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1.1 Motivation of 3D Shape Reconstruction

This work pertains to the three-dimensional (3D) reconstruction of object shape by de-

formable model-based methods.

In the past and even presently, the deformable models are widely used in the research and

commercial applications. In this chapter, the motivation of object shape reconstruction and

existing deformable model techniques are described. At the end, the methods proposed in

this work are described shortly.

1.1 Motivation of 3D Shape Reconstruction

Humans are primarily visual creatures, vision is our most powerful sense. Not all ani-

mals depend on their eyes, as we do, for 99% or more of the information received about our

surroundings[65]. The vision sense also enables us to interact intelligently with the environ-

ment, all without direct physical contact. Through it we learn the position and identities of

object and the relationships between them, and we are at a considerable disadvantage if we

are deprived of this sense. Because the vision is our irreplaceable ability and computer has

become the most indispensable instrument in our life, it is no wonder that attempts have been

made to give computer a sense of vision almost since the time that digital computers first

became generally available[40]. This is always called computer vision.

Computer vision is the enterprise of automating and integrating a wide range of progresses

and representations used for vision perception. The input to the computer vision system

may be an image, or series of images, but the output must be something quite different,

which relates the visual input to previously existing models of the world[64]. There is a

large representational gap between the input images and the output models, which explain,

describe, or abstract the image information. The image-to-model correspondence is a bridge

of the gap by alignment. In the alignment approach, the representations of the object (images)

and the models (2D or 3D) maintain their pictorial nature[76].

After compensating for the transformations separating the images and the appropriate

model, corresponding parts of the two representations will be in close register. The abil-

ity to perform image-to-model correspondence can help us to identify ambiguous subparts

and allows us to direct our attention to particular parts of the model. For instance, the top

part of Figure 1.1 shows isolated parts of a puppet. The parts on their own are difficult to

recognize (they are, in fact, the eye and ear in the face), but they become recognizable when

the entire figure is recognized as a puppet. The effect will be more distinct for 2D images

2



1.1 Motivation of 3D Shape Reconstruction

Figure 1.1: The parts in the top image are difficult to recognize in isolation. In the

bottom image, the recognition of the same parts is based on their correspondence with

the appropriate parts in a puppet.

to 3D model. Figure 1.2 (a) shows confocal microscopy traverses of skin inner tissue. To

observe the structure of skin inner tissue surface, the 2D confocal microscopy images are

not sufficient even for experts. However, the skin structure becomes clear, when a 3D visual

model (Figure 1.2 (b)) is reconstructed by the means of registering the corresponding image

features and 3D model.

The correspondence can be used as a separate stage that drives the alignment process. A

correspondence is first established between selected features in the images and model rep-

resentations. Based on this match, the alignment transformation is derived and applied to

bring the two representations into register. However, unexpected accidents may corrupt the

transformation.

For instance, multiple camera images of a foot model are illustrated in Figure 1.3 (a).

Because the object is occluded by obstructs, gaps in the images are occurred. A 3D model

that reconstructed by image-based volumetric intersection algorithm is shown in Figure 1.3

3



1.2 Overview of Deformable Model Techniques

…traverse im
ages

(a) (b)

Figure 1.2: Confocal microscopy traverses ((a)) are widely used to observe skin inner

tissue. 3D model ((b)) makes the observation clear.

(b). It is difficult to recognize the foot model due to the effect of image gaps.

To generate satisfied result, the revision must be considered from the beginning level. It is

obvious that segmentation is crucial step in the succession of operations preceding 3D shape

reconstruction, where its results are used to select the objects of interest among the various

objects usually present in given image data. The most naive approach to segmentation is

based solely on voxel characteristics (e.g. intensity) and is called point-based segmentation.

Intensity thresholding belongs to this category. Such an approach however, does not take into

account spatial information, such as proximity and connectivity. To take advantage of this

kind of information, one has to use edge-based segmentation technique, described an object

in terms of its bounding surface. Because there is no prior criterion, the partition of useful

and unexpected edge elements is very difficult. Model-based approaches, i.e. deformable

model methods give promising solution to address the image segmentation difficulty.

1.2 Overview of Deformable Model Techniques

The deformable models have wide applications in pattern recognition and computer vi-

sion, including image/video database retrieval[97], object recognition and identification[37],

restoration[3], and object tracking[7].

4



1.2 Overview of Deformable Model Techniques

(a) (b)

Figure 1.3: Multiple view images of a foot model ((a)). Image-based method generated

unsatisfied 3D model ((b)) due to the effect of occlusion.

A deformable model can be characterized as a model, deforms the shape to match objects

in given images. The deformations are under implicit or explicit optimal constraints. The

model is active in the sense that it can adopt itself to fit the given data. Deformable model

is a useful instrument because of its flexibility and its ability to both impose geometrical

constraints on the shape and to integrate local image evidences.

Although the term deformable models first appeared in the work by Terzopoulos and his

collaborators in the late eighties[38][72][73][74], the idea of deforming a template for ex-

tracting image features from image data back much farther, to the work of Fischler and

Elschlager’s spring-loaded templates[28] and Widrows’ rubber mask technique[92]. Simi-

lar ideas have also been used in the work by Blake and Zisserman[10], Grenander et al.[31],

and Miller et al.[50]. The popularity of deformable models is largely due to the seminal paper

snakes: Active Contours Models by Kass, Witkin, and Terzopoulos[38]. Since its publication,

deformable models have grown to be one of the most active and successful research areas in

image processing and computer vision. Various names, such as snakes, active contours or

surfaces, balloons, and deformable contours or surfaces, have been used in the literature to

refer to deformable models.

In[36], Jain et al. partition the work on deformable model methods into two classes:

5



1.2 Overview of Deformable Model Techniques

free-form deformable model method (FDMM) and parametric deformable model method

(PDMM). The FDMMs can represent any arbitrary shape as long as some constraints like

continuity, smoothness are satisfied. The other class, PDMM, encodes a specific shape and

its variation where the shape can be characterized by a parametric formula and its deformation

modes.

1.2.1 Free-form Deformable Model

FDMM always starts from an initial model. The initial model assumes very little struc-

ture about the object shape except for some regularization constraints like continuity and/or

smoothness of the boundary. Such a free-form model can be deformed to match salient

image features like lines, edges and surfaces using potential fields (energy functions) pro-

duced by those features. Since there is no global structure template, it can represent any

arbitrary shape as long as the regularization requirements are satisfied. Kass, Witkin and

Terzopoulos[38][74] introduced one of the earliest and most popular free-form deformable

model: the Active Contour Model (ACM). An ACM is a geometrical curve (2D) or surface

(3D), which approximates image contours through energy minimization. It behaves like an

elastic rope that wriggles towards the contour or that slides down the potential hill. The

internal energy keeps the shape and ensures the spatial and temporal continuity, while the

image based potential force (image energy) at different scales to broaden its attraction range.

Distinct weaknesses of this approach, however, is remained:

1. The regularized initial model decreases the flexibility of model;

2. Open form surface cannot be handled;

3. If the initial model is not initialized near the desirable object boundaries, the exploration

of object boundaries will be failing.

In fact, the first and the second issues are correlated. The topologies of both 2D and 3D

initial models are generally regularized, e.g. orthogonal lattice (Figure 1.4). Control points

are set on the lattice. The deformation of model is implemented by adjusting the positions of

the control points. The orthogonal and parallel are implied conditions for the optimization of

initial model. The model surface smoothness is evaluated by discrete derivatives of control

points’ coordinate. However, the 3D spatial curvature at the contour of an open form surface

is difficult to be estimated. Thus open form surface cannot be handled. Duan and Qin pro-

6
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(a) (b) (c)

Figure 1.4: Topologies of initial models of FDMMs in 2D ((a)) and 3D ((b), (c)). Con-

trol points are created on the orthogonal lattice.

posed “Manifold Flow”[24] that affords an initial open patch (triangle or rectangle) to enlarge

itself and flow directly over the object boundary through the expansion of its bounding con-

tour towards along the surface tangent. Manifold Flow can grow on arbitrary boundary open

or closed. The disadvantages of “Manifold Flow” is that the result may be affected largely

by the position and orientation of the initial patch. Moreover, there is no established criterion

for how to determine the size of initial open patch.

The third issue is also very important and has not solved completely. Although the image

energy can broaden attraction range for the model, its effect is not enough. Spring force[38] is

defined to be proportional to the distance between a point X on the model and a user-specified

point P. Spring forces act to pull the model toward the P. The further away the model is from

P, the stronger the pulling force. The point X is selected by the means of finding the closest

point on the model to P around a local neighborhood of P.

Cohen proposed to increase the attraction range, using a pressure force together with the

image energy. The pressure force can either inflate or deflate the model, hence, it removes

the requirement to initialize the model near the desired object boundaries[17]. A disadvan-

tage in using pressure forces is that they may cause the deformable model to cross itself

and form loops[70]. Another approach for extending attraction range is to define the poten-

tial energy function using a distance map as proposed by Cohen and Cohen[18]. The value

of the distance map at each pixel is obtained by the means of calculating the distance be-

7



1.2 Overview of Deformable Model Techniques

tween the pixel and the closest boundary point, based either on Euclidean distance[23] or

Chamfer distance[12]. Defining the potential energy function based on the distance map,

one can obtain a potential force field that has a large attraction range. The distance potential

force, however, can cause difficulties when deforming a contour or surface into boundary

concavities[93]. To address this issue, Xu and Prince employed a vector diffusion equation

that diffuses the gradient of an edge map in regions distant from the boundary, yielding a

different force field called the gradient vector flow (GVF) field[93][94]. The amount of diffu-

sion adapts according to the strength of edges to avoid distorting object boundaries. However,

both the distance map and GVF are relying on reliable edge information in image. The ini-

tial model may be pushed to converse direction due to image noise. In this work, novel

approaches are proposed to address these issues.

1.2.2 Parametric Deformable Model

The key difference between FDMM and PDMM is the usage of prior knowledge. PDMM

incorporates additional prior knowledge into the models. Use of prior knowledge in a de-

formable model can lead to more robust and accurate results. This is especially true in appli-

cations where a particular structure that requires delineation has similar shape across a large

number of subjects. Incorporation of prior knowledge requires a training step that involves

manual interaction to accumulate information on the variability of the object shape being de-

lineated. This information is then used to constrain the actual deformation of the contour or

surface to extract shapes consistent with the training data. The active shape model (ASM),

suggested by Cootes et al.[19][20][34][45] is now the most popular parametric deformable

model method.

The standard deformation of ASM is implemented by adjusting both pose and shape vari-

ations to search the desirable location in given images. Here the shape variations are derived

from prior knowledge by principal component analysis (PCA). Only deformations that pro-

duce shapes similarity to the prior knowledge are allowed. The image search stops when

changes in both the pose and shape are insignificant. A limitation of the ASM is that it only

typically search around the current position along profile normal to the edge element and does

not take advantage of all the available information across the given images. Thus the ASM is

not robust while the reliability of edge elements is doubtful.

Many extensions have been proposed to improve the performance of ASM. Duta and
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Sonka[25] applied the ASM to segment subcortical structures from MR brain images. Wang

and Staib[86] incorporated an additional smoothness prior into the ASM to allow the gener-

ation of more flexible shape instances.

Edwards, Cootes, and Taylor proposed an extension to the ASM, called active appearance

model (AAM)[21][22][26]. Besides shape mode variations, AAM also employs PCA-based

gray-level mode variations to incorporate all the information in parameters. Because the

objects represented by AAM are more specific than those represented by ASM, in many

applications, AAM can lead to more robust results than ASM, whereas AAM cannot directly

handle cases well outside of the prior knowledge, e.g. occlusions. Moreover, in 3D space, to

compute gray-level mode variations, the prior knowledge instances should be normalized in

identical 3D intensity space[52][53], hence the time-consuming establishment of 3D intensity

space must be performed. The most fatal issue is that AAM is at completely disadvantage,

when the prior knowledge instances do not contain intensity information.

1.3 Proposed Methods

As effective image segmentation approaches, in this work FDMM and PDMM are used to

address the 3D object shape reconstruction issues.

FDMM-based 3D reconstruction methods are proposed to deal with open form object sur-

face, such as skin inner tissue surface. FDMM aims to impose smoothness on the initial

model and encourage movement towards boundary elements in given images. However, the

open form surface reconstruction is difficult for this technique due to the boundary condition.

To address the open form surface issue, the initial model is partitioned into lateral surface

initial model and central initial model. The lateral surface initial model corresponds to the

contour of initial model. The lateral surface initial model is used to extracted object surface

in lateral surface. Then the extracted object surface in lateral surface is recomposed to the

central initial model as constant. This strategy is called active open surface model (AOSM).

However, the partition of the initial model may cause uncontinuity of the reconstructed sur-

face.

To overcome this issue, a triangle patches based initial model is introduced. The definition

of the energy function particularly the internal energy is modified correspondingly, hence the

processing can be more convenient. A novel external constraint is also proposed, so that the

attraction range of the model is broadened. The proposed method is named energy-modified
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active contour model (EACM).

In experiments, the 3D models of skin inner tissue surface are reconstructed by proposed

methods from volumetric confocal microscopy images. The results are validated in compari-

son with human experts’ observation.

EACM is also performed in another application-reconstruction of 3D foot model from

multiple camera images. Thus, this approach is shown as well as available for reconstruction

of closed object surface. However, because the proposed method does not consider the global

anatomical structure of object, distinct shape characteristics are removed. A PPDM-based

method is proposed to address this difficulty.

The PDMM-based method is similar to ASM in spirit. The pose and shape of initial model

are described by a group of parameters, including scale, rotation, translate and weighting

parameters of shape mode variations. Instead of analyzing gray-level mode variations from

prior knowledge, the intensity information of corresponding pixel in given images is fused to

assess the propriety of current model by the means of projecting the model to multiple cam-

era images. In the foot shape reconstruction experiment, the PDMM-based method generated

more accurate 3D model than the FDMM-based method and conventional volumetric inter-

section method. The PDMM-based method is named modified active shape model (MASM).

