Double N-Arylation を鍵反応とした カルバゾールアルカロイド類の合成研究

2006年度

北脇 隆文

緒論	1
第一章 カルバゾールアルカロイド	2
第一節 カルバゾールアルカロイドについて	2
第二節 カルバゾールの合成法	2
§1 9-9a 位間で環化する方法	3
§2 4a-4b 位間で環化する方法	4
§3 1-9a 位間で環化する方法	4
§4 1-2 位間で環化する方法	5
§5 2-3 位間で環化する方法	6
§6 3-4 位間で環化する方法	6
§7 4-4a 位間で環化する方法	7
§8 その他の方法	7
第二章 Buchwald-Hartwig N-arylation 反応	9
第一節 背景	9
第二節 反応機構	9
§1 酸化的付加	10
§2 Pd アミド錯体の形成	11
§3 還元的脱離	11
第三節 反応例	12
§1 第一世代リガンド	12
§2 第二世代リガンド	13
§3 第三世代リガンド	15
第三章 Double N-arylation 反応によるカルバゾール合成法	19
本論	21
第一章 Double N-Arylation 反応による N-置換カルバゾールの合成	22
第一節 本研究の背景	22
第二節 N-置換カルバゾールの合成	25
第三節 リガンドによる反応性の違いに関する考察	27
第二章 ムラスチフォリン-A の全合成	34
第一節 ムラスチフォリン-A について	34
第二節 合成計画	35
第三節 合成の詳細	36
§1 上部セグメントの合成	36
§2 Double <i>N</i> -arylation 反応による下部セグメントの合成検討	39
§3 Pd(II)を用いた酸化的環化による下部セグメントの合成	42
§4 全合成	44
第三章 ムラヤゾリンの合成研究	48
第一節 ムラヤゾリンについて	48

第二節 合成計画	49
第三節 ジブロモビフェニル部の合成	49
第四節 アミン部の合成	51
第五節 カルバゾール骨格の構築	53
第四章 総括	55
実験編	56
General experimental procedure	57
Part-I. Synthesis of <i>N</i> -substituted carbazole	58
Part-II. Total synthesis of murrasutifoline A	73
Part-III. Synthetic study on murrayazoline	92
謝辞	117
参考文献	118

本論文中で使用した略語ならびに略号を以下に示す。

接頭辞

i	iso
m	meta
n	normal
0	ortho
р	para
rac	racemic
S	secondary
t, tert	tertiary

置換基

Ac	acethyl
Am	amyl
Bn	benzyl
Boc	<i>t</i> -butoxycarbonyl
Bu	butyl
Су	cyclohexyl
Et	ethyl
Hex	hexyl
Me	methyl
MOM	methoxymethyl
Ms	methanesulfonyl
Ph	phenyl
PMB	<i>p</i> -methoxybenzyl
Pr	propyl
SEM	2-(trimethylsilyl)ethoxymethyl
Tf	trifuloromethanesulfonyl
TMS	trimethylsilyl
tol	tolyl
Ts	<i>p</i> -toluenesulfonyl

溶媒、試薬等の略号

AIBN	2,2'-azobisisobutyronitrile
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphtyl
dba	dibenzylideneacetone
DME	1,2-dimethoxyethane

DMF	<i>N</i> , <i>N</i> -dimethylformamide
DMSO	dimethylsulfoxide
DPPB	1,4-bis(diphenylphosphino)butane
DPPE	1,2-bis(diphenylphosphino)ethane
DPPF, dppf	1,1'- bis(diphenylphosphino)ferrocene
DPPP	1,3- bis(diphenylphosphino)propane
LHMDS	lithium hexamethyldisilazide
KHMDS	potassium hexamethyldisilazide
NIS	N-iodosuccinimide
Pyr.	pyridine
TBAF	tetrabutylammonium fluoride
THF	tetrahydrofuran
TMEDA	<i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-tetramethylethylendiamine

その他の略語、略号

aq.	aqueous
calcd.	calculated
cat.	catalytic
conc.	concentrated
ee	enantiomeric excess
EI	electron impact
eq.	equivalent
FAB	fast atom bomberdment
HPLC	high performance liquid chromatography
HR	high resolution
IR	infra red
m.p.	melting point
MS	mass spectrometry
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
quant.	quantitative yield
Rf	rate of flow
rt	room temperature
temp.	temperature
TLC	thin layer chromatography

第一章 カルバゾールアルカロイド¹⁾

第一節 カルバゾールアルカロイドについて

カルバゾール1は1872年にコールタールより発見された化合物である²⁾。その後 カレーリーフの木として知られる Murraya koneigii より、初のカルバゾールアルカロ イドであるムラヤニン2が単離され、抗菌活性があることが明らかになった³⁾。以来、 数多くのカルバゾールアルカロイドが発見されており¹⁾、その多くが抗菌活性、抗酸 化作用、抗腫瘍活性、向精神性作用など多様な生理活性を有することから、化学的、 生物学的に注目を集めている化合物群である。例えば、エリプチシン3はキョウチク トウ科シマソケイ属の植物(Ochrosia elliptica)の茎から単離された化合物で、抗腫瘍活 性があることが知られている⁴⁾。カラゾスタチン4は Streptomyces chromofuscus より 単離された化合物で、抗酸化作用があることが報告されている⁵⁾。また実際に医薬品 や農薬として使用されているカルバゾールアルカロイドとしては、降圧剤であるカル ベジロール 5、動物用抗炎症薬であるカルプロフェン 6、農薬であるカルバゾマイシ ン類7などがある^{1b}。

Figure 1. Carbazole alkaloids

近年、カルバゾールはその光化学的性質(フォトリフラクティブ作用、光伝導性、ホール輸送性、発光性)により、有機 EL など有機材料としての注目も集めている⁶。

第二節 カルバゾールの合成法

カルバゾールはその有用性のために、多様な合成法が報告されている。ここでは、

環化の位置により分類し、合成法の一部を紹介する。

§1 9-9a 位間で環化する方法

Knölker らは Fe 錯体により活性化されたシクロヘキサジエンと電子豊富なアリール アミンをカップリングさせた後、酸化的な環化により C-N 結合を形成し芳香族化する 方法を報告している⁷⁾。この手法は1位または3位(炭素番号はカルバゾール基準)に 酸素官能基を有する基質に対して有効とされている。

Fe 錯体の代わりに、Mo 錯体を使用する方法も知られており⁸⁾、これは2位に酸素 官能基を有する基質に対して有効である。

Scheme 1. Fe / Mo mediated synthesis

2-amino-2'-bromobiphenyl に対し、Pd(PPh₃)₄ を用いて環化させる方法は、多置換カ ルバゾールを高収率で得られることから、有用性が高い方法である⁹⁾。しかし Pd(PPh₃)₄の使用量を触媒量にすると、反応時間が長時間化し、収率が低下する^{9d)}。

Scheme 2. Pd mediated synthesis

2-nitrobiphenylをP(OEt)₃により還元的に環化させる方法はCadogan反応として知られている¹⁰⁾。アリールナイトレンが生じ、C-H 結合に挿入される反応機構と言われている。環化の位置の制御が出来ないため、置換様式によっては位置異性体が生じる。

Scheme 3. Reductive cyclization of 2-nitrobiphenyl with P(OEt)₃

§2 4a-4b 位間で環化する方法

ジアリールアミンに対して 2 価の Pd を用いる方法¹¹⁾は、比較的高収率にてカルバ ゾールが得られるため、有用な方法である。一般的に Pd(OAc)₂ を過剰量用いる必要 があるが、基質として 2-iodoarylamine を用いた場合は触媒量にて反応が進行する^{11b, c)}。

Scheme 4. Pd mediated cyclization of diarylamine

Clive らはシクロヘキセン誘導体のラジカル環化によりヘキサヒドロカルバゾール を合成した後に、芳香族化する方法を報告している¹²⁾。この手法によりカルバゾマイ シン類が合成された。

Scheme 5. Radical cyclization

§3 1-9a 位間で環化する方法

Danheiser らはα-ジアゾケトンより調製されるケテン中間体の電子環状反応により カルバゾールを合成する方法を報告している¹³⁾。

電子環状反応により、1-9a 位間で環化する方法は Nonaka¹⁴⁾、Beccalli¹⁵⁾などによっ

ても報告されている。

Scheme 6. Electrocyclic reaction

Oikawa らはβ-ケトスルホキシドを酸性条件化加熱還流させることで、2-ヒドロキシ カルバゾールを合成している¹⁶。Pummerer 転位により生じたカルボカチオンに対す る求核攻撃により環化する反応機構が提唱されている。

Scheme 7. Cyclization of β -ketosulfoxide

§4 1-2 位間で環化する方法

Bergman らは 2-メチルインドールより調製できるエステルを、塩基性条件下加熱することで 2-ヒドロキシカルバゾールを合成している¹⁷⁾。塩基によりジアニオンが生じ、エステルへ求核攻撃することで環化する反応機構であると報告されている。

Scheme 8. Nucleophilic reaction of 2-methylindole derivative

§5 2-3 位間で環化する方法

Kano らはジビニルインドールの電子環状反応によりカルバゾールを合成する方法 を報告している¹⁸⁾。Hibino らはプロパルギルビニルインドールの電子環状反応により カルバゾールを合成している¹⁹⁾。

Scheme 9. Electrocyclic reaction

不飽和アルコキシクロムカルベン錯体よりカルバゾールを合成する手法は、Döts反応を応用した方法である²⁰⁾。メタラシクロブテンからビニルケテンが生じ、電子環状反応によりカルバゾール環が構築される。

Scheme 10. Döts reaction

§6 3-4位間で環化する方法

BergmanらはVilsmeier試薬によるカルバゾール合成法を報告している²¹⁾。この手法 も電子環状反応によりカルバゾール環を構築している。

Scheme 11. Cyclization using Vilsmeier reagent

§7 4-4a 位間で環化する方法

Moody らは 1,4-ジケトンから酸性条件下、1-オキシカルバゾールを合成している²²⁾。 閉環後、ヘミアセタール構造を経由し、脱水してカルバゾールが生成する。

Scheme 12. Cyclization of 1,4-diketone

Rao らにより、3-オキソインドールを H_3PO_4 存在下、加熱することでカルバゾール が合成できることが報告されている²³⁾。

Scheme 13. Cyclization of 3-oxoindole

§8 その他の手法

Fischer のインドール合成法をカルバゾールに応用する手法が報告されている²⁴⁾。 テトラヒドロカルバゾールを芳香族化することで、カルバゾールを合成している。

Scheme 14. Fischer indole synthesis

Moody らは Pyrano[3,4-b]indol-3-one の分子間および分子内 Diels-Alder 反応によるカルバゾール合成法を報告している²⁵⁾。脱炭酸により、カルバゾール環が構築される。

Scheme 15. Diels-Alder reaction

以上紹介した手法は、いずれもオリジナリティの高い、有用な方法である。しかし 収率が低いことや、用いることの出来る置換基に制約がある、基質の調製に多段階を 要するなど、問題点もあった。そのためより有用性の高い手法の開発が求められてい る。

第二章 Buchwald-Hartwig N-arylation 反応²⁶⁾

第一節 背景²⁶⁾

N-アリールアミンはファインケミカルの分野において重要な化合物群である。それ らを合成する方法としては、還元的アミノ化反応や、銅を用いる Ullmann 型のカップ リング反応、ベンザインまたは ArX へのアミンの付加反応などがある。しかし反応に 高温を要することや低収率であることなどの欠点があり、より実用的な手法の開発が 望まれていた。そんな中、1983 年に小杉、右田らは Pd 触媒存在下、PhBr と Bu₃SnNEt₂ とのカップリング反応により、PhNEt₂ が合成できることを報告した(Scheme 16)²⁷⁾。

> $Bu_{3}SnNEt_{2} + PhBr \xrightarrow{PdCl_{2}[P(o-tol)_{3}]_{2}}{toluene, 100 °C, 81\%} PhNEt_{2} + Bu_{3}SnBr$ Scheme 16. Coupling reaction of PhBr with Bu_{3}SnNEt_{2}

この反応は系内でスズアミドを合成することで、アルコキシカルボニル基、アミノ 基、アルコキシ基を有する ArBr にも適用可能であるが、2 級アミンから調製された スズアミドのみ良好な収率を与える反応であった。

その後 1995 年に Buchwald^{28a)}、Hartwig^{28b)}らがそれぞれ独立に、スズを使わない反応条件を発見した(**Scheme 17**)。これが Buchwald-Hartwig *N*-arylation 反応の原型である。

HNRR' +
$$\stackrel{\text{R''}}{\longrightarrow}$$
 -Br $\stackrel{\text{PdCl}_2[P(o-tol)_3]_2}{\text{base}}$ $\stackrel{\text{R''}}{\longrightarrow}$ -NRR'
R'' = alkyl, phenacyl, amino, alkoxy

base = NaO^tBu, LHMDS

Scheme 17. Buchwald-Hartwig N-arylation reaction

初期の反応では P(*o*-tol)₃ がリガンドとして用いられていたが、その後 Buchwald ら により様々なリガンドが開発され、基質の適用範囲が広がった²⁶⁾。また Hartwig らは 反応機構に関して興味深い研究を行っている^{26a, d)}。次節以降その詳細について紹介す る。

第二節 反応機構

Hartwig らはリガンドにより反応機構が異なることを提唱している^{26a,d)}。単座配位のリガンドの場合は Figure 2-a のような触媒サイクルになり、二座配位のリガンドを用いた場合は Figure 2-b のようになる。

Figure 2. Catalytic cycle

§1 酸化的付加

Hartwig らにより Pd(dba)₂ が P(*o*-tol)₃ と反応し、Pd 錯体 8 を形成することが確かめ られている²⁹⁾。この反応は平衡反応であるが、Et₂O を加えることで溶解性の低い 8 が結晶化してくる。

 $Pd(dba)_{2} + 2 P(o-tol)_{3} \xrightarrow{1) \text{ benzene}} Pd[P(o-tol)_{3}]_{2}$ $Pd[P(o-tol)_{3}]_{2}$ $Bd[P(o-tol)_{3}]_{2}$

この8が ArBr と反応し二核錯体9が得られる。溶液中でも二核錯体9で存在する ことが確かめられている²⁹⁾。酸化的付加は PdL₂8に直接起こるのではなく、Scheme 19 に示すいずれかのルートにより、PdL に起こると言われている。

Scheme 19. Oxidative addition

§2 Pd アミド錯体の形成

二核錯体9が様々なアミンと反応し、アミンの配位した Pd 錯体 10 を生じる(Scheme 20)^{29b)}。Pd に配位することで N-H bond の酸性度が上がり、適切な塩基(NaO'Bu, LHMDS)により脱プロトン化されるようになる³⁰⁾。

Scheme 20. Formation of Pd-amido complex

LiO'Bu は反応性が低く、KO'Bu は Pd を不活性化するために用いることができない。 また1級2級のアルコキシドは ArX の分解(Scheme 21)が起こるために用いることが できない^{28b)}。

$$Ar-Pd-X + R_2CHONa \longrightarrow Ar-Pd-O \xrightarrow{R} R \longrightarrow ArH + Pd + O \stackrel{R}{\longrightarrow} R$$

Scheme 21. Decomposition of Pd complex

ー方リガンドとして DPPF を、塩基として NaO'Bu 用いた場合は、反応機構が異なる。NaO'Bu によるリガンド交換が先に起こり、のちにアミンの配位、脱プロトン化がおこると考えられている(Scheme 22)。Hartwig らは 12 を合成し、そこにアミンを加えることで *N*-アリールアミンが合成できることを報告している³¹⁾。

Scheme 22. Formation of Pd(dppf)-amido complex

§3 還元的脫離^{26,32)}

還元的脱離は単座配位のリガンド(PPh₃ や P(*o*-tol)₃)を用いた場合は 3 配位または 4 配位の Pd(II)錯体から、2 座配位のリガンド(DPPF や BINAP)を用いた場合は 4 配位の Pd(II)錯体から、それぞれおこる ^{32b)33c)}。アミンの求核力が大きいほど、また Ar の求 電子力が大きいほど加速される ^{32c,d)}。またリガンドは嵩高く、電子供与能が小さいほ ど還元的脱離を促進する ^{32c)}。

還元的脱離により生成物が得られる反応と競争的に、βヒドリド脱離が起こること

があり、収率低下の原因となる(Scheme 23)。また N 原子のα位にキラリティを有する アミンの場合、光学純度が低下する恐れがある。

Scheme 23. Reductive elimination and β -hydride elimination

第三節 反応例

§1 第一世代リガンド

Table 1. <i>N</i> -arylation reaction with $Pd-P(o-tol)_3$								
	HNRR' - 1.5 eg	⊢ ArBr <u>5 mol%</u> base, t	PdCl ₂ [P(o	$\xrightarrow{\text{tol}}_{3]_2}$ ArNRR'				
run	amine	ArBr	base	product	yield(%)			
1	HNO	PhBr	NaO ^t Bu	Ph-	86			
2	HN	MeO-	LHMDS	Bu-	89			
3		⊘ −Br	NaO ^t Bu		81			
		MeÓ		MeÓ				
4	Me HN (CH ₂) ₂ Ph	Br	NaO ^t Bu		^{Ph} 78			
5	$H_2NC_6H_{13}$	Ph Br	NaO ^t Bu	Ph NHC ₆ H ₁₃	, 72			
6	H ₂ NBu	Bu———Br	LHMDS	Bu	< 2			

1995年、BuchwaldとHartwigは、触媒としてPdCl₂[P(*o*-tol)₃]₂またはPd₂(dba)₃+P(*o*-tol)₃、 塩基としてNaO'BuまたはLHMDSを用いることで、スズを用いることなく*N*-arylation 反応が進行することを見出した(**Table 1**)²⁸⁾。Pd に配位したアミンからプロトンを引き 抜くために、強塩基を用いたことが重要なポイントであったといえる。

電子供与基をもつ ArBr と脂肪族 2 級アミンは良好に反応するが(runs 1-4)、1 級ア ミンは電子求引基を有する ArBr とのみ反応する(run 5)。電子供与基を有する ArBr を 用いた場合は ArH が主生成物となる(run 6)。

§2 第二世代リガンド

P(*o*-tol)₃ は *N*-arylation 反応に有効であったが、一部の基質では還元的脱離よりもβ ヒドリド脱離が進行してしまった。Buchwald^{33a,b)}と Hartwig^{33c)}はこれらの問題が二座 配位子である BINAP や DPPF を用いることで解決できることを発見した。これらの リガンドは二座配位であるため触媒が立体的に嵩高くなり、還元的脱離を促進する。 また不活性なビスアミン Pd 錯体の生成を生じにくいというメリットもある。

Table 2 に様々な二座配位子を比較した Buchwald らによる結果を示す^{33a,b)}。BINAP の有効性が高く、収率が最も高い。DPPF は還元的脱離を促進するが、アリレーションが 2 回起こった化合物 15 も多く生成する。その他の二座配位子は有効ではない。

Me	Br + HexNI	1 mol% Pd ₂ (3 mol% ligar	(dba) ₃ nd M	e ↓ ↓	t I _. Hex	Me
Me	1.1 eq	l. NaO ^t Bi toluene, 80	u) °C 1: 1:	Me 3 R = H 5 R = -}-	H Me Me	Me 14
-	ligand	conversion (time)	13 / 14	13 / 15	yield of 13	-
-	BINAP	100% (2h)	40 / 1	39 / 1	88%	-
	DPPF	100% (3h)	13.2 / 1	2.2 /1	54%	
	P(o-tol) ₃	88% (22h)	1.5 / 1	7.6 / 1	35%	
	DPPE	7% (6h)	1 / 5.4	-	-	
	DPPP	>2% (6h)	-	-	-	
	DPPB	18% (3h)	1 / 1.6	-	-	
	PPh ₂ PPh ₂	22% (12h)	2.5 / 1	10 / 1	-	

Table 2.
 N-arylation reaction with Pd-bidentate ligand system

Table 3に1級アミンに対し BINAP を用いた例を示す^{33a)}。電子求引基、供与基の いずれを有する ArBr も良好に反応する(runs 1-3)。*o*位に置換基を持つ嵩高い ArBr や、 N 原子のα位に置換基を有するアミンであっても反応が進行する(runs 4, 5)。ArNH₂ も 脂肪族アミンと同様に反応する(run 6)。

		RNHa⊥ ∧rBr	Pd ₂ (dba) ₃ , BINAP			
		AIDI	NaO ^t Bu, te	oluene	KINDAI	
run	RNH ₂	ArBr	mol% of Pd	temp(°C)	time(h)	yield(%)
1	HexNH ₂	Me Br Me	0.5	80	2	88
2	HexNH ₂	NC-	0.05	80	1.5	97
3	HexNH ₂	Me MeO- Br	0.5	80	6	95
4 4	H ₂ N Me Me	^t Bu-〈〉-Br	2	100	18	79
5	BnNH ₂	Me Br Me	0.5	100	18	87
6	$PhNH_2$	^t Bu- Br	0.5	80	19	94

Table 3. N-arylation reaction with Pd-BINAP

BINAPは1級アミンには有効であったが、2級アミンに対してはその適用範囲が狭い(Table 4)^{33a)}。環状2級アミンは良好な収率にて反応するものの、非環状アミンの反応例はあまり報告されていない。

RR'NH + ArBr ──────────────────────────────────										
	NaO ^t Bu, toluene, 80 °C									
run	RR'NH	ArBr	mol% Pd	time(h)	yield(%)					
1	MePhNH	GC Br	0.5	29	75					
2	HN_NMe	Me Br	2	15	98					
3	HN	^t Bu	0.5	20	83					
4	HNO	^t Bu	0.5	22	93					

 Table 4.
 N-arylation of secondary amine with Pd-BINAP

N 原子の α 位にキラリティを持つアミンに対して P(*o*-tol)₃ を用いると、光学純度の 低下が起こるが、BINAP を用いた場合は低下しない ³⁴(Scheme 24)。これはリガンド の嵩高さが π 面異性化に必要なイミンの回転を防ぐためである(Scheme 23 参照)。

Scheme 24. N-arylation reaction of optical active amine

ブロモピリジンなどの ArX の反応に P(*o*-tol)₃ をリガンドとして用いると、不活性な Bis(pyridine)Pd 錯体を生じて目的物が得られない。BINAP や DPPF を用いるとその嵩 高さのため、不活性な Pd 錯体が生じにくくなり、反応が進行する(Scheme 25)³⁵⁾。

Scheme 25. Coupling reaction of bromopyridine

§3 第三世代リガンド

1997 年、田中らは PCy₃を用いると反応性の乏しい ArCl のカップリング反応が進行 することを発見した(Scheme 26)³⁶⁾。

Scheme 26. N-arylation reaction with Pd-PCy₃

また 1998 年に山本らは P'Bu₃ がジアリールアミンの *N*-arylation 反応のリガンドとし て有用であることを報告した(**Scheme 27**)³⁷⁾。

Scheme 27. *N*-arylation reaction with Pd-P^tBu₃

これらの研究結果から嵩高く、電子供与能の高いアルキルホスフィンリガンドに注 目が集まるようになった。その後 Buchwald らは **16**^{38a)}が、Hartwig らは **17、18、19**³⁹⁾ がより効果的なリガンドであることを報告した(**Scheme 28**)。

