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Abstract

This thesis presents new approaches to fuzzy inference system for modeling nonlin-
ear systems based on input and output data using kernel machines. It is an impor-
tant issue how to select the best structure and parameters of the fuzzy model from
given input-output data. To solve this problem, this thesis proposes the state-of-
the-art kernel machine as the fuzzy inference engine. The kernel machine contains
two modules such as the machine learning and the kernel function. The machine
learning is a learning algorithm. The kernel function projects input data into high
dimensional feature space. In this thesis, an extended Support Vector Machine
(SVM), an extended Feature Vector Selection (FVS) and an extended Relevance Vec-
tor Machine (RVM) as kernel machines are used.

In the proposed fuzzy system, the number of fuzzy rules and the parameter val-
ues of membership functions are automatically generated using extended kernel
machines such as an extended SVM, an extended FVS and an extended RVM. The
structure and learning algorithm of the FIS using an extended SVM, an extended
FVS and an extended RVM are presented, respectively. The learning algorithm of
the extended FVS is faster than the extended SVM. The extended FVS consists of
the linear transformation part of input variables and the kernel mapping part. The
linear transformation of input variables is used to solve problem selecting the best
shape of the Gaussian kernel function. The extended RVM generates the smaller
number of fuzzy rules than the extended SVM. The extended RVM does not need the
linear transformation of input variables because the basis function of the extended
RVM is not restricted within the limitation of the kernel function.

As the basic structure of the proposed fuzzy inference system, the Takagi-Sugeno
(T'S) fuzzy model is used. After the structure is selected, the parameter values in the
consequent part of TS fuzzy model are determined by the least square estimation

method. In particular, the number of fuzzy rules can be reduced by adjusting the



linear transformation matrix or the parameter values of kernel functions using a
gradient descent method.
Some examples involving benchmark nonlinear systems are included to illustrate

the effectiveness of the proposed techniques.
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CHAPTER

Introduction

1.1 Motivation

Conventional mathematical modeling approaches have difficulty in modeling many
systems because of the lack of exact knowledge, highly nonlinear behaviors or per-
formance limitation.

To overcome this problem, the neuro-fuzzy system has been popularly developed
for modeling of nonlinear systems based on input and output data [1] [2] [3] [4]
[5] [6]. The advantage of integrating neural networks and fuzzy inference system
(FIS) is that neuro-fuzzy systems are able not only to describe target systems us-
ing fuzzy logic and reasoning of fuzzy system but also to decide its parameters us-
ing the learning and adaptive capability of neural network. Generally, neuro-fuzzy
modeling from numeric data consists of two parts that are structure identification
and parameter identification. The process of structure identification determines
the number of fuzzy rules or variables selection. The process of parameter identi-
fication decides the parameters of membership functions in antecedent parts and
coefficients of linear equations in consequent parts.

However, if training data set for learning has measurement noise and (or) avail-

able data size is too small in the real system modeling, neural network can bring
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out over-fitting problem which is a factor of poor generalization. It is an important
problem to select the optimal structure of the neuro-fuzzy model for good general-
ization, such as the number of fuzzy rules, parameters of membership functions and
coefficients in consequent part.

In this thesis, we propose new approaches to FIS for modeling nonlinear system
based on input and output data using kernel machines such as an extended Support
Vector Machine (SVM) [7], an extended Feature Vector Selection (FVS) [8] and an
extended Relevance Vector Machine (RVM) [9].

The proposed FIS performs system optimization and generalization simultane-
ously. As the basic structure of the proposed fuzzy inference system, the Takagi-
Sugeno (TS) fuzzy model [10] is used. In the proposed fuzzy system, the number
of fuzzy rules and the parameter values of membership functions are automatically
generated. In addition, the number of fuzzy rules can be reduced by adjusting the
linear transformation matrix or the parameter values of kernel functions using a
gradient descent method. After the structure fuzzy system is determined, the pa-
rameter values in the consequent parts of TS fuzzy model are determined by the

least square estimation method.

1.2 Previous Research

The main issue in neuro-fuzzy modeling is how to decide the best structure and
parameters from a given input-output data of the particular systems, such as the
number of fuzzy rules, parameters of membership functions in antecedent parts
and coefficients in consequent parts. If a fuzzy model has too many rules, it de-
creases the error between a given data output and fuzzy model output, but can
cause overfitting and decrease computational power. By contrast, if a fuzzy model
has too small rules, it increases computational power and prevents overfitting but
can increase error.

The conventional structure identification of neuro-fuzzy modeling is closely re-

lated to the partitioning of input space for fuzzy rule generation.
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Table 1.1 Various input space partition methods for fuzzy rule extraction

] Group \ Method \ Disadvantage ‘
Grid Partition Course of dimensionality
.. Tree Partition Number of rule exponential in-
Partition .
creasing
Scatter Partition Completeness not guaranteed
GA Algorithm based Parti- | Long learning time
tion
Fuzzy C-mean Clustering | Predetermined the number of
Clustering clustering
Mountain Clustering Let perception grid points as the
candidate for clustering center
Hybrid Clustering Depending on implementation

1.2.1 Partitioning of input space

There are two kinds of groups for fuzzy rule generation from the data such as parti-
tion and clustering as shown in Table 1.1. One group is the partition of input space.

The partition of input space can be categorized into the following methods.

e Grid Partition [11] [12] : As shown in Fig. 1.1(a), input space is divided into
grid partition using grid type.

e Tree Partition [13] : As shown in Fig. 1.1(b), each region is uniquely specified

along a corresponding decision tree.

e Scatter Partition [14] : As shown in Fig. 1.1(c), scatter partition is illus-

trated as the subset of the whole input space.

e GA Algorithm based Partition [15] : As shown in Fig. 1.1(d), GA Algo-
rithm based partition is presented as the partition method using GA algorithm

which divides the input space into disjoint decision areas.

The other group is the clustering of input space. The clustering method is classi-

fied into the following methods.

e Fuzzy C-mean Clustering [16] : Fuzzy C-mean clustering partitions the

collection of n vector x;, (j = 1,...,n) into C groups G;, (i = 1, ...,¢) and finds a
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X2 X9

(a) X1 (b) X1

X2 X2

(c) X1 (d) X1

Fig. 1.1 Various input space partitioning methods, (a) Grid partition, (b) Tree par-
tition, (c) Scatter partition and (d) GA algorithm based partition

cluster center in each group such that a cost function of dissimilarity measure

is minimized.

e Mountain Clustering [17] : Mountain clustering is a relatively simple and
effective approach to approximate estimation of cluster centers on the basis of

a density measure.

Table 1.1 summaries various input space partitioning methods for fuzzy rule
extraction and these disadvantages. The conventional partition of input space in
structure identification is separated from parameter identification determining the
value of parameter. Besides this process is isolated system optimization involving
parameter and structure optimization. In particular, partition methods have disad-
vantages, which include the course of dimensionality [11], an exponential increase

in the number of rules [13], unpredictable completeness [14] or computation cost
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[15]. In clustering techniques, the number of cluster must be known in advance
[16] [18] , or previously settled grid points of grid lines can function as candidates
for cluster centers [17] [19]. Traditional sequential learning approaches of struc-
ture identification and parameter identification are adequate for off-line learning

instead of on-line learning [20].

1.2.2 Statistical techniques based neuro-fuzzy modeling

Recently, the state-of-the-art kernel machine has actively applied to various fields
[21] [22] [23] [24] [25] [26] [27]. The kernel machine is derived from the statistical
learning theory. The kernel machine contains two modules such as the machine
learning and the kernel function. The machine learning is a learning algorithm.
The kernel function projects input data into high dimensional feature space to in-
crease the computational power.

In kernel machine, the most popular method is Support Vector Machine (SVM).
The SVM [21] has delivered good performance in various application. In particular,
the SVM has been used in order to find the number of network nodes or fuzzy rules
based on given error bound [28] [29] [30]. The Support Vector Neural Network
(SVNN) was proposed to select the appropriate structure of radial based function
network for the given precision [28]. Support vector learning mechanism for fuzzy
rule-based inference system was presented in [29].

However, these methods have same Gaussian kernel parameters, completeness
is not guaranteed. It means that the number of fuzzy rules is not really simplified.
In this thesis, the number of rules is reduced by adjusting the parameter values
of membership functions using a gradient descent algorithm during the learning
process. Once a structure is selected, the parameter values in consequent part of

TS fuzzy model are determined by the least square estimation method.

1.2.3 Kernel machines

The kernel machine is the large class of learning algorithms with kernel function.
The kernel machine generally deals with trade-off between fitting the training data
and simplifying model capacity. Recently, kernel machines have been popularly

used in many applications including face recognition [31] [32] [33] [34], bioinfor-
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matics [35] [36] [37], text categorization [38] [39], time series analysis [40] [41] [42]
[43], machine vision [44] [45], signal processing [46] and nonlinear system identifi-
cation [47] [48].

As kernel machines, Support Vector Machine (SVM), Feature Vector Selection
(FVS) and Relevance Vector Machine (RVM) are noticeable methodologies. These

kernel machines are summarized as follows:
Support Vector Machine (SVM) [21]

The SVM has strong mathematical foundations in statistical learning theory. It is a
learning system designed to trade-off the accuracy obtained particular training set
and the capacity of the system. The structure of the SVM is the sum of weighted
kernel functions. The SVM determines support vectors and weights by solving a
linearly constrained quadratic programming problem in a number of coefficients
equal to the number of data points. The SVM is generally divided into Support
Vector Classification (SVC) [49] and Support Vector Regression (SVR) [50].

Feature Vector Selection (FVS) [26]

The FVS is based on kernel method. It performs a simple computation optimizing
a normalized Euclidean distance into the feature space. The FVS technique is to
select feature vector being a basis of data subspace and capturing the structure of
the entire data into feature space. Once the feature vector is selected, the output
of FVS is calculated using a kernel function approximation algorithm. The FVS is

also used for classification [37] and regression [26].
Relevance Vector Machine (RVM) [27]

The RVM has an exploited probabilistic Bayesian learning framework. It acquires
relevance vectors and weights by maximizing a marginal likelihood. The structure
of the RVM is described by the sum of product of weights and kernel functions.
The kernel function means a set of basis function projecting the input data into a
high dimensional feature space. The RVM is also presented for classification and

regression.
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Table 1.2 Compared results of SVM, FVS and RVM
] H SVM \ FVS \RVM\

Sparsity Bad | Middle | Good
Generalization Good Bad Good
Computation time Middle | Short | Long
Flexibility of kernel No No Yes

Now, we compare the characteristics of the SVM, FVS and RVM. The compared
results are listed in Table 1.2.

In sparsity, the number of the extracted support vectors grows linearly with the
size of training set. On the contrary, the RVM achieves sparsity because the poste-
rior distributions of many of weights are sharply peaked around zero. The FVS has
middle sparsity because it extracts feature vector as a basis of data subspace. Both
SVM and RVM deal with the generalization, but the FVS do not achieve generaliza-
tion. The RVM has long computation time because it has order O(M?) complexity
with the M number of basis function. Because the SVM solves the quadratic pro-
gramming problem, the computation time of SVM is longer than the FVS. Both SVM
and FVS must the Mercer’s condition of kernel function. It means that the kernel
function is symmetric positive finite definite. But contrast, because the RVM has
only basis function as kernel function, it’s kernel function does not need to satisfy
the Mercer’s condition.

In following chapters, we will present SVM, FVS and RVM in detail, respectively.

1.3 Original Contributions

In this thesis, we describe new approaches to fuzzy inference system (FIS) for mod-
eling nonlinear systems based on input and output data using kernel machines. As
the basic structure of the proposed fuzzy inference system, the Takagi-Sugeno (TS)
fuzzy model is used.

We have the following original contributions in the areas of fuzzy modeling using
the state-of-the-art kernel machines, such as the extended Support Vector Machine
(SVM) [7], the extended Feature Vector Selection (FVS) [8] and the extended Rele-
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vance Vector Machine (RVM) [9].

e We propose the FIS using an extended SVM for modeling the nonlinear sys-
tems. In the proposed FIS, the number of fuzzy rules and the parameter values
of fuzzy membership functions are automatically generated using an extended
SVM. In particular, the number of fuzzy rules can be reduced by adjusting the

parameter values of the kernel functions using the gradient descent method.

e We propose the FIS using an extended FVS for modeling the nonlinear sys-
tems. In the proposed FIS, the number of fuzzy rules and the parameter val-
ues of fuzzy membership functions are also automatically determined using
an extended FVS. In addition, the number of fuzzy rules can be reduced by ad-
justing the linear transformation matrix of input variables and the parameter

values of the kernel function using the gradient descent method.

e We propose the FIS using an extended RVM for modeling nonlinear systems
with noise. In the proposed FIS, the number of fuzzy rules and the parame-
ter values of fuzzy membership functions are automatically decided using an
extended RVM. In particular, the number of fuzzy rules can be reduced under
the process of optimizing a marginal likelihood by adjusting parameter values

of kernel functions using the gradient ascent method.

The kernel machine already works fine system modeling from input and out-
put. However, there are several advantages of the proposed FIS using the extended
SVM, FVS and RVM, respectively.

e The SVM, FVS and RVM describe only input and output of system as black-
box. It is difficult to make out interior state of system. On the contrary, be-
cause the FIS describes system using if-then rules with membership functions

qualitatively, it can help us to grasp the system.

e Once the black-box system is presented as the FIS it is easy to design the
controller. As an example, the well known parallel distributed compensation
(PDC) can be utilized [51].
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e If we model the nonlinear system as T'S fuzzy model, we can prove the stability

of system [52].

1.4 Thesis Overview

This thesis presents the fuzzy inference systems of nonlinear systems using ker-
nel machines such as the extended Support Vector Machine (SVM), the extended
Feature Vector Selection (FVS) and the extended Relevance Vector Machine (RVM).
Each of the original contributions described in the previous section is presented in
the following separated chapters.

Chapter 1 describes the background, motivation, contribution and the outline of
this work.

Chapter 2 describes the preliminaries of the fuzzy system, statistical learning
theory and kernel-induced feature space. In particular, the fuzzy set and logic, fuzzy
reasoning and Takagi-Sugeno fuzzy model in fuzzy system are introduced. In sta-
tistical learning theory, generalization error, empirical risk minimization and struc-
ture risk minimization principle are presented. In kernel-induced feature space,
learning in feature space and kernel function are described.