1.4 Contents

Chapter 2 describes the modified conventional FDMM-AOSM, so that it can handle the re-

construction of open form surface. The experiment on skin inner tissue surface reconstruction

is introduced in the latter of this chapter. The general-purpose FDMM-based method-EACM

is described in chapter 3. This method makes modification on both initial model and the

definition of energy function. The proposed method is used to deal with both skin inner tis-

sue surface and foot shape reconstruction. Chapter 4 explains the PDMM-based method and

experiments of foot shape reconstruction by the proposed PDMM-based method (MASM).

Chapter 5 gives the conclusions of this work and discussion of future works. The genera-

tion of triangle patches for 3D model surface is depicted in Appendix A. The Levenberg-

Marquardt optimization algorithm is described in Appendix B. Appendix D describes a novel

occlusion assessment method for multiple camera system. The Rosenbrock’s optimization

algorithm and the downhill simplex method are described in Appendix C and Appendix E

respectively.
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Attempting to reconstruct arbitrary shape structures, e.g. human skin inner tissue surface

(Figure 2.1), in 3D can be a complicated task. Figure 2.2 illustrates confocal microscopy tra-

verse and synthesized vertical section of skin inner tissue. To reconstruct the bottom surface

of highlight region, i.e. dermo-epidermal surface, a common approach uses second intensity

derivative. The zero crossing corresponds to the edge element. In Figure 2.3 the extracted

edge elements are plotted in white. Because confocal microscopy images contain noise, un-

expected edge elements are occurred frequently. Moreover, not only the dermo-epidermal

surface, but also the upper epidermal surface (the upper surface of the highlight region) is

extracted simultaneously.

air & moisture

1

2

3

  1 Epidermis

  2 Dermis

  3 Tela subcutanea

1

2

  4 Dermo-epidermal 

surface

4

1000µm 100µm

(a) (b)

Figure 2.1: (a) Structure of human skin inner tissue[57]. (b) The specimen of face skin inner tissue.

Deformable model methods start from initial models similar to the object. Only the nec-

essary image features such as edge elements are adopted. However, the skin structure is

depending on the environment, sex and aging, thus it doesn’t have stable shape. For instance,

some researchers reported the skin thickness of face is decreased with age[43], however the

increasing data is also reported[30]. As that described in last chapter, the FDMM can handle

the arbitrary object shape reconstruction without prior shape constraint, thus in this research

FDMM-based method is proposed for the shape reconstruction of skin inner tissue surface.
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50µm

(a) (b)

Figure 2.2: The confocal microscopy traverse of skin inner tissue ((a)) and synthesized

vertical section ((b)). The highlight region is corresponding to epidermis. The bottom

surface of epidermis is called dermo-epidermal surface.

50µm

(a) (b)

Figure 2.3: The zero crossings of second intensity derivative are plotted in white. Un-

expected edge elements are caused by image noise.

2.1 Principle of Free-form Deformable Model Method

In this section the conventional FDMM is described briefly. The so-called FDMM is a

large category. Active contour model (ACM) method is the most popular FDMM. ACM is

a 2D energy minimization curve. It deforms to match salient image features like lines and

edges, using energy function produced by those features. The value of energy function is

getting small when the model is approaching the boundary of object. To search the position

that minimizes the energy function, the model and object will be registered. Such an ACM

13



2.1 Principle of Free-form Deformable Model Method

assumes very little structure about the object shape except for some regular constraints like

continuity and smoothness of the boundary. Unexpected edge elements are ignored by these

constraints.

Let C(q) : [0, 1] → R2 be 2D space curve and let I : [0, a] × [0, b] → R+ be a given

image, in which the objects boundaries are expected to be detected. The conventional ACM

approach associates the curve C with an energy function given by

E =
n∑

i=0

E(vi) =
n∑

i=0

[Eint(vi) + Eimage(vi) + Econ(vi)] (2.1)

where Eint, Eimage, and Econ are referred as internal energy, image energy, and external

constraint, respectively. vi denotes a node on curve C. It is called control point. The control

points are created symmetrically along the initial model at regular intervals (Figure 2.4).

Object
vi-1(xi-1,yi-1)

vi-1(xi+1,yi+1)

vi(xi,yi)

O(x,y)

v0(x0,y0)

v1(x1,y1)

v2(x2,y2)
v3(x3,y3)

vn-1(xn-1,yn-1)

Figure 2.4: The control points are created symmetrically along the initial model at

regular intervals. The minimization of Ovi makes the model approach object boundary.

The curve around vi being a controlled continuity spline with the first order derivative

membrane term in (2.2) favoring control points to become closer to one another (Figure 2.5)

and the second order derivative thin-plate term favoring control points to become equidistant

(Figure 2.6).

Eint(vi) = αiX
′(vi)2 + βiX

′′(vi)2

= αi|∂vi
∂x

+
∂vi
∂y

|2 + βi|∂
2vi

∂x2
+

∂2vi
∂y2

|2 (2.2)

where αi and βi are weighting parameters. The effect of first and second derivative terms are

combined to make the curve smooth and not bent too much (Figure 2.7).
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vi

vi-1 vi+1

vi

vi-1 vi+1
vi'

(a) (b)

Figure 2.5: The minimization of first order derivative makes distant control points ((a))

become close to one another ((b)).

vi

vi-1 vi+1

vi

vi-1 vi+1

vi'

(a) (b)

Figure 2.6: The minimization of second order derivative favors the unequal neighboring

control points ((a)) become equidistant ((b)).

The image energy is derived from image features of object. It includes three elements,

which represent the attraction to lines, edges and terminations ((2.3)) respectively. The to-

tal image energy can be expressed as a weighted combination of these three elements. By

adjusting the weighting parameters, a wide range of model behaviors can be created.

Eimage(vi) = wlineEline(vi) + wedgeEedge(vi) + wtermEterm(vi) (2.3)

The external constraint is an optional element for energy function. When the initial model

vi

vi-1 vi+1

vi

vi-1 vi+1

vi

vi-1 vi+1

(a) (b) (c)

Figure 2.7: To integrate the close ((a)→ (b)) and equidistant ((b)→ (c)) effects, the

internal energy offers satisfied smoothness.
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is created apart from the object boundary, the external constraint may push the initial model

towards the target. It represents a force of a spring connected between a point on the contour

and manually specified points in the image plane.

Econ(vi) = −k[(xi − x)2 + (yi − y)2] (2.4)

where k is a positive real constant, vi(xi, yi) and O(x, y) is defined as Figure 2.4. Since

−k ≤ 0, the external constraint is a counterforce.

Because image energy and external constraint are describing the influence from external

environment on initial model, they are combined called external energy function.

Figure 2.8: In 3D the initial model is extended from a curve to a surface. The deforma-

tion is performed, adjusting the positions of control points.

2.2 3D Active Contour Model

After the conventional ACM is reported, it has grown to be one of the most active and suc-

cessful image segmentation and contour extraction techniques. Since then it was extended

to be implemented in 2.5D[48][71] and 3D medical applications[75], where ACM was con-

strained to encourage axial symmetry and is evolving under the forces determined from a 2D

image or a pair of 2D images. In [18], Cohen et al. proposed full 3D solution in true 3D data

set.

The main enhancement and modification for extending the conventional ACM to 3D is on

the initial model and energy function.

In 3D the initial model is extended to a surface. The surface is controlled by lattice control
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points (Figure 2.8). For lattice control points’ regular relationships, the internal energy can

be calculated conveniently.

The energy function of 3D ACM also includes the same three components: (Eint, Eimage

and Econ). First, the internal energy is transformed as:

Eint(vi) = αiX
′(vi)2 + βiX

′′(vi)2

= αi|∂vi

∂x
+

∂vi

∂y
+

∂vi

∂z
|2 + βi|∂

2vi

∂x2
+

∂2vi

∂y2
+

∂2vi

∂z2
|2 (2.5)

where X ′(vi) and X ′′(vi) are discrete 3D first and second order derivatives, respectively, αi

and βi determine the relative weights given to these two terms.

The 3D extension of the image energy is derived from 3D image features of object, whereas

the basic definition is not changed from (2.3).

Finally, the external constraint is transformed as

Econ(vi) = −k[(xi − x)2 + (yi − y)2 + (zi − z)2] (2.6)

The 3D external constraint also represents a force of a spring connected between a point

vi(xi, yi, zi) on the initial model and manually specified points O(x, y, z) in 3D given image

space.

2.3 Open Surface Strategy-Active Open Surface Model

According to the forementioned explanation, the initial models of both 2D and 3D ACM

are in closed form. Thus, only closed object contour or surface can be handled. However,

in many clinical situations, the processing is concerning open form surface, such as the skin

inner tissue surface.

To cope with open form surface, the initial model will be created as a open plane (Figure

2.9 (a)). The surface smoothness of this open plane is also offered by minimizing the dis-

crete derivatives-based internal energy. However, for the contour control points (blue points),

the second order discrete derivative cannot be estimated. If the second order derivative is

invalidated, the effect of first order derivative may drag the contour control points and their

neighbor control points stuck together (Figure 2.9 (b)).

Although Duan and Qin gave a solution called “Manifold Flow” for this issue (Chapter

1), disadvantages are remained. First, during the image search, only the boundary contour

of model is active and allowed to move. Second, the initial open patch to enlarge itself and
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(a) (b)

Figure 2.9: To handle open form surface, the initial model is created as a open plane

((a)). If the second order derivative is invalidated, the effect of first order derivative may

drag the contour control points and their neighbor control points stuck together ((b)).

flow directly over the object boundary through the expansion of its bounding contour towards

along the surface tangent, thus the concave surface cannot be recovered. Moreover, there is

no established criterion for how to decide the size of initial open patch.

2.3.1 The Modification on Initial Model

To overcome the difficulty on open form initial model, the most straightforward strategy is

to create particular boundary condition for the open surface[77][78][79][82][83].

Concretely, the initial model is partitioned into two parts: lateral surface initial model and

central initial model (Figure 2.10). The application is implemented in volumetric data space.

For instance, the confocal microscopy volumetric data is illustrated in Figure 2.11. If the vol-

umetric data is regarded as a hexahedron, its lateral surface can be considered a 2D continuous

plane. To show this plane in an intuitional way, the lateral surface is unfolded, nevertheless

the left and right edges are joined actually. To detect the dermo-epidermal surface the lateral

surface initial model, i.e. a closed space curve, is set at the lateral surface (Figure 2.12).

Because the initial model is a closed curve and the processing is implemented in a 2D sur-

face, the object boundary in the lateral surface can be detected by conventional ACM (2D).

The detected dermo-epidermal surface is plotted in Figure 2.13 in white. The detected object

surface is then recomposed with the unprocessed central initial model as constant. Because

the boundary condition is offered by the detected lateral surface object contour, the energy

function of central initial model can be computed as conventional 3D ACM.
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Y

Z
X

      Central initial model       

Lateral surface 

initial model

Control point

Figure 2.10: Initial models of active open surface model is partitioned into lateral sur-

face initial model and central initial model.

Because this modification offered an open surface extension of conventional ACM, this

strategy is called active open surface model (AOSM).

2.3.2 Image Energy with Gaussian Function

In many clinical situations, the shape reconstruction due to detect the edge elements from

given gray-level image data, such as the skin inner tissue surface reconstruction. Thus, the

Eedge component of image energy is kept. The image energy can be computed in many

modes. For instance,

E
(1)

edge(vi) = I(vi) (2.7)

E
(2)

edge(vi) = |∇I(vi)| (2.8)

E
(3)

edge(vi) = (∇2G ∗ I(vi))2 (2.9)

where, I(vi) is the intensity of control point vi in 3D voxel space. The definition of image en-

ergy is generally determined by applications. In this work, because the confocal microscopy
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Lateral Surface

Volumetric Data

Lateral Surface

Figure 2.11: Unfolding the lateral surface of volumetric data.

images contain strong noise generally, the antinoise Gaussian function-based image energy

((2.9)) is adopted.

Eimage = wedgeEedge = −wedge(∇2Gσ ∗ I)2

= wimage([
1√

(2π)3σ5
e−(r2/2σ2)(3 − r2

σ2
)] ∗ I)2 (2.10)

where Gσ is a Gaussian function with standard deviation σ. ∇ is the gradient operator. ∇2Gσ

is so-called LoG filter[11][32][49][55]. Because of Gaussian function’s smooth capability,

the image data with strong noise can be removed effectively.
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Figure 2.12: Lateral surface initial model in the lateral surface.

Figure 2.13: Detected dermo-epidermal surface in the lateral surface.

2.3.3 External Constraint

To reconstruct the 3D model of skin inner tissue surface, the external constraint is usu-

ally necessary. For instance, to reconstruct the dermo-epidermal surface from confocal mi-

croscopy images, although the exact position of dermo-epidermal surface is not known before

the processing, it can be presumed that the dermo-epidermal surface is corresponding to the

bottom of the high intensity region (Figure 2.2 (b)). Thus, initial model is created at the bot-

tom half of the volumetric data. Then a reference plane is specified under the initial model.

The distance to the reference plane for each control point is to be the external constraint

(Figure 2.14). To specify minus weighting parameters for the external constraint, the initial

model will approach the object surface by minimizing the external constraint.

E =
∑

i

[Eint(vi) + Eext(vi)]

=
∑

i

{wint[αiX
′(vi)2 + βiX

′′(vi)2] + wimage|∇2G ∗ I(vi)|2 + wext(vi − si)}

(2.11)
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S

Initial model

vi

si

Volumetric data

Figure 2.14: The initial model is created at the bottom half of the volumetric data. To

push the initial model towards the object, a reference plane S is specified under the

initial model. The distance from any control point vi to corresponding point si on the

reference plane is to be the external constraint.

2.3.4 Numerical Implementation

The total energy function is described as (2.11). Because there is strong noisy in confocal

microscopy images and the shape of skin inner tissue surface is unstable, the automatic deci-

sion of weighting parameters is almost impossible. However, since the 3D shape reconstruc-

tion from confocal microscopy images is quite valuable, in the experiments the weighting

parameters are determined by users’ experience.

Because the initial model of AOSM is partitioned into lateral surface initial model and cen-

tral initial model, the energy-minimizing model cannot be described in a single formula. To

search desirable position for initial model, discrete dynamic programming[2][8] is applied.

The initial model of AOSM is divided into stages by control points. In the dynamic pro-

gramming framework, energy-minimization is enforced on the control points by changing

their positions in a definite field. Since the convergence of this algorithm is guaranteed, the

resulting solution is optimized.