Scheme 28. *N*-arylation reaction with 16, 17, 18, 19

これらのリガンドは電子供与能が高いために酸化的付加を促進する。また嵩高さが 活性な触媒である PdL₁の形成と、還元的脱離を促進する。

以下では Buchwald の研究^{26,38)}において高い適用性が示された 2-ジアルキルホスフィノビフェニルをリガンドとして用いた例を中心に紹介する。

2-(di-tert-butylphosphino)biphenyl 20 を用いると ArCl であっても室温で反応が進行する(Table 5)。電子求引基、電子供与基のいずれを有する ArCl も反応するが、すべてのアミンと室温で反応するわけではない。例えば hexylamine と 3-chloroanisole との反応は低収率である(run 10)。また 1 級アミンを用いた場合は BINAP をリガンドとした場合に比べ、ジアリレーションが進行した化合物が多く生成するため収率が低下する(runs 4, 6, 7)。

また室温で反応させるためには、強塩基である NaO'Bu が必須である。そのため、 塩基に弱い基質は用いることが出来ない。

2-ジアルキルホスフィノビフェニルを用いる反応は熱をかけることによってその 適用範囲が大きく広がる(Table 6)³⁸⁾。アミンとしては、2級を含むアニリン誘導体や 脂肪族1級アミン、環状2級アミン、BINAPでは反応の進行しないジアリールアミン を用いることが出来る。またアンモニア等価体であるベンゾフェノンイミンや、ベン ゾフェノンヒドラゾンも反応する(runs 10, 12)。立体障害の大きいアミンやArClに対 しても適用できる(runs 6, 7, 13)。脂肪族1級アミンの反応は室温で行ったときに比べ ジアリレーションが進行した化合物が出来にくくなり、収率が向上する。

Pd(OAc) ₂ , liga		gand 2	20			RR'NH + ArCl		Pd(OAc) ₂ , ligand 20			יססא	
	+ AICI	NaO ^t Bu, tolu	ene, r	.t.	AMRR	к	ΓĽ		NaO ^t Bu, toluene	e, 80 °C		INKK
run	RR'NH	ArCI	Pd mol%	time (h)	yield (%)	ru	n	RR'NH	ArCl	Pd mol%	time (h)	yield (%)
1	MePhNH	4	1	19	98		1	EtPhNF	1	0.5	18	93
2	HN_O	Me	1	20	94	2	2	HN_O	Ма	0.5	4	93
3	Bu ₂ NH	K ⊂I	2	18	81	:	3	$BnNH_2$		0.5	5	89
4	BnNH2 ^{*1}		5	18	78	4	4	Ph ₂ NH	G	0.5	12	90
5	HN O		1			ţ	5	Me	IH ₂	0.5 ^{*1}	2.5	90
6	HexNH ₂	NC	5 ^{*1}	17	71	(6		Me ⊣a r∕≫Me	0.5 ^{*1}	2.5	97
7		H ₂	5 ^{*1}	16	78	-	7 ^{*2}		DEt Me Cl	0.5	15	100
8	нм_о	MeO	2	20	90	8	8	HN	MeO	1	23	92
9	s-BuNH ₂	MeO	5	20	92	ę	9	MeO	VH2	0.5 ^{*1}	8	94
10	HexNH ₂		5 1e	18	19	1	0	Pr ∕N=⟨ H₂N∕ Ph		0.5 ^{*1}	2.5	91
11	BnNH ₂		1	14	99	1	1	Me	OMe	0.5 ^{*1}	2.5	95
*1	² d ₂ (dba) ₃ \	was used. [/] Bu ₂	PCy	. 2		1	2	HN ≍ Ph Ph	MeOCI	1 ^{*1*3}	18	99
			₹ 21			1	3	ⁱ Pr ↓ −N ⁱ Pr	H ₂ Me Me Me	4 ^{*1}	20	73
	L)	*1	Po	d ₂ (dba) ₃ was	s used.	400.00	`	
						*3	s ir 8 21	l was used a	was conducted at as a ligand.	100 °C	J.	

Table 5. N-arylation reaction at rt.

Table 6.N-arylation reaction at 80 °C

シアノ基やニトロ基など塩基に弱い置換基を有する ArCl は、塩基として K₃PO₄を 用いることで、反応を進行させることができる(Scheme 29)³⁸⁾。

電子供与基を有する ArOTf の一部は NaO'Bu を用いることで室温にて反応させるこ とができる^{38c)}。しかし電子求引基を有する ArOTf は NaO'Bu と反応し分解する。電 子求引基を有する ArOTf の場合は、弱塩基である K_3PO_4 を用いることで良好に反応 が進行するが、熱をかける必要がある(Scheme 30)。

Scheme 30. Couping reaction of ArOTf

2-(di-*tert*-butylphosphino)biphenyl **20**は ArI を用いるアリレーションには適していない。ArI は 2-(dicyclohexylphosphino)biphenyl **21**を用いるのがよい(Scheme **31**)^{38d)}。

Scheme 31. Coupling reaction of ArI

第三章 Double N-arylation 反応によるカルバゾール合成法

2003 年、野崎らは新たなカルバゾール合成法として、double *N*-arylation 反応による 手法を報告した⁴⁰⁾。これは Buchwald-Hartwig *N*-arylation 反応を、一級アミンと 2,2'-ジハロゲン化ビフェニルとのカップリング反応に応用することで、一度に 2 回の *N*-arylation 反応を進行させ、カルバゾールを合成する手法である。

Scheme 32. Double *N*-arylation reaction

電子求引基、供与基のいずれを有する芳香族アミンも良好な収率にて反応し、カル バゾールを与える。またメチル基やメトキシ基、トリフルオロメチル基を有するジハ ロビフェニルも良好に反応する(Scheme 32)。多置換のカルバゾールを、位置異性体を 生じることなく合成することが出来るため、非常に有用な方法であるといえる。

しかし用いることの出来るアミンは芳香族アミンだけであり、脂肪族アミンである octylamine の場合は低収率であると報告している(Scheme 33)。

Scheme 33. Double N-arylation reaction of octylamine

また野崎らは double *N*-arylation 反応によるカルバゾール合成を、BocNH₂に応用し、 ムコニンの全合成を達成している (Scheme 34)^{40b)}。

Scheme 34. Total synthesis of mukonine

以上のように double *N*-arylation 反応によるカルバゾール合成法は、用いることの出 来る置換基の種類も多く、多置換カルバゾールを簡便に合成できる有用な方法である。 しかし現在のところ好結果を与えているのは芳香族アミンに対してのみであり、また 多官能性アミンでの実施例は無い。そのため、より汎用性の高い方法論とするために は、更なる展開が必要であろう。

第一章 Double N-Arylation 反応による N-置換カルバゾールの合成

第一節 本研究の背景

千田らは Buchwald-Hartwig *N*-arylation 反応を糖アミンに応用し、*N*-アリールグリコシド類を合成する研究を行っている⁴¹⁾。彼らはスピカマイシン22の全合成を達成し、この反応が化学的に不安定で求核力の小さい糖アミンに対しても適用可能であることを示した(Scheme 35)^{41a-d)}。

Scheme 35. Total synthesis of spicamycin 22

Scheme 36. N-arylation reaction of glucopyranosylamine 23

そこで著者は糖アミンの *N*-arylation 反応の適用範囲を広げ、新たな *N*-グリコシド 結合構築法として確立することを目指した研究の一環として、グルコピラノシルアミ ン 23 と様々なハロゲン化アリールとのカップリング反応を試みた。その結果、電子 求引基を有するハロゲン化アリールには BINAP を、電子供与基を有するハロゲン化 アリールには 2-(di-*tert*-butylphosphino)biphenyl 20 を、それぞれリガンドとして用いる ことで、*N*-アリールグリコシドが合成できることを見出した(Scheme 36)^{41e)}。また本 手法は天然物合成に対しても有用で、共同研究者によりダピラミシン B(24)の全合成 が達成された(Scheme 37)^{41f)}。

Scheme 37. Total synthesis of dapiramicin B

これらの研究により、本手法は様々な糖アミン、ハロゲン化アリールおよびハロゲン化へテロアリールに対して適用可能であることが示され、新たな N-アリールグリコシドの合成法として確立された。つづいて本研究の新たな展開として、グリコシルカルバゾールの合成研究に着手した。

スタウロスポリン 25^{42a)}をはじめとするインドロカルバゾールグリコシド類は、天 然物だけで数十種類の化合物が報告されている⁴²⁾(Figure 3)。そのいずれもが抗カビ 活性や血圧降下作用、プロテインキナーゼ阻害活性、神経成長因子阻害活性など非常 に多様かつ強い生理活性を有する。そのため、新薬のリード化合物として非常に注目 を集めており、数多くの誘導体が合成されている。

Figure 3. Indrocarbazole glycosides

先に紹介した *N*-アリールグリコシドの合成法を、糖アミンと 2,2'-ジハロゲン化ビフェニルとのカップリング反応に応用し、グリコシルカルバゾールを合成することが出来れば、これらインドロカルバゾールグリコシド類の新たな合成法として有用であ

る。この発想に基づき検討を行い、野崎らとほぼ同時期に、double *N*-arylation 反応に よりグリコシルカルバゾールが合成できることを見出した(**Table 7**)^{41g,h)}。

	$\operatorname{Bn}^{\operatorname{IH}_2} + \left\langle \right\rangle$	Br Br	Pd ₂ (dba) ₃ , lig NaO ^t Bu, tolu	gand iene	Ph O' O' OBn
28		29			30
run	ligand	Pd ₂ (dba) ₃ (eq.)	temp. (°C)	yield (%)
1	20	0.2	100	9	
2	21	0.2	100	4	
3	31	0.2	100	13	
4	31	0.2	60	26	
5	31	1	60	55 (o	$\alpha / \beta = 1 / 1.7$

 Table 7.
 Double N-arylation reaction of glusosylamine 28 with dibromobiphenyl 29

ſſ

糖アミン 28 と dibromobiphenyl 29⁴³⁾ とのカップリング反応において、リガンドとして 2-(di-*tert*-butylphosphino)-1,1'-binaphtyl 31^{38e)}を用いることで、グルコシルカルバゾール 30 を合成することができた。しかし過剰量の触媒を必要とすることや、アノマー 比を制御できないなど問題もあった。

更なる検討の余地はあるものの、double *N*-arylation 反応によりグリコシルカルバゾ ールを合成することが出来た。この手法を、糖アミン以外の基質に対して応用できれ ば、新たなカルバゾール合成法として有用である。そこで、様々なアミンを用いて検 討を行うこととした。

第二節 N-置換カルバゾールの合成

はじめに一級アミンとして aniline **32a** を用いて、dibromobiphenyl **29** とのカップリ ング反応を行い、糖アミン以外の基質においても、double *N*-arylation 反応によりカル バゾールが合成できるかどうか、確認を行った。Buchwald らの条件 ^{38c)}を参考に、 Pd₂(dba)₃ (10 mol%), 2-(dicyclohexylphosphino)biphenyl **21** (30 mol%), NaO'Bu (3 eq.), toluene を用いて、60 °C にて反応を行ったところ、望む *N*-phenylcarbazole **33a** が 33% に て得られた(**Scheme 38**)。また *N*-Arylation 反応が一回進行した化合物が 21%得られた。 *N*-Arylation 反応が一回進行した化合物は Br 基を有する **34** と、Br 基が H 基へと置換 された **35** との混合物で、その比は **34**/**35** = 10/1 であった。

Scheme 38. Double *N*-Arylation reaction of aniline 32a (60 °C)

低収率ながら *N*-phenylcarbazole **32a** が得られたことから、本手法の新たなカルバゾ ール合成法としての可能性が示唆された。そこで、反応条件の最適化を図ることとし た。Pd ソースとして Pd₂(dba)₃, Pd(PPh)₄, Pd(OAc)₂を、リガンドとして Figure 4 に示す 4 種類を、塩基として NaO'Bu, Cs₂CO₃, K₃PO₄ を、それぞれ用いた(Table 8)。

Figure 4. Ligands

反応温度を 60 °C から昇温させることで収率が向上し(runs 1~3)、120 °C にてもっと も高収率となった(run 3)。Pd ソースとしては Pd₂(dba)₃ が適しており、Pd(PPh₃)₄、 Pd(OAc)₂ では収率が低下した(runs 3~5)。リガンドは、21 または 36 を用いた場合に高 収率となり(runs 3, 8)、20 および 31 では低収率であった(runs 6, 7)。塩基は、NaO'Bu がもっとも適しており、より弱い塩基である Cs₂CO₃ やK₃PO₄ では低収率となった(runs 3, 9, 10)。また Pd₂(dba)₃ を 5 mol% と減らした場合も、10 mol% 用いた場合と同程度 の収率であった(runs 3, 11)。

	2		Pd sourc	ce, ligand, ba	ise (
	J + BrBr		toluene, in a sealed tube			
32a		29				33a
run	Pd source	ligand	base	temp. (°C)	time (h)	yield (%) ^b
1	Pd ₂ (dba) ₃	21	NaO ^t Bu	100	24	77
2	Pd ₂ (dba) ₃	21	NaO ^t Bu	120	14	79
3	Pd ₂ (dba) ₃	21	NaO ^t Bu	120	24	85
4 ^c	Pd(PPh ₃) ₄	21	NaO ^t Bu	120	24	69
5 ^d	Pd(OAc) ₂	21	NaO ^t Bu	120	24	62
6	Pd ₂ (dba) ₃	20	NaO ^t Bu	120	24	51
7	Pd ₂ (dba) ₃	31	NaO ^t Bu	120	13	22
8	Pd ₂ (dba) ₃	36	NaO ^t Bu	120	24	82
9	Pd ₂ (dba) ₃	21	Cs_2CO_3	120	24	42
10	Pd ₂ (dba) ₃	21	K ₃ PO ₄	120	24	32
11 ^e	Pd ₂ (dba) ₃	21	NaO ^t Bu	120	24	84

Table 8.Double *N*-arylation of aniline **32a**

^a Reaction conditions: A mixture of **32a** (1.0 eq.), **29** (1.1 eq.), $Pd_2(dba)_3$ (10 mol%), ligand (30 mol%), and base (3.0 eq.) in toluene was heated in a sealed tube.

^b Isolated yield after chromatographic purification.

^c Pd(PPh₃)₄ (20 mol%), **21** (30 mol%).

^d Pd(OAc)₂ (20 mol%), **21** (50 mol%).

^e Pd₂(dba)₃ (5 mol%), **21** (15 mol%).

Double *N*-arylation 反応により *N*-phenylcarbazole **33a** を効率的に合成することが出来 たので、本手法の適用範囲を広げるべく、脂肪族アミンを用いて検討を行った(**Table 9**)。 Pd ソース、塩基、反応温度は、aniline **32a** の反応において最適であった Pd₂(dba)₃、 NaO'Bu、120 ℃ に固定した。

Aniline **32a** に対して適していたリガンド **21**、**36** は benzylamine **32b** に対しては適し ていなかった。Benzylamine **32b** は、リガンド **31** を用いた場合にもっとも高収率でカ ルバゾールを与えた(runs 1~4)。またリガンド **31** は他の脂肪族アミンに対しても効果 的で、*p*-methoxybenzylamine **32c**、octylamine **32d**、cyclohexylamine **32e** はいずれも良好 な収率にて反応した(run 5~7)。野崎らの条件 ^{40a)}では低収率(28%)であった octylamine **32d** が、67%にて対応するカルバゾールを与えたことは注目に値する結果である。

tert-butylamine **32f** に対しては、リガンド **31** は効果的ではなかった(run 9)。 *tert*-butylamine **32f** にはリガンド **36** を用いた場合にもっとも収率が高かったが、中程 度であった(run 10)。

Table 9. Double *N*-arylation of aliphatic amines

b: $R = PhCH_2$ **c**: $R = (p-MeO)C_6H_4CH_2$ **d**: $R = n-C_8H_{17}$ **e**: R = cyclohexyl**f** $: <math>R = {}^tBu$

run	amine	ligand	product	time (h)	yield (%) ^b
1	32b	20	33b	13	42
2	32b	21	33b	13	20
3	32b	31	33b	13	60
4	32b	36	33b	13	9
5	32c	31	33c	13	71
6	32d	31	33d	24	67
7	32e	31	33e	24	80
8	32f	21	33f	13	17
9	32f	31	33f	13	17
10	32f	36	33f	13	42

^a Reaction conditions: A mixture of **32** (1.0 eq.), **29** (1.1 eq.), Pd₂(dba)₃ (10 mol%), ligand (30 mol%), and NaO^tBu (3.0 eq.) in toluene was heated in a sealed tube.
^b Isolated yield after chromatographic purification.

第三節 リガンドによる反応性の違いに関する考察

第二節にて述べたように、芳香族アミンである aniline 32a に対してはリガンド 21 が、立体障害の小さい脂肪族アミン (benzylamine 32b、*p*-methoxybenzylamine 32c、 octylamine 32d、cyclohexylamine 32e) に対してはリガンド 31 が、*tert*-butylamine 32f にはリガンド 36 がそれぞれ有効であった。このようにリガンドにより反応性の違いが現れた原因は、リガンドの電子供与能と嵩高さ、およびアミンの配位能と嵩高さの 違いにあると思われる。

金属の配位子の置換反応を支配する因子として、配位子の嵩高さ、電子的な要因、 トランス効果がある⁴⁴⁾。

Tolman らは三級ホスフィンを配位子とする NiL₄ 錯体の解離平衡とLの cone angle (円錐角)の関係について調査している $^{44c,d)}$ 。その結果 NiL₄ 錯体の解離平衡定数 K は cone angle が大きいものほど大きい、すなわち嵩高い配位子ほど解離しやすいことを 明らかにした。

金属と配位子の結合においては、 σ 供与性と π 受容性が重要な電子的要素となる。配 位子の充填 spⁿ混成軌道は、金属の空の dsp 混成軌道との重なりで σ 供与性結合を形成 する。また π *反結合性軌道および空のd軌道を有する配位子(アルケンやPR₃など)は、 金属の充填 d軌道との重なりにより電子の逆供与、すなわちバックドネーションをう け、 π 受容性の結合を形成する。配位子の σ 供与性と π 受容性のバランスにより、金属 への配位の強さが決まる。

また平面四配位錯体の配位子が置換されるときは、トランス効果が重要となる。互 いにトランス位にある二つの配位子は、中心金属の同一のd軌道を使うことになるた め、一方の配位子と金属との結合の強弱が、もう一方の配位子の結合に影響を与える。 トランス位の配位子のσ供与性およびπ受容性がそれぞれ大きいとき、もう一方の配位 子の置換が促進される。

これらを踏まえ、今回用いたリガンドとアミンについて、それぞれの電子供与能と 嵩高さについて考察する。

リガンドの電子供与能および嵩高さは **21**<**36**<**31** の順に大きくなると考えられる (Figure 5)。

Figure 5. Properties of ligands

Tolman は Ni(CO)₃L 型錯体の赤外スペクトルにおけるン (CO)を測定することによ りリガンドLの電子供与能を評価し定量しており^{44c,d}、リガンドの電子供与能が大き いほど、(CO)は低波数にシフトすることが知られている。 (CO)の比較から PPh₃ < P(*p*-tol)₃ < P(*o*-tol)₃ < PCy₃ < P'Bu₃ の順に電子供与能が大きくなっていることが分かる (Table 10)。このことから、より誘起効果の大きい 'Bu 基をリンの置換基をとして有す るリガンド 31 が、Cy 基を有する 21、36 に比べ電子供与能が大きいと推測できる。 また PPh₃に比べ P(*p*-tol)₃、P(*o*-tol)₃の電子供与能が大きいことから、 ビフェニルの置 換基として誘起効果のあるアルキル基、すなわち 'Pr を有するリガンド 36 が、置換基 を持たない 21 に比べ、電子供与能が大きいと推測できる。

リガンドの嵩高さは³¹P NMR より推測できる。Tolman はリガンドの嵩高さの指標 である cone angle と³¹P NMR の化学シフトに相関があることを見出した^{44d}。それに よると、³¹P の化学シフトが低磁場であるほど cone angle が大きくなる。リガンド 21、 **31、36**の³¹P NMR の化学シフトは Buchwald らにより Table 11 のように報告されてい る^{38c,e,f)}。測定溶媒が異なるため単純に比較は出来ないが、21 < 36 < 31 の順に cone angle、 すなわち嵩高さが大きくなると考えられる。また報告されている^{44c,d)}PPh₃、P(p-tol)₃、 P(o-tol)₃、PCy₃、P'Bu₃の cone angle の値を比較することにより、'Bu 基を有するリガ

ンド 31 は Cy 基を有するリガンド 21、36 に比べ cone angle が大きいこと、および Pr 基を有するリガンド36は21に比べ cone angle が大きいことが、それぞれ推測できる。

	e	
L	v(CO) (cm ⁻¹)	cone angle (deg.)
PPh_3	2068.9	145
P(p-tol) ₃	2066.7	145
P(o-tol) ₃	2066.6	194
PCy ₃	2056.4	170
P ^t Bu ₃	2056.1	182

Table 10.	ν (CO) value of Ni(CO) ₃ L and		
	cone angle of L		

 Table 11. ³¹P chemical shifts
 of 21, 31 and 36

ligand	δ(³¹ Ρ) (ppm)	solvent	
21	-12.7	$CDCl_3$	
31	21.7	CDCI ₃	
36	-11.5	C_6D_6	

次にアミンの性質について考える。芳香族アミンである aniline 32a は octylamine 32d や tert-butylamine 32f などの脂肪族アミンに比べ、共役酸の pKa⁴⁵⁾が低い(Table 12)。 共役酸の pKa が低いということは、電子供与能が弱いことを意味している。そのため aniline 32a は脂肪族アミンに比べ Pd への配位能が低いと考えられる。また嵩高さは *tert*-butylamine **32f** が一番大きい。アミンの配位能と嵩高さを **Table 12** まとめる。

amine	$p K_a^{a)}$	coordinating ability	steric hindrance	
PhNH ₂	4.63	small	small	
C ₈ H ₁₇ NH ₂	(10.66) ^{b)}	large	small	
^t BuNH ₂	10.89	large	large	
a) nKa of conjugate acid				

Table 12. Character of amines

a) pKa of conjugate acid

b) pKa of ${}^{n}C_{7}H_{15}NH_{2}$

N-arylation 反応の触媒サイクルは、リガンドにより違いがあるが、今回用いたリガ ンドの場合は、単座配位であることから、**Figure 6**のように表すことが出来る^{26a,d)}。