Chapter 3 describes the fuzzy inference system using an extended SVM. The
extended SVM is introduced as fuzzy inference engine. The structure and learning
algorithm of the FIS using an extended SVM are proposed. The proposed FIS is
tested in three numerical examples.

Chapter 4 describes the fuzzy inference system using an extended FVS. The
extended FVS is also proposed as fuzzy inference engine. The learning algorithm
of the extended FVS is faster than the extended SVM. The extended FVS consists
of the linear transformation part of input variables and the kernel mapping part.
The linear transformation of input variables is used to solve problem selecting the
best shape of the Gaussian kernel function. The proposed FIS is evaluated in the
examples of two nonlinear functions.

Chapter 5 describes the fuzzy inference system using an extended RVM. The
extended RVM is also proposed as fuzzy inference engine. The extended RVM gen-

erates the smaller number of fuzzy rules than the extended SVM. The extended
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RVM does not need the linear transformation of input variables because the basis
function of the extended RVM is not restricted within the limitation of the kernel
function. The structure and learning algorithm of the FIS using an extended RVM
are presented. The proposed FIS is evaluated in the examples of nonlinear dynamic
systems and robot arm data.

Chapter 6 summarizes the results of this thesis and discusses future research

1nitiatives.



CHAPTER

Preliminaries

This chapter introduces fuzzy system, statistical learning theory and kernel-based
feature space. In fuzzy system, fuzzy set and fuzzy logic are presented. The Takagi-
Sugeno (TS) fuzzy model known as one of the most outstanding fuzzy systems is
also introduced. In statistical learning theory, generalization error, empirical and
structure risk minimization principle are presented. In kernel-based feature space,

learning in feature space and the properties of kernel function are illustrated.

2.1 Fuzzy Systems

A fuzzy system is a rule-based system that uses fuzzy set and fuzzy logic to reason
about data. Fuzzy logic is a computational paradigm that provides a mathematical
tool for representing information in a way that resembles human linguistic commu-
nication and reasoning processes [53] [54] [55] [566] [57] [58] [59] [60].

2.1.1 Fuzzy set and fuzzy logic

Lotfi Zadeh established the foundation of fuzzy logic in a seminal paper entitled
“Fuzzy Sets” [61]. In [61], fuzzy sets were imprecisely defined as sets and classes

“play an important role in human thinking, particularly in the domains pattern

11
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Table 2.1 The equivalence between isomorphic domains

] Set H Logic \ Algebra ‘
Membership Truth Value
Member (€) True (T) | 1

Non-member False (F) | 0

Intersection (M) || AND (A) | Product(x)
Union (U) OR (V) Sum (+)
Complement (—) || NOT (~) | Complement ()

recognition, communication of information, and abstraction.” Fuzzy sets are the
generalization of crisp sets with crisp boundaries.

Let us now basic definitions concerning fuzzy sets.

Definition 2.1.1 [/55] [62] If X is a collection of objects denoted generically by x,

then a fuzzy set A in a universe of discourse X is defined as a set of ordered pairs:
A=A{(z,pa(x))|r e X} (2.1)

where pa(x) is called the membership function (MF) for the fuzzy set A. The MF
is a mapping

pa(z): X — [0, 1]. (2.2)
Note that each element of X is mapped to a membership grade between 0 and 1.

The operation that assigns a membership function pa(x) to a given value x is

called fuzzification.

The most commonly used membership functions are triangular, trapezoidal, Gaus
sian, generalized bell and sigmoidal MFs.

The rules of FIS are expressed as the logical form of if ... then statements. J. M.
Mendel pointed out fuzzy logic system as “It is well established that propositional
logic is isomorphic to set theory under the appreciate correspondence between com-
ponents of these two mathematical system. Furthermore, both of these systems are
isomorphic to a Boolean algebra.” [565] [63]. Some of the most important equivalence
between these isomorphic domains are shown in Table 2.1.

In fuzzy domains, fuzzy operators are needed such as crisp operators. The follow-

ing fuzzy operators most commonly used in the frame of fuzzy systems [55] [62].
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Operators for intesection/AND operations (uanp(z) = pa(z) A pp(z)): The
intersection/AND of two fuzzy sets A and B is defined as the following T-norm oper-

ators,

minimum : min(pa(x), pp(x))
algebraic product : pa(x) - pp(x)

bounded product : max(0,pua(z)+ pp(x) —1)
IU’A(:U> ) if uB 1’) =1
drastic product ( [ 1
0 , i pa(z),up(z) < 1.
Operators for union/OR operations (uaup(z) = pa(z)Vup(x)): The union/OR

of two fuzzy sets A and B is defined as the following T-conorm operators,

mazimum : max(pa(z), up(x))
algebraic sum : pa(z) + p5(2) — pa(z) - 45 ()

bounded sum : min(1, pa(x) + pp(x))

pal) it ps(z) =0
drastic product : pp(x) , if pa(z)=0
1 , i pa(z), pp(z) > 1.

Operators for complement/NOT (y4(x) = ptwa(z)): The complement/NOT of

fuzzy sets A is defined as the following fuzzy complement,
fuzzy complement : 1 — pu(x)

2.1.2 Fuzzy inference system

Zadeh pointed out that conventional techniques for system analysis are intrinsically
suited for dealing with humanistic systems [64]. Zadeh introduced the concept of
linguistic variable as an alternative approach to modeling human thinking.

In fuzzy inference system, fuzzy if-then rules have the form [62],
if zis A then yis B, (2.3)

where A and B are linguistic values defined by fuzzy sets on universes of discourse X
and Y, respectively. The input condition “z is A” is called the antecedent or premise.

The output assignment “y is B” is called the consequent or conclusion.
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Fig. 2.1 Fuzzy rule vs input space partition

The generation of fuzzy if-then rules is related to the partitioning of input space
partition. Figure 2.1 shows the example of the 2-dimensional input space parti-
tioning [55]. In Fig. 2.1, the fuzzy linguistic variable Age has three membership
functions: Young, Middle and Old. The fuzzy linguistic variable Triglycerides has
also three membership functions: Normal, High and Veryhigh. The total number
of fuzzy rules is nine as shown in Fig. 2.1.

The 9-th fuzzy rule is described as follows:

Ry : If Ageis Old and Triglycerides is Veryhigh,

Then Cardiac risk is Dangerous. (2.4)

where Dangerous is linguistic fuzzy output variable.

In fuzzy inference system, fuzzy reasoning is necessary. Fuzzy reasoning is an
inference procedure that derives a reasonable output and conclusion from a set of
fuzzy if-then rules and known facts.

The inference procedure of fuzzy reasoning (approximate reasoning) is defined as

follows:
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Definition 2.1.2 [62] Let A, A’ and B be fuzzy sets of X, X and Y, respectively. As-
sume that the fuzzy implication A — B is expressed as a fuzzy relation R on X x Y.
Then the fuzzy set B’ induced by “x is A’” and the fuzzy rule “if x is A then yis B”is
defined by

pp(y) = AoR=Ao(A— B)
= maxzmin[,uA/ (l‘), MR(va y)]

= Velpa(z) A pr(z,y)] (2.5)
where a composition operator o means the max — min composition.

The fuzzy implication A — B is defined as commonly operators, minimum and
product. The most of composition operators have used the maxr — min composition
or the max — product composition.

The output of FIS is crisp value. The process that extracts the best crisp output
from a fuzzy output as a representative value is called defuzzification. Many de-
fuzzification methods have been developed in literature. The most commonly have
used method is the Center of Gravity (COG), also called Center of Areas (COA) or
Centroid.

Given an output fuzzy set A = p4(x) defined in the universe X of the variable z,

the defuzzified output y is given as follows:

e Center of Gravity (COG):

 fenale)r de
Yycoc = W (2.6)

where 114 (x) is the aggregated output MF.

Figure 2.2 shows graphically the operation fuzzy reasoning for two rules with two
antecedents. Two fuzzy if-then rules with two antecedents are presented as follows:
Ry : ifzis A; and yis B; then zis (1,

Ry : ifzis As and yis By then z is Cs, 2.7

Two firing strength p4,(x) and pp,(y) (i = 1,2) indicate degrees to which the an-
tecedent part of the fuzzy rule is satisfied. They are calculated using AND operator
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Fig. 2.2 Fuzzy reasoning for two rules with two antecedents

(min(pa,(x), up,(x))). Two induced consequent membership functions xc,(z) and
tc,(z)) are combined using Union operator (mazx(uc, (2), pc,(2))). Once fuzzy rea-
soning is achieved, defuzzifer follows.

The basic structure of a fuzzy system consists of four conceptual components as
shown in Fig. 2.3 (1) a knowledge base, which consists of a database that de-
fines the membership functions used in the fuzzy rules, a rule base that contains
a selection of fuzzy rules; (2) a fuzzifier, that translates crisp inputs into fuzzy val-
ues; (3) an inference engine, which applies the fuzzy reasoning mechanism; (4)

defuzzifier, that extracts a crisp value from fuzzy output.

2.1.3 Takagi-Sugeno fuzzy model

Fuzzy Inference System (FIS)s have powerful capability for modeling complex non-
linear systems [1] [10] [16]. One of the most outstanding FISs, proposed by Takagi
and Sugeno [10] [57], is known as the TS model. The TS fuzzy model consists

of fuzzy if-then rules which map the input space into fuzzy regions and approxi-
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Fig. 2.3 The structure of a FIS

mate the system in every region by a local model corresponding to various operat-

ing points. The structure of TS fuzzy model is the combination of interconnected

systems with linear models.

The TS fuzzy model suggested a systematic approach for generating fuzzy rules

from a given input and output data set. This fuzzy model is presented as follows:

Ry : Ifzqyis My; and ... and zp is Mip,

Then fi =aio+anz1+---+aipzp
R2 : Ifxl 18 M21 and ... and D is MQD,

Then fy> = asg + as1z1 + -+ + azpxp

R, : Ifxyis M,; and ... and xp is M,,p,
Then f, = ano+ an1z1 + -+ + appxp. (2.8)

where n is the number of fuzzy rules, D is the dimension of input variables, z;(j =

1,2,..., D) is aninput variable, f; is the i-th local output variable, M;;(i = 1,2,...,n,j =
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1,2,...,D) is a fuzzy set and a;;(i = 1,2,...,n,5 = 0,1, ..., D) is a consequent parame-
ter.

The final output of T'S fuzzy model is obtained as follows:

n
> wifi
f(x) = %7
> w;
i=1
n
Y wi(aio + anxi + apxs + -+ + aipxp)
=1
= i 7 ,
> w
i=1
D
= Zhiaija:j,
=0
where 2y =1,
w; D
(A
Zwi j=1

w; is the weight of the i-th If-then rule for input and M;;(x;) is the membership
grade of z; in M;;.

Sugeno-Kang proposed the procedure of T'S fuzzy modeling as a nonlinear mod-
eling framework. The methods of structure and parameter identifications were in-
troduced. These methods had influence on the self-organizing fuzzy identification
algorithm (SOFIA) [59] and neuro-fuzzy modeling techniques [1] [60].

2.2 Statistical Learning Theory

In this section, we introduce a statistical learning theory. Recently, statistical learn-
ing theory has been popularly developed in many application [21] [22] [23] [24] [25]
[49] [50].

2.2.1 Generalization error

Generalization error is the sum of estimation error and approximation error as
shown in Fig. 2.4 [65].
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Fig. 2.4 Generalization error

e Approximation error is the one due to approximation from hypothesis space

into target space.

e Estimation error is the one due to the learning procedure which results in a

technique selecting the non-optimal model from the hypothesis space.

2.2.2 Empirical risk minimization principle

In statistical learning theory, the standard way to solve the learning problem is to
define risk function, which measures the average amount of error associated with

an estimator [66].

e Classical Regularization Networks
Vi, f(x:) = (yi — f(x))? (2.10)
e Support Vector Machines Regression

Vi, f(Xi)) = |yi — f(Xi)le (2.11)
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Training data is D; = {(x;,%:) € X x Y}._,, obtained by sampling / times the set
X x Y according to P(x,y). If V(y;, f(x;)) is the loss function measuring the error,

when we predict y using f(x), then the average error is called expected risk :
RIfI= [ VO s Pl p)dx)ay 2.1
Let fy be the function which minimizes the expected risk in F":
fo= arnginR[f]. (2.13)

The function fy is ideal estimator, and it is often called target function. However,
the probability distribution P(x,y) defining the expected risk is unknown. To over-

come this problem, Vapnik [49] suggests empirical risk minimization principle,

~| =

l
Remplf] = 7> Vi, f(x:)). (2.14)
=1

Formally, the theory answers the question of finding under which conditions the

method of empirical risk minimization principle satisfies:
Jim R | fil = Jim R 71l = Rlfol, (2.15)
where fl is the minimizer of the empirical risk (2.14) in F.

2.2.3 Structure risk minimization principle
The Vapnic Chervoenkis(VC) dimension h is defined as follows:

Definition 2.2.1 [49] The capacity of a set of function with logarithmic bounded
growth function can be characterized by the coefficient h. The coefficient h is called
the VC dimension of a set of indicator functions. It characterizes the capacity of a set
of functions. When the growth function is linear, the VC dimension is defined to be

infinite.

The important outcome of the work of Vapnik and Chervonenkis is that the uniform
deviation between empirical risk and expected risk in a hypothesis space can be

bounded in terms of the VC-dimension, as shown in the following theorem [66]:
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Theorem 2.2.1 [66] [67] Let A < V(y, f(x)) < B, f € F,with A and B < oo, F be a
set of bounded functions and h the VC-dimension of V in F. Then, with probability
at least 1—n), the following inequality holds simultaneously for all the elements f of F :

Remplf]—(B—A) —
The quantity R[f] — Remp[f] is often called the estimation error. Since the space F
where the loss function V is defined is usually very large, one typically considers
smaller hypothesis spaces H. The cost associated with restricting the space is called
the approximation error. In the literature, space F where V is defined is called the
target space, while H is so called the hypothesis space [66].