The control points are adjusted by searching the 26 neighbor field in three-dimensions to

minimizing the energy function (Figure 2.15 (a)), whereas there are only 8 candidate positions

for control points on lateral initial model (Figure 2.15 (b)). The movements of the control
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(a) (b)

Figure 2.15: The control points are adjusted in 26 neighbor field ((a)), whereas there

are only 8 candidate positions for control points in lateral initial model ((b)).

points on lateral initial model are restricted in such a 2D surface-lateral surface of volumetric

data.

2.4 Experiment on Skin Inner Tissue Surface Recon-

struction

Because the skin inner tissue is invisible to human eyes and common optical cameras di-

rectly, the acquisition of skin inner tissue images will be a difficult work. In recent years, with

the development of confocal microscope technology, confocal microscope images have be-

come an important instrument for in-vivo observation of the skin inner tissue[15][41][42][66].

For instance, researchers can observe the changes in the dermo-epidermal surface before and

after applying cosmetic without harming human subjects. This technology has thus received

great attentions from cosmetics developers. However, to observe the structure of skin inner

tissue surface, the 2D confocal microscopy images are not sufficient even for experts. In this

work, 3D model of skin inner tissue surface is established from confocal microscopy images,

using the proposed AOSM method.
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2.4.1 Confocal Laser Scanning Microscope

Before explaining the experimental results, a simple introduction of the skin image acqui-

sition instrument-Confocal Laser Scanning Microscope (CLSM) is described in this section.

2.4.1.1 Light Confocal Microscope

The introduction of laser-scanning confocal microscope generated as instant an excite-

ment among biologists[59]. With this microscope, one can slice incredibly clean thin op-

tical sections out of thick specimens; view specimens in planes tilted to, and even running

parallel to, the line of sight; penetrate deep light-scattering tissues; gain impressive three-

dimensional views at very high resolution; obtain differential interference or phase-contrast

images in exact register with confocal fluorescence images; and improve the precision of

micro-photometry.

Marvin Minsky applied for a patent in 1957 for a microscope that used a stage-scanning

confocal optical system. Not only was the conception farsighted, but his insight into

the potential application and significance of confocal microscopy was nothing short of

remarkable[59][51].

In Minsky’s embodiment of the confocal microscope, the conventional microscope con-

denser is replaced by a lens identical objective lens. The field of illumination is limited by a

pinhole, positioned on the microscope axis. A reduced image of this pinhole is projected onto

the specimen by the “condenser”. The field of view is also restricted by a second (or exit)

pinhole in the image plane placed confocally to the illuminated spot in the specimen and to

the first pinhole (Figure 2.16). This is called trans-illuminating mode confocal microscope.

Instead of trans-illuminating mode, epi-illumination mode makes a single objective lens serve

as both the condenser and the objective lens (Figure 2.17).

2.4.1.2 Laser Illuminated Confocal Microscope

During the early 1970s, Egger and his co-workers at Yale University developed a laser-

illuminated confocal microscope, in which the objective lens is oscillated in order to scan the

beam over the specimen[27].

24



2.4 Experiment on Skin Inner Tissue Surface Reconstruction
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Figure 2.16: Optical path in trans-illuminating confocal microscope. The condenser

lens (C) forms an image of the first pinhole (A) onto a confocal spot (D) in the specimen

(S), and exit pinhole (B) are confocal points. The objective lens (O) forms an image of

(D) onto the photocell (P) from second pinhole (B), which is confocal with (D) and (A).
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Figure 2.17: Optical path in epi-illnstead confocal microscope. The entrance pinhole

(A), point (D) in the specimen (S), and exit pinhole (B) are confocal points. A partial

mirror (M1) transmits the illustrating beam and reflects the beam, which passed (D) and

was reflected by the mirror (M2), on which the specimen is lying. Only the reflected

beam that passes point (D) focuses onto the detector pinhole and reaches the photocell

(P). A single lens (O) replaces the condenser and objective lenses.
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A few years later, Sheppard and Choudhury provided a thorough theoretical analysis on

various modes of confocal and laser-scanning microscopy[67]. The following years, Shep-

pard et al.[68] and Wilson et al.[91] proposed an epi-illuminating confocal microscope of the

stage-scanning type, equipped with a laser source and a photo multiplier tube (PMT) as the

detector, using a novel specimen holder. The specimen holder, supported on four taut steel

wires running parallel to the optical axis, allowed precise, z-axis positioning as well as fairly

rapid, voice-coil-actuated scanning of the specimen in the xy-plane. Using this instrument,

Sheppard et al. demonstrated the value of the confocal system particularly for examining

integrated circuit chip. With stage-scanning confocal images, optical sections and profile

images could be displayed on a slow-scan monitor over areas very much larger than can be

contained within the field of view of any given objective lens by conventional microscopy.

The pioneering work described above was followed in several European laboratories by

Brakenhoff et al.[13][14], Wijnaendts van Resandt et al.[89], and Carlsson et al.[16]. These

investigators developed the stage-scanning confocal microscope further, verified the theory

of confocal imaging and expanded its application into cell biology. In the meantime, video

microscopy and digital image processing were also advancing at a rapid rate.

These circumstances culminated in the development of the confocal laser-scanning mi-

croscope (CLSM)[5][6] and publication of its biological applications by Carlsson et al.[16],

Amos et al.[4] and White et al.[88]. The publications were followed shortly by introduction

of laser-scanning confocal microscopes to the market by Sarastro, Bio-Rad, Olympus, Zeiss,

and Lucid.

2.4.1.3 VIVASCOPE 1000 Laser Scanning Confocal Microscope

In this research, skin inner tissues are imaged by a commercially available CLSM (VI-

VASCOPE 1000, Lucid Inc., NY, USA) in Shiseido Ltd. Life Science Research Center. The

system is illustrated in Figure 2.18.

The VivaScope 1000 is a CLSM capable of imaging living tissue at the cellular level. A

non-invasive pathological examination capable of providing medical practitioners with infor-

mation at the point and time of taking care more rapidly proceed down the path to diagnosis

and treatment.

The VivaScopeR 1000 makes it possible to:
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2.4 Experiment on Skin Inner Tissue Surface Reconstruction

Figure 2.18: Vivascope1000 confocal microscopy system in Shiseido Ltd. Life Science

Research Center.

• Support pathologic screening without invasion;

• Aid treatment with timely information;

• Receive results at the time and place of care;

Non-invasive treatment in dermatology and many other medical specialties has come a long

way. But too often the assessment of a lesion still begins with an invasive procedure. Now

there is a non-invasive solution for pathological visualization of living tissue. The VivaS-

copeR 1000 gives a ”window” into living tissue right in a clinical setting.

Using the VivaScope 1000’s imager, cellular and nuclear structures in living tissue one cell

layer can be observed at a time. We can now produce images of thin virtual sections of skin

or other exposed tissues without biopsy.

2.4.2 Experimental Results

A confocal microscopy traverse of human skin inner tissue is shown in Figure 2.19. It is

assumed that this plane is paralleling to the XY coordinate plane. The images are acquired

by CLSM with ×50 objective lens. The image resolution is 640 × 480 pixels. Each pixel

corresponds to a length of 0.703µm. The z-axis sampling distance is 3.32µm. A 640×480×
400 intensity voxel space (volumetric data) is established by linear interpolation. Figure 2.20

illustrates interpolated vertical sections in XZ-axis view and YZ-axis view. Comparing with

the skin inner tissue specimen (Figure 2.1(b)), the high intensity region is corresponding to
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X

Y50µm

Figure 2.19: The confocal microscope traverse of skin inner tissue. This plane is treated

as XY coordinate plane.

X
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Z
50µm

(a) (b)

Figure 2.20: Synthesized vertical sections of skin inner tissue. (a) XZ-axis view, (b) YZ-axis view.

epidermis. The low intensity region under epidermis is corresponding to dermis.

AOSM is applied to detect the dermo-epidermal surface from volumetric data for recon-

structing the 3D model. As described above, the initial model of AOSM is divided into two

parts: lateral surface initial model and central initial model. The dermo-epidermal surface in

lateral surface of volumetric data is detected first. Second, the boundary of dermo-epidermal

surface is recomposed to the central initial model. In the next, the central initial model is op-

timized, while the pre-detected contour is treat as constant. This processing flow is illustrated

in Figure 2.21.
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3-D model of skin inner tissue surface

Initial model

(Open plane)

Confocal microscope

          Images

Linear interpolation

Intensity 

voxel space
Lateral surface 

initial model
Central initial 

model

  Estimation of energy function

Convergence?

Y

N

Energy function minimization by

dynamic programming

Figure 2.21: Flow chart of the AOSM-based skin inner tissue surface reconstruction system.

2.4.2.1 Reconstruction of Dermo-epidermal Surface

The reconstructed 3D model of dermo-epidermal surface is illustrated in Figure 2.22. The

3D model of dermo-epidermal surface is composed of triangle patches, which are established

by 3 neighbor control points. The detail of establishing 3D model by control points is de-

scribed in Appendix A.

To assess the register of 3D model and given image data, the positions of 3D model are

depicts vertical sections of confocal microscopy images (Figure 2.23). The dermo-epidermal

surface is plotted in white. It can be considered that the 3D model is almost registers the
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Figure 2.22: Reconstructed 3D dermo-epidermal surface, displayed in top (a), side (b), down (c).
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Figure 2.23: Reconstructed dermo-epidermal surface is plotted in white in vertical sec-

tions. (a) XZ-axis view, (b) YZ-axis view.

image of dermo-epidermal surface.

2.4.2.2 Upper Epidermal Surface Reconstruction and Quantitative Analysis of Epi-

dermis Thickness

In [33][58][69], it has been shown that the epidermal thickness changes in response to ag-

ing, exposure to sunlight, humidity changes and so forth. Thus, the measurement of epidermal

thickness is also a significant construction for cosmetics developers. A direct measurement

of epidermal thickness can be achieved by calculating the average Euclidean distance of cor-

responding points on dermo-epidermal surface and upper epidermal surface.

Figure 2.24 and Figure 2.25 illustrate the reconstructed upper epidermal surface in 2D and

3D by AOSM, respectively.
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Figure 2.24: Reconstructed 3D upper epidermal surface is plotted in white in vertical

sections. (a) XZ-axis view, (b) YZ-axis view.

Since the dermo-epidermal surface has already been obtained, Figure 2.26 illustrates epi-

dermis thickness distribution plot. The average thickness is about 110µm.
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Figure 2.25: Reconstructed 3D upper epidermal surface, displayed in top (a), side (b), down (c).

2.5 Discussion

To validate the results further, the comparison with human experts’ observation is per-

formed. Figure 2.27 illustrates the detected dermo-epidermal surface in the same vertical

section. The dermo-epidermal surface that detected by AOSM is plotted in white (Figure

2.27 (a)). The human experts’ observed dermo-epidermal surface is plotted in yellow (Figure

2.27 (b)). It can be seen that the boundary near the end of the AOSM’s result, particularly the

right end is going up abruptly. As described above, the lateral surface initial model searched
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Figure 2.26: The distribution of epidermis thickness. The average thickness is about 110 µm.

the dermo-epidermal surface in lateral surface of volumetric data and the spatial position re-

lation to central initial model is not concerned. Thus, when the contour part and the central

part of the model are recomposed to make a integral surface model, the junction becomes

unnatural.

Another distinct issue is concerning the shape of steepy edge element. The shape of the sur-

X

Z50µm

(a) (b)

Figure 2.27: Result comparison between AOSM ((a)) and human experts’ observation ((b)).
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face inside the broken circle should be more protuberant, whereas the AOSM gave a smooth

result. To push the initial model approach object surface, the distance to a specified reference

plane is generated to be the external constraint. However, the weak edge elements may be

ignored by the identical external constraint, and the model will get over the object surface.

To overcome the enumerated issues, the modification on data structure of the model and

definition of energy function are applied.
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3.1 Modification on Internal Energy

Although AOSM gives a reasonable solution for handling open form object surface, the

losing in continuity at the junction of lateral surface object boundary and central part of object

surface can be imaged. To address this disadvantage, an integral initial model is necessary.

This will be achieved by modification on the energy function[84].

3.1 Modification on Internal Energy

The energy function of 3D ACM is composed of internal and external elements. The dif-

ficulty of open form surface is mainly concerning the internal energy. Because the boundary

of open plane is not available for derivatives, the discrete derivatives based internal energy

cannot be computed.

Generally, in an image the smooth edge corresponds to low frequency components, and the

high frequency components correspond to unstable edges, e.g. noise. Here the image smooth

technique can be used for reference. The image smooth makes use spatial smoothing filters

to restrain the high frequency component in a gray-level image. The simplest smoothing ap-

proach is spatial averaging: A new image is constructed by calculating the average brightness

in each small region of the images.

The coordinate of control point v’s neighbors are added together and divided by the number

of control points in neighborhood. In the next, the resulting coordinate v
′

is used to update

the coordinate of v ((3.1)).

v′ =
1
m

m∑
i=1

vi (3.1)

where i is the index of control points, m is the size of neighbor control points of v(x, y, z)

(including v(x, y, z)). Then the internal energy is defined as

Eint(v) = wint(v − v′)2 (3.2)
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By substituting (3.1),

E int(v) = wint(v − 1
m

m∑
i=1

vi)2

= wint[(x − 1
m

m∑
i=1

xi)2 + (y − 1
m

m∑
i=1

yi)2 + (z − 1
m

m∑
i=1

zi)2]

=
1
m

wint[(mx −
m∑

i=1

xi)2 + (my −
m∑

i=1

yi)2 + (mz −
m∑

i=1

zi)2]

=
1
m

wint{[(m − 1)x −
m−1∑
i=1

xi]2 + [(m − 1)y −
m−1∑
i=1

yi]2 + [(m − 1)z −
m−1∑
i=1

zi]2}

=
m − 1

m
wint[(x − 1

m − 1

m−1∑
i=1

xi)2 + (y − 1
m − 1

m−1∑
i=1

yi)2 + (z − 1
m − 1

m−1∑
i=1

zi)2]

= wint[(x − 1
m − 1

m−1∑
i=1

xi)2 + (y − 1
m − 1

m−1∑
i=1

yi)2 + (z − 1
m − 1

m−1∑
i=1

zi)2] (3.3)

where wint =
m − 1

m
wint

: Control point

: Centroid

(a) (b)

Figure 3.1: The surface smooth can be obtained by minimizing the distance between

each control point and the centroid of its neighbor control points ((a)). The control

points on the contour of the open plane can also be handled in this way ((b)).