Buchwald らは morpholine と 4-halotoluene との反応の結果から、リガンド 20 を用い て ArBr の反応を行う場合は、塩基によるリガンド交換反応が律速段階であると考察 している^{38c)}。morpholine と 4-chlorotoluene のカップリング反応では 65 分以内で変換 率が 100%となるのに対し、4-bromotoluene との反応では変換率が 29%に留まる (Scheme 39)。このことから、ArBr のほうが全体の反応速度は遅いと言える。一方 1.2 当量の morpholine と 1.0 当量ずつの 4-bromotoluene、4-chlorotoluene の混合物の反応で は、ブロマイドのほうが先に反応している(Scheme 39)。これは ArBr のほうが酸化的 付加反応は速いことを意味する。還元的脱離反応にハロゲン原子の種類は影響しない。 以上のことからリガンド 20 を用いて ArBr の反応を行う場合は、塩基によるリガンド 交換反応が律速段階であると推測できる。

₽^tBu₂

Scheme 39. Coupling reactions of morpoline with 4-halotoluene

今回用いたリガンド21、31、36もリガンド20と構造や性質が近いことから、塩基 によるリガンド交換反応が律速段階であると考えられる。

塩基によるリガンド交換反応は、リガンドの電子供与能が低く、嵩が小さいときに 促進されると考えられる。Hartwig らは P(*o*-tol)₃ を用いた場合のリガンド交換反応の メカニズムを、Figure 7 のように提唱している^{29b,30)}。すなわち 37 の二量体である 39 にアミンが配位して Pd-amine 錯体 40 となる。40 から塩基によりアミンの H が引き 抜かれ haloamide 錯体 41 となり、つづいて Br が脱離して Pd-amide 錯体 38 が生成す る、という機構である。アミンが 39 に配位する際、リガンド L のトランス効果によ り、そのトランス位がアミンで置換される。そのためアミンと Ar は還元的脱離が進行しうるシスの関係となる。

リガンドLの電子供与能が低い場合、Pd-amine 錯体 40 において N-H 結合の酸性度 が上がり、haloamide 錯体 41 を生じやすくなると思われる。

またリガンドLの嵩が小さいとPdにアミンが配位しやすくなり、Pd-amine 錯体 40 の生成が促進されると考えられる。またリガンドLが嵩高い場合、アミンの配位の際 (39→40)に、立体障害を緩和するためトランス効果に反して、L に対してシスの関係 にある Br が Pd から解離し、そこにアミンが配位した Pd-amine 錯体 40'が生成する可 能性がある。その場合アミンと Ar は還元的脱離の進行しないトランスの関係となる。

Figure 7. Mechanism of base mediated ligand exchange proposed by Hartwig

続いてアミンの影響を考察する。リガンド交換反応はアミンが Pd に配位する反応 であることから、基本的にはアミンの電子供与能が大きい場合、および嵩が小さく Pd に近づきやすい場合に促進されると考えられる。しかし Buchwald らにより、BnNH₂ などの脂肪族一級アミンでは、二分子のアミンがホスフィンリガンドを追い出し、不 活性な Pd 錯体 42 を生成することが報告されている^{35a)}(Figure 7)。Pd-amine 錯体 40 から Pd-bisamine 錯体 42 が生成する反応は平衡反応であるが、Pd の配位子が小さい とき、Pd-bisamine 錯体 42 側に平衡がかたよる^{35a)}。

Scheme 40. Suitable ligand for various amines

以上を踏まえて、各アミンとリガンドの組み合わせ(Scheme 40)について考える。

リガンド 21 は 31、36 に比べ電子供与能、嵩高さともに小さいため、リガンド交換 反応を促進する作用が大きい。そのため aniline 32a に対してはリガンド 21 が適して いたと考えられる。

しかしリガンド 21 を配位能の強い脂肪族アミンに対して用いると、リガンドが Pd から解離し、不活性な Pd 錯体 42 が生じてしまい、*N*-arylation 反応が進行しにくくな ることが推測される。より嵩高いリガンド 36 を用いると、Pd 近傍の立体障害を増大 させ、2 つ目のアミンが配位しにくい環境を作ることが出来る。そのため octylamine 32d のような脂肪族アミンに対しては、リガンド 31 が適していたと考えられる。

先に述べたように嵩高いリガンドを用いると Pd-amine 錯体 **40**^{*}が生成し、アミンと Ar の還元的脱離反応が進行しなくなる可能性がある(**Figure 7**)。しかし Hartwig^{29b, 30}、 Buchwald^{35a)}らにより、リガンド L として P(*o*-tol)₃ を用いた場合はトランス効果が優先 し、Pd-amine 錯体 **40** が生成することが確認されている。P(*o*-tol)₃ は P[']Bu₃ よりも cone angle が大きく、嵩高い(**Table 10**)。そのため今回用いたリガンド **21、31、36** の場合も トランス効果が優先し、アミンと Ar が還元的脱離を起こし得るシスの関係となった Pd-amine 錯体 **40** が生成していると考えられる。

電子的な観点から考えると、リガンド **31** は **21** に比べ電子供与能が大きいため、リガンド交換反応を抑制する。そのためリガンド交換反応が進行しにくい aniline **32a** に

対して、リガンド **31** は適していなかった。しかし脂肪族アミンは芳香族アミンに比 ベ、リガンド交換反応が進行しやすいために、リガンド **31** を用いても *N*-arylation 反 応が進行したと考えられる。

また octylamine **32d** のような N 原子のα位に H 原子を有するアミンを用いた場合に は、βヒドリド脱離が還元的脱離と競争的に起こり得る(**Figure 8**)。βヒドリド脱離は 嵩高いリガンドや二座配位のリガンドを用いた場合に抑制される^{33a,b,c)}。先に述べた ようにリガンド **31** は他のリガンドよりも嵩高い。またビナフチル骨格が Pd と相互作 用しやすいため、ビフェニル骨格を有する他のリガンドよりも二座配位性が高い。そ のためリガンド **31** はβヒドリド脱離を抑制し、ocutylamine **32d** の反応の進行させた可 能性も考えられる。

Figure 8. Reductive elimination and β-hydride elimination

一方、tert-butylamine 32f に対してリガンド 31 を用いると、互いの嵩高さが立体障 害となり、一分子のアミンも配位しにくくなり、リガンド交換反応が抑制される。立 体障害を避けるために、より嵩の小さいリガンド 21 を用いると、二分子のアミンが 配位してしまい不活性な Pd 錯体 42 が生じてしまう。そのため 'butylamine 32f に対し ては、中間の嵩高さであるリガンド 36 を用いることで、中程度の収率ではあるもの の、N-arylation 反応が進行するようになったと思われる。

第二章 ムラスチフォリン-A の全合成

新たな N-置換カルバゾールの合成法として、double N-arylation 反応を利用する手法 を確立した。リガンドを適切に選択することで、芳香族アミン、脂肪族アミンいずれ にも適用できる、汎用性の高い手法とすることが出来た。続いて本手法の有用性を示 すことを目的として天然物の合成研究を行った。本章ではムラスチフォリン-Aの全 合成の詳細について述べる。

第一節 ムラスチフォリン-A について

ムラスチフォリン-A (43)は名城大学の古川らのグループにより、1980年2月に台湾 で採取された Murraya euchrestifolia(ゲツキツの一種)の根皮から単離された化合物で ある⁴⁶⁾。構造上の特徴としては、既知の天然物であるムラヤフォリン-A (44) (1-methoxy-3-methylcarbazole)が9-6'位間で二量化するという、ビアリールビスカル バゾール骨格を有する点が挙げられる。

Figure 9. Murrastifoline-A and murrayafoline-A

古川らは各種スペクトル測定にて、ムラスチフォリン-A(43)の構造を決定している。 以下に示す(1)~(3)によりムラヤフォリン-A(44)が二量化した構造であること、(4)によ り結合位置が9-6'位間であることを判断している。

- (1)UV スペクトルにおいて λ_{max} 238-243 nm および λ_{max} 287-292 nm にシャープバンドが、 λ_{max} 325-350 nm にブロードバンドが観測された。これはムラヤフォリン-A (44)の UV スペクトルとよい相関がある。
- (2)HR-MS (EI) により分子式が C₂₈H₂₄N₂O₄ と決定された。LR-MS (EI) により C₁₄H₁₂₋₁₃NO に相当する *m*/*z* 210 または 211 のフラグメントピークが観測された。
- (3)¹H-NMR スペクトルにおいて、δ 2.48, 2.52, 3.57, 4.03 に、4本のシングレット(each 3H) が観測され(Ar-CH₃、Ar-OCH₃に相当)、δ 6.85, 6.88 (H-2, H-2') およびδ 7.54, 7.63 (H-4, H-4') にそれぞれシングレット(1H) が観測された。また NOE 測定において Figure 9 に示す相関が観測された。

 (4)¹H-NMR スペクトルにおいて、ブロードシングレットシグナル(δ 10.45)が 1H 分の み観測され(NH に相当)、H-5'と帰属された δ 8.10 のシグナルが、ダブレットで J= 2.0 Hz であった。

天然からは 30 種類を超えるビスカルバゾールアルカロイドが単離されており、ム ラスチフォリン-A に見られるような、ビアリールビスカルバゾール骨格を有するも のも数多く知られている⁴⁷⁾。しかしその単離例の多さに比べ、特徴的なビアリールビ スカルバゾール構造構築の報告例は決して多くはない^{47d, 48)}。2001 年、Bringmann ら はムラスチフォリン-F (45)の全合成を報告しており、1-methoxy-3-methylcarbazole を Pb(OAc)₄により酸化的にカップリングさせることで、ビアリールビスカルバゾール骨 格を構築している⁴⁸⁾。

murrastifoline-F (45)

Scheme 41. Total synthesis of murrastifoline-F (45)

著者は double *N*-arylation 反応によるカルバゾール合成法により、ビアリールビスカルバゾール構造が効率的に構築できるのではないかと考え、ムラスチフォリン-Aの合成に着手した。

第二節 合成計画

ムラスチフォリン-A (43)のビスカルバゾール構造は、上部セグメントに相当するジ ブロモビフェニル 46 と下部セグメントに相当するカルバゾールアミン 47 との double *N*-arylation 反応により構築できると考えた(Scheme 42)。

ジブロモビフェニル 46 は 2-amino-5-methylphenol 49 より導ける化合物 48 と 2-bromophenylboronic acid 50 との、鈴木-宮浦カップリング反応⁴⁹⁾により合成すること とした。

カルバゾールアミン **47** はジブロモニトロビフェニル **51** と適当なアミン **52** との、 double *N*-arylation 反応により得られると考えた。ビフェニル **51** は、上部セグメントと 共通の中間体 **48** より導くこととしたが、詳しくは次節で述べる。

Scheme 42. Retrosynthetic analysis of murrastifoline-A (43)

第三節 合成の詳細

§1 上部セグメントの合成

はじめに上部カップリング前駆体 46 の合成について説明する(Scheme 43)。出発原 料である 2-amino-5-methylphenol 49 の水酸基を文献既知の手法により Ts 基にて保護し、 化合物 53 とした^{9a,b)}。Ts 基を選択した理由は、選択的に水酸基のみを保護でき、電子 求引基であることから、その m 配向性能により、続くハロゲン化における 3 位選択性 を高めることが出来るからである。

Scheme 43. Synthesis of 54 and 55

化合物 **53** の 3 位を HBr、 DMSO にて Br 化し化合物 **54** とした ⁵⁰。 この反応では DMSO の脱水により生成する **57** がハロゲン化剤になると考えられている (Scheme 44)。

Scheme 44. Preparation of 57 with HX and DMSO

続いて化合物 53 のヨウ素化を試みた(Table 13)。Br 化と同様の条件(run 1)では望む 化合物 55 は得られなかった。I₂を用いた反応では、反応温度が 80 ℃ の場合にもっと も高収率となり、望む化合物 55 が 58%にて得られた(run 2)。NIS をヨウ素化剤として 用いた場合、DMF を溶媒とすることで化合物 55 が 69%にて得られた(run 3)⁵¹⁾。Alper らは NIS、TfOH により系内で 59 が生成しヨウ素化が進行することを報告している ⁵²⁾。 そこで本反応にも適用してみたが、3 位および 6 位がヨウ素化された化合物 58 を与え るのみであった。

Table 13.Iodination

run	conditions	result	
1	HI, DMSO, rt, 3 days	decompotion	Me
2	I ₂ , NaHCO ₃ , H ₂ O, 80 °C, 15 h	55 (58%)	
3	NIS, DMF, rt, 3 h	55 (69%)	NH ₂
4	NIS, TfOH, rt, 5 h	58 (22%)	58
0 		O ► I–O-S-CF ₃ ·	⊕_,H <u>TfOH</u> I–O-Ş-CF;

, NH

59

0

Scheme 45. Mechanism of iodination with NIS and TfOH

化合物 54 および 55 と、bromophenylboronic acid 50 との鈴木 - 宮浦カップリング反応⁴⁹⁾を行い、アミノブロモビフェニル 60 を合成した。ブロモ体 54 からは 11%という 低収率であったが、ヨウ素体 55 からは 99%という高収率にて望む 60 を得る事ができ た(Scheme 46)。

次にSandmeyer反応⁵²⁾にてアミノ基をBr基へと置換すべく検討を行った(Table 14)。 ジアゾ化剤としてⁱAmONOを、ブロモ化剤および溶媒としてCHBr₃を用いたところ、 目的のジブロモビフェニル 61 はほとんど得られず、トリブロモ体 63 が主生成物とし て得られるという結果になった(run 1)。またSbBr₃⁵³⁾をブロモ化剤として用いた場合も 同様の結果であった(run 2)。次にジアゾ化剤として、少量の水に溶解させた NaNO₂ を用いたところ、若干ではあるが収率が向上し (run 3)、NaNO₂ を濃硫酸に溶解させ ることで、さらに収率を向上させることが出来た(run 4)。NaNO₂ を用いた反応では、 水系の溶媒を用いる必要があるが、原料である 60 が HBr 水溶液や H₂SO₄ 水溶液に溶 解しにくかったため、CHBr₃を加えて二層系にて反応を行った。またいずれの場合も トリブロモ体 63 が生じており、これが収率低下の一因となっている。これは溶媒と して用いる CHBr₃がブロモ化剤となり、ラジカル的に反応しトリブロモ体 63 が生じ ていると考えられる。そこで原料の溶解度が高く、かつ水溶性である AcOH を溶媒と して用いたところ、収率が大幅に向上し、64%にて望むジブロモビフェニル 61 を得 る事ができた。

Scheme 46. Synthesis of top-half segment 46

run	reagents	solvents	temp (°C)	yield of 61	others
1	ⁱ AmONO	CHBr ₃	0 to 40	trace	63
2	ⁱ AmONO, SbBr ₃	CH_2Br_2	0 to rt	5%	63
3	NaNO ₂ in H ₂ O, CuBr	HBr, CHBr ₃	0 to 80	10%	63 , 64
4	NaNO ₂ in conc. H ₂ SO ₄ , CuBr	HBr, CHBr ₃	0 to 80	38%	63
5	NaNO ₂ in conc. H ₂ SO ₄ , CuBr	HBr, AcOH	0 to 80	64%	-

Table 14.Sandmeyer reaction

Ts 基を塩基性条件化、加水分解することで脱保護しヒドロキシビフェニル 62 とした後に、Me 化することで上部セグメントに相当するジブロモビフェニル 46 を合成することが出来た(Scheme 46)。ジブロモビフェニル 46 の構造は、¹H NMR および NOE 測定により確認した(Table 15)。

	assign	chemical shifts δ (ppm)	multiplet	coupIng constants (Hz)
Me 6 ↓ H	H-4	6.32	d	1.6
6' 4 NOE	H-6	6.54	d	1.6
4' Br Br	H-3' and H-6	5' 7.10 7.48	dd dd	7.3, 1.8 7.5, 1.2
40	H-4' and H-5	6.78 6.96	ddd ddd	7.5, 7.4, 1.8 7.4, 7.3, 1.2

Table 15.¹H NMR and NOE of 46

§2 Double N-arylation 反応による下部セグメントの合成検討

Scheme 47. Retrosynthetic analysis of dibromonitrobiphenyl 51

下部セグメントに相当するカルバゾールアミン **47** は、double *N*-arylation 反応により カルバゾール環を構築し合成しようと考えた。その前駆体であるジブロモニトロビフ ェニル **51** は、上部セグメントとの共通中間体 **55** より **Scheme 47** に示すいずれかの方 法により合成できると考えた。

第一の手法は、共通中間体 55 と bromonitrophenylboronic acid 65 との鈴木-宮浦カップリング反応の後に、アミノ基をブロモ基へと変換する方法である(*path A*)。

第二の手法は、共通中間体 **55** をボロン酸 **66** へと変換し、bromoiodonitorobenzene **67** との鈴木-宮浦カップリング反応を行った後に、アミノ基をブロモ基へと変換する方法である(*path B*)。

第三の手法は共通中間体55とnitrophenylboronic acid 68との鈴木-宮浦カップリング 反応、Sandmeyer 反応によりモノブロモビフェニル69とした後に、ニトロ基のパラ位 を選択的にブロモ化する方法である(*path C*)。

はじめに path A の検討を行った。Bromonitrophenylboronic acid **65** は bromophenylboronic acid **50** を濃硫酸中、硝酸にてニトロ化することで、低収率ながら合成出来た (Scheme **48**)。つづいて鈴木-宮浦カップリング反応の検討を行った(**Table 16**)。

Scheme 48. Preparation of bromonitrophenylboronic acid 65

^{*1} Base was not dissolved in H_2O .

はじめに上部セグメントの合成(Scheme 46)において有用であった Na₂CO₃を用いる 条件にて反応を行ったが、まったく進行しなかった(run 1)。そこで run 2~5 に示すよ うに様々な塩基を用いて検討したが、いずれも 55 が分解する結果となった。次に溶 媒をトルエンに変えて反応を行ったが、55 のヨウ素が水素に置換された化合物 53 が 得られてくるのみで(run 6)、目的のビフェニル 70 はまったく得られなかった。以上の 結果より、path A により 51 を合成する手法は断念した。

次に path B による合成を試みた。はじめに鈴木-宮浦カップリング反応前駆体であ るボロン酸 66 の合成検討を行った。ヨウ素体 55 に対し "BuLi によりハロゲンリチウ ム交換を行った後、B(O'Pr)₃ を作用させボロン酸 66 を合成しようと考えた ⁵⁴⁾。しかし 様々な溶媒や添加剤、反応温度で検討を行ったが、目的とするボロン酸 66 は得られ なかった(Table 17)。いずれの条件でもヨウ素が水素に置換された化合物 53 が得られ ていることから、ハロゲンリチウム交換は進行していると思われる。しかし生じたア ニオンが B(O'Pr)₃ と反応せずに 1M HCl aq. によりクエンチされる、または B(O'Pr)₃ と反応する前に分子内のアミノ基からプロトンを引き抜いてしまうために、ボロン酸 66 が得られなかったものと思われる。反応温度を高くすると Ts 基がマイグレーショ ンした化合物 71 が得られた(run 5)ことから、他の塩基('BuLi など)を用いて検討を行 っても、望む 66 を得ることは難しいと判断し、このルートは断念することとした。

最後に path C による合成を試みた。ヨウ素体 55 と nitrophenylboronic acid 68 との鈴木-宮浦カップリング反応によりアミノビフェニル 72 を得た(Scheme 49)。つづいて 72 のアミノ基を Br 基へ置換すべく、Sandmeyer 反応を行った(Table 18)。

Scheme 49. Preparation of monobromobiphenyl 69

run	reagents	solvent	temp. (°C)	results
1	NaNO ₂ in H ₂ O, CuBr	HBr	0 to 80	73 (14%)
2	NaNO ₂ in H ₂ SO ₄ , CuBr	HBr	0 to 80	undentified product
3	$NaNO_2$ in H_2SO_4 , CuBr	HBr, AcOH	0 to 80	73 (15%), 74 (16%)
O₂N	R^1 Me O_2 R^2 R^2 R^3 OH 73	$\begin{array}{c} N \qquad R^1 \qquad N \\ & & \\ $	Me $R^1 =$ $-R^2 R^1 =$ $DTs R^1 =$	= H, $R^2 = Br$, $R^3 = Br$ or = Br, $R^2 = H$, $R^3 = Br$ or = Br, $R^2 = Br$, $R^3 = H$

Table 18.Sandmeyer reaction of 72

上部セグメントの合成において有効であった条件(Table 14)にて反応を試みたが、ブロモ基が2つ導入された化合物 73 および74 を与える結果となった。これは化合物 60 (Scheme 46 および Table 14)にくらべ立体障害が小さいためと思われる。なお73 および74 はアミノ基がブロモ基に置換されていると思われるが、構造の決定が出来ていない。化合物 69 を得る事が難しいことや、仮に 69 が得られたとしても、続くブロモ化を位置選択的に行うことに困難が予想されることから、このルートも断念した。

以上のようにカップリング前駆体 **51**の合成が困難であったことから、double *N*-arylation 反応によるカルバゾールアミン **47**の合成を断念した。

§3 Pd(II)を用いた酸化的環化による下部セグメントの合成

新たな合成戦略として Scheme 50 に示すルートを考案した。すなわちカルバゾール アミン 47 はジアリールアミン 75 を 2 価の Pd を用いて酸化的に環化させ、カルバゾ ール環を構築し合成しようと考えた^{11a)}。この手法は環化の位置選択性の制御に問題 があるが、化合物 75 の場合は C-4b'、C-8'のいずれで反応しても望むカルバゾールが 得られる。そのためこの手法を採用することとした。なお炭素番号はムラスチフォリ ン-A を基準とした。

ジアリールアミン 75 は上部セグメント合成中間体 53 (Scheme 42)と bromonitrobenzene 76 との Buchwald-Hartwig *N*-arylation 反応により合成することとした。

Scheme 50. Retrosynthetic analysis of carbazolamine 47

化合物 **53** と bromonitrobenzene **76** との Buchwald-Hartwig *N*-arylation 反応 ^{33a)}により ジアリールアミン **75** を 81%の収率にて合成した(**Scheme 51**)。続いて過剰量の Pd(OAc)₂を用いて、AcOH 中加熱還流することにより、酸化的に環化させカルバゾー ル**77** とした ^{11a)}。カルバゾール環が生成したことは NOE 測定により確認した。

Scheme 51. Preparation of nitrocarbazole 80

化合物 77 を SEM 基にて保護して化合物 78 とし、Ts 基の脱保護を塩基性条件下、 MeOH 中にて行った。すると脱保護体 79 とともに OTs 基が OMe 基にて置換された化 合物 80 もわずかに生じた。これは芳香族求核置換反応によるものと思われる。脱保 護体 79 はメチル化することで定量的に化合物 80 へと変換することが出来た。化合物 80 の構造は¹H NMR および HRMS スペクトルにより同定した。

つづいて化合物 80 のニトロ基の還元を試みた。はじめに 10% Pd-C を用いて、水素 添加を行ったが、反応系が多点化し望むカルバゾールアミン 47 を得ることはできな かった。一般的にニトロ基は鉄、亜鉛、すずなどを用いて還元する⁵⁵⁾が、いずれも酸 性溶液中で用いることが多い。これらの方法は化合物 80 の場合、SEM 基が酸により 脱保護される可能性があるために用いることが出来ない。そこで温和かつ酸触媒を用 いない還元剤である、NaBH₂S₃を用いることとした⁵⁶⁾。NaBH₂S₃は NaBH₄と硫黄か ら系内で調製する試薬で(Scheme 52)、アルデヒドやケトン、オレフィンなどと反応す ることなく、ニトロ基を選択的に還元することができる。NaBH₂S₃を化合物 80 の還 元に用いたところ、84%にて望む下部セグメントであるカルバゾールアミン 47 を得 る事ができた(Scheme 53)。

> NaBH₄ + 3S \longrightarrow NaBH₂S₃ + H₂ Scheme 52. Preparation of NaBH₂S₃

Scheme 53. Preparation of carbazolamine 47

§4 全合成

上部セグメント **46** と下部セグメント **47** が合成できたので、double *N*-arylation 反応 によるビスカルバゾール骨格の構築を試みた(**Scheme 54、Table 19**)。

Та	ble 19.	19 . Double <i>N</i> -arylation react		
run	ligand	temp (°C)	time (h)	yield (%)
1	21	100	13	17
2	21	120	6	56
3 ^{*1}	21	120	24	58
4	21	130	13	37
5	31	120	6	23
6	36	120	13	18
*1 .				