We define the set of nested subsets of hypothesis spaces H; C Hy C -+ C H,. If

h; is the VC dimension of space H;, then h; < hy <--- < SOR (2.16) is rewritten as

hinZ —In(%)

] (2.17)

R[f] < Remplf] + (B — A)

The idea of the structural risk minimization induction principle is the following. To
provide the given set of functions with an admissible structure and then to find the
function that minimize guaranteed risk (2.17) over given elements of the structure.

In Fig. 2.5, the relationship between approximation error, estimation error and

generalization error about VC dimension is illustrated.

2.3 Kernel-Induced Feature Space

In this section, the learning in feature space and kernel function are introduced.
The kernel technique performs a nonlinear mapping which projects input space

into high dimensional feature space.

2.3.1 Learning in feature space

In general, the preprocessing step in learning machine contains representation of

given input-output data [23]:

X = (T1,...,Zn) — OX)=(¢1(X),..., dn(X)).
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Fig. 2.5 The relationship between approximation error, estimation error and gen-
eralization error

This step is equivalent to mapping the input space X into a new space, F' = {¢(x)|x €
X}

To project the given data into hypothesis space can increase computational power
in learning machine and can supply various methods for extracting relevant infor-
mation through new representation of data. The quantities introduced to describe
the data are called features, while original quantities are called attributes. The
work of selecting the best suitable representation is known as the feature selection.
The space X is referred to as the input space, while F' = {¢(x)|x € X} is called the
feature space [23].

Figure 2.6 shows the example of a nonlinear mapping the training data in input
space into a higher-dimensional feature space via ¢. In input space, data can not be
separated by linear function, but in feature space, data can be separated by linear

function.

2.3.2 Kernel function

We present the definition and characteristic of kernel function. Firstly, finitely pos-

itive semi-definite function is defined.
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Fig. 2.6 Nonlinear mapping

Definition 2.3.1 [25] A function
K: XxX—R (2.18)

satisfies the finitely positive semi-definite property if it is a symmetric function for
which the matrices formed by restriction to any finite subset of the space X are posi-

tive semi-definite.
Definition 2.3.2 [23] A kernel is a function K, such that for all x, z € X
Kxz) = <o) ¢(z)> (2.19)

where ¢ is a mapping from X to an (inner product) feature space F.
Its arguments followed by the evaluation of the inner product in F if and only if it
satisfies the finitely positive semi-finite property.

The following Mercer’s theorem provides characterization when a function K(x,z)

is a kernel.

Theorem 2.3.1 [23][68] Let X be a compact subset of R". Suppose K is a continuous
symmetric function such that the integral operator Ty, : Lo(X) — Lo(X),

Tof () = /XK(-,x)f(x)dx (2.20)
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Table 2.2 Kernel function and type

’ Kernel Function ‘ Type ‘
K(x,y) = (x-y)+1) Polynomial of degree d
Kxy) = exp(—%) Gaussian RBF
K(x,y) = exp(— h;;g’ ) Exponential RBF
K(x,y) = tanh(a(x-y)—b) | Multi-layer perceptron
K(x,y) = %ﬁ;—%ﬁ?g) Fourier series

is positive. That is

K(x,2)f(x)f(z)dxdz > 0, (2.21)
XxX

for all f € Ly(X). Then we can expand K(x,z) in a uniformly convergent series (on
X x X) in terms of T}’s eigen-functions ¢; € Lo(X), normalized in such a way that

lloillL2 = 1, and positive associated eigenvalue \; > 0,
Kw.2) = 3 \és(x)5(a). (2.22)
j=1
From these definition and theorem, we can summary kernel function as follows,
Kx2) = <o) 0@ > = 3 Aibi®i(2). 2.28)
i=1

The following example in [21] gives brief understanding.
Example (Quadratic feature in [21] R?): Consider the map ¢ : R? — R? with

O(X) = ¢(x1,22) = (27, V21129, 23), (2.24)

where z1 and zo € R?, for instance, the polynomial kernel K (x,y) = (x-y)“.

For d = 2, and x,y € R?, we have
x y 2
2 1 1
X - = .
ot = ((2)(0))

g yi
= V2riza || V2u192
a3 Y3

= (¢(x)-9(y))- (2.25)
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In Table 2.2, the most commonly used kernel functions are presented.
We use the the following kernel matrix as kernel function in learning algorithm.
Give a input data X = {z1,...,x;} and kernel function K, the following kernel or

Gram matrix K;; is presented,
K = K(z;,25), fori,j=1,..,1. (2.26)

The kernel matrix acts as an interface between the data input module and learning

algorithm.



CHAPTER

Fuzzy Inference System Using an Extended SVM

This chapter describes the fuzzy inference system (FIS) using an extended Support
Vector Machine (SVM) for modeling the nonlinear systems based on input and out-
put data. The SVM is a learning system designed to trade-off the accuracy obtained
particular training set and the capacity of the system [21] [65]. The structure of
the SVM is the sum of weighted kernel functions. In the proposed FIS, the number
of fuzzy rules and the parameter values of fuzzy membership functions are auto-
matically generated using an extended SVM. In an extended SVM, the parameter
values of the kernel function are adjusted using the gradient descent method. The

number of fuzzy rules can be reduced by the extended SVM.

3.1 Introduction

Recently, the neural fuzzy approach has become one of the most popular research
fields in system modeling describing the system’s nature and behaviors [1] [3] [69].
The principle purpose of a neuro-fuzzy system is to apply learning technique of
neural network to find and tune both the structure and the parameter of system
based on FIS.

Main design issues of neuro-fuzzy system from numeric data are how to appropri-

26
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ately determine the number of fuzzy rule and how to precisely decide the member-
ship function in antecedent parts and the value of parameter in consequent parts.
Neuro-fuzzy modeling consists of structure identification and parameter identifica-
tion. Structure identification methods determining the number of fuzzy rules have
been variously introduced by [16] [17] [18] [19]. Parameter identification methods
have generally used the gradient descent method.

Recently, the SVM has been popularly used for the system modeling and identi-
fication [70] [71] [72] [73] [74]. In particular, the SVM has been used in order to
find the proper number of rules for the given precision [28] [75]. A Support Vector
Neural Network (SVNN) using a radial basis function network was introduced [28].
In [75], a SVM was applied for simplifying FIS. However, because both papers used
the same Gaussian kernel parameters, the number of fuzzy rules was not really
minimized for the given precision.

To overcome this limitation, we propose a new FIS based on Takagi-Sugeno (TS)
fuzzy model using an extended SVM. We uses an extended SVM without any bias.
The number of new fuzzy rules can be reduced further by adjusting the parame-
ter values of membership functions using a gradient descent method during the
learning process. The proposed FIS can easily present a given system by nonlin-
ear mapping which projects input space into high dimensional feature space. The
structure of the proposed FIS is founded first by solving a constrained quadratic
programming problem for a given modeling error. After the structure is selected,
the parameter values in consequent part of TS fuzzy model are determined by the

least square estimation method.

3.2 Support Vector Machines (SVM)

The SVM is derived from statistical learning theory [21]. Support Vector Machines
(SVMs) are learning systems that use a hypothesis space of linear functions in a
high dimensional kernel induced feature space. It determines support vectors and
weights by minimizing an upper bound of generalization error [76] [77]. The output
of the SVM is the sum of weighted kernel function. Kernel function projects the

data into a high dimensional feature space to increase the computational power of



3.2. SUPPORT VECTOR MACHINES (SVM) 28

the linear machine.

The SVM is generally divided into Support Vector Classification (SVC) [49] used
to describe classification and Support Vector Regression (SVR) [50] used to describe
regression. This section describes the SVR problem.

Consider the structure on the nonlinear function for approximating

with ® : R' — F, w € F, when ® is nonlinear mapping, w is the associated weight
and F is a feature space.

Suppose we have given data

(161,2/1), LRET) (xla yl)

Nonlinear function for approximating the set of data is presented as follows:

flz) = (7 — i) (®(z:) - 2(x)),

!
i=1
!
Z(Oé:( - Oéi)K(.'L'Z', X)a (32)

i=1
where [ is the number of data, x = [x1, 22, ..., ;] is input data, o and «; are Lagrange
multipliers.
Let ®(x) and w be the nonlinear mapping and the associated weight, respectively.

The kernel function K(z;,x) is defined as a linear dot product of nonlinear mapping,
K(x;,x) = ®(x;) - P(x). (3.3)

The parameters « and o* of (3.2) are obtained by minimizing the following regu-

larized risk functional R.,[f],
1
Reg[f] = §||w”2+CRemp[f]a (34)

where ||w||? is a term which characterizes the model complexity, the second term is a
empirical risk, Repp[f] = Zizl L.(y), and C is a constant determining the trade-off

and ¢ is the given precision.
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Fig. 3.1 The s-insensitive band and loss for linear and nonlinear regression problem

Definition 3.2.1 /23] The c-insensitive loss function L.(y) is defined by

Le(y) = { 0 for |f(@) =yl <e (3.5)

|f(x) —y| — e otherwise,
where f is a real-valued function on a domain X, x € X and y € R.
Figure 3.1 shows the form of c-insensitive losses for zero and nonzero ¢ as a func-

tion of y — f(x). The minimization of (3.4) is equal to the following constrained

optimization problem,

!
o * L2 *
minimize  7(w, &, €) = g lwl|” + C;(&- +&), (3.6)
yi—w-®(x) <e+§
subject to —yitw- -P(z) <e+¢§ 3.7
P& >0, i=1,..,1

where £ and ¢; are slack variables representing lower and upper constraints on the
outputs of the systems.

To solve the optimization problem with constraints of inequality type can be con-
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verted to find the saddle point of the Lagrange functional

l l
L(w,€,60% 0,8 5) = Slwl?+CY (€ +&) — S (56 +6:)
=1

i=1

!
— Zai[yi —w-P(x;) +e+&]

!
- Zaf[w@(%) —y; e+ £, (3.8)

where Lagrange multipliers o > 0, oy; > 0, 57 >0, 8; > 0.

The minimum with respect to w, £*, £ of Lagrangian L implies the following condi-

tions
l

OL “
o 0 = w—;(ai—az)fb(xz),
OL

= < ot <
o 0 = 0<a" <,
oL
—— = <a<(C. .
o€ 0 = 0<a<(C 3.9

The dual problem is given by

. 1
min W(a*a) = min 53 3 (af —ai)(e] - aj) K (wi, 7))
1=0 j=0
l l
— S (o) — iy + Y (0 — e, (3.10)
i=0 i=0

with constraints

0<a,a"<C, 1=1,..,1.

In summary, approximate function from the set [65] is

l
fl@) = > (af — ) K(2;,%). (3.11)

i=0
The optimization problem, min,-, W(a*, a), can be expressed in matrix notation

as,
1
min 5xTHx +e’'x, (3.12)
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where . .
xxT XX e+Y ] . [ a
H=1 _yxr xxr ] _[5Y}’X_[a*]’ (3.13)
with constraints
ap, of >0, 1=1,..,1, (3.14)
and _ ) o
Zq Yi
X = |, Y= sl (3.15)
L L1 ] L Y

In the process of solving this optimization problem, the vector from the training set

that associate with nonzero Lagrange multipliers is called the support vector.

3.3 New Fuzzy Inference System Using an Extended SVM

This section describes the structure of the FIS using a SVM, the structure and
learning algorithm of the FIS using an extended SVM, and input space partition
method. In the proposed FIS, the number of fuzzy rules and the parameter values of
fuzzy membership functions are automatically generated using an extended SVM.
In particular, the number of fuzzy rules can be reduced by adjusting the parameter

values of the kernel function using the gradient descent method.

3.3.1 The structure of the FIS using a SVM

Let us suppose that we have given input and output data

(mlvyl)v ) (:L'na yn)a

where z;(: = 1,2, ...,n) is input data and y;(i = 1,2, ..., n) is output data.
The proposed TS fuzzy model with fuzzy if-then rules can be represented as fol-

lows:

Rulel : Ifxy;is My; and ... and x1p is Myp, Then f; = 6;

Rule 2 : Ifxois My and ... and zop is Msp, Then fo = 6 (3.16)

Rulen : Ifz,;is M, and ... and z,p is M,,p, Then f, = 6,,
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Fig. 3.2 The structure of the proposed FIS

where z;; is input variable, f; is local output variable, A/;; is fuzzy set and 0; is
consequent parameter. It is a simple Takagi-Sugeno (TS) type used singleton in
consequent parts.

Now, we describe the structure of FIS using the SVM. It consists of four layers as
shown in Fig. 3.2. The four layers involved in the proposed FIS are presented as

follows:
Layer 1: Input space is nonlinearly mapped into feature space by a map 9.
X = (1'2'1, -'-7xiD) — (I)(X) = (CI)((L‘M), ceny @({EZD))

Layer 2: Dot products are computed with the mapped input x and the support vector
(SV) being subset of input vector x. It corresponds to evaluating kernel func-

tions at locations K (x;,z). The modified Gaussian kernel function is used as
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follows:

K(z;,x) = exp ( -

(x — ;)

2
20;

), (3.17)

z; is a SV and o; is called a kernel parameter. This kernel function is a Gaus-

sian membership function in fuzzy inference system.

Layers 1 and 2 are the stage of fuzzifier.

Layer 3: In the nonlinear function considered for approximating the set of data,

/()

n

= > (0f — @)K (2;,x). (3.18)

=1

Weights (o — «;) and support vectors (SVs) z; are found by the constrained

optimization for a given precision €. The obtained SV becomes the center of

the Gaussian membership function.

This layer means a decision-making logic determining the number of fuzzy

rule by solving optimization problem from knowledge base being a minimum

regularized risk functional R.,[f] in (3.4).

Layer 4: The defuzzification using center of gravity (COG) method is performed as fol-

lows:

cog . iz Witi (3.19)

Z?:l Wy

In (3.18), the f(x) should be modified for the defuzzification of the COG.

