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Abstract

This thesis presents new approaches to fuzzy inference system for modeling nonlin-

ear systems based on input and output data using kernel machines. It is an impor-

tant issue how to select the best structure and parameters of the fuzzy model from

given input-output data. To solve this problem, this thesis proposes the state-of-

the-art kernel machine as the fuzzy inference engine. The kernel machine contains

two modules such as the machine learning and the kernel function. The machine

learning is a learning algorithm. The kernel function projects input data into high

dimensional feature space. In this thesis, an extended Support Vector Machine

(SVM), an extended Feature Vector Selection (FVS) and an extended Relevance Vec-

tor Machine (RVM) as kernel machines are used.

In the proposed fuzzy system, the number of fuzzy rules and the parameter val-

ues of membership functions are automatically generated using extended kernel

machines such as an extended SVM, an extended FVS and an extended RVM. The

structure and learning algorithm of the FIS using an extended SVM, an extended

FVS and an extended RVM are presented, respectively. The learning algorithm of

the extended FVS is faster than the extended SVM. The extended FVS consists of

the linear transformation part of input variables and the kernel mapping part. The

linear transformation of input variables is used to solve problem selecting the best

shape of the Gaussian kernel function. The extended RVM generates the smaller

number of fuzzy rules than the extended SVM. The extended RVM does not need the

linear transformation of input variables because the basis function of the extended

RVM is not restricted within the limitation of the kernel function.

As the basic structure of the proposed fuzzy inference system, the Takagi-Sugeno

(TS) fuzzy model is used. After the structure is selected, the parameter values in the

consequent part of TS fuzzy model are determined by the least square estimation

method. In particular, the number of fuzzy rules can be reduced by adjusting the



linear transformation matrix or the parameter values of kernel functions using a

gradient descent method.

Some examples involving benchmark nonlinear systems are included to illustrate

the effectiveness of the proposed techniques.
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CHAPTER1
Introduction

1.1 Motivation

Conventional mathematical modeling approaches have difficulty in modeling many

systems because of the lack of exact knowledge, highly nonlinear behaviors or per-

formance limitation.

To overcome this problem, the neuro-fuzzy system has been popularly developed

for modeling of nonlinear systems based on input and output data [1] [2] [3] [4]

[5] [6]. The advantage of integrating neural networks and fuzzy inference system

(FIS) is that neuro-fuzzy systems are able not only to describe target systems us-

ing fuzzy logic and reasoning of fuzzy system but also to decide its parameters us-

ing the learning and adaptive capability of neural network. Generally, neuro-fuzzy

modeling from numeric data consists of two parts that are structure identification

and parameter identification. The process of structure identification determines

the number of fuzzy rules or variables selection. The process of parameter identi-

fication decides the parameters of membership functions in antecedent parts and

coefficients of linear equations in consequent parts.

However, if training data set for learning has measurement noise and (or) avail-

able data size is too small in the real system modeling, neural network can bring

1
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out over-fitting problem which is a factor of poor generalization. It is an important

problem to select the optimal structure of the neuro-fuzzy model for good general-

ization, such as the number of fuzzy rules, parameters of membership functions and

coefficients in consequent part.

In this thesis, we propose new approaches to FIS for modeling nonlinear system

based on input and output data using kernel machines such as an extended Support

Vector Machine (SVM) [7], an extended Feature Vector Selection (FVS) [8] and an

extended Relevance Vector Machine (RVM) [9].

The proposed FIS performs system optimization and generalization simultane-

ously. As the basic structure of the proposed fuzzy inference system, the Takagi-

Sugeno (TS) fuzzy model [10] is used. In the proposed fuzzy system, the number

of fuzzy rules and the parameter values of membership functions are automatically

generated. In addition, the number of fuzzy rules can be reduced by adjusting the

linear transformation matrix or the parameter values of kernel functions using a

gradient descent method. After the structure fuzzy system is determined, the pa-

rameter values in the consequent parts of TS fuzzy model are determined by the

least square estimation method.

1.2 Previous Research

The main issue in neuro-fuzzy modeling is how to decide the best structure and

parameters from a given input-output data of the particular systems, such as the

number of fuzzy rules, parameters of membership functions in antecedent parts

and coefficients in consequent parts. If a fuzzy model has too many rules, it de-

creases the error between a given data output and fuzzy model output, but can

cause overfitting and decrease computational power. By contrast, if a fuzzy model

has too small rules, it increases computational power and prevents overfitting but

can increase error.

The conventional structure identification of neuro-fuzzy modeling is closely re-

lated to the partitioning of input space for fuzzy rule generation.
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Table 1.1 Various input space partition methods for fuzzy rule extraction
Group Method Disadvantage

Partition

Grid Partition Course of dimensionality
Tree Partition Number of rule exponential in-

creasing
Scatter Partition Completeness not guaranteed
GA Algorithm based Parti-
tion

Long learning time

Clustering
Fuzzy C-mean Clustering Predetermined the number of

clustering
Mountain Clustering Let perception grid points as the

candidate for clustering center
Hybrid Clustering Depending on implementation

1.2.1 Partitioning of input space

There are two kinds of groups for fuzzy rule generation from the data such as parti-

tion and clustering as shown in Table 1.1. One group is the partition of input space.

The partition of input space can be categorized into the following methods.

• Grid Partition [11] [12] : As shown in Fig. 1.1(a), input space is divided into

grid partition using grid type.

• Tree Partition [13] : As shown in Fig. 1.1(b), each region is uniquely specified

along a corresponding decision tree.

• Scatter Partition [14] : As shown in Fig. 1.1(c), scatter partition is illus-

trated as the subset of the whole input space.

• GA Algorithm based Partition [15] : As shown in Fig. 1.1(d), GA Algo-

rithm based partition is presented as the partition method using GA algorithm

which divides the input space into disjoint decision areas.

The other group is the clustering of input space. The clustering method is classi-

fied into the following methods.

• Fuzzy C-mean Clustering [16] : Fuzzy C-mean clustering partitions the

collection of n vector xj , (j = 1, ..., n) into C groups Gi, (i = 1, ..., c) and finds a
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(a) 
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x1 
x2 

(b) 

Fig. 1.1 Various input space partitioning methods, (a) Grid partition, (b) Tree par-
tition, (c) Scatter partition and (d) GA algorithm based partition

cluster center in each group such that a cost function of dissimilarity measure

is minimized.

• Mountain Clustering [17] : Mountain clustering is a relatively simple and

effective approach to approximate estimation of cluster centers on the basis of

a density measure.

Table 1.1 summaries various input space partitioning methods for fuzzy rule

extraction and these disadvantages. The conventional partition of input space in

structure identification is separated from parameter identification determining the

value of parameter. Besides this process is isolated system optimization involving

parameter and structure optimization. In particular, partition methods have disad-

vantages, which include the course of dimensionality [11], an exponential increase

in the number of rules [13], unpredictable completeness [14] or computation cost
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[15]. In clustering techniques, the number of cluster must be known in advance

[16] [18] , or previously settled grid points of grid lines can function as candidates

for cluster centers [17] [19]. Traditional sequential learning approaches of struc-

ture identification and parameter identification are adequate for off-line learning

instead of on-line learning [20].

1.2.2 Statistical techniques based neuro-fuzzy modeling

Recently, the state-of-the-art kernel machine has actively applied to various fields

[21] [22] [23] [24] [25] [26] [27]. The kernel machine is derived from the statistical

learning theory. The kernel machine contains two modules such as the machine

learning and the kernel function. The machine learning is a learning algorithm.

The kernel function projects input data into high dimensional feature space to in-

crease the computational power.

In kernel machine, the most popular method is Support Vector Machine (SVM).

The SVM [21] has delivered good performance in various application. In particular,

the SVM has been used in order to find the number of network nodes or fuzzy rules

based on given error bound [28] [29] [30]. The Support Vector Neural Network

(SVNN) was proposed to select the appropriate structure of radial based function

network for the given precision [28]. Support vector learning mechanism for fuzzy

rule-based inference system was presented in [29].

However, these methods have same Gaussian kernel parameters, completeness

is not guaranteed. It means that the number of fuzzy rules is not really simplified.

In this thesis, the number of rules is reduced by adjusting the parameter values

of membership functions using a gradient descent algorithm during the learning

process. Once a structure is selected, the parameter values in consequent part of

TS fuzzy model are determined by the least square estimation method.

1.2.3 Kernel machines

The kernel machine is the large class of learning algorithms with kernel function.

The kernel machine generally deals with trade-off between fitting the training data

and simplifying model capacity. Recently, kernel machines have been popularly

used in many applications including face recognition [31] [32] [33] [34], bioinfor-
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matics [35] [36] [37], text categorization [38] [39], time series analysis [40] [41] [42]

[43], machine vision [44] [45], signal processing [46] and nonlinear system identifi-

cation [47] [48].

As kernel machines, Support Vector Machine (SVM), Feature Vector Selection

(FVS) and Relevance Vector Machine (RVM) are noticeable methodologies. These

kernel machines are summarized as follows:

Support Vector Machine (SVM) [21]

The SVM has strong mathematical foundations in statistical learning theory. It is a

learning system designed to trade-off the accuracy obtained particular training set

and the capacity of the system. The structure of the SVM is the sum of weighted

kernel functions. The SVM determines support vectors and weights by solving a

linearly constrained quadratic programming problem in a number of coefficients

equal to the number of data points. The SVM is generally divided into Support

Vector Classification (SVC) [49] and Support Vector Regression (SVR) [50].

Feature Vector Selection (FVS) [26]

The FVS is based on kernel method. It performs a simple computation optimizing

a normalized Euclidean distance into the feature space. The FVS technique is to

select feature vector being a basis of data subspace and capturing the structure of

the entire data into feature space. Once the feature vector is selected, the output

of FVS is calculated using a kernel function approximation algorithm. The FVS is

also used for classification [37] and regression [26].

Relevance Vector Machine (RVM) [27]

The RVM has an exploited probabilistic Bayesian learning framework. It acquires

relevance vectors and weights by maximizing a marginal likelihood. The structure

of the RVM is described by the sum of product of weights and kernel functions.

The kernel function means a set of basis function projecting the input data into a

high dimensional feature space. The RVM is also presented for classification and

regression.
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Table 1.2 Compared results of SVM, FVS and RVM
SVM FVS RVM

Sparsity Bad Middle Good
Generalization Good Bad Good
Computation time Middle Short Long
Flexibility of kernel No No Yes

Now, we compare the characteristics of the SVM, FVS and RVM. The compared

results are listed in Table 1.2.

In sparsity, the number of the extracted support vectors grows linearly with the

size of training set. On the contrary, the RVM achieves sparsity because the poste-

rior distributions of many of weights are sharply peaked around zero. The FVS has

middle sparsity because it extracts feature vector as a basis of data subspace. Both

SVM and RVM deal with the generalization, but the FVS do not achieve generaliza-

tion. The RVM has long computation time because it has order O(M3) complexity

with the M number of basis function. Because the SVM solves the quadratic pro-

gramming problem, the computation time of SVM is longer than the FVS. Both SVM

and FVS must the Mercer’s condition of kernel function. It means that the kernel

function is symmetric positive finite definite. But contrast, because the RVM has

only basis function as kernel function, it’s kernel function does not need to satisfy

the Mercer’s condition.

In following chapters, we will present SVM, FVS and RVM in detail, respectively.

1.3 Original Contributions

In this thesis, we describe new approaches to fuzzy inference system (FIS) for mod-

eling nonlinear systems based on input and output data using kernel machines. As

the basic structure of the proposed fuzzy inference system, the Takagi-Sugeno (TS)

fuzzy model is used.

We have the following original contributions in the areas of fuzzy modeling using

the state-of-the-art kernel machines, such as the extended Support Vector Machine

(SVM) [7], the extended Feature Vector Selection (FVS) [8] and the extended Rele-



1.3. ORIGINAL CONTRIBUTIONS 8

vance Vector Machine (RVM) [9].

• We propose the FIS using an extended SVM for modeling the nonlinear sys-

tems. In the proposed FIS, the number of fuzzy rules and the parameter values

of fuzzy membership functions are automatically generated using an extended

SVM. In particular, the number of fuzzy rules can be reduced by adjusting the

parameter values of the kernel functions using the gradient descent method.

• We propose the FIS using an extended FVS for modeling the nonlinear sys-

tems. In the proposed FIS, the number of fuzzy rules and the parameter val-

ues of fuzzy membership functions are also automatically determined using

an extended FVS. In addition, the number of fuzzy rules can be reduced by ad-

justing the linear transformation matrix of input variables and the parameter

values of the kernel function using the gradient descent method.

• We propose the FIS using an extended RVM for modeling nonlinear systems

with noise. In the proposed FIS, the number of fuzzy rules and the parame-

ter values of fuzzy membership functions are automatically decided using an

extended RVM. In particular, the number of fuzzy rules can be reduced under

the process of optimizing a marginal likelihood by adjusting parameter values

of kernel functions using the gradient ascent method.

The kernel machine already works fine system modeling from input and out-

put. However, there are several advantages of the proposed FIS using the extended

SVM, FVS and RVM, respectively.

• The SVM, FVS and RVM describe only input and output of system as black-

box. It is difficult to make out interior state of system. On the contrary, be-

cause the FIS describes system using if-then rules with membership functions

qualitatively, it can help us to grasp the system.

• Once the black-box system is presented as the FIS, it is easy to design the

controller. As an example, the well known parallel distributed compensation

(PDC) can be utilized [51].
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• If we model the nonlinear system as TS fuzzy model, we can prove the stability

of system [52].

1.4 Thesis Overview

This thesis presents the fuzzy inference systems of nonlinear systems using ker-

nel machines such as the extended Support Vector Machine (SVM), the extended

Feature Vector Selection (FVS) and the extended Relevance Vector Machine (RVM).

Each of the original contributions described in the previous section is presented in

the following separated chapters.

Chapter 1 describes the background, motivation, contribution and the outline of

this work.

Chapter 2 describes the preliminaries of the fuzzy system, statistical learning

theory and kernel-induced feature space. In particular, the fuzzy set and logic, fuzzy

reasoning and Takagi-Sugeno fuzzy model in fuzzy system are introduced. In sta-

tistical learning theory, generalization error, empirical risk minimization and struc-

ture risk minimization principle are presented. In kernel-induced feature space,

learning in feature space and kernel function are described.

Chapter 3 describes the fuzzy inference system using an extended SVM. The

extended SVM is introduced as fuzzy inference engine. The structure and learning

algorithm of the FIS using an extended SVM are proposed. The proposed FIS is

tested in three numerical examples.

Chapter 4 describes the fuzzy inference system using an extended FVS. The

extended FVS is also proposed as fuzzy inference engine. The learning algorithm

of the extended FVS is faster than the extended SVM. The extended FVS consists

of the linear transformation part of input variables and the kernel mapping part.

The linear transformation of input variables is used to solve problem selecting the

best shape of the Gaussian kernel function. The proposed FIS is evaluated in the

examples of two nonlinear functions.

Chapter 5 describes the fuzzy inference system using an extended RVM. The

extended RVM is also proposed as fuzzy inference engine. The extended RVM gen-

erates the smaller number of fuzzy rules than the extended SVM. The extended
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RVM does not need the linear transformation of input variables because the basis

function of the extended RVM is not restricted within the limitation of the kernel

function. The structure and learning algorithm of the FIS using an extended RVM

are presented. The proposed FIS is evaluated in the examples of nonlinear dynamic

systems and robot arm data.

Chapter 6 summarizes the results of this thesis and discusses future research

initiatives.



CHAPTER2
Preliminaries

This chapter introduces fuzzy system, statistical learning theory and kernel-based

feature space. In fuzzy system, fuzzy set and fuzzy logic are presented. The Takagi-

Sugeno (TS) fuzzy model known as one of the most outstanding fuzzy systems is

also introduced. In statistical learning theory, generalization error, empirical and

structure risk minimization principle are presented. In kernel-based feature space,

learning in feature space and the properties of kernel function are illustrated.

2.1 Fuzzy Systems

A fuzzy system is a rule-based system that uses fuzzy set and fuzzy logic to reason

about data. Fuzzy logic is a computational paradigm that provides a mathematical

tool for representing information in a way that resembles human linguistic commu-

nication and reasoning processes [53] [54] [55] [56] [57] [58] [59] [60].

2.1.1 Fuzzy set and fuzzy logic

Lotfi Zadeh established the foundation of fuzzy logic in a seminal paper entitled

“Fuzzy Sets” [61]. In [61], fuzzy sets were imprecisely defined as sets and classes

“play an important role in human thinking, particularly in the domains pattern

11
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Table 2.1 The equivalence between isomorphic domains
Set Logic Algebra

Membership Truth Value
Member (∈) True (T) 1
Non-member False (F) 0
Intersection (∩) AND (∧) Product(×)
Union (∪) OR (∨) Sum (+)
Complement (−) NOT (∼) Complement (′)

recognition, communication of information, and abstraction.” Fuzzy sets are the

generalization of crisp sets with crisp boundaries.

Let us now basic definitions concerning fuzzy sets.

Definition 2.1.1 [55] [62] If X is a collection of objects denoted generically by x,

then a fuzzy set A in a universe of discourse X is defined as a set of ordered pairs:

A = {(x, µA(x))|x ∈ X} (2.1)

where µA(x) is called the membership function (MF) for the fuzzy set A. The MF

is a mapping

µA(x) : X −→ [0, 1]. (2.2)

Note that each element of X is mapped to a membership grade between 0 and 1.

The operation that assigns a membership function µA(x) to a given value x is

called fuzzification.

The most commonly used membership functions are triangular, trapezoidal, Gaus-

sian, generalized bell and sigmoidal MFs.

The rules of FIS are expressed as the logical form of if ... then statements. J. M.

Mendel pointed out fuzzy logic system as “It is well established that propositional

logic is isomorphic to set theory under the appreciate correspondence between com-

ponents of these two mathematical system. Furthermore, both of these systems are

isomorphic to a Boolean algebra.” [55] [63]. Some of the most important equivalence

between these isomorphic domains are shown in Table 2.1.

In fuzzy domains, fuzzy operators are needed such as crisp operators. The follow-

ing fuzzy operators most commonly used in the frame of fuzzy systems [55] [62].
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Operators for intesection/AND operations (µA∩B(x) = µA(x) ∧ µB(x)): The

intersection/AND of two fuzzy sets A and B is defined as the following T-norm oper-

ators,

minimum : min(µA(x), µB(x))

algebraic product : µA(x) · µB(x)

bounded product : max(0, µA(x) + µB(x)− 1)

drastic product :





µA(x) , if µB(x) = 1
µB(x) , if µA(x) = 1

0 , if µA(x), µB(x) < 1.