Thus, the internal energy can be calculated by the sum of differences between vi and its

neighbor control points’ centroid (Figure 3.1 (a)). Then the internal energy is defined as:

Eint(vi) = wint(vi − vg
i )

2

= wint[(xi − xg
i )

2 + (yi − yg
i )2 + (zi − zg

i )2] (3.4)
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where (xg
i , y

g
i , zg

i ) is the centroid of vi’s neighbor control points.

Furthermore, the control points on the contour of the open plane can also be handled (Fig-

ure 3.1 (b)) without any specific processing like the AOSM.

3.2 Triangle Patch Based Initial Model

The conventional FDMM creates the initial model with control points on orthogonal lattice.

This favors the computation of discrete differential-based internal energy. However, in the last

section, the centroid of neighbor control points is used for computing the internal energy, the

orthogonal distribution of control points is not necessary.

In many clinical situations, particularly in the computer environment, the 3D surfaces are

usually composed of triangle patches. Figure 3.2 illustrates a triangle patches made surface.

The control points can be created on the vertices of the triangle patches, and the neighbor

relation among control points are determined by the sides of triangle patches. Because there is

no orthogonal constraint, this definition of control points may enhance the model’s generality.

In this work, a triangle patches based initial model is adopted. The internal energy is

computed easily using the triangle relationship between control points. For instance, in Figure

3.3, P0 is connecting the control points P1, P2, ..., P6. To minimizing the distance between

P0 and G, the centroid of P1, P2, ..., P6, the surface will become smooth and flat.

Figure 3.2: Triangle patches based surface.
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 P0 
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G 

Figure 3.3: P0 is connecting the control points P1, P2, ..., P6. To minimize the distance

between P0 and G, the centroid of P1, P2, ..., P6, the surface will become smooth and

flat.

3.3 Novel External Constraint

As that mentioned in section 2.3.3, the external constraint can push initial model towards

expected boundary elements. However, the necessary of user-specified reference plane (or

point) weakens the automation of this method. Although as described in Chapter 1, strategies

of external energy, such as balloon, distance potential and gradient vector flow, have been

exploited, they also have their own disadvantages. To integrate their opinion, a novel external

constraint that makes the initial model has a large attraction range is proposed.

In skin inner tissue surface reconstruction application, to reconstruct the 3D model of

dermo-epidermal surface from volumetric data, an open plane is created to be initial model.

Although the exact position of dermo-epidermal surface is not known, it is corresponding to

the bottom of the high intensity region in confocal microscopy images (Figure 2.20).

Differing from the conventional external constraint, when the initial model is created in

the bottom of volumetric data, a “bottom-up” scan is implemented to search the closest edge

element for each control point along the normal direction to initial model.

In (3.5) the value of the external constraint of each control point is the distance (D(vi))

between control point vi and closest edge element ui (Figure 3.4). However, the search may

be failing, if there are boundary gaps along this direction. In the failure cases, the external

constraint is set “0”, whereas the invalid point are still dynamic, for the effect of neighbor
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Initial model

Object surface

Volumetric data

D(vi)

vi

ui

Figure 3.4: The initial model is created in the bottom of volumetric data and restrict

the search direction as “bottom-up” along the normal direction to initial model. The

minimization of the distance D(vi) between control point vi and the closest boundary

point ui is the proposed external constraint.

control points.

D(vi) = wext(vi − ui) (3.5)

Conversely, if the initial model is a closed surface, the search direction points to the geom-

etry center of the initial model.

Including the external constraint D(vi), the energy function is transformed as

E =
∑

i

[Eint(vi) + Eext(vi)]

=
∑

i

[wint(vi − vg
i )

2 + wimage|∇2G ∗ I(vi)|2 + wextD(vi)] (3.6)

In the experiments the weighting parameters of this energy function is also determined by

users’ experience like AOSM (section 2.3.4).

Since the proposed method in this chapter is similar to the ACM in spirit and the modi-

fications are mostly concerning the energy function, the proposed method is called “energy

modified active contour model” (EACM)
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3.4 Numerical Implementation with Levenberg-Marquardt

Algorithm

Various numerical implementations of deformable models have been reported. For in-

stance, the finite difference method[38], greedy algorithm[90] and dynamic programming

that is applied in ASOM. With these methods, only the knowledge of the functions at discrete

points of a subdivision is known. Therefore, the distance between successive points must

be made very small to achieve sufficient precision so as not to lose too much information.

Because the initial model of EACM is an integral continuous formula, Levenberg-Marquardt

algorithm (LM) is adopted to find the minimum of energy function.

LM is a kind of Quasi-Newton method. It is an integration of Steepest-Descent method

(SD) and Gauss-Newton (GN) method. SD and GN are popular optimization methods. SD

is the most straightforward method in optimization. By computing the gradient direction

followed by a 1D search, SD iteratively approaches the minimum point of the object function

in parameter space. Since only the first order derivative information is used, SD suffers from

the slow convergence. However, it is relatively robust even the initial guess is far away from

the true value.

GN goes one step further than SD: the second order derivative term is included to compute

the update. GN converges faster than SD. The price to pay is the reduction in robustness, i.e.

it is much more sensitive to initial guess than SD.

LM is a hybrid technique of SD and GN. A steering factor λ is introduced to switch between

GN direction and SD direction. When λ → 0, LM approaches SD method. The values of λ

during the iterative process are chosen in the following way: at the beginning of the iterations,

λ is set to a large value, so the LM manifests the robustness of SD and the initial guess can

be chosen with less caution. In each iteration, if minimum is achieved, decrease λ by certain

amount to speed up the convergence; otherwise, increase λ value to enlarge the searching

area.

With LM, we work with continuous functions, whatever the size of the grid. Therefore,

the function under consideration is known everywhere in the image data, independently of

the chosen discretization. This yields a lower algorithmic complexity and better numerical

stability in our applications. The detail of LM is described in Appendix B.
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3.5 Experiments

Although EACM is used to address the skin inner tissue surface reconstruction, the modi-

fication on energy function and data structure of initial model broaden the application range

of EACM, EACM is not only applied to establish 3D model of skin inner tissue surface, but

also used for the foot shape recovery application. The input of foot shape recovery is multiple

camera images. However, EACM needs volumetric data generally. In experiments, through

the computation of normalized correlation between corresponding points of each voxel on

multiple camera images, a 3D intensity space like the volumetric data of confocal microscopy

images are established. The detail is described in section 3.5.2 with the experimental results.

3.5.1 Skin Inner Tissue Surface Reconstruction

First, the proposed EACM is implemented to the skin inner tissue surface reconstruction.

The input is the same as that has described in section 2.4. The processing flow is illustrated

in Figure 3.5.

3.5.1.1 Reconstruction of Dermo-epidermal Surface

Figure 3.6 depicts the dermo-epidermal surface detected by EACM. To compare it with

Figure 2.23, it is obvious that EACM’s result has better continuity.

The reconstructed 3D model of dermo-epidermal surface is illustrated in Figure 3.7. Be-

cause the initial model of EACM is always considered to be integral and it is adjusted in a

systematic behavior, thus its reconstructed model is more coherent than the AOSM recon-

structed 3D model (Figure 2.22).

3.5.1.2 Upper Epidermal Surface Reconstruction and Quantitative Analysis of Epi-

dermis Thickness

Figure 3.8 and Figure 3.9 illustrate the reconstructed upper surface of epidermis in 2D

and 3D respectively. Because the background around the upper epidermal surface is rela-

tively simple, and the shape at the surface boundary does not change tempestuously, both the
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3D model of skin inner tissue surface

Initial model
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          Images
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Figure 3.5: Flow chart of the EACM-based skin tissue intersection surface reconstruction system.

AOSM and EACM give reasonable results. The epidermal thickness is also estimated by cal-

culating the average Euclidean distance of corresponding points on dermo-epidermal surface

and upper epidermal surface. The distribution of epidermis’ thickness is illustrated in Figure

3.10. The average thickness of epidermis is about 91µm. According to experts’ experience,

EACM’s result is more reliable than AOSM’s (about 110µm).

3.5.1.3 Discussion

To validate the proposed method, comparison with human experts’ observation and AOSM

is implemented (Figure 3.11).

According to this comparison, EACM offers more reasonable result (Figure 3.11 (b)) to

AOSM’s result. However, there are still errors between EACM and human experts’ obser-
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Figure 3.6: Reconstructed dermo-epidermal surface is plotted in white in vertical sec-

tions. (a) XZ-axis view, (b) YZ-axis view.
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Figure 3.7: Reconstructed 3D dermo-epidermal surface, displayed in top (a), side (b), down (c).

vation. The errors are occurred mostly because of experts do not consider 3D context the

volumetric data. Therefore, we believe that the surface obtained by EACM is even more

reasonable than human experts’ observation.

Table 3.1: The weighting parameters combinations of internal energy and image energy

wint wimage

(a) 0.8 0.2

(b) 0.6 0.4

(c) 0.4 0.6

(d) 0.2 0.8

Although the proposed method can be considered to be automatic, as described above the

weighting parameters of the energy function are specified by experience. There are three
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Figure 3.8: Reconstructed upper epidermal surface is plotted in white in vertical sec-

tions. (a) XZ-axis view, (b) YZ-axis view.
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Figure 3.9: Reconstructed 3D upper epidermal surface, displayed in top (a), side (b), down (c).

weighting parameters in energy function ((3.6)), whereas, the degree of freedom is two. In

general the weighing parameter of external constraint is set “1”. The weighting parameters of

internal energy and image energy are free. An experiment is implemented to exam the possi-

ble combination of weighting parameters. Table 3.1 shows the examined items. Figure 3.12

illustrates the reconstructed 3D dermo-epidermal surface models that corresponds to Table

3.1. When the weighting parameter of internal energy is enlarged, the result is smooth and

flat. Conversely, when the weighting parameter of image energy is enlarged, the undulation

of surface shape is clear, whereas the surface is rough. These results are well in agreement

with the theoretical consideration on the effect of changing weighting parameters. Depending

on this investigation and experts’ experience, the combination of wint = 0.6, wimage = 0.4

is adopted in this experiment.
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Figure 3.10: The distribution of epidermis thickness. The average thickness is about 91 µm.
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Figure 3.11: Comparison among the AOSM ((a)), EACM ((b)) established dermo-

epidermal surface and human experts’ observation ((c)).

3.5.2 Human Foot Shape Reconstruction

In the experiment of skin inner tissue surface reconstruction, the open form surface re-

construction issue is well solved by EACM. Spontaneously people would wonder whether

this approach is used to handle general closed object surface. Because the initial model of

EACM is integral (not similar to the AOSM, which partitions the initial model into lateral

and central parts.), the initial model of EACM can also be closed surface. In the next, the
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(a)                                                                 (b)

(c)                                                                 (d)

Figure 3.12: When the weighting parameter of internal energy is enlarged, the result is

smooth and flat. Conversely, when the weighting parameter of image energy is enlarged,

the undulation of surface shape is clear, whereas the surface is rough. In this experiment

the combination of wint = 0.6, wimage = 0.4 is adopted.

EACM is applied to deal with closed object surface- human foot. This application is pertains

to anthropometry.

As a research subject relating ourselves nearly, anthropometry has been widely used in

criminological, medical applications or selective trial of people[62]. Anthropometry also acts

an important part in the design of clothes and shoes, which need to be fit to the human body

very much. To create fitting shoes, the focus of shoes design is always on the measurement

of biomechanical behavior of a lot of human data, e.g. images. However, to process such a

large amount of data is an arduous task. Fortunately, modern computer makes it possible to

do accurate measurement automatically in even 3D by computer vision and image processing

techniques[39]. Now a day, some 3D foot scanners have been commercially available.

Although almost all these scanners can generate accurate 3D foot model, because of the
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measurement space is fixed and the position constraint of cameras is strict, dynamic behavior

of foot cannot be handled. However, feet are our motor organ, the dynamic behavior of them

is the most important factor in practice. As the first step, to reconstruct foot shape in a relative

free space is a significant work.

Triangulation-based structured light method, time-of-flight range finder and multiple view-

based technique are general used object surface acquisition tools[56][96]. The precision of

the measurement and the simplicity of the use have made structured light and time-of-flight

range finder the most widely used systems for surface measurement[29]. However, depending

on the size and resolution of the surface to measure, the acquisition time can range from

seconds to half minute. This fact requires the object human body should be stable without

motion during the measurement, so it is difficult to measure the foot shape in dynamically

moving situation. Even the acquisition of still images is difficult, because making the foot

retain a pose for half minute is almost impossible.

On the other hand, multiple views based method, e.g. volumetric intersection, makes use

of multiple camera system to acquire a set of images around object. Silhouettes are extracted

from these images, then combined to result in a 3D model[87][95]. However, because this

method cannot recover concave surface, high accuracy is difficult to be achieved.

Although accurate result is difficult to be obtained, the image acquisition space of volumet-

ric intersection method is relative free, and even dynamic behavior of object can be captured

for multiple camera system’s high acquisition speed. Thus, the multiple camera system is just

according with our purpose. In order to enhance the accuracy of result, EACM is employed

in this experiment. The EACM-based foot reconstruction method is implemented in an inten-

sity voxel space. The value of voxel is estimated by calculating the normalized correlation of

its correspondence pixels in multiple camera images.

Different from skin tissue, the shape of foot has a definite concept in our consciousness,

and the measurement of foot shape is relatively easier. As the results of conventional foot

shape measurement researches, databases of foot shape were established. In this experiment,

a foot shape database is introduced as a prior knowledge to improve the performance of

EACM[80][85]. The processing flow of foot shape reconstruction by EACM is illustrated in

Figure 3.13.

The experiment is carried out in the computer simulative. Multiple camera system is cre-

ated by Povray[61]. The term multiple camera images refer to images acquired from different

positions in the space describing the same scene. As described above, this experiments is im-
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Figure 3.13: The flow chart of 3D foot shape reconstruction by EACM.

plemented in an intensity voxel space. To establish the normalized correlation based-intensity

space, the camera geometry should be obtained first. Because this is a computer simulative

experiment, the camera parameters are known, when the system is established.

