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Chapter 1

Introduction.

1.1 Lévy processes and infinitely divisible distri-

butions on Rd

We start with several definitions which are needed throughout the thesis.

Definition 1.1 (Lévy process). A stochastic process {Xt : t ≥ 0} on Rd is a Lévy

process if the following conditions are satisfied.

(1) For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, random variables Xt0 −
X0, Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent. (Independent increment

property.)

(2) The distribution of Xs+t − Xs does not depend on s. (Stationary increment

property.)

(3) X0 = 0 a.s.

(4) Xt is stochastically continuous for any t ≥ 0.

Definition 1.2 (Infinitely divisible distribution). A probability measure µ on Rd is

infinitely divisible if, for any positive integer n, there is a probability measure µn on

Rd such that

µ = µn∗
n ,

where µn∗
n is the n-fold convolution of µn.

We denote by I(Rd) (resp. Isym(Rd)) the class of all infinitely divisible (resp. all

symmetric infinitely divisible) distributions on Rd.

Proposition 1.3 (see, e.g. [S99]). If {Xt} is a Lévy process on Rd, then, for every

t, the distribution of Xt is infinitely divisible.
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Definition 1.4. By the independent and stationary increment property, the distri-

bution of Xt is determined by that of X1. Therefore, the distribution of X1 is a

characteristic of the Lévy process {Xt}. We denote by {X(µ)
t } a Lévy process such

that its distribution at time 1 is µ ∈ I(Rd). Namely, L(X
(µ)
1 ) = µ, where L means “

the law of ” throughout this thesis.

Let µ̂(z), z ∈ Rd, be the characteristic function of µ.

Proposition 1.5 (Lévy–Khintchine representation (see, e.g. [S99])). (i) If µ ∈ Rd,

then

µ̂(z) = exp

[
−1

2
⟨z, Az⟩ + i⟨γ, z⟩ +

∫
Rd

(
ei⟨z,x⟩ − 1 − i⟨z, x⟩

1 + |x|2

)
ν(dx)

]
, z ∈ Rd,

(1.1)

where A is a symmetric nonnegative-definite d × d matrix, ν is a measure on Rd

satisfying

ν({0}) = 0 and

∫
Rd

(|x|2 ∧ 1)ν(dx) < ∞, (1.2)

and γ ∈ Rd.

(ii) The representation of µ̂ in (i) by A, ν, and γ is unique.

(iii) Conversely, if A is a symmetric nonnegative–definite d × d matrix, ν is a

measure satisfying (1.2), and γ ∈ Rd, then there exists an infinitely divisible distribu-

tion µ whose characteristic function is given by (1.1).

(A, ν, γ) is called the Lévy–Khintchine triplet of µ ∈ I(Rd).

Proposition 1.6 (Polar decomposition of Lévy measures ([R90], [BMS06]) ). Let ν

be the Lévy measure of some µ ∈ I(Rd) with ν(Rd) > 0. Then there exists a measure

λ on S, the unit sphere on Rd, with 0 < λ(S) ≤ ∞ and a family {νξ : ξ ∈ S} of

measures on (0,∞) such that

νξ(B) is measurable in ξ for each B ∈ B((0,∞)), (1.3)

0 < νξ((0,∞)) ≤ ∞ for each ξ ∈ S, (1.4)

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)νξ(dr) for B ∈ B(Rd\{0}). (1.5)

Here λ and {νξ} are uniquely determined by ν in the following sense : If λ, {νξ} and

λ′, {ν ′
ξ} both have properties (1.3)–(1.5), then there is a measurable function c(ξ) on

S such that

0 < c(ξ) < ∞, (1.6)
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λ′(dξ) = c(ξ)λ(dξ), (1.7)

c(ξ)ν ′
ξ(dr) = νξ(dr) for λ−a.e. ξ ∈ S. (1.8)

We call the pair (λ, νξ) a polar decomposition of ν and νξ in (1.5) the radial component

of ν, respectively.

We also define the cumulant function Cµ(z) of µ ∈ I(Rd) as follows: Cµ(z)

is the unique complex-valued continuous function on Rd satisfying Cµ(0) = 0 and

µ̂(z) = eCµ(z). For a random variable X with its distribution µ, we also write CX(z)

for Cµ(z).

Proposition 1.7 (Stochastic integral with respect to a Lévy process (see, e.g. [RS03],

Proposition 29). Let µ ∈ I(Rd). Let f(s) be a real-valued bounded measurable func-

tion on [a, b], 0 ≤ a < b < ∞, such that there are uniformly bounded step func-

tions fn(s), n = 1, 2, . . . , on [a, b] satisfying fn → f almost everywhere. Then∫ b

a
fn(s)dX

(µ)
s converges to an Rd-valued random variable X in probability. The limit

X does not depend on the choice of {fn} up to probability zero, and we write the limit

as X :=
∫ b

a
f(s)dX

(µ)
s . Then L(X) is infinitely divisible and its cumulant function is

represented as

CX(z) =

∫ b

a

Cµ(f(s)z)ds.

The integral over [0,∞) is defined as follows when the limit exists:

X :=

∫ ∞

0

f(s)dXs = lim
a→∞

∫ a

0

f(s)dXs in probability.

Thus

CX(z) =

∫ ∞

0

Cµ(f(s)z)ds.

As to the definition of stochastic integrals of nonrandom functions with respect

to Lévy processes {Xt} on Rd, it is also studied in Sato ([S04], [S06]), whose idea

is to define the integrals with respect to Rd-valued independently scattered random

measure induced by a Lévy process on Rd. This idea was used in Urbanik and

Woyczyński ([UW67]) and Rosinski ([R90]) for the case d = 1. See also Barndorff-

Nielsen et al. ([BMS06]).

Definition 1.8 (Completely monotone function). A function f on (0,∞) is said to be

completely monotone if it is infinitely many times differentiable and for n = 0, 1, 2, · · ·

(−1)nf (n)(s) ≥ 0, s ∈ (0,∞),

where f (n)(s) is the n–th order derivative and f (0)(s) = f(s).
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Lemma 1.9. Let f(s) and g(s) be two completely monotone functions on (0,∞).

Then, f(s)g(s) is again completely monotone on (0,∞).

Proof. Let f(s) and g(s) be completely monotone functions on (0,∞). Then f(s)g(s) ≥
0 and, for any n ∈ N, we have

(−1)n(f(s)g(s))(n) =
n∑

i=0

nCi(−1)if (i)(s)(−1)n−ig(n−i)(s) ≥ 0, s ∈ (0,∞),

where (f(s)g(s))(n) is the n–th order derivative of f(s)g(s).

We will to use the following proposition many times in this thesis.

Proposition 1.10 (Bernstein’s theorem). A measurable function f on (0,∞) is com-

pletely monotone if and only if there exists a measure Q on (0,∞) such that

f(s) =

∫ ∞

0

e−suQ(du), s ∈ (0,∞),

holds.

1.2 Some known subclasses of infinitely divisible

distributions

In the following, the classification and characterization are given in term of the radial

component νξ of the Lévy measure. Classes in I(Rd) we are going to discuss in this

thesis are the following.

(1) Class U(Rd) (the Jurek class) :

νξ(dr) = ℓξ(r)dr, (1.9)

where ℓξ(r) is measurable in ξ ∈ S and nonincreasing in r ∈ (0,∞).

The class U(Rd) was introduced by Jurek ([J85]) and µ ∈ U(Rd) is called s-

selfdecomposable. In his paper ([J85]), he proved the following. (i) µ ∈ U(Rd) if and

only if for any 0 < c < 1 there exists µc ∈ I(Rd) such that µ̂(z) = µ̂(cz)cµ̂c(z), and

(ii) µ ∈ U(Rd) if and only if there exist probability distributions µ1, µ2, ... ∈ I(Rd)

such that (
µ̂1(n

−1z)µ̂2(n
−1z)2 · · · µ̂n(n−1z)n

)1/n → µ̂(z).
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(2) Class B(Rd) (the Goldie–Steutel–Bondesson class) :

νξ(dr) = ℓξ(r)dr, (1.10)

where ℓξ(r) is measurable in ξ ∈ S and completely monotone on (0,∞) as a function

of r.