Operators for union/OR operations (µA∪B(x) = µA(x)∨µB(x)): The union/OR

of two fuzzy sets A and B is defined as the following T-conorm operators,

maximum : max(µA(x), µB(x))

algebraic sum : µA(x) + µB(x)− µA(x) · µB(x)

bounded sum : min(1, µA(x) + µB(x))

drastic product :





µA(x) , if µB(x) = 0
µB(x) , if µA(x) = 0

1 , if µA(x), µB(x) > 1.

Operators for complement/NOT (µA(x) = µ∼A(x)): The complement/NOT of

fuzzy sets A is defined as the following fuzzy complement,

fuzzy complement : 1− µA(x)

2.1.2 Fuzzy inference system

Zadeh pointed out that conventional techniques for system analysis are intrinsically

suited for dealing with humanistic systems [64]. Zadeh introduced the concept of

linguistic variable as an alternative approach to modeling human thinking.

In fuzzy inference system, fuzzy if-then rules have the form [62],

if x is A then y is B, (2.3)

where A and B are linguistic values defined by fuzzy sets on universes of discourse X

and Y, respectively. The input condition “x is A” is called the antecedent or premise.

The output assignment “y is B” is called the consequent or conclusion.
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Fig. 2.1 Fuzzy rule vs input space partition

The generation of fuzzy if-then rules is related to the partitioning of input space

partition. Figure 2.1 shows the example of the 2-dimensional input space parti-

tioning [55]. In Fig. 2.1, the fuzzy linguistic variable Age has three membership

functions: Young, Middle and Old. The fuzzy linguistic variable Triglycerides has

also three membership functions: Normal, High and Veryhigh. The total number

of fuzzy rules is nine as shown in Fig. 2.1.

The 9-th fuzzy rule is described as follows:

R9 : If Age is Old and Triglycerides is V eryhigh,

Then Cardiac risk is Dangerous. (2.4)

where Dangerous is linguistic fuzzy output variable.

In fuzzy inference system, fuzzy reasoning is necessary. Fuzzy reasoning is an

inference procedure that derives a reasonable output and conclusion from a set of

fuzzy if-then rules and known facts.

The inference procedure of fuzzy reasoning (approximate reasoning) is defined as

follows:
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Definition 2.1.2 [62] Let A, A’ and B be fuzzy sets of X, X and Y, respectively. As-

sume that the fuzzy implication A −→B is expressed as a fuzzy relation R on X × Y.

Then the fuzzy set B’ induced by “x is A′” and the fuzzy rule “if x is A then y is B” is

defined by

µB′(y) = A′ ◦R = A′ ◦ (A −→ B)

= maxxmin[µA′(x), µR(x, y)]

= ∨x[µA′(x) ∧ µR(x, y)] (2.5)

where a composition operator ◦ means the max−min composition.

The fuzzy implication A −→ B is defined as commonly operators, minimum and

product. The most of composition operators have used the max −min composition

or the max− product composition.

The output of FIS is crisp value. The process that extracts the best crisp output

from a fuzzy output as a representative value is called defuzzification. Many de-

fuzzification methods have been developed in literature. The most commonly have

used method is the Center of Gravity (COG), also called Center of Areas (COA) or

Centroid.

Given an output fuzzy set A = µA(x) defined in the universe X of the variable x,

the defuzzified output y is given as follows:

• Center of Gravity (COG):

yCOG =

∫
X µA(x)x dx∫
X µA(x) dx

(2.6)

where µA(x) is the aggregated output MF.

Figure 2.2 shows graphically the operation fuzzy reasoning for two rules with two

antecedents. Two fuzzy if-then rules with two antecedents are presented as follows:

R1 : if x is A1 and y is B1 then z is C1,

R2 : if x is A2 and y is B2 then z is C2, (2.7)

Two firing strength µAi(x) and µBi(y) (i = 1, 2) indicate degrees to which the an-

tecedent part of the fuzzy rule is satisfied. They are calculated using AND operator
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Fig. 2.2 Fuzzy reasoning for two rules with two antecedents

(min(µAi(x), µBi(x))). Two induced consequent membership functions µC1(z) and

µC2(z)) are combined using Union operator (max(µC1(z), µC2(z))). Once fuzzy rea-

soning is achieved, defuzzifer follows.

The basic structure of a fuzzy system consists of four conceptual components as

shown in Fig. 2.3 (1) a knowledge base, which consists of a database that de-

fines the membership functions used in the fuzzy rules, a rule base that contains

a selection of fuzzy rules; (2) a fuzzifier, that translates crisp inputs into fuzzy val-

ues; (3) an inference engine, which applies the fuzzy reasoning mechanism; (4)

defuzzifier, that extracts a crisp value from fuzzy output.

2.1.3 Takagi-Sugeno fuzzy model

Fuzzy Inference System (FIS)s have powerful capability for modeling complex non-

linear systems [1] [10] [16]. One of the most outstanding FISs, proposed by Takagi

and Sugeno [10] [57], is known as the TS model. The TS fuzzy model consists

of fuzzy if-then rules which map the input space into fuzzy regions and approxi-
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Fig. 2.3 The structure of a FIS

mate the system in every region by a local model corresponding to various operat-

ing points. The structure of TS fuzzy model is the combination of interconnected

systems with linear models.

The TS fuzzy model suggested a systematic approach for generating fuzzy rules

from a given input and output data set. This fuzzy model is presented as follows:

R1 : If x1 is M11 and ... and xD is M1D,

Then f1 = a10 + a11x1 + · · ·+ a1DxD

R2 : If x1 is M21 and ... and xD is M2D,

Then f2 = a20 + a21x1 + · · ·+ a2DxD

...
...

...

Rn : If x1 is Mn1 and ... and xD is MnD,

Then fn = an0 + an1x1 + · · ·+ anDxD. (2.8)

where n is the number of fuzzy rules, D is the dimension of input variables, xj(j =

1, 2, ..., D) is an input variable, fi is the i-th local output variable, Mij(i = 1, 2, ..., n, j =
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1, 2, ..., D) is a fuzzy set and aij(i = 1, 2, ..., n, j = 0, 1, ..., D) is a consequent parame-

ter.

The final output of TS fuzzy model is obtained as follows:

f(x) =

n∑
i=1

wifi

n∑
i=1

wi

,

=

n∑
i=1

wi(ai0 + ai1x1 + ai2x2 + · · ·+ aiDxD)

n∑
i=1

wi

,

=
D∑

j=0

hiaijxj ,

where x0 = 1,

hi =
wi
n∑

i=1
wi

, wi =
D∏

j=1

Mij(xj), (2.9)

wi is the weight of the i-th If-then rule for input and Mij(xj) is the membership

grade of xj in Mij .

Sugeno-Kang proposed the procedure of TS fuzzy modeling as a nonlinear mod-

eling framework. The methods of structure and parameter identifications were in-

troduced. These methods had influence on the self-organizing fuzzy identification

algorithm (SOFIA) [59] and neuro-fuzzy modeling techniques [1] [60].

2.2 Statistical Learning Theory

In this section, we introduce a statistical learning theory. Recently, statistical learn-

ing theory has been popularly developed in many application [21] [22] [23] [24] [25]

[49] [50].

2.2.1 Generalization error

Generalization error is the sum of estimation error and approximation error as

shown in Fig. 2.4 [65].
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Fig. 2.4 Generalization error

• Approximation error is the one due to approximation from hypothesis space

into target space.

• Estimation error is the one due to the learning procedure which results in a

technique selecting the non-optimal model from the hypothesis space.

2.2.2 Empirical risk minimization principle

In statistical learning theory, the standard way to solve the learning problem is to

define risk function, which measures the average amount of error associated with

an estimator [66].

• Classical Regularization Networks

V (yi, f(xi)) = (yi − f(xi))2 (2.10)

• Support Vector Machines Regression

V (yi, f(xi)) = |yi − f(xi)|ε (2.11)
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Training data is Dl ≡ {(xi, yi) ∈ X × Y }l
i=1, obtained by sampling l times the set

X × Y according to P (x, y). If V (yi, f(xi)) is the loss function measuring the error,

when we predict y using f(x), then the average error is called expected risk :

R[f ] =
∫

X,Y
V (yi, f(xi))P (x, y))d(x)dy. (2.12)

Let f0 be the function which minimizes the expected risk in F :

f0 = arg min
F

R[f ]. (2.13)

The function f0 is ideal estimator, and it is often called target function. However,

the probability distribution P (x, y) defining the expected risk is unknown. To over-

come this problem, Vapnik [49] suggests empirical risk minimization principle,

Remp[f ] =
1
l

l∑

i=1

V (yi, f(xi)). (2.14)

Formally, the theory answers the question of finding under which conditions the

method of empirical risk minimization principle satisfies:

lim
l→∞

Remp[f̂l] = lim
l→∞

R[f̂l] = R[f0], (2.15)

where f̂l is the minimizer of the empirical risk (2.14) in F .

2.2.3 Structure risk minimization principle

The V apnic Chervoenkis(V C) dimension h is defined as follows:

Definition 2.2.1 [49] The capacity of a set of function with logarithmic bounded

growth function can be characterized by the coefficient h. The coefficient h is called

the VC dimension of a set of indicator functions. It characterizes the capacity of a set

of functions. When the growth function is linear, the VC dimension is defined to be

infinite.

The important outcome of the work of Vapnik and Chervonenkis is that the uniform

deviation between empirical risk and expected risk in a hypothesis space can be

bounded in terms of the VC-dimension, as shown in the following theorem [66]:
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Theorem 2.2.1 [66] [67] Let A ≤ V (y, f(x)) ≤ B, f ∈ F ,with A and B < ∞, F be a

set of bounded functions and h the VC-dimension of V in F. Then, with probability

at least 1−η, the following inequality holds simultaneously for all the elements f of F :

Remp[f ]−(B−A)

√
h ln 2l

h − ln(η
4 )

l
≤ R[f ] ≤ Remp[f ]+(B−A)

√
h ln 2l

h − ln(η
4 )

l
. (2.16)

The quantity R[f ] − Remp[f ] is often called the estimation error. Since the space F

where the loss function V is defined is usually very large, one typically considers

smaller hypothesis spaces H. The cost associated with restricting the space is called

the approximation error. In the literature, space F where V is defined is called the

target space, while H is so called the hypothesis space [66].

We define the set of nested subsets of hypothesis spaces H1 ⊂ H2 ⊂ · · · ⊂ Hn(l). If

hi is the VC dimension of space Hi, then h1 ≤ h2 ≤ · · · ≤ hn(l). (2.16) is rewritten as

R[f ] ≤ Remp[f ] + (B −A)

√
h ln 2l

h − ln(η
4 )

l
. (2.17)

The idea of the structural risk minimization induction principle is the following. To

provide the given set of functions with an admissible structure and then to find the

function that minimize guaranteed risk (2.17) over given elements of the structure.

In Fig. 2.5, the relationship between approximation error, estimation error and

generalization error about VC dimension is illustrated.

2.3 Kernel-Induced Feature Space

In this section, the learning in feature space and kernel function are introduced.

The kernel technique performs a nonlinear mapping which projects input space

into high dimensional feature space.

2.3.1 Learning in feature space

In general, the preprocessing step in learning machine contains representation of

given input-output data [23]:

x = (x1, ..., xn) 7→ φ(x) = (φ1(x), ..., φn(x)).
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Fig. 2.5 The relationship between approximation error, estimation error and gen-
eralization error

This step is equivalent to mapping the input space X into a new space, F = {φ(x)|x ∈
X}.

To project the given data into hypothesis space can increase computational power

in learning machine and can supply various methods for extracting relevant infor-

mation through new representation of data. The quantities introduced to describe

the data are called features, while original quantities are called attributes. The

work of selecting the best suitable representation is known as the feature selection.

The space X is referred to as the input space, while F = {φ(x)|x ∈ X} is called the

feature space [23].

Figure 2.6 shows the example of a nonlinear mapping the training data in input

space into a higher-dimensional feature space via φ. In input space, data can not be

separated by linear function, but in feature space, data can be separated by linear

function.

2.3.2 Kernel function

We present the definition and characteristic of kernel function. Firstly, finitely pos-

itive semi-definite function is defined.
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Fig. 2.6 Nonlinear mapping

Definition 2.3.1 [25] A function

K : X ×X −→ R (2.18)

satisfies the finitely positive semi-definite property if it is a symmetric function for

which the matrices formed by restriction to any finite subset of the space X are posi-

tive semi-definite.

Definition 2.3.2 [23] A kernel is a function K, such that for all x, z ∈ X

K(x, z) = < φ(x) · φ(z) > (2.19)

where φ is a mapping from X to an (inner product) feature space F.

Its arguments followed by the evaluation of the inner product in F if and only if it

satisfies the finitely positive semi-finite property.

The following Mercer’s theorem provides characterization when a function K(x, z)

is a kernel.

Theorem 2.3.1 [23] [68] Let X be a compact subset of Rn. Suppose K is a continuous

symmetric function such that the integral operator Tk : L2(X) → L2(X),

Tkf(·) :=
∫

X
K(·, x)f(x)dx (2.20)
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Table 2.2 Kernel function and type

Kernel Function Type
K(x, y) = ((x · y) + 1)d Polynomial of degree d
K(x, y) = exp(− (x−y)2

2σ2 ) Gaussian RBF
K(x, y) = exp(− |x−y|

2σ2 ) Exponential RBF
K(x, y) = tanh(a(x · y)− b) Multi-layer perceptron

K(x, y) = sin(N+ 1
2
)(x−y)

sin( 1
2
(x−y))

Fourier series

is positive. That is ∫

X×X
K(x, z)f(x)f(z)dxdz ≥ 0, (2.21)

for all f ∈ L2(X). Then we can expand K(x,z) in a uniformly convergent series (on

X ×X) in terms of Tk ’s eigen-functions φj ∈ L2(X), normalized in such a way that

‖φj‖L2 = 1, and positive associated eigenvalue λj ≥ 0,

K(x, z) =
∞∑

j=1

λjφj(x)φj(z). (2.22)

From these definition and theorem, we can summary kernel function as follows,

K(x, z) = < φ(x) · φ(z) > =
∞∑

i=1

λiφi(x)φi(z). (2.23)

The following example in [21] gives brief understanding.

Example (Quadratic feature in [21] R2): Consider the map φ : R2 → R3 with

φ(x) = φ(x1, x2) = (x2
1,
√

2x1x2, x
2
2), (2.24)

where x1 and x2 ∈ R2, for instance, the polynomial kernel K(x, y) = (x · y)d.

For d = 2, and x, y ∈ R2, we have

(x · y)2 =
((

x1

x2

)
·
(

y1

y2

))2

=




x2
1√

2x1x2

x2
2


 ·




y2
1√

2y1y2

y2
2




= (φ(x) · φ(y)). (2.25)
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In Table 2.2, the most commonly used kernel functions are presented.

We use the the following kernel matrix as kernel function in learning algorithm.

Give a input data X = {x1, ..., xl} and kernel function K, the following kernel or

Gram matrix Kij is presented,

Kij = K(xi, xj), for i, j = 1, ..., l. (2.26)

The kernel matrix acts as an interface between the data input module and learning

algorithm.



CHAPTER3
Fuzzy Inference System Using an Extended SVM

This chapter describes the fuzzy inference system (FIS) using an extended Support

Vector Machine (SVM) for modeling the nonlinear systems based on input and out-

put data. The SVM is a learning system designed to trade-off the accuracy obtained

particular training set and the capacity of the system [21] [65]. The structure of

the SVM is the sum of weighted kernel functions. In the proposed FIS, the number

of fuzzy rules and the parameter values of fuzzy membership functions are auto-

matically generated using an extended SVM. In an extended SVM, the parameter

values of the kernel function are adjusted using the gradient descent method. The

number of fuzzy rules can be reduced by the extended SVM.

3.1 Introduction

Recently, the neural fuzzy approach has become one of the most popular research

fields in system modeling describing the system’s nature and behaviors [1] [3] [69].

The principle purpose of a neuro-fuzzy system is to apply learning technique of

neural network to find and tune both the structure and the parameter of system

based on FIS.

Main design issues of neuro-fuzzy system from numeric data are how to appropri-

26
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ately determine the number of fuzzy rule and how to precisely decide the member-

ship function in antecedent parts and the value of parameter in consequent parts.

Neuro-fuzzy modeling consists of structure identification and parameter identifica-

tion. Structure identification methods determining the number of fuzzy rules have

been variously introduced by [16] [17] [18] [19]. Parameter identification methods

have generally used the gradient descent method.

Recently, the SVM has been popularly used for the system modeling and identi-

fication [70] [71] [72] [73] [74]. In particular, the SVM has been used in order to

find the proper number of rules for the given precision [28] [75]. A Support Vector

Neural Network (SVNN) using a radial basis function network was introduced [28].

In [75], a SVM was applied for simplifying FIS. However, because both papers used

the same Gaussian kernel parameters, the number of fuzzy rules was not really

minimized for the given precision.

To overcome this limitation, we propose a new FIS based on Takagi-Sugeno (TS)

fuzzy model using an extended SVM. We uses an extended SVM without any bias.

The number of new fuzzy rules can be reduced further by adjusting the parame-

ter values of membership functions using a gradient descent method during the

learning process. The proposed FIS can easily present a given system by nonlin-

ear mapping which projects input space into high dimensional feature space. The

structure of the proposed FIS is founded first by solving a constrained quadratic

programming problem for a given modeling error. After the structure is selected,

the parameter values in consequent part of TS fuzzy model are determined by the

least square estimation method.

3.2 Support Vector Machines (SVM)

The SVM is derived from statistical learning theory [21]. Support Vector Machines

(SVMs) are learning systems that use a hypothesis space of linear functions in a

high dimensional kernel induced feature space. It determines support vectors and

weights by minimizing an upper bound of generalization error [76] [77]. The output

of the SVM is the sum of weighted kernel function. Kernel function projects the

data into a high dimensional feature space to increase the computational power of
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the linear machine.

The SVM is generally divided into Support Vector Classification (SVC) [49] used

to describe classification and Support Vector Regression (SVR) [50] used to describe

regression. This section describes the SVR problem.

Consider the structure on the nonlinear function for approximating

f(x) = w · Φ(x), (3.1)

with Φ : Rl → F, w ∈ F , when Φ is nonlinear mapping, w is the associated weight

and F is a feature space.