From the next, a general multiple views-based shape reconstruction technique: volumetric

intersection algorithm will be explained. Its result is used as the initial model of EACM.
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3.5.2.1 Volumetric Intersection Method

To generate 3D models from multiple camera images, various techniques have been pro-

posed, e.g. volumetric intersection method. The multiple camera images are processed to

extract the silhouettes, then combined to result in a 3D model[44][87][95]. For illustration

purpose, an example in 2D is given in Figure 3.14, in which the object is constructed by

intersecting the 2D visual wedges from every view point.

Although easy to implement, volumetric intersection has its own limitations. Shapes es-

timated by volumetric intersection are coarse, if the distance between camera centers is too

large. In Figure 3.14, there is distinct error in the top-right contour, for the distance between

view points C2 and C3 is too large. This means that it is difficult to obtain detailed shapes,

unless a large number of cameras are used. However, the concavities on an object cannot be

recovered even a large number of cameras are adopted.

Figure 3.15 shows the multiple camera images of a foot that is rendered by Poveray. The

corresponding silhouette images are illustrated in Figure 3.16 (3 pieces are illustrated). The

reconstructed 3D model of object is computed volumetrically by carving away all voxels

outside the silhouette area. A set of triangular polygons is generated from this voxel domain

by Matching Cube algorithm[47]. The 3D model is shown in Figure 3.17. According to this

result, the reconstructed 3D model is very coarse i.e. this model is only a rough approximation

of the actual object shape. However, the position of reconstructed result is near the object.

Thus, the volumetric intersection made model is used to be the initial model for EACM.

3.5.2.2 Normalized Correlation Based Intensity Voxel Space

In general, FDMM-based methods evaluate the adequacy of current model by surface fea-

tures in image plane (2D) or volumetric data (3D). In this experiment an intensity voxel space

is established by calculating normalized correlation of matching points of each voxel on mul-

tiple camera images. The relation between multiple camera images and voxel space can be

described as follows: there is a object in this 3D voxel space, the object is projected to multi-

ple camera images. Since the camera parameters of all the cameras in the simulative multiple

camera system can be estimated easily, the projection matrix of each camera is established.

Then the voxel on the object surface is described by extracted matching points of this voxel
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Figure 3.14: Diagram of reconstructing object surface with silhouettes Sk from view points Ck.

in each pair of the images (Figure 3.18). The normalized correlation may be a reasonable

evaluation of reliability of voxels. Normalized correlation is calculated as C in (3.7).

C =

∑m
i=−m

∑m
j=−m I ′1(uk1vk1)I ′2(uk2vk2)

(2m + 1)2
√

σ2(I1)σ2(I2)

I ′k(uk, vk) = Ik(uk + i, vk + j) − Īk(uk, vk)

Ī(uk, vk) =
m∑

i=−m

m∑
j=−m

Ik(uk + i, vk + j)
(2m + 1)2

(3.7)

where Ik (k=1,2) is the intensity of the matching points, and Īk is the average of intensities of

pixels in the window for correlation, which is sized (2m+1)× (2m+1). In this experiment,

the practical size of match window is 15 × 15 voxels centering on (uk1, vk1) and (uk2, vk2).

I ′k is the subtraction between Ik and Īk in the window. σ(Ik) is the standard deviation of the

intensity in the window.

In theory, since a voxel corresponds to all of the matching points in image plane, it seems

to be reasonable to adopt the average of all correlation values between all the pairs of mul-

tiple camera images to be the evaluation of each voxel. However, the occlusion issue has to

be cared. When a voxel is in occlusion, the occluded voxel corresponds to matching points

in only a part of pairs. In such case, the other voxels must exist between that voxel and one

of the cameras. Generally, the correlation value between correct matching points is higher
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Figure 3.15: 32 multiple camera images of a CG foot model with random texture.
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Figure 3.16: Silhouette images of the multiple CG foot model.

 

Figure 3.17: Reconstructed 3D model of the CG foot model by volumetric intersection.

than the correlation value between mismatching points. Thus, the maximum of all correspon-

dent correlation values is adopted as the voxel value. Figure 3.19 illustrates some traverses

of established volumetric data. It looks like the confocal microscopy images, whereas the

explanations of the intensity are different. In the confocal microscopy volumetric data, the

boundary of high intensity region and low intensity region corresponds to the object surface.

Projected point

Projected point

voxel

Normalized correlation

Figure 3.18: Normalized correlation between multiple camera image pair.
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Thus, the object surface can be detected by searching the zero crossing of the second order

intensity derivative. On the other hand, in the normalized correlation-based volumetric data,

the high the voxel intensity is, the voxel is closer to the object surface. Thus, the intensity of

each voxel is reasonable image energy.

Figure 3.19: Traverses of normalized correlation based volumetric data. The high in-

tensity voxels correspond to the surface of foot.

3.5.2.3 Result by EACM Method

Figure 3.20: Reconstructed 3D model of the CG foot model by EACM.

The reconstructed foot model by EACM is shown in Figure 3.20. Although a smooth 3D

model is obtained, the whole model surface is very stiff and gives a unnatural feeling. This

is mostly because of the doubtful reliability of normalized correlation based voxel space.

If the object surface has circular pattern texture, the normalized correlation will give error

evaluation of the voxel. In this experiment the CG foot model has random pattern texture,
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hence the circular pattern may occur. Moreover, the normalized correlation method implicitly

assumes that the observed surface is parallel to the multiple image planes. However, this

condition isn’t always satisfied. Thus, miss matching will be caused. Furthermore, because

there is no shape constraint, the shape features of object are getting vanished by the smooth

term of energy function.

3.5.2.4 Refination with Standard Model

The forementioned difficulties are occurred mainly because the model is pushed towards

the locations of the strongest local image features and not consider true anatomical boundary

locations. This issue can be addressed by incorporating prior shape constraint derived from

amount of shape instance about the same class of object.

Table 3.2: The detail of foot shape database

Size (U.S. size) 5 6 7 8 9 10

Male - 17 56 68 48 23

Female 11 20 78 42 24 10

A human foot database (training set) includes 397 adults’ right foot is adopted as a prior

knowledge. The foot models are established by measuring the surface position information

with a foot scanner (Figure 3.21). The scanner is developed by Digital Human Research

Center of The National Institute of Advanced Industrial Science and Technology[35]. Table

3.2 shows the distribution of size and sex of foot models in the training set.

372 experts selected human foot’s anatomical landmarks (sample points) are marked on

each foot sample by special markers before the scanning. 3D foot shape models are es-

tablished based on these sample points. Because the sample points of every foot model are

corresponding to the same anatomical landmarks, the sample points are considered have been

aligned.

A standard foot model is established by the means of calculating the mean position of each

sample points ((3.8)).

v̄i =
1
n

n∑
j=1

vj (i = 1 · · · 372, n = 397) (3.8)
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Figure 3.21: The foot models in database are established by measuring the surface

position information with a foot scanner[35].

where v̄i is a vertex of standard model, vi is the coordinate vector of a sample point.

To minimize the Euclidean distance between each sample point vi on foot model and the

closest sample points v′(xi, yi, zi) on the standard model, the foot model will be prevented

from lapsing the basic foot shape. It is called standard model constraint. The standard model

constraint is defined as

Es(vi) = wsw
i
v

[
(xi − xt

i)
2 + (yi − yt

i)
2 + (zi − zt

i)
2
]

(3.9)

where wi
v is determined by the reciprocal standard variation of each sample point of instances

in training set. ws is weighting parameter for the standard model constraint. In addition,

the position of initial model and standard foot model are registered by superposing their

geometric centroid. It is assumed that the sole of them are paralleling the XY plane of right

hand coordinate system.

Including this constraint, the energy function of EACM becomes:

E =
n∑

i=1

[Eint(vi) + Eext(vi) + Es(vi)] (3.10)

where Eint is the internal energy, Eext is the external energy that composed of image energy

and external constraint. For the detail of the external energy function, see (3.4) and (3.6)
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Figure 3.22: A reliable foot model is obtained, using the standard model constraint.

The reconstructed 3D model with standard model constraint is illustrated in Figure 3.22.

Apparently, this foot model is more similar to the real foot in shape. Because the shape in-

formation of input CG foot model is known previously, the root-mean-square-error (RMSE)

of result model surface and input foot model surface is calculated as a quantitative evalua-

tion. The RMSE of volumetric intersection method is about 7.523 voxels. Since 1 voxel is

equivalent to about 0.59mm the error of RMSE of volumetric intersection in “mm” unit is

about 4.44mm. On the other hand, the RMSE of EACM with standard model constraint is

5.943 × 0.59=3.50mm.

3.5.2.5 Discussion

In section 3.5.1.3, investigation of energy function’s weighting parameters is described.

In the foot shape reconstruction experiment, a shape constraint is derived from foot shape

database, we are very interested in investigating the reconstructed 3D models with different

combinations of internal energy and the standard model constraint’s weighting parameters.

The detail of comparison is illustrated in Figure 3.23. From down to top, the weighting

parameter of internal energy is becoming large and the model surface becomes smooth. On

the other hand, from left to right the weight of standard model constraint is becoming large,

the shape is getting similar to the standard foot model. The value under each model is the

RMSE in voxel unit. This investigation illustrated that the optimal combination of energy

function’s weighting parameters can improve the performance of the reconstruction method.

Although the standard model provides normal criterion of object shape, it describes the

common foot shape features only in a certain extend and cannot reflect the delicate difference

between foot samples.
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Figure 3.23: Reconstructed foot models under different combinations of weighting pa-

rameters of internal energy and standard model constraint.
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4.1 Overview of Parametric Deformable Model Method

4.1 Overview of Parametric Deformable Model Method

In the last chapter, EACM is used to detect the surface of human foot. To improve the

shape similarity of foot, the foot model is refined with a standard model that derived from foot

shape database. However, the accuracy of result is not satisfied. Although importance of each

sample point of standard model is ranked by the variance of all the models in database, the

shape generality of object is not always means the identity on the geometric size, whereas the

comparability is more important conversely. For instance, the shape of ankle is an outstanding

feature of foot. However, the height and size of the protuberance of ankle is various to each

people. An ideal foot model must maintain the generality features and represent distinct

features simultaneously. PDMM offers reasonable solution to this purpose.

Contrary to many other PDMM methods, active shape models (ASM) represents a general

way of performing non-rigid object segmentation. Shape variation is extracted from prior

knowledge (training set), using principal component analysis on point distribution models,

rather than handcrafting a prior knowledge into the model. The optimal parameters can be

obtained by the means of registering the initial model to distinct image features of object in

given images.

During image search, the model is only allowed to deform to shapes similar to the one

seen in the training set. Other deformable templates, such as ACM align to strong gradients

for locating the object, regardless of their actual appearance in the image. However, sample

points are not always placed on the strongest edge in the locality–they may represent a weaker

secondary edge or some other image structure. ASM learns the typical appearance that along

the perpendicular direction to the contour and builds a statistical model of geometric object

structure to use for image search.

Although ASM is a powerful method, distinct limitation of the ASM is that its initial model

does not consider gray-level variation of the object instance across images. Edwards, Cootes,

and Taylor proposed active appearance models (AAM)[26] to apply gray-level mode varia-

tion of instance to overcome this limitation, whereas it causes other difficulties. AAM cannot

handle cases well outside of the prior knowledge directly, e.g. occlusions. Moreover, in

3D space, to compute gray-level mode variations, the prior knowledge instances should be

normalized in identical 3D intensity space[52], hence the time-consuming establishment of

3D intensity space must be performed. Moreover, the most fatal issue is that AAM is at
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completely disadvantage, when the prior knowledge instances do not contain intensity infor-

mation.

In this work, a PDMM-based object shape reconstruction method is proposed. The pro-

posed method is similar to ASM in spirit. The proposed method is called modified active

shape models (MASM). The initial model is described by pose and shape parameters. The

evaluation of current model is implemented by the means of projecting the model to multiple

view images without establishment of 3D intensity space. The reliability of each parameter

is evaluated by assessing not only the registration of edge features, but also texture similarity

of correspondence pixels among multiple views images[81].

From the next, the proposed MASM method is described in detail.

4.2 Initial Model

Similar to other deformable model methods, MASM starts from an initial model. The

initial model is refined to fit the object surface. The initial model can be generated from a

training set including m object models.

The training set is usually aligned manually when it was established. Each model is com-

posed of n sample points. The sample points of each model describe the corresponding char-

acteristic positions of object. Thus, a standard object model v̄ can be established, computing

the average position of each sample point ((4.1)).

v̄i =
1
m

m∑
j=1

vj (i = 1 · · ·n) (4.1)

where i is the index of sample points, j is the index of models in the training set. In this work,

the standard model is used as initial model.

4.3 Pose Parameters

After the initial model is obtained, position and orientation of the initial model should be

registered to the given images.

The pose of a 3D model is defined similar to the camera model by scale, rotation and

translation. It is assumed that the same 3D model with different poses in identical coordinate

system are described as VA and VB . The transform from VA to VB can be described as

VB = ARVA + T (4.2)
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where

T =

⎛
⎜⎜⎝

Tx

Ty

Tz

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

s 0 0

0 s 0

0 0 s

⎞
⎟⎟⎠ and

R =

⎛
⎜⎜⎝

1 0 0

0 cosθx −sinθx

0 sinθx cosθx

⎞
⎟⎟⎠

⎛
⎜⎜⎝

cosθy 0 sinθy

0 1 0

−sinθy 0 cosθy

⎞
⎟⎟⎠

⎛
⎜⎜⎝

cosθz −sinθz 0

sinθz cosθz 0

0 0 1

⎞
⎟⎟⎠

A is scale matrix by s, R describes rotation by θ = (θx, θy, θz) and T is called trans-

lation vector. By adjusting the parameters (s, θx, θy, θz, Tx, Ty, Tz), the initial model can be

refined to fit the object in position and orientation.

After the pose register is accomplished, the initial model will be close to the object. How-

ever, there may still differences between current model and the object in shape.

4.4 Shape Parameters

Principal component analysis (PCA) is an effective approach to describe the statistical

relationship within a training set of objects. It can reduce the dimensionality of the data to

something more manageable.