Bondesson ([B82]) studied generalized convolutions of mixtures of exponential

distributions on R+. (The smallest class that contains all mixtures of exponential

distributions and that is closed under convolution and weak convergence on R+.)

B(Rd) is its generalization to the multidimensional case. (Barndorff-Nielsen et al.

[BMS06].) Since completely monotone functions are nonincreasing, ℓξ is nonincreas-

ing. Thus, we have

B(Rd) ⊂ U(Rd).

(3) Class L(Rd) (the class of selfdecomposable distributions) :

νξ(dr) = kξ(r)r
−1dr, (1.11)

where kξ(r) is measurable in ξ ∈ S and nonincreasing in r ∈ (0,∞).

It is known that µ ∈ L(Rd) if and only if for any 0 < c < 1, there exists some

µc ∈ I(Rd) such that µ̂(z) = µ̂(cz)µ̂c(z). (This statement is used as the definition of

the selfdecomposability usually.) Since kξ(r)r
−1 is nonincreasing, we have

L(Rd) ⊂ U(Rd).

(4) Class T (Rd) (the Thorin class) :

νξ(dr) = kξ(r)r
−1dr, (1.12)

where kξ(r) is measurable in ξ ∈ S and completely monotone on (0,∞) as a function

of r.

Thorin ([T77a], [T77b]) studied generalized Γ-convolutions on R+ and R. (The

smallest class that contains all Γ-distributions and that is closed under convolution

and weak convergence on R+ and R.) T (Rd) is its generalization to the multidimen-

sional case. (Barndorff-Nielsen et al. [BMS06].) r−1 is completely monotone and by

Lemma 1.9, kξ(r)r
−1 is completely monotone. Furthermore, kξ(r) is nonincreasing

since completely monotone functions are nonincreasing. Thus, we have

T (Rd) ⊂ B(Rd) ∩ L(Rd).
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(5) Class G(Rd) (the class of type G distributions) :

µ ∈ Isym(Rd) and νξ(dr) = gξ(r
2)dr, (1.13)

where gξ(r) is measurable in ξ ∈ S and completely monotone on (0,∞) as a function

of r.

When d = 1, µ ∈ G(R1) if and only if µ = L(V 1/2Z), where L(V ) ∈ I(R+), Z is

the standard normal random variable, and V and Z are independent. When d ≥ 1,

µ ∈ G(Rd) if and only if νµ(B) = E[ν0(Z
−1B)] for some Lévy measure ν0, where νµ

is the Lévy measure of µ. (Maejima-Rosiński [MR02].)

1.3 Characterizations of several classes of infinitely

divisible distributions by stochastic integrals

In Section 1.2, we explained five known classes of infinitely divisible distributions,

which are characterized by their Lévy measures. Here we show some results on

characterizations for first four classes by stochastic integrals with respect to Lévy

processes.

Proposition 1.11 ([J85]).

U(Rd) =

{
L

(∫ 1

0

tdX
(µ)
t

)
, µ ∈ I(Rd)

}
.

Proposition 1.12 ([BMS06]).

B(Rd) =

{
L

(∫ 1

0

log
1

t
dX

(µ)
t

)
, µ ∈ I(Rd)

}
.

Proposition 1.13 ([W82] and others).

L(Rd) =

{
L

(∫ ∞

0

e−tdX
(µ)
t

)
, µ ∈ Ilog(Rd)

}
,

where Ilog(Rd) = {µ ∈ I(Rd) :
∫
|x|>2

log |x|µ(dx) < ∞}.

Proposition 1.14 ([BMS06]). Let e1(u) =
∫ ∞

u
e−ss−1ds and let e∗1(t) be its inverse

function, that is, t = e1(u) if and only if u = e∗1(t). Then

T (Rd) =

{
L

(∫ ∞

0

e∗1(t)dX
(µ)
t

)
, µ ∈ Ilog(Rd)

}
.

Our first problem in this thesis is to obtain a stochastic integral characterization

of G(Rd), which will be studied in Chapter 2.
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1.4 Nested subclasses of selfdecomposable distri-

butions, Lm(Rd), m ∈ N

Urbanik ([U73]) and Sato ([S80]) defined and investigated nested subclasses of L(Rd).

They are defined as follows.

Definition 1.15 (Class Lm(Rd)). Let m = 1, 2, · · · and let L0(Rd) = L(Rd). µ ∈
I(Rd) belongs to Lm(Rd) if and only if for any 0 < c < 1, there exists a µc ∈ Lm−1(Rd)

such that µ̂(z) = µ̂(cz)µ̂c(z) holds. L∞(Rd) is defined by
∞∩

m=0

Lm(Rd).

Then, they showed the following.

Proposition 1.16 ([U73], [S80]).

L0(Rd) ⊃ L1(Rd) ⊃ L2(Rd) ⊃ · · · ⊃ Lm(Rd) ⊃ · · · ⊃ L∞(Rd) = S(Rd),

where S(Rd) is the class of all stable distributions on Rd and the closure is taken by

weak convergence and convolution.

Urbanik [U73] showed this proposition when d = 1, and Sato [S80] generalized to the

multidimensional case.

This proposition is important, in one sense, in understanding the role of stable

distributions in I(Rd).

The following is also known.

Proposition 1.17 ([J85]).

Lm(Rd) =

{
L

(∫ ∞

0

e−pm(t)dX
(µ)
t

)
: µ ∈ Ilogm(Rd)

}
,

where

pm(t) = ((m + 1)!t)1/(m+1)

and

Ilogm(Rd) =

{
µ ∈ I(Rd) :

∫
|x|>2

(log |x|)mµ(dx) < ∞
}

.

9



1.5 History and motivations

As we mentioned in Definition 1.2, a probability measure µ on Rd is called infinitely

divisible if, for any positive integer n, there exist a probability measure µn on Rd such

that µ = µn∗
n , where µn∗

n is the n-th convolution of µn. The class of infinitely divisible

distributions is known as the most important class of probability distributions. For

instance, normal, exponential, Poisson and stable distributions are in this class. (See

e.g. [S99], [SV04].)

Historically, the results on classifying its subclasses were mainly given in terms of

Lévy measure ν in the Lévy-Khintchine representation of the characteristic function.

The characteristic function is the the Fourier transform of a probability measure.

Hence, these results could be said to be analytical ones.

Recently, probabilistic interpretations for such results have been of interest, and,

especially, characterizations of subclasses of them by stochastic integrals with respect

to Lévy processes have been well studied as we mentioned in Section 1.3. How-

ever, only a few classes of infinitely divisible distributions were characterized in this

way. Barndorff-Nielsen et al. ([BMS06]) found such characterizations for the Goldie-

Steutel-Bondesson class and the Thorin class. (For the details, see Barndorff-Nielsen

et al. [BMS06].) As in Section 1.4, nested subclasses of the class of selfdecompos-

able distributions are studied and that shows the relationship with the class of stable

distributions. Our study is on the line of this history.

In Chapter 2, the class of type G distributions on Rd and its nested subclasses

are studied. Type G distribution is a variance mixture of the standard normal distri-

bution. (See e.g. [SV04].) An analytic characterization in terms of Lévy measures for

the class of type G distributions is known. In this chapter, probabilistic characteri-

zations by stochastic integral representations for all classes are shown and moreover

analytic characterizations for the nested subclasses are also given in terms of Lévy

measures. These results correspond to the case of selfdecomposable distributions

mentioned in Section 1.3 and 1.4. In Chapter 3, a new class of type G selfdecom-

posable distributions on Rd is introduced and characterized in terms of stochastic

integrals with respect to Lévy processes. This class is a strict subclass of the inter-

section of the classes of type G and selfdecomposable distributions, and in dimension

one, it is strictly bigger than the class of variance mixtures of normal distributions by

selfdecomposable distributions. The relationships with several other known classes of

infinitely divisible distributions are established. In Chapter 4, nested subclasses of
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the new class introduced in Chapter 3 are studied. As in Chapter 2, analytic char-

acterizations for them are given in terms of Lévy measures as well as probabilistic

characterizations by stochastic integral representations for all classes are given. A

relationship with stable distributions is shown.
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Chapter 2

Characterizations of subclasses of
type G distributions on Rd.

2.1 The class G0(Rd)

We have mentioned type G distributions on Rd in Chapter 1, but we explain them

more deeply here.