¹ 1.1 eq. of **46** was used.

Aniline **32a** の double *N*-arylation 反応の検討結果(**Table 8**)を参考に、Pd ソースとして Pd₂(dba)₃、塩基として NaO'Bu、溶媒として toluene を用い、リガンドの検討を行った。 リガンドは aniline **32a** において有用であった **21** が最も適しており、**31** および **36** を用 いた場合は収率が低下した(runs 2, 5, 6)。反応温度は 120 ℃ が最も適していた(runs 1, 2, 4)。 またジブロモビフェニル **46** の当量を 1.1eq. まで減らした場合も同程度の収率と なった(run 3)。

化合物 46 や 47 のような複雑な基質に対しても、double *N*-arylation 反応を適用する ことが出来た。これによりビスカルバゾール骨格を効率的に構築することができ、望 む化合物 81 を得る事が出来た。

最後に SEM 基の脱保護を行った(Table 20)。はじめに TBAF や HF・Pyr.といったフ ッ素系の試薬で脱保護を試みたが、未反応または低収率であった(run 1, 2)。そこで酸 による脱保護を行ったところ、4M HCl aq.を用いて EtOH と THF の混合溶媒中にて加 熱することで、高収率にて SEM 基を脱保護することが出来、ムラスチフォリン-A (43) を合成することができた(run 4)。合成したムラスチフォリン-A (43)の 1H NMR スペク トル(Figure 10)および MS スペクトルは、天然物のもの⁴⁰とよい一致を示した。

Figure 10. ¹H NMR spectra of natural and synthetic murrastifoline-A (43)

以上をまとめると、2-amino-5-methylphenol **49**より6工程にて合成したジブロモビフェニル**46**と、同じく**49**より7工程にて合成したカルバゾールアミン**47**との、double *N*-arylation 反応によりビスカルバゾール骨格を構築し、ムラスチフォリン-A (**43**)の全合成を達成した(**Scheme 55**)⁵⁷⁾。なお過去にムラスチフォリン-A (**43**)の合成例は報告されておらず、本合成が初の全合成となった。

Scheme 55. Total synthesis of murrastifoline-A

第三章 ムラヤゾリンの合成研究

前章では、芳香族アミンの double *N*-arylation 反応によりカルバゾール骨格を構築し、 天然物であるムラスチフォリン-A を合成した。本章では脂肪族アミンの double *N*-arylation 反応を、天然物合成へと応用した研究について述べる。

第一節 ムラヤゾリンについて

ムラヤゾリン**82**は1969年 Dutta らにより、カレーリーフの木(学名 Murraya koenigii) の幹より単離されたカルバゾールアルカロイドである^{58a)}。この報告の後に、Kureel^{58b)} や Bordner^{58c)}、古川^{58d)}らによっても、その単離が報告されている。天然からはラセミ 体^{58a,b)}およびプラスの旋光度を有するもの^{58d)}が単離されている。ムラヤゾリンの構 造は X 線結晶構造解析より決定され、その特徴としてカルバゾール環を含め6 個の環 が縮環している点が挙げられる。生合成的には、同じくカレーリーフの木の幹より単 離された天然物である mahanibin **83**より得られると推測されている^{58b)}。

Scheme 56. Biosynthesis of murrayazoline (82)

また6位にメチル基を有するイソムラヤゾリン**84^{59a)}や、7**位に水酸基を有するムラ ヤミン-E **85^{59b)}、4**'位に水酸基を有するムラヤゾリノール**86^{59c)}などの類縁体も単離さ** れている。

Figure 11. Analogs of murrayazoline

Scheme 57. Retrosynthetic analysis of murrayazoline (82)

ムラヤゾリン 82 の六環性骨格は、カルバゾール環を構築した後に順次環化させる ことで構築しようと考え、Scheme 57 のような合成計画を立案した。ムラヤゾリン 82 はエキソオレフィン体 87 の 2 位水酸基と 3'位間で閉環することで合成出来ると考え た。エキソオレフィン体 87 は、カルバゾール 88 の 1 位、1'位間で、フリーデルクラ フツタイプの 1,4 付加反応を行うことで合成することとした。カルバゾール 88 は、ジ ブロモビフェニル 89 と立体障害の大きい脂肪族アミン 90 との double *N*-arylation 反応 により、カルバゾール環を構築することで合成しようと考えた。

ジブロモビフェニル **89** はムラスチフォリン-A の上部セグメント **46** と同様の手法 により、5-amino-2-methylphenol **92** より得られると考えた。水酸基の保護基として MOM 基を選択したのは、フリーデルクラフツタイプの 1,4 付加反応の際に、その電 子供与能により、1 位の反応性を高める為である。

アミン 90 は、既知化合物 94⁶⁰⁾のケトン部を足がかりにアジド基を導入し化合物 93 とした後、アジド基を還元して合成することとした。

第三節 ジブロモビフェニル部の合成

ジブロモビフェニル **89** はムラスチフォリン-A の上部セグメント **46** の合成と同様 の手法により合成できた(**Scheme 58**)。5-amino-2-methylphenol **92** の水酸基を選択的に Ts 化し、化合物 **95** としたのち、4 位を選択的にヨウ素化し、化合物 **96** とした。ヨウ 素体 **96** と bromophenylboronic acid **50** との、鈴木-宮浦カップリング反応によりアミノ ビフェニル **91** を得た。化合物 **91** のアミノ基を Sandmeyer 反応によりブロモ基へと変 換し、ジブロモビフェニル 97 とした。化合物 97 の Ts 基を MOM 基へとかけかえ、 カップリング前駆体 89 を合成した。

Scheme 58. Synthesis of dibromobiphenyl 89

ムラスチフォリン-Aの上部セグメント 46の合成では、化合物 61の Ts 基を EtOH 中、1 M KOH aq.を用いて脱保護していた (Scheme 46)。化合物 97の Ts 基も同様の条 件にて脱保護可能であった(80%)が、MeOH 中、NaOMe を用いて脱保護することで収 率が向上した(100%)。なお NaOMe、MeOH を用いて化合物 61の Ts 基の脱保護も試 みたが、反応が進行せず原料を回収する結果に終わった。

Scheme 59. Deprotection of Ts group (61)

これは立体障害によるものと思われる。化合物61の場合、OTs基のオルト位に位置 するブロモ基の影響で、求核剤であるMeO^〇が接近しづらい。一方化合物97の場合は 嵩高いブロモ基はOTs基のメタ位に位置し、立体障害が緩和されているため、反応が 進行したと思われる。 既知化合物94⁶⁰にMeLiを付加させアリルアルコール99を得た。つづいて文献⁶¹を参 考に、酸性条件下TMSN₃を用いて三級水酸基のアジド基への置換反応を試みたところ、 目的とする化合物100は得る事が出来ず、 $\alpha,\beta,\gamma,\delta$ 不飽和ケトン101が生成するのみだっ た(Scheme 60)。これは酸性条件にてエチレンアセタールが脱保護されケトンとなるた めに、S_N1反応によるアジド化よりも脱離反応が進行しやすくなったためと思われる。 そこで化合物99のエチレンアセタールをチオアセタールへと変換しようと試みた。し かし目的とする化合物102は得られず、脱離反応が進行した化合物101および103を与 える結果となった(Scheme 60)。

Scheme 60. Azidation of 99

水酸基が脱離するのは、カルボニルと共役しうる二重結合が存在するためと考えら れる。そこで二重結合を還元して、アジド化を試みることとした。

Scheme 61. Azidation of 105

化合物94のオレフィン部を還元し飽和ケトン104とした後に、MeLiを付加させアル コール105とした。化合物105に対し先ほどと同様の条件にてアジド化を試みたところ、 構造不明の化合物を多数与えるのみで、目的とする化合物106はまったく得られなか った(Scheme 61)。化合物105のエチレンアセタールが酸により脱保護されることが、 反応系が複雑化する原因と考え、エチレンアセタールを酸に強い保護基へとかけかえ ることとした。

Scheme 62. Preparation of amine 90

化合物105のエチレンアセタールをチオアセタールへとかけかえ、化合物107を得た。 つづいて酸性条件下、TMSN₃を用いてアジド化を試みたところ、目的とする置換反応 が進行し、アジド体108を得る事が出来た。この際、脱離反応も進行し、化合物109お よび110が若干生成した。化合物109、110は化合物108と完全に分離することが困難で あったので、混合物のままチオアセタールの脱保護⁶²⁾を行い、ケトン106とした。ケ トン106はシリカゲルカラムクロマドグラフィーにより、副生物と分離することが出 来た。続いて三枝酸化⁶³⁾によりエノン100としたのち、カルボニルをエチレンアセタ ールにて保護し化合物93を合成した。最後にアジド基を還元することで、カップリン グ前駆体アミン90を合成することができた。

第五節 カルバゾール骨格の構築

カップリング前駆体であるジブロモビフェニル**89**とアミン**90**が合成できたので、 double *N*-arylation 反応によるカルバゾール骨格構築の検討を行った(**Scheme 63**, **Table 21**)。

Scheme 63. Double N-arylation of amine 90 with diboromobiphenyl 89

run	ligand	temp.(°C)	time (h)	yield (%)
1	21	120	17	16
2	31	120	12	36
3	36	120	17	54
4	36	130	13	59

 Table 21. Double N-arylation reaction

tert-Butylamine **34f**とdibromobiphenyl **29**とのカップリング反応の結果(**Table 9**)を参考に、PdソースとしてPd₂(dba)₃、塩基としてNaO'Bu、溶媒としてtolueneを用い、リガンドの比較を行った。120 °Cにて検討を行ったところ、リガンドは**36**を用いた場合にもっとも高収率となった。これは*tert*-Butylamine **34f**とdibromobiphenyl **29**とのカップリングの場合と同様の結果である。また反応温度は130 °Cがもっとも適しており、59%にて目的とするカルバゾール**88**を得る事が出来た。

カルバゾール骨格を構築することが出来たので、ムラヤゾリンの六環性骨格構築の 検討を行った。化合物88に水存在下、Sc(OTf)3を作用させるとエチレンアセタールの 脱保護、フリーデルクラフツタイプの分子内1,4付加⁶⁴⁾、MOM基の脱保護の順に反応 が進行し、化合物113が73%にて得られた。この分子内1,4付加は望む1位、1'位間で進 行し、望まない8位で環化した化合物は得られなかった。これはMe基とOMOM基の電 子供与能により、1位の反応性が高められているためと思われる。続いてTebbe試薬⁶⁵⁾ によりカルボニル基をエキソオレフィンへと変換し、ムラヤゾリンの前駆体である化 合物87を合成することが出来た。化合物87は2位水酸基と3'位間で環化することによ り、ムラヤゾリン 86~導けると思われる。

Scheme 64. Synthesis of murrayazoline precursor 87

第四章 総括

本研究において、double N-arylation反応によるN-置換カルバゾールの合成法の開発 を行った。リガンドを適切に選択することで、芳香族アミンと脂肪族アミンのいずれ にも適用可能な方法とすることが出来、脂肪族アミンでは低収率であった野崎らの手 法に比べ、より汎用性が高まった。多置換カルバゾール誘導体を無置換カルバゾール から合成する場合、カルバゾール環自身の電子的性質から、求電子的反応はカルバゾ ールの3、6、9位でしかおこらなかった。そのため任意の位置に望む置換基を導入す る多置換カルバゾールの製法の報告例は少ない。比較的置換基の導入が容易なジブロ モビフェニルを用い、かつ環化の位置を完全に制御できる本手法は、多置換カルバゾ ールの合成法として有用である。

また本手法を天然物合成に応用し、ムラスチフォリン-Aの初の全合成を達成した。 ビアリールビスカルバゾール骨格を有するカルバゾールアルカロイドは、近年注目を 集めている化合物であるが、その合成法の報告は少なく、望みの位置で結合するビス カルバゾールを合成することには困難が予想される。本研究の手法は、これらの化合 物を位置選択的に合成することが出来るため非常に有用であり、今後のビスカルバゾ ールアルカロイドの研究へ資するところが大きい。

ムラヤゾリンの合成研究では、嵩高く、高度に官能基化された脂肪族アミンに対しても、本手法が適用可能であることを示した。従来は、9位に比較的単純な置換基を 有するN-置換カルバゾールの合成例がほとんどであったが、本手法により、9位により複雑な置換基を有するカルバゾールを合成できるようになった。今後、医薬品や農 薬などの分野において、N-置換カルバゾールの利用が促進されることが期待される。

General Experimental Procedure

The m.p.s were determined on a Mitamura-riken micro hot stage and are uncorrected.

¹H NMR spectra were measured with a JEOL JNM-*Lambda* 300 (300 MHz) or a Varian MVX-300 (300 MHz) spectrometers, with tetramethylsilane as the internal standard for solutions in CDCl₃ at rt, unless otherwise noted. Chemical shifts are reported as δ values in ppm. Abbreviations used are; br (broad peak), s (singlet), d (doublet), t (triplet), q (quartet) and m (complex multiplet).

¹³C NMR spectra were taken on a JEOL JNM-*Lambda* 300 (75 MHz) or a Varian MVX-300 (75 MHz) spectrometers, in CDCl₃ at rt, unless otherwise noted. Chemical shifts are reported as δ values in ppm.

Mass spectra were measured by a JEOL GC-Mate spectrometer with EI mode (70 eV), unless otherwise noted.

Optical rotations were measured with a JASCO DIP-370 instrument with 1-dm tube and values of $[\alpha]_D$ are recorded in units of $10^{-1} \text{ deg} \cdot \text{cm}^2 \cdot \text{g}^{-1}$.

IR spectra were taken with a JASCO FT/IR-200 spectrometer.

Organic extracts were dried over anhydrous Na₂SO₄ and concentrated below 40 °C under reduced pressure.

Solvents were dried over 3\AA molecular sieves after distillation. Benzene, toluene and DMF were distilled from CaH₂. MeOH was distilled from CaSO₄ (DRIERITE[®]). AcOH was distilled from Ac₂O and KMnO₄. EtOH (95%, dried over 3\AA molecular sieves), Et₂O (dehydrated), THF (dehydrated, stabilizer free) and CH₂Cl₂ (dehydrated) were purchased from Kanto Chemical Co., INC.

For column chromatography, Merck silica gel 60 (230-400 mesh) was used, unless otherwise noted.

For TLC analysis, Merck precoated TLC plates (silica gel 60 F_{254} on glass plates, 0.25 mm) were used.

For preparative TLC, Merck precoated TLC plates (silica gel 60 F_{254} on glass plates, 0.5 mm) were used.

Part-I. Synthesis of *N*-substituted carbazole

2,3-*O*-Benzyl-4,6-*O*-benzylidene-β-D-glucopyranosylamine (28).

To a suspension of NaH (39 mg 1.63 mmol) in DMF (2 mL) was slowly added 4,6-*O*-benzylidene- β -D-glucopyranosyl azide⁶⁶ (120 mg, 409 μ mol) at 0 °C. After stirring at rt for 5 min, the reaction mixture was

cooled to 0 °C. To this mixture was slowly added BnBr (0.15 mL, 1.26 mmol), and the mixture was stirred at rt for 2 h. After addition of MeOH at 0 °C, the reaction mixture was extracted with EtOAc and washed with H₂O and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 6 g, EtOAc/hexane = 1/20) to afford 2,3-O-benzyl-4,6-O-benzylidene- β -D-glucopyranosyl azide (176 mg, 90%) as white solid: Rf = 0.88 (EtOAc/toluene = 1/2); m.p. 112 °C; $[\alpha]_D^{27}$ = +69.5 (c = 1.00, CHCl₃); IR v 2115 cm⁻¹; ¹H NMR δ 3.36 (dd, 1H, J = 8.7, 8.4 Hz), 3.42 (ddd, 1H, J = 9.9, 9.6, 4.8 Hz), 3.64 (dd, 1H, J = 9.6, 9.3 Hz), 3.69 (dd, 1H, J = 10.5, 9.9), 3.75 (dd, 1H, J = 9.3, 8.7 Hz), 4.32 (dd, 1H, J = 10.5, 4.8 Hz), 4.65 (d, 1H, J = 8.4 Hz), 4.77 and 4.92 $(2d, each 1H, J = 11.4), 4.81 (s, 2H), 5.52 (s, 1H), 7.25-7.33 (m, 13H), 7.45-7.48 (m, 2H); {}^{13}C$ NMR δ 68.1, 68.4, 75.2, 75.7, 81.2, 81.3, 81.4, 90.6, 101.2, 126.0, 127.8, 128.0, 128.1, 128.3, 128.3, 128.4, 128.5, 129.1, 137.1, 137.7, 138.2; HRMS m/z 473.1960 (473.1951, calcd. for $C_{27}H_{27}N_{3}O_{5}$, M⁺), LRMS *m/z* 473 (M⁺, 1%), 431 (1), 382 (18), 91 (100); Anal. Calcd. for C₂₇H₂₇N₃O₅: C, 68.48; H, 5.75; N, 8.87%. Found: C, 68.51; H, 5.86; N, 8.64%. To a solution of this product (136 mg, 287 µmol) in toluene (4 mL) was added Lindlar catalyst (70 mg). The reaction mixture was stirred for 12 h under H₂ (1 atm) at rt. Then the catalyst was filtrated through Celite[®] and the filtrate was concentrated to give the residue, which was recrystallized from EtOH to afford glucosylamine (28) (98.5 mg, 76%) as a white solid: Rf = 0.34 (EtOAc/toluene = 1/2); m.p. 111-112 °C (decomp.); $[\alpha]_D^{27} = -38.7$ (c = 1.00, CHCl₃); IR v 3400, 3335 cm⁻¹; ¹H NMR δ 1.91 (bs, 2H), 3.21 (dd, 1H, J = 8.6, 8.6 Hz), 3.42 (ddd, 1H, J = 9.6, 9.3, 5.0 Hz), 3.65 (dd, 1H, J = 9.3, 9.1 Hz), 3.71 (dd, 1H, J = 10.4, 9.6 Hz),3.80 (dd, 1H, J = 9.1, 8.6 Hz), 4.22 (d, 1H, J = 8.6 Hz), 4.32 (dd, 1H, J = 10.4, 5.0 Hz), 4.80and 4.94 (2d, each 1H, J = 11.4 Hz), 4.84 and 4.92 (2d, each 1H, J = 10.5 Hz), 5.56 (s, 1H), 7.26-7.38 (m, 13H), 7.47-7.51 (m, 2H); ¹³C NMR δ 67.3, 69.0, 75.2, 75.5, 82.1, 82.1, 86.8, 101.1, 126.1, 127.8, 127.9, 128.2, 128.3, 128.3, 128.4, 128.5, 129.0, 137.5, 138.3, 138.6; HRMS m/z 447.2056 (447.2046, calcd. for C₂₇H₂₉NO₅, M⁺), LRMS m/z 447 (M⁺, 1%), 356 (2), 248 (37), 91 (100); Anal. Calcd. for C₂₇H₂₉NO₅: C, 72.46; H, 6.53; N, 3.13%. Found: C, 72.32; H, 6.55; N, 2.73%.

2,3-*O*-**Benzyl-4,6-***O*-**benzylidene-**α **and** β-**D**-glucopyranosylcarbazole (30). Ar gas was bubbled into a mixture of glucosylamine (28) (20 mg, 44.7 μmol), dibromobiphenyl (29) (42.0 mg, 135 μmol), $Pd_2(dba)_3$ (41 mg, 44.7 μmol), 2-(di-*t*-butylphosphino)binaphtyl (31) (53 mg, 133 μmol) and

NaO^tBu (12.9 mg, 134 µmol) in toluene (0.8 mL) for 15 min. The reaction mixture was then heated at 60 °C in a sealed tube for 24 h. After cooling, the mixture was purified by column chromatography (silica gel: 2 g, EtOAc/hexane = 1/40) to afford anomeric mixture of glucosylcarbazole (**30**). The mixture was separated by preparative TLC using EtOAc/hexane = 1/8 as the eluant to give α -anomer (30 α) (5.1 mg, 19%) as a colorless syrup and β -anomer (30 β) (8.9 mg, 33%) as a colorless syrup. Data for 30 α : Rf = 0.23 $(\text{EtOAc/hexane} = 1/8); [\alpha]_{D}^{21} = -14.5 (c = 0.1, \text{CHCl}_3); \text{IR (neat) } \vee 3030, 2920, 1455 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (C_6D_6) δ 3.50 (dd, 1H, J = 10.5, 10.2 Hz), 3.73 and 3.83 (2d, each 1H, J = 11.9 Hz), 3.93 (bd, 1H, J = 1.8 Hz), 4.02-4.07 (m, 2H), 4.30 (dd, 1H, J = 10.5, 5.1 Hz), 4.42 and 4.53 (2d, each 1H, J = 12.2 Hz), 4.60-4.71 (m, 1H), 5.39 (s, 1H), 6.47 (d, 1H, J = 1.8 Hz), 6.54 (d, 1H)2H, J = 6.3 Hz), 6.81-6.90 (m, 4H), 7.11-7.36 (m, 11H), 7.65 (bd, 4H, J = 7.8 Hz), 8.03 (d, 2H, 2H) J = 7.5 Hz); HRMS m/z 597.2522 (597.2522, calcd. for C₃₉H₃₅NO₅, M⁺), LRMS m/z 597 (M⁺, 13%), 167 (23), 91 (100). Data for **30B**: Rf = 0.20 (EtOAc/hexane = 1/8); $[\alpha]_D^{25} = +31.7$ $(c = 0.97, CHCl_3)$; IR (neat) v 3030, 2875, 1455 cm⁻¹; ¹H NMR δ 3.35 (d, 1H, J = 10.0 Hz), 3.79 (m, 1H), 3.93 (dd, 1H, J = 10.5, 10.2 Hz), 4.00-4.08 (m, 2H), 4.06 (d, 1H, J = 10.0 Hz),4.40 (dd, 1H, J = 8.8, 8.8 Hz), 4.46 (dd, 1H, J = 10.5, 4.9 Hz), 4.83 (d, 1H, J = 11.2 Hz), 5.00 (d, 1H, J = 11.2 Hz), 5.73 (s, 1H), 5.88 (d, 1H, J = 8.8 Hz), 6.34 (d, 2H, J = 7.6 Hz), 6.93 (dd, 2H2H, J = 7.6, 7.6 Hz), 7.05 (dd, 1H, J = 7.6, 7.6 Hz), 7.28-7.64 (m, 16H), 8.09 (d, 2H, J = 7.6 Hz); ¹³C NMR δ 68.9, 69.4, 75.2, 75.6, 78.8, 82.0, 82.4, 85.5, 101.5, 109.8, 112.8, 120.4, 126.2, 127.8, 127.9, 128.1, 128.2, 128.5, 128.6, 129.2, 136.7, 137.4, 138.5; HRMS m/z 597.2513 (597.2515, calcd. for C₃₉H₃₅NO₅, M⁺), LRMS m/z 597 (M⁺, 6%), 167 (12), 91 (100).