Let

A, X))

> K(xi,x), (3.20)
i=1
[ K(x1,21) K(zp,x1)

: : , (3.21)
| K(21,7,) K(xp, zy)
i )\(1'1,.%'1) 0

. (3.22)

i 0 Mxp, )

Weight 61, ..., 6, can be expressed in terms of o and ax, as

0

(T 1T Lw (o — a). (3.23)
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Fig. 3.3 The simple structure of the proposed FIS using a SVM

The modified function f(z) is obtained,

Zznzl K(xiv x)ei
Z?:l K(xiv X)

= Z ,;. (3.24)

fx) =

More simple structure for learning algorithm is shown in Fig. 3.3.

Once a structure is selected, the parameter values in consequent part of TS fuzzy
model are determined by the least square estimation (LSE) method or the recursive

least square estimation (RLSE) algorithm.

3.3.2 The structure of the FIS using an extended SVM

The Takagi-Sugeno (TS) fuzzy model which is suitable for highly nonlinear systems
has been one of the major topics in theoretical studies and practical applications of
fuzzy modeling and control. The basic idea of the TS fuzzy models is to transform

the input space into fuzzy regions and to approximate the system in every region by
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Fig. 3.4 The structure of the proposed FIS using an extended SVM

a local model. The overall fuzzy model consists of the combination of interconnected
systems with linear models. Then the output of the whole fuzzy model is calculated
as the weighted sum of the local models using the defuzzification scheme based on
the Center Of Gravity (COG) method.

The TS fuzzy model using an extended SVM consists of the following If-Then rules:

R1 : Ifxll is M11 and ... and T1D is ]\411)7
Then f1 =ajot+anr1+---+aipxrp
R2 : Ifl'gl 18 M21 and ... and oD 18 MQD,

Then fo = asg + as1z1 + -+ + azprp

R, : Ifx, is M, and ... and x,,p is M,,p,

Then f, = ano + an171+ - + apprp. (3.25)

The structure of the FIS using an extended SVM based on TS fuzzy model is illus-
trated in Fig. 3.4.
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Fig. 3.5 The learning algorithm of the proposed FIS using an extended SVM

The proposed FIS is also divided into four Layers. The following function of this
FIS is similar to the previous FIS using a SVM.

Layer 1 ~ Layer 3: The functions of these Layers are equal to the previous FIS using
a SVM.

Layer 4: For the overall output of the fuzzy model constructed, defuzzification using

center of gravity (COG) method is performed as follows:

WRE

flx) =" , K(xi,x) = MINJZ Myj(2q),
K(I‘Z,X)
1

3.26
Bi (aio + ainwi1 + ajaxio + -+ - + a;ipTip), ( )

I
M=y

—_

(2

K(.TZ,X)

zn:lK(xi,x).

where, 3; =
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Table 3.1 Two passes in the learning algorithm for the proposed FIS

] Forward \ Backward ‘
SVMIIJgag'mng Gradient descent algorithm

3.3.3 The learning algorithm of the FIS using an extended SVM

The learning algorithm of the FIS using an extended SVM is shown in Fig. 3.5. We
present a recursive support vector learning algorithm which adjusts Gaussian ker-
nel parameters and estimates the consequent parameters using the LSE or RLSE.

It can be achieved by the following iterative procedure.
Step 1: Initialize precision ¢, trade-off constant C, and kernel parameter o;.

Step 2: Using the following SVM algorithm, find support vectors (SVs) z that is the

center ¢; of Gaussian membership function.
1
min §xTHx +cl'x. (3.27)
x
Step 3: Using either the LSE or RLSE [10], estimate the parameter a;; of linear equa-
tion f; in the consequent parts.

Step 4: Using a gradient descent algorithm [17], update the kernel parameter o; such

that error is minimized.
Step 5: Go to step 2 or stop

Table 3.1 shows two passes in the learning algorithm for the proposed FIS.
In step 3, because of estimating the parameter of linear equation (3; in the conse-
quent parts, the LSE [10] or RLSE [10] starts from minimizing the squared error

measure defined by
B o= - (3.28)
i=1

where yf is the desired output corresponding to the i-the input z; = (x;1, zi1, ..., zip)

and y; is the output of the constructed fuzzy model.
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The output of the constructed fuzzy model can be determined by

S K (1, 2) f;

yi=S————, K(zi,x) = MINZ | M;j(xi5),
2 Kz, ) (3.29)
1=
n
= Z Bi (aio + an®i + ap®i2 + - + a;pTip).
i=1
Let
T
Y =[yf 8 ]
T
A = [alo all o alD ...... a?’LO anl oo anD] s
and
(3.30)
fin Buzu - Puzip oo Bn1 Bz -+ BmaTip
_ |Piz Prrn oo fraap e Bn2  DBn2x21 -+ Br2t2p
Bin BinTur - BiaTpp e Ban BunTnl -+ BanTnbD
If (WTW) is nonsingular, the parameter vector A is calculated by
A = WIw)twly. (3.31)

Also we can apply the RLSE algorithm having on-line learning ability. Let by (k =

1,2,...,n) row vector of the matrix . Then A is recursively calculated as follows:

Ayt = A+ Si1 - by (Wi — bt - Ag),
S bfq - b1 - Sk

Sk4+1 =Sk — , k=0,1,--- ;n—1,
i 1+ by Sk 0L, (3.32)
A0:07
So :717

where v is a positive large number and [ is the identity matrix of dimensions (n-D+
1) x (n- D+ 1). The consequent parameter values are determined by the recursive
least-squares estimates A = A,, of the algorithm.

In step 4, the kernel parameters o; is adjusted by minimizing given F;,

E; = (yi —yh)?, (3.33)
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Let e = y;—y

n
= Z Bi (aio + an@a + anxi + -+ + aipxip) — Yo, (3.34)
i=1

Gaussian kernel function,

— )2
K(x;,z) = exp ( - W) (3.35)

According to the gradient descent method [17], learning rule for adjusting kernel

parameter o; in antecedent parts is presented as follows:

A(J'i == —UVO’iEi, (336)
8EZ 2 -3
VO'Z‘EZ‘ = ) :—2€ﬂiK($i,1‘)Hx—l‘iH g, - (337)
2k

3.3.4 The input space partition of the FIS using an extended SVM

Now, we discuss the input space partitioning of proposed FIS using an extended
SVM. The structure of fuzzy modeling is closely related to the partitioning of input
space for fuzzy rule generation. Input space partition approach of the proposed FIS
is a clustering-based method.

Figure 3.6 shows input space partition method of two-dimensional input space.
Figure 3.6 (a) and (b) show the input space partitioning using the SVNN [28] with
same Gaussian variance and the proposed FIS with each different Gaussian vari-
ance, respectively. Because each cluster leads to hidden layer and fuzzy rule, five
hidden layers and four rules are generated in Fig. 3.6 (a) and (b), respectively. The
support vector (SV) as the center of Gaussian kernel function becomes the center
of Gaussian membership function. Figure 3.6 illustrates how the method using the
extended SVM can reduce the number of rules and membership function. The five
clusters which are generated using the SVNN with the same Gaussian variance in
Fig. 3.6 (a) can be merged into four rules using the extended SVM with a different
Gaussian variance o;; in Fig. 3.6 (b).

The proposed FIS through the generalization strategy of the SVM estimates the
nonlinear system and determines fuzzy rules and parameters of membership func-

tions automatically.
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(b) The input space partitioning of the proposed FIS

Fig. 3.6 The input space partitions of the SVNN and the proposed FIS
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3.4 Examples

In this section, simulation results of the proposed FIS for the modeling of three
nonlinear systems are described. We compare modeling results of the proposed FIS
with the results of three others modeling methods such as an ordinary fuzzy system,
general SVM and SVNN. The ordinary fuzzy system havs initial grid even partition
without learning algorithm. It’s center and variance are the mean and half a size of
each partition respectively. The SVM is used the method proposed by Vapnik [21].
The SVNN with the same Gaussian variance is employed [28]. In the proposed FIS,
the extended SVM is used as a learning algorithm. The Gaussian kernel function
is employed as a kernel function.

The modeling error is defined as Root Mean Square Error (RMSE):

where N is the number of data, y; and 1, are the system and the model output.

3.4.1 Example 1: modeling of 1-input nonlinear function

The example was taken from Z. UyKan et al. [78]. The nonlinear system is as
follows:

Fi(z) = 0.5(sin(27wx/5) 4 sin(27x/3)). (3.39)

From 0.1 interval point of the range [0, 10] within the input space of the above func-
tion, 100 training data pairs were obtained firstly. The proposed FIS using an ex-
tended SVM for modeling of F} (z) extracts the 7 SVs, so that it has 7 fuzzy rules as
follows:

Rulei: Ifzis M;, Then f; = a;o + anzx, i=1,...,7, (3.40)

where z and f; are the input and output values, respectively.

The structure of the proposed FIS is shown in Fig. 3.7. The parameter values
of antecedent and consequent parts are listed in Table 3.2. The c;; and 0;; are the
center and variance of Gaussian membership function, respectively. The (a;0, ai1)

are the consequent parameters of the T'S fuzzy model.
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Table 3.2 The parameter values of the proposed FIS for modeling of F} (z)

Rule Antecedent part | Consequent part
cij | By (@io, ai1)
1 0 1.0024 | -34.3285, -9.7038
2 0.9091 | 1.0589 | 48.1501, -23.7999
3 2.3232 | 1.0371 | 12.7341, -2.8346
4 5.1515 | 1.0354 9.4054, -2.4138
5 6.7677 | 1.0868 | 21.5803, -2.7576
6 8.2828 | 1.1129 | 23.3162, -3.2517
7 9.7980 | 1.0233 | 28.7624, -2.5254
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Fig. 3.8 The output results of the proposed FIS for modeling of F; ()
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Fig. 3.9 Performance results using four algorithms for F; modeling

The output results of the proposed FIS and 7 support vectors (SVs) are shown in
Fig. 3.8 (a). The membership functions of the proposed FIS are also shown in Fig.
3.8 (b).

The method in the literature applied to the same nonlinear function. In the initial
condition of simulation, Given precision ¢ is 0.3 and the constant of trade-off is 300.
In the SVM and SVNN, the fixed variance is 1. Figure 3.9 shows performance
results for F; modeling using four algorithms such as the SVM, SVNN, ordinary
FIS and proposed FIS. The results listed on the Table 3.3. The modeling error is
the RMSE. Compared with the number of rules and modeling error, the proposed
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method using the extended SVM shows the smaller number of rules and modeling

error than the others methods shown in Table 3.3.

Table 3.3: Compared results of modeling nonlinear function F(x)

] Type | Rules(or SVs) | RMSE |
SVM [21] 8 0.2098
SVNN [28] 8 0.2192
Ordinary FIS 7 0.0257
Proposed FIS 7 0.0062

3.4.2 Example 2: modeling of 2-input nonlinear function
The training data in this examples
Fy(z1,22) = (1 + 272 + 25 1°)2, (3.41)

which was used by Ryu et al. [12]. From input ranges [1,5] x [1,5] within the input
space of (3.41), 50 training data pairs were obtained firstly. The proposed FIS using
an extended SVM for modeling of F5(x1, x2) extracts the 5 SVs, so that it has 5 fuzzy

rules as follows:
Rulei: Ifl‘l is Mila T2 is Mig Then fZ = a0 + a;1T1 + a;272, 1= 1, vy 9. (342)

The structure of the proposed FIS is shown in Fig. 3.10. The parameter values of
antecedent and consequent parts are listed in Table 3.4. The c;; and 6;; are the cen-
ter and variance of Gaussian membership function, respectively. The (a9, ai1, a;2)
are the consequent parameters of the T'S fuzzy model.

In the initial condition of simulation, given precision ¢ is 0.7 and the constant of
trade-off is 300. In the SVM and SVNN, the fixed variance is 3.2. The membership
functions of the proposed FIS for modeling of F5(z1, 22) are shown in Fig. 3.11.

Figure 3.12 shows the output results of the proposed FIS with 5 rules for mod-
eling of Fy(x1,x2). To investigate the performance of the proposed FIS, the method
in the literature also applied to the same nonlinear function. The comparison of
our FIS with others methods is presented in Table 3.5. Compared with the number
of rules and modeling error, the proposed method using the extended SVM shows
the smaller number of rules and modeling error than the others methods shown in
Table 3.5.
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Fig. 3.10 The structure of the FIS for modeling of Fy(x1,x2)

Table 3.4 The parameter values of the proposed FIS for modeling of F5(z1, z2)

Rule Antecedent part Consequent part
Cij | 0y (a0, ai1,a:2)
1 (1.0500, 2.5500) | 3.2066 597, -218, -95
2 (3.3800, 3.7000) | 3.2014 | -8355, 37, 507
3 (1.7800, 1.1100) | 3.2087 | -71756, -3509, -885
4 (3.1100, 1.0600) | 3.2728 | 81762, -3396, 1871
5 (2.8100, 1.3500) | 3.1100 | 17651, -2723, 200
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Fig. 3.11 The membership functions of the proposed FIS for modeling of Fy(x1, x2)
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Fig. 3.12 The output results of the proposed FIS with 5 rules for modeling of
Fy(z1, 22)

Table 3.5: The compared results of modeling of nonlinear function F,(z;, z2)

] Type H Rules(or SVs) \ RMSE ‘
M. Sugeno [16] 6 0.281
A .F.G.Skarmeta [79] 5 0.266
S. Kim [80] 7 0.293
SVNN [28] 6 0.324
Proposed FIS 5 0.171
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Fig. 3.13 The structure of the proposed FIS for modeling of F5(z1, z2)

3.4.3 Example 3: modeling of 2-input nonlinear function

The third examples was taken from C. C. Wong’s works [81]. The nonlinear function

is as follows:

Fs(z1,22) = sin(mzy) sin(mza), (3.43)

from the distributed grid points of input range [—1, 1] x [0, 1] with input space of the
nonlinear function f3(x1,x2), 21 x 11 = 231 training data pairs were obtained. The
proposed FIS using an extended SVM for modeling of F3(x1,x2) extracts the 6 SVs,
so that it has 6 fuzzy rules:

Rulei: Ifxl is Mila T2 is Mig Then fl = a0 + a;1T1 + a;2T2, 1= 1, ceny 6. (344)

The structure of the proposed FIS is shown in Fig. 3.13. The original nonlinear
function with 6 SVs is shown in Fig. 3.14. The parameter values of antecedent

and consequent parts are listed in Table 3.6. The c;; and 6;; are the center and
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Fig. 3.14 Nonlinear function F;(z1, z2) with 6 SVs

variance of Gaussian membership function, respectively. The (a;o, ai1, ai12) are the
consequent parameters of the TS fuzzy model.