Summarizing the discussions in Rosinski [R91] and Maejima and Rosiński [MR01],

[MR02], we use the following definition of type G distributions on Rd.

Definition 2.1. A probability measure µ0 ∈ Isym(Rd) is said to be of type G if its

Lévy measure ν0 is given by

ν0(B) = E
[
ν(Z−1B)

]
, B ∈ B0(Rd), (2.1)

where ν is another Lévy measure on Rd and Z is a real valued standard normal random

variable. Here B0(Rd) is the class of all Borel sets B in Rd such that B ⊂ {|x| > ε}
for some ε > 0.

Remark 2.2. ν in (2.1) is not necessarily unique. However, if we let ν̄ be the

symmetrization of ν defined by ν̄(B) = 1
2
(ν(B) + ν(−B)), then

ν0(B) = E
[
ν̄(Z−1B)

]
= E

[
ν̄(|Z|−1B)

]
also holds and ν̄ is uniquely determined, (see Maejima and Rosiński [MR02]).

Definition 2.1 is a multidimensional extension of the well-known notion of type

G distributions on R. (Another type of multidimensional extension is discussed in

Barndorff-Nielsen and Pérez-Abreu [BP02].) In one dimensional case as mentioned

12



in Chapter 1, a type G random variable X can be expressed as X
d
= V 1/2Z, where

d
= means equality in law, V is a nonnegative infinite divisible random variable, in-

dependent of Z. Among others, some examples of R-valued type G distributions

are symmetric stable distributions, convolution of symmetric stable distributions of

different stability indices, symmetric gamma distributions (a special case of which is

Laplace distribution), Student t-distributions and normal inverse Gaussian distribu-

tions. The first two have multidimensional extensions.

In Maejima and Rosiński [MR01], they introduced an operator K : Isym(Rd) →
Isym(Rd), where K(µ) is a symmetric infinitely divisible distribution having the same

Gaussian component as µ and the Lévy measure ν0 in (2.1), where ν is the Lévy

measure of µ ∈ Isym(Rd). Let G0(Rd) be the class of all type G distributions on Rd

and define, for m ∈ N,

Gm(Rd) = {µ0 ∈ G0(Rd) : ν in (2.1) is the Lévy measure of

some symmetric infinitely divisible distribution in Gm−1(Rd)}.

Also, define G∞(Rd) = ∩m≥0Gm(Rd). The classes Gm(Rd), 1 ≤ m ≤ ∞, were intro-

duced in Maejima and Rosiński [MR01], and if we use the operator K,

G0(Rd) = K(Isym(Rd)) (2.2)

and Gm(Rd) = K(Gm−1(Rd)). It was also shown in the paper that

Isym(Rd) ⊃ G0(Rd) ⊃ G1(Rd) ⊃ · · · ⊃ Gm(Rd) ⊃ · · · ⊃ G∞(Rd) ⊃ Ssym(Rd),

where Ssym(Rd) is the class of all symmetric stable distributions on Rd, and G∞(Rd)

is the largest subclass of Isym(Rd) which is invariant under the operation K.

One of our purposes in this chapter is to give a characterization of type G distri-

butions by stochastic integrals with respect to Lévy processes.

2.2 Characterization of G0(Rd) by stochastic inte-

grals

We start with G0(Rd). The following is a known characterization of the Lévy measures

of type G distributions.

13



Proposition 2.3. (Maejima and Rosiński [MR02].) A probability distribution µ0 ∈
Isym(Rd) is of type G if and only if its Lévy measure ν0 is either zero or it can be

represented as

ν0(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)gξ(r
2)dr, B ∈ B0(Rd),

where λ is a symmetric probability measure on the unit sphere S in Rd and gξ(r) is

a jointly measurable function such that gξ = g−ξ, λ− a.e. for any fixed ξ ∈ S, gξ(·) is

completely monotone on (0,∞) and satisfies∫ ∞

0

(1 ∧ r2)gξ(r
2)dr = c ∈ (0,∞)

with c independent of ξ.

The following result for the integrability of stochastic integrals is due to Sato

[S06], who studied more general stochastic integrals of matrix valued integrands with

respect to additive processes. We state parts of Propositions 2.7 and 3.4 of Sato [S06]

as a lemma below for our use.

Lemma 2.4. (Sato [S06].) Let µ ∈ I(Rd) and let f(t) be a real-valued measurable

function on [0, 1]. If ∫ 1

0

f(t)2dt < ∞, (2.3)

then Y :=
∫ 1

0
f(t)dX

(µ)
t is integrable, CL(Y )(z) =

∫ 1

0
Cµ(f(t)z)dt and

∫ 1

0
|Cµ(f(t)z)|dt<

∞. Furthermore, if we let (A, ν, γ) and (AY , νY , γY ) be the generating triplets of µ

and L(Y ), respectively, then

AY = A

∫ 1

0

f(t)2dt, (2.4)

νY (B) =

∫ 1

0

dt

∫
Rd

1B(f(t)x)ν(dx) (2.5)

and

γY =

∫ 1

0

f(t)γ + f(t)

∫
Rd

x

(
1

1 + |f(t)x|2
− 1

1 + |x|2

)
ν(dx)dt. (2.6)

Let

ϕ(u) = (
√

2π)−1e−u2/2 (throughout this thesis)
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and

h(x) =

∫ ∞

x

ϕ(u)du, x ∈ R.

Define the inverse function of h by h∗, namely, x = h∗(t) if and only if h(x) = t. The

stochastic integrals we need can be shown to be integrable as follows.

Theorem 2.5. The stochastic integral∫ 1

0

h∗(t)dX
(µ)
t

is integrable for every µ ∈ I(Rd).

Proof of Theorem 2.5. It is enough to show that f(t) = h∗(t) satisfies the conditions

in Lemma 2.4 for every µ ∈ I(Rd). Since∫ 1

0

h∗(t)2dt =

∫ ∞

−∞
r2ϕ(r)dr = 1,

we have (2.3). This completes the proof.

Definition 2.6. For any µ ∈ I(Rd), define a mapping G : I(Rd) → I(Rd) by

G(µ) = L
(∫ 1

0

h∗(t)dX
(µ)
t

)
.

Proposition 2.7. (i) For any µ ∈ I(Rd),∫ 1

0

|Cµ(zh∗(t))|dt < ∞, z ∈ Rd, (2.7)

and

CG(µ)(z) =

∫ 1

0

Cµ(zh∗(t))dt, z ∈ Rd. (2.8)

(ii) The mapping G is many-to-one from I(Rd) into Isym(Rd), and one-to-one from

Isym(Rd) into Isym(Rd).

(iii) For any µ1, µ2 ∈ I(Rd), G(µ1 ∗ µ2) = G(µ1) ∗ G(µ2).

(iv) Let µn ∈ I(Rd), n = 1, 2, · · · . If µn → µ, then G(µn) → G(µ).

(v) Let (A, ν, γ) be the triplet of µ and (Ã, ν̃, γ̃) the triplet of µ̃ = G(µ). Then

Ã = A, (2.9)

ν̃(B) =

∫ 1

0

dt

∫
Rd

1B(h∗(t)x)ν(dx) = E
[
ν(Z−1B)

]
, (2.10)

γ̃ = 0. (2.11)
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Proof. (i) (2.7) and (2.8) follow from Lemma 2.4. (ii) Since Ĝ(µ)(z) = exp{CG(µ)(z)},
in order to show G(µ) ∈ Isym(Rd), it is enough to show that CG(µ)(z) is symmetric in

z. Actually, we have

CG(µ)(−z) =

∫ 1

0

Cµ(−zh∗(t))dt = −
∫ ∞

−∞
Cµ(−zr)dh(r)

=

∫ ∞

−∞
Cµ(−zr)ϕ(r)dr =

∫ ∞

−∞
Cµ(zs)ϕ(s)ds

= −
∫ ∞

−∞
Cµ(zr)dh(r) =

∫ 1

0

Cµ(zh∗(t))dt

= CG(µ)(z),

and thus CG(µ)(z) is symmetric. This shows that the mapping G is from I(Rd) into

Isym(Rd). The fact that G is one-to-one from Isym(Rd) into Isym(Rd) can be shown

by Remark 2.2. (iii) and (iv) can be proved by the same idea of Proposition 2.7

(iii) and (iv) of Barndorff-Nielsen et al. ([BMS06]). We show here how to prove

them precisely. (iii) is obvious from L(X
(µ1∗µ2)
t ) = L(X

(µ1)
t + X

(µ2)
t ), where {X(µ1)

t }
and {X(µ2)

t } are independent. Next we prove (v) before (iv). (v) follows from (2.4)-

(2.6) if we notice that
∫ 1

0
h∗(t)dt = 0 and

∫ 1

0
h∗(t)2dt = 1. To prove (iv), assume

that µn = µ(An,νn,γn) → µ = µ(A,ν,γ) as n → ∞. Then Cµn(z) → Cµ(z), and trAn,∫
(|x|2 ∧ 1)νn(dx) and |γn| are bounded. Since Gµn and Gµ have cumulant functions

expressed as in (2.8) and since we have already proved (v), we can use the dominated

convergence theorem to get CG(µn)(z) → CG(µ)(z), that is, G(µn) → G(µ).