Suppose we have given data

(x1, y1), ..., (xl, yl).

Nonlinear function for approximating the set of data is presented as follows:

f(x) =
l∑

i=1

(α∗i − αi)(Φ(xi) · Φ(x)),

=
l∑

i=1

(α∗i − αi)K(xi, x), (3.2)

where l is the number of data, x = [x1, x2, ..., xl] is input data, α∗i and αi are Lagrange

multipliers.

Let Φ(x) and w be the nonlinear mapping and the associated weight, respectively.

The kernel function K(xi, x) is defined as a linear dot product of nonlinear mapping,

K(xi, x) = Φ(xi) · Φ(x). (3.3)

The parameters α and α∗ of (3.2) are obtained by minimizing the following regu-

larized risk functional Reg[f ],

Reg[f ] =
1
2
‖w‖2 + C ·Remp[f ], (3.4)

where ‖w‖2 is a term which characterizes the model complexity, the second term is a

empirical risk, Remp[f ] =
∑l

i=1 Lε(y), and C is a constant determining the trade-off

and ε is the given precision.
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Fig. 3.1 The ε-insensitive band and loss for linear and nonlinear regression problem

Definition 3.2.1 [23] The ε-insensitive loss function Lε(y) is defined by

Lε(y) =
{

0 for |f(x)− y| < ε
|f(x)− y| − ε otherwise, (3.5)

where f is a real-valued function on a domain X, x ∈ X and y ∈ R.

Figure 3.1 shows the form of ε-insensitive losses for zero and nonzero ε as a func-

tion of y − f(x). The minimization of (3.4) is equal to the following constrained

optimization problem,

minimize τ(w, ξ∗, ξ) =
1
2
‖w‖2 + C

l∑

i=1

(ξ∗i + ξi), (3.6)

subject to





yi − w · Φ(x) ≤ ε + ξ∗i
−yi + w · Φ(x) ≤ ε + ξi

ξ∗i , ξi ≥ 0, i = 1, ..., l,
(3.7)

where ξ∗i and ξi are slack variables representing lower and upper constraints on the

outputs of the systems.

To solve the optimization problem with constraints of inequality type can be con-



3.2. SUPPORT VECTOR MACHINES (SVM) 30

verted to find the saddle point of the Lagrange functional

L(w, ξ∗, ξ, α∗, α, β∗, β) =
1
2
‖w‖2 + C

l∑

i=1

(ξ∗i + ξi)−
l∑

i=1

(β∗i ξ∗i + βiξi)

−
l∑

i=1

αi[yi − w · Φ(xi) + ε + ξi]

−
l∑

i=1

α∗i [w · Φ(xi)− yi + ε + ξ∗i ], (3.8)

where Lagrange multipliers α∗i ≥ 0, αi ≥ 0, β∗i ≥ 0, βi ≥ 0.

The minimum with respect to w, ξ∗, ξ of Lagrangian L implies the following condi-

tions

∂L

∂w
= 0 =⇒ w =

l∑

i=1

(α∗i − αi)Φ(xi),

∂L

∂ξ∗
= 0 =⇒ 0 ≤ α∗ ≤ C,

∂L

∂ξ
= 0 =⇒ 0 ≤ α ≤ C. (3.9)

The dual problem is given by

min
α∗,α

W (α∗, α) = min
α∗,α

1
2

l∑

i=0

l∑

j=0

(α∗i − αi)(α∗j − αj)K(xi, xj)

−
l∑

i=0

(α∗i − αi)yi +
l∑

i=0

(α∗i − αi)ε, (3.10)

with constraints

0 ≤ α, α∗ ≤ C, i = 1, ..., l.

In summary, approximate function from the set [65] is

f(x) =
l∑

i=0

(α∗i − αi)K(xi, x). (3.11)

The optimization problem, minα∗,α W (α∗, α), can be expressed in matrix notation

as,

min
x

1
2

xT Hx + cT x, (3.12)
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where

H =
[

XXT −XXT

−XXT XXT

]
, c =

[
ε + Y
ε− Y

]
, x =

[
α
α∗

]
, (3.13)

with constraints

αi, α∗i ≥ 0, i = 1, ..., l, (3.14)

and

X =




xi

...

xl




, Y =




yi

...

yl




. (3.15)

In the process of solving this optimization problem, the vector from the training set

that associate with nonzero Lagrange multipliers is called the support vector.

3.3 New Fuzzy Inference System Using an Extended SVM

This section describes the structure of the FIS using a SVM, the structure and

learning algorithm of the FIS using an extended SVM, and input space partition

method. In the proposed FIS, the number of fuzzy rules and the parameter values of

fuzzy membership functions are automatically generated using an extended SVM.

In particular, the number of fuzzy rules can be reduced by adjusting the parameter

values of the kernel function using the gradient descent method.

3.3.1 The structure of the FIS using a SVM

Let us suppose that we have given input and output data

(x1, y1), ..., (xn, yn),

where xi(i = 1, 2, ..., n) is input data and yi(i = 1, 2, ..., n) is output data.

The proposed TS fuzzy model with fuzzy if-then rules can be represented as fol-

lows:

Rule 1 : If x11 is M11 and ... and x1D is M1D, Then f1 = θ1

Rule 2 : If x21 is M21 and ... and x2D is M2D, Then f2 = θ2

· · · · · · · · ·
Rule n : If xn1 is Mn1 and ... and xnD is MnD, Then fn = θn,

(3.16)
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Fig. 3.2 The structure of the proposed FIS

where xij is input variable, fi is local output variable, Mij is fuzzy set and θi is

consequent parameter. It is a simple Takagi-Sugeno (TS) type used singleton in

consequent parts.

Now, we describe the structure of FIS using the SVM. It consists of four layers as

shown in Fig. 3.2. The four layers involved in the proposed FIS are presented as

follows:

Layer 1: Input space is nonlinearly mapped into feature space by a map Φ.

x = (xi1, ..., xiD) 7→ Φ(x) = (Φ(xi1), ...,Φ(xiD)).

Layer 2: Dot products are computed with the mapped input x and the support vector

(SV) being subset of input vector x. It corresponds to evaluating kernel func-

tions at locations K(xi, x). The modified Gaussian kernel function is used as
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follows:

K(xi, x) = exp
(
− (x− xi)2

2σ2
i

)
, (3.17)

xi is a SV and σi is called a kernel parameter. This kernel function is a Gaus-

sian membership function in fuzzy inference system.

Layers 1 and 2 are the stage of fuzzifier.

Layer 3: In the nonlinear function considered for approximating the set of data,

f(x) =
n∑

i=1

(α∗i − αi)K(xi, x). (3.18)

Weights (α∗i − αi) and support vectors (SVs) xi are found by the constrained

optimization for a given precision ε. The obtained SV becomes the center of

the Gaussian membership function.

This layer means a decision-making logic determining the number of fuzzy

rule by solving optimization problem from knowledge base being a minimum

regularized risk functional Reg[f ] in (3.4).

Layer 4: The defuzzification using center of gravity (COG) method is performed as fol-

lows:

COG :
∑n

i=1 wiθi∑n
i=1 wi

. (3.19)

In (3.18), the f(x) should be modified for the defuzzification of the COG.

Let

λ(xi, x)) =
n∑

i=1

K(xi, x), (3.20)

Ψ =




K(x1, x1) . . . K(xn, x1)
...

...
...

K(x1, xn) . . . K(xn, xn)


 , (3.21)

L =




λ(x1, x1) 0
. . .

0 λ(xn, xn)


 . (3.22)

Weight θ1, ..., θn can be expressed in terms of α and α∗, as

θ = (ΨT Ψ)−1ΨT LΨ(α∗ − α). (3.23)
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The modified function f(x) is obtained,

f(x) =
∑n

i=1 K(xi, x)θi∑n
i=1 K(xi, x)

=
n∑

i=1

βiθi. (3.24)

More simple structure for learning algorithm is shown in Fig. 3.3.

Once a structure is selected, the parameter values in consequent part of TS fuzzy

model are determined by the least square estimation (LSE) method or the recursive

least square estimation (RLSE) algorithm.

3.3.2 The structure of the FIS using an extended SVM

The Takagi-Sugeno (TS) fuzzy model which is suitable for highly nonlinear systems

has been one of the major topics in theoretical studies and practical applications of

fuzzy modeling and control. The basic idea of the TS fuzzy models is to transform

the input space into fuzzy regions and to approximate the system in every region by
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a local model. The overall fuzzy model consists of the combination of interconnected

systems with linear models. Then the output of the whole fuzzy model is calculated

as the weighted sum of the local models using the defuzzification scheme based on

the Center Of Gravity (COG) method.

The TS fuzzy model using an extended SVM consists of the following If-Then rules:

R1 : If x11 is M11 and ... and x1D is M1D,

Then f1 = a10 + a11x1 + · · ·+ a1DxD

R2 : If x21 is M21 and ... and x2D is M2D,

Then f2 = a20 + a21x1 + · · ·+ a2DxD

...
...

...

Rn : If xn1 is Mn1 and ... and xnD is MnD,

Then fn = an0 + an1x1 + · · ·+ anDxD. (3.25)

The structure of the FIS using an extended SVM based on TS fuzzy model is illus-

trated in Fig. 3.4.
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Fig. 3.5 The learning algorithm of the proposed FIS using an extended SVM

The proposed FIS is also divided into four Layers. The following function of this

FIS is similar to the previous FIS using a SVM.

Layer 1 ∼ Layer 3: The functions of these Layers are equal to the previous FIS using

a SVM.

Layer 4: For the overall output of the fuzzy model constructed, defuzzification using

center of gravity (COG) method is performed as follows:

f(x) =

n∑
i=1

K(xi, x) fi

n∑
i=1

K(xi, x)
, K(xi, x) = MIND

j=1Mij(xij),

=
n∑

i=1

βi (ai0 + ai1xi1 + ai2xi2 + · · ·+ aiDxiD),

where, βi =
K(xi, x)
n∑

i=1
K(xi, x)

.

(3.26)
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Table 3.1 Two passes in the learning algorithm for the proposed FIS
Forward Backward

SVM learning Gradient descent algorithmLSE

3.3.3 The learning algorithm of the FIS using an extended SVM

The learning algorithm of the FIS using an extended SVM is shown in Fig. 3.5. We

present a recursive support vector learning algorithm which adjusts Gaussian ker-

nel parameters and estimates the consequent parameters using the LSE or RLSE.

It can be achieved by the following iterative procedure.

Step 1: Initialize precision ε, trade-off constant C, and kernel parameter σi.

Step 2: Using the following SVM algorithm, find support vectors (SVs) x∗i that is the

center ci of Gaussian membership function.

min
x

1
2

xT Hx + cT x. (3.27)

Step 3: Using either the LSE or RLSE [10], estimate the parameter aij of linear equa-

tion fi in the consequent parts.

Step 4: Using a gradient descent algorithm [17], update the kernel parameter σi such

that error is minimized.

Step 5: Go to step 2 or stop

Table 3.1 shows two passes in the learning algorithm for the proposed FIS.

In step 3, because of estimating the parameter of linear equation βi in the conse-

quent parts, the LSE [10] or RLSE [10] starts from minimizing the squared error

measure defined by

E =
n∑

i=1

(yi − yd
i )2, (3.28)

where yd
i is the desired output corresponding to the i-the input xi = (xi1, xi1, ..., xiD)

and yi is the output of the constructed fuzzy model.
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The output of the constructed fuzzy model can be determined by

yi =

n∑
i=1

K(xi, x) fi

n∑
i=1

K(xi, x)
, K(xi, x) = MIND

j=1Mij(xij),

=
n∑

i=1

βi (ai0 + ai1xi1 + ai2xi2 + · · ·+ aiDxiD).

(3.29)

Let

Y =
[
yd
1 yd

2 · · · yd
n

]T
,

A =
[
a10 a11 · · · a1D · · · · · · an0 an1 · · · anD

]T
,

and

W =




β11 β11x11 · · · β11x1D · · · · · · βn1 βn1x11 · · · βn1x1D

β12 β12x21 · · · β12x2D · · · · · · βn2 βn2x21 · · · βn2x2D
...

... · · · ... · · · · · · ...
... · · · ...

β1n β1nxn1 · · · β1nxnD · · · · · · βnn βnnxn1 · · · βnnxnD


 .

(3.30)

If (W T W ) is nonsingular, the parameter vector A is calculated by

A = (W T W )−1W T Y. (3.31)

Also we can apply the RLSE algorithm having on-line learning ability. Let bk (k =

1, 2, ..., n) row vector of the matrix W . Then A is recursively calculated as follows:

Ak+1 = Ak + Sk+1 · bT
k+1 · (yd

k+1 − bk+1 ·Ak),

Sk+1 = Sk −
Sk · bT

k+1 · bk+1 · Sk

1 + bk+1 · Sk · bT
k+1

, k = 0, 1, · · · , n− 1,

A0 = 0,

S0 = γI,

(3.32)

where γ is a positive large number and I is the identity matrix of dimensions (n·D+

1)× (n ·D + 1). The consequent parameter values are determined by the recursive

least-squares estimates A = An of the algorithm.

In step 4, the kernel parameters σi is adjusted by minimizing given Ei,

Ei = (yi − yd
i )2, (3.33)
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Let e = yi − yd
i

=
n∑

i=1

βi (ai0 + ai1xi1 + ai2xi2 + · · ·+ aiDxiD)− yd
i , (3.34)

Gaussian kernel function,

K(xi, x) = exp
(
− (x− xi)2

2σ2
i

)
. (3.35)

According to the gradient descent method [17], learning rule for adjusting kernel

parameter σi in antecedent parts is presented as follows:

∆σi = −η∇σiEi, (3.36)

∇σiEi =
∂Ei

∂σi
= −2eβiK(xi, x)‖x− xi‖2σ−3

i . (3.37)

3.3.4 The input space partition of the FIS using an extended SVM

Now, we discuss the input space partitioning of proposed FIS using an extended

SVM. The structure of fuzzy modeling is closely related to the partitioning of input

space for fuzzy rule generation. Input space partition approach of the proposed FIS

is a clustering-based method.

Figure 3.6 shows input space partition method of two-dimensional input space.

Figure 3.6 (a) and (b) show the input space partitioning using the SVNN [28] with

same Gaussian variance and the proposed FIS with each different Gaussian vari-

ance, respectively. Because each cluster leads to hidden layer and fuzzy rule, five

hidden layers and four rules are generated in Fig. 3.6 (a) and (b), respectively. The

support vector (SV) as the center of Gaussian kernel function becomes the center

of Gaussian membership function. Figure 3.6 illustrates how the method using the

extended SVM can reduce the number of rules and membership function. The five

clusters which are generated using the SVNN with the same Gaussian variance in

Fig. 3.6 (a) can be merged into four rules using the extended SVM with a different

Gaussian variance σij in Fig. 3.6 (b).

The proposed FIS through the generalization strategy of the SVM estimates the

nonlinear system and determines fuzzy rules and parameters of membership func-

tions automatically.
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Fig. 3.6 The input space partitions of the SVNN and the proposed FIS
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3.4 Examples

In this section, simulation results of the proposed FIS for the modeling of three

nonlinear systems are described. We compare modeling results of the proposed FIS

with the results of three others modeling methods such as an ordinary fuzzy system,

general SVM and SVNN. The ordinary fuzzy system havs initial grid even partition

without learning algorithm. It’s center and variance are the mean and half a size of

each partition respectively. The SVM is used the method proposed by Vapnik [21].

The SVNN with the same Gaussian variance is employed [28]. In the proposed FIS,

the extended SVM is used as a learning algorithm. The Gaussian kernel function

is employed as a kernel function.

The modeling error is defined as Root Mean Square Error (RMSE):

E =

√∑N
k=1(yk − ŷk)2

N
, (3.38)

where N is the number of data, yk and ŷk are the system and the model output.

3.4.1 Example 1: modeling of 1-input nonlinear function

The example was taken from Z. UyKan et al. [78]. The nonlinear system is as

follows:

F1(x) = 0.5(sin(2πx/5) + sin(2πx/3)). (3.39)

From 0.1 interval point of the range [0, 10] within the input space of the above func-

tion, 100 training data pairs were obtained firstly. The proposed FIS using an ex-

tended SVM for modeling of F1(x) extracts the 7 SVs, so that it has 7 fuzzy rules as

follows:

Rule i : If x is Mi, Then fi = ai0 + ai1x, i = 1, ..., 7, (3.40)

where x and fi are the input and output values, respectively.

The structure of the proposed FIS is shown in Fig. 3.7. The parameter values

of antecedent and consequent parts are listed in Table 3.2. The cij and θij are the

center and variance of Gaussian membership function, respectively. The (ai0, ai1)

are the consequent parameters of the TS fuzzy model.
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Table 3.2 The parameter values of the proposed FIS for modeling of F1(x)

Rule Antecedent part Consequent part
cij θij (ai0, ai1)

1 0 1.0024 -34.3285, -9.7038
2 0.9091 1.0589 48.1501, -23.7999
3 2.3232 1.0371 12.7341, -2.8346
4 5.1515 1.0354 9.4054, -2.4138
5 6.7677 1.0868 21.5803, -2.7576
6 8.2828 1.1129 23.3162, -3.2517
7 9.7980 1.0233 28.7624, -2.5254
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Fig. 3.8 The output results of the proposed FIS for modeling of F1(x)
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Fig. 3.9 Performance results using four algorithms for F1 modeling

The output results of the proposed FIS and 7 support vectors (SVs) are shown in

Fig. 3.8 (a). The membership functions of the proposed FIS are also shown in Fig.

3.8 (b).

The method in the literature applied to the same nonlinear function. In the initial

condition of simulation, Given precision ε is 0.3 and the constant of trade-off is 300.

In the SVM and SVNN, the fixed variance is 1. Figure 3.9 shows performance

results for F1 modeling using four algorithms such as the SVM, SVNN, ordinary

FIS and proposed FIS. The results listed on the Table 3.3. The modeling error is

the RMSE. Compared with the number of rules and modeling error, the proposed
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method using the extended SVM shows the smaller number of rules and modeling

error than the others methods shown in Table 3.3.