The output results of the proposed FIS and 6 support vectors (SVs) for modeling
of F5(x1,z2) are shown in Fig. 3.15. The membership functions of the proposed FIS
are also shown in Fig. 3.15.

The method in the literature applied to the same nonlinear function. In the initial
condition of simulation, Given precision ¢ is 0.3 and the constant of trade-off is 300.

Figure 3.17 shows performance results for modeling of F3(x1,x2) using four algo-
rithms such as the SVM, SVNN, ordinary FIS and proposed FIS. The results listed
on the Table 3.7. The modeling error is the RMSE. Compared with the number
of rules and modeling error, the proposed method using the extended SVM shows
the smaller number of rules and modeling error than the others methods shown in
Table 3.7.
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Table 3.6 The parameter values of the FIS for modeling of F3(x1, z2)

Rule Antecedent part Consequent part
Cij | 0y (a0, ai1, ai12)
1 (-0.6,0.5) | 0.4346 | 0.7344, 0.3549, -0.0004
2 (-0.4, 0.5) | 0.2056 | -1.0968, 2.5749, -0.0001
3 (0.4,0.5) | 0.2751 | 1.0895, 5.3986, -0.0488
4 (0.5,0.4) | 0.2062 | -2.9958, 2.9944, 2.9426
5 (0.5,0.6) | 0.2056 | 0.1471, 3.0127, -3.1304
6 (0.6,0.5) | 0.1954 | 2.2016, -4.0753, -0.0395

Fig. 3.15 The output results of the proposed FIS with 6 rules for modeling of
F3(x1,72)
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Fig. 3.17 Performance results using four algorithms for F3(z;,z2) modeling

Table 3.7: The compared results of modeling of nonlinear function F3(x;, z2)

] Type H Rules(or SVs) \ RMSE ‘
SVM [21] 8 0.1770
SVNN [28] 8 0.2556
Ordinary FIS 6 0.2423
Proposed FIS 6 0.0676
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3.5 Discussion and Conclusions

In this chapter, the FIS based on the Takagi-Sugeno fuzzy model for modeling of
nonlinear systems was presented using the extended SVM.

Our main concern is to determine the best structure of the TS fuzzy model from
the given input-output data of the particular system. Conventional neuro-fuzzy
modeling methods from input-output data are based on sequential design meth-
ods of structure identification and parameter identification or clustering methods
with either the number of clusters or candidates for cluster centers in advance. By
contrast, the proposed FIS automatically decides not only the number of simplified
fuzzy inference system rules but also the parameter values. The FIS can linearly
analyze a given complex data by performing nonlinear mapping which projects in-
put space into high dimensional feature space and has good generalization by con-
sidering both model complexity and approximation error. The structure of the pro-
posed FIS is obtained by minimizing a constrained quadratic programming problem
for a given error bound and the number of FIS rules can be reduced by adjusting
the parameter values of membership function using the gradient descent method.
After the structure is selected, the parameter values in the consequent part of TS
fuzzy model are determined by the least square estimation method or the recursive
least square estimation algorithm.

We applied the proposed method to several nonlinear functions. The proposed
FIS showed the better performance to model nonlinear systems than other methods.
However, future work should include the method of choosing the proper error bound
from given data as well as the choice problem of the best kernel function and the

speed problem consumed for solving the quadratic programming problem.



CHAPTER

Fuzzy Inference System Using an Extended FVS

This chapter presents a new approach to fuzzy inference system (FIS) for model-
ing nonlinear systems based on measured input and output data. The structure
of fuzzy model is obtained using an extended Feature Vector Selection (FVS) algo-
rithm based on the kernel method. In the suggested FIS, the number of fuzzy rules
and parameter values of membership functions are automatically decided using
the extended FVS. The extended FVS method individually performs linear trans-
formation and kernel mapping. Linear transformation projects input space into
linearly transformed input space. Kernel mapping projects linearly transformed
input space into high dimensional feature space. Especially, the process of linear
transformation is needed in order to solve difficulty determining the type of kernel
function which presents the nonlinear mapping corresponding to nonlinear system.
The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno
(T'S) fuzzy model whose input variables are weighted linear combinations of input
variables. In addition, the number of fuzzy rules can be reduced by adjusting linear
transformation matrix and parameter values of kernel functions using the gradient
descent method. Once a structure is selected, coefficients in consequent part are

determined by the least square estimation method.

55
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4.1 Introduction

The Fuzzy inference system (FIS) has been shown powerful capability for the mod-
eling of nonlinear systems [10] [16]. FIS can be directly obtained either from human
experts using knowledge experiments or learning machine methods using numeric
data. For complex and uncertain systems, FIS based only on human experts may
not lead to sufficient accuracy. Because of this reason, neuro-fuzzy modeling which
acquires knowledge from a set of input-output data has been actively investigated
[1]. The important concerns of neuro-fuzzy modeling for the real system are how to
determine the proper number of fuzzy rules and parameter values of membership
functions. Many methods have been developed as illustrated in Chapter 1.

Recently, kernel-based methods have been popularly developed in classification
and regression. Kernel techniques offer an alternative solution by mapping the data
into high dimensional feature space to increase the computational power. Particu-
larly, Support Vector Machine (SVM)[21] has been used in order to automatically
find the number of network nodes or fuzzy rules based on given error bound [7] [28]
[75] . The Support Vector Neural Network (SVNN) is proposed to select the best
structure of radial based function network for the given precision [28]. The SVM
is suggested to improve the simplified fuzzy inference system for the fuzzy neural
network [75]. The Support Vector Fuzzy Inference System (SVFIS) is proposed to
find the reduced number of rules using gradient descent method updating kernel
parameters [7]. However, because the general support vector learning methodology
is used in above all, they have computational complexity for solving the quadratic
problem in optimization process and problem for determining the type of kernel
function corresponding with nonlinear system.

In this chapter, we propose a new approach to fuzzy modeling using an extended
Feature Vector Selection (FVS). The linear transformation of input variables is used
to solve problem determining the exact type of the kernel function. Therefore in-
put variables of the proposed FIS become input variables of the Takagi-Sugeno
(TS) fuzzy model which are the weighted linear combinations of the input vari-
ables. The structure of fuzzy model is obtained using FVS algorithm based on the
kernel method. Unlikely the SVM having computational complexity, the FVS per-
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forms a simple computation optimizing a given criterion into the feature space. The
FVS algorithm is to select a basis of the data subspace in feature space. A basis
of the data subspace is called a feature vector (FV). Ultimately, this feature vec-
tor becomes the center of the membership function. Kernel functions mapping the
linearly transformed data into feature space become membership functions. In ad-
dition, the number of fuzzy rules can be reduced under the condition of optimizing a
given criterion by adjusting the linear transformation matrix and parameter values
of kernel functions using the gradient descent method. Once a structure is selected,
coefficients in consequent part of the modified TS fuzzy model are determined by
the least square estimation method. So we can automatically determine the fuzzy
model using the iterative procedure which involve linear transformation, kernel

mapping and FVS method under optimizing a given criterion.

4.2 Feature Vector Selection (FVS)

The FVS [26] is based on kernel method. The FVS technique is to select feature
vector being a basis of data subspace and capturing the structure of the entire data
into feature space F.

The FVS for estimating the mapping &, of any vector z; is as follows:

~

¢i = Ps - a, (4.1)

where the mapping of each vector x; is noted ¢(z;) = ¢; for 1 < i < M, the

selected vectors z;, into feature space F' is noted ¢(zs,) = ¢s, for 1 < j < L,

b5 = {¢g,,..., 05, } is the matrix of the selected vectors S = {z;,,...,z,, } into F

1 ...,al]" is the associated weight vector.

g0 ey Uy

and a; = [a
The feature vector (FV) is obtained from process finding the weights vector a;.
The weights vector is given by minimizing the following normalized Euclidean dis-

tance in feature space.
A2
-
9l
The minimum of (4.2) for a given S can be expressed over all vector as follows:

msln Z (1 — 7>, (4.3)
z,€X

(4.2)

K
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where K, =< &g - &g > is a kernel matrix which is the dot product of the selected
vectors, Ky =< ®g - ¢; > is a kernel matrix which is the dot product of between z;
and the selected vectors and K;; =< ¢; - ¢; > is a kernel matrix which is the dot
product of x;.

The fitness function is defined as follows:

Thus (4.3) can be rewritten by
max Js, (4.5)

where maxg Jg is a value between 0 and 1 for z; € S.

The FVS algorithm is an iterative process which performs sequential forward
selection until the fitness reaches a given value. In this iterative process, when the
calculated fitness reaches the max fitness, the vector from training data is called
feature vector (FV).

Once the FV is selected, the output of FVS is calculated using a kernel function
approximation algorithm. Figure 4.1 shows the architecture of kernel function ap-
proximation procedure.

Let us suppose that we have given input and output data

(xlayl)a (332792)a ey (vayM) (46)

The transformation of input data z; is given by the inner product projection as

follows:
Zi = (bS : ¢i7
= K, 4.7)
where kernel matrix Kj; is the dot product of nonlinear mapping between input
data z; and the selected FV.

The output of kernel function approximation is obtained using the Moore-Penrose

pseudo-inverse method as follows:

i =2 A+ 07, (4.8)
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1>

Input X Feature Selected S
space

/ 2

Kernel function approximation

Projection
Fig. 4.1 The architecture of kernel function approximation procedure

where A = (Z72)"'Z7Y, z; = Ky, Y = y; and 3 is a vector that can be included in
the estimation of A by adding a constant component in each vector z;.

The brief summary of the iterative procedure in the FVS is described as follows:
1. Select the type of kernel function and initialize kernel parameter o2.

2. Compute fitness.

1 KKK,
max Jg = max — Z <M> 4.9)
S S MxiGX K

3. Go to step 2 until the fitness or the number of feature vector are satisfied with

given conditions.
4. Find FVs and complete the structure of the FVS.

The main motivation of approach to FVS is that the structure of the FVS is auto-
matically found based on optimizing the normalized Euclidean distance in feature

space. The found structure of the FVS has close relation to that of fuzzy rule-base.
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4.3 New Fuzzy Inference System Using an Extended FVS

This section describes the structure and learning algorithm of a new fuzzy inference

system using an extended FVS.

4.3.1 The structure of the FIS using an extended FVS

The kernel method using an extend FVS is that linear transformation is added to
kernel mapping in order to solve the problem selecting the type of kernel function
corresponding to nonlinear system. Thus, input variables of the proposed FIS be-
come input variables of the TS fuzzy model which are weighted linear combinations
of original input variables.

Suppose we have given input and output data

(X17y1)7(x27y2)7 ceey (Xl7yl) (410)

where x;=[z%, 2}, ...,25)T (i = 1,2,...,1) is original input variable and Y=[y,...,y,|"
is output data. The proposed TS fuzzy model with fuzzy If-Then rules can be repre-

sented as follows:

Ry : Ifzis K(z1,%);) and ... Zp is K(Zp,Z]p),
Then f1 =aig + a11x1 + ... +a1pxp
Ry : Ifz;is K(fl,le) and ... Tp is K(:fD,.TSD),

Then fy = aso + a21Z1 + ... + a2pTp

R, : Ifzis K(i‘l,le) and ... Tp is K(i’[),i‘:D),

Then fn=ano + ap1T1 + ... + anpTp, (4.11)

where n is the number of fuzzy rules, D is the dimension of input variables, Z;(j =
1,2,...,D) is a linearly transformed input variable, f; is a local output variable,
K(i’j,a’:;*j) (t = 1,2,..,n,5 = 1,2,...,D) is a fuzzy set and a;;(i = 1,2,...,n,j =

0,1,...,D) is a consequent parameter.
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Input Layerl Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Output

Fig. 4.2 The structure of the proposed FIS using an extended FVS

Linearly transformed input variables are defined as follows:

3_711 t11 ti2 ... tip xﬁ
T4 tor toa ... top Tl

S ’ (4.12)
:EZD tpi1 tpa ... tpp x’D

where X;=[7},7%,...,75]7 (i=1,2,...,1) is a linearly transformed input variable, and
Ti=[ti1, ti2, ..., tip](i = 1,2,..., D) is the ith transformed direction unit vector of the
original input space. Now, we describe the structure of FIS using an extended kernel
method. It consists of six layers as shown in Fig. 4.2.

The four layers involved in the proposed FIS are as follows:

Layer 1: Input space is projected into a linearly transformed input space by a lin-

early transformation matrix.
X; :TXZ', 1= 1,2,...,[, (413)

where T=[Ty, Ty, ...,Tp|" is a linear transformation matrix.
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Layer 2: Linearly transformed input space is nonlinearly mapped into feature space

by a map .

X; = (T},...7p) =

(X)) = (P1(Ki),.. Op(X:)), i =1,2,...,L. (4.14)

Layer 3: Feature Vector (FV) is determined from a FVS algorithm a using kernel
method. Kernel method is a dot product which is computed with the nonlinear
mapped input ®(X) = (¢(Xi),..., (X;)) and feature vector ¢(X}) =(¥; (X)), ...,
®p(X}))(i = 1,...,n), where X} = [T}, 2], ..., Zip|T is the subset of the input X.
Dot product ®(X) - ¢(X;) corresponds to evaluating kernel function K (X,X}).

The Gaussian kernel function with each variance o; is used as follows:
¥ _ w¥)2
x-x7)

K(X,X]) = exp ( — 205

),i —1,2,...n (4.15)

where X} is a FV, ¢; is called a kernel parameter and n is the number of FVs.
This kernel function becomes a Gaussian membership function in the pro-
posed FIS. X7 and o; are the center and the variance of the i-th Gaussian
membership function, respectively. FVS algorithm is a fuzzy inference engine
determining the number of fuzzy rules.

The Layer 1 to 3 are related to the antecedent part of the FIS.

Layer 4: The fuzzy intersection of Gaussian kernel functions is calculated. The
following algebraic product operator as T-norm operator for each Layer4 node

is used,

D
K(x,x) =[] Kz, 5), (4.16)
J

where, X = [Z1, Z2, ..., Tp] is the i-th input variable vector, X; = [z}|,Z},, ..., Z}p)

is the FV of the i-th input variable.