The sugar moiety of α -glucosylcarbazole (**30** α) would take twist-boat conformation. It was proved by observation of the nuclear Overhauser effect (NOE) (3.4%) of H-1 (δ 6.47) to H-4 (δ 4.02-4.07) and small coupling constants of ¹H NMR ($J_{2,1} = 1.8$ Hz and $J_{2,3} = 0$ Hz). The similar conformation was reported⁶⁷) at K-252d which was indolo[2,3-a]carbazole glycoside.

General Procedure for the double *N*-Arylation Reaction. Ar gas was bubbled into a mixture of amine (**32**) (250 μ mol), dibromobiphenyl (**29**) (85.8 mg, 275 μ mol), Pd₂(dba)₃ (22.9 mg, 25.0 μ mol), ligand (**20**, **21**, **31** or **36**) (75.0 μ mol) and NaO^tBu (72.1 mg, 750 μ mol) in toluene (1 mL) for 15 min, unless otherwise noted. The mixture was then heated at 120 °C in a sealed tube for 13-24 h (*see* Table 8 and 9). After cooling, the mixture was

filtrated through a pad of silica gel (3g, toluene). The filtrate was concentrated to give residue, which was purified by column chromatography (silica gel: 6 g, hexane) to afford carbazole (**33**).

N-Phenylcarbazole (33a). The general procedure using 2-(dicyclohexylphosphino)biphenyl (21) gave *N*-phenylcarbazole (33a) (51.9 mg, 85%) as colorless solid: Rf = 0.37 (toluene/hexane = 1/5); m.p. 89-90 °C; IR (KBr) v 3020, 1595 cm⁻¹; ¹H NMR δ 7.23-7.31 (m, 2H), 7.37-7.41 (m, 4H), 7.42-7.48 (m, 1H), 7.54-7.62 (m, 4H), 8.14 (d, 1H, *J* = 7.8 Hz); ¹³C NMR δ 109.9, 120.0, 120.4, 123.5, 126.0, 127.3, 127.6, 130.0, 137.9, 141.0;

34 X = Br **35** X = H

HRMS m/z 243.1040 (243.1048, calcd. for C₁₈H₁₃N, M⁺), LRMS m/z 243 (M⁺, 100%), 139 (12), 121 (9); Anal. Calcd. for C₁₈H₁₃N: C, 88.86; H, 5.39; N, 5.76%. Found: C, 88.89; H, 5.32; N, 5.76%.

N-[2-(2'-bromobiphenyl)]aniline (34) and *N*-(2-biphenyl)aniline (35). procedure using 2-(dicyclohexylphosphino)biphenyl (21) and heating at 60 °C gave *N*-phenylcarbazole (33a) (20.1 mg, 33%) and 10 / 1 mixture (determined by ¹H NMR) of mono *N*-arylation products (34) and (35) (16.8 mg, 21%). A small amount of the mixture was separated by HPLC (Finepak SIL, JASCO Corp., 4.6 mm i.d., 250 mmL, EtOAc/hexane =

1 / 40, 1.0 mL/min) to provide compounds **34** (retention time 5.40 min) and 35 (retention time 6.95 min) in pure forms and use as analytical samples. Data for **34**: Rf = 0.53 (toluene/hexane = 1/1); m.p. 84-87 °C; IR (neat) v 3010 cm⁻¹; ¹H NMR δ 5.27 (s, 1H), 6.92 (ddd, 1H, *J* = 7.5, 7.2, < 1 Hz), 6.99 (ddd, 1H, *J* = 7.8, 7.2, 1.5 Hz), 7.04 (dd, 1H, *J* = 7.5, < 1 Hz), 7.15 (dd, 1H, *J* = 7.8, 1.7 Hz), 7.20-7.39 (m, 7H), 7.69 (dd, 1H, *J* = 7.7, 0.9 Hz); ¹³C NMR δ 116.6, 119.1, 120.5, 121.6, 124.6, 128.0, 129.0, 129.4, 129.5, 130.5, 130.8, 132.1, 133.3, 139.8, 141.0, 143.0; HRMS *m*/*z* 323.0311 (323.0310, calcd. for C₁₈H₁₄N⁷⁹Br, M⁺), LRMS *m*/*z* 325 (M⁺(⁸¹Br), 22%), 323 (M⁺(⁷⁹Br), 20), 244 (81), 167 (32), 64 (100). Data for **35**: Rf = 0.53 (toluene/hexane = 1/1); IR (neat) v 3405 cm⁻¹; ¹H NMR δ 5.52 (bs, 1H), 6.83 (ddd, 1H, *J* = 7.3, 7.3, 1.2 Hz), 6.88-6.97 (m, 3H), 7.14-7.19 (m, 4H), 7.29-7.36 (m, 6H); ¹³C NMR δ 117.6, 118.4, 121.2, 121.2, 127.6, 128.4, 129.0, 129.5, 131.0, 131.7, 139.2, 140.3, 143.5; HRMS *m*/*z* 245.1198 (245.1204, calcd. for C₁₈H₁₅N, M⁺), LRMS *m*/*z* 245 (M⁺, 100%), 167 (32).

N-Benzylcarbazole (33b). The general procedure using 2-(di-*tert*-butyl-phosphino)binaphtyl (31) gave *N*-benzylcarbazole (33b) (38.4 mg, 60%) as colorless solid: Rf = 0.53 (toluene/hexane = 1/1); m.p. 119-120 °C; IR (KBr) v 3030, 2930, 1595, 1450 cm⁻¹; ¹H NMR δ 5.50 (s, 2H), 7.11-7.14 (m, 2H), 7.22-7.27 (m, 5H), 7.35 (d, 2H, *J* = 7.3 Hz), 7.42 (dd, 2H, *J* = 7.3, 0.9 Hz),

8.13 (dd, 2H, J = 7.6, 0.9 Hz); ¹³C NMR δ 46.7, 109.0, 119.4, 120.5, 123.2, 126.0, 126.6,

127.6, 128.9, 137.3, 140.8; HRMS *m/z* 257.1203 (257.1204, calcd. for C₁₉H₁₅N, M⁺), LRMS *m/z* 257 (M⁺, 100%), 166 (24), 109 (17), 91 (92); Anal. Calcd. for C₁₉H₁₅N • 0.1H₂O: C, 88.07; H, 5.91; N, 5.41%. Found: C, 88.08; H, 5.89; N, 5.40%.

N-(4-Methoxybenzyl)carbazole (33c). The general procedure using 2-(di*t*-butyl-phosphino)binaphtyl (31) gave *N*-(4-methoxybenzyl)carbazole (33c) (51.2 mg, 71%) as colorless solid: Rf = 0.32 (toluene/hexane = 1/1); m.p. 122-123 °C; IR (KBr) v 3050, 2835, 1595, 1460 cm⁻¹; ¹H NMR δ 3.73 (s, 3H),

5.46 (s, 2H), 6.78 (d, 2H, J = 8.6 Hz), 7.08 (d, 2H, J = 8.6 Hz), 7.24 (dd, 2H, J = 7.8, 7.4 Hz), 7.37 (d, 2H, J = 7.6 Hz), 7.42 (dd, 2H, J = 7.6, 7.4 Hz), 8.12 (d, 2H, J = 7.8 Hz); ¹³C NMR δ 46.2, 55.4, 109.1, 114.3, 119.3, 120.5, 123.1, 125.9, 127.8, 129.4, 140.8, 159.1; HRMS m/z287.1300 (287.1300, calcd. for C₂₀H₁₇NO, M⁺), LRMS m/z 287 (M⁺, 30%), 166 (11), 121 (100), 77 (12); Anal. Calcd. for C₂₀H₁₇NO: C, 83.59; H, 5.96; N, 4.87%. Found: C, 83.43; H, 5.95; N, 4.85%.

N-Octylcarbazole (26d). The general procedure using 2-(di-*t*-butyl-phosphino)binaphtyl (31) gave *N*-octylcarbazole (33d) (46.5 mg, 67%) as colorless syrup: Rf = 0.50 (toluene/hexane = 1/5); IR (neat) v 3055, 2925, 1600, 1455 cm⁻¹; ¹H NMR δ 0.86 (t, 3H, *J* = 6.7 Hz), 1.24-1.40 (m, 10H),

N octyl 33d

1.86 (tt, 2H, J = 7.3, 7.3 Hz), 4.28 (t, 2H, J = 7.3 Hz), 7.21 (ddd, 2H, J = 7.6, 7.6, 1.2 Hz), 7.39 (dd, 2H, J = 7.8, 1.2 Hz), 7.45 (ddd, 2H, J = 7.8, 7.6, 1.0 Hz), 8.09 (dd, 2H, J = 7.6, 1.0 Hz); ¹³C NMR δ 14.2, 22.7, 27.4, 29.1, 29.3, 29.5, 31.9, 43.2, 108.8, 118.8, 120.5, 122.9, 125.7, 140.5; HRMS *m*/*z* 279.1982 (279.1987, calcd. for C₂₀H₂₅N, M⁺), LRMS *m*/*z* 279 (M⁺, 79%), 245 (19), 180 (100); Anal. Calcd. for C₂₀H₂₅N: C, 85.97; H, 9.02; N, 5.01%. Found: C, 85.99; H, 8.93; N, 4.91%.

N-Cyclohexylcarbazole (33e). The general procedure using cyclohexylamine (32e) (22.9 μ l, 200 μ mol), dibromobiphenyl (29) (68.6 mg, 220 μ mol), Pd₂(dba)₃ (18.3 mg, 20.0 μ mol), 2-(di-*t*-butylphosphino)binaphtyl (31) (23.9 mg, 60.0 μ mol), NaO*t*-Bu (57.7 mg, 600 μ mol) and toluene (0.8 mL) gave

N-cyclohexylcarbazole (**33e**) (40.0 mg, 80%) as colorless solid: Rf = 0.53 (toluene/hexane = 1/5); m.p. 143-144 °C; IR (KBr) v 3055, 2920, 1590, 1455 cm⁻¹; ¹H NMR δ 1.31-1.61 (m, 3H), 1.82-1.87 (m, 1H), 1.94-2.04 (m, 4H), 2.33-2.47 (m, 2H), 4.49 (tt, 1H, *J* = 12.3, 3.9 Hz), 7.20 (dd, 2H, *J* = 7.8, 7.6 Hz), 7.43 (ddd, 2H, *J* = 8.1, 7.6, 1.2 Hz), 7.56 (d, 2H, *J* = 8.1 Hz), 8.10 (dd, 2H, *J* = 7.6, 1.2 Hz); ¹³C NMR δ 25.8, 26.7, 30.9, 55.5, 110.4, 118.6, 120.4, 123.4, 125.4, 139.8; HRMS *m*/*z* 249.1517 (249.1517, calcd. for C₁₈H₁₉N, M⁺), LRMS *m*/*z* 249 (M⁺, 100%), 206 (43), 167 (92); Anal. Calcd. for C₁₈H₁₉N: C, 86.70; H, 7.68; N, 5.62%. Found: C, 86.48; H, 7.60; N, 5.58%.

N-tert-Butylcarbazole (33f). The general procedure using 2-(dicyclohexyl-phosphino)-2',4',6'-triisopropylbiphenyl (36) gave *N-tert*-butylcarbazole (33f) (23.6 mg, 42%) as colorless solid: Rf = 0.38 (toluene/hexane = 1/5); m.p. 122 -123 °C; IR (KBr) v 3050, 2970, 1590, 1440 cm⁻¹; ¹H NMR δ 2.00 (s, 9H),

7.19 (ddd, 2H, J = 7.8, 7.1, 0.7 Hz), 7.37 (ddd, 2H, J = 8.7, 7.1, 1.5 Hz), 7.86 (dd, 2H, J = 8.7, 0.7 Hz), 8.10 (dd, 2H, J = 7.8, 1.5 Hz); ¹³C NMR δ 31.2, 59.2, 113.9, 118.6, 120.0, 124.6, 125.2, 140.6; HRMS *m*/*z* 223.1359 (223.1361, calcd. for C₁₆H₁₇N, M⁺), LRMS *m*/*z* 223 (M⁺, 17%), 167 (100), 140 (16); Anal. Calcd. for C₁₆H₁₇N: C, 86.05; H, 7.67; N, 6.27%. Found: C, 85.34; H, 7.63; N, 6.29%.

06.03.02 2,3-0-8n-4,8-0-benzyliden-glucoamine Pulse Sequence: s2pul

Part-II. Total synthesis of murrastifolen-A

2-Amino-5-methylphenol 4-methylbenzenesulfonate ester (53)^{9a,b)}.

To a solution of 2-amino-5-methylphenol **49** (3 g, 24.4 mmol) in CH_2Cl_2 (45 ml) were added Et_3N (3.74 ml, 26.8 mmol) and TsCl (5.11g, 26.6 mmol) at 0 °C. After stirring at 0 °C for 15 min, the reaction mixture was extracted with CHCl₃ and washed with H₂O. The organic layer was dried and concentrated to give the residue, which was recrystallized from Et_2O to afford tosylate (**53**) (6.04 g,

Me OTs NH₂ 53

Me

ΝH₂

55

OTs

89%) as a brown solid: Rf = 0.23 (EtOAc/petroleum ether = 1/5); m.p. 81-82 °C; ¹H NMR δ 2.15 (s, 3H), 2.46 (s, 3H), 3.64 (bs, 2H), 6.61 and 6.83 (2d, each 1H, J = 8.0 Hz), 6.66 (s, 1H), 7.33 and 7.78 (2d, each 2H, J = 8.3 Hz); HRMS m/z 277.0773 (277.0773, calcd. for C₁₄H₁₅NO₃S, M⁺), LRMS m/z 277 (M⁺, 41%), 122 (100), 94 (89); Anal. Calcd. for C₁₄H₁₅NO₃S: C, 60.63;H, 5.45; N, 5.05%. Found: C, 60.46; H, 5.42; N, 4.83%.

2-Amino-3-iodo-5-methylphenol 4-methylbenzenesulfonate ester (55).

To a solution of tosylate (53) (2.00 g, 7.21 mmol) in DMF (40 mL) was slowly added NIS (1.78 g, 7.93 mmol) at 0 °C. The reaction mixture (protected from light) was stirred for 3 h at rt, then diluted with Et_2O and washed with 30 wt% of aqueous $Na_2S_2O_3$ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column

chromatography(silica gel: 60 g, EtOAc/petroleum ether = 1/7) afford iodide (**55**) (2.01 g, 69%) as orange solid: Rf = 0.45 (EtOAc/petroleum ether = 1/5); m.p. 141-142 °C; IR (neat) v 3460 cm⁻¹; ¹H NMR δ 2.13 (s, 3H), 2.47 (s, 3H), 4.06 (bs, 2H), 6.69 (s, 1H), 7.34 (s, 1H), 7.35 and 7.78 (2d, each 2H, J = 8.3 Hz); ¹³C NMR δ 19.9, 21.8, 84.6, 123.7, 128.5, 129.0, 130.0, 132.6, 135.2, 137.7, 138.4, 145.9; HRMS *m*/*z* 402.9741 (402.9739, calcd. for C₁₄H₁₄NO₃IS, M⁺), LRMS *m*/*z* 403 (M⁺, 18%), 248 (100), 121 (12); Anal. Calcd. for C₁₄H₁₄NO₃IS: C, 41.70; H, 3.50; N, 3.47%. Found: C, 41.93; H, 3.66; N, 3.26%.

2-Amino-2'-bromo-5-methyl-1,1'-biphenyl-3-ol 4-methylbenzene-

sulfonate ester (60). To a solution of $Pd(PPh_3)_4$ (22.8 mg, 19.8 µmol) in benzene was added iodide (55) (200 mg, 495 µmol) in benzene (7 mL) was added under Ar. After that, 2 M aqueous Na₂CO₃ solution (1.9 mL, 3.96 mmol) and 2-bromophenylbronic acid (120 mg, 595 µmol) in EtOH (2.4 mL) were added to the mixture. The reaction mixture was heated

at reflux for 2 h. After cooling, the mixture was extracted with Et₂O and washed with brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 10 g, EtOAc/hexane = 1/10) to afford (**60**) (213 mg, 99%) as pale yellow syrup; Rf = 0.37 (EtOAc/petroleum ether = 1/5); IR (neat) v 3480 cm⁻¹; ¹H NMR δ 2.22 (s, 3H), 2.44 (s, 3H), 3.42 (s, 2H), 6.72 and 6.91 (2d, each 1H, *J* = 1.2 Hz), 7.22

(2ddd, each 1H, J = 8.4, 7.5, 1.2 Hz), 7.31 and 7.79 (2d, each 2H, J = 8.4 Hz), 7.36 (dd, 1H, J = 7.5, 1.2 Hz), 7.63 (dd, 1H, J = 8.4, 1.2 Hz); ¹³C NMR δ 20.2, 21.6, 122.8, 123.7, 126.8, 127.7, 128.4, 128.7, 129.0, 129.4, 129.6, 131.4, 132.5, 132.9, 134.5, 136.7, 138.7, 145.3; HRMS *m*/*z* 433.0169 (433.0170, calcd. for C₂₀H₁₈NO₃⁸¹BrS, M⁺), LRMS *m*/*z* 433 (M(⁸¹Br)⁺, 11%), 431 (M(⁷⁹Br)⁺, 11), 278 (58), 276 (59), 197 (100); Anal. Calcd. for C₂₀H₁₈NO₃BrS: C, 55.56; H, 4.20; N, 3.24%. Found: C, 55.33; H, 4.28; N, 3.02%.

2,2'-Dibromo-5-methyl-1,1'-biphenyl-3-ol 4-methylbenzenesulfonate

ester (61). To a solution of (60) (128 mg, 297 μ mol) in AcOH (2.5 mL) was slowly added NaNO₂ (40.9 mg, 593 μ mol) in conc. H₂SO₄ (0.04 mL) at 0 °C, then the mixture was stirred for 1 h at rt. The reaction mixture was slowly added to CuBr (85.1 mg, 593 μ mol) in 47 wt% aqueous HBr solution (1.7 mL) at 80 °C, and stirred for 1.5 h at 80 °C. After cooling,

the reaction mixture was extracted with Et₂O and washed with 1 M aqueous NaOH solution, saturated aqueous NaHCO₃ solution, and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 15 g, EtOAc/petroleum ether = 1/20) to afford (**61**) (94.1 mg , 64%) as a white crystal: Rf = 0.43 (EtOAc/petroleum ether = 1/5); m.p. 163 °C; ¹H NMR δ 2.05 (s, 3H), 2.46 (s, 3H), 6.62 (s, 1H), 7.09 (s, 1H), 7.20 (d, 2H, *J* = 6.9 Hz), 7.26-7.43 (m, 4H), 7.65 and 7.81 (2dd, each 1H, *J* = 8.1, < 1 Hz); ¹³C NMR δ 21.4, 21.9, 118.8, 120.2, 123.5, 124.0, 128.1, 128.8, 129.7, 130.5, 130.8, 133.5, 139.9, 141.5, 143.3, 150.0; HRMS *m*/*z* 493.9183 (493.9187, calcd. for C₂₀H₁₆O₃⁷⁹Br₂S, M⁺), LRMS *m*/*z* 498 (M(⁸¹Br₂)⁺, 14%), 496 (M(⁸¹Br,⁷⁹Br)⁺, 24), 494 (M(⁷⁹Br₂)⁺, 12), 416 (22), 414 (18), 343 (12), 341 (23), 339 (12), 335 (23), 155 (100).

2,2'-Dibromo-5-methyl-1,1'-biphenyl-3-ol (62).

To a solution of tosylate (61) (47.8 mg, 96.3 μ mol) in EtOH (4 mL) was added 1 M aqueous KOH solution (0.3 mL) at rt. The reaction mixture was heated at reflux for 1 h. After cooling, the mixture was extracted with Et₂O and washed with 10 wt% aqueous citric acid solution and brine. The organic layer was dried and concentrated to give residue, which was

purified by column chromatography (silica gel: 3 g, Et₂O/petroleum ether = 1 / 10) to afford **62** (25 mg, 76%) as a light yellow oil; Rf = 0.48 (EtOAc/petroleum ether = 1/5); IR (neat) v 3500 cm⁻¹; ¹H NMR δ 2.33 (s, 3H), 5.62 (s, 1H), 6.65 (d, 1H, *J* = 1.7 Hz), 6.90 (d, 1H, *J* = 1.7 Hz), 7.21-7.28 (m, 2H), 7.40 (ddd, 1H, *J* = 7.5, 7.5, 1.2 Hz), 7.66 (dd, 1H, *J* = 7.5, 1.2 Hz); ¹³C NMR (75 MHz) δ 21.2, 108.7, 116.0, 123.5, 123.6, 127.3, 129.5, 130.9, 132.7, 138.8, 141.9, 142.3, 152.2; HRMS (EI) *m*/*z* 339.9102 (339.9099, calcd. for C₁₃H₁₀O⁷⁹Br₂, M⁺), LRMS (EI) *m*/*z* 344 (M(⁸¹Br₂)⁺, 49%), 342 (M(⁸¹Br,⁷⁹Br)⁺, 100), 340 (M(⁷⁹Br₂)⁺, 51), 263 (58), 261 (58), 182 (93).

2,2'-dibromo-3-methoxy-5-methyl-1,1'-biphenyl (46). To a solution of **62** (18.7 mg, 54.6 μ mol) in DMF (0.5 mL) were added NaH (5.2 mg, 109 μ mol) and MeI (6.8 μ L, 109 μ mol) at 0 °C. After stirring at 0 °C for 45 min, the reaction mixture was quenched with MeOH. The mixture was extracted with Et₂O and washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and

concentrated to give the residue, which was purified by column chromatography (silica gel: 0.4 g, EtOAc/petroleum ether = 1 / 50) to give **46** (14.9 mg, 77%) as a colorless oil; Rf = 0.66 (EtOAc/petroleum ether = 1/5); IR v 2940, 1580 cm⁻¹; ¹H NMR δ 2.01 (s, 3H), 3.27 (s, 3H), 6.32 (d, 2H, *J* = 1.6 Hz), 6.54 (d, 1H, *J* = 1.6 Hz), 6.78 (ddd, 1H, *J* = 7.5, 7.4, 1.8 Hz), 6.96 (ddd, 1H, *J* = 7.4, 7.3, 1.2 Hz), 7.10 (dd, 1H, *J* = 7.3, 1.8 Hz), 7.48 (dd, 1H, *J* = 7.5, 1.2 Hz); ¹³C NMR δ 21.3, 55.7, 110.7, 112.3, 123.9, 124.1, 127.2, 129.3, 131.3, 132.9, 138.0, 143.1, 144.0, 156.6; HRMS *m*/*z* 353.9254 (353.9255, calcd. for C₁₄H₁₂O₂⁷⁹Br₂, M⁺), LRMS *m*/*z* 358 (M(⁸¹Br₂)⁺, 49%), 356 (M(⁸¹Br,⁷⁹Br)⁺, 100), 354 (M(⁷⁹Br₂)⁺, 51), 277 (77), 275 (79), 196 (43), 181 (42), 165 (22).