Conversely, assume that µ̃n = G(µn) → µ̃. Let (Ãn, ν̃n, γ̃n) and (An, νn, γn) be the

triplets of µ̃n and µn. We claim that {µn} is precompact. The following conditions

are necessary and sufficient for precompactness of {µn}:

sup
n

trAn < ∞, (2.12)

sup
n

∫
Rd

(|x|2 ∧ 1)νn(dx) < ∞, (2.13)

lim
l→∞

sup
n

∫
|x|>l

νn(dx) = 0, (2.14)

sup
n

|γn| < ∞. (2.15)
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Since {µ̃n} is precompact, these four facts (2.12)–(2.15) for (An, νn, γn) also valid with

the replacement (Ãn, ν̃n, γ̃n). We number those facts by (̃2.12) –(̃2.15). Then (2.12)

follows from (2.9) and (̃2.12); (2.13) follows from (̃2.13) since, by (2.10),∫
Rd

(|x|2 ∧ 1)ν̃n(dx) =

∫ ∞

0

ϕ(s)ds

∫
Rd

(|sx|2 ∧ 1)νn(dx)

=

∫
Rd

|x|2νn(dx)

∫ 1/|x|

0

s2ϕ(s)ds +

∫
Rd

νn(dx)

∫ ∞

1/|x|
ϕ(s)ds

≤
∫
|x|≤1

|x|2νn(dx)

∫ 1

0

s2ϕ(s)ds +

∫
|x|>1

νn(dx)

∫ ∞

1

ϕ(s)ds;

(2.14) is obtained from (̃2.14), because∫
|x|>l

ν̃n(dx) =

∫ ∞

0

ϕ(s)ds

∫
|x|>l/s

νn(dx) ≥
∫ ∞

1

ϕ(s)ds

∫
|x|>l

νn(dx).

To see (2.15), use (2.6) and (2.11). This finishes the proof of precompactness of {µn}.
Now we can choose a convergent sequence of {µn′} of {µn}. Thus there is µ ∈ I(Rd)

such that µn′ → µ. Hence G(µn′) → G(µ) and G(µ) = µ̃. It follows from (i) that µ

does not depend on the choice of subsequence. Hence µn → µ.

The following theorem shows that each type G distribution admits the stochastic

integral representation defined in Definition 2.1.

Theorem 2.8.

G0(Rd) = G(I(Rd)).

Proof. Let µ ∈ I(Rd) and µ̃ = G(µ). Then by Proposition 2.7 (v), we have (2.1), and

thus µ̃ ∈ G0(Rd), concluding G(I(Rd)) ⊂ G0(Rd).

Conversely, suppose that µ̃ ∈ G0(Rd). Then by Definition 2.1 and Proposition

2.7 (v) again, we see that µ̃ = L
(∫ 1

0
h∗(t)dX

(µ)
t

)
for some µ ∈ I(Rd). This means

that µ̃ ∈ G(I(Rd)) and G0(Rd) ⊂ G(I(Rd)), completing the proof.

Corollary 2.9. Let H be a subclass of I(Rd) and let

GH(Rd) = {µ0 ∈ Isym(Rd) : νµ0(B) = E[ν(Z−1B)], B ∈ B0(Rd), for some µν ∈ H},

where νµ s the Lévy measure of µ ∈ I(Rd) and µν is the infinitely divisible distribution

with Lévy measure ν. Then we have

GH(Rd) = G(H).
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Remark 2.10. If H = I(Rd), then the corollary above is nothing but Theorem 2.8.

The proof of the corollary can be carried out in the same way as for Theorem 2.8.

Also, we see from the discussions above that as mappings from Isym(Rd) into Isym(Rd),

two mappings K and G are the same.

2.3 Lévy measures of distributions in Gm(Rd), m ∈
N

In this section, we characterize Lévy measures of distributions in Gm(Rd),m ∈ N.

Write ϕ0(x) = ϕ(x), h0(x) = h(x) and h∗
0(t) = h∗(t).

For m ∈ N, let ϕm(x) be the probability density function of the product of (m+1)

independent standard normal random variables. Then we have the following.

Lemma 2.11. For each m ∈ N,

(i)

ϕm(x) = ϕm(−x),

(ii) ∫ ∞

−∞
ϕm(x)dx = 1,

(iii) ∫ ∞

−∞
|x|ϕm(x)dx < ∞ and

∫ ∞

−∞
xϕm(x)dx = 0,

(iv) ∫ ∞

−∞
x2ϕm(x)dx = 1,

(v)

ϕm(x) =

∫ ∞

−∞
ϕ0(u)ϕm−1(x|u|−1)|u|−1du. (2.16)

Proof. (i)-(iv) are trivial. As to (v), for B ∈ B(R), we have

P

(
m+1∏
i=1

Zi ∈ B

)
=

∫ ∞

−∞
1B(x)ϕm(x)dx.

On the other hand, we have

P

(
m+1∏
i=1

Zi ∈ B

)
= P

(
|Z1|

m+1∏
i=2

Zi ∈ B

)
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=

∫ ∞

−∞

∫ ∞

−∞
1B(|u|y)ϕ0(u)ϕm−1(y)dudy

=

∫ ∞

−∞

∫ ∞

−∞
1B(x)ϕ0(u)ϕm−1(x|u|−1)|u|−1dudx.

This completes the proof of (v).

For m ∈ N, let

hm(x) =

∫ ∞

x

ϕm(u)du, x ∈ R

and define its inverse x = h∗
m(t) by t = hm(x). We note that for each m ∈ N ∪ {0},

hm(+∞) = 0, hm(−∞) = 1,∫ 1

0

h∗
m(t)dt = 0 and

∫ 1

0

h∗
m(t)2dt = 1,

where the last two integrals are given by Lemma 2.11 (iii) and (iv).

Theorem 2.12. For each m ∈ N, let µm ∈ Isym(Rd) and denote its Lévy measure by

νm. Then µm ∈ Gm(Rd) if and only if

νm(B) =

∫ ∞

−∞
ν0(u

−1B)ϕm−1(u)du, (2.17)

where ν0 is the Lévy measure of some µ0 ∈ G0(Rd).

Proof. (“Only if” part.) Let m = 1. Then, by the definition

ν1(B) = E
[
ν0(Z

−1B)
]

=

∫ ∞

−∞
ν0(u

−1B)ϕ0(u)du

for some Lévy measure ν0 whose distribution is in G0. Suppose the statement (“only

if” part) is true for some m ∈ N. The Lévy measure νm+1 of µm+1 ∈ Gm+1(Rd) is

given by

νm+1(B) = E
[
νm(Z−1B)

]
for some Lévy measure νm of a distribution µm ∈ Gm(Rd). Then by the induction

hypothesis

νm+1(B) =

∫ ∞

−∞
ϕ0(u)νm(u−1B)du

=

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
ν0(u

−1v−1B)ϕm−1(v)dv
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=

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
ν0(y

−1B)ϕm−1(y|u|−1)|u|−1dy

=

∫ ∞

−∞
ν0(y

−1B)ϕm(y)dy

by (2.16).