Each example in the training set is represented in a 3n dimensional space. Thus a set of m

example shapes gives a group of n sample points in this 3n dimensional space. It is assumed

that all the sample points lie within some region of the space, which is called the “Allowable

Shape Domain” (ASD)[20]. Every sample point in this domain gives a set of sample points

whose shape is broadly similar to that of those in the training set. Thus by moving about

the ASD new shapes can be generated in a systematic way. However the n is more the cost

of computation will go up distinctly. So we are anxious a good efficiency approach in low

dimensional space. In order to achieve this goal, PCA is applied to the training set. For each

shape in ASD, deviation from the standard model v̄ is calculated as:

dvi = vi − v̄ (4.3)

The 3n × 3n covariance matrix S can be then calculated, using

S =
1
m

m∑
i

dvidvT
i (4.4)

The PCA gives the modes of variation of the shape. The variation modes are described by pk
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(k=1,…, 3n), which the eigenvectors of covariance matrix S such that

Spk = λkpk (4.5)

where λk is the corresponding eigenvalue of pk, λk > λk+1.

It can be shown that the eigenvectors of the covariance matrix corresponding the largest

eigenvalues describe the most significant modes of variations. Then the variations can be

explained by a small number of modes. This means that the 3n dimensional space is approx-

imated by a q dimensional space, where q is chosen so that the object shape can be described

by relative small variables.

Therefore any samples in the ASD (i.e., any allowable shape) can be reached by adding a

linear combination of the eigenvectors to the standard model v̄.

v = v̄ + PB (4.6)

where P = (p1, p2, · · · pq) is the matrix of the first q eigenvectors, and B = (b1, b2, · · · , bq)

is a vector of weighting parameters.

New samples of the shapes can be generated by varying the parameters bk within suitable

limits, so the new shape will be similar to those in the training set. The parameters are

linearly independent, though there may be nonlinear dependencies still present. The limits

for bk are derived by examining the distributions of the parameter values required to generate

the training set. Since the variance of bk over the training set can be shown to be λk, suitable

limits are typically of the order of

−3
√

λk ≤ bk ≤ 3
√

λk (4.7)

since most of the population lies within three standard deviations of the standard model.

4.5 Numerical Implementation

Appropriate pose and shape parameters are estimated with an iterative optimization proce-

dure.

T → T + dT

θ → θ + dθ

s → s + ds

B → B + dB (4.8)
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Cost function is defined to evaluate the parameters. In the conventional ASM technique, the

evaluation is implemented by checking the difference between model contour and edge ele-

ments in image data along the perpendicular direction. In general, a 2D or 3D intensity space

is necessary. However, when the input is not volumetric data, such as multiple camera im-

ages, the issue will be complicated. Although as described in section 3.5.2.2 the 3D intensity

space can be established by normalized correlation between image pairs, the precision is not

satisfied. Thus, novel evaluation means is proposed by the means of projecting the model to

multiple cameras images directly without establishing intensity space.

During the update step of the iterative process, if the difference of translation is too big,

the refinement of the other parameters will be invalid. Consequently, it is assumed that the

optimization of rotation parameters θ, scale parameter s and shape parameters B is started

when the update ratio of the sample points is less than 40% at the beginning of the processing.

The iteration will stop when the update ratio of the sample points of the last iteration and the

current iteration is under a threshold. In our experiment, the threshold is always set to less

than 1%.

To estimate optimal pose parameters, the silhouette images of multiple camera images are

applied to be the assessment of the pose registration. It is assumed that all of the camera

parameters have been obtained, hence the projection matrix P of each camera can be estab-

lished easily. Then all the sample points on initial model are projected onto the silhouette

images i.e. the world coordinates of sample points are transformed to a 2D coordinate system

of image plane by (4.9).

vi image = Pvi world (4.9)

where vi world and vi image are the world coordinate vector and image coordinate vector of

sample points vi respectively. In this means, 3D initial model and 2D multiple camera images

is related. Because the intensity Iij of silhouette pixels is always higher than the background

pixels in a binary image, updating the pose parameters to maximize the cost function Epose

((4.10)), the initial model may approache the object.

Epose(A, θ, T) =
∑

i

∑
j

Iij (4.10)

where, i is the index of binary silhouette image of multiple camera images, j is the index of

sample points.
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Figure 4.1: The flow chart of parameters optimization procedure.

On the other hand the cost function for shape parameters’ optimization is also needed. The

cost function is defined by the sum of absolute deviation of sample point’s projection on

multiple camera images.

Eshape(B) =
f∑

i=1

n∑
j=1

wij

∣∣Iij − Īj

∣∣ (4.11)

where i is the index of camera, j is the index of sample points. Iij is the intensity of sample

point’s projection on image plane. wij is weight factor. Īj =
1
f

f∑
i=1

Iij is the average of Iij .
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Thus, the minimization of the cost function indicates the most credible position of sample

points.

However, it is assumed that the background of the multiple camera image is black, i.e. the

intensity of the background is “0”. If the projection of sample points falls into the background

field in all the multiple camera images, the cost function will be 0. However this is not a

desirable result apparently. To overcome these issues, a distinctive condition is added to the

cost function: the Euclidean distance between the contour sample points and the edge of

object in the multiple camera images. By minimizing the distance, the sample points will be

prevented from leaving the object images. The cost function is transformed as

Eshape(B) =
f∑

i=1

n∑
j=1

(wij

∣∣Iij − Īj

∣∣ + w
′
ijDij) (4.12)

where Dij is the distance between the sample points whose projection is on the contour of

the projection area of all the sample points (we call them “contour sample points”) and the

closest edge of foot in multiple camera images.

The optimization of the cost function is implemented with “Rosenbrock” algorithm[63]

(For detail see Appendix C).

As other multiple camera-based modeling systems, the occlusion issue has to be cared.

When a sample point is in occlusion, it is not visible in all of the multiple camera images.

Thus, the occluded sample point will not do contribution in such invisible images. A novel

sample points occlusion assessment method in Appendix D. Simultaneously, the estimation

of contour sample points will also be explained.

To reflect the distance constraint and occlusion’s effect on the process, we redefine the

shape parameters cost function as

Eshape(B) =
m∑

i=1

n∑
j=1

(cijwij

∣∣Iij − Īj

∣∣ + c
′
ijw

′
ijDij) (4.13)

where

cij =

{
0 occlusion

1 otherwise
c
′
ij =

{
1 counter sample points

0 otherwise
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4.6 Experiments and Results

4.6.1 Computer Graphics Data

The same CG simulative foot shape reconstruction experiment is carried out firstly.

Here the 3D model and multiple camera images are combined with the perspective pro-

jection matrix, and cost functions are defined to evaluate their registration. The total flow of

MASM-based foot shape reconstruction is illustrated in Figure 4.2.

In the following experiments, the forementioned foot shape database (section 3.5.2) is

adopted as the training set and the standard model derived from it is used to be initial model.

As described in section 4.4, the shape parameters of MASM are derived from the most

significant modes of variations. Because the eigenvectors of the covariance matrix corre-

sponding to the largest eigenvalues describe the most significant modes of variations, the

contribution ratio of each mode for describing the model shape is calculated as

ci =
λi

λT
(4.14)

where λi is the eigenvalue of the covariance matrix, λT is the sum of all the eigenvalues.

Furthermore, the cumulative contribution ratio ((4.15)) may help us to determine how many

modes of variations should be adopted.

cumi =
i∑

j=1

cj (4.15)

Table4.1 illustrates the contribution and cumulative contributions of shape mode variations.

It can be found that more than 90% of the shape variance is explained by the first 12 modes

of variations. On the other hand from the 13th mode the contribution ratios are less than

0.5%, thus the influence of them can be ignored. The first 12 modes are considered to be

the principal components and the weights of these modes are the shape parameters in the

experiments.

To give a visual explanation, examples of these shape variation modes are shown in Figure

4.3. The models are obtained by varying the first five shape parameters in turn. The first

parameter varies the scale of foot model. The second parameter varies the height of ankle.

The third parameter varies the shape of ankle section. The fourth and fifth parameters vary

the length and curvature of the upside of foot.
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Figure 4.2: The flow chart of the foot shape reconstruction, using MASM.
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Table 4.1: The contribution ratio and cumulative contribution ratio of variation modes

Eigenvalue contribution ratio cumulative contribution ratio

λ1 64.58% 64.58%

λ2 11.58% 76.16%

λ3 4.69% 80.85%

λ4 2.65% 83.50%

λ5 1.89% 85.39%

λ6 1.58% 86.97%

λ7 1.35% 88.32%

λ8 0.96% 89.28%

λ9 0.88% 90.16%

λ10 0.75% 90.91%

λ11 0.59% 91.50%

λ12 0.52% 92.02%

λ13 0.48% 92.50%

λ14 0.44% 92.94%

λ15 0.41% 93.36%

λ16 0.39% 93.75%

λ17 0.35% 94.10%

λ18 0.35% 94.45%

λ19 0.29% 94.73%

λ20 0.28% 95.01%

· · · · · · · · ·

The result of MASM-based reconstruction method is illustrated in Figure 4.4. The point

cloud in the images is the projection of sample points. Because the projection of sample

points will be difficult to be recognized by the effect of texture on object surface, the sample

points are projected to the silhouette images that are extracted by background subtraction.

During the iterative (from top left to right bottom) projections of sample points are getting

fitted the foot image well. Figure 4.5 is the reconstructed shape model displayed in 3D space.

Since volumetric intersection is a very popular surface reconstruction technique, we are
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very interested in the comparison with it. Figure 3.17 has shown the result of volumetric

intersection in 3D. It is obvious that MASM’s result is smoother and more similar to the real

human foot than volume intersection. The RMSE of MASM’s result is 2.21mm.

Figure 4.6 shows the 2D instances of reconstructed foot surface of volumetric intersection

method, EACM and MASM. The solid curve is the input foot surface contour. The highlight

points indicate the position of sample points on reconstructed model. In Figure 4.6 (a), the

result of volumetric intersection makes large errors to the object surface. The EACM-based

method generates a smooth model surface, whereas errors are occurred near the corner of

object surface (inside the dash line circle in Figure 4.6 (b)). On the other hand, MASM’s

result (Figure 4.6 (c) ) gives the most reasonable shape to object.
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Figure 4.3: Effects of varying each of the first five shape parameters of the foot model individually.
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Figure 4.4: CG image of a foot model with the projection of sample points superim-

posed, during iterative process (from the top left to right bottom).

Figure 4.5: Reconstructed 3D model of CG foot model, using proposed method.
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           (a)

      (b)

     (c)

Figure 4.6: (a) The result of volumetric intersection makes large errors to the object

surface. (b) The EACM provided a smooth model surface, whereas obvious errors are

occurred near the corner part of object surface (inside the dash circle). (c) MASM

generated the most reasonable surface model of object.
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4.6.2 Real Data

Because the MASM-based foot shape reconstruction method achieves a good accuracy, it

is also performed in real data experiments.

4.6.2.1 Multiple Camera Images Acquisition System

In the real data experiments, the multiple cameras are treated with standard video format

(24 bit color or 8 bit black and white, 640×480 pixels) and frame rate (7.5 or 15 frames/sec).

To record a scene with movement, the multiple images are acquired simultaneously. The

precision of the synchronization of the multiple imaging devices plays an essential role for

the accuracy potential of the measurement achieved using the images.

On the other hand, to record static scenes, the multiple camera images can be acquired at

different times without a loss of accuracy. However, for applications involving recording peo-

ple, the human body cannot be considered as a static object, because a person always moves

slightly unconsciously due to, for example, breathing or muscle contraction. Therefore, for

surface measurement of human body parts, it is always recommended to precisely synchro-

nize the multiple cameras. Various methods can be used to acquire multiple camera images

sequences. Although different camera systems have similar resolution and quantization, dif-

ferent levels of quality can be achieved depending on the system. They are listed below in

order of decreasing accuracy potential:

• synchronized machine vision progressive scanning CCD cameras,

• synchronized machine vision interlaced scanning CCD cameras.

For the progressive scanning can be critical in viewing detail within motion images and

modeling of dynamic object is a future work of our research, the multiple camera system is

established with 8 Sony DFW-SX900 CCD cameras in this experiment.

4.6.2.2 System Calibration

System calibration is defined the simultaneous calibration of all the components involved in

the acquisition system. Camera calibration refers to the determination of the intrinsic param-
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Object

Figure 4.7: Progressive scan CCD camera multiple image acquisition system. Setup of

the system, the cameras are synchronized together and connected to a PC.

eters describing the internal geometry of the individual imaging devices and other parameters

(extrinsic parameters) modeling the systematic errors caused by the optical system and other

sources and parameters that determine the parameters of exterior orientation to define the

camera station and camera axis in the 3D space. A thorough determination of all the param-

eters is required for an accurate measurement. In the next sections, the mathematical model

for the projection of the object space onto the digital image coordinate system is described

first. The method used in this work to calibrate the multiple camera systems is then presented.

4.6.2.3 Mathematical Camera Model

In this section the mathematical model for the projection of a point in the world coordi-

nate system is described with the transformation into image coordinates (Figure 4.8). This

transformation can be divided into 4 steps.

XYZ
(World coordinate) (Camera coordinate)

xyz
(Image coordinate 

without distortion)

x'y'
(Image coordinate 

with distortion)

x*y*

Figure 4.8: The transform from world coordinate to image coordinate.
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O

Z

Y
X

x

y’

z

ϕ

κ

ω

N

M
Omn

focaus

W(X,Y,Z)
C(x,y,z)

x’ y

I(x’ ,y’ )
I*(x*,y*)

o

Figure 4.9: W (X, Y, Z) in world coordinate is transformed to image coordinate

(M, N), using the intrinsic and extrinsic camera parameters.

(1) A world coordinate vector W (X, Y, Z) is projected to the camera coordinate as

C(x, y, z) by the following equation:⎡
⎣ x

y
z

⎤
⎦ = R

⎡
⎣ X

Y
Z

⎤
⎦ + T (4.16)

where R(ω, φ, κ) is 3 × 3 relation matrix that describes the rotation from world coordinate

system to the camera coordinate system.