Table 3.3: Compared results of modeling nonlinear function F1(x)

Type Rules(or SVs) RMSE
SVM [21] 8 0.2098

SVNN [28] 8 0.2192
Ordinary FIS 7 0.0257
Proposed FIS 7 0.0062

3.4.2 Example 2: modeling of 2-input nonlinear function

The training data in this examples

F2(x1, x2) = (1 + x−2
1 + x−1.5

2 )2, (3.41)

which was used by Ryu et al. [12]. From input ranges [1, 5] × [1, 5] within the input

space of (3.41), 50 training data pairs were obtained firstly. The proposed FIS using

an extended SVM for modeling of F2(x1, x2) extracts the 5 SVs, so that it has 5 fuzzy

rules as follows:

Rule i : If x1 is Mi1, x2 is Mi2 Then fi = ai0 + ai1x1 + ai2x2, i = 1, ..., 5. (3.42)

The structure of the proposed FIS is shown in Fig. 3.10. The parameter values of

antecedent and consequent parts are listed in Table 3.4. The cij and θij are the cen-

ter and variance of Gaussian membership function, respectively. The (ai0, ai1, ai2)

are the consequent parameters of the TS fuzzy model.

In the initial condition of simulation, given precision ε is 0.7 and the constant of

trade-off is 300. In the SVM and SVNN, the fixed variance is 3.2. The membership

functions of the proposed FIS for modeling of F2(x1, x2) are shown in Fig. 3.11.

Figure 3.12 shows the output results of the proposed FIS with 5 rules for mod-

eling of F2(x1, x2). To investigate the performance of the proposed FIS, the method

in the literature also applied to the same nonlinear function. The comparison of

our FIS with others methods is presented in Table 3.5. Compared with the number

of rules and modeling error, the proposed method using the extended SVM shows

the smaller number of rules and modeling error than the others methods shown in

Table 3.5.
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Fig. 3.10 The structure of the FIS for modeling of F2(x1, x2)

Table 3.4 The parameter values of the proposed FIS for modeling of F2(x1, x2)

Rule Antecedent part Consequent part
cij θij (ai0, ai1, ai2)

1 (1.0500, 2.5500) 3.2066 597, -218, -95
2 (3.3800, 3.7000) 3.2014 -8355, 37, 507
3 (1.7800, 1.1100) 3.2087 -71756, -3509, -885
4 (3.1100, 1.0600) 3.2728 81762, -3396, 1871
5 (2.8100, 1.3500) 3.1100 17651, -2723, 200
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Fig. 3.11 The membership functions of the proposed FIS for modeling of F2(x1, x2)
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Fig. 3.12 The output results of the proposed FIS with 5 rules for modeling of
F2(x1, x2)

Table 3.5: The compared results of modeling of nonlinear function F2(x1, x2)

Type Rules(or SVs) RMSE
M. Sugeno [16] 6 0.281

A.F.G.Skarmeta [79] 5 0.266
S. Kim [80] 7 0.293
SVNN [28] 6 0.324

Proposed FIS 5 0.171
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Fig. 3.13 The structure of the proposed FIS for modeling of F3(x1, x2)

3.4.3 Example 3: modeling of 2-input nonlinear function

The third examples was taken from C. C. Wong’s works [81]. The nonlinear function

is as follows:

F3(x1, x2) = sin(πx1) sin(πx2), (3.43)

from the distributed grid points of input range [−1, 1]× [0, 1] with input space of the

nonlinear function f3(x1, x2), 21× 11 = 231 training data pairs were obtained. The

proposed FIS using an extended SVM for modeling of F3(x1, x2) extracts the 6 SVs,

so that it has 6 fuzzy rules:

Rule i : If x1 is Mi1, x2 is Mi2 Then fi = ai0 + ai1x1 + ai2x2, i = 1, ..., 6. (3.44)

The structure of the proposed FIS is shown in Fig. 3.13. The original nonlinear

function with 6 SVs is shown in Fig. 3.14. The parameter values of antecedent

and consequent parts are listed in Table 3.6. The cij and θij are the center and
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Fig. 3.14 Nonlinear function F3(x1, x2) with 6 SVs

variance of Gaussian membership function, respectively. The (ai0, ai1, ai12) are the

consequent parameters of the TS fuzzy model.

The output results of the proposed FIS and 6 support vectors (SVs) for modeling

of F3(x1, x2) are shown in Fig. 3.15. The membership functions of the proposed FIS

are also shown in Fig. 3.15.

The method in the literature applied to the same nonlinear function. In the initial

condition of simulation, Given precision ε is 0.3 and the constant of trade-off is 300.

Figure 3.17 shows performance results for modeling of F3(x1, x2) using four algo-

rithms such as the SVM, SVNN, ordinary FIS and proposed FIS. The results listed

on the Table 3.7. The modeling error is the RMSE. Compared with the number

of rules and modeling error, the proposed method using the extended SVM shows

the smaller number of rules and modeling error than the others methods shown in

Table 3.7.
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Table 3.6 The parameter values of the FIS for modeling of F3(x1, x2)

Rule Antecedent part Consequent part
cij θij (ai0, ai1, ai12)

1 (-0.6, 0.5) 0.4346 0.7344, 0.3549, -0.0004
2 (-0.4, 0.5) 0.2056 -1.0968, 2.5749, -0.0001
3 ( 0.4, 0.5) 0.2751 1.0895, 5.3986, -0.0488
4 ( 0.5, 0.4) 0.2062 -2.9958, 2.9944, 2.9426
5 ( 0.5, 0.6) 0.2056 0.1471, 3.0127, -3.1304
6 ( 0.6, 0.5) 0.1954 2.2016, -4.0753, -0.0395
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Fig. 3.15 The output results of the proposed FIS with 6 rules for modeling of
F3(x1, x2)
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Fig. 3.16 The membership functions of the proposed FIS for modeling of F3(x1, x2)
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Fig. 3.17 Performance results using four algorithms for F3(x1, x2) modeling

Table 3.7: The compared results of modeling of nonlinear function F3(x1, x2)

Type Rules(or SVs) RMSE
SVM [21] 8 0.1770

SVNN [28] 8 0.2556
Ordinary FIS 6 0.2423
Proposed FIS 6 0.0676
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3.5 Discussion and Conclusions

In this chapter, the FIS based on the Takagi-Sugeno fuzzy model for modeling of

nonlinear systems was presented using the extended SVM.

Our main concern is to determine the best structure of the TS fuzzy model from

the given input-output data of the particular system. Conventional neuro-fuzzy

modeling methods from input-output data are based on sequential design meth-

ods of structure identification and parameter identification or clustering methods

with either the number of clusters or candidates for cluster centers in advance. By

contrast, the proposed FIS automatically decides not only the number of simplified

fuzzy inference system rules but also the parameter values. The FIS can linearly

analyze a given complex data by performing nonlinear mapping which projects in-

put space into high dimensional feature space and has good generalization by con-

sidering both model complexity and approximation error. The structure of the pro-

posed FIS is obtained by minimizing a constrained quadratic programming problem

for a given error bound and the number of FIS rules can be reduced by adjusting

the parameter values of membership function using the gradient descent method.

After the structure is selected, the parameter values in the consequent part of TS

fuzzy model are determined by the least square estimation method or the recursive

least square estimation algorithm.

We applied the proposed method to several nonlinear functions. The proposed

FIS showed the better performance to model nonlinear systems than other methods.

However, future work should include the method of choosing the proper error bound

from given data as well as the choice problem of the best kernel function and the

speed problem consumed for solving the quadratic programming problem.



CHAPTER4
Fuzzy Inference System Using an Extended FVS

This chapter presents a new approach to fuzzy inference system (FIS) for model-

ing nonlinear systems based on measured input and output data. The structure

of fuzzy model is obtained using an extended Feature Vector Selection (FVS) algo-

rithm based on the kernel method. In the suggested FIS, the number of fuzzy rules

and parameter values of membership functions are automatically decided using

the extended FVS. The extended FVS method individually performs linear trans-

formation and kernel mapping. Linear transformation projects input space into

linearly transformed input space. Kernel mapping projects linearly transformed

input space into high dimensional feature space. Especially, the process of linear

transformation is needed in order to solve difficulty determining the type of kernel

function which presents the nonlinear mapping corresponding to nonlinear system.

The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno

(TS) fuzzy model whose input variables are weighted linear combinations of input

variables. In addition, the number of fuzzy rules can be reduced by adjusting linear

transformation matrix and parameter values of kernel functions using the gradient

descent method. Once a structure is selected, coefficients in consequent part are

determined by the least square estimation method.

55
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4.1 Introduction

The Fuzzy inference system (FIS) has been shown powerful capability for the mod-

eling of nonlinear systems [10] [16]. FIS can be directly obtained either from human

experts using knowledge experiments or learning machine methods using numeric

data. For complex and uncertain systems, FIS based only on human experts may

not lead to sufficient accuracy. Because of this reason, neuro-fuzzy modeling which

acquires knowledge from a set of input-output data has been actively investigated

[1]. The important concerns of neuro-fuzzy modeling for the real system are how to

determine the proper number of fuzzy rules and parameter values of membership

functions. Many methods have been developed as illustrated in Chapter 1.

Recently, kernel-based methods have been popularly developed in classification

and regression. Kernel techniques offer an alternative solution by mapping the data

into high dimensional feature space to increase the computational power. Particu-

larly, Support Vector Machine (SVM)[21] has been used in order to automatically

find the number of network nodes or fuzzy rules based on given error bound [7] [28]

[75] . The Support Vector Neural Network (SVNN) is proposed to select the best

structure of radial based function network for the given precision [28]. The SVM

is suggested to improve the simplified fuzzy inference system for the fuzzy neural

network [75]. The Support Vector Fuzzy Inference System (SVFIS) is proposed to

find the reduced number of rules using gradient descent method updating kernel

parameters [7]. However, because the general support vector learning methodology

is used in above all, they have computational complexity for solving the quadratic

problem in optimization process and problem for determining the type of kernel

function corresponding with nonlinear system.

In this chapter, we propose a new approach to fuzzy modeling using an extended

Feature Vector Selection (FVS). The linear transformation of input variables is used

to solve problem determining the exact type of the kernel function. Therefore in-

put variables of the proposed FIS become input variables of the Takagi-Sugeno

(TS) fuzzy model which are the weighted linear combinations of the input vari-

ables. The structure of fuzzy model is obtained using FVS algorithm based on the

kernel method. Unlikely the SVM having computational complexity, the FVS per-
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forms a simple computation optimizing a given criterion into the feature space. The

FVS algorithm is to select a basis of the data subspace in feature space. A basis

of the data subspace is called a feature vector (FV). Ultimately, this feature vec-

tor becomes the center of the membership function. Kernel functions mapping the

linearly transformed data into feature space become membership functions. In ad-

dition, the number of fuzzy rules can be reduced under the condition of optimizing a

given criterion by adjusting the linear transformation matrix and parameter values

of kernel functions using the gradient descent method. Once a structure is selected,

coefficients in consequent part of the modified TS fuzzy model are determined by

the least square estimation method. So we can automatically determine the fuzzy

model using the iterative procedure which involve linear transformation, kernel

mapping and FVS method under optimizing a given criterion.

4.2 Feature Vector Selection (FVS)

The FVS [26] is based on kernel method. The FVS technique is to select feature

vector being a basis of data subspace and capturing the structure of the entire data

into feature space F.

The FVS for estimating the mapping φ̂i of any vector xi is as follows:

φ̂i = ΦS · ai, (4.1)

where the mapping of each vector xi is noted φ(xi) = φi for 1 ≤ i ≤ M , the

selected vectors xsj into feature space F is noted φ(xsj ) = φSj for 1 ≤ j ≤ L,

ΦS = {φSi , ..., φSL
} is the matrix of the selected vectors S = {xs1 , ..., xsL} into F

and ai = [a1
i , ..., a

L
i ]T is the associated weight vector.

The feature vector (FV) is obtained from process finding the weights vector ai.

The weights vector is given by minimizing the following normalized Euclidean dis-

tance in feature space.

δi =
‖φi − φ̂i‖2

‖φi‖2
. (4.2)

The minimum of (4.2) for a given S can be expressed over all vector as follows:

min
S

∑

xi∈X

(
1− Kt

siK
−1
ss Ksi

Kii

)
, (4.3)
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where Kss =< ΦS · ΦS > is a kernel matrix which is the dot product of the selected

vectors, Ksi =< ΦS · φi > is a kernel matrix which is the dot product of between xi

and the selected vectors and Kii =< φi · φi > is a kernel matrix which is the dot

product of xi.

The fitness function is defined as follows:

JS =
1
M

∑

xi∈X

(Kt
siK

−1
ss Ksi

Kii

)
. (4.4)

Thus (4.3) can be rewritten by

max
S

JS , (4.5)

where maxS JS is a value between 0 and 1 for xi ∈ S.

The FVS algorithm is an iterative process which performs sequential forward

selection until the fitness reaches a given value. In this iterative process, when the

calculated fitness reaches the max fitness, the vector from training data is called

feature vector (FV).

Once the FV is selected, the output of FVS is calculated using a kernel function

approximation algorithm. Figure 4.1 shows the architecture of kernel function ap-

proximation procedure.

Let us suppose that we have given input and output data

(x1, y1), (x2, y2), ..., (xM , yM ). (4.6)

The transformation of input data xi is given by the inner product projection as

follows:

zi = ΦS · φi,

= Ksi, (4.7)

where kernel matrix Ksi is the dot product of nonlinear mapping between input

data xi and the selected FV.

The output of kernel function approximation is obtained using the Moore-Penrose

pseudo-inverse method as follows:

ŷi = zT
i A + βT , (4.8)
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Fig. 4.1 The architecture of kernel function approximation procedure

where A = (ZT Z)−1ZT Y , zi = Ksi, Y = yi and β is a vector that can be included in

the estimation of A by adding a constant component in each vector zi.

The brief summary of the iterative procedure in the FVS is described as follows:

1. Select the type of kernel function and initialize kernel parameter σ2.

2. Compute fitness.

max
S

JS = max
S

1
M

∑

xi∈X

(Kt
siK

−1
ss Ksi

Kii

)
. (4.9)

3. Go to step 2 until the fitness or the number of feature vector are satisfied with

given conditions.

4. Find FVs and complete the structure of the FVS.

The main motivation of approach to FVS is that the structure of the FVS is auto-

matically found based on optimizing the normalized Euclidean distance in feature

space. The found structure of the FVS has close relation to that of fuzzy rule-base.
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4.3 New Fuzzy Inference System Using an Extended FVS

This section describes the structure and learning algorithm of a new fuzzy inference

system using an extended FVS.

4.3.1 The structure of the FIS using an extended FVS

The kernel method using an extend FVS is that linear transformation is added to

kernel mapping in order to solve the problem selecting the type of kernel function

corresponding to nonlinear system. Thus, input variables of the proposed FIS be-

come input variables of the TS fuzzy model which are weighted linear combinations

of original input variables.

Suppose we have given input and output data

(x1, y1), (x2, y2), ..., (xl, yl) (4.10)

where xi=[xi
1, x

i
2, ..., x

i
D]T (i = 1, 2, ..., l) is original input variable and Y =[y1, ..., yl]

T

is output data. The proposed TS fuzzy model with fuzzy If-Then rules can be repre-

sented as follows:

R1 : If x̄1 is K(x̄1, x̄
∗
11) and ... x̄D is K(x̄D, x̄∗1D),

Then f1 = a10 + a11x̄1 + ... + a1Dx̄D

R2 : If x̄1 is K(x̄1, x̄
∗
21) and ... x̄D is K(x̄D, x̄∗2D),

Then f2 = a20 + a21x̄1 + ... + a2Dx̄D

...
...

...

Rn : If x̄1 is K(x̄1, x̄
∗
n1) and ... x̄D is K(x̄D, x̄∗nD),

Then fn = an0 + an1x̄1 + ... + anDx̄D, (4.11)

where n is the number of fuzzy rules, D is the dimension of input variables, x̄j(j =

1, 2, ..., D) is a linearly transformed input variable, fi is a local output variable,

K(x̄j , x̄
∗
ij) (i = 1, 2, ..., n, j = 1, 2, ..., D) is a fuzzy set and aij(i = 1, 2, ..., n, j =

0, 1, ..., D) is a consequent parameter.
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Fig. 4.2 The structure of the proposed FIS using an extended FVS

Linearly transformed input variables are defined as follows:



x̄i
1

x̄i
2
...

x̄i
D


 =




t11 t12 . . . t1D

t21 t22 . . . t2D
...

... . . . ...
tD1 tD2 . . . tDD







xi
1

xi
2
...

xi
D


 (4.12)

where xi=[x̄i
1, x̄

i
2, ..., x̄

i
D]T (i=1, 2, ..., l) is a linearly transformed input variable, and

Ti=[ti1, ti2, ..., tiD](i = 1, 2, ..., D) is the ith transformed direction unit vector of the

original input space. Now, we describe the structure of FIS using an extended kernel

method. It consists of six layers as shown in Fig. 4.2.

The four layers involved in the proposed FIS are as follows:

Layer 1: Input space is projected into a linearly transformed input space by a lin-

early transformation matrix.

xi = Txi, i = 1, 2, ..., l, (4.13)

where T=[T1, T2, ..., TD]T is a linear transformation matrix.
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Layer 2: Linearly transformed input space is nonlinearly mapped into feature space

by a map Φ.

xi = (x̄i
1, ..., x̄

i
D) 7→

Φ(xi) = (Φ1(xi), ...,ΦD(xi)), i = 1, 2, ..., l. (4.14)

Layer 3: Feature Vector (FV) is determined from a FVS algorithm a using kernel

method. Kernel method is a dot product which is computed with the nonlinear

mapped input Φ(x) = (Φ(x1), ...,Φ(xl)) and feature vector Φ(x∗i ) =(Φ1(x∗i ), ...,
ΦD(x∗i ))(i = 1, ..., n), where x∗i = [x̄∗i1, x̄

∗
i1, ..., x̄

∗
iD]T is the subset of the input x.

Dot product Φ(x) · Φ(x∗i ) corresponds to evaluating kernel function K(x, x∗i ).
The Gaussian kernel function with each variance σi is used as follows:

K(x, x∗i ) = exp
(
− (x− x∗i )2

2σ2
i

)
, i = 1, 2, ..., n (4.15)

where x∗i is a FV, σi is called a kernel parameter and n is the number of FVs.

This kernel function becomes a Gaussian membership function in the pro-

posed FIS. x∗i and σi are the center and the variance of the i-th Gaussian

membership function, respectively. FVS algorithm is a fuzzy inference engine

determining the number of fuzzy rules.

The Layer 1 to 3 are related to the antecedent part of the FIS.

Layer 4: The fuzzy intersection of Gaussian kernel functions is calculated. The

following algebraic product operator as T-norm operator for each Layer4 node

is used,

K(x, x∗i ) =
D∏

j

K(x̄j , x̄
∗
ij), (4.16)

where, x = [x̄1, x̄2, ..., x̄D] is the i-th input variable vector, x∗i = [x̄∗i1, x̄
∗
i2, ..., x̄

∗
iD]

is the FV of the i-th input variable.