(“If” part.) Let m = 1. Then, by the definition, if a Lévy measure ν1 is repre-

sented as

ν1(B) =

∫ ∞

−∞
ν0(u

−1B)ϕ0(u)du

for some ν0, the Lévy measure of some µ0 ∈ G0(Rd), then µ1 ∈ G1(Rd). Suppose that

the statement (“if” part) is true for some m ∈ N. By the same calculation as above,∫ ∞

−∞
ν0(y

−1B)ϕm(y)dy =

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
ν0(y

−1B)ϕm−1(y|u|−1)|u|−1dy

=

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
ν0(u

−1v−1B)ϕm−1(v)dv

=

∫ ∞

−∞
ϕ0(u)νm(u−1B)du

= νm+1(B).

We have

νm+1(B) =

∫ ∞

−∞
ν0(u

−1B)ϕm(u)du

=

∫ ∞

−∞
ϕ0(u)νm(u−1B)du

= E[νm(Z−1B)]

for some Lévy measure νm having the representation (2.17). Then, by the induc-

tion hypothesis, µm with the Lévy measure νm belong to Gm(Rd). Thus, µm+1 ∈
Gm+1(Rd). This completes the proof.

The following is a Gm–version of Proposition 2.3, and it characterizes Lévy mea-

sures of distributions in Gm(Rd).

Theorem 2.13. Let m ∈ N. A µm ∈ Isym(Rd) belongs to Gm(Rd) if and only if its

Lévy measure νm is either zero or it can be represented as

νm(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)gm,ξ(r
2)dr, B ∈ B0(Rd),
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where λ is a symmetric measure on the unit sphere S on Rd and gm,ξ(r) is represented

as

gm,ξ(s) =

∫ ∞

−∞
ϕm−1(

√
s|r|−1)|r|−1gξ(r

2)dr,

for some function gξ on (0,∞) which has the same properties as in Proposition 2.3.

Proof. We see by Theorem 2.12 and Proposition 2.3, µm ∈ Gm(Rd) if and only if νm

is represented as

νm(B) =

∫ ∞

−∞
ν0(u

−1B)ϕm−1(u)du

=

∫ ∞

−∞
ϕm−1(u)du

∫
S

λ(dξ)

∫ ∞

0

1u−1B(rξ)gξ(r
2)dr.

If we use here the facts that λ(dξ) = λ(d(−ξ)), gξ = g−ξ and ϕm−1(u) = ϕm−1(−u),

then we have

νm(B) =

∫ ∞

−∞
ϕm−1(y|r|−1)|r|−1dy

∫
S

λ(dξ)

∫ ∞

0

1B(yξ)gξ(r
2)dr

=

∫
S

λ(dξ)

∫ ∞

−∞
1B(yξ)gm,ξ(y

2)dy

where

gm,ξ(s) =

∫ ∞

−∞
ϕm−1(

√
s|r|−1)|r|−1gξ(r

2)dr.

This completes the proof.

2.4 Characterizations of Gm(Rd), m ∈ N, by stochas-

tic integrals

In this section, we characterize distributions in Gm(Rd) by stochastic integral repre-

sentations.

Theorem 2.14. For each m ∈ N, the stochastic integral

Ym :=

∫ 1

0

h∗
m(t)dX

(µ)
t

is integrable for every µ ∈ I(Rd),∫ 1

0

|Cµ(h∗
m(t)z)|dt < ∞
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and

CL(Ym)(z) =

∫ 1

0

Cµ(h∗
m(t)z)dt.

Proof. Since ∫ 1

0

h∗
m(t)2dt =

∫ ∞

−∞
|x|2ϕm(x)dx < ∞,

we have the assertion by Lemma 2.4.

Let G1 = G1 = G.

Definition 2.15. Let m ∈ N. Define a mapping Gm+1 by

Gm+1(µ) = L
(∫ 1

0

h∗
m(t)dX

(µ)
t

)
, µ ∈ I(Rd)

and

Gm+1(µ) = G(Gm((µ)), µ ∈ I(Rd).

Proposition 2.16. For m ∈ N,

Gm(Rd) = G(Gm−1(Rd)).

Proof. The proof is almost the same as that of Theorem 2.8. Let µm−1 ∈ Gm−1(Rd)

and µm = G(µm−1). Also let νm−1 and νm be the Lévy measures of µm−1 and µm,

respectively. Then by Proposition 2.7 (v), we have νm(B) = E[νm−1(Z
−1B)]. Thus

µm ∈ Gm(Rd), and G(Gm−1(Rd)) ⊂ Gm(Rd).

Conversely, suppose that µm ∈ Gm(Rd). Then by the definition of Gm(Rd)

and Proposition 2.7 (v) again, we see that µm = L
(∫ 1

0
h∗(t)dX

(µ)
t

)
for some µ ∈

Gm−1(Rd). This means that µm ∈ G(Gm−1(Rd)), and Gm(Rd) ⊂ G(Gm−1(Rd)), com-

pleting the proof.

Corollary 2.17. For m ∈ N,

Gm(Rd) = Gm+1(I(Rd)).

We next show

Theorem 2.18. For m ∈ N

Gm+1(I(Rd)) = Gm+1(I(Rd)).
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Proof. We note that

µ̃ ∈ Gm+1(I(Rd)) if and only if µ̃ = L
(∫ 1

0

h∗
m(t)dX

(µ)
t

)
, µ ∈ I(Rd)

and that

µ̃ ∈ Gm+1(I(Rd)) if and only if µ̃ = L
(∫ 1

0

h∗
0(t)dX

(µ)
t

)
, µ ∈ Gm(I(Rd)).

We next claim that∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
|Cµ(uvz)|ϕm−1(v)dv < ∞, z ∈ Rd. (2.18)

If it would be proved, we could exchange the order of the integrals in the calculation

of cumulants below.

The proof of (2.18) is as follows. The idea is from Barndorff–Nielsen et al.

[BMS06]. If the generating triplet of µ is (A, ν, γ), then

|Cµ(z)| ≤ 2−1(trA)|z|2 + |γ||z| +
∫

Rd

|g(z, x)|ν(dx),

where

g(z, x) = ei⟨z,x⟩ − 1 − i⟨z, x⟩(1 + |x|2)−1.

Hence

|Cµ(uvz)| ≤ 2−1(trA)u2v2|z|2 + |γ||u||v||z| +
∫

Rd

|g(z, uvx)|ν(dx)

+

∫
Rd

|g(uvz, x) − g(z, uvx)|ν(dx) =: I1 + I2 + I3 + I4,

say. The finiteness of
∫ ∞
−∞ ϕ0(u)du

∫ ∞
−∞(I1 + I2)ϕm−1(v)dv follows from Lemma 2.11.

Noting that |g(z, x)| ≤ cz|x|2(1 + |x|2)−1 with a positive constant cz depending on z,

we have∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
I3ϕm−1(v)dv

≤ cz

∫
Rd

ν(dx)

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞

(uv|x|)2

1 + (uv|x|)2
ϕm−1(v)dv

= cz

(∫
|x|≤1

ν(dx) +

∫
|x|>1

ν(dx)

) ∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞

(uv|x|)2

1 + (uv|x|)2
ϕm−1(v)dv

=: I31 + I32,
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say, and

I31 ≤ cz

∫
|x|≤1

|x|2ν(dx)

∫ ∞

−∞
u2ϕ0(u)du

∫ ∞

−∞
v2ϕm−1(v)dv < ∞,

I32 ≤ cz

∫
|x|>1

ν(dx)

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
ϕm−1(v)dv < ∞.

As to I4, note that for a ∈ R,

|g(az, x)−g(z, ax)| =
|⟨az, x⟩||x|2|1 − a2|
(1 + |x|2)(1 + |ax|2)

≤ |z||x|3(|a| + |a|3)
(1 + |x|2)(1 + |ax|2)

≤ |z||x|2(1 + |a|2)
2(1 + |x|2)

,

since |b|(1 + b2)−1 ≤ 2−1. Then∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
I4ϕm−1(v)dv

≤ |z|
∫

Rd

|x|2

1 + |x|2
ν(dx)

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
(1 + u2v2)ϕm−1(v)dv < ∞.

This completes the proof of (2.18).