R =

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ (4.17)

=

⎡
⎣ cosωcosκ −cosφsinκ sinφ

cosωsinκ + sinωsinφcosκ cosωcosκ − sinωsinφsinκ −sinωcosφ
sinωsinκ − cosωsinφcosκ sinωcosκ + cosωsinφsinκ cosωcosφ

⎤
⎦

T is 3 × 1 translation matrix that describes the translation of origins from world coordinate

system to the camera coordinate system.

T =
[

Tx Ty Tz

]T
(4.18)

(2) The transform from 3D camera coordinate system C(x, y, z) to 2D image coordinate
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system without distortions, denoted by I(x′, y′), is described as:

x′ = f
x

z
y′ = f

y

z
(4.19)

where f is the focal length of lens.

(3) The coordinate vector I∗(x∗, y∗) with distortion can be computed by

x∗ = x′ − Rx (4.20)

y∗ = y′ − Ry

where, Rx and Ry are symmetric radial and lens distortion respectively.

(4) Finally, the pixel coordinate vector in the computer can be obtained by the following

transformation:

M =
x∗Mx

µx
+ Om (4.21)

N =
−y∗

µy

where (Om, On) is the coordinate of image center. µx, µy are the pixel size in x-axis and

y-axis respectively.

In general, R and T are called extrinsic camera parameters, and the other parameters are

called intrinsic camera parameters. If these parameters are obtained, an arbitrary point’s pixel

coordinate in computer memory can be computed from its world coordinate easily, and vice

versa. The estimation of these camera parameters is called camera calibration. The transform

from world coordinate to image coordinate is illustrated in Figure 4.9.

4.6.2.4 Camera System Calibration by Self-calibration

To orient and calibrate camera systems, various methods can be used. However, two char-

acteristics of multiple camera systems have relevant importance for choosing adequate and

appropriate calibration and orientation procedures: (a) the multiple cameras have usually ei-

ther a fix position or they are displaced all together without changing their relative positions;

(b) the multiple cameras have to be calibrated and oriented very often (e.g. at every acquisi-

tion sessions) because of the need of small adjustments (e.g. focus and iris, and even position

and direction). For these reasons, a simultaneous calibration and orientation (system cali-

bration) of the multiple cameras is more appropriate. These two problems are solved in this

research work with a convenient self-calibration method.
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This method only requires the cameras to observe a planar pattern shown at a few different

orientations and a static cubic reference object and track a light maker in the calibration

space[46]. The procedure is as follows:

• Estimate the intrinsic parameters by Zhengyou Zhang’s flexible calibration method[98].

• Compute the initial estimate of the extrinsic parameters with Direct Linear Transform

method[1] by using a cubic reference object.

• Track a distinct marker simultaneously from all the viewing points.

• Use the epipolar constraint provided by the marker positions in all the input views. The

initial estimation of the extrinsic parameters are refined with the down-hill simplex opti-

mization algorithm[54](For the detail of down-hill simplex see Appendix E).

■Estimation of the Intrinsic Parameters The calibration procedure of intrinsic parame-

ters is as follows:

• Print a checker patter (Figure 4.10) and attach it to a planar surface;

• Take a few images of the model plane under different orientations by moving either the

plane or the camera (Figure 4.11);

• Detect the feature points in the images;

• Estimate the intrinsic parameters and all the extrinsic parameters using the closed-form

solution;

• Estimate the coefficients of the radial distortion by solving the linear least-squares;

• Refine all parameters by minimizing.

For more details see the reference[98].

■Estimation of the Initial Extrinsic Parameters with DLT Recording images using a

camera is equivalent to mapping object point O(X, Y, Z) in the world coordinate system to

image point I ′(x′, y′) in the image plane. For digitization, this recorded image will be pro-

jected again to image I(x, y) in the projection plane. However, for simplicity, it is possible to

directly relate the projected image to the object. Object O is mapped directly to the projected

image I by (4.22),(4.23).⎡
⎢⎢⎣

C1

C2

C3

C4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ (4.22)
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Figure 4.10: A plane with 11 × 10 checker pattern for estimating intrinsic camera parameters.

Figure 4.11: Take a few images of the checker pattern plane under different orientations.

Then

x =
C1

C4
y =

C2

C4
(4.23)
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P =

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎥⎦ is called projection matrix. By expanding (4.23)

x =
a11X + a12Y + a13Z + a14

a41X + a42Y + a43Z + 1

y =
a21X + a22Y + a23Z + a24

a41X + a42Y + a43Z + 1
(4.24)

If a group of control points whose x, y and z coordinates correspond image coordinates on

image plane are already known. The projection matrix can be computed with (4.24). For the

free degree is 11, the known control points should more than 6. The control points must not

be co-planar. In other words, the control points must form a volume, the control volume. The

control points are typically fixed to a calibration frame or control object. In this work, we use

a cubic reference object (Figure 4.12) for compute the projection matrix.

Figure 4.12: Compute the initial estimate of the extrinsic parameters with Direct Linear

Transform method, using a cubic reference object.

Projection matrix P3×4 can also be obtained by P = A[R|T], and because the intrinsic

parameters are known, the extrinsic parameters can be estimated from the projection matrix.
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Figure 4.13: Track a distinct marker simultaneously from all the view points.

■Refination of the Extrinsic Parameters If m(u, v) and m′(u′, v′) are corresponding

image points of a 3D object point in two cameras C′ and C’s image planes, then

[
u′ v′ 1

]
F

⎡
⎣ u

v
1

⎤
⎦ = 0 (4.25)

i.e. x′Fx = 0, where F is the 3 × 3 fundamental matrix of maximum rank 2. (4.25) is also

called epipolar constraint.

In general F can be estimated as follows:

F = A′−T [T]xRA−1 (4.26)

where A′ and A are the intrinsic matrix of camera C’ and C respectively. T, R are respectively

rotation matrix and translation matrix of camera C.

Because the camera parameters of each camera have been obtained by the method de-

scribed above, an initial fundamental matrix can be estimated by (4.26).

To refine the parameters, particularly the extrinsic parameters, a highlight marker is tracked

simultaneously in the calibration space (Figure 4.13). The marker is extracted from each

multiple camera image. Then the initial extrinsic parameters are refined to satisfy the epipolar

constraint. Down-hill simplex optimization algorithm is implemented for refining the camera

parameters (Appendix E).
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Figure 4.14: Multiple camera images of real human foot.

Figure 4.15: Multiple camera silhouette images of real human foot.

4.6.2.5 Experimental Results

In the real data experiments, to make the partition of foot images easily and decrease the

light reflection of foot skin, object is put on socks. The socks can also add texture information

for parameter optimization procedure. The multiple camera images are shown in Figure 4.14.

In the pose parameter estimation, silhouette images are necessary. In the CG experiment,

silhouette images are generated by background subtraction. However real data’s background

is more complex than CG data, hence, not only background subtraction, but also manual

remove of the unwanted objects, e.g. the leg, is implemented. Although the manual “leg
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Figure 4.16: Multiple camera image of real human foot with the projection of sample

points superimposed, during iterative process (from the top left to right bottom).

remove” work is complicated, for 8 multiple camera images, it is still acceptable. The sil-

houette images are shown in Figure 4.15. Although the silhouette of foot is obtained, gaps

are occurred obviously. Because this problem happened after erasing the leg part, it is called

“leg occlusion”.

Although the image data of real foot is more complicated than CG data and the camera

parameters are not as accurate as CG simulative experiment, the foot model is approaching the

foot image during the iterative optimization procedure (Figure 4.16) and satisfied 3D model

is established (Figure 4.17). To give a qualitative evaluation, volumetric intersection method

is performed. The reconstructed 3D model is illustrated in Figure 4.18. It is obvious that

volumetric intersection generated a coarse foot model. This happened principally because

of the “leg occlusion” phenomenon. The volumetric intersection back-projects the voxels

to multiple camera silhouette image in a cone space, then intersects all the cones to build

a volume, which is guaranteed to contain the object. Because this approach relies on the
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Figure 4.17: Reconstructed 3D model of real human foot, using proposed method.

Figure 4.18: Reconstructed 3D model of real human foot, using volume intersection.

smallest crossing volume of all the volumetric cones, if there are gaps on silhouettes, the

reconstructed model will be corrupted largely. Since MASM adopts training set to establish

an standard foot shape as the initial model and statistical knowledge of foot shape is calculated

by PCA, the effect of “leg remove” can be removed. Figure 4.17 shows that an integral foot

model is reconstructed by MASM.

The qualitative evaluation described above validated that the proposed method is also avail-

able for real human foot reconstruction. However, to give more reasonable evaluation, quan-

titative evaluation is also expected.

A different point between CG data and real camera data is that the pre-evaluation answer is

not known. Thus, the validation of the results is a difficult issue. In this work, an experiment

concerning a plastic foot model, whose position is measured previously, was performed. The

multiple camera images and corresponding silhouette images are shown in Figure 4.19 and

Figure 4.20 respectively. The result of proposed iterative method is shown in Figure 4.21.

The RMSE is about 2.46mm. This error is near the CG experiment.

Since there is no effect like “leg remove” for plastic foot model, the result of volumetric

intersection method (Figure 4.22) is not as coarse as Figure 4.18. However, 8 cameras are too
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Figure 4.19: Multiple camera images of plastic foot model.

Figure 4.20: Multiple camera silhouette images of plastic foot model.

little for the volume intersection algorithm, the reconstructed 3D model is still too rough to

be considered an acceptable approach. On the other hand, under the same condition (using 8

CCD cameras) a better 3D model is obtained by MASM (Figure 4.23).

Because there is no effect of “leg occlusion”, the plastic foot model experiment is simpler

than the real human foot. However, since an integral initial model is adopted and the PCA-

shape deformation constraints can prevent unexpected deformation, the “leg occlusion” is

not an important factor for the proposed method. Furthermore, because the multiple camera

images are acquired in the same image acquisition environment, the quantitative evaluation

on plastic foot model experiment offers that the proposed method is available for real world
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Figure 4.21: Real camera image of a plastic foot with the projection of sample points

superimposed, during the iterative process (from the top left to right bottom).

object.

4.7 Discussion

PCA can reduce the dimensions of variations by effective variation modes, whereas the

number of variation modes should be considered carefully. Although the cumulative con-

tribution ratio is a useful assessment, other factors, e.g. time costing, the information that

carried by each variation mode and so force, are also have to be concerned. To discover

the effect of these factors, experiments with different number of variation modes are imple-

mented. As that is shown in Table 4.2, when the cumulative contribution ratio is enlarged, the

time cost is increasing and the error is decreasing. However, if the cumulative contribution

ratio getting is more than 90%, the error’s descending speed is getting slow, whereas the time

costing is increasing quickly. This trend is more distinct when the cumulative contribution
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Figure 4.22: Reconstructed 3D model of plastic foot model, using volume intersection.

Figure 4.23: Reconstructed 3D model of plastic foot model, using proposed method.

ratio is more than 92%. Figure 4.24 illustrates Table 4.2 visually. Moreover, the contribution

ration is less than 0.5% after the 13th variation mode (Table 4.1). Thus, the first 12 variation

modes are adopted to be the shape parameters in the experiments.

Table 4.2: The investigation of the effect of cumulative contribution ratio on processing

time cost and error

cumulative contribution ratio (number of variation modes) time costing Error (mm)

80.85% (3) 4’42” 3.38

85.39% (5) 5’30” 2.97

90.16% (9) 10’00” 2.72

92.02% (12) 14’22” 2.46

95.01% (20) 22’52” 2.45
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Figure 4.24: When the cumulative contribution ratio is enlarged, the time cost is in-

creased and the error is decreased. If the cumulative contribution ratio is more than

90%, the error’s descending speed is getting slow, whereas the time costing is increas-

ing quickly. This trend is more distinct, while the cumulative contribution ratio is more

than 92%.
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5.1 Summary of the Proposed Methods

5.1 Summary of the Proposed Methods

5.1.1 Free-form Deformable Model-based 3D Shape Reconstruction
Methods

The deformable model-based methods for reconstructing object shape in 3D are proposed

in this paper. To handle open form arbitrary shape object such as the skin inner tissue sur-

face, free-form deformable models-based methods AOSM (active open surface models) and

EACM (energy modified active contour models) are proposed. The merits of these methods

are summarized in the following:

1. The reconstruction of open form surface are addressed by proposed methods;

2. Triangle patch based initial model favors the EACM method to be a general approach

for both open and closed form surface;

3. EACM offers novel external constraint, so that even the initial model is set far from the

object surface, the model can also approach the desirable position;

4. Levenberg-Marquardt based numerical implementation favors EACM search the object

surface with high convergence speed and global minimum.

5.1.2 Parametric Deformable Model-based 3D Shape Reconstruc-
tion Method

On the other hand, to generate high reliable reconstruction, a parametric deformable model-

based method: MASM is proposed. This method makes use of prior knowledge (training set),

so that the object shape can be recovered according to the common shape features of the same

class of the object. The merits of this method is:

1. Unexpectable deformation are prevented by shape variation modes from training set;

2. Because standard model from the training set is used to be initial model, integral 3D

model can be reconstructed even part of the object is occluded;

3. A novel parameter optimization procedure is proposed, so that the parameters can be

optimized reliably.
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Accuracy

Easy to use

Initial model constraint

Prior knowledge dependence 

MASM EACM AOSM

Figure 5.1: Benchmarking of the three proposed modeling techniques: AOSM, EACM

and MASM on four aspects: accuracy, easy to use, initial model constraint and prior

knowledge dependence. The farther from the center of the graph, the better it is (note

the different directions of the axes).

Particularly, in the proposed method, the evaluation of model is implemented by projecting

the 3D model to multiple camera images. Thus the gray-level features of object are efficiently

applied to the optimization of shape model.

5.2 Comparison of the Capabilities

The proposed methods are implemented in some applications, such as reconstruction of

skin inner tissue surface and human foot. The capabilities of AOSM, EACM and MASM are

validated with these experiments.

To compare the proposed methods for object shape reconstruction, four aspects can be

considered: accuracy, easy to use, initial model constraint and prior knowledge dependence.

Figure 5.1 shows the four aspects for the proposed methods.

The accuracy of the 3D reconstruction techniques is one of the most important and sig-

nificant aspects. The greatest accuracy potential is held by MASM, followed by EACM and

AOSM. It is obvious that the prior knowledge increasing the stability of the shape reconstruc-

tion. In most applications, a training set, in which the instance describe the shape of the same
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class of object, is introduced as prior knowledge. The PCA estimated shape mode variances

gives promised result in the experiments of MASM.