The normalized weight βi for each fuzzy rule (node) is computed as follows:

βi =
K(x, x∗i )∑n
j=1 K(x, x∗j )

, (4.17)

where

K(x, x∗i ) ≥ 0,
n∑

j=1

K(x, x∗j ) > 0, i = 1, ..., n. (4.18)
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Layer 5: The normalized weight βi of each node is multiplied by i-th local output

variable fi. Each node output βifi as shown in Fig. 4.2 is described as follows:

βifi =
K(x, x∗i )(ai0 + ai1x̄1 + · · ·+ aiDx̄D)∑n

j=1 K(x, x∗j )
, (4.19)

where, fi = ai0 +ai1x̄1 + · · ·+aiDx̄D is the i-th local output variable of TS fuzzy

model.

Layer 6: For the overall output of the fuzzy model constructed, defuzzification us-

ing the Center Of Gravity (COG) method is performed. Each node corresponds

to one output variable f(x),

f(x) =
n∑

i=1

βifi,

=
∑n

i=1 K(x, x∗i )(ai0 + ai1x̄1 + · · ·+ aiDx̄D)∑n
j=1 K(x, x∗j )

. (4.20)

The Layer 4, 5 and 6 connect with the consequent part of the proposed FIS.

4.3.2 The learning algorithm of the FIS using an extended FVS

The learning algorithm of the FIS using an extended FVS is shown in Fig. 4.3. It

can be achieved by the following iterative procedure.

Step 1: Assign the desired fitness and initialize the linear transformation matrix

T and the kernel parameter σi.

Step 2: Perform linear transformation in (4.13) in order to project input space into

linearly transformed input space.

Step 3: Using the following FVS algorithm based on kernel mapping, find FVs x∗i
that are the centers ci of Gaussian membership functions.

max
S

JS = max
S

1
M

∑

xi∈F

(Kt
siK

−1
ss Ksi

Kii

)
(4.21)

Step 4: Using the following Least Square Estimation (LSE) method [10], estimate

the parameter aij of the linear equation fi.



4.3. NEW FUZZY INFERENCE SYSTEM USING AN EXTENDED FVS 64

Kernel-based Method 
Fuzzy Inference System 

 

Linear 
Transform 

Kernel 
Mapping 

COG 

GDM 

LSE 

Fuzzifier 

FVS 

Fuzzy Inference Engine 

●  ●  

●  

Input 

System
output 

y

+ 
- T∆  

σ∆  

)(xf  

x
 

Model 
output  

Defuzzifier 

Fig. 4.3 The learning algorithm of the proposed FIS

Let

A =
[
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(4.22)

where βj
i = K(xj ,x∗i )∑n

k=1 K(x,x∗k)
.

Thus fuzzy model output is f(x) = WA. If (W T W ) is nonsingular, the param-

eter vector A is calculated by

A = (W T W )−1W T Y. (4.23)

Step 5: Using a Gradient Descent Method (GDM) [17], update the kernel parame-

ter σi such that error is minimized. From the definition of the GDM,

∆σi = −ησ∇σiE,

= −2ησσ−3
i

l∑

j=1

ejβ
j
i (fi − yj)‖xj − x∗i ‖2, (4.24)
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where ησ is the learning rate of σi, ej = f(xj)− yj and E =
∑l

j=1 e2
j .

Step 6: Also using the following GDM, update the linear transformation matrix T

and go to step 2 until error and FVs are satisfied with given conditions.

∆T = −ηT∇T E,

= −2ηT

l∑

j=1

ejxj

n∑

i=1

βj
i

[
Ai + ‖xj − x∗i ‖σ−2

i (yj − fi)
]
, (4.25)

where ηT is the learning rate of T and Ai = [ai1, ..., aiD]T .

4.3.3 The input space partition of the FIS using an extended FVS

In this section, the input space partitioning technique of the FIS using an extended

FVS is presented. The input space partition approach of the proposed FIS is cluster-

based fuzzy rule generation method. The extended FVS consists of the linear trans-

formation part of input variables and the kernel mapping part. The linear transfor-

mation of input variables is proposed to solve problem selecting the best shape of

the Gaussian kernel function which presents the nonlinear mapping.

Now, we introduce the linear transformation of input variables and input space

partitioning technique of the proposed FIS.

Linear transformation of input variables

Consider the following two-dimensional linear transformation,

x = Tx, (4.26)[
x̄1

x̄2

]
=

[
t11 t12

t21 t22

] [
x1

x2

]
, (4.27)

where x1 and x2 are original input variables, x̄1 and x̄2 are transformed input vari-

ables and t11, t12, t21 and t22 are linear transformation parameters in linear matrix

T.

Figure 4.4 shows the linear transformation of two-dimensional input variables.

In Fig. 4.4 (a), any input variables are illustrated. In Fig. 4.4 (b), the transformed

input variables are described. From Fig. 4.4 (a) to Fig. 4.4 (b), linear transformation

matrix is presented as follows:

T =
[

1.0417 −0.2083
−0.2083 1.0417

]
. (4.28)
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In Fig. 4.4 (a), the ellipsoids of four groups are illustrated. Figure 4.4 (b) shows the

results that the ellipsoids of four groups are transformed to circles of four groups.

This result shows that appropriate linear transformation can help the effective in-

put space partition of the extended FVS with Gaussian kernel functions.

Input space partition using an extended FVS

Ordinary FVS with Gaussian kernel function has the same variance of Gaussian

functions. On the contrary, the proposed extended FVS has the linear transformed

input variables and the different variances of Gaussian kernel functions.

By the above linear transformation of the input variables with appropriate trans-

formation matrix, input data can be relevantly represented. Moreover, the flexible

variances of Gaussian kernel functions can help effective input space partitioning.

These properties imply that the appropriate linear transformation and the flexible

variances of Gaussian kernel functions can reduce the number of fuzzy rules and

modeling error.

Figure 4.5 shows the input space partitioning methods of two-dimensional input

space using the ordinary FVS and the extended FVS. Figure 4.5 (a) describes the

input space partitioning of FVS with the same variances of Gaussian functions.

Original input space is partitioned by 6 subspaces using the FVS with same vari-

ances. Figure 4.5 (b) illustrates the input space partitioning of the extended FVS

with linear transformation and the different variances of Gaussian functions. Lin-

ear transformed input space is partitioned by 4 subspaces using the extended FVS.

In Fig. 4.5 (b), minimum and maximum variances of Gaussian kernel functions are

0.5 and 1. In Fig. 4.5 (a), the same variance of Gaussian kernel functions is 0.75 as

the mean of variance in Fig. 4.5 (b).

From the results of input space partition, Figures 4.5 (a) and (b) generate the

six and four fuzzy rules, respectively. Figure 4.5 (b) with four rules shows that

the number of fuzzy rules can be reduced as determining the appropriate linear

transformation matrix and Gaussian variances using the GDM.
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Fig. 4.4 The linear transformation of 2-D input variables
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Fig. 4.6 The structure of the FIS for the modeling of F1(x1, x2)

4.4 Examples

In this section, we show two simulation results of the proposed FIS for the modeling

of typical nonlinear systems.

4.4.1 Example 1 : modeling of 2-input nonlinear function 1

The first example was taken from Wong’s works [81]. The nonlinear function is

presented as follows:

F1(x1, x2) = sin(πx1) sin(πx2). (4.29)

From the distributed gird points of input range [−1, 1] × [0, 1] within input space of

nonlinear function F1(x1, x2), training data pairs of the 21×11 = 231 were obtained.

The proposed FIS generates the 6 FVs, so that it has 6 fuzzy rules as follows,

Ri : If x̄1 is K(x̄1, x̄
∗
i1) and x̄2 is K(x̄2, x̄

∗
i2),

Thenfi = ai0 + ai1x̄1 + ai2x̄2, i = 1, ..., 6. (4.30)
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Table 4.1 The parameter values of the FIS for modeling of F1(x1, x2)

Rule Antecedent part Consequent part
ci σi ( ai0, ai1, ai2 )

1 (-0.1012, 0.6037) 0.7642 -61, 282, 6
2 ( 0.9884, 0.0011) 0.9283 1392, -398, -104
3 (-0.9884,-0.0011) 0.8723 -417, -84, 114
4 ( 0.9846, 1.0074) 0.7399 -73, 71, 15
5 (-0.9923, 1.0052) 0.6658 88, 71, -18
6 ( 0.0988, 0.0001) 0.9531 -525, -1059, 40

The structure of the FIS with 6 rules is shown in Fig. 4.6. For given the fitness

of maxS JS = 0.92 and the initial condition of σi = 0.75, the linear transformation

matrix T , the center ci and the variance σi of the Gaussian membership function

in antecedent part and coefficients aij in consequent part were obtained through

learning procedure. The linear transformation matrix was computed as follows:

T =
[

0.9997 −0.0001
0 1.0002

]
. (4.31)

The parameter values of antecedent and consequent parts are listed in Table 4.1.

Figure 4.7 shows the membership functions of proposed FIS with 6 rules for mod-

eling of F1(x1, x2). Figure 4.8 shows the modeling result of F1(x1, x2) using an ex-

tended FVS.

To analyze the performance of the proposed FIS, the modeling error is defined by

as following Root Mean Square Error (RMSE)

E =

√∑N
k=1(yk − f(xk))2

N
, (4.32)

where N is the number of data, yk and f(xk) are the system and the model output,

respectively.

The method in the literature applied to the same function F1(x1, x2), and the

results are listed on the Table 4.2. Compared with the number of rules and modeling

error of others, the proposed method gives the smallest modeling error .
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Fig. 4.7 The membership functions of the proposed FIS for modeling of F1(x1, x2)
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Table 4.2 The compared results of nonlinear function F1(x1, x2)
Type Rules( or FVs) RMSE

Chan et al. [28] 8 0.2556
Baudat et al. [26] 6 0.3339
Kim et al. [7] 6 0.0676
Proposed FIS 6 0.0228
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Fig. 4.9 The structure of the FIS for the modeling of F2(x1, x2)

4.4.2 Example 2 : modeling of 2-input nonlinear function 2

Consider the nonlinear function [16]

F2(x1, x2) = (1 + x−2
1 + x−1.5

2 )2. (4.33)

From input ranges [1, 5] × [1, 5] of (4.33), 50 training data pairs were obtained.

The proposed FIS extracts the 5 FVs, so that it has 5 fuzzy rules as follows:

Ri : If x̄1 is K(x̄1, x̄
∗
i1) and x̄2 is K(x̄2, x̄

∗
i2),

Thenfi = ai0 + ai1x̄1 + ai2x̄2, i = 1, ..., 5. (4.34)

The structure of the FIS is shown in Fig. 4.9.

For given the fitness of maxS JS = 0.992 and an initial condition of σi = 3.2, from

learning algorithm, the T , ci and σi in antecedent part and aij in consequent part

were obtained. The linear transformation matrix was calculated as follows:

T =
[

0.9998 0.0001
0.0001 1.0002

]
. (4.35)
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The parameter values of antecedent and consequent parts are listed in Table 4.3.

Figure 4.10 shows the modeling result of F2(x1, x2) using the proposed FIS.

The method in the literature applied to the same function F2(x1, x2), and the

results are listed on the Table 4.4. It shows that the proposed method gives the

smallest modeling error with the smaller number of rules than others.

Table 4.3 The parameter values of the FIS for modeling of F2(x1, x2)

Rule Antecedent part Consequent part
ci σi ( ai0, ai1, ai2 )

1 (2.4151, 2.4151) 3.3854 270946, -18283, -10464
2 (4.7757, 5.0076) 3.1297 9966, -55, -373
3 (1.2561, 4.5498) 3.0863 -8620, 623, 484
4 (4.3525, 1.5288) 3.1524 -1059, 1072, 1133
5 (1.2275, 1.5110) 3.3572 -195313, -7695, -5205
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Table 4.4 The compared results of nonlinear function F2(x1, x2)
Type Rules( or FVs) RMSE

Sugeno and Yasukawa [16] 6 0.281
Gomez-Skarmeta et al. [79] 5 0.266
Chan et al. [28] 6 0.324
Baudat et al. [26] 6 0.333
Kim et al. [7] 5 0.171
Proposed FIS 5 0.164

4.5 Discussion and Conclusions

In this chapter, we have presented a new approach to fuzzy modeling using an ex-

tended FVS. Our main concern is to determine the best structure of the TS fuzzy

model for modeling nonlinear systems with measured input and output data. The

number of rules and the parameter values of membership functions in the proposed

FIS can be decided using an extended FVS based on kernel method. The kernel

method involves the linear transform of input variables and kernel mapping. The

linear transformation of input variables was proposed to solve problem selecting

the best shape of the Gaussian kernel function corresponding to the nonlinear map-

ping. The linear transformation matrix and parameter values of kernel functions

were adjusted using the gradient descent method. The coefficients of the TS fuzzy

model in consequent part were determined by the least square estimation method.

Examples showed the effectiveness of the proposed FIS for the modeling of nonlin-

ear systems.



CHAPTER5
Fuzzy Inference System Using an Extended RVM

This chapter presents a new fuzzy inference system for modeling of nonlinear dy-

namic systems based on input and output data with measurement noise. The pro-

posed fuzzy system has a number of fuzzy rules and parameter values of mem-

bership functions which are automatically generated using the extended relevance

vector machine (RVM). The RVM has a probabilistic Bayesian learning framework

and has good generalization capability. The RVM consists of the sum of product of

weight and kernel function which projects input space into high dimensional feature

space. The structure of proposed fuzzy system is same as that of the Takagi-Sugeno

fuzzy model. However, in the proposed method, the number of fuzzy rules can be re-

duced under the process of optimizing a marginal likelihood by adjusting parameter

values of kernel functions using the gradient ascent method. After a fuzzy system

is determined, coefficients in consequent part are found by the least square method.

5.1 Introduction

The Fuzzy Inference System (FIS) is very effective for modeling of nonlinear sys-

tems [10] [16]. However, the FIS based on only human expertise may not lead to

sufficient accuracy for complex and uncertain systems. Therefore, neuro-fuzzy mod-

76
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eling which acquires knowledge from a set of input-output data has been actively

investigated [1] [4] [5]. If training data set for modeling has measurement noise

and (or) available data size is too small in the real system modeling, neural net-

work can bring out over-fitting problem which is a factor of poor generalization. It

is an important problem to select the appropriate structure of neuro-fuzzy model

that can perform good generalization. Currently, some researchers have dealt with

this problem. Branco et al. [82] investigated how and why fuzzy modeling systems

are affected when learning data is corrupted by noise. Holmstrom et al. [83] made

an effort to improve the generalization capability of a neural network by introduc-

ing additive noise to the training samples. Karystinos et al. [84] addressed K-

mean clustering algorithm which results from the least entropic Gaussian mixture

upon equal-likelihood cross-validated shaping for improving miltilayer perceptrons

(MLP) generalization ability. Lee et al. [85] described a general regression neural

network with fuzzy ART clustering (GRNNFA), as hybrid neural network model,

based on the fusion of fuzzy adaptive resonance theory (Fuzzy ART) and the general

regression neural network (GRNN) for data regression. However, many researches

have usually dealt system optimization [84] [85] and generalization problem [83]

independently.

Recently, statistical approach methods have been popularly developed in non-

linear system modeling based on input and output data with measurement noise

[28] [86] [87] [88]. Statistical techniques generally deal with trade-off between fit-

ting the training data and simplifying model capacity. In statistical method, kernel

function offers an alternative solution by mapping the data into high dimensional

feature space to increase the computational power [24] [8]. Particularly, the state-

of-the-art Support Vector Machine (SVM)[21] has been used in order to find the

number of network nodes or fuzzy rules based on given error bound [28] [29] [30]

[89]. The Support Vector Neural Network (SVNN) is proposed to select the best

structure of radial based function network for the given precision [28]. Support vec-

tor learning mechanism for fuzzy rule-based inference system is presented in [29]

[30].

The SVM has delivered good performance in various application. However, the

SVM has a number of the significant and practical limitations [27]. In the SVM, pre-
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dictions are not probabilistic and the kernel function K(x, xi) must satisfy Mercer’s

condition. That is, it must be a positive definite continuous symmetric function. It

is also necessary to estimate the error/margin trade-off parameter C. The number

of the found support vector is sensitive to given error bound ε. Tipping [27] proposed

the Relevance Vector Machine (RVM) based on a kernel-based Bayesian estimation

method which does not suffer from above disadvantages. Above all, the RVM has

shown a comparable generalization performance with fewer kernel function than

the SVM in [27].

In this chapter, we propose a new fuzzy inference system, which performs sys-

tem optimization and generalization simultaneously using relevance vector learn-

ing mechanism, for modeling nonlinear dynamic system based on input and output

data with measurement noise. In the suggested fuzzy system, the number of fuzzy

rules and parameter values of membership functions are automatically found using

a relevance vector learning methodology. The structure of proposed fuzzy system

is same as that of the Takagi-Sugeno (TS) fuzzy model. However, in the proposed

method, the number of fuzzy rules can be reduced under the process of optimizing

a marginal likelihood by adjusting parameter values of kernel functions using the

gradient ascent method. After a fuzzy system is determined, coefficients in conse-

quent part are found by the least square method.

5.2 Relevance Vector Machine (RVM)

The RVM has an exploited probabilistic Bayesian learning framework [90] [91]. It

acquires relevance vectors and weights by maximizing a marginal likelihood. The

structure of the RVM is described by the sum of product of weights and kernel

functions. A kernel function means a set of basis function projecting the input data

into a high dimensional feature space.

Given a data set of input-target pairs {xn, tn}N
n=1, and assuming that the targets

are independent and contaminated with mean-zero Gaussian noise εn with variance

σ2:

tn = y(xn; w) + εn. (5.1)
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The RVM without a bias term can be represented as follows [27] [92]:

y(x; w) =
N∑

i=1

wiK(x, xi), (5.2)

= Φw, (5.3)

where N is the length of the data, weight vector w = [w1, ..., wN ]T and (N ×N) de-

sign matrix Φ = [φ(x1), φ(x), ..., φ(xN )]T , wherein φ(xn) = [K(xn, x1), K(xn, x2), ...,

K(xn, xN )]T and K(x, xi) is a kernel function.