If we calculate the necessary cumulants, we have

CGm+1(µ)(z) =

∫ 1

0

Cµ(h∗
m(t)z)dt

= −
∫ ∞

−∞
Cµ(uz)dhm(u)

=

∫ ∞

−∞
Cµ(uz)ϕm(u)du

and

CGm+1(µ)(z) =

∫ 1

0

CGm(µ)(h
∗
0(t)z)dt

=

∫ 1

0

dt

∫ 1

0

Cµ(h∗
0(t)h

∗
m−1(s)z)ds

=

∫ ∞

−∞
dh0(u)

∫ ∞

−∞
Cµ(uvz)dhm−1(v)

=

∫ ∞

−∞
ϕ0(u)du

∫ ∞

−∞
Cµ(uvz)ϕm−1(v)dv
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=

∫ ∞

−∞
Cµ(yz)dy

∫ ∞

−∞
ϕ0(u)ϕm−1(y|u|−1)|u|−1du

=

∫ ∞

−∞
Cµ(yz)ϕm(y)dy

= CGm+1(µ)(z).

This completes the proof of Theorem 2.18.

The following is a goal of this section and a Gm–version of Theorem 2.8. Namely,

any µ ∈ Gm(Rd) has the stochastic integral representation defined in Definition 2.15.

Theorem 2.19.

Gm(Rd) = Gm+1(I(Rd)).

Proof. The statement is an immediate consequence of Corollary 2.17 and Theorem

2.18.

2.5 The class G∞(Rd)

We conclude this chapter with two statements for G∞(Rd).

Proposition 2.20.

G(G∞(Rd)) = G∞(Rd).

Proposition 2.21. Ssym(Rd) is invariant under G–mapping and G∞(Rd) is the largest

class which is invariant under G–mapping.

These two propositions are given in Theorem 2.3 of Maejima and Rosiński [MR01]

in terms of operator K. Since we have Remark 2.10 in Section 2.2, we get them above.
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Chapter 3

A subclass of type G
selfdecomposable distributions on
Rd.

3.1 The class M(Rd)

Recall five classes of infinitely divisible distributions introduced in Chapter 1.

(i) The class U(Rd):

νξ(dr) = lξ(r)dr and lξ(r) is nonincreasing.

(ii) The class B(Rd):

νξ(dr) = lξ(r)dr and lξ(r) is completely monotone.

(iii) The class L(Rd):

νξ(dr) = kξ(r)r
−1dr and kξ(r) is nonincreasing.

(iv) The class T (Rd):

νξ(dr) = kξ(r)r
−1dr and kξ(r) is completely monotone.

(v) The class G(Rd):

νξ(dr) = gξ(r
2)dr and gξ(r) is completely monotone; in this case we also assume

that µ is symmetric.

Being motivated by the relations among classes (i)–(v), it is natural to introduce

and consider the following new class.

Definition 3.1 (The class M(Rd)). µ ∈ M(Rd) if and only if µ ∈ Isym(Rd) with

νξ(dr) = gξ(r
2)r−1dr and gξ(r) is completely monotone. (3.1)
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It is easy to see that M(Rd) ⊂ L(Rd) ∩ G(Rd), i.e., the elements of M(Rd) are

type G selfdecomposable distributions. For, if we put kξ(x) = gξ(x
2), then we see

that M(Rd) ⊂ L(Rd). Note that f(x) = x−α, α > 0, is completely monotone and

by Lemma 1.9, hξ(x) = gξ(x)x−1/2 is also completely monotone. Hence we see that

M(Rd) ⊂ G(Rd). In Theorem 3.6 below we will prove that this inclusion is strict.

The purpose of this chapter is to characterize the class M(Rd) by stochastic integrals

with respect to Lévy processes, and compare it with other known classes.

3.2 Characterization of the class M(Rd) by stochas-

tic integrals

Let m(x) =
∫ ∞

x
ϕ(s)s−1ds, x > 0, and denote its inverse by m∗(t), that is, t = m(x)

if and only if x = m∗(t).

Theorem 3.2. Let µ ∈ I(Rd). Then the stochastic integral∫ ∞

0

m∗(t)dX
(µ)
t

exists if and only if µ ∈ Ilog(Rd).

Proof. (“If” part.) For the proof, we need the following lemma, which is a special

case of Proposition 5.5 of [S06].

Lemma 3.3. Let µ ∈ I(Rd) and f(t) a real-valued measurable function on [0,∞).

Let (A, ν, γ) be the triplet of µ. Then Y :=
∫ ∞

0
f(t)dX

(µ)
t is integrable, if the following

conditions are satisfied: ∫ ∞

0

f(t)2dt < ∞, (3.2)∫ ∞

0

dt

∫
Rd

(|f(t)x|2 ∧ 1)ν(dx) < ∞, (3.3)∫ ∞

0

∣∣∣∣f(t)γ + f(t)

∫
Rd

x

(
1

1 + |f(t)x|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ dt < ∞. (3.4)

Furthermore, CL(Y )(z) =
∫ 1

0
Cµ(f(t)z)dt,

∫ 1

0
|Cµ(f(t)z)|dt< ∞ and if we let (A, ν, γ)

and (AY , νY , γY ) be the generating triplets of µ and L(Y ), respectively, then

AY = A

∫ ∞

0

f(t)2dt, (3.5)

27



νY (B) =

∫ ∞

0

dt

∫
Rd

1B(f(t)x)ν(dx) (3.6)

and

γY =

∫ ∞

0

f(t)γ + f(t)

∫
Rd

x

(
1

1 + |f(t)x|2
− 1

1 + |x|2

)
ν(dx)dt. (3.7)

For the proof of (“if” part), it is enough to show that f(t) = m∗(t) satisfies

(3.2) − (3.4) in Lemma 3.3 for every µ ∈ Ilog(Rd). Note that m(+0) = ∞ and

m(∞) = 0. Since ∫ ∞

0

m∗(t)2dt =

∫ ∞

0

sϕ(s)ds < ∞,

we have (3.2).

As to (3.3), we have∫ ∞

0

dt

∫
Rd

(|m∗(t)x|2 ∧ 1)ν(dx)

= −
∫ ∞

0

dm(s)

∫
Rd

(|sx|2 ∧ 1)ν(dx)

=

∫ ∞

0

ϕ(s)s−1ds

(∫
|x|≤1/s

|sx|2ν(dx) +

∫
|x|>1/s

ν(dx)

)
=: (J1 + J2),

say. Here

J1 =

∫
Rd

|x|2ν(dx)

∫ 1/|x|

0

sϕ(s)ds

=

(∫
|x|≤1

+

∫
|x|>1

)
|x|2ν(dx)

∫ 1/|x|

0

sϕ(s)ds

=: J11 + J12,

say, and

J11 ≤
∫
|x|≤1

|x|2ν(dx)

∫ ∞

0

sϕ(s)ds < ∞,

I12 ≤
∫
|x|>1

|x|2ν(dx)

∫ 1/|x|

0

sds ≤ 2−1

∫
|x|>1

ν(dx) < ∞.

Also,

J2 =

∫
Rd

ν(dx)

∫ ∞

1/|x|
ϕ(s)s−1ds
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=

(∫
|x|≤1

+

∫
|x|>1

)
ν(dx)

∫ ∞

1/|x|
ϕ(s)s−1ds

=: J21 + J22,

say, and

J21 ≤ C1

∫
|x|≤1

x2ν(dx) < ∞,

J22 ≤
∫
|x|>1

ν(dx)

{∫ 1

1/|x|
s−1ds +

∫ ∞

1

ϕ(s)s−1ds

}
=

∫
|x|>1

(log |x| + C2)ν(dx) < ∞,

since µ ∈ Ilog(Rd), where C1, C2 > 0. This shows (3.3).