5-Methyl-2-[(4-nitrophenyl)amino]-phenol 4-metylbenzenesulfonate ester (75). Ar gas was bubbled into a mixture of amine (53) (125 mg, 450 μ mol), 4-bromonitorobenzene (76) (137 mg, 678 μ mol), Pd₂(dba)₃ (82 mg, 89.5 μ mol), *rac.*-BINAP (168 mg, 269 μ mol), and NaO^tBu (64.5 mg, 671 μ mol) in toluene (5 mL) for 15

min. The reaction mixture was then heated at 120 °C in a sealed tube for 15 h. After cooling, the mixture was filtered through Celite[®]. The filtrate concentrated to give residue, which was purified by column chromatography (silica gel: 15g, EtOAc/petroleum ether = 1/10) to afford diaryamine (**75**) (233 mg, 81%) as yellow solid; Rf = 0.31 (EtOAc/petroleum ether = 1/5); m.p. 108-109 °C; IR (neat) v 3380, 1500, 1325 cm⁻¹; ¹H NMR δ 2.31 (s, 3H), 2.32 (s, 3H), 6.34 (bs, 1H), 6.68 (d, 2H, J = 8.4 Hz), 7.00 (s, 1H), 7.08 and 7.25 (2d, each 1H, J = 7.5 Hz), 7.16 (d, 2H, Ar-H, J = 7.7 Hz), 7.65 (d, 2H, J = 7.7 Hz), 8.03 (d, 2H, J = 8.4 Hz); ¹³C NMR δ 21.0, 21.8, 113.8, 123.4, 125.1, 126.0, 128.4, 128.8, 129.9, 130.2, 132.0, 135.8, 140.0, 141.7, 146.0, 149.6; HRMS m/z 398.0937 (398.0937, calcd. for C₂₀H₁₈N₂O₅S, M⁺), LRMS m/z 398 (M⁺, 36%), 243 (100), 226 (38), 197 (57).

3-Methyl-6-nitro-9*H***-carbazol-1-ol 4-methylbenzenesulfonate**

ester (77). To a solution of diarylamine (75) (142 mg, 355 μ mol) in AcOH (14 mL) was added Pd(OAc)₂ (319 mg, 1.42 mmol) at rt. The reaction mixture was heated at reflux for 5 h. After cooling, the mixture was filtered through Celite[®]. The filtrate was extracted with

 Et_2O and washed with H₂O, saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and concentrated to give residue, which was purified by column chromatography (silica gel; 14 g, EtOAc/petroleum ether = 1 / 7) to afford carbazole (**77**) (75

.Me

 O_2N

mg, 53%) as yellow solid: Rf = 0.23 (EtOAc/petroleum ether = 1/5); m.p. 224-225 °C; IR (neat) v 3370, 1520, 1320 cm⁻¹; ¹H NMR δ 2.41 (s, 3H), 2.47 (s, 3H), 6.71 (s, 1H), 7.35 (d, 2H, *J* = 8.3 Hz), 7.47 (d, 1H, *J* = 9.0 Hz), 7.78 (d, 2H, *J* = 8.3 Hz), 7.80 (s, 1H), 8.37 (dd, 1H, *J* = 9.0, 2.0 Hz), 8.94 (bs, 1H), 8.94 (d, 1H, *J* = 2.0 Hz); ¹³C NMR δ 21.4, 21.9, 111.1, 117.6, 119.9, 122.0, 122.5, 122.8, 126.4, 128.8, 130.1, 131.5, 131.6, 131.9, 134.3, 141.6, 143.2, 146.3; HRMS *m*/*z* 396.0780 (396.0780, calcd. for C₂₀H₁₆N₂O₅S, M⁺), LRMS *m*/*z* 396 (M⁺, 10%), 348 (11), 330 (31), 241 (34), 197 (100).

3-Methyl-6-nitro-9-[2-(trimethylsilyl)ethoxymethyl]-9H-carbazol-1-ol 4-metylbenzenesulfonate ester (78). To a solution of carbazole (77) in DMF (40 mL) was added NaH (70.7 mg, 2.95 mmol) at 0 °C. After stirring at 0 °C for 1 h, to the mixture was added SEMCl (0.42 mL, 2.39 mmol) and the mixture was stirred at 0 °C for 1.5 h. After

addition of MeOH, the mixture was extracted with EtOAc and washed with water, saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and concentrated to give residue, which was purified by column chromatography (silica gel; 50 g, EtOAc/hexane = 1 / 7) to afford 9-SEM carbazole (**78**) (884 mg, 86%) as yellow solid: Rf = 0.37 (EtOAc/petroleum ether = 1/5); IR (neat) v 1520, 1330 cm⁻¹; ¹H NMR δ -0.13 (s, 9H), 0.84 (t, 2H, *J* = 7.6 Hz), 2.43 (s, 3H), 2.48 (s, 3H), 3.49 (t, 2H, *J* = 7.6 Hz), 5.89 (s, 2H), 6.87 (s, 1H), 7.38 (d, 2H, *J* = 7.7 Hz), 7.57 (d, 1H, *J* = 8.6 Hz), 7.82 (s, 1H), 7.83 (d, 2H, *J* = 7.7 Hz), 8.38 (dd, 1H, *J* = 8.6 Hz, *J* = 2.0 Hz), 8.93 (d, 1H, *J* = 2.0 Hz); ¹³C NMR δ -1.4, 17.7, 21.2, 21.9, 66.2, 74.0, 110.4, 117.1, 119.7, 122.2, 122.3, 122.9, 126.7, 128.8, 130.1, 131.4, 131.7, 132.7, 135.1, 141.9, 144.7, 146.2; HRMS *m*/*z* 526.1558 (526.1594, calcd. for C₂₆H₃₀N₂O₆SSi, M⁺), LRMS *m*/*z* 526 (M⁺, 27%), 468 (11), 313 (26), 261 (25), 73 (100).

3-Methyl-6-nitro-9-[2-(trimethylsilyl)ethoxymethyl]-9*H*-carbazol-1-ol (79). To a solution of (78) (38.3 mg, 72.7 μ mol) in MeOH (3.8 mL) was added 1 M aqueous NaOH solution (0.2 mL). The reaction mixture was heated at reflux for 1 h. After cooling, the mixture was extracted with Et₂O and washed with 10 wt% aqueous citric acid

solution and brine. The organic layer was dried and concentrated to give residue, which was purified by column chromatography (silica gel: 2.5 g EtOAc/petroleum ether = 1 / 10) to give (**79**) (20.6 mg, 76%) as a yellow solid and (**80**) (2.2 mg, 8%) as a yellow solid. Data for (**79**): Rf = 0.28 (EtOAc/petroleum ether = 1/5); m.p. 172 °C; IR (neat) v 3240, 1520, 1320 cm⁻¹; ¹H NMR δ -0.04 (s, 9H), 1.02 (t, 2H, *J* = 8.4 Hz), 2.50 (s, 3H), 3.73 (t, 2H, *J* = 8.4 Hz), 5.81 (s, 2H), 6.94 (s, 1H), 7.43 (d, 1H, *J* = 9.0 Hz), 7.51 (s, 1H), 7.73 (s, 1H), 8.36 (dd, 1H, *J* = 9.0, 2.3 Hz), 8.93 (d, 1H, *J* = 2.3 Hz); ¹³C NMR δ -1.4, 18.0, 21.5, 66.8, 74.2, 108.4, 113.0, 117.1, 117.6, 122.0, 123.7, 126.0, 128.6, 133.5, 141.4, 142.8, 143.8; HRMS *m/z* 372.1508 (372.1505, calcd. for C₁₉H₂₄N₂O₄Si, M⁺), LRMS *m/z* 372 (M⁺, 6%), 314 (14), 254 (23), 75 (100).

1-Methoxy-3-methyl-6-nitro-9-[2-(trimethylsilyl)ethoxymethyl]-

carbazole (80). To a solution of OH-carbazole (**79**) (13.6 mg, 36.5 μ mol) in DMF (1.3 mL) were added NaH (1.8 mg, 75.0 μ mol) and MeI (5 μ L, 80.3 μ mol) at 0 °C. After stirring for 50 min at 0 °C, the reaction mixture was quenched with MeOH. The mixture was extracted with Et₂O, washed with saturated aqueous NaHCO₃

solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 2 g, EtOAc/petroleum ether = 1/50) to give OMe-carbazole (**80**) (14.1 mg, 100%) as light yellow solid: Rf = 0.51 (EtOAc/petroleum ether = 1/5); m.p. 113 °C; IR (neat) v 1515, 1330 cm⁻¹; ¹H NMR δ -0.11 (s, 9H), 0.87 (t, 2H, *J* = 7.8 Hz), 2.54 (s, 3H), 3.57 (t, 2H, *J* = 7.8 Hz), 4.02 (s, 3H), 6.05 (s, 2H), 6.85 (s, 1H), 7.53 (s, 1H), 7.57 (d, 1H, *J* = 8.6 Hz), 8.34 (dd, 1H, *J* = 8.6, 2.4 Hz), 8.93 (d, 1H, *J* = 2.4 Hz); ¹³C NMR δ -1.3, 18.0, 21.9, 55.7, 65.9, 74.7, 110.1, 110.8, 113.2, 117.3, 121.6, 123.5, 125.1, 129.1, 132.0, 141.5, 144.4, 146.8; HRMS *m/z* 386.1658 (386.1662, calcd. for C₂₀H₂₆N₂O₄Si, M⁺), LRMS *m/z* 386 (M⁺, 12%), 309 (7), 75 (100).

8-Methoxy-6-methyl-9-[2-(trimethylsilyl)ethoxymethyl]-carbazol-

3-amine (47). To a solution of NO₂-carbazole (**80**) (18.0 mg, 46.6 μ mol) in THF (1.0 mL) was added a THF solution of NaBH₂S₃⁵⁶⁾ [prepared by stirring a mixture of NaBH₄ (11 mg, 279 μ mol) and sulfur (31 mg, 978 μ mol) in THF (0.8 mL) under Ar at rt for 40 min]

under Ar at 0 °C. The reaction mixture was heated at reflux for 30 min. After cooling, the mixture was extracted with Et₂O and washed with H₂O and 1 M aqueous NaOH solution. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 2 g, EtOAc/petroleum ether = 1/3) to give NH₂-carbazole (**47**) (13.9 mg, 84%) as light yellow oil: Rf = 0.08 (EtOAc/petroleum ether = 1/5); IR (neat) v 3350, 2950 cm⁻¹; ¹H NMR δ -0.12 (s, 9H), 0.85 (t, 2H, *J* = 8.1 Hz), 2.49 (s, 3H), 3.20-3.80 (bs, 2H), 3.53 (t, 2H, *J* = 8.1 Hz), 3.97 (s, 3H,), 5.95 (s, 2H), 6.72 (s, 1H), 6.87 (dd, 1H, *J* = 8.4, 2.1 Hz), 7.31 (d, 1H, *J* = 2.1 Hz), 7.36 (d, 1H, *J* = 8.4 Hz), 7.37 (s, 1H),; ¹³C NMR δ -1.3, 18.0, 21.8, 55.5, 65.1, 74.3, 105.8, 109.1, 110.9, 112.8, 115.8, 124.5, 125.0, 128.6, 129.2, 136.0, 139.7, 146.7; HRMS *m*/*z* 356.1922 (356.1920, calcd. for C₂₀H₂₈N₂O₂Si, M⁺), LRMS *m*/*z* 356 (M⁺, 14%), 239 (11), 226 (15), 149 (17), 75 (100).

1'8-Dimethoxy-3',6-dimethyl-9-[2-(trimethylsilyl)ethoxymethyl] -3,9'-bi-9*H*-carbazole (SEM protected murrastifoline-A) (81).

Ar gas was bubbled into a mixture of dibromobiphenyl (**46**) (17.2 mg, 48.3 μ mol), amine (**47**) (15.2 mg, 42.6 μ mol), Pd₂(dba)₃ (7.8 mg, 8.52 μ mol), 2-(dicyclohexylphosphino)biphenyl (**21**) (9.2 mg, 26.2 μ mol), and NaO^tBu (8.2 mg, 85.2 μ mol) in toluene (0.6 mL) for 10 min. The reaction mixture was then heated at 120 °C in a

sealed tube for 24 h. After cooling, the mixture was purified by column chromatography (silica gel: 2g, EtOAc/hexane = 1/30) to afford SEM protected murrastifoline-A (**81**) (13.6 mg, 58%) as colorless syrup: Rf = 0.64 (EtOAc/petroleum ether = 1/5); IR (neat) v 2950, 1500 cm⁻¹; ¹H NMR δ -0.07 (s, 9H), 0.93 (t, 2H, *J* = 7.5 Hz), 2.50 (s, 3H), 2.55 (s, 3H), 3.55 (s, 3H), 3.65 (t, 2H, *J* = 7.5 Hz), 4.03 (s, 3H), 6.09 (d, 2H, *J* = 3.9 Hz), 6.74 (d, 1H, *J* = 0.6 Hz), 6.81 (d, 2H, *J* = 0.6 Hz), 7.18 (d. 1H, *J* = 7.9 Hz), 7.22 (ddd, 1H, *J* = 7.9, 7.9, 1.2 Hz), 7.32 (ddd, 1H, *J* = 7.9, 7.9, 1.2 Hz), 7.42 (s, 1H), 7.47 (dd, 1H, *J* = 8.7, 1.8 Hz), 7.60 (s, 1H), 7.62 (d, 1H, *J* = 8.7 Hz), 8.04 (d, 1H, *J* = 1.8 Hz), 8.08 (d, 1H, *J* = 7.8 Hz); ¹³C NMR δ -1.3, 18.1, 21.8, 21.9, 55.7, 56.1, 65.5, 74.5, 109.5, 109.8, 110.1, 110.5, 112.9, 112.9, 119.4, 119.9, 120.1, 123.1, 123.2, 123.6, 125.4, 125.7, 126.4, 128.6, 129.4, 129.7, 130.2, 132.2, 140.4, 143.2, 146.8, 146.9; HRMS (EI) *m*/*z* 550.2657 (550.2652, calcd. for C₃₄H₃₈N₂O₃Si, M⁺), LRMS (EI) *m*/*z* 550 (M⁺, 1%), 433 (1), 405 (1), 359 (1), 167 (12), 129 (18), 59 (100).

1'8-Dimethoxy-3',6-dimethyl-3,9'-bi-9H-carbazole

(**murrastifoline-A**) (43). To a solution of SEM protected murrastifoline-A (81) in THF (0.2 mL) and EtOH (0.6 mL) was added 4 M aqueous HCl solution (0.3 mL) at rt. The reaction mixture was heated at reflux for 1.5 h. After cooling, the mixture was extracted with Et_2O and washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and

concentrated to give residue, which was purified by column chromatography (silica gel: 0.5 g EtOAc/petroleum ether = 1 / 10) to give murrastifoline-A (**43**) (4.4 mg, 94%) as a colorless oil: Rf = 0.30 (EtOAc/petroleum ether = 1/5); IR (neat) v 3420 cm⁻¹; ¹H NMR (acetone- d_6) δ 2.48 (s, 3H), 2.51 (s, 3H), 3.56 (s, 3H), 4.02 (s, 3H), 6.84 (s, 1H), 6.88 (s, 1H), 7.15 (d. 1H, J = 8.4 Hz), 7.20 (ddd, 1H, J = 8.1, 7.8, 1.2 Hz), 7.32 (ddd, J = 8.4, 7.8, 1.2 Hz), 7.40 (dd, 1H, J = 8.4, 2.1 Hz), 7.54 (s, 1H), 7.62 (s, 1H), 7.66 (d, 1H, J = 8.4 Hz), 8.09 (d, 1H, J = 2.1 Hz), 8.13 (d, 1H, J = 8.1 Hz), 10.45 (s, 1H); ¹³C NMR (acetone- d_6) δ 21.7, 21.9, 55.9, 56.1, 108.8, 110.7, 111.1, 111.7, 113.4, 113.4, 120.2, 120.5, 120.8, 123.9, 124.0, 125.1, 126.0, 126.4, 126.6, 129.9, 130.0, 130.1, 130.4, 132.0, 140.0, 144.0, 146.7, 147.8; HRMS *m/z* 420.1838 (420.1838, calcd. for C₂₈H₂₄N₂O₂, M⁺), LRMS *m/z* 420 (M⁺, 6%), 270 (14), 252 (2), 58 (100).

Part-III. Synthetic study on murrayazoline

5-Amino-4-iodo-2-methylphenol 4-methylbenzenesulfonate ester (96). 5-amino-2-methylphenol (**92**) (1.00 g, 8.12 mmol) in CH₂Cl₂ (30 ml) were added Et₃N (1.40 ml, 9.74 mmol) and TsCl (1.70 g, 8.93 mmol) at 0 °C. After stirring at 0 °C for 4 h, the reaction mixture was extracted with CHCl₃ and washed with brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 50 g EtOAc/hexane = 1 / 5) to give 5-Amino-2-methylphenol 4-metyl-benzenesulfonate ester **95** (2.63g) as impure compound. Small amount of

the compound **95** was further purified by column chromatography and used as analytical sample: Rf = 0.63 (EtOAc/toluene = 1/1); m.p. 75-76 °C; IR (neat) v 3470, 3385, 2925 cm⁻¹; ¹H NMR δ 1.86 (s, 3H, 2-CH₃), 2.40 (s, 3H, Ar-CH₃), 3.58 (br s, 2H, 5-NH₂), 6.45 (d, 1H, H-6, $J_{6,4}$ = 2.4 Hz), 6.48 (dd, 1H, H-4, $J_{4,3}$ = 7.8 Hz, $J_{4,6}$ = 2.4 Hz), 6.88 (d, 1H, H-3, $J_{3,4}$ = 7.8 Hz), 7.30 (d, 2H, Ar-H, J = 8.6 Hz), 7.74 (d, 2H, Ar-H, J = 8.6 Hz); ¹³C NMR δ 15.3, 21.8, 109.2, 114.0, 120.5, 128.4, 129.8, 131.9, 133.3, 145.3, 145.5, 148.8; HRMS *m*/*z* 277.0775 (277.0773, calcd. for C₁₄H₁₅NO₃S, M⁺), LRMS *m*/*z* 277 (M⁺, 32%), 135 (61), 121 (100).

To a solution of roughly purified tosylate **95** (2.63 g) in DMF (45 mL) was slowly added NIS (2.01 g, 8.93 mmol) at 0 °C. The reaction mixture (protected from light) was stirred for 1 h at rt, then diluted with Et₂O and washed with 30 wt% of aqueous Na₂S₂O₃ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 60 g, EtOAc/petroleum ether = 1/7) afford iodide (**96**) (2.48 g, 76% for 2 steps) as orange solid: Rf = 0.21 (EtOAc/petroleum ether = 1/5); m.p. 99-100 °C; IR (neat) v 3470, 3375 cm⁻¹; ¹H NMR δ 1.83 (s, 3H, 2-CH₃), 2.46 (s, 3H, Ar-CH₃), 4.02 (br s, 2H, 5-NH₂), 6.54 (s, 1H, H-6), 7.32 (d, 2H, Ar-H, *J* = 8.2 Hz), 7.40 (s, 1H, H-3), 7.74 (d, 2H, Ar-H, *J* = 8.2 Hz); ¹³C NMR δ 15.0, 21.9, 81.9, 108.6, 122.6, 128.5, 130.0, 133.0, 140.8, 145.6, 145.8, 149.1; HRMS *m*/z 402.9749 (402.9739, calcd. for C₁₄H₁₄NO₃IS, M⁺), LRMS *m*/z 403 (M⁺, 6%), 278 (26), 149 (33), 57 (100); Anal. Calcd. for C₁₄H₁₄NO₃IS: C, 41.70;H, 3.50; N, 3.47%. Found: C, 41.86; H, 3.67; N, 3.40%.

2-Amino-2'-bromo-5-methyl-1,1'-biphenyl-4-ol 4-methylbenzene

sulfonate ester (91). To mixtures of iodine (96) (9.87 g, 24.5 mmol), 2-bromophenylbronic acid (50) (5.90 g, 29.4 mmol) and $Pd(PPh_3)_4$ (283 mg, 0.245 mmol) were added benzene (200 mL), EtOH (60 mL)

and 2 M aqueous Na₂CO₃ solution under Ar. The reaction mixture was heated at reflux for 3 h. After cooling, the mixture was extracted with EtOAc and washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 200 g, EtOAc/hexane) to afford **91** (10.5 g, 99%) as pale yellow solid: Rf = 0.16 (EtOAc/petroleum ether = 1/5); m.p.

109-110 °C; IR (neat) v 3480, 3385, 2925 cm⁻¹; ¹H NMR δ 1.90 (s, 3H, 5-CH₃), 2.46 (s, 3H, Ar-CH₃), 3.45 (br s, 2H, 2-NH₂), 6.59 and 6.77 (2s, each 1H, H-3 and H-6), 7.21-7.41 (m, 5H, Ar-H), 7.68 (dd, 1H, H-3' or H-6', *J* = 8.0, 1.1 Hz), 7.79 (d, 2H, Ar-H, *J* = 8.1 Hz); ¹³C NMR δ 15.4, 21.9, 109.5, 120.5, 124.2, 126.1, 128.0, 128.6, 19.6, 129.9, 131.9, 132.8, 133.3, 139.1, 142.7, 145.4, 148.5; HRMS *m*/*z* 431.0178 (431.0191, calcd. for C₂₀H₁₈NO₃⁷⁹BrS, M⁺), LRMS *m*/*z* 433 (M(⁸¹Br)⁺, 11%), 431 (M(⁷⁹Br)⁺, 12), 418 (12), 416 (14), 263 (25), 261 (29), 91 (100).