The likelihood of the measured training data set is written as:

p(t|w, σ2) = (2πσ2)−N/2 exp
{
− 1

2σ2
‖t− Φw‖2

}
, (5.4)

where target vector t = [t1, ..., tN ]T . Maximizing likelihood estimation of w and

σ2 from (5.4) leads to over-fitting. To avoid this over-fitting, a zero-mean Gaussian

prior distribution over w with variance α−1 is added as:

p(w|α) =
N∏

i=0

N (wi|0, α−1
i ),

=
N∏

i=0

√
αi

2π
exp

(
−αi

2
w2

i

)
, (5.5)

where hyperparameter α = [α1, α2, ..., αN ]T . An individual hyperparameter asso-

ciates independently with every weight.

The posterior distribution over the weight from Bayes rule is thus given by:

p(w|t, α, σ2) =
Likelihood× Prior
Normalizing factor

,

=
p(t|w, σ2) p(w|α)

p(t|α, σ2)
,

= (2π)−(N+1)/2|Σ|−1/2 ·
exp

{
−1

2
(w− µ)TΣ−1(w− µ)

}
, (5.6)

where the posterior mean µ and covariance Σ are as follows:

µ = σ−2ΣΦTt, (5.7)

Σ = (σ−2ΦTΦ + A)−1, (5.8)
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with A = diag(α1, α2, ..., αN ).

The likelihood distribution over the training targets (5.4) can be marginalized

with respect to the weights to obtain the marginal likelihood, which is also a Gaus-

sian distribution

p(t|α, σ2) =
∫

p(t|w, σ2)p(w|α)dw,

= (2π)−N/2|C|−1/2 exp
{
−1

2
tT C−1t

}
(5.9)

with covariance C = σ2I + Φ A−1ΦT.

Values of α and σ2 that maximize the marginal likelihood can not be obtained in

closed form, and an iterative re-estimation method is required [27]. The following

approach of MacKay [93] gives:

αnew
i =

γi

µ2
i

, (5.10)

(σ2)new =
‖t−Σµ‖2

N −∑
i γi

, (5.11)

where µi is the i-th posterior mean weight (5.7) and the quantities γi ≡ 1 − αi
∑

ii

with the i-th diagonal element
∑

ii of the posterior weight covariance (5.8).

In practice, since many of the hyperparameter αi tend to infinity during the it-

erative re-estimation, the posterior distribution (5.6) of the corresponding weight

wi becomes highly peak at zero [27]. In this optimization process, the vector from

the training set that associates with the remaining nonzero weights wi is called

the relevance vector (RV). The brief summary of inference procedure of the RVM is

described as follows:

1. Initialize αi and σ2.

2. Compute µ, Σ and posterior distribution (5.6).

3. Re-estimate αi and σ2 using (5.7) and (5.8).

4. Go to step 2 until the maximum of αi and variation of αi are satisfied with

given condition.

5. Find RVs and complete the structure of the RVM.
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The main motivation of approach to fuzzy inference system is that the structure

of the RVM is automatically found based on optimizing the marginal likelihood.

The found structure of the RVM has close relation to that of fuzzy rule-base.

5.3 New Fuzzy Inference System Using an Extended RVM

This section describes the structure of the new fuzzy inference system based on the

TS fuzzy model, input space partition method and the learning algorithm.

5.3.1 The structure of the FIS using an extended RVM

Let us suppose that we have given input and target data

(x1, t1), (x2, t2), ..., (xN , tN ) (5.12)

where xi=[xi
1, x

i
2, ..., x

i
D](i = 1, 2, ..., N) is a input variable and t=[t1, ..., tN ] is a target

variable. The proposed TS fuzzy model with fuzzy if-then rules can be represented

as follows:

R1 : If x1 is K(x1, x
∗
11) and · · · and xD is K(xD, x∗1D),

Then f1 = a10 + a11x1 + · · ·+ a1DxD

R2 : If x1 is K(x1, x
∗
21) and · · · andxD is K(xD, x∗2D),

Then f2 = a20 + a21x1 + · · ·+ a2DxD

...
...

...

Rn : If x1 is K(x1, x
∗
n1) and · · · and xD is K(xD, x∗nD),

Then fn = an0 + an1x1 + · · ·+ anDxD, (5.13)

where n is the number of fuzzy rules, D is the dimension of input variables, xj(j =

1, 2, ..., D) is an input variable, fi is the i-th local output variable, K(xj , x
∗
ij)(i =

1, 2, ..., n, j = 1, 2, ..., D) is a fuzzy set and aij(i = 1, 2, ..., n, j = 0, 1, ..., D) is a conse-

quent parameter.
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Fig. 5.1 The structure of the proposed fuzzy inference system

Now, we describe the structure of FIS using the extended RVM. It consists of

five layers as shown in Fig. 5.1. The five layers involved in the proposed FIS are

presented as follows:

Layer 1: Each input variable transmits one node. Input variables are distributed

to next layer.

Layer 2: The distributed input space is nonlinearly projected into feature space

using kernel functions. Each kernel function corresponds to one fuzzy linguis-

tic label, that is, fuzzy set (example, young, middle, old, etc). Since kernel

function is not necessary to satisfy Mercer’s condition, various types of it can

be used, such as polynomial, Gaussian, Fourier series, triangular, bell, trape-

zoidal ones etc.. Because Gaussian kernel function allows the exact computa-

tion of the center and variance of predictive distribution and variance can be
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easy learned, in this paper, it is employed as follows:

K(xj , x
∗
ij) = exp

(
− (xj − x∗ij)

2

2θ2
ij

)
, (5.14)

where x∗ij is the RV, θij is called a kernel parameter and n is the number

of RVs and i=1,...,n, and j=1,...,D. After all, this kernel function becomes a

Gaussian membership function in the proposed FIS. K(xj , x
∗
ij) is the grade of

membership of xj . x∗ij and θij are respectively the center and variance of the

Gaussian membership function of j-th dimension term of i-th input variable

xi. The Relevance vector learning algorithm plays a role as a fuzzy inference

engine finding the number of fuzzy rules in FIS. The Layer 1 and 2 are related

to the antecedent part of the FIS.

Layer 3: The fuzzy intersection of Gaussian kernel functions is calculated. Here,

the following algebraic product operator as T-norm operator for each Layer 3

node is used,

K(x, x∗i ) =
D∏

j

K(xj , x
∗
ij), (5.15)

where x = [x1, x2, ..., xD] is the i-th input variable vector, x∗i = [x∗i1, x
∗
i2, ..., x

∗
iD]

is the RV of the i-th input variable.

The normalized weight βi for each fuzzy rule (node) is computed as follows,

βi =
K(x, x∗i )∑n
j=1 K(x, x∗j )

, (5.16)

where

K(x, x∗i ) ≥ 0,
n∑

j=1

K(x, x∗j ) > 0, i = 1, ..., n. (5.17)

Layer 4: The normalized weight βi of each node is multiplied by i-th local output

variable fi. Each node output υi as shown in Fig. 5.1 is presented as follows:

υi = βifi, (5.18)

=
K(x, x∗i )(ai0 + ai1x1 + · · ·+ aiDxD)∑n

j=1 K(x, x∗j )
, (5.19)

where fi = ai0 + ai1x1 + · · ·+ aiDxD is the i-th local output variable of TS fuzzy

model.
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Fig. 5.2 The learning algorithm of the proposed FIS

Layer 5: For the overall output of the fuzzy model constructed, defuzzification us-

ing the Center Of Gravity (COG) method is performed. Each node corresponds

to one output variable f(x),

f(x) =
n∑

i=1

βifi,

=
∑n

i=1 K(x, x∗i )(ai0 + ai1x1 + · · ·+ aiDxD)∑n
j=1 K(x, x∗j )

. (5.20)

The Layer 3, 4 and 5 connect with the consequent part of the proposed FIS.

5.3.2 The learning algorithm of the FIS using an extended RVM

The learning algorithm of the FIS using the RVM is shown in Fig. 5.2. It can be

summarized by the following learning procedure.

Step 1: Assign the initial hyperparameter α, kernel parameter θij and the learn-

ing rate ηθ.

Step 2: Using the following extended RVM algorithm based on kernel mapping

[27], find RVs x∗i being the centers ci of Gaussian membership function and

weight w. Particularly, using the Gradient Ascent Method (GAM), kernel pa-

rameter θij is adjusted in order to select the appropriate type of kernel function
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related to the nonlinear dynamic system. Assume that the log of the marginal

likelihood (5.9) is the objective function L,

L = −1
2

[log |σ2I + Φ A−1ΦT| + tT(σ2I + Φ A−1ΦT)−1t]. (5.21)

From the GAM, the kernel parameter θij is updated such that the objective

function L is maximized as:

∆θij = ηθ∇θijL,

= ηθ
∂L

∂θij
,

= ηθ
∂L

∂φmi

∂φmi

∂θij
,

= ηθθ
−3
ij

[
N∑

m=1

n∑

i=1

FmiΦmi(xmj − xij)2
]

(5.22)

where Fmi = ∂L/∂φmi wherein matrix F = σ−2[(t−y)µT −ΦΣ], a set of Gaus-

sian kernel function φmi = exp{−∑D
j=1(xmi−xij)2/2θ2

ij} and ηθ is the learning

rate of θij .

This learning Step 2 is inserted into the inference procedure Step 3 of the RVM

in Section 5.2 Therefore, the extended RVM re-estimates θij together with αi

and σ2 in inference procedure Step 3 of the RVM.

Step 3: Using the following Least Square Estimation (LSE) method, estimate the

parameter aij of the linear equation fi in (5.20). Let

A =
[
a10 a11 · · · a1D · · · · · · an0 an1 · · · anD

]T
,

W =




β1
1 β1

1x1
1 · · · β1

1x1
D · · · · · · β1

n β1
nx1

1 · · · β1
nx1

D

β2
1 β2

1x2
1 · · · β2

1x2
D · · · · · · β2

n β2
nx2

1 · · · β2
nx2

D
...

... · · · ... · · · · · · ...
... · · · ...

βl
1 βl

1x
l
1 · · · βl

1x
l
D · · · · · · βl

n βl
nxl

1 · · · βl
nxl

D


 ,

(5.23)

where βj
i = K(xj ,x∗i )∑n

k=1 K(x,x∗k)
. Thus fuzzy model output is f(x) = WA.

The parameter vector A is calculated using the following pseudo inverse,

A = (W TW )−1W Ty. (5.24)
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Fig. 5.3 The input space partition of the proposed FIS using the RVM(a) and the
extended RVM(b)
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5.3.3 The input space partition of the FIS using an extended RVM

The structure of fuzzy modeling is closely related to the partitioning of input space

for fuzzy rule generation. The input space partition approach of the proposed FIS

is a clustering-based method. Figure 5.3 shows the input space partition method of

two-dimensional input space. Figure 5.3 (a) and (b) show input space partitioning

using the RVM and the extended RVM, respectively. Because each cluster leads

to a fuzzy rule, seven and six rules are respectively created in Fig. 5.3 (a) and

(b). The RV as center of Gaussian kernel function becomes the center of Gaussian

membership function.

Although the RV is sparse because the posterior distributions of many of the

weights are sharply peaked around zero in RVM. Figure 5.3 illustrates how the

method using the extended RVM can reduce the number of rules and membership

function. The 4-th and 7-th rules which are generated using the RVM with the

fixed Gaussian variance in Fig. 5.3 (a) can be merged into the 4-th rule using the

extended RVM with a different Gaussian variance θij in Fig. 5.3 (b).

The proposed FIS through the generalization strategy of the RVM estimates the

noise of system and determines fuzzy rules and parameters of membership func-

tions automatically.

5.4 Examples

In this section, two simulation results of the proposed FIS for the modeling of the

nonlinear dynamic systems are described.

5.4.1 Example 1 : modeling of 2-input nonlinear dynamic system

Consider the nonlinear dynamic system [28],

y(k) = (0.8− 0.5 exp(−y2(k − 1)))y(k − 1)

− (0.3 + 0.9 exp(−y2(k − 1)))y(k − 2)

+ 0.1 sin(πy(k − 1)) + e(k) (5.25)

where e(k) is a white noise, e(k) ∼ N(0, 0.12). The training input of the model is

X(k) = [y(k − 1), y(k − 2)]. For e(k) ≡ 0, this nonlinear dynamic system is unstable
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Fig. 5.4 The output data of dynamic system for e(k) ≡ 0

at the origin. Output data of dynamic system with 300 data points for e(k) ≡ 0

is shown in Fig. 5.4. This data points are generated from an initial condition of

X(1) = [0.1, 0.1]. But the training input data of 300 point pairs are generated from

initial condition of X(1) = [0, 0]. The proposed FIS using the extended RVM has

the following fuzzy If-Then rules.

Ri : If y(k − 1) is K(y(k − 1), y∗i1(k − 1))

and y(k − 2) is K(y(k − 2), y∗i2(k − 2)),

Then fi = ai0 + ai1y(k − 1) + ai2y(k − 2), i = 1, ..., n. (5.26)

When training data sizes are generally large from k = 1, the number of RVs and the

prediction test error of both algorithms, the RVM and the FIS using the extended

RVM, are shown in Fig. 5.5. When training data size increases under the same

initial θ = 1.2782, prediction test error decreases. The number of RV in FIS using

the extended RVM is smaller than that of the RVM for a similar error.
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Fig. 5.5 The number of RVs and prediction test error of the RVM and the FIS using
the extended RVM when data sizes are generally large

Table 5.1 The parameter values of the FIS for modeling of X(k) = [y(k−1), y(k−2)]

Rule Antecedent part Consequent part
cij θij (ai0, ai1, ai2)

1 ( 0.7821 -0.2076) 1.1791 1.1696 -107.50 -27.08 -31.64
2 ( 1.1036 0.5064) 1.2799 1.1488 362.62 -69.23 -39.57
3 ( 0.0464 -0.9427) 1.2344 1.2385 50.95 -16.81 12.20
4 (-1.0619 -0.5757) 1.2759 1.2319 -56.45 -16.93 0.35
5 (-0.5010 0.6232) 1.2491 1.2397 389.53 45.00 11.61
6 (-0.0553 0.9856) 1.2762 1.3008 -619.62 11.81 120.18
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Fig. 5.6 The structure of the proposed FIS for modeling of y(k)

After the simulation from the training input data of 300 point pairs, the proposed

FIS using the extended RVM generates 6 RVs (x∗i ), so that it has 6 rules as follows.

The structure of the proposed FIS using the extended RVM for modeling of y(k)

is shown in Fig. 5.6. Figure 5.7 shows input space partitioning using the RVM(a)

and the extended RVM(b) in training data of dynamic system with noises and found

RVs. The parameter values of antecedent and consequent parts are listed in Table

5.1. The cij and θij are the center and variance of Gaussian membership function,

respectively. Parameters (ai0, ai1, ai2) are the consequent those of TS fuzzy model.

Membership functions of FIS are shown in Fig. 5.8. Figure 5.9 shows the modeling

result of estimated dynamic system output of X(k) = [y(k − 1), y(k − 2)]. Modeling

output of estimated dynamic system as shown in Fig. 5.9 is similar to output of

original system with no error as shown in Fig. 5.4. The method in the literature

applied to the same dynamic system, and the results listed on the Table 5.2. The

extended RVM is used as fuzzy inference engine in proposed FIS. The initial con-

dition of simulation such as initial hyperparameter α and kernel parameter θi is
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(a) RVM

(b) The extended RVM

Fig. 5.7 The comparison of input space partitions using the RVM(a) and the ex-
tended RVM(b) in training data of dynamic system with noises and found RVs(◦)
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Fig. 5.8 The membership functions y(k − 1) and y(k − 2) of the proposed FIS
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Fig. 5.9 The estimated dynamic system output of X(k) = [y(k − 1), y(k − 2)]

equal. The modeling error is the standard deviation of test errors. Compared with

the number of rules and modeling error, the proposed method using the extended

RVM gives the smaller number of rules and modeling error than the Chan’s ap-

proach shown in Table 5.2. Especially, the FIS gives the smaller number of rules for

the same error.

Table 5.2 The compared results of nonlinear dynamic function
Type Rules( or SVs/RVs) Model error

Chan et al. [28] 10 0.099
RVM 7 0.017

Proposed FIS using the 6 0.017extended RVM
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5.4.2 Example 2 : modeling of robot arm data

The training robot arm data are obtained from the relationship between input vari-

ables (x1, x2) of joint angles and target variables (y1, y2) of positions,

y1 = 2.0 cos x1 + 1.3 cos(x1 + x2) + δ, (5.27)

y2 = 2.0 sinx1 + 1.3 sin(x1 + x2) + δ, (5.28)

where δ is a Gaussian noise, δ ∼ N(0, 0.052). The 400 input-target pairs of robot

arm which was used by MacKay [94] and Chu et al. [89] are used. In this data set,

the first 200 data and the second 200 data are used as training and test data set,

respectively.

The proposed FIS using the extended RVM has the following fuzzy If-Then rules.

Ri : If x1 is K(x1, x
∗
i1) and x2 is K(x2, x

∗
i2),

Then fi = ai0 + ai1x1 + ai2x2. i = 1, ..., n. (5.29)

When training data sizes are generally large in target variables (y1, y2), the number

of RVs and prediction test error of the RVM and the FIS using the extended RVM

are shown in Fig. 5.10. Average results for 10 repetitions were quoted, where 50, 60,

75, 100, 125, 150, 175 and 200 randomly generated training samples from training

data. When training data sizes increase under the same initial condition θ = 1.7677,

prediction test error decreases. The number of RV of FIS using the extended RVM

is smaller than that of the RVM for a similar error. After the simulation from the

training input data of 200 point pairs, the proposed FIS using the extended RVM

respectively generates 9 and 10 RVs (x∗i ) for y1 and y2, so that it has 9 and 10 rules.

Figures 5.11 and 5.12 show input space partitioning of y1 and y2 using the RVM(a)

and the extended RVM(b), respectively. Under the same initial condition such as

hyperparameter α and kernel parameter θi, 11 RVs were merged into 9 RVs using

the extend RVM in Fig. 5.11 and 13 RVs were merged into 10 RVs in Fig. 5.12. The

parameter values of antecedent and consequent parts of proposed FIS are listed in

Table 5.3 and 5.4. The membership functions of y1 and y2 are shown in Figs. 5.13

and 5.14. Figure 5.15 shows comparison of test robot arm data of y1 and y2 and

outputs of the proposed FIS using the extended RVM.



