.

Note that ui ∈ A by the minimality of |T | and that ti = ui if |Ti| = 1. If uiuj ∈ E(G),

then (T + uiuj − vti)∪ P is a k-tree of G, which contains more vertices of A than T .

This contradicts the choice of T . Hence {u1, . . . , uk} is an independent set of G.

Let

Y1 =
k⋃

i=2

NG(ui) ∩ V (T1).

Note that t1 /∈ Y1 since otherwise t1ui ∈ E(G) for some ui with 2 ≤ i ≤ k and thus

(T − vt1 + t1ui) ∪ P contradicts the choice of T . If dT (y) < k for some y ∈ Y1, then

yui ∈ E(G) for some ui with 2 ≤ i ≤ k and thus (T − t1v + uiy)∪ P is a k-tree of G,

a contradiction. Hence dT (y) = k for all y ∈ Y1.

For x, y ∈ V (T ), we denote by PT (x, y) the unique path in T connecting x and y.

Claim 6.3.1 For each y ∈ Y1, NG[u1] ∩ (NT (y)− V (PT (y, u1))) = ∅.
Proof. Suppose that there exists z ∈ NG[u1]∩(NT (y)−V (PT (y, u1))) for some y ∈ Y1.

Since yui ∈ E(G) for some ui with 2 ≤ i ≤ k, a k-tree (T − yz− vt1 + u1z + yui)∪P

contains more vertices of A than T . This contradicts the choice of T . 2

Claim 6.3.2 |NT (Y1)−NG[u1]| ≥ (k − 1)|Y1|.
Proof. We may assume that Y1 6= ∅ since otherwise the above inequality obviously

holds. Furthermore, v /∈ NT (Y1) since t1 /∈ Y1.

We consider T1 as an outdirected tree with root u1. For any y0 ∈ Y1 and z ∈
N+

T1
(y0), z /∈ NG[u1] holds by Claim 6.3.1. This implies that N+

T1
(y0) ⊆ NT (Y1) −

NG[u1] for any y0 ∈ Y1. Since N+
T1

(y1) ∩ N+
T1

(y2) = ∅ holds for any two distinct

vertices y1 and y2 of Y1, we obtain |NT (Y1)−NG[u1]| ≥
∣∣N+

T1
(Y1)

∣∣ =
∑

y∈Y1
|N+

T1
(y)| =

(k − 1)|Y1|. 2

Claim 6.3.3
∑k

i=1 |V (Tj) ∩NG(ui)| ≤ |Tj| − 1 for each j = 1, 2, . . . , k.

Proof. By Claim 6.3.1, we obtain

|V (T1) ∩NG(u1)| ≤ |T1| − 1− |NT (Y1)−NG[u1]|
≤ |T1| − 1− (k − 1)|Y1|.
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Since
∑k

i=2 |V (T1) ∩NG(ui)| ≤ (k − 1)|Y1| by the definition of Y1, we have

k∑
i=1

|V (T1) ∩NG(ui)| ≤ |T1| − 1.

Similarly,
∑k

i=1 |V (Tj) ∩NG(ui)| ≤ |Tj| − 1 holds for each j = 2, . . . , k. 2

Claim 6.3.4
∑k

i=1 |V (G− T ) ∩NG(ui)| ≤ |G− T | − 1.

Proof. It is easy to see that uix /∈ E(G) for all ui, since otherwise T +uix contradicts

the choice of T . Suppose that
∑k

i=1 |V (G−T )∩NG(ui)| ≥ |G−T |. Then there exists

w ∈ NG(ui)∩NG(uj)∩ (V (G− T )−{x}) for some 1 ≤ i < j ≤ k. If w ∈ V (P ), then

T + uix ∪ P ′ is a k-tree containing more vertices of A than T , where P ′ is a subpath

of P from w to x. Hence w /∈ V (P ). However, T ′ = (T + wui + wuj − vti) ∪ P is a

k-tree such that |V (T ′) ∩ A| > |V (T ) ∩ A|, a contradiction. 2

Since dG(ui) ≤ |{v}|+ ∑k
j=1 |V (Tj) ∩NG(ui)|+ |V (G− T ) ∩NG(ui)|,

k∑
i=1

dG(ui) ≤ k +
k∑

i=1

k∑
j=1

|V (Tj) ∩NG(ui)|+
k∑

i=1

|V (G− T ) ∩NG(ui)|

≤ k +
k∑

j=1

(|Tj| − 1) + |G− T | − 1

=
k∑

j=1

|Tj|+ |G− T | − 1

= |T | − 1 + |G− T | − 1 = n− 2,

a contradiction. This completes the proof of Theorem 6.5. 2

6.4 Proof of Theorem 6.6

To prove this theorem, we consider into two cases.

