
SUMMARY OF Ph.D. DISSERTATION
School

School of Science for Open
and Environmental Systems

Student Identification Number

SURNAME, First name
Toshihiko Koju

Title
 Design and Implementation of a Framework
 for Controlling and Monitoring Program Execution for Debuggers

Abstract
Debugging is a tedious but unavoidable part of the software development process. Unfortunately, basic

functionalities provided by traditional debuggers are insufficient to debug increasingly larger and more
complex software. Thus, more sophisticated functionalities that can assist software developers in analyzing
their target programs more deeply have been proposed. Examples of such functionalities include program
slicing and reversible execution.

Debuggers equipped with such sophisticated functionalities need to perform special kinds of tasks of

controlling and monitoring program execution. In our research, we propose a new debugger development
environment, DbgStar, which provides a basis for these tasks to debugger developers. Our contributions are
as follows:
• Applying SDT to debuggers: In our research, we apply the technique of SDT (Software Dynamic

Translation) to debuggers. SDT is a technique which executes programs on a virtual machine, while
simultaneously performing code translations. Using SDT, we can instrument programs (insertions of
code for monitoring) (1) during execution, and (2) to only those parts which are actually executed. This
alleviates issues in existing approaches such as:

◆ Overhead: Since only parts, that are actually executed, are instrumented, no additional costs for
redundant instrumentations are required. In addition, instrumented code are executed directly on the
real CPU. Therefore, overall overhead is relatively low.

◆ Affinity: Since executables generated by existing compilers are used, modifications to debuggee's
source code are basically not required. Also, no specialized hardware is required. Therefore, high
affinity with existing software development environment can be achieved.

◆ Flexibility: The VM allows dynamic adjustments of details of code translations. This means the
granularities of monitoring can be changed depending on the debugging situations, which enables
minimal monitoring. Therefore, very flexible monitoring can be achieved.

• Debugger development environment: Controlling and monitoring of program execution are
fundamental tasks for various kinds of debugger's functionalities. However, implementing these tasks is
not trivial, since program execution is affected by many different-level elements, such as hardware
architectures, OS, and compilers. Therefore, debugger developers can greatly reduce implementation
efforts by using DbgStar.

In this paper, we introduce a debugger which was developed using DbgStar. We integrated some

sophisticated functionalities to our debugger, such as program slicing and reversible execution. We describe
debugging scenarios which show usages of our debugger, using real faults reported for open source
programs (ProFTPD, GNU Awk, and Apache HTTP Server). Evaluation results showed that DbgStar
satisfied the three perspectives of overhead, affinity, and flexibility.