The normalized weight 3; for each fuzzy rule (node) is computed as follows:
K(x,X})

T YLEEX)

Bi (4.17)

where

KXX) >0, Y K&X)>0,i=1,..,n (4.18)
j=1
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Layer 5: The normalized weight 3; of each node is multiplied by i-th local output

variable f;. Each node output 3; f; as shown in Fig. 4.2 is described as follows:

K(X,X])(aipo + ainT1 + -+ aipTp)
Bifi = : 7 — : (4.19)
Zj:l K(X,Xj)

where, f; = a;o+a;1Z1+ - -+ a;pZp is the i-th local output variable of TS fuzzy

model.

Layer 6: For the overall output of the fuzzy model constructed, defuzzification us-
ing the Center Of Gravity (COG) method is performed. Each node corresponds

to one output variable f(x),

&) = Y Bifi,
=1

_ Z?:l K(i,*f)(aio—i—aﬂj:l—|—---+aiD3’cD) (4.20)
> i K(X,X]) ' '

The Layer 4, 5 and 6 connect with the consequent part of the proposed FIS.

4.3.2 The learning algorithm of the FIS using an extended FVS

The learning algorithm of the FIS using an extended FVS is shown in Fig. 4.3. It

can be achieved by the following iterative procedure.

Step 1: Assign the desired fitness and initialize the linear transformation matrix

T and the kernel parameter o;.

Step 2: Perform linear transformation in (4.13) in order to project input space into

linearly transformed input space.

Step 3: Using the following FVS algorithm based on kernel mapping, find FVs X
that are the centers ¢; of Gaussian membership functions.
1 KK K

X, €F

Step 4: Using the following Least Square Estimation (LSE) method [10], estimate

the parameter a;; of the linear equation f;.
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Fig. 4.3 The learning algorithm of the proposed FIS
Let
T
A = [al(] all o .. a’lD ...... a’TLO anl . e anD] s
Bi BiTy o PiTp e By BpTi - BaTp
. ﬁ% ﬂ%j? .. /6‘%5% ...... g Zf% - ﬂ%f% (4.22)
g BiE - BEp e Bn Brm e BT
K(X;,%7)

J _
where 5 = s kexn
Thus fuzzy model output is f(x) = WA. If (WTW) is nonsingular, the param-

eter vector A is calculated by
A = wiw)y=wty. (4.23)

Step 5: Using a Gradient Descent Method (GDM) [17], update the kernel parame-

ter o; such that error is minimized. From the definition of the GDM,
Ao; = _navoiEa

!
= 2,0, e;Bl(fi — u)IX; — ;|17 (4.24)
j=1
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l 62

where 7, is the learning rate of 0y, ¢; = f(x;) —y; and £ =}, ej.

Step 6: Also using the following GDM, update the linear transformation matrix T

and go to step 2 until error and FVs are satisfied with given conditions.

AT = —npVrE,
l n
= 20 ) %) B [Ai+ % — X oy 2y — )] (4.25)
=1 i—1
where 77 is the learning rate of T and A; = [a;1, ..., a;p]” .

4.3.3 The input space partition of the FIS using an extended FVS

In this section, the input space partitioning technique of the FIS using an extended
FVSis presented. The input space partition approach of the proposed FIS is cluster-
based fuzzy rule generation method. The extended FVS consists of the linear trans-
formation part of input variables and the kernel mapping part. The linear transfor-
mation of input variables is proposed to solve problem selecting the best shape of
the Gaussian kernel function which presents the nonlinear mapping.

Now, we introduce the linear transformation of input variables and input space

partitioning technique of the proposed FIS.
Linear transformation of input variables

Consider the following two-dimensional linear transformation,

% — Tx, (4.26)
|:5i‘1 } [tn 7512} [$1 ] (4.27)
T9 to1 too xg |’ '

where z1 and x5 are original input variables, Z; and Z- are transformed input vari-
ables and t11, t12, to1 and t9y are linear transformation parameters in linear matrix
T.

Figure 4.4 shows the linear transformation of two-dimensional input variables.
In Fig. 4.4 (a), any input variables are illustrated. In Fig. 4.4 (b), the transformed
input variables are described. From Fig. 4.4 (a) to Fig. 4.4 (b), linear transformation
matrix is presented as follows:

1.0417 —0.2083

T=1 02083 1.0417 |"

(4.28)
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In Fig. 4.4 (a), the ellipsoids of four groups are illustrated. Figure 4.4 (b) shows the
results that the ellipsoids of four groups are transformed to circles of four groups.
This result shows that appropriate linear transformation can help the effective in-

put space partition of the extended FVS with Gaussian kernel functions.
Input space partition using an extended FVS

Ordinary FVS with Gaussian kernel function has the same variance of Gaussian
functions. On the contrary, the proposed extended FVS has the linear transformed
input variables and the different variances of Gaussian kernel functions.

By the above linear transformation of the input variables with appropriate trans-
formation matrix, input data can be relevantly represented. Moreover, the flexible
variances of Gaussian kernel functions can help effective input space partitioning.
These properties imply that the appropriate linear transformation and the flexible
variances of Gaussian kernel functions can reduce the number of fuzzy rules and
modeling error.

Figure 4.5 shows the input space partitioning methods of two-dimensional input
space using the ordinary FVS and the extended FVS. Figure 4.5 (a) describes the
input space partitioning of FVS with the same variances of Gaussian functions.
Original input space is partitioned by 6 subspaces using the FVS with same vari-
ances. Figure 4.5 (b) illustrates the input space partitioning of the extended FVS
with linear transformation and the different variances of Gaussian functions. Lin-
ear transformed input space is partitioned by 4 subspaces using the extended FVS.
In Fig. 4.5 (b), minimum and maximum variances of Gaussian kernel functions are
0.5 and 1. In Fig. 4.5 (a), the same variance of Gaussian kernel functions is 0.75 as
the mean of variance in Fig. 4.5 (b).

From the results of input space partition, Figures 4.5 (a) and (b) generate the
six and four fuzzy rules, respectively. Figure 4.5 (b) with four rules shows that
the number of fuzzy rules can be reduced as determining the appropriate linear

transformation matrix and Gaussian variances using the GDM.
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(a) Input variables
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Fig. 4.4 The linear transformation of 2-D input variables
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(b) The input space partitioning of the proposed FIS

Fig. 4.5 The input space partitions of the FVS and the proposed FIS
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Input Layerl Layer 2 Layer 3 Layer4 Layer 5 Layer 6 Output

Fig. 4.6 The structure of the FIS for the modeling of F}(z1, x2)

4.4 Examples

In this section, we show two simulation results of the proposed FIS for the modeling

of typical nonlinear systems.

4.4.1 Example 1 : modeling of 2-input nonlinear function 1

The first example was taken from Wong’s works [81]. The nonlinear function is
presented as follows:

Fi(x1,x9) = sin(mxy) sin(mxe). (4.29)
From the distributed gird points of input range [—1, 1] x [0, 1] within input space of
nonlinear function F} (1, x2), training data pairs of the 21 x 11 = 231 were obtained.

The proposed FIS generates the 6 FVs, so that it has 6 fuzzy rules as follows,

R; : Ifzyis K(z1,7;,) and Z2 is K(Z2,T)5),

Thenfi = a;p + a;1%1 + a;9x2, t =1, ..., 6. (4.30)
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Table 4.1 The parameter values of the FIS for modeling of F(z1, z2)

Rule Antecedent part Consequent part
ci | o (aio, ai1, ai2)
1 (-0.1012, 0.6037) | 0.7642 | -61, 282, 6
2 (0.9884,0.0011) | 0.9283 | 1392, -398, -104
3 (-0.9884,-0.0011) | 0.8723 | -417, -84, 114
4 (0.9846,1.0074) | 0.7399 | -73, 71, 15
5 (-0.9923, 1.0052) | 0.6658 88, 71, -18
6 (0.0988, 0.0001) | 0.9531 | -525,-1059, 40

The structure of the FIS with 6 rules is shown in Fig. 4.6. For given the fitness
of maxg Jg = 0.92 and the initial condition of o; = 0.75, the linear transformation
matrix T, the center ¢; and the variance o; of the Gaussian membership function
in antecedent part and coefficients a;; in consequent part were obtained through

learning procedure. The linear transformation matrix was computed as follows:

0.9997 —0.0001
= 0 1.0002 |- (4.31)

The parameter values of antecedent and consequent parts are listed in Table 4.1.
Figure 4.7 shows the membership functions of proposed FIS with 6 rules for mod-
eling of F(x1,x2). Figure 4.8 shows the modeling result of F;(z;,z2) using an ex-
tended FVS.

To analyze the performance of the proposed FIS, the modeling error is defined by
as following Root Mean Square Error (RMSE)

IS (e — f)?
E_\/ k=1 ~ , (4.32)

where N is the number of data, y; and f(z;) are the system and the model output,

respectively.
The method in the literature applied to the same function Fj(x1,z2), and the
results are listed on the Table 4.2. Compared with the number of rules and modeling

error of others, the proposed method gives the smallest modeling error .
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Fig. 4.7 The membership functions of the proposed FIS for modeling of F} (z1, z2)
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Fig. 4.8 The modeling result of F(x1,x2)

Table 4.2 The compared results of nonlinear function F;(x1, x2)

| Type | Rules(or FVs) | RMSE |
Chan et al. [28] 8 0.2556
Baudat et al. [26] 6 0.3339
Kim et al. [7] 6 0.0676
Proposed FIS 6 0.0228
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Fig. 4.9 The structure of the FIS for the modeling of F(z1, x2)

4.4.2 Example 2 : modeling of 2-input nonlinear function 2
Consider the nonlinear function [16]
Fy(z1,20) = (1 + 272 + 25, 1°)2 (4.33)

From input ranges [1,5] x [1,5] of (4.33), 50 training data pairs were obtained.
The proposed FIS extracts the 5 FVs, so that it has 5 fuzzy rules as follows:

R; : Ifzyis K(z1,7;,) and Z2 is K(Z2,T}),
Thenfi = a0 + a;1T1 + a;9x2, 1 =1,...,5. (4.34)

The structure of the FIS is shown in Fig. 4.9.

For given the fitness of maxg J¢ = 0.992 and an initial condition of o; = 3.2, from
learning algorithm, the 7', ¢; and ¢; in antecedent part and a;; in consequent part
were obtained. The linear transformation matrix was calculated as follows:

0.9998 0.0001

T=10.0001 1.0002 |

(4.35)
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Fig. 4.10 The modeling result of F5(x1, x2)

The parameter values of antecedent and consequent parts are listed in Table 4.3.
Figure 4.10 shows the modeling result of F(z1, z2) using the proposed FIS.

The method in the literature applied to the same function F5(z;,z2), and the
results are listed on the Table 4.4. It shows that the proposed method gives the

smallest modeling error with the smaller number of rules than others.

Table 4.3 The parameter values of the FIS for modeling of Fy(z1, x2)

Antecedent part Consequent part
Rule
Ci | o (a0, ain, aiz)

1 || (2.4151, 2.4151) | 3.3854 | 270946, -18283, -10464
2 || (4.7757,5.0076) | 3.1297 9966, -55, -373
3 | (1.2561, 4.5498) | 3.0863 -8620, 623, 484
4 | (4.3525,1.5288) | 3.1524 -1059, 1072, 1133
5 | (1.2275, 1.5110) | 3.3572 | -195313, -7695, -5205
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Table 4.4 The compared results of nonlinear function F»(z1, z2)

] Type | Rules(or FVs) | RMSE |
Sugeno and Yasukawa [16] 6 0.281
Gomez-Skarmeta et al. [79] 5 0.266
Chan et al. [28] 6 0.324
Baudat et al. [26] 6 0.333
Kim et al. [7] 5 0.171
Proposed FIS 5 0.164

4.5 Discussion and Conclusions

In this chapter, we have presented a new approach to fuzzy modeling using an ex-
tended FVS. Our main concern is to determine the best structure of the TS fuzzy
model for modeling nonlinear systems with measured input and output data. The
number of rules and the parameter values of membership functions in the proposed
FIS can be decided using an extended FVS based on kernel method. The kernel
method involves the linear transform of input variables and kernel mapping. The
linear transformation of input variables was proposed to solve problem selecting
the best shape of the Gaussian kernel function corresponding to the nonlinear map-
ping. The linear transformation matrix and parameter values of kernel functions
were adjusted using the gradient descent method. The coefficients of the TS fuzzy
model in consequent part were determined by the least square estimation method.
Examples showed the effectiveness of the proposed FIS for the modeling of nonlin-

ear systems.



CHAPTER

Fuzzy Inference System Using an Extended RVM

This chapter presents a new fuzzy inference system for modeling of nonlinear dy-
namic systems based on input and output data with measurement noise. The pro-
posed fuzzy system has a number of fuzzy rules and parameter values of mem-
bership functions which are automatically generated using the extended relevance
vector machine (RVM). The RVM has a probabilistic Bayesian learning framework
and has good generalization capability. The RVM consists of the sum of product of
weight and kernel function which projects input space into high dimensional feature
space. The structure of proposed fuzzy system is same as that of the Takagi-Sugeno
fuzzy model. However, in the proposed method, the number of fuzzy rules can be re-
duced under the process of optimizing a marginal likelihood by adjusting parameter
values of kernel functions using the gradient ascent method. After a fuzzy system

is determined, coefficients in consequent part are found by the least square method.