2,2'-Dibromo-5-methyl-1,1'-biphenyl-4-ol 4-methylbenzene

sulfonate ester (97). To a solution of (91) (10.5 g, 24.3 mmol) in AcOH (210 mL) was slowly added NaNO₂ (3.35 g, 48.6 mmol) in conc. H_2SO_4 (17 mL) at 0 °C, then the mixture was stirred for 3 h at rt. The reaction mixture was slowly added to CuBr (6.97 g, 48.6 mmol) in

47 wt% aqueous HBr solution (140 mL) at 80 °C, and stirred for 4 h at 80 °C. After cooling to 0 °C, the reaction mixture was diluted with Et₂O (ca. 100 mL) and neutralized with NaHCO₃ (500 g). The mixture was extracted with EtOAc, and washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 200 g, EtOAc/hexane = 1/20) to afford **97** as a colorless syrup (slowly solidified): Rf = 0.42 (EtOAc/petroleum ether = 1/5); IR (neat) v 3060, 2925 cm⁻¹; ¹H NMR δ 2.05 (s, 3H, 5-CH₃), 2.48 (s, 3H, Ar-CH₃), 7.05 (s, 1H, H-3 or H-6), 7.19-7.28 (m, 2H, Ar-H), 7.33-7.38 (m, 2H, ArH), 7.65 (dd, 1H, H-3' or H-6', *J* = 7.8, 0.9 Hz), 7.80 (d, 2H, Ar-H, *J* = 8.4 Hz); ¹³C NMR δ 16.1, 21.9, 120.3, 123.5, 126.4, 127.3, 128.6, 129.7, 130.1, 131.0, 131.0, 132.7, 132.8, 133.4, 140.7, 141.1, 145.9, 147.8; HRMS *m/z* 493.9176 (493.9187, calcd. for C₂₀H₁₆O₃⁷⁹Br₂S, M⁺), LRMS *m/z* 498 (M(⁸¹Br₂)⁺, 10%), 496 (M(⁸¹Br⁷⁹Br)⁺, 22), 494 (M(⁷⁹Br₂)⁺, 11), 343 (15), 342 (18), 341 (17), 340 (18), 155 (83), 91 (100).

2,2'-Dibromo-5-methyl-1,1'-biphenyl-4-ol (98). To a solution of **97** (1.62 g, 3.26 mmol) in MeOH (80 mL) was NaOMe (353 mg, 6.53 mmol). The reaction mixture was heated at reflux for 6 h. After cooling, the mixture was concentrated (ca. 20 mL), extracted with EtOAc and washed with brine. The organic layer was dried and concentrated

to give residue, which was purified by column chromatography (silica gel: 20 g EtOAc/hexane = 1 / 10) to give **98** (1.12 g, 100%) as a colorless syrup: Rf = 0.40 (EtOAc/petroleum ether = 1/5); IR (neat) v 3400, 2980 cm⁻¹; ¹H NMR δ 2.23 (s, 3H, 5-CH₃), 5.05 (s, 1H, 4-OH), 7.00 (s, 1H, H-6), 7.09 (s, 1H, H-3), 7.20-7.25 (m, 2H, Ar-H), 7.35 (ddd, 1H, H-4' or H-5', *J* = 7.7, 7.3, 1.3 Hz), 7.64 (dd, 1H, H-3' or H-6', *J* = 8.3, 1.3 Hz); ¹³C NMR δ 15.6, 118.7, 120.4, 123.4, 124.3, 127.2, 129.3, 131.6, 132.6, 133.0, 134.5, 141.9, 154.1; HRMS *m*/*z* 339.9100 (339.9099, calcd. for C₁₃H₁₀O⁷⁹Br₂, M⁺), LRMS *m*/*z* 344 (M(⁸¹Br₂)⁺, 50%), 342 (M(⁸¹Br⁷⁹Br)⁺, 100), 340 (M(⁷⁹Br₂)⁺, 52), 263 (39), 261 (39), 182 (94).

2,2'-Dibromo-4-(methoxymethoxy)-5-methyl-1,1'-biphenyl (89).

To a solution of 98 (197 mg, 0.576 mmol) in DMF (6 mL) was added NaH (28 mg, 1.15 mmol) at 0 °C. After stirring for 30 min at 0 °C, to the mixture was added MOMCl (66 µl, 0.864 mmol). The mixture was stirred at rt for 1 h, and then cooled at 0 °C.

¹³C NMR δ 16.2, 56.4, 94.7, 117.6, 120.5, 124.2, 126.6, 127.2, 129.3, 131.5, 132.6, 135.2, 142.0, 155.6; HRMS m/z 383.9370 (383.9361, calcd. for C₁₃H₁₀O⁷⁹Br₂, M⁺), LRMS m/z 388 $(M(^{81}Br_2)^+, 51\%), 386 (M(^{81}Br^{79}Br)^+, 100), 384 (M(^{79}Br_2)^+, 52), 358 (15), 356 (32), 354 (17),$ 181 (21), 152 (94).

1-(1,4-dioxaspiro[4,5]dec-8-vl)ethonone (104). To a solution of enone $(94)^{60}$ (18.0 mg, 98.8 µmol) in EtOH (1 mL) was added 5 wt% Pd/C (21 mg) and the mixture was stirred under H_2 (1 atm) at rt. After stirring 4.5 h, the catalyst was filtrated off and the filtrate was concentrated to give

residue, which was purified by column chromatography (silica gel: 1 g, EtOAc/hexane = 1/8) to give ketone (104) (17.0 mg, 93%) as colorless syrup: Rf = 0.32 (EtOAc/toluene = 1/3); IR (neat) v 2950, 2885 cm⁻¹; ¹H NMR δ 1.51-1.63 (m, 2H), 1.67-1.72 (m, 2H), 1.76-1.82 (m, 2H), 1.86-1.93 (m, 2H), 2.15 (s, 3H, -CO-CH₃), 3.56 (tt, 1H, H-4, $J_{4,3a} = 10.6$ Hz, $J_{4,3e} = 3.7$ Hz), 3.94 (s, 4H, -O-CH₂-CH₂-O-); ¹³C NMR δ 25.8, 27.8, 33.9, 49.8, 64.3, 64.3, 108.1, 211.0; HRMS m/z 184.1093 (184.1099, calcd. for C₁₀H₁₆O₃, M⁺), LRMS m/z 184 (M⁺, 11%), 99 (100), 86 (92); Anal. Calcd. for C₁₀H₁₆O₃: C, 65.19;H, 8.75%. Found: C, 65.12; H, 8.75%.

2-(1,4-dioxaspiro[4,5]dec-8-yl)propan-2-ol (105). To a solution of ketone (104) (32.0 mg, 0.174 mmol) in Et₂O (1 mL) was slowly added MeLi (0.98 M solution in Et₂O, 0.30 mL, 0.294 mmol) at -78 °C under Ar, and the mixture was stirred 1 h at -78 °C. The mixture was quenched

with saturated aqueous NaHCO₃ solution, extracted with EtOAc and washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 2 g, EtOAc/toluene = 1/3) to give alcohol (105) (34.8 mg, 100%) as colorless syrup: Rf = 0.35 (EtOAc/toluene = 1/1); IR (neat) v 3450, 2950, 2880 cm⁻¹; ¹H NMR δ 1.19 (s, 6H, 1-CH₃ and 3-CH₃), 1.24 (s, 1H, 2-OH, exchangeable with D₂O), 1.31-1.39 (m, 3H), 1.49-1.58 (m, 2H), 1.79-1.82 (m, 4H), 3.94 (s, 4H, -O-CH₂-CH₂-O-); ¹³C NMR δ 24.9, 27.1, 34.9, 48.1, 64.2, 64.2, 72.5, 108.8;

Me

-OMOM

HRMS m/z 200.1407 (200.1412, calcd. for C₁₁H₂₀O₃, M⁺), LRMS m/z 200 (M⁺, 8%), 182 (23), 99 (100), 86 (94); Anal. Calcd. for C₁₁H₂₀O₃: C, 65.97; H, 10.07%. Found: C, 65.81; H, 10.02%.

2-(1,3-dithiaspiro[5,5]dec-9-yl)propan-2-ol (107). To a solution of acetal (**105**) (2.54 g, 12.7 mmol) in CH_2Cl_2 were added propanedithiol (1.5 mL, 15.2 mmol) and $BF_3 \cdot OEt$ (0.16 mL, 1.27 mmol) at 0 °C and the mixture was stirred 20 h at rt. After addition of acetone (ca. 2 mL), the

mixture was stirred 1 h at rt. The mixture was extracted with EtOAc and washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 90 g, EtOAc/hexane = 1/6) to give thioacetal (**107**) (2.85 g, 91%) as colorless syrup: Rf = 0.61 (EtOAc/toluene = 1/1); IR (neat) v 3450, 2940 cm⁻¹; ¹H NMR δ 1.19 (s, 6H, 1-CH₃ and 3-CH₃), 1.21 (s, 1H, 2-OH, exchangeable with D₂O), 1.33 (tt, 1H, H-9, $J_{9,8a} = J_{9,10a} = 11.5$ Hz, $J_{9,8e} = J_{9,10e} = 2.9$ Hz), 1.48-1.72 (m, 6H, H-7 and H-8), 1.99 (tt, 2H, H-3, $J_{3,2} = 8.3$, 3.2 Hz), 2.40-2.44 (br d, 2H, H-7, $J_{7,8} = 11.7$ Hz), 2.72-2.76 (m, 2H,H-2 and/or H-4), 2.87-2.91 (m, 2H, H-2 and/or H-4); ¹³C NMR δ 22.9, 25.6, 26.1, 26.2, 27.0, 37.8, 48.7, 49.9, 72.6; HRMS *m/z* 246.1117 (246.1112, calcd. for C₁₂H₂₂OS₂, M⁺), LRMS *m/z* 246 (M⁺, 20%), 228 (100), 187 (19), 145 (38), 121 (93).

4-(1-Azido-1-methylethyl)cyclohexanone (106). To a solution of TMSN₃ (3.2 mL, 23.7 mmol), TsOH·H₂O (1.5 g, 7.91 mmol) and BF₃·Et₂O (2.0 mL, 15.8 mmol) in benzene (20 mL) was slowly added alcohol (**107**) (1.95 g, 7.91 mmol) in benzene (20 mL) at 0°C and stirred for 30 min at 0 °C. The reaction mixture was diluted with water (ca. 10 mL) and neutralized with NaHCO₃ (2.4 g). The mixture was extracted with EtOAc and washed with saturated aqueous NaHCO₃ solution and

HO

Me^w Me

107

brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 90 g, EtOAc/hexane = 1/50) to give 2-(1,3-dithiaspiro[5,5]dec-9-yl)propan-2-azide (**108**) (1.68 g) as impure compound. Small amount of the compound **108** was further purified by preparative TLC using EtOAc/hexane = 1/6 as the eluant to give analytical sample: Rf = 0.67 (EtOAc/hexane = 1/6); IR (neat) v 2940, 2100 cm⁻¹; ¹H NMR δ 1.25 (s, 6H, 1-CH₃ and 3-CH₃), 1.31-1.40 (m, 1H, H-9), 1.50-1.71 (m, 6H, H-7 and H-8), 1.99 (tt, 2H, H-3, $J_{3,2}$ = 8.4, 3.0 Hz), 2.41 (br d, 2H, H-7, $J_{7,8}$ = 11.1 Hz), 2.72-2.76 (m, 2H,H-2 and/or H-4), 2.87-2.91 (m, 2H, H-2 and/or H-4); ¹³C NMR δ 23.0, 23.6, 25.7, 26.1, 26.3, 37.7, 47.0, 49.7, 64.2; HRMS *m*/*z* 271.1185 (271.1177, calcd. for C₁₂H₂₁N₃S₂, M⁺), LRMS *m*/*z* 271 (M⁺, 100%), 228 (40), 137 (28), 122 (46), 106 (83).

To a solution of impure thioacetal (**108**) (1.68 g) in CH_2Cl_2 (50 mL) was added $Me_3O \cdot BF_4$ (2.75 g, 18.6 mmol) at 0 °C and the mixture was stirred for 2 h at 0 °C. To the mixture was added 5wt% aqueous CuSO₄ solution (20 mL) and the mixture was stirred 12 h. The

mixture was extracted with CHCl₃ and washed with 5wt% aqueous CuSO₄ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 40 g, EtOAc/hexane = 1/30) to give azide **106** (1.68 g, 61% for 2 steps) as colorless syrup: Rf = 0.15 (EtOAc/hexane = 1/6); IR (neat) v 2955, 2105, 1715 cm⁻¹; ¹H NMR δ 1.31 (s, 6H, CH₃), 1.52 (dddd, 2H, H-3a, J_{gem} = 12.8 Hz, $J_{3a,4}$ = 11.9 Hz, $J_{3a,2a}$ = 11.7 Hz, $J_{3a,2e}$ = 4.6 Hz), 1.79 (tt, 1H, H-4, $J_{4,3a}$ = 11.9 Hz, $J_{4,3e}$ = 3.1 Hz), 2.10-2.17 (m, 2H, H-3e), 2.27-2.48 (m, 4H, H-2); ¹³C NMR δ 23.8, 27.4, 40.7, 45.9, 63.8, 211.1; HRMS *m/z* 181.1212 (181.1215, calcd. for C₉H₁₅N₃O, M⁺), LRMS *m/z* 181 (M⁺, 1%), 139 (11), 97 (12), 83 (15), 56 (100).

4-(1-Azido-1-methylethyl)cyclohex-2-enone (100). To a solution of ketone (**106**) (34 mg, 0.188 mmol) in THF (1 mL) was added KHMDS (0.5 M solution in toluene, 0.75 mL, 0.375 mmol) at -78 °C under Ar and the mixture was stirred for 30 min at -78 °C. To the mixture were added

TMSCl (71 µL, 0.562 mmol) and Et₃N (78 µL, 0.562 mmol) at -78 °C. After stirring for 10 min at -78 °C, the reaction mixture was quenched by MeOH at -78 °C. The mixture was extracted with EtOAc and washed with brine. The organic layer was dried and concentrated to give crude TMS enol ether which was used for next reaction without further purification. To a suspension of Pd(OAc)₂ (51 mg, 0.225 mmol) in MeCN (0.4 mL) was added a solution of the crude TMS enol ether in MeCN (1.0 mL) at rt under Ar. After stirring for 4 h at rt, the mixture was filtered through Celite[®] and the filtrate was concentrated. The resulting syrup was purified by column chromatography (silica gel: 2 g, EtOAc/hexane = 1/30) to give enone (100) (28.3 mg, 84% for 2 steps) as colorless syrup: Rf = 0.27 (EtOAc/hexane = 1/3); IR (neat) v 2970, 2100, 1680 cm⁻¹; ¹H NMR δ 1.29 and 1.39 (2s, each 3H, CH₃), 1.78 (dddd, 1H, H-5a, $J_{gem} = 15.6$ Hz, $J_{5a,6a} = 14.0$ Hz, $J_{5a,4} = 12.9$ Hz, $J_{5a,6e} = 4.3$ Hz), 2.10-2.19 (m, 1H, H-5e), 2.37 (ddd, 1H, H-6a, J_{gem} = 16.7 Hz, J_{6a,5a} = 14.0 Hz, J_{6a,5e} = 5.0 Hz), 2.45-2.61 (m, 2H, H-4 and H-6e), 6.10 (ddd, 1H, H-2, $J_{2,3} = 10.4$ Hz, $J_{2,4} = 2.7$ Hz, $J_{2,6e} = 1.0$ Hz), 6.99 (ddd, 1H, H-3, $J_{3,2} = 10.4$ Hz, $J_{3,4} = J_{3,5e} = 2.0$ Hz); ¹³C NMR δ 22.8, 24.1, 24.4, 37.2, 45.8, 63.2, 130.7, 150.0, 198.9; HRMS m/z 179.1060 (179.1059, calcd. for C₉H₁₃N₃O, M⁺), LRMS m/z 179 (M⁺, 18%), 137 (23), 95 (39), 57 (100).

2-(1,4-Dioxaspiro[4,5]dec-6-en-8-yl)-propan-2-azide (93). To a solution of enone (**100**) (228 mg, 1.27 mmol) in CH_2Cl_2 (7 mL) were added ethylenedioxybis(trimethylsilane) (0.62 mL, 2.54 mmol) and TMSOTf (23 μ L, 0.127 mmol) at -78 °C under Ar, and the mixture was

stirred for 1.5 h at -15 °C. After addition of pyridine, the mixture was extracted with EtOAc and washed with saturated aqueous NaHCO₃ solution and brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 8 g, EtOAc/hexane = 1/10) to give acetal (**93**) (282 mg, 99%) as colorless syrup: Rf = 0.40 (EtOAc/hexane = 1/3); IR (neat) v 2955, 2105 cm⁻¹; ¹H NMR δ 1.23 and 1.30 (2s,

each 3H, CH₃), 1.57 (dddd, 1H, H-9a, $J_{9a,10a} = 12.9$ Hz, $J_{gem} = 11.7$ Hz, $J_{9a,8} = 10.8$ Hz, $J_{9a,10e} = 2.6$ Hz), 1.72 (ddd, 1H, H-10a, $J_{gem} = 13.5$ Hz, $J_{10a,9a} = 12.9$ Hz, $J_{10a,6} = 2.9$ Hz), 1.81-1.89 (m, 1H, H-9e), 1.91-1.98 (m, 1H, H-10e), 2.19 (dddd, 1H, H-8, $J_{8.9a} = 10.8$ Hz, $J_{8,9e} = 3.0$ Hz, $J_{6,8} = J_{7,8} = 1.8$ Hz), 3.85-4.05 (m, 4H, H-2 and H-3), 5.70 (ddd, 1H, H-6, $J_{6,7} = 10.2$ Hz, $J_{6,10e} = 2.9$ Hz, $J_{6,8} = 1.8$ Hz), 5.95 (ddd, 1H, H-7, $J_{7,6} = 10.2$ Hz, $J_{7,8} = J_{7,9e} = 1.8$ Hz); ¹³C NMR δ 22.6, 22.8, 22.9, 33.2, 45.2, 63.7, 64.5, 64.8, 105.3, 129.6, 132.3; HRMS *m*/*z* 223.1334 (223.1321, calcd. for C₁₁H₁₇N₃O₂, M⁺), LRMS *m*/*z* 223 (M⁺, 0.4%), 181 (23), 139 (46), 56 (100).

2-[(1,4-Dioxaspiro[4,5]dec-6-en-8-yl)-propyl]amine (90). To a Solution of azide (**93**) (105 mg, 0.470 mmol) in THF (5 mL) was added LiAlH₄ (54 mg, 1.41 mmol) at 0 °C, and the mixture was stirred for 2 h at 0 °C. After addition of EtOAc, the reaction mixture was stirred for 30

min at 0 °C. The mixture was extracted with EtOAc and washed with brine. The organic layer was dried and concentrated to give the residue, which was purified by column chromatography (silica gel: 3 g, MeOH/CHCl₃ = 1/10) to give amine (**90**) (80.8 mg, 87%) as colorless syrup: Rf = 0.15 (MeOH/CHCl₃ = 1/1); IR (neat) v 3360, 3300, 2960, 2875 cm⁻¹; ¹H NMR δ 1.08 and 1.12 (2s, each 3H, CH₃), 1.34 (br s, 2H, -NH₂, exchangeable with D₂O), 1.55 (dddd, 1H, H-9a, $J_{9a,10a}$ = 12.4 Hz, J_{gem} = 12.0 Hz, $J_{9a,8}$ = 10.5 Hz, $J_{9a,10e}$ = 2.7 Hz), 1.72 (ddd, 1H, H-10a, J_{gem} = 13.2 Hz, $J_{10a,9a}$ = 12.4 Hz, $J_{10a,6}$ = 2.5 Hz), 1.84-2.06 (m, 3H, H-8, H-9e and H-10e), 3.86-4.05 (m, 4H, H-2 and H-3), 5.69 (ddd, 1H, H-6, $J_{6,7}$ = 10.3 Hz, $J_{6,10e}$ = 2.5 Hz, $J_{6,8}$ = 2.0 Hz), 6.03 (ddd, 1H, H-7, $J_{7,6}$ = 10.3 Hz, $J_{7,8}$ = $J_{7,9e}$ = 1.8 Hz); ¹³C NMR δ 22.5, 27.7, 28.9, 33.4, 47.4, 51.4, 64.5, 64.8, 105.6, 129.1, 133.8; HRMS (FAB⁺, glycerol) *m*/*z* 198.1487 (198.1494, calcd. for C₁₁H₂₀NO₂, [M+H]⁺), LRMS (FAB⁺, glycerol) *m*/*z* 198 ([M+H]⁺, 6%), 177 (27), 150 (75), 133 (100).

9-[2-(1,4-Dioxaspiro[4,5]dec-6-ene-8-yl)propyl]-2-(methoxy-

methoxy-)-3-methylcarbazole (88). Ar gas was bubbled into a mixture of dibromobiphenyl (**89**) (59 mg, 0.152 mmol), amine (**90**) (20.0 mg, 0.101 mmol), $Pd_2(dba)_3$ (19 mg, 20.2 µmol), 2-(dicyclo-hexylphosphino)-2',4',6'-triisopropylbiphenyl (**36**) (29 mg, 60.8 µmol), and NaO^tBu (29 mg, 0.304 mmol) in toluene (0.8 mL) for 10 min. The reaction mixture was then heated at 130 °C in a sealed

tube for 13 h. After cooling, the mixture was roughly purified by column chromatography (silica gel: 3g, EtOAc/toluene = 1/40) to afford impure carbazole (**88**) which was further purified by preparative TLC using EtOAc/toluene = 1/10 as the eluant to give carbazole (**88**) (25.2 mg, 59%) as pale yellow syrup: Rf = 0.39 (EtOAc/hexane = 1/2); IR (neat) v 2950, 1470 cm⁻¹; ¹H NMR δ 1.42-1.47 (m, 1H, H-9"), 1.61-1.71 (m, 2H, H-9" and H-10"), 1.81-1.86 (m, 1H, H-10"), 1.96 and 2.02 (2s, each 3H, CH₃), 2.38 (s, 3H, 3-CH₃), 3.49-3.62 (m, 4H, H-2" and –OCH₃), 3.78-4.03 (m, 4H, H-2" and H-3"), 5.26 (s, 2H, -OCH₂O-), 5.62

(dd, 1H, H-6", $J_{6",7"} = 10.2$ Hz, $J_{6",10"} = 2.0$ Hz), 5.69 (d, 1H, H-7", $J_{7,6} = 10.2$ Hz), 7.15 (dd, 1H, H-6, $J_{6,5} = 7.6$ Hz, $J_{6,7} = 7.4$ Hz), 7.26 (ddd, 1H, H-7, $J_{7,8} = 8.5$ Hz, $J_{7,6} = 7.4$ Hz, $J_{7,5} = 1.2$ Hz), 7.56 (s, 1H, H-1), 7.74 (d, 1H, H-8, $J_{8,7} = 8.5$ Hz), 7.80 (s, 1H, H-4), 7.97 (dd, 1H, H-5, $J_{5,6} = 7.6$ Hz, $J_{5,7} = 1.2$ Hz); ¹³C NMR δ 16.5, 22.4, 27.1, 27.2, 33.4, 43.6, 56.1, 64.2, 64.5, 64.9, 95.7, 100.9, 105.6, 113.8, 118.8, 119.0, 119.3, 119.6, 120.9, 124.0, 124.5, 129.4, 133.3, 140.2, 140.9, 154.3; HRMS *m*/*z* 421.2261 (421.2253, calcd. for C₂₆H₃₁NO₄, M⁺), LRMS *m*/*z* 421 (M⁺, 17%), 333 (19), 309 (19), 282 (100).