For (3.4), we have∫ ∞

0

∣∣∣∣m∗(t)γ + m∗(t)

∫
Rd

x

(
1

1 + |m∗(t)x|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ dt

≤ −|γ|
∫ ∞

0

sdm(s) −
∫ ∞

0

∣∣∣∣s ∫
Rd

x

(
1

1 + |sx|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ dm(s)

=: J3 + J4,

say, where

J3 ≤ |γ|
∫ ∞

0

ϕ(s)ds < ∞,

J4 ≤
∫ ∞

0

ϕ(s)ds

∣∣∣∣∫
Rd

(
x|x|2|s2 − 1|

(1 + |sx|2)(1 + |x|2)

)
ν(dx)

∣∣∣∣
≤

∫ ∞

0

|s2 − 1|ϕ(s)ds

∫
Rd

|x|3

(1 + |sx|2)(1 + |x|2)
ν(dx)

=

∫ ∞

0

|s2 − 1|ϕ(s)ds

(∫
|x|≤1

+

∫
|x|>1

)
|x|3

(1 + |sx|2)(1 + |x|2)
ν(dx)

=: J41 + J42,

say. Here

J41 ≤
∫ ∞

0

|s2 − 1|ϕ(s)ds

∫
|x|≤1

|x|3

1 + |x|2
ν(dx) < ∞,

and

J42 ≤
∫
|x|>1

|x|3

1 + |x|2
ν(dx)

∫ ∞

0

s2 + 1

1 + |sx|2
ϕ(s)ds
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=

∫
|x|>1

|x|3

1 + |x|2
ν(dx)

(∫ 1

0

+

∫ ∞

1

)
s2 + 1

1 + |sx|2
ϕ(s)ds

=: J421 + J422,

say. Furthermore,

J421 ≤
∫
|x|>1

|x|3

1 + |x|2
ν(dx)

∫ 1

0

1

1 + |sx|2
ds

≤
∫
|x|>1

|x|2

1 + |x|2
ν(dx)

∫ ∞

0

1

1 + t2
dt < ∞,

and

J422 ≤
∫
|x|>1

|x|3

(1 + |x|2)2
ν(dx)

∫ ∞

1

(s2 + 1)ϕ(s)ds < ∞.

Thus we have (3.4). This completes the proof of (“if” part).

Proof. (“Only if” part.) Suppose
∫ ∞

0
m∗(t)dX

(µ)
t exists and let ν̃ be its Lévy measure.

We have ∫
|x|>1

ν̃(dx) =

∫ ∞

0

dt

∫
1{|m∗(t)x|>1}(x)ν(dx)

= −
∫ ∞

0

dm(s)

∫
1{|x|>1/s}(x)ν(dx)

= −
∫

Rd

ν(dx)

∫ ∞

1/|x|
dm(s)

≥
∫
|x|>1

ν(dx)

∫ ∞

1/|x|
ϕ(s)s−1ds

≥
∫
|x|>1

ν(dx)(C1 log |x| + C2),

for some C1, C2 > 0. Thus, µ ∈ Ilog(Rd). This competes the proof of (“only if”

part).

Definition 3.4. For any µ ∈ Ilog(Rd), define the mapping M by

M(µ) = L
(∫ ∞

0

m∗(t)dX
(µ)
t

)
.

The statement (i) below is one of the main results in this chapter.
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Theorem 3.5. (i)

M(Rd) = M(Ilog(Rd)) ∩ Isym(Rd).

(ii) Let ν and ν̃ be the Lévy measures of µ ∈ Ilog(Rd) and M(µ), respectively. Then

ν̃(B) =

∫ ∞

0

ν(s−1B)ϕ(s)s−1ds, B ∈ B(Rd \ {0}). (3.8)

Proof. We first prove (ii). By (3.6), we have

ν̃(B) =

∫ ∞

0

dt

∫
Rd

1B(xm∗(t))ν(dx)

= −
∫ ∞

0

dm(s)

∫
Rd

1B(xs)ν(dx)

=

∫ ∞

0

ν(s−1B)ϕ(s)s−1ds.

Now we consider part (i). Let µ ∈ Ilog(Rd) and µ̃ = M(µ). Let ν and ν̃ be the

Lévy measures of µ and µ̃, respectively. Then (ii) holds. Thus, if ν = 0, then ν̃ = 0

and µ̃ ∈ M(Rd). Assume that ν ̸= 0 and ν has a polar decomposition (λ, νξ). Then,

for any nonnegative measurable function f ,∫
Rd

f(x)ν̃(dx) =

∫ ∞

0

ϕ(s)s−1ds

∫
Rd

f(sx)ν(dx)

=

∫ ∞

0

ϕ(s)s−1ds

∫
S

λ(dξ)

∫ ∞

0

f(srξ)νξ(dr)

=

∫
S

λ(dξ)

∫ ∞

0

νξ(dr)

∫ ∞

0

ϕ(s/r)f(sξ)s−1ds

=

∫
S

λ(dξ)

∫ ∞

0

f(sξ)g̃ξ(s
2)s−1ds,

where

g̃ξ(x) =

∫ ∞

0

ϕ(x1/2/r)νξ(dr) = (2π)−1/2

∫ ∞

0

e−x/(2r2)νξ(dr).

Define a measure Q̃ξ by

Q̃ξ(B) = (2π)−1/2

∫ ∞

0

1B(1/(2r2))νξ(dr), B ∈ B((0,∞)).

Then Q̃ξ(B) is measurable in ξ and

g̃ξ(x) =

∫ ∞

0

e−xuQ̃ξ(du) for x > 0.
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Hence g̃ξ is completely monotone by Proposition 1.10. Letting λ̃ = λ and ν̃ξ(dr) =

g̃ξ(r
2)r−1dr, we see that (λ̃, ν̃ξ) is a polar decomposition of ν̃ and that µ̃ ∈ M(Rd).

Thus, M(Ilog(Rd)) ∩ Isym(Rd) ⊂ M(Rd).

Conversely, suppose that µ̃ ∈ M(Rd) with triplet (Ã, ν̃, γ̃). If ν̃ = 0, then µ̃ = Mµ

with some Ã and γ̃. Suppose that ν̃ ̸= 0. Then, in a polar decomposition (λ̃, ν̃ξ)

of ν̃, we have ν̃ξ(dr) = g̃ξ(r
2)r−1dr, where g̃ξ(x) is completely monotone in x and

measurable in ξ. Thus, by Proposition 1.10, there are measures Q̃ξ on (0,∞) satisfying

g̃ξ(x) =

∫ ∞

0

e−xuQ̃ξ(du)

such that Q̃ξ(B) is measurable in ξ for each B ∈ B((0,∞)). Now define

νξ(B) = (2π)1/2

∫ ∞

0

1B((2u)−1/2)Q̃ξ(du).

Then νξ is a measure on (0,∞) for each ξ and∫ ∞

0

f(r)νξ(dr) = (2π)1/2

∫ ∞

0

f((2u)−1/2)Q̃ξ(du)

for all nonnegative measurable functions f on (0,∞).

Let λ = λ̃. Then∫
S

λ(dξ)

∫ ∞

0

(r2 ∧ 1)νξ(dr) = (2π)1/2

∫
S

λ̃(dξ)

∫
(0,∞)

((2u)−1 ∧ 1)Q̃ξ(du)

= (2π)1/2

∫
S

λ̃(dξ)

(∫ 1/2

0

Q̃ξ(du) +

∫ ∞

1/2

(2u)−1Q̃ξ(du)

)
< ∞,

where the finiteness of the integral is assured by∫ ∞

0

(r2 ∧ 1)g̃ξ(r
2)r−1dr < ∞,

which can be shown by a standard calculation based on the fact that g̃ξ is the Laplace

transform of Q̃ξ. Define ν by

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)νξ(dr) for B ∈ B(Rd \ {0}).

Then ν is the Lévy measure of an infinitely divisible distribution and we can check∫ ∞

0

ϕ(s)s−1ds

∫
Rd

f(sx)ν(dx) =

∫
Rd

f(x)ν̃(dx)

32



for all nonnegative measurable functions f on Rd. This relation can be checked as

follows:∫
Rd

f(x)ν̃(dx) =

∫
S

λ̃(dξ)

∫ ∞

0

f(rξ)ν̃ξ(dr)

=

∫
S

λ̃(dξ)

∫ ∞

0

f(rξ)g̃ξ(r
2)r−1dr

=

∫
S

λ̃(dξ)

∫ ∞

0

f(rξ)r−1dr

∫ ∞

0

e−r2uQ̃ξ(du)

= (2π)−1/2

∫
S

λ̃(dξ)

∫ ∞

0

f(rξ)r−1dr

∫ ∞

0

e−r2/(2u2)νξ(du)

= (2π)−1/2

∫
S

λ̃(dξ)

∫ ∞

0

e−r2/(2u2)r−1dr

∫ ∞

0

f(rξ)νξ(du)

= (2π)−1/2

∫ ∞

0

e−y2/2y−1dy

∫
S

λ̃(dξ)

∫ ∞

0

f(yuξ)νξ(du)

=

∫ ∞

0

ϕ(s)s−1ds

∫
Rd

f(sx)ν(dx).