5.1 Introduction

The Fuzzy Inference System (FIS) is very effective for modeling of nonlinear sys-
tems [10] [16]. However, the FIS based on only human expertise may not lead to

sufficient accuracy for complex and uncertain systems. Therefore, neuro-fuzzy mod-

76



5.1. INTRODUCTION 77

eling which acquires knowledge from a set of input-output data has been actively
investigated [1] [4] [5]. If training data set for modeling has measurement noise
and (or) available data size is too small in the real system modeling, neural net-
work can bring out over-fitting problem which is a factor of poor generalization. It
is an important problem to select the appropriate structure of neuro-fuzzy model
that can perform good generalization. Currently, some researchers have dealt with
this problem. Branco et al. [82] investigated how and why fuzzy modeling systems
are affected when learning data is corrupted by noise. Holmstrom et al. [83] made
an effort to improve the generalization capability of a neural network by introduc-
ing additive noise to the training samples. Karystinos et al. [84] addressed K-
mean clustering algorithm which results from the least entropic Gaussian mixture
upon equal-likelihood cross-validated shaping for improving miltilayer perceptrons
(MLP) generalization ability. Lee et al. [85] described a general regression neural
network with fuzzy ART clustering (GRNNFA), as hybrid neural network model,
based on the fusion of fuzzy adaptive resonance theory (Fuzzy ART) and the general
regression neural network (GRNN) for data regression. However, many researches
have usually dealt system optimization [84] [85] and generalization problem [83]
independently.

Recently, statistical approach methods have been popularly developed in non-
linear system modeling based on input and output data with measurement noise
[28] [86] [87] [88]. Statistical techniques generally deal with trade-off between fit-
ting the training data and simplifying model capacity. In statistical method, kernel
function offers an alternative solution by mapping the data into high dimensional
feature space to increase the computational power [24] [8]. Particularly, the state-
of-the-art Support Vector Machine (SVM)[21] has been used in order to find the
number of network nodes or fuzzy rules based on given error bound [28] [29] [30]
[89]. The Support Vector Neural Network (SVNN) is proposed to select the best
structure of radial based function network for the given precision [28]. Support vec-
tor learning mechanism for fuzzy rule-based inference system is presented in [29]
[30].

The SVM has delivered good performance in various application. However, the

SVM has a number of the significant and practical limitations [27]. In the SVM, pre-
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dictions are not probabilistic and the kernel function K (x, x;) must satisfy Mercer’s
condition. That is, it must be a positive definite continuous symmetric function. It
is also necessary to estimate the error/margin trade-off parameter C. The number
of the found support vector is sensitive to given error bound ¢. Tipping [27] proposed
the Relevance Vector Machine (RVM) based on a kernel-based Bayesian estimation
method which does not suffer from above disadvantages. Above all, the RVM has
shown a comparable generalization performance with fewer kernel function than
the SVM in [27].

In this chapter, we propose a new fuzzy inference system, which performs sys-
tem optimization and generalization simultaneously using relevance vector learn-
ing mechanism, for modeling nonlinear dynamic system based on input and output
data with measurement noise. In the suggested fuzzy system, the number of fuzzy
rules and parameter values of membership functions are automatically found using
a relevance vector learning methodology. The structure of proposed fuzzy system
is same as that of the Takagi-Sugeno (TS) fuzzy model. However, in the proposed
method, the number of fuzzy rules can be reduced under the process of optimizing
a marginal likelihood by adjusting parameter values of kernel functions using the
gradient ascent method. After a fuzzy system is determined, coefficients in conse-

quent part are found by the least square method.

5.2 Relevance Vector Machine (RVM)

The RVM has an exploited probabilistic Bayesian learning framework [90] [91]. It
acquires relevance vectors and weights by maximizing a marginal likelihood. The
structure of the RVM is described by the sum of product of weights and kernel
functions. A kernel function means a set of basis function projecting the input data
into a high dimensional feature space.

Given a data set of input-target pairs {x,,t,})_,, and assuming that the targets
are independent and contaminated with mean-zero Gaussian noise ¢, with variance

2.

g~

tn = Y(Xn; W) + €. (5.1)
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The RVM without a bias term can be represented as follows [27] [92]:

N

y(x;w) = ZwiK(x,xi), (5.2)
i=1

= (I)w7 (5.3)

where N is the length of the data, weight vector w = [w1, ..., wx]|? and (N x N) de-
sign matrix ® = [¢(x1), $(X), ..., p(xn)]", wherein ¢(x,) = [K(Xn, X1), K (Xn, X2), ...,
K(x,,%xx)]" and K(x,x;) is a kernel function.

The likelihood of the measured training data set is written as:
1
p(tjw,o?) = (270?) N2 exp {—22Ht — CIDWHQ} , (5.4)
g

where target vector t = [t1,...,ty]7. Maximizing likelihood estimation of w and
o? from (5.4) leads to over-fitting. To avoid this over-fitting, a zero-mean Gaussian

prior distribution over w with variance o~ ! is added as:

N
pwla) = [[N(wo,ar).

=0
N
=0

where hyperparameter a = [, s, ...,ay]|’. An individual hyperparameter asso-
ciates independently with every weight.

The posterior distribution over the weight from Bayes rule is thus given by:

9 Likelihood x Prior
p(wlt, @, 0%) = Normalizing factor ’
p(tjw, o?) p(w|a)
p(tle,0?)
— (2m) (VD2 m 12

exp {—;(w —pw)l="t(w- p,)} , (5.6)

)

where the posterior mean p and covariance X are as follows:

p o= o 2T, (5.7)
Y = (0 20To+ A7 (5.8)
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with A = diag(ay, ag, ...,an).
The likelihood distribution over the training targets (5.4) can be marginalized
with respect to the weights to obtain the marginal likelihood, which is also a Gaus-

sian distribution

ptlao’) = [ ptiw.o?)pwia)aw,
= 2m)N?|C| 2 exp {—;tTclt} (5.9)
with covariance C = ¢2I + ® A~ 1T,
Values of o and o2 that maximize the marginal likelihood can not be obtained in

closed form, and an iterative re-estimation method is required [27]. The following

approach of MacKay [93] gives:

a;ww — —IZ; , (510)
> [t — Zp|?
pynew — b= ZHIP (5.11)
(@) N — E:z')’z

where p; is the i-th posterior mean weight (5.7) and the quantities v, =1 — oy ),
with the i-th diagonal element ). of the posterior weight covariance (5.8).

In practice, since many of the hyperparameter «; tend to infinity during the it-
erative re-estimation, the posterior distribution (5.6) of the corresponding weight
w; becomes highly peak at zero [27]. In this optimization process, the vector from
the training set that associates with the remaining nonzero weights w; is called
the relevance vector (RV). The brief summary of inference procedure of the RVM is

described as follows:
1. Initialize «; and o2.
2. Compute p, ¥ and posterior distribution (5.6).
3. Re-estimate «; and o2 using (5.7) and (5.8).

4. Go to step 2 until the maximum of o; and variation of «; are satisfied with

given condition.

5. Find RVs and complete the structure of the RVM.
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The main motivation of approach to fuzzy inference system is that the structure
of the RVM is automatically found based on optimizing the marginal likelihood.
The found structure of the RVM has close relation to that of fuzzy rule-base.

5.3 New Fuzzy Inference System Using an Extended RVM

This section describes the structure of the new fuzzy inference system based on the

TS fuzzy model, input space partition method and the learning algorithm.

5.3.1 The structure of the FIS using an extended RVM

Let us suppose that we have given input and target data

(x1,t1), (X2,t2), ..., (XN, tN) (5.12)

where x;=[z},2},...,25](i = 1,2,..., N) is a input variable and t=[t;, ..., ty] is a target
variable. The proposed TS fuzzy model with fuzzy if-then rules can be represented

as follows:

Ry : Ifzyis K(x1,27;) and --- and zp is K(zp,z]p),
Then f1 =aio+anzi +---+aipzp
Ry : Ifzyis K(x1,25,) and --- andxp is K(zp,x5p),

Then fo = a9y + ag121 + -+ aspxp

R, : Ifzis K(x1,z;,)and --- and zp is K(xp, z,p),

Then f, = ano + aniz1 + -+ appxp, (5.13)

where n is the number of fuzzy rules, D is the dimension of input variables, z;(j =
1,2,...,D) is an input variable, f; is the i-th local output variable, K (xj,:v;kj)(i =
1,2,..,n,5 =1,2,...,D) is a fuzzy set and a;;(i = 1,2,...,n,j = 0,1, ..., D) is a conse-

quent parameter.
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Input Layerl Layer2 Layer3 Layer4 Layer5 Output

K(x;.X,)

Antecedent Part

0 .
......
..................................................................

Fig. 5.1 The structure of the proposed fuzzy inference system

Now, we describe the structure of FIS using the extended RVM. It consists of
five layers as shown in Fig. 5.1. The five layers involved in the proposed FIS are

presented as follows:

Layer 1: Each input variable transmits one node. Input variables are distributed

to next layer.

Layer 2: The distributed input space is nonlinearly projected into feature space
using kernel functions. Each kernel function corresponds to one fuzzy linguis-
tic label, that is, fuzzy set (example, young, middle, old, etc). Since kernel
function is not necessary to satisfy Mercer’s condition, various types of it can
be used, such as polynomial, Gaussian, Fourier series, triangular, bell, trape-
zoidal ones etc.. Because Gaussian kernel function allows the exact computa-

tion of the center and variance of predictive distribution and variance can be
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easy learned, in this paper, it is employed as follows:

x; —xk)?
K(:cj,xfj) = exp ( — (]292”)>, (5.14)
ij

where z7;

of RVs and i=1,...,n, and j=1,...,D. After all, this kernel function becomes a

is the RV, 6;; is called a kernel parameter and n is the number

Gaussian membership function in the proposed FIS. K(z;, z};) is the grade of
membership of z;. T and 0;; are respectively the center and variance of the
Gaussian membership function of j-th dimension term of i-th input variable
z;. The Relevance vector learning algorithm plays a role as a fuzzy inference
engine finding the number of fuzzy rules in FIS. The Layer 1 and 2 are related
to the antecedent part of the FIS.

Layer 3: The fuzzy intersection of Gaussian kernel functions is calculated. Here,
the following algebraic product operator as T-norm operator for each Layer 3

node is used,
D

K(x,x7) = [[ K (), ), (5.15)
J
where X = [z, %2, ..., xp] is the i-th input variable vector, X7 = [z}, 2}, ..., z]p)]
is the RV of the i-th input variable.
The normalized weight 3; for each fuzzy rule (node) is computed as follows,
K(x,x})

= 0 o (5.16)
Zj:l K(X7Xj)

Bi

where

K(x,x7) >0, Y K(xx})>0,i=1,.,n (5.17)
j=1
Layer 4: The normalized weight (; of each node is multiplied by i-th local output

variable f;. Each node output v; as shown in Fig. 5.1 is presented as follows:

vi = Bifi, (5.18)
K(x,x})(aio + a1 + -+ -+ aiprp)
: 5 . , (5.19)
Zj:l K(x, Xj)

where f; = a0 +a;121 + - -+ a;pxp is the i-th local output variable of TS fuzzy

model.
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Fig. 5.2 The learning algorithm of the proposed FIS

Layer 5: For the overall output of the fuzzy model constructed, defuzzification us-
ing the Center Of Gravity (COG) method is performed. Each node corresponds

to one output variable f(x),

&) = Y Bif
i=1

_ T Kex))(o+anm -+ aiprp) (5.20)
> i K(x,x7)

The Layer 3, 4 and 5 connect with the consequent part of the proposed FIS.

5.3.2 The learning algorithm of the FIS using an extended RVM

The learning algorithm of the FIS using the RVM is shown in Fig. 5.2. It can be

summarized by the following learning procedure.

Step 1: Assign the initial hyperparameter «, kernel parameter ¢;; and the learn-

ing rate 7.

Step 2: Using the following extended RVM algorithm based on kernel mapping
[27], find RVs x} being the centers ¢; of Gaussian membership function and
weight w. Particularly, using the Gradient Ascent Method (GAM), kernel pa-

rameter 0;; is adjusted in order to select the appropriate type of kernel function
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related to the nonlinear dynamic system. Assume that the log of the marginal

likelihood (5.9) is the objective function L,
L= —% log [02T + ® A~ ®T| + tT(02I + & A~ '®T) 1. (5.21)

From the GAM, the kernel parameter 6;; is updated such that the objective

function L is maximized as:

Ab;; = neVe, L,

= ?7091-_]-3 Z ZFmiq)mi(xmj — x45)? (5.22)

where F,,;; = OL/0¢,,; wherein matrix F = ¢~ 2[(t — y)uT — ®X], a set of Gaus-
sian kernel function ¢,,; = exp{— Z?:l (Tmi — 2i5)?/203;} and ng is the learning
rate of 0;;.

This learning Step 2 is inserted into the inference procedure Step 3 of the RVM
in Section 5.2 Therefore, the extended RVM re-estimates 6;; together with «;
and o2 in inference procedure Step 3 of the RVM.

Step 3: Using the following Least Square Estimation (LSE) method, estimate the

parameter a;; of the linear equation f; in (5.20). Let

T
A = [alo all e alD ...... ano anl .« o anD] s
gé ggxi .. ﬁéx;D ...... é géxi o géxiD
B2 Bt .. /leD ...... 2 B2 .. @ﬂ’p (5.23)
W=1. . . . . . ;
gL Bt - Blah, e g, phat - gl
K(vaxj:)

where ﬂg = ST KExD) Thus fuzzy model output is f(x) = W A.

The parameter vector A is calculated using the following pseudo inverse,

A = wWhw)"lwly. (5.24)
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Fig. 5.3 The input space partition of the proposed FIS using the RVM(a) and the
extended RVM(b)
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5.3.3 The input space partition of the FIS using an extended RVM

The structure of fuzzy modeling is closely related to the partitioning of input space
for fuzzy rule generation. The input space partition approach of the proposed FIS
is a clustering-based method. Figure 5.3 shows the input space partition method of
two-dimensional input space. Figure 5.3 (a) and (b) show input space partitioning
using the RVM and the extended RVM, respectively. Because each cluster leads
to a fuzzy rule, seven and six rules are respectively created in Fig. 5.3 (a) and
(b). The RV as center of Gaussian kernel function becomes the center of Gaussian
membership function.

Although the RV is sparse because the posterior distributions of many of the
weights are sharply peaked around zero in RVM. Figure 5.3 illustrates how the
method using the extended RVM can reduce the number of rules and membership
function. The 4-th and 7-th rules which are generated using the RVM with the
fixed Gaussian variance in Fig. 5.3 (a) can be merged into the 4-th rule using the
extended RVM with a different Gaussian variance 6;; in Fig. 5.3 (b).

The proposed FIS through the generalization strategy of the RVM estimates the
noise of system and determines fuzzy rules and parameters of membership func-

tions automatically.