The dependence of prior knowledge is a negative aspect to accuracy in a certain extent.

Although the prior knowledge is efficient to improve the result accuracy, it will limit the

object that can be handled by MASM. In some applications the shape of objects don’t have

distinctly common features, i.e. the shape variances of almost all the sample points are too

large to align, such as the skin tissue intersection surface. The free-form deformable model

based methods: AOSM and EACM are successful in coping with such object without prior

knowledge.

The initial model constraint, in fact, is correlating very much to the easy to use aspect that

will be described subsequently. Because the AOSM is an appropriative open form surface

modeling processor, its initial model is always open space surface and partitioned into two

parts, hence the processing becomes complicated. Conversely, the initial model of EACM

and MASM are corresponding to the object shape, thus the EACM and MASM are more

flexible.

The last investigating aspect is easy to use, which is concerning with the last two aspects.

The MASM method implies different processing steps (system calibration of multiple camera

system, pose matching, shape parameters optimization), whereas AOSM and EACM deliver

the results through more simple procedure. However, the establishment of voxel space makes

the pre-processing of AOSM and EACM complex. Particularly, the “easy to use” is decreased

by the complicated initial model of AOSM.

5.3 Suggestions for Further Research

5.3.1 Accuracy Improvement of Human Skin Tissue Surface Recon-
struction

Concerning the skin tissue intersection surface reconstruction system, the evaluation is a

puzzling issue. In this work, the result surface is evaluated by the comparison with human

experts’ observation. However, this evaluation is obviously subjective and is not helpful for

the result accuracy. To improve the accuracy, a skin inner tissue training set may be helpful.

The training set is established with three uncorrelated conditions:

1. Age: samples with broad age range;
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2. Time: the same sample is measured at different times;

3. Position: samples cover the different positions of human body, such as the skin tissue of

leg, face and arm.

Global structure template can be extracted from this training set to constrain the model

deformation. The parametric deformable model methods can also be implemented with this

training set to generate high accuracy result. However, the alignment of samples in both

measurement and analysis phases may be difficult.

5.3.2 Energy Evaluation of Free-form Deformable Model Methods

In FDMMs, energy functions are used to evaluate the current models. Generally, the evalu-

ation is implemented in intensity space. Although normalized correlation can be used (section

3.5.2.2), the processing is complicated and the accuracy is doubtful. MASM gives construc-

tive approach. The energy functions of FDMMs can also be evaluated by the means of pro-

jecting the model to multiple camera images. The pose of initial model and object can also

be registered, using the pose parameters like MASM. However, the cost function of the pose

registration has to be determined carefully. For instance, the texture correlation of control

points between multiple camera images or the edge elements are reasonable assessment for

the foot shape reconstruction application.

5.3.3 Data Acquisition and Motion Data Processing of Multiple
Camera System

Concerning the multiple camera image acquisition systems, further research can be di-

rected toward two different interesting goals: high quality or low cost. For establishing high

quality acquisition system the number of cameras has to be extended, allowing a more com-

plete imaging of the interested object (from the front, sideways and form the back). In the

other direction, for demonstration and educational purposes, it would be very interesting to

develop a (very) cheap multiple camera image acquisition system using, e.g. web cameras

connected to a portable PC. A precise synchronization of the cameras is not possible and

therefore high accuracy of the measurement cannot be achieved. Still, the great demonstra-

tion potential of a portable measurement system would be very attractive.

On the other hand, the requirement of motion data processing ability is getting important

92



5.3 Suggestions for Further Research

today. Therefore how to develop the proposed method to cope with motion data will also be

our future work. For instance, in the foot shape reconstruction system, the exploited method

can be achieved, refining the initial model to fit the first frame of images sequence by MASM.

Then sample points are tracked in rest frames. Thus the dynamic behavior can be described

by the changing of sample points’ position. However, low-importance shape variation modes

of MASM for static 3D model may become pivotal elements for motion simulation. Thus,

how to decide the necessary shape variation modes momentarily will be the most important

issue in motion data processing.
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A Establishment of Triangle Patches by Control Points

Appendix A Establishment of Triangle Patches by Control

Points

In computer, 3D objects are always composed of triangle patches. Each triangle is estab-

lished by two nearest neighbors and current control point v1 (Figure A.1). The triangle plane

is determined by a 4 × 4 matrix

A = plane(v1, v2, v3) =

⎛
⎜⎜⎝

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

⎞
⎟⎟⎠ (A.1)

where vi = (xi, yi, zi)T

v1(x1,y1,z1)

v3(x3,y3,z3)

v2(x2,y2,z2)

X

Y

Z

Figure A.1: A plane defined by three points (not in a line) in 3D space.

Then points inside the triangle can be estimated by exploring minimum to maximum of

arbitrary two axes among X, Y and Z ((A.2)).

|A| =

∣∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣
⇒

∣∣∣∣∣∣
x − x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣ = 0 (A.2)
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Appendix B Levenberg-Marquardt Iterative Optimization

Technique

Levenberg-Marquardt[60] is a popular alternative to the Gauss-Newton method of finding

the minimum of a function F (x). The optimal variable vector x∗ is estimated by iterative

search ((B.1)) from the initial vector x. It is assumed that x is a 3D vector, x = (x, y, z).

xk+1 = xk + αkdk (B.1)

where αk is the search step and search direction is decided by vector d.

dk = −Hk∇F (xk) (B.2)

where

∇F (xk) =
(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
(B.3)

Then H is transform matrix

Hk = ∇2F (xk) + µkI (B.4)

where I is an unit matrix, µ is a positive real number. µ is approaching 0, while x is becoming

optimal. Thus, µ is also a search step controller. ∇2F (xk) is called Hessen matrix whose

expression is in (B.5)

∇2F (xk) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2F

∂x2

∂2F

∂x∂y

∂2F

∂x∂z
∂2F

∂y∂x

∂2F

∂y2

∂2F

∂y∂z
∂2F

∂z∂x

∂2F

∂y∂z

∂2F

∂z2

⎞
⎟⎟⎟⎟⎟⎟⎠

(B.5)

α in (B.1) is estimated by the following inequations, which are called Wolfe’s conditions.

F (xk + αdk) − F (xk) ≤ σ1α(∇F (xk))T dk (B.6)

(F (xk + αdk)dk ≥ σ2(∇F (xk))T dk (B.7)
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Appendix C Rosenbrock Method

The Rosenbrock method is a 0th order search algorithm (it means it does not require any

derivatives of the target function. Only simple evaluations of the objective function are used).

However, it approximates a gradient search thus combining advantages of 0th order and 1st

order strategies. It was published by Rosenbrock[63] in the 70th.

This method is particularly well suited when the objective function does not require a great

deal of computing power.
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Figure C.1: The iterative processing of Rosenbrock algorithm.

Rosenbrock method is an iterative optimization algorithm. In the first iteration, it is a

simple 0th order search in the directions of the base vectors of an n-dimensional coordinate

system. In the case of a success, which is an attempt yielding a new minimum value of the

target function, the step width is increased, while in the case of a failure it is decreased and
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the opposite direction will be tried (see points 1 to 16 in Figure C.1). Once a success has

been found and exploited in each base direction, the coordinate system is rotated in order to

make the first base vector point into the direction of the gradient (the points 13,16 and 17 are

defining the new base). Now all step widths are initialized and the process is repeated using

the rotated coordinate system (points 16 to 23).

The Rosenbrock algorithm has also been proved to always converge[9] (global convergence

to a local optima assured). Initializing the step widths to rather big values enables the strategy

to leave local optima and to go on with search for more global minima. It has turned out that

this simple approach is more stable than many optimization algorithms and it requires much

less calculations of the target function than higher order strategies.
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Appendix D Occlusion Assessment of Multiple Camera

System

Because the intensity of sample points’ projection on multiple camera images is used to

evaluate the parameters of MASM, the occlusion issue has to be cared. In Figure D.1 the solid

line triangles represent the patches that faces the camera O and dash line triangles represent

the patches on the reverse surface to the camera. The patches on the reverse surface are

invisible, i.e. the vertices (sample points) of the invisible triangle patches are occluded. If the

occluded sample point, for instance F is projected onto the image plane, the corresponding

point H on the image plane don’t represent F , but G. G is the intersection point of the sight

line and a triangle patch. If H is still considered to be the projection of F , the intensity

feature of G is used actually. Thus, errors are occurred imaginably.

In this work, to address the issue of occlusion, the spatial relationships between each sam-

ple point and all the triangle patches are investigated. First, the relationships are checked in

2D image plane. The relationships can be partitioned into four categories:

• Inside: A sample point’s projection inside a triangle patch;

• Outside: A sample point’s projection outside a triangle patch;

• Border: A sample point’s projection is on the border of a triangle patch;

• Superposition: A sample point’s projection superposes a vertex of a triangle patch.

Furthermore, if it is assumed that “Border” comes under “Inside” and “Superposition” comes

under “Outside”, there remains two relationship classes: Inside and Outside (Figure D.2).

“Inside” and “Outside” can be simply determined by cosine theorem. In Figure D.3 sample

point D is inside a triangle �ABC, according to the cosine theorem,

∠ADB = arccos(
AD2 + BD2 − AB2

2AD × BD
) (D.1)

∠ADC = arccos(
AD2 + CD2 − AC2

2AD × CD
) (D.2)

∠BDC = arccos(
BD2 + CD2 − BC2

2CD × BD
) (D.3)
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Image plane

A

B

C

A'

B'

C'

F
G

O

D

E

H

W

X

Z

Y

Figure D.1: From camera O, the occlusion is assessed by investigating the relationships

of sample points and triangle patches.

 triangle patch landmark

(a) inside   (b) outside     (c) border  (d) superposition 

Figure D.2: Relationships of the projection of sample point and the projection of a triangle patch.

∵ D and �ABC are coplane

∴ ∠ADB + ∠ADC + ∠BDC = 360◦.

On the other hand, Sample point E is outside �ABC,

∵ ∠AEC is obviously less than 180◦

∵ ∠AEB + ∠BEC = ∠AEC

∴ ∠AEC + ∠AEB + ∠BEC < 360◦
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A

D

C

B

E

Figure D.3: The inside/outside relationship of a point and a plane in 2D.

Thus, the inside and outside relationships of sample points and triangle patches on image

plane can be assessed by the algorithm of List A.1.� �
List A.1

if ∠ADC + ∠ADB + ∠BDC < 360◦ Then

D is outside;

else

D is inside;
� �

For “Outside”, the sample point will not be occluded, but for “Inside”, the problem is

complex. In Figure D.1, the projection of occluded vertex F is inside a triangle patch’s

projection. On the other hand, although D’s projection is also inside a triangle patches’

projection, D is obviously not occluded. Thus, further investigation is needed.

A plane specified in three-point A, B, C (Figure D.4) form can be given in terms of the

general equation (D.4) by

C1x + C2y + C3z + C4 = 0 (D.4)

Curve l passes through the points M0(x0, y0, z0), M1(x1, y1, z1), intersects �ABC in a

point M2(x2, y2, z2), which can be determined by solving the four simultaneous equations

(D.4)∼ (D.7)

x = x0 + (x0 − x1)t (D.5)

y = y0 + (y0 − y1)t (D.6)

101



D Occlusion Assessment of Multiple Camera System
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Figure D.4: If M1 is not occluded by the plane �ABC, M0M1 < M0M2. Otherwise

M0M1 > M0M2.

z = z0 + (z0 − z1)t (D.7)

for x2, y2, z2 and t. Then the Euclidean distance of M0M1 and M0M2 are given by (D.8)

and (D.9) respectively.

M0M1 =
√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2

(D.8)

M0M2 =
√

(x0 − x2)2 + (y0 − y2)2 + (z0 − z2)2

(D.9)

If M0M1 < M0M2, M1 is not occluded by �ABC (top of Figure D.4). Otherwise M1 is

occluded (bottom of Figure D.4). Therefore, in Figure D.1, to assess whether W (x, y, z) is

occluded by �XY Z. The intersection point W ′ of OW and �XY Z is estimated. Then by

comparing the length of OW and OW ′: if OW > OW ′ then W is occluded, else W is not

occluded

For attentively, if the sample points’ projections are on the contour of all the sample points’

projection area, these sample points’ projection are inside no triangle patch’s projection. This
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kind of sample points are so called “contour sample points” (section 4.5). In Figure D.1

sample points A, B, and C are contour sample points.
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Appendix E Downhill Simplex Method

The downhill simplex method (DSM) is due to Nelder and Mead[54]. The method requires

only function evaluations, not derivatives. It is not very efficient in terms of the number of

function evaluations that it requires. However the downhill simplex method may frequently

be the best method to use. In case of many dimensions (more than 20) the function sometimes

does not converge to the minimum but the simplex is constantly shrinking. The detail of

simplex method will be described bellow.

high
low

simplex at beginning of step

(a)

(b)

(c)

(d)

reflection

reflection and expansion

contraction

multiple contraction

Figure E.1: Possible outcomes for a step in the downhill simplex method. The simplex

at the beginning of the step, here a tetrahedron, is shown, top. The simplex at the end

of the step can be any one of (a) a reflection away from the high point, (b) a reflection

and expansion away from the high point, (c) a contraction along one dimension from

the high point, or (d) a contraction along all dimensions towards the low point. An

appropriate sequence of such steps will always converge to a minimum of the function.
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A simplex is defined as a figure of N + 1 vertices in the N-dimensional search space (a

tetrahedron in the 3 dimensional space). Each simplex defines a solution in the search space.

The simplex can be expanded, contracted, and reflected. A contraction is x = xσ − λ; an

expansion is x = xσ + λ; a reflection is x = −xσ . There are of course several combinations

of the above. The DSM takes a series of random steps as follows. First, it finds the point

where the objective function is highest (high point) and lowest (low point). Then it reflects

the simplex around the high point. If the solution is better, it tries an expansion in that

direction, else if the solution is worse than the second-highest point it tries an intermediate

point. If no improvement is found after a number of steps, the simplex is contracted, and

started again. The idea of DSM is illustrated in Figure E.1 briefly.

An appropriate sequence of such steps will always lead to a minimum. Better results are

obtained when large steps are tried.
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