5.4. EXAMPLES 95

50 75 100 125 150 175 200
7

8

9

10

11

12

13

Number of training data

N
um

be
r 

of
 r

el
ev

an
ce

 v
ec

to
rs

50 75 100 125 150 175 200
2

3

4

5

6

7

8

9

x 10
-3

Number of training data

A
ve

ra
ge

 S
qu

ar
ed

 E
rr

or
 (

A
S

E
) RVM

FIS using an extended RVM

RVM
FIS using an extended RVM

(a) When training data of y1 is generally large

50 75 100 125 150 175 200
7

8

9

10

11

12

13

N
um

be
r 

of
 r

el
ev

an
ce

 v
ec

to
rs

50 75 100 125 150 175 200
3

4

5

x 10
-3

Number of training data

A
ve

ra
ge

 S
qu

ar
ed

 E
rr

or
 (

A
S

E
)

RVM
FIS using an extended RVM

RVM
FIS using an extended RVM

Number of training data

(b) When training data of y2 is generally large

Fig. 5.10 The number of RVs and prediction test error of the RVM and the FIS
using the extended RVM when training data of y1 (a) and y2 (b) are generally large
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(a) RVM

(b) The extended RVM

Fig. 5.11 The comparison of input space partitions using the RVM(a) and the ex-
tended RVM(b) in training data of y1 with noises and found RVs(◦)
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(a) RVM

(b) The extended RVM

Fig. 5.12 The comparison of input space partitions using the RVM(a) and the ex-
tended RVM(b) in training data of y2 with noises and found RVs(◦)
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Table 5.3 The parameter values of the FIS for modeling of y1

Rule Antecedent part Consequent part
cij θij (ai0, ai1, ai2)(×104)

1 (-0.9451 3.0913) 1.6588 1.6775 -0.0129 0.0009 0.0103
2 ( 1.2031 2.7042) 2.0207 1.8009 -1.2575 0.2623 0.0406
3 ( 1.1397 0.5988) 1.8473 1.8774 -0.0960 -0.0161 0.0596
4 ( 0.5122 1.4056) 1.7967 1.7697 -0.9088 -0.0897 0.0128
5 (-1.8941 0.8151) 1.8013 1.7803 0.3044 0.0316 -0.0024
6 ( 1.6345 1.7778) 2.1581 1.8618 7.0833 -0.1508 -0.5640
7 (-0.9796 1.5137) 1.8310 1.8410 -0.7585 0.0134 0.1401
8 ( 1.7438 1.1445) 2.0773 1.8796 -3.8342 -0.1712 -0.5538
9 ( 0.8388 3.1328) 1.8192 1.8736 1.0656 -0.0248 -0.0978

Table 5.4 The parameter values of the FIS for modeling of y2

Rule Antecedent part Consequent part
cij θij (ai0, ai1, ai2)(×104)

1 (-0.9362 1.3506) 1.7684 1.7694 0.2482 0.0293 0.0044
2 ( 0.9283 2.6690) 1.7911 1.7589 0.1233 0.0649 0.0329
3 ( 1.1615 0.6477) 1.7439 1.8359 0.0179 -0.0015 0.0047
4 (-1.0987 3.1254) 1.8132 1.8088 0.2060 -0.0208 -0.0094
5 ( 1.8904 1.6948) 1.8714 1.7888 -0.0176 0.0027 -0.0017
6 (-1.8941 0.8151) 1.9331 1.8334 1.2448 0.0753 0.1497
7 (-1.7287 2.5087) 1.8173 1.7800 0.2522 -0.0354 -0.0871
8 (-1.0644 0.5615) 1.8271 1.8348 -0.5942 -0.0095 -0.0888
9 ( 1.5707 3.0659) 1.7596 1.7809 -0.4063 0.0153 0.0208
10 (-1.7653 1.4311) 1.8854 1.7824 -0.9783 0.0563 -0.0278
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Fig. 5.13 The membership functions of the proposed FIS for modeling of y1
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Fig. 5.14 The membership functions of the proposed FIS for modeling of y2
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Fig. 5.15 The comparison of test robot arm data of y1 (a) and y2 (b) and outputs of
the proposed FIS
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Table 5.5 The compared results of the modeling robot arm data y1 and y2

Type Rules( or SVs/RVs) ASE (×10−3)

Chu et al. [89] y1 21 2.491
y2 42 3.184

RVM y1 11 2.475
y2 13 3.057

Proposed FIS using
the extended RVM

y1 9 2.465
y2 10 3.046

To analyze the performance of the proposed FIS, the modeling error is defined as

following Average Square Error (ASE)

ASE =
∑N

k=1(yk − f(xk))2

N
, (5.30)

where N is the number of data, yk and f(xk) are the original system and fuzzy mod-

eling output, respectively. The method in the literature applied to the same system

and the results listed on the Table 5.5. A comparison in terms of the number of rules

and modeling error shows that the proposed method using the extended RVM gives

the smaller number of rules for a similar modeling error than approaches shown in

Table 5.5.

5.5 Discussion and Conclusions

In this chapter, a new approach to fuzzy modeling using the relevance vector learn-

ing mechanism based on a kernel-based Bayesian estimation was proposed. Our

main concern is to find the best structure of the TS fuzzy model for modeling non-

linear dynamic systems with measurement error. The number of fuzzy rules and the

parameter values of membership functions can be found as optimizing the marginal

likelihood of the RVM in the proposed FIS. Because the RVM is not necessary to sat-

isfy Mercer’s condition, kernel function is beyond the limit of the positive definite

continuous symmetric function of SVM. The relaxed condition of kernel function

can satisfy the various types of membership functions in fuzzy model.

We applied the proposed method to two nonlinear dynamic functions. The RVM

compared with support vector learning mechanism in examples had the small model
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capacity and described good generalization. Simulated results showed the effective-

ness of the proposed FIS for modeling of nonlinear dynamic systems with noise.

The RVM showed a good generalization property in examples of reference [27].

In the extended RVM, marginal likelihood (5.9) with respect to Gaussian kernel

parameter θ is maximized using the gradient ascent method. The choice of learning

parameter ηθ influences the convergence of the extended RVM. In this thesis, the

ηθ was experimentally selected. Nevertheless, the FIS using the extended RVM has

good generalization property in Examples.

In RVM [27], the posterior weight covariance matrix Σ of (5.8), which requires an

inverse operation of order O(M3) complexity and O(M2) memory storage, with M

the number of basis functions is computed in order to re-estimate hyperparameters

α and σ. In addition, the gradient ascent method is added to update Gaussian

kernel parameter θ. We need to improve computing time for big data size. The

iteration of this algorithm depends on inference procedure of the RVM. When the

maximum of αi and variation αi are satisfied with given condition, this algorithm

is stopped.



CHAPTER6
Conclusions

In this thesis, we present new approaches to fuzzy inference system for system mod-

eling using kernel machines. Our main concern is to determine the best structure of

the TS fuzzy model for modeling nonlinear system based on input and output data.

The number of fuzzy rules and the parameter values of membership functions which

are automatically generated using the extended Support Vector Machine (SVM),

the extended Feature Vector Selection (FVS) and the extended Relevance Vector

Machine (RVM) as a kernel machine.

In FIS using an extended SVM, the structure of the proposed FIS is obtained by

minimizing a constrained quadratic programming problem for a given error bound

in SVM. The number of fuzzy rules can be reduced by adjusting the parameter

values of Gaussian kernel function using the gradient descent method.

In FIS using an extended FVS, the structure of the proposed FIS is obtained

using an extended Kernel method. The learning algorithm of the extended FVS is

faster than the extended SVM. The extended kernel method consists of linear trans-

formation of input variables and kernel mapping of the extended FVS. The linear

transformation of input variables is used to solve problem selecting the best shape

of the Gaussian kernel function. The number of fuzzy rules can be reduced by ad-
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justing the linear transformation matrix and parameter values of kernel functions

using the gradient descent method.

In FIS using an extended RVM, the structure of the proposed FIS is obtained

using the relevance vector learning mechanism based on a kernel-based Bayesian

estimation. The RVM consists of the sum of product of weight and kernel function

which projects input space into high dimensional feature space. The extended RVM

generates the smaller number of fuzzy rules than the extended SVM. The extended

RVM does not need the linear transformation of input variables because the basis

function of the extended RVM is not restricted within the limitation of the kernel

function. The number of fuzzy rules can be reduced by adjusting the parameter

values of kernel functions using a gradient ascent method. After a fuzzy model is

determined, coefficients in consequent part are determined using the least square

estimation method.

In the experiment presented in each chapter, the performance and result of the

proposed FIS were evaluated and discussed. The results of all simulations showed

the effectiveness of the proposed FIS for modeling nonlinear systems.

As future work, we need to select the proper kernel function corresponding to

nonlinear system and improve the computation capacity in learning process. In

addition to, online learning mechanisms of the SVM, FVS and RVM are necessary

for more effective modeling of the nonlinear system.



Bibliography

[1] J. R. Jang, “ANFIS: Adaptive-Network-based Fuzzy Inference Systems”,

IEEE Trans. Syst. Man. Cybern., vol.23, pp.665-685, 1993.

[2] C. T. Lin, “Neural Fuzzy Control Systems with Structuer and Parameter Lear-

ing”, New York: World Scientific, 1994.

[3] C. T. Lin and C. S. G. Lee, “Neural Fuzzy Systems : A Neural-Fuzzy Syner-

gism to Intelligent Systems”, Englewood Cliffs, Prentice-Hall, 1995.

[4] C. F. Juang and C. T. Lin, “An On-Line Self-Constructing Neural Fuzzy In-

ference Network and Its Applications”, IEEE Trans. Fuzzy Syst., vol.6, no.1,

pp.12-32, 1999.

[5] J. Ryu and S. Won, “Partitioning of Linearly Transformed Input space in

Adaptive Network Based Fuzzy Inference System”, IEICE Trans. Inf. and

Syst., vol.E84-D, no.1, pp.213-216, 2001.

[6] S. Mitra and Y. Hayashi, “Neuro-Fuzzy Rule Generation: Survey in Soft Com-

puting Framework”, IEEE Trans. on Neural Network, vol.11, no.3, pp.748-

768, 2000.

[7] J. Kim and S. Won, “New Fuzzy Inference System using a Support Vector

Machine,” Proc. 41th IEEE conf. of decision and control, Las Vegas, USA,

pp1349-1354, 2002.

106



BIBLIOGRAPHY 107

[8] J. Kim, T. Kim and Y. Suga, “A New Approach to Fuzzy Modeling Using

an Extended Kernel Method”, IEICE Trans. Fundamentals, vol.E86-A, no.9,

pp.2262-2269, 2003.

[9] J. Kim Y. Suga, and S. Won, “A New Approach to Fuzzy Modeling of Nonlin-

ear Dynamic Systems With NOise: Relevance Vector Learning Mechanism”,

IEEE Trans. Fuzzy Syst., vol.14, no.2, pp.222-231, 2006.

[10] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications

for modeling and control”, IEEE Trans. Syst., Man. Cybern., vol.15, pp.116-

132, 1985.

[11] H. Ishibuchi, k. Nozaki, H. Tanaka, Y. Hosaka, and M. Matsuda, “Empirical

Study on Learning in Fuzzy Systems by Rice Test Analysis”, Fuzzy Sets and

System, vol.64, pp.120-144, 1994.

[12] J. Ryu and S. Won, “Partitioning of Linearly Transformed Input space in

Adaptive Network Based Fuzzy Inference System”, IEICE Trans. INF. and

SYST., vol. E84-D, no.1,pp. 213-216, 2001.

[13] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and

Regression Trees”, Wadsworth, Inc., Belmont, Califonia, 1984.

[14] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from ex-

amples”, IEEE Trans. Syst., Man. Cybern., vol.22, pp.1414-1427, 1992.

[15] C. T. Sun, and J. S. Jang, “A neuro-fuzzy classifier and its applications”, Proc.

of IEEE Int. Conf. Fuzzy Syst., San Francisco, I, pp.94-98, 1993.

[16] M. Sugeno and T. Yasukawa, “A Fuzzy-logic-based Approach to Qualitative

Modeling”, IEEE Trans. on Fuzzy Sys., vol.1, no.1, pp.7-31, 1993.

[17] R. R. Yager and D.P. Filev, “Approximate Clustering via the Mountain

method”, IEEE Trans. Syst., Man. Cybern., vol.24, no.8, pp.1279-1284, 1994.

[18] Y. H. Joo, H. S. Hwang and K. B. Kim, “Fuzzy System Modeling by Fuzzy

Partition and GA Hybrid Schemes”, Fuzzy Sets and System, vol.86, pp.279-

288, 1997.



BIBLIOGRAPHY 108

[19] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algrithm”,

New York : Plenum, 1981.

[20] C. F. Juang and C. T. Lin “An On-Line Selt-Constuctin Neural Fuzzy Infer-

ence Network and Its Applications”, IEEE Trans. Fuzzy Syst., vol.6, pp.12-32,

1998.

[21] V. N. Vapnic, “The Nature of Statistical Learning Theory”, Spring-Verlag,

1995.

[22] B, Scholkopf and A. J. Smola, “Learning with Kernels”, MIT Press, 2002.

[23] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Ma-

chines and other kernel-based learning methods”, Cambridge University

Press, 2000.

[24] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An Introduction

to Kernel-Based Learning Algorithms”, IEEE Trans. Neural Network, vol.12.

no.2, pp.181-201, 2001.

[25] J. Shawe-Taylor and N. Cristianini, “Kernel Methods for Pattern Analysis”,

Cambridge University Press, 2004.

[26] Baudat G and Anouar F, “Kernel-based Methods and Function Approxima-

tion”, Proc. of Int. Joint Conf. on Neural Networks, pp.1244-1249, 2001.

[27] M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector Ma-

chine”, Journal of Machine Learning Research, vol.1, pp.211-244, 2001.

[28] W. C. Chan, W. C. Chan, K. C. Cheung and C. J. Hariss, “On the Modeling of

Nonlinear Dynamic Systems Using Support Vector Neural Networks”, Engi-

neering Application of Artifical Intelligence, vol.14, pp.105-113, 2001.

[29] J. H. Chiang and P. Y. Hao, “Support Vector Learning Mechanism for Fuzzy

Rule-Based Modeling: A New Approach”, IEEE Trans. Fuzzy Syst., vol.12,

no.1, pp.1-12, 2004.



BIBLIOGRAPHY 109

[30] Y. Chen and J. Z. Wang, “Support Vector Learning for Fuzzy Rule-Based Clas-

sification Systems”, IEEE Trans. Fuzzy Syst., vol.11, no.6, pp.716-728, 2003.

[31] Y. H. Liu and Y. T. Chen, “Face Recognition Using Total Margin-Based Adap-

tive Fuzzy Support Vector Machines”, IEEE Trans. Neural Networks, vol.99,

no.1, 2006. Accepted for future publication.

[32] C. A. Waring and L. Xiuwen, “Face Detection Using Spectral Histograms and

SVMs”, IEEE Trans. Systems, Man and Cybernetics, Part B, vol.35, no.3,

pp.467 - 476. 2005.

[33] P. F. Yeung, H. S. Wong and B. Ma, “Relevance Vector Machine for Content-

based Retrieval of 3D Head Models”, Proc. Ninth Intern. Conf. of Information

Visualisation, pp.425-429, 2005.

[34] Q. Liu, H. Lu and S. Ma, “Improving Kernel Fisher Discriminant Analysis for

Face Recognition”, IEEE Trans. Circuits and Systems for Video Technology,

vol.14. no.1, pp.42-49, 2004.

[35] S. Mitra and Y. Hayashi, “Bioinformatics with Soft computing”, IEEE Trans.

Systems, Man and Cybernetics, Part C, vol.36, no.5, pp.616-635, 2006.

[36] K. B. Duan, J. C. Rajapakse, H. Wang and F. Azuaje, “Multiple SVM-RFE

for gene selection in cancer classification with expression data”, IEEE Trans.

Nano Bioscience, vol.4, no.3, pp.228-234, 2005.

[37] S. Li and T. C. Eng, “Dimension Reduction-based Penalized Logistic Regres-

sion for Cancer Classification Using Microarray Data”, IEEE/ACM Trans.

Computational Biology and Bioinformatics, vol.2, no.2, pp.166-175. 2005.

[38] A. Basu and C. Walters, M. Shepherd, “Support Vector Machines for Text

Ctegorization”, Proc. of 36th Annual Hawaii Intern. Conf. of System Sciences,

no.7. 2003.

[39] F. Sun and M. Sun, “A New Transductive Support Vector Machine Approach

to Text Categorization”, Proc. IEEE Intern. Conf. of Natural Language Pro-

cessing and Knowledge Engineering, pp.631-635, 2005.



BIBLIOGRAPHY 110

[40] L.J. Cao and F. E. H. Tay, “Support Vector Machine with Adaptive Parameters

in Financial Time Series Forecasting”, IEEE Trans. Neural Networks, vol.14,

no.6, pp.1506-1518, 2003.

[41] C. H. Wu, J. M. Ho and D. T. Lee, “Travel-time Prediction with Support Vec-

tor Regression” IEEE Trans. Intelligent Transportation Systems, vol.5, no.4,

pp.276-281, 2004.

[42] J. Q. Candela and L. K. Hansen, “Time Series Prediction Based on the Rel-

evance Vector Machine with Adaptive Kernels”, Proc. of IEEE Intern. Conf.

Acoustics, Speech, and Signal Processing, vol.1, pp.985-988, 2002.

[43] N. Nikolaev and P. Tino, “Sequential Relevance Vector Machine Learning

from Time Series”, Proc. of IEEE Intern. Joint Conf. of Neural Networks, vol.2,

pp.1308-1313, 2005.

[44] S. Avidan, “Support Vector Tracking”, IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, vol.26, no.8, pp.1064-1072, 2004.

[45] A. Agarwal and B. Triggs, “3D Human Pose from Silhouettes by Relevance

Vector Regression”, Proc. of IEEE Conf. of Computer Vision and Pattern

Recognition, vol.2, pp.882-888, 2004.

[46] S. Chen, S. R. Gunn and C. J. Harris, “The Relevance Vector Machine Tech-

nique for Channel Equalization Application”, IEEE Trans. Neural Networks,

vol.12, no.6, pp.1529-1532, 2001.

[47] M. Martinez-Ramon, J. L. Rojo-Alvarez, G. Camps-Valls, J. Munoz-Mari, A.

Navia-Vazquez, E. Soria-Olivas, and A. R. Figueiras-Vidal, “Support Vector

Machines for Nonlinear Kernel ARMA System Identification”, IEEE Trans.

Neural Networks, vol.17, no.6, pp.1617- 1622, 2006.