5.4 Examples

In this section, two simulation results of the proposed FIS for the modeling of the

nonlinear dynamic systems are described.

5.4.1 Example 1: modeling of 2-input nonlinear dynamic system
Consider the nonlinear dynamic system [28],
y(k) = (0.8—0.5 exp(—y*(k—1)))y(k —1)
—(0.340.9 exp(—y*(k —1)))y(k — 2)
+ 0.1sin(my(k — 1)) + e(k) (5.25)

where ¢(k) is a white noise, e(k) ~ N(0,0.1%). The training input of the model is
X(k) =ly(k —1),y(k — 2)]. For e(k) = 0, this nonlinear dynamic system is unstable
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Fig. 5.4 The output data of dynamic system for e(k) = 0

at the origin. Output data of dynamic system with 300 data points for e(k) = 0
is shown in Fig. 5.4. This data points are generated from an initial condition of
X(1) = [0.1,0.1]. But the training input data of 300 point pairs are generated from
initial condition of X (1) = [0,0]. The proposed FIS using the extended RVM has
the following fuzzy If-Then rules.

R If y(k—1)is K(y(k — 1), y;1(k — 1))
and y(k — 2) is K (y(k — 2), 5 (k — 2)),
Then f; = a;o + aily(k; - 1) + aigy(k - 2),Z =1,...,n. (5.26)

When training data sizes are generally large from ik = 1, the number of RVs and the
prediction test error of both algorithms, the RVM and the FIS using the extended
RVM, are shown in Fig. 5.5. When training data size increases under the same
initial = 1.2782, prediction test error decreases. The number of RV in FIS using
the extended RVM is smaller than that of the RVM for a similar error.
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Fig. 5.5 The number of RVs and prediction test error of the RVM and the FIS using
the extended RVM when data sizes are generally large

Table 5.1 The parameter values of the FIS for modeling of X (k) = [y(k—1),y(k—2)]

Rule Antecedent part Consequent part
Cij \ 0i; (a0, a1, a;2)
1 (0.7821 -0.2076) | 1.1791 1.1696 | -107.50 -27.08 -31.64
2 (1.1036 0.5064) | 1.2799 1.1488 | 362.62 -69.23 -39.57
3 (0.0464 -0.9427) | 1.2344 1.2385 50.95 -16.81 12.20
4 (-1.0619 -0.5757) | 1.27591.2319 | -56.45-16.93 0.35
5 (-0.5010 0.6232) | 1.2491 1.2397 | 389.53 45.00 11.61
6 (-0.0553 0.9856) | 1.2762 1.3008 | -619.62 11.81 120.18
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Input  Layerl Layer2 Layer3 Layer4 Layer5 Output

Fig. 5.6 The structure of the proposed FIS for modeling of y(k)

After the simulation from the training input data of 300 point pairs, the proposed
FIS using the extended RVM generates 6 RVs (x}), so that it has 6 rules as follows.
The structure of the proposed FIS using the extended RVM for modeling of y(k)
is shown in Fig. 5.6. Figure 5.7 shows input space partitioning using the RVM(a)
and the extended RVM(b) in training data of dynamic system with noises and found
RVs. The parameter values of antecedent and consequent parts are listed in Table
5.1. The ¢;; and 0;; are the center and variance of Gaussian membership function,
respectively. Parameters (a9, ai1, a;2) are the consequent those of T'S fuzzy model.
Membership functions of FIS are shown in Fig. 5.8. Figure 5.9 shows the modeling
result of estimated dynamic system output of X (k) = [y(k — 1),y(k — 2)]. Modeling
output of estimated dynamic system as shown in Fig. 5.9 is similar to output of
original system with no error as shown in Fig. 5.4. The method in the literature
applied to the same dynamic system, and the results listed on the Table 5.2. The
extended RVM is used as fuzzy inference engine in proposed FIS. The initial con-

dition of simulation such as initial hyperparameter « and kernel parameter 6; is
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Fig. 5.7 The comparison of input space partitions using the RVM(a) and the ex-
tended RVM(b) in training data of dynamic system with noises and found RVs(o)
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Fig. 5.8 The membership functions y(k — 1) and y(k — 2) of the proposed FIS
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Fig. 5.9 The estimated dynamic system output of X (k) = [y(k — 1), y(k — 2)]

15

equal. The modeling error is the standard deviation of test errors. Compared with

the number of rules and modeling error, the proposed method using the extended

RVM gives the smaller number of rules and modeling error than the Chan’s ap-

proach shown in Table 5.2. Especially, the FIS gives the smaller number of rules for

the same error.

Table 5.2 The compared results of nonlinear dynamic function

] Type | Rules( or SVs/RVs) | Model error |
Chan et al. [28] 10 0.099
RVM 7 0.017
Proposed FIS using the
extended RVM 6 0.017
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54.2 Example 2 : modeling of robot arm data

The training robot arm data are obtained from the relationship between input vari-

ables (z1, z2) of joint angles and target variables (y;, y2) of positions,

y1 = 2.0coszy + 1.3cos(x1 + x2) + 0, (5.27)
yo = 2.0sinzy + 1.3sin(z1 + x2) + 6, (5.28)

where § is a Gaussian noise, § ~ N(0,0.05%). The 400 input-target pairs of robot
arm which was used by MacKay [94] and Chu et al. [89] are used. In this data set,
the first 200 data and the second 200 data are used as training and test data set,
respectively.

The proposed FIS using the extended RVM has the following fuzzy If-Then rules.

R; : Ifxzyis K(x1,z;;) and zg is K (2, x}5),

Then fi=aj+ a;1x1 + appxe. i =1,...,n. (5.29)

When training data sizes are generally large in target variables (y;, y2), the number
of RVs and prediction test error of the RVM and the FIS using the extended RVM
are shown in Fig. 5.10. Average results for 10 repetitions were quoted, where 50, 60,
75, 100, 125, 150, 175 and 200 randomly generated training samples from training
data. When training data sizes increase under the same initial condition § = 1.7677,
prediction test error decreases. The number of RV of FIS using the extended RVM
is smaller than that of the RVM for a similar error. After the simulation from the
training input data of 200 point pairs, the proposed FIS using the extended RVM
respectively generates 9 and 10 RVs (x}) for y; and y», so that it has 9 and 10 rules.
Figures 5.11 and 5.12 show input space partitioning of y; and y» using the RVM(a)
and the extended RVM(b), respectively. Under the same initial condition such as
hyperparameter o and kernel parameter 6;, 11 RVs were merged into 9 RVs using
the extend RVM in Fig. 5.11 and 13 RVs were merged into 10 RVs in Fig. 5.12. The
parameter values of antecedent and consequent parts of proposed FIS are listed in
Table 5.3 and 5.4. The membership functions of y; and 35 are shown in Figs. 5.13
and 5.14. Figure 5.15 shows comparison of test robot arm data of y; and y» and
outputs of the proposed FIS using the extended RVM.
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Fig. 5.11 The comparison of input space partitions using the RVM(a) and the ex-
tended RVM(b) in training data of y; with noises and found RVs(o)
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Fig. 5.12 The comparison of input space partitions using the RVM(a) and the ex-
tended RVM(b) in training data of y5 with noises and found RVs(o)
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Table 5.3 The parameter values of the FIS for modeling of ;

Rule

Antecedent part

Consequent part

Cij

\ 0i

(aio, ai1, ai2)(X 104)

(-0.9451 3.0913)

1.6588 1.6775

-0.0129 0.0009 0.0103

(1.2031 2.7042)

2.0207 1.8009

-1.2575 0.2623 0.0406

(1.1397 0.5988)

1.8473 1.8774

-0.0960 -0.0161 0.0596

(0.5122 1.4056)

1.7967 1.7697

-0.9088 -0.0897 0.0128

(-1.8941 0.8151)

1.8013 1.7803

0.3044 0.0316 -0.0024

(1.6345 1.7778)

2.1581 1.8618

7.0833 -0.1508 -0.5640

(-0.9796 1.5137)

1.8310 1.8410

-0.7585 0.0134 0.1401

(1.7438 1.1445)

2.0773 1.8796

-3.8342 -0.1712 -0.5538

O 00| =IO O x| W DN =

(0.8388 3.1328)

1.8192 1.8736

1.0656 -0.0248 -0.0978

Table 5.4 The parameter values of the FIS for modeling of 15

Rule

Antecedent part

Consequent part

Cij

\ 0ij

(aio, ai1, a;2)(x10%)

(-0.9362 1.3506)

1.7684 1.7694

0.2482 0.0293 0.0044

(0.9283 2.6690)

1.7911 1.7589

0.1233 0.0649 0.0329

(1.1615 0.6477)

1.7439 1.8359

0.0179 -0.0015 0.0047

(-1.0987 3.1254)

1.8132 1.8088

0.2060 -0.0208 -0.0094

(1.8904 1.6948)

1.8714 1.7888

-0.0176 0.0027 -0.0017

(-1.8941 0.8151)

1.9331 1.8334

1.2448 0.0753 0.1497

(-1.7287 2.5087)

1.8173 1.7800

0.2522 -0.0354 -0.0871

(-1.0644 0.5615)

1.8271 1.8348

-0.5942 -0.0095 -0.0888

O 00| =3[ O U x| W[ DN| =

(1.5707 3.0659)

1.7596 1.7809

-0.4063 0.0153 0.0208

—
[e)

(-1.7653 1.4311)

1.8854 1.7824

-0.9783 0.0563 -0.0278
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Table 5.5 The compared results of the modeling robot arm data y; and -

] Type | Rules( or SVs/RVs) | ASE (x1077) |
Y1 21 2.491
Chu et al. [89] v 19 3184
Y1 11 2.475
RVM Y2 13 3.057
Proposed FIS using Y1 9 2.465
the extended RVM Yo 10 3.046

To analyze the performance of the proposed FIS, the modeling error is defined as

following Average Square Error (ASE)

(g — flaw)?
ASE = k=10 ,

(5.30)

where N is the number of data, y; and f(x) are the original system and fuzzy mod-
eling output, respectively. The method in the literature applied to the same system
and the results listed on the Table 5.5. A comparison in terms of the number of rules
and modeling error shows that the proposed method using the extended RVM gives
the smaller number of rules for a similar modeling error than approaches shown in
Table 5.5.

5.5 Discussion and Conclusions

In this chapter, a new approach to fuzzy modeling using the relevance vector learn-
ing mechanism based on a kernel-based Bayesian estimation was proposed. Our
main concern is to find the best structure of the TS fuzzy model for modeling non-
linear dynamic systems with measurement error. The number of fuzzy rules and the
parameter values of membership functions can be found as optimizing the marginal
likelihood of the RVM in the proposed FIS. Because the RVM is not necessary to sat-
isfy Mercer’s condition, kernel function is beyond the limit of the positive definite
continuous symmetric function of SVM. The relaxed condition of kernel function
can satisfy the various types of membership functions in fuzzy model.

We applied the proposed method to two nonlinear dynamic functions. The RVM

compared with support vector learning mechanism in examples had the small model
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capacity and described good generalization. Simulated results showed the effective-
ness of the proposed FIS for modeling of nonlinear dynamic systems with noise.

The RVM showed a good generalization property in examples of reference [27].
In the extended RVM, marginal likelihood (5.9) with respect to Gaussian kernel
parameter 6 is maximized using the gradient ascent method. The choice of learning
parameter 7y influences the convergence of the extended RVM. In this thesis, the
1y was experimentally selected. Nevertheless, the FIS using the extended RVM has
good generalization property in Examples.

In RVM [27], the posterior weight covariance matrix ¥ of (5.8), which requires an
inverse operation of order O(M?) complexity and O(M?) memory storage, with M
the number of basis functions is computed in order to re-estimate hyperparameters
a and o. In addition, the gradient ascent method is added to update Gaussian
kernel parameter §. We need to improve computing time for big data size. The
iteration of this algorithm depends on inference procedure of the RVM. When the
maximum of «; and variation «; are satisfied with given condition, this algorithm

is stopped.



CHAPTER

Conclusions

In this thesis, we present new approaches to fuzzy inference system for system mod-
eling using kernel machines. Our main concern is to determine the best structure of
the TS fuzzy model for modeling nonlinear system based on input and output data.
The number of fuzzy rules and the parameter values of membership functions which
are automatically generated using the extended Support Vector Machine (SVM),
the extended Feature Vector Selection (FVS) and the extended Relevance Vector
Machine (RVM) as a kernel machine.

In FIS using an extended SVM, the structure of the proposed FIS is obtained by
minimizing a constrained quadratic programming problem for a given error bound
in SVM. The number of fuzzy rules can be reduced by adjusting the parameter
values of Gaussian kernel function using the gradient descent method.

In FIS using an extended FVS, the structure of the proposed FIS is obtained
using an extended Kernel method. The learning algorithm of the extended FVS is
faster than the extended SVM. The extended kernel method consists of linear trans-
formation of input variables and kernel mapping of the extended FVS. The linear
transformation of input variables is used to solve problem selecting the best shape

of the Gaussian kernel function. The number of fuzzy rules can be reduced by ad-
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justing the linear transformation matrix and parameter values of kernel functions
using the gradient descent method.

In FIS using an extended RVM, the structure of the proposed FIS is obtained
using the relevance vector learning mechanism based on a kernel-based Bayesian
estimation. The RVM consists of the sum of product of weight and kernel function
which projects input space into high dimensional feature space. The extended RVM
generates the smaller number of fuzzy rules than the extended SVM. The extended
RVM does not need the linear transformation of input variables because the basis
function of the extended RVM is not restricted within the limitation of the kernel
function. The number of fuzzy rules can be reduced by adjusting the parameter
values of kernel functions using a gradient ascent method. After a fuzzy model is
determined, coefficients in consequent part are determined using the least square
estimation method.

In the experiment presented in each chapter, the performance and result of the
proposed FIS were evaluated and discussed. The results of all simulations showed
the effectiveness of the proposed FIS for modeling nonlinear systems.

As future work, we need to select the proper kernel function corresponding to
nonlinear system and improve the computation capacity in learning process. In
addition to, online learning mechanisms of the SVM, FVS and RVM are necessary

for more effective modeling of the nonlinear system.
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