Ketone (113). To a solution of carbazole (**88**) (14.0 mg, 33.2 μ mol) in dichloroethane (1.5 mL) was added Sc(OTf)₃ (8.1 mg, 16.6 μ mol) with water (0.8 mL). The mixture was heated at 120 °C in a sealed tube for 36 h. After cooling, the mixture was neutralized with saturated aqueous NaHCO₃ solution, extracted with CHCl₃ and washed with brine. The organic layer was dried and concentrated to give the residue,

which was purified by column chromatography (silica gel: 1.5 g, EtOAc/hexane = 1/4) to give **113** (8.1 mg, 73%) as a white solid: Rf = 0.20 (EtOAc/toluene = 1/5); m.p. 220 °C (decomp.); IR (neat) v 3400, 2925, 1715 cm⁻¹; ¹H NMR δ 1.55 and 2.07 (2s, each 3H, CH₃), 1.61-1.71 (m, 1H, H-5'), 2.16-2.31 (m, 3H, H-4e', H-5' and H-6'), 2.38 (s, 3H, 3-CH₃), 2.48 (dddd, 1H, H-4a', J_{gem} = 14.1 Hz, $J_{4a',5a'}$ = 13.5 Hz, $J_{4a',5e'}$ = 6.6 Hz, $J_{4a',2a'}$ = 0.8 Hz), 2.78 (ddd, 1H, H-2a', J_{gem} = 14.1 Hz, $J_{2a',1'}$ = 5.3 Hz, $J_{2a',4a'}$ = 0.8 Hz), 3.98 (ddd, H-2e', J_{gem} = 14.1 Hz, $J_{2a',1'}$ = 5.3 Hz, $J_{2a',4a'}$ = 0.8 Hz), 3.98 (ddd, H-2e', J_{gem} = 14.1 Hz, $J_{2e',1'}$ = 3.8 Hz, $J_{2e',4e'}$ = 2.4 Hz), 4.08 (m, 1H, H-1'), 5.15 (s, 1H, 2-OH), 7.15 (dd, 1H, H-6, $J_{6,5}$ = 7.8 Hz, $J_{6,7}$ = 7.3 Hz), 7.29 (ddd, 1H, H-7, $J_{7,8}$ = 8.1 Hz, $J_{7,6}$ = 7.8 Hz, $J_{7,5}$ = 1.2 Hz), 7.62 (d, 1H, H-8, $J_{8,7}$ = 8.1 Hz), 7.67 (s, 1H, H-4), 7.95 (dd, 1H, H-5, $J_{5,6}$ = 7.8 Hz, $J_{5,7}$ = 1.2 Hz); ¹³C NMR δ 16.7, 24.3, 27.7, 28.1, 35.3, 40.2, 43.5, 48.0, 57.6, 105.7, 111.2, 115.4, 117.2, 118.6, 119.9, 124.1, 124.3, 137.9, 139.5, 151.4, 212.8; HRMS *m*/*z* 333.1728 (333.1729, calcd. for C₂₂H₂₃NO₂, M⁺), LRMS *m*/*z* 333 (M⁺, 89%), 318 (88), 248 (50), 61 (100).

Exo-olefin (87). To a solution of ketone (**113**) (9.9 mg, 29.7 μ mol) in THF/pyridine = 5/1 (1.2 mL) was added Tebbe reagent⁶⁵⁾ (0.16 mL) [prepared by stirring a mixture of Cp₂TiCl₂ (250 mg, 10.0 mmol) and Me₃Al (2.0 M solution in toluene, 1.0 mL, 20.0 mmol) under Ar at rt for 48 h] at 0 °C under Ar, and the mixture was stirred for 1 h at 0 °C. To the reaction mixture was added 1 M aqueous NaOH solution and

anhydrous Na₂SO₄. The mixture was filtered through Celite[®]. The filtrate was washed with 1 M aqueous NaOH solution and brine. The organic layer was dried and concentrated to give the residue, which was roughly purified by column chromatography (silica gel: 1 g, EtOAc/hexane = 1/10) to give crude exo-olefin (**87**). The crude product was further purified by preparative TLC using EtOAc/hexane = 1/8 as the eluant to give exo-olefin (**87**) (6.1 mg, 62%) as a white solid: Rf = 0.70 (EtOAc/hexane = 1/2); m.p. 178-179 °C; IR (neat) v 3595, 2960, 2880 cm⁻¹; ¹H NMR δ 1.16-1.30 (m, 1H, H-4' or H-5'), 1.46 and 2.01 (2s, each 3H,

CH₃), 1.90-1.97 (m, 2H, H-4'(or H-5') and H-6'), 2.16-2.28 (m, 2H, H-4'and H-5' (or H-4')), 2.34-2.45 (m, 1H, H-2') , 2.39 (s, 3H, 3-CH₃), 3.73 (br d, 1H, H-1', J = 3.9 Hz), 3.80 (br d, 1H, H-6', $J_{gem} = 13.8$ Hz), 4.62 and 4.85 (2br s, each 1H, =CH₂), 4.82 (s, 1H, 2-OH), 7.12 (dd, 1H, H-6, $J_{6,5} = J_{6,7} = 7.5$ Hz), 7.26 (dd, 1H, H-7, $J_{7,8} = 8.1$ Hz, $J_{7,6} = 7.5$ Hz), 7.60 (d, 1H, H-8, $J_{8,7} = 8.1$ Hz), 7.64 (s, 1H, H-4), 7.93 (d, 1H, H-5, $J_{5,6} = 7.5$ Hz); ¹³C NMR δ 16.7, 25.3, 27.7, 27.9, 34.3, 34.6, 36.9, 48.9, 57.9, 106.7, 108.4, 111.2, 115.2, 116.0, 118.2, 119.2, 119.7, 123.8, 124.3, 138.6, 139.6, 146.3, 151.0; HRMS *m*/*z* 331.1936 (331.1936, calcd. for C₂₃H₂₅NO, M⁺), LRMS *m*/*z* 331 (M⁺, 21%), 316 (21), 279 (31), 149 (54), 61 (100).

06.03.16 de-Ts Pulse Sequence: s2pul

05.02.08 azidation Pulse Sequence: s2pul

05.02.15 Acetal protection Pulse Sequence: s2pul

謝辞

本研究を行うにあたり、終始御指導、御鞭撻を賜りました、慶應義塾大学理工学部 応用化学科 千田憲孝 教授に深く感謝致します。

本研究をまとめるにあたり、数多くの有益な御助言を頂きました、慶應義塾大学理 工学部応用化学科 只野金一 教授、中田雅也 教授ならびに化学科 垣内史敏 教授に 深謝致します。

本研究のためにムラスチフォリン-A のスペクトルデータを御恵与下さいました、 名城大学薬学部 古川宏 教授に感謝致します。

ムラスリフォリン-Aの合成研究の完成はひとえに林陽子 さんの御尽力によるもの であり、ここに篤く感謝申し上げます。また共同研究者であります上野明子 さんに 心から感謝致します。

本研究を行うにあたり、様々な御助言、御指導を頂きました、鈴木保 博士に篤く 感謝致します。

様々な御助言を頂きました、大石毅 博士、伊牟田聡 博士、大野裕之 君、樋田良 二 君をはじめ、研究室にてお世話になった諸先輩方、同期諸氏、後輩諸君に感謝致 します。

なお本研究の一部は文部科学省 21 世紀 COE プログラム「慶應義塾大学・機能創造 ライフコンジュゲートケミストリー (LCC)」の助成により実施されたものであり、 感謝致します。

最後に本研究を経済的、精神的に支えてくれた家族に、心から感謝致します。

2006年11月

- (a) Knölker, H.-J.; Reddy, K. R. *Chem. Rev.* 2002, *102*, 4303. (b) Gallagher, P. T. *Science of Synthesis* 2001, *10*, 693. (c) Charkraborty, D. P.; Roy, S. *Progress in the Chemistry of Organic Natural Products* 2003, *85*, 128. (d) Chakraborty, D. P. In *The Alkaloids*; Katritzky, A. R., Ed.; Academic Press, Inc.: New York, 1993; Vol. 44, pp. 257-364.
- 2) (a) Grabe, C.; Glaser C. Ber. Dtsch. Chem. Ges. 1872, 5, 12. (b) Grabe, C.; Glaser C. Ann. Chem. Pharm. 1872, 163, 343.
- 3) (a) Das, K. C.; Chakraborty, D. P.; Bose, P. K. *Experientia* 1965, *21*, 340. (b) Chakraborty, D. P.; Berman, B. K.; Bose, P. K. *Tetrahedron* 1965, *21*, 681.
- 4) Goodwin, S.; Smith, A. F.; Horning, E. C. J. Am. Chem. Soc. 1959, 81, 1903.
- 5) Kato, S.; Kawai, H.; Kawasaki, T.; Toda, Y.; Urata, T.; Hayakawa, Y. J. Antibiot. **1995**, 48, 326.
- 6) (a) Zhang, Y.; Wada, T.; Sasabe, H. *J. Mater. Chem.* 1998, *8*, 809. (b) Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski, K. *Prog, Polym. Sci.* 2003, *28*, 1297. (c) Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W.; *J. Am. Chem. Soc.* 2001, *123*, 9404. (d) Díaz, J. L.; Dobarro, A.; Villacampa, B.; Velasco, D. *Chem, Mater.* 2001, *13*, 2528.
- 7) Knölker, H.-J.; Bauermeister, M. J. Chem. Soc. Chem. Commun. 1990, 664.
- 8) Knölker, H.-J.; Goesmann, H.; Hofmann, C. Synlett 1996, 737.
- 9) (a) Lin, G.; Zhang, A. *Tetrahedron* 2000, 56, 7163. (b) Zhang, A.; G. Lin. *Bioorg. Med. Chem, Lett.* 2000, *10*, 1021-1023. (c) Boger, D. L.; Panek, J. S. *Tetrahedron Lett.* 1984, 25, 3175. (d) Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J.; Pflum, D. A.; Petsch, D. T. *J. Am. Chem. Soc.* 1997, *119*, 9641.
- 10) (a) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G. J. Chem. Soc.
 1965, 4831. (b) Sekine, M.; Yamagata, H.; Hata, T. *Tetrahedron Lett.* 1979, 20, 375.
- 11) (a) Åkermark, B.; Eberson, L.; Jonsson, E.; Pettersson, E. J. Org. Chem. 1975, 40, 1365-1367. (b) Ames, D. E.; Bull, D. Tetrahedron 1982, 38, 383. (c) Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919.
- 12) Clive, D. L. J.; Etkin, N.; Joseph, T.; Lown, J. W. J. Org. Chem. 1993, 58, 2442.
- 13) Danheiser, R. L.; Brisbois, R. G.; Kowalczky, J. J.; Miller, R. F. J. Am. Chem. Soc. 1990, 112, 3093.
- 14) Nonaka, Y.; Kawasaki, T.; Sakamoto, M. Heterocycles 2000, 53, 1681.
- 15) Beccalli, E. M.; Clerici, F.; Marchesini, A.; Tetrahedron 1998, 54, 11675.
- 16) Oikawa, Y.; Yonemitsu, O. J. Org. Chem. 1976, 41, 1118-1124.
- 17) Bergman, J.; Carlsson, R. Tetrahedron Lett. 1978, 19, 4051.
- (a) Kano, S.; Sugino, E.; Hibino, S. J. Chem. Soc. Chem. Commun. 1980, 1241. (b)
 Kano, S.; Sugino, E.; Shibuya, S.; Hibino, S. J. Org. Chem. 1981, 46, 3856.
- 19) (a) Hagiwara, H.; Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. *Chem. Pharm. Bull.* **1998**, *46*, 1948. (b) Hagiwara, H.; Choshi, T.; Nobuhiro, J.; Fujimoto, H.; Hibino, S. *Chem. Pharm. Bull.* **2001**, *49*, 881.
- 20) (a) Dötz, K. H.; Tomschat, P. Chem. Soc. Rev. 1999, 28, 187. (b) Leese, T.; Dötz, K. H. Chem. Ber. 1996, 129, 623. (c) Crotjahn, D. B.; Dötz, K. H. Synlett 1991, 381.

- 21) Bergman, J.; Pelcman, B. Tetrahedron 1988, 44, 5215.
- 22) (a) Martin, T.; Moody, C. J. *Tetrahedron Lett.* 1985, 26, 5841. (b) Martin, T.; Moody, C. J. J. Chem. Soc. Perkin Trams. 1 1988, 235.
- 23) Rao, M. V. B.; Syam Kumar, U. K.; Ila, H.; Junjappa, H. Tetrahedron 1999, 55, 11563.
- 24) (a) Borche, W.; Witte, A.; Bothe, W. Ann. 1908, 359, 49-80. (b) Murakami, Y.; Yokoo, H.; Watanabe, T.; *Heterocycles* 1998, 49, 127.
- 25) (a) Moody, C. J. J. Chem. Soc. Chem. Commun. 1984, 925-927. (b) Moody, C. J. J. Chem. Soc. Perkin Trans. 1 1985, 2505-2508. (c) Moody, C. J.; Shah, P.; Knowles, P. Tetrahedron Lett. 1988, 29, 2693-2696.
- (a) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046. (b) Yang, B. H.; Buchwald S. L. J. Organomet. Chem. 1999, 576, 125. (c) Muci, A. R.; Buchwald, S. L. In Topics in Current Chemistry; Miyaura, N., Ed.; Springer-Verlag: Berlin, 2002; Vol. 219, pp 131-209. (d) Hartwig, J. F. In Modern Arene Chemistry; Astruc, C., Ed.; Wiley-VCH: Weinheim, 2002; pp 107-168. (e) 辻二郎 有機合成化学協会誌 2001, 59, 607. (f) Hartwig, J.F. Synlett 2006, 1283.
- 27) (a) Kosugi, M; Kameyama, M.; Migita, T. Chem. Lett. 1983, 927.
- 28) (a) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem. Int. Ed. Engl. 1995, 34, 1348. (b) Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609.
- 29) (a) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969. (b) Paul, F.; Patt, J.; Hartwig, J. F. Organometallics 1995, 14, 3030.
- 30) Louie, J.; Paul, F.; Hartwig, J. F. Organometallics 1996, 15, 2794.
- 31) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109.
- 32) (a) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 4708. (b) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 8232. (c) Hamman, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382. (d) Hartwig, J. F.; Richards, S.; Barañano, D.; Paul, F. J. Am. Chem. Soc. 1996, 118, 3626.
- 33) (a) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1144. (b) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 7215. (c) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217.
- 34) Wagaw, S.; Rennels, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 8451.
- 35) (a)Windenhoefer, R. A.; Buchwald, S. L. *Organometallics* 1996, 15, 3534. (b) Wagawa, S.; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240.
- 36) Reddy, N. P.; Tanaka, M.; Tetrahedron Lett. 1997, 38, 4807.
- 37) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998, 39, 617 and 2367.
- 38) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722. (b)
 Wolfe, J. P.; Buchwald, S. L. Angew. Chem. Int. Ed. 1999, 38, 2413. (c) Wolfe, J. P.;
 Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158. (d) Ali,
 M. H.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2560. (e) Huang, X.; Anderson, K. W.;
 Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653. (f)
 Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 13978.

- 39) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 7369.
- 40) (a) Nozaki, K.; Takahashi, K.; Nakano, K.; Hiyama, T.; Tang, H.-Z.; Fujiki, M.;
 Yamaguchi, S.; Tamao, K. *Angew. Chem. Int. Ed.* 2003, *42*, 2051. (b) Kuwahara, A.;
 Nakano, K.; Nozaki, K. *J. Org. Chem.* 2005, *70*, 413.
- 41) (a) Suzuki, T.; Suzuki, S. T.; Yamada, I.; Koashi, Y.; Yamada, K.; Chida, N. J. Org. Chem.
 2002, 67, 2874. (b) Suzuki, T.; Tanaka, S.; Yamada, I.; Koashi, Y.; Yamada, K.; Chida, N. Org. Lett. 2000, 2, 1137. (c) Suzuki, T.; Chida, N. Chem. Lett. 2003, 32, 190. (d)
 Chida, N.; Suzuki, T.; Tanaka, S.; Yamada, Y. Tetrahedron Lett. 1999, 40, 2573. (e) 北 脇隆文、鈴木保、千田憲孝 日本化学会81春季年会講演予稿集 II, 2 A2-02 (2002 年, 東京). (f) Ohno, H.; Terui, T.; Kitawaki, T.; Chida, N. Tetrahedron Lett. 2006, 47, 5747. (g) 北脇隆文、林陽子、千田憲孝 日本化学会84春季年会講演予稿集 II, 4 J2-29 (2004年, 大阪). (h) Kitawaki, T.; Hayashi, Y.; Ueno, A.; Chida, N. Tetrahedron 2006, 62, 6792.
- 42) (a) Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R J. Antibiot. 1977, 30, 275. (b) Senzaki, M. Sakaki, T.; Nakazawa, T.; Takeda, U.; Iwata, M.; Watanabe, T.; Koyama, M.; Kai, F.; Shomura, T.; Kojima, M. J. Antibiot. 1985, 38, 1437. (c) Nettleton, D. E.; Doyle, T. W.; Krishnan, B. Tetrahedron Lett. 1985, 26, 4011.
- 43) (a) Gilman, H.; Gai, B. J. J. Org. Chem. 1957, 22, 447-449. (b) Corey, J. Y.; Chang, L. S. J. Organomet. Chem. 1986, 307, 7-14.
- 44) (a) 山本明夫監修「有機金属化合物合成法および利用法」第一版 東京化学同人 (1991). (b) 村井真二訳「ヘゲダス 遷移金属による有機合成」第一版 東京化学同人 (2001). (c) Tolman, C. A. J. Am. Chme. Soc. 1970, 92, 2956. (d) Tolman, C. A. Chme. Rev. 1977, 77, 313.
- 45) 日本化学会編「化学便覧 基礎編Ⅱ」第五版 丸善 (2003).
- 46) Ito, C.; Wu, T.-S.; Furukawa, H. Chem. Pharm. Bull. 1990, 38, 1143-1146.
- 47) (a) Ito, C.; Furukawa, H. *Chem. Pharm. Bull.* 1990, *38*, 1548-1550. (b) Ito, C.; Thoyama, Y.; Omura, M.; Kajiura, I. Furukawa, H. *Chem. Pharm. Bull.* 1993, *41*, 2096-2100. (c) Furukawa, H. *Trends in Heterocyclic Chem.* 1993, *3*, 185-197. (d) Tasler, S.; Bringmann, G. *Chemical Record* 2002, *2*, 114-126.
- 48) (a) Bringmann, G.; Tasler, S. *Tetrahedron*, 2001, *57*, 331-343 and references therin. (b) Bringmann, G.; Tasler, S.; Endress, H.; Kraus, J.; Messer, K.; Wohlfarth, M.; Lobin, W. J. *Am. Chem. Soc.* 2001, *123*, 2703-2711.
- 49) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168.
- 50) Majetich, G.; Hicks, R.; Reister, S. J. Org. Chem. 1997, 62, 4321.
- 51) El-Araby, M. E.; Bernacki, R. J.; Makara, G. M.; Pera, P. J.; Anderson, W. K. *Bioorg. Med. Chem.* **2004**, *12*, 2867.
- 52) Olah, G. A.; Sandford, W. G.; Prakash, G. K. S. J. Org. Chem. 1993, 58, 3194.
- 53) Francom, P.; Janeba, Z.; Shibuya, S.; Robins, M. J. J. Org. Chem. 2002, 67, 6788.

- 54) (a) Brown, H. C.; Cole, T. E. Organometallics 1983, 2, 1316. (b) Brown, H. C.; Bhat, N. G.; Srebnik, M. Tetrahedron Lett. 1988, 29, 2631. (c) Brown, H. C.; Rangaishenvi, M. V. Tetrahedron Lett. 1990, 49, 7113.
- 55) Donohoe, T. J. In *Oxidation and reduction in organic synthesis*; Oxford University Press Inc.: New York, 2000; pp. 45-46.
- 56) (a) Lalancette, J. M.; Frêche, A.; Monteux, R. *Can. J. Chem.* 1968, 46, 2754-2757. (b) Lalancette, J. M.; Frêche, A.; Brindle, J. R.; Laliberté, M. *Synthesis* 1972, 526-532. (c) Panek, J. S.; Xu, F.; Rondón A. C. *J. Am. Chem. Soc.* 1998, *120*, 4113-4122.
- 57) Kitawaki, T.; Hayashi, Y.; Chida, N. Heterocycles 2005, 65, 1561.
- 58) (a) Dutta, N. L., Quasim, C.; Wadia, S. *Indian J. Chem.* 1969, 7, 1061. (b) Kureel, S. P., Kapil, R. S.; Popli, S. P. *Tetrahedron Lett.* 1969, 44, 3857. (c) Bordner, J.; Chakraborty, D. P.; Chowdhury, B. K.; Ganguli, S. N.; Das, K. C.; Weinstein, B. *Experimetia* 1972, 28, 1406. (d) Furukawa, H.; Wu, T.-S.; Ohta, T.; Kuoh, C.-S. *Chem. Pharm. Bull.* 1985, *33*, 4132.
- 59) (a) Bhattacharya, L.; Roy, S. K.; Chakraborty, D. P. *Phytochemistry* 1982, 21, 2432. (b)
 Wu, T.-S.; Wang, M.-L.; Wu, P.-L.; Jong, T.-T. *Phytochemistry* 1995, 40, 1817. (c)
 Bhattacharyya, L.; Chatterjee, S. K.; Roy, S.; Chakraborty, D. P. J. *Indian chem. Soc.* 1989, 66, 140.
- 60) (a) Hagiwara, H.; Akama, T.; Okano, A.; Uda, H. J. Chem. Soc. Perkin Trans. 1 1993, 2173. (b) Danishefsky, S.; Kitahara, T.; Yan, C. F.; Morris, J. J. Am. Chem. Soc. 1979, 101, 6996.
- 61) Burkard, S.; Borschberg, H.-J. Helv. Chim. Acta. 1989, 72, 254.
- 62) (a) Stahl, I. *Synthesis* **1981**, 135. (b) Stork, G.; West, F.; Lee, H. Y.; Isaacs, R. C. A.; Manabe, S. *J. Am. Chem. Soc.* **1996**, *118*, 10660.
- 63) Ito, Y.; Hirano, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
- 64) (a)Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. J. Org. Chem. 1997, 62, 6997.
 (b) Ligen, H. L.; Zhuang, W.; Hanesen, T.; Rutjes, F. P. J. T.; Jørgensen, K. A. Org. Biomol. Chem. 2003, 1, 1953.
- 65) (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611. (b)
 Hartley, R. C.; Mckiernan, G. J. J. Chem. Soc. Perkin Trans. 1 2002, 2763. (c) Chambers,
 D. J.; Evans, G. R.; Fairbanks, A. J. Tetrahedron 2005, 61, 7184.
- 66) Chong, P. Y.; Petillo, P. A. Org. Lett. 2000, 2, 2113.
- 67) Yasuzawa, T.; Iida, T.; Yoshida, M.; Hirayama, N.; Takahashi, M.; Shirahata, K.; Sano, H. J. Antibiot. 1986, 39, 1072.