[48] X. G. Wang and W. H. Li, “Nonlinear System Identification using Least

Squares Support Vector Machines”, Proc. of Intern. Conf. of Neural Networks,

pp.414-418, 2005.

[49] V. N. Vapnic, “Statistical Learning Theory”, Spring-Verlag, 1999.



BIBLIOGRAPHY 111

[50] A. J. Smola and B. Scholkopf, “A Tutoral on Support Vector Regression”,

Statistics and Computing, vol.14, no.3, pp.199-222, 1998.

[51] H. O. Wang, K. Tanaka, and M. F. Griffin, “Parallel Distributed Compensa-

tion of Nonlinear Systems by Takagi-Sugeno Fuzzy Model”, Proc. of FUZZ-

IEEE/IFES , pp.531-538, 1995.

[52] K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control

Systems,” Fuzzy Sets Syst., vol.45, pp.135-156, 1992.

[53] R. R. Yager and L. A. Zadeh, “Fuzzy Sets, Neural Networks, and Soft Com-

puting”, Thomson Learning, 1994.

[54] H. T. Nguyen and M. Sugeno, “Fuzzy Systems: Modeling and Control”,

Kluwer, Boston, MA, 1998.

[55] C. A. P. Reyes, “Coevolutionary Fuzzy Modeling”, Lecture Notes in Computer

Science, vol.3204, Springer, 1998.

[56] R. R. Yager and A.V. Kreinvich, “Universal Approximation Theorem for

Uninorm-based Fuzzy Systems modeling”, Fuzzy Sets and Systems, vol.140,

no.22, pp.331-339, 2003.

[57] M. Sugeno and G. T. Kange, “Structure Identification of Fuzzy Model”, Fuzzy

Sets andSystmes, vol.28, pp.15-33, 1988.

[58] E. H. Mamdani, “Applications of Fuzzy Algorithms for Control of a Simple

Dynamic Plant”, Proc. of IEEE, vol.121, no.12, pp.1585-1588, 1974.

[59] K. Tanaka et al., “Self-organizing Fuzzy Identification of a Municipal Refuse

Incinerator”, Proc. of Int. Fuzzy Syst. Intell. Contr., pp.13-22, 1993.

[60] K. Tanaka, M. Sano and H. Watanabe, “Modeling and Control of Carbon

Monoxide Concentration Using Aneuro-fuzzy Technique”, IEEE Trans. Fuzzy

Systems, vol.3, no.3, pp.271-279, 1995.

[61] L. A. Zadeh, “Fuzzy Set”, Information and Control, vol.8, pp.338-353, 1996.



BIBLIOGRAPHY 112

[62] J. R. Jang, C. Sun and E. Mizutani, “Neuro-Fuzzy and Soft Computing: A

Computational Approach to Learning and Machine Intelligence”, Prentice

Hall, 1996.

[63] J. M. Mendel, “Fuzzy Logic Systems for Engineering: A tutorial”, Proc. of

IEEE, vol.83, no.3, pp.345-377, 1995.

[64] L. A. Zadeh, “The Concept of a Linguistic Variable and Its Applications to

Approximate Ressoning”, Information Science, Part I, vol.8, pp.199-249; Part

II, vol.8, pp.301-357; Part III, vol.9, pp.43-80, 1975.

[65] S. R. Gunn, “Support Vector Machines for Classification and Regression”,

Image Speech and Intelligent Systems Research Group, University of

Southampton, 1997.

[66] T. Evgeniou, M. Pontil and T. Poggio, “Regularization Networks and Support

Vector Machines”, Advances in Comutional Mathematics, 1999.

[67] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of relative

frequences of events to their probabilities”, Theoretical Probability and Its

Applications, vol.17, no.2, pp.264-280, 1971.

[68] Mercer, “Functions of positive and negative type and their connection with

the theory of integral equations”, Philos. Trans. Roy. Soc. A209: pp.415-446,

1909.

[69] J. S. R. Jang and C. T. Sun, “Neuro-fuzzy Modeling and Control”, Proc. of

IEEE, vol.83, pp.378-406, 1995.

[70] P. M. L. Drezet and R. F Harris, “Support Vector Machines for System Iden-

tification”, Proc. of UKACC Int. Conf. on Control, pp.688-692, 1998.

[71] A. Gretton, A. Doucet, R. Herbrich, P. J. W. Rayner and B. Scholkopf, “Support

Vector Regression for Blackbox System Identification”, Proc. of IEEE signal

Processing Workshop on Statistical Signal Processing, pp.341-344, 2001.



BIBLIOGRAPHY 113

[72] J. A. K. Suykens, “Support Vector Machines: a Nonlinear Modelling and Con-

trol Perspective”, European Journal of Control, Special Issue on Fundamental

Issues in Control, vol.7, no.2-3, pp.311-327, 2001.

[73] J. L. Rojo Alvarez, M. Martinez-Ramon, M. DePrado-Cumplido, A. Artes-

Rodriguez and A. R. Figueiras-Vidal, “Support Vector Method for ARMA Sys-

tem Identification”, IEEE Trans. on Signal Processing, vol.52, no.1, pp.155-

164, 2004.

[74] J. L. Rojo-Alvarez, G. Camps-Valls, M. Martinez-Ramon, E. Soria-Olivas, A.

Navia-Vazquez and A. R. Figueiras-Vidal, “Support Vector Machines Frame-

work for Linear Signal Processing”, IEEE Trans. on Signal Processing, vol.85,

no.12, pp.2316-2326, 2005.

[75] J. T. Jeng and T. T. Lee, “Support Vector Machines for the Fuzzy Neural Net-

works”, Proc. of IEEE conf. SMC, vol.6, pp.115-120, 1999.

[76] B. E. Boser, I. M. Guyon and V. N. Vapnik, “A training algorithm for optimal

margin classifiers”, Proc. of 5th Annual ACM on COLT, pp.144-152, 1992.

[77] I. Guyon, B. Boser and V. Vapnik, “Automatic capacity tuning of very large

VC-dimension classifiers”, Advances in Neural Information Processing Sys-

tems, vol.5, pp.147-155, 1993.

[78] Z. Uykan, C. Guzelis and M. E. Celebi, “Analysis of Input-output Clustering

for Determining Center of RBFN”, IEEE Trans. Neural Network, vol.11, no.4,

pp.851-858. 2000.

[79] A. F. Gomez-Skarmeta, M. Delgado, M. A. Vila, “About the Use of Fuzzy Clus-

tering Techniques for Fuzzy Model Identification”, Fuzzy Sets and Systems,

vol.106, pp.179-188, 1999.

[80] S. Kim, “A Study on the Development of Skew Compensation Models inthe

Plate Mill”, M0208335, POSTECH, 2000.



BIBLIOGRAPHY 114

[81] C. C. Wong and C. C. Chen, “A Hybrid Clustering and Gridient Descent Ap-

proach for Fuzzy Modeling”, IEEE Trans. on Sys. Man and Cybernetics Part

B: Cybernetic., vol.29, no.6, pp.686-693, 1999.

[82] P. J. C. Branco and J. A. Dente, “Noise Effects in Fuzzy Modelling Systems:

Three Case Studies”, Computational Intelligence and Applications, World Sci-

entific and Engineering Society Press, Danvers, USA, pp.103-108, 1999.

[83] L. Holmstrom and P. Koistine, “Using Additive Noise in Back-Propagation

Training”, IEEE Trans. Neural Networks, vol.3, no.1, pp.24-38, 1992.

[84] G. N. Karystinos and D. A. Pados, “On Overfitting, Generalization, and Ran-

domly Expanded Training Sets,” IEEE Trans. Neural Networks, vol.13, no.5,

pp.1050-1057, 2000.

[85] E. W. M. Lee, C. P. Lim, R. K. K. Yuen, and S. M. Lo, “A Hybrid Neural

Network Model for Noisy Data Regression”, IEEE Trans. Syst. Man. Cybern.

Part B:Cybern., vol.34, no.2, pp.951-960, 2004.

[86] J. Yen and L. Wang, “Application of Statistical Information Criteria for Opti-

mal Fuzzy Model Construction”, IEEE Trans. Fuzzy Syst., vol.6, no.3, pp.362-

372, 1998.

[87] T. Matsumoto, Y. Nakajima, J. Sugi, and Hl. Hamagishi, “Reconstructions

and Predictions of Nonlinear Dynamical Systems: A Hierarchical Bayesian

Approach”, IEEE Trans. Signal Processing, vol.49, no.9, pp.2138-2155, 2001.

[88] I. Rivals and L. Personnaz, “Neural-Network Construction and Selection in

Nonlinear Modeling”, IEEE Trans. Neural Networks, vol.14, no.4, pp.804-819,

2003.

[89] W. Chu, S. S. Keerthi and C. J. Ong, “Bayesian Support Vector Regression

Using a Unified Loss Function”, IEEE Trans. Neural Networks, vol.15, no.1,

pp.29-44, 2004.

[90] C. M. Bishop and M. E. Tipping, “Variational Relevance Vector Machines”,

Proc. of the 16th Conf. on Uncertainty in Artificial Intelligence, pp.46-53, 2000.



[91] M. E. Tipping and A. Faul, “Fast Marginal Likelihood Maximisation for

Sparse Bayesian Models”, Proc. of the 9th Int. Workshop on Artifical Intel-

ligence and Statistics, 2003.

[92] L. Wei, Y. Yang, R. M. Nishikawa and Y. Jiang, “A Study on Serveral Machine-

Learning Methods for Classification of Malignant and Benign Clustered Mi-

crocalcifications”, IEEE Trans. Medical Imaging, vol.24, no.3, pp.371-380,

2005.

[93] D. J. C. MacKay, “Bayesian interpolation”, Neural Computation, vol.4, no.3,

pp.415-445, 1992.

[94] D. J. C. MacKay, “A Practical Bayesian Framework for Backpropagation Net-

work”, Neural Computation, vol.4, no.3, pp.448-472, 1992.



 

 

 

 

 

 

 

 

 

A Study on the Fuzzy Modeling of Nonlinear 

Systems Using Kernel Machines 

 

近年，入出力データからファジィモデルの最適な構造およびパラメータを選定し，

これを自動生成する手法の開発がファジィ推論の研究における重要な課題の一つとさ

れている．一方，入出力データに基づく非線形システムのモデリングに対してカーネ

ルマシンを用いた手法が注目されている．そこで，本研究では、最新のカーネルマシ

ンを適用してファジィ推論システムを自動的に構築するための新しい手法について検

討を加えた．すなわち，カーネルマシンとして拡張Support Vector Machine (SVM)，

拡張Feature Vector Selection (FVS)および拡張Relevance Vector Machine (RVM)の

３種類を提案し，これらを用いてファジィ推論エンジンにおける最適なファジィルー

ルの個数およびメンバーシップ関数のパラメータを自動的に生成するシステムの構築

を図った．なお，ここでは基本的なファジィ推論システムとしてTakagi-Sugeno (TS)

ファジィモデルを用いた． 

第１章では，本研究の背景，目的，本論文の構成などについて述べた． 

第２章では，ファジィシステム，統計学的な学習理論およびカーネル特徴空間など，

本研究に関連する基本的事項について述べた．ファジィシステムでは，ファジィ集合

とロジック，ファジィ推論システム，TSファジィモデルについて述べた．統計学的な

学習理論では，汎化エラー，empirical risk minimization，structure risk minim-

izationの原理について述べた．また，カーネル特徴空間では特徴空間における学習

方法およびカーネル関数について基礎的事項を解説した． 

第３章では，拡張SVMを用いたファジィ推論システムについて述べた．すなわち，

拡張SVMを用いたファジィ推論システムを新たに提案し，その構造および学習アルゴ

リズムについて詳細に述べた．また，幾つかの例題に対して本システムを適用し，提

案手法の有効性を確認した． 

第４章では，拡張FVSを用いたファジィ推論システムについ述べた．拡張FVSは，主

に入力変数の線形変換とカーネル関数によるカーネルマッピング等から構成されてい 
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る．これは，第３章で述べた拡張SVMより学習速度が速く，また入力変数を線形変換

することによってより適切なカーネル関数の選択が可能となる等の特徴を有している．

最後に，例題を用いて本手法の有効性を確認した． 

第5章では，拡張RVMを用いたファジィ推論システムについて述べた．これは，第３

章で述べた拡張SVMを用いたシステムに比べてファジィルールの個数を減らすことが

でき，また第4章で述べた拡張FVSのように入力変数に線形変換を施すことなくより適

したカーネル関数を選択できる等の特長を有している．ここではその構造および学習

アルゴリズムについて詳述し，また，本ファジィ推論システムを非線形ダイナミック

システムおよびロボットアームデータに関する例題に適用し，その有効性を検証した． 

第６章は結論であり，各章で得られた内容をまとめ，本研究の成果を総括した． 
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A Study on the Fuzzy Modeling of Nonlinear

Systems Using Kernel Machines

 {ç �̂ç�é<S"hNḰ _�×=�é'úÒ 7L\�'Q�²é ��õcÓ Z�ó9Ó�p� [�{�É÷D4É y Ü!C�¡ÙÕlé �U� ëâU[� kernel ma-

chinesÕlé \�ÕxíU[� (Q]� �¦�{ç [�{�É÷D4É ;�x¤¢é �̀×�²́ �Ék]#×ÐléÕlé =�O[eU[���. _�×=�é'úÒ 7L\�'Qx¤

�¦'Q (Q]� y Ü!C4É �û,�Ò4É ��} ·Ý 9�5�ò�Ó�¢�²é ó9ÓÉ�@�NḰ �;Ø¢Ḱ �£x¤(Q]� [�{�É÷D4É y Ü!C�¡Ù

<S"h ���¢ <jí|¡U[� \��£\���.  {ç �̂ç�é<S"hNḰ \��QU[� �é=��²é B�X�Õ�U� ëâ�#� (Q]� �¦�{ç

©ÏAõcÓ|�x¤ �ûócÓ4É kernel machinesÕlé =�O[eU[���. =�O[e��� (Q]��¦�{ç [�{�É÷D<S"hNḰ �+"�Ék���

Support Vector Machine (SVM), Feature Vector Selection (FVS) u�X�u� Relevance

Vector Machine (RVM)°Ã ¶�o¢Ḱ kernel machineÕlé \�Õxí�#� (Q]� ��é4É 5��¢·Ý Â÷D!Q�ÇÅ

�É��¢4É9�5�ò�Ó�¢�²é��Ðwí,�Ò|�x¤X�Õ�_Ù�NḰ�Ék,�Ö\�_�á��.

Kernel machine¢Ḱ U�5��É��lë°Ã kernel �É��¢·Ý ¶�o¢Ḱ 25�4É y Ðpéx¤ ���[Ù�á#Q _�á��. U�

5��É��lë¢Ḱ _�ÕÖÁí4É �É��lë\��{ç\�u�, kernel �É��¢NḰ _�×'úÒ 7L\����²é �hò¢Ḱ 	���Á4É Ùgæ�¡ÙÎáºH[e|�

x¤ �¦+hÙU[���. Kernel machine¢Ḱ _�×'úÒÎáºH[eÕlé Ùgæ�¡ÙÎáºH[e|�x¤ Z�ó9Ó�p� �¦+hÙ�É�|�x¤-Q _�×'úÒ

7L\����²éó9Ó�p�,�Ò|�x¤B�*�ÒÃ7��¢_�áu�,y Ü!C4É��U�·Ý<S�Q�²éÐwí[�<Su����#�_�ÕM[e½)�é

=��²é����é�¢_�á��.

=�O[e��� (Q]��¦�{ç [�{�É÷D¢Ḱ Tagaki-Sugeno(Q]� y Ü!C4É ��} �²é ��õcÓ��. Ùgæb� (Q]� ��é

4É 5��¢NḰ �+"�Ék��� SVM, FVS°Ã RVMÐlé4É �É��lë°Ã�_Ù<S"h ��ñ�Ó��Ék]#×Õlé \�Õxí�#� (Q]�

Â÷D!Q�ÇÅ�É��¢4É9�5�ò�Ó�¢�²é} �_Ù�É�|�x¤-Q��h{ N}��¢_�á��. _�ÕJ[e(Q]�y Ü!C4É��é°ÃÂ÷D!Q�ÇÅ

�É��¢4É9�5�ò�Ó�¢��X�Õ�_Ù�áñ�Ó�û{ ��Ô²º]#×Õlé\�Õxí�#� TS(Q]�y Ü!C4É�ªí]Ó�¦4É9�5�ò�Ó�¢

�²éX�Õ�_ÙU[���.\�D1Z�(Q]�½)�Ék]#×¢Ḱ�¢5�<jí*�Ö]#×Õlé\�ÕxíU[���.

 {ç �̂ç�é<S"hNḰ�+"�Ék��� SVM, FVS°Ã RVM°Ã¶�o¢Ḱ 3ÖÁí�§4É kernel machine��d��dÕlé\�

ÕxíU[�(Q]��¦�{ç[�{�É÷DÐlé<S7�B�"hZ�ó9Ó�p��É��¢4Éy Ü!C�¡Ù<S,�ÒÕxí�#�U�£¿ç<S=�O[e���(Q]�
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y Ü!C�¡Ù�Ék]#×Ðlé4É�[ÙN²º°ÃZ�u��#�u����Ék�[Ù°Ã�£��[ÙÕlé$íÖ�_Ù�+úá��.

u�X�u�, Z�Ñ�æ =�O[e��� �Ék]#×Ðlé\� U�£¿ç4É ô�Ó��Ðlé°Ã Z�u��#� (Q]�y Ü!C4É ��} ·Ý 9�5�ò�Ó

�¢�²é ��Ðwí,�Ò|�x¤ X�Õ�_Ù�u� overfiting4É �é=��²é B�X�Õ�U� ëâU[� _�ÕM[e½) �Ék�¶¢|�x¤ �̀×�²́Ë;�

��u�Ã7�]���w ,Z�ó9Ó�p��¦+hÙ<S��Õxí��� kernel�É��¢4É,�Ò�ÉkU[�ÖÁí�§ó9ÓÉ�@4É�é=�·ÝU�5��É�

�lë [�<S { |¡�áNḰ ícÓ 5�N[e [�H[e �é=�NḰ �¶¢�ª B�X�Õ�á#Q�� Ã7� °Ã=�Ðlé\���. �  =�O[e��� �Ék]#×

¢Ḱz¤��ºÑv¢Ḱ �̂Õ=�Z�ó9Ó�p�[�{�É÷D4Éy Ü!C�¡Ù<S,�ÒÕxíN}�d�Õ|¡��_�á��.
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