Case 1 k = 2.

If w(G− A) = 0, then A = V (G) and the theorem holds by Theorem 6.3. Hence

we may assume that w(G − A) = 1. We divide A into two subsets such that A1 =

{x ∈ A |NG(x) ∩ V (G − A) 6= ∅} and A2 = A − A1. Note that A1 6= ∅ since G is

connected. Since σ1(A) ≥ |A| − 1 and NG(A2) ⊆ A, 〈A2〉 is complete and xy ∈ E(G)

for any x ∈ A1 and y ∈ A2. By w(G − A) = 1, G − A has a spanning tree T . Then

we get the desired spanning tree by joining each vertex of A1 to some vertex in T
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and adding a Hamilton path of 〈A2〉 to some vertex of A1. This completes the proof

of this theorem for the case k = 2.

Case 2 k ≥ 3.

In the following, a tree T is called a (k, A)-tree if dT (x) ≤ k for any x ∈ V (T )∩A.

We construct a new graph H from G by contracting each component of G − A to

a single vertex. Take a (k, A)-tree T of H such that |T | is as large as possible. We

may assume that V (H) − V (T ) 6= ∅ since otherwise we obtain the desired spanning

tree by replacing each contracted vertex with a spanning tree of the corresponding

component. Take x ∈ V (H) − V (T ) such that NH(x) ∩ V (T ) 6= ∅ and let v ∈
NH(x) ∩ V (T ). Note that v ∈ A and dT (v) = k by the choice of T .

Let T1, . . . , Tk be the components of T − {v} and let ti be the vertex of Ti which

is adjacent to v in T , where i = 1, . . . , k. Since |V (H) − A| = w(G − A), we may

assume that V (Ti) ⊂ A for 1 ≤ i ≤ k−w(G−A). Put k′ = k−w(G−A) and let ui

be a vertex of Ti such that dT (ui) = 1 for each i = 1, . . . , k′. If uiuj ∈ E(G) for some

1 ≤ i < j ≤ k′, then T +uiuj−vti +vx is a (k, A)-tree larger than T , a contradiction.

Hence {u1, . . . , uk′} is an independent set of H, also of G.

If k′ 6= 1, then we define

Y1 =
k′⋃

i=2

NH(ui) ∩ V (T1).

For the case of k′ = 1, let Y1 = ∅. If dT (y) < k for some y ∈ Y1, then yui ∈ E(H) for

some i = 2, . . . , k′ and thus T−vt1+yui+vx contradicts the choice of T . Consequently

we obtain

Y1 ⊂ A and dT (y) = k for all y ∈ Y1. (6.1)

For y, z ∈ V (T ), we denote by PT (y, z) the unique path in T connecting y and z.

Claim 6.4.1 For each y ∈ Y1, (NT (y)− V (PT (y, u1))) ∩NH [u1] = ∅.
Proof. Suppose that z ∈ NH [u1] for some z ∈ NT (y) − V (PT (y, u1)). Since yui ∈
E(G) for some i = 2, . . . , k′, a (k,A)-tree T − yz − vt1 + u1z + yui + vx contradicts

the maximality of T . 2

Claim 6.4.2 |NT (Y1)−NH [u1]| ≥ (k − 1)|Y1|.
Proof. If Y1 = ∅, then the above inequality holds, and so we may assume that Y1 6= ∅.
We obtain t1 /∈ Y1, in particular, v /∈ NT (y) for every y ∈ Y1, since if t1 ∈ Y1, then

t1ui ∈ E(H) for some ui and T − vt1 + t1ui + vx contradicts the maximality of T .
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We regard T1 as an outdirected tree with root u1. For any y0 ∈ Y1 and z ∈ N+
T1

(y0),

it follows from Claim 6.4.1 that z /∈ NH [u1]. This implies that N+
T1

(y0) ⊆ NT (Y1) −
NH [u1] for any y0 ∈ Y1. Since N+

T1
(y1)∩N+

T1
(y2) = ∅ holds for any two distinct vertices

y1, y2 ∈ Y1, we obtain |NT (Y1)−NH [u1]| ≥ |N+
T1

(Y1)| =
∑

y∈Y1
|N+

T1
(y)| = (k − 1)|Y1|.

2

For 1 ≤ i ≤ k′, let

Wi,k = NH(ui) ∩ V (Tk).

Note that tk /∈ Wi,k since otherwise tkui ∈ E(H) and T − vtk + tkui + vx contradicts

the choice of T . If w /∈ A or dT (w) < k for some w ∈ Wi,k, then T − vtk + wui + vx

also contradicts the maximality of T . Hence

Wi,k ⊂ A and dT (w) = k for any w ∈ Wi,k. (6.2)

Suppose that ww′ ∈ E(T ) for some w,w′ ∈ Wi,k. Then T−ww′+wui+w′ui−vtk +vx

is a contradiction. Thus Wi,k is an independent set in T for each i = 1, . . . , k′.

Claim 6.4.3 |Wi,k| ≤ 1
k
(|Tk| − 1).

Proof. We consider Tk as an outdirected tree with root uk. Since Wi,k is independent

in T , we have N+
Tk

[w]∩N+
Tk

[w′] = ∅ for any w, w′ ∈ Wi,k. This together with tk /∈ Wi,k

implies |Tk| ≥ 1 +
∑

w∈Wi,k
|N+

Tk
[w]| = 1 + k|Wi,k|. 2

By Claim 6.4.2, we obtain

|NH(u1) ∩ V (T1)| ≤ |T1| − 1− |NT (Y1)−NH [u1]|
≤ |T1| − 1− (k − 1)|Y1|.

By the definition of Y1, we have
∑k′

i=2 |NH(ui) ∩ V (T1)| ≤ (k′ − 1)|Y1|. Hence

k′∑
i=1

|NH(ui) ∩ V (T1)| ≤ |T1| − 1− (k − 1)|Y1|+ (k′ − 1)|Y1|

= |T1| − 1− (k − k′)|Y1| ≤ |T1| − 1.

By symmetry, we have
∑k′

i=1 |NH(ui) ∩ V (Tj)| ≤ |Tj| − 1 for each j, 1 ≤ j ≤ k′. On

the other hand, by Claim 6.4.3,

k′∑
i=1

|NH(ui) ∩ V (Tk)| =
k′∑

i=1

|Wi,k| ≤
k′∑

i=1

1

k
(|Tk| − 1)

=
k′

k
(|Tk| − 1) ≤ |Tk| − 1.
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By the same argument above,
∑k′

i=1 |NH(ui) ∩ V (Tj)| ≤ |Tj| − 1 holds for each j =

k′ + 1, . . . , k.

By the maximality of T , NH(ui)∩V (G−T ) = ∅ for all i = 1, . . . , k′. By (6.1) and

(6.2), we have NH(u1) ⊆ A. This means that dG(u1) = dH(u1). Analogously, dG(ui) =

dH(ui) holds for each i = 2, . . . , k′. Since dG(ui) ≤ |{v}|+ ∑k
j=1 |V (Tj) ∩NH(ui)|,

k′∑
i=1

dG(ui) ≤ k′ +
k′∑

i=1

k∑
j=1

|V (Tj) ∩NH(ui)| ≤ k′ +
k∑

j=1

(|Tj| − 1)

=
k∑

j=1

|Tj| − w(G− A). (6.3)

Recall that x ∈ V (H) − V (T ) is a vertex such that NH(x) ∩ V (T ) 6= ∅ and

NH(x) ∩ V (T ) ⊂ A.

If x /∈ A, then
∑k

j=1 |Tj| ≤
∑k

j=1 |V (Tj) ∩ A|+ w(G− A)− 1. By (6.3),

k∑
i=1

dG(ui) ≤
k∑

j=1

|V (Tj) ∩ A| − 1 = (|V (T ) ∩ A| − |{v}|)− 1 ≤ |A| − 2,

which is a contradiction. Hence we may assume that x ∈ A. In this case,
∑k

j=1 |Tj| ≤∑k
j=1 |V (Tj) ∩ A|+ w(G− A) holds. This inequality together with (6.3) yields

k∑
i=1

dG(ui) ≤
k∑

j=1

|V (Tj) ∩ A| = |V (T ) ∩ A| − 1 ≤ |A| − 2.

This also contradicts the assumption. This completes the proof of Case 2 and Theorem

6.6.
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