Define A and γ suitably and let µ be a distribution with the triplet (A, ν, γ). Then

Mµ = µ̃, namely L
(∫ ∞

0
m∗(t)dX

(µ)
t

)
= µ̃. Thus by Theorem 3.2, we see that µ ∈

Ilog(Rd) and that µ̃ ∈ M(Ilog(Rd)). Since µ̃ ∈ Isym(Rd), µ̃ ∈ M(Ilog(Rd)) ∩ Isym(Rd).

This completes the proof of Theorem 3.5.

3.3 Relationships of M(Rd) with other classes (I)

We have the following relations of M(Rd) with other classes.

Theorem 3.6. We have

T (Rd) ∩ Isym(Rd) $ M(Rd) $ L(Rd) ∩ G(Rd).

Proof. (i) We first show that M(Rd) $ L(Rd) ∩ G(Rd). We have already seen

that M(Rd) ⊂ L(Rd) ∩ G(Rd), right after Definition 3.1. To show that M(Rd) ̸=
L(Rd)∩G(Rd), it is enough to construct µ ∈ I(Rd) such that µ ∈ L(Rd)∩G(Rd) but

µ /∈ M(Rd).

First consider the case d = 1. Let

ν(dr) = g(r2)r−1dr, r > 0.

For our purpose, it is enough to construct a function g : (0,∞) → (0,∞) such that
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(1) r−1/2g(r) is completely monotone on (0,∞), (meaning that the corresponding µ

belongs to G(R)),

(2) g(r2) or, equivalently, g(r) is nonincreasing on (0,∞), (meaning that the corre-

sponding µ belongs to L(R)), and

(3) g(r) is not completely monotone on (0,∞), (meaning that the corresponding µ

does not belong to M(R)). Put

g(r) = r−1/2
(
e−0.9r − e−r + 0.1e−1.1r

)
, r > 0.

(1) We have

r−1/2g(r) = r−1
(
e−0.9r − e−r + 0.1e−1.1r

)
=

∫ 1

0.9

e−rudu + 0.1

∫ ∞

1.1

e−rudu,

which is a sum of two completely monotone functions, and thus, by Proposition 1.10,

r−1/2g(r) is completely monotone.

(2) Put

k(r) = e−0.9r − e−r + 0.1e−1.1r, r > 0.

If k(r) is nonincreasing, then so is g(r) = r−1/2k(r). To show it, we have

k′(r) = −0.9e−0.9r + e−r − 0.11e−1.1r = −0.9e−1.1r

[(
e0.1r − 1

1.8

)2

− 0.604

3.24

]

≤ −0.9e−1.1r

[(
1 − 1

1.8

)2

− 0.604

3.24

]
= −0.01e−1.1r < 0, r > 0.

(3) To show (3), by Proposition 1.10, we see that

k(r) =

∫ ∞

0

e−ruQ(du),

where Q is a signed measure such that Q = Q1 + Q2 + Q3 and

Q1({0.9}) = 1, Q2({1}) = −1, Q3({1.1}) = 0.1.

On the other hand

r−1/2 = π−1/2

∫ ∞

0

e−ruu−1/2du =:

∫ ∞

0

e−ruR(du),

where

R(du) = (πu)−1/2du.
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Thus

g(r) =

∫ ∞

0

e−ruR(du)

∫ ∞

0

e−rvQ(dv) =

∫ ∞

0

e−rwU(dw),

where

U(B) =

∫ ∞

0

Q(B − y)R(dy).

We are going to show that U is a signed measure, namely, for some interval (a, b), U ((a, b)) <

0. If so, g is not completely monotone. We have

U ((a, b)) = π−1/2

∫ ∞

0

Q ((a − y, b − y)) y−1/2dy

=π−1/2

3∑
i=1

∫ ∞

0

Qi ((a − y, b − y)) y−1/2dy

=π−1/2

[∫ b−0.9

a−0.9

y−1/2dy −
∫ b−1

a−1

y−1/2dy + 0.1

∫ b−1.1

a−1.1

y−1/2dy

]
=2π−1/2

[(√
b − 0.9 −

√
a − 0.9

)
−

(√
b − 1 −

√
a − 1

)
+ 0.1

(√
b − 1.1 −

√
a − 1.1

)]
.

Take (a, b) = (1.15, 1.35). Then

U ((1.15, 1.35))

= 2π−1/2
[
(
√

0.45 −
√

0.25) − (
√

0.35 −
√

0.15) + 0.1(
√

0.25 −
√

0.05)
]

< −0.01π−1/2 < 0.

This concludes that g is not completely monotone.

A d–dimensional example of µ ∈ I(Rd) such that µ ∈ L(Rd) ∩ G(Rd) but µ /∈
M(Rd) is given by taking ν(dr) for the radial component of a Lévy measure. This

completes the proof of M(Rd) $ L(Rd) ∩ G(Rd).

(ii) We next show that T (Rd)∩ Isym(Rd) $ M(Rd). Since M(Rd) ⊂ Isym(Rd), we

consider only µ ∈ Isym(Rd). We need the following lemma.

Lemma 3.7. (See Feller [F66], p.441, Corollary 2.) Let ϕ be a completely monotone

function on (0,∞) and let ψ be a nonnegative function on (0,∞) whose derivative is

completely monotone. Then ϕ(ψ) is completely monotone.

If µ ∈ T (Rd) ∩ Isym(Rd), then the radial component of the Lévy measure of µ

has the form νξ(dr) = kξ(r)r
−1dr, where kξ is completely monotone. By the lemma

above and the fact that ψ(r) = r1/2 has a completely monotone derivative, then
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gξ(r) := kξ(r
1/2) is completely monotone. Thus νξ(dr) can be read as gξ(r

2)r−1dr,

where gξ is completely monotone, concluding that µ ∈ M(Rd).

To show that T (Rd) ∩ Isym(Rd) ̸= M(Rd), it is enough to find a completely

monotone function gξ such that kξ(r) = gξ(r
2) is not completely monotone. However,

the function gξ(r) = e−r has such a property. Although e−r is completely monotone,

(−1)2 d2

dr2 e
−r2

< 0 for small r > 0. This completes the proof of that T (Rd)∩Isym(Rd) $
M(Rd).

Additional remark. The argument above does not depend on r−1 of the radial com-

ponent νξ(dr), which gives us the following result between classes B(Rd) and G(Rd),

namely,

B(Rd) ∩ Isym(Rd) $ G(Rd).

3.4 Relationships of M(Rd) with other classes (II)

To give more relation of M(Rd) with other classes, we introduce a mapping.

Definition 3.8.

Φ : Ilog(Rd) → I(Rd), Φ(µ) = L
(∫ ∞

0

e−tdX
(µ)
t

)
.

Remark 3.9 (known). (i) If µ ∈ Ilog(Rd), then Φ(µ) is a selfdecomposable distribu-

tion and L(Rd) = Φ(Ilog(Rd)). (See, e.g. [J85] and [MR02].)

(ii) Φ(B(Rd) ∩ Ilog(Rd)) = T (Rd). (See [BMS06].)

Theorem 3.10. (i) Let µ ∈ I(Rd). Then G(µ) ∈ Ilog(Rd) if and only if µ ∈ Ilog(Rd).

(ii) Let

a(s) = 2

∫ ∞

s

u−1du

∫ ∞

u

ϕ(v)dv, s > 0,

and define the inverse function s = a∗(t) by t = a(s). Then the stochastic integral∫ ∞

0

a∗(t)dX
(µ)
t

exists if and only if µ ∈ Ilog(Rd).

(iii) If µ ∈ Ilog(Rd) ∩ Isym(Rd), then

(ΦG)(µ) = (GΦ)(µ) = L
(∫ ∞

0

a∗(t)dX
(µ)
t

)
,
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where (ΦG)(µ) = Φ(G(µ)) and (GΦ)(µ) = G(Φ(µ)), and the Lévy measure ν̃ of

L
(∫ ∞

0
a∗(t)dX

(µ)
t

)
is

ν̃(B) =

∫ ∞

0

ν(s−1B)s−1ds

∫ ∞

s

ϕ(v)dv,

where ν is the Lévy measure of µ.

(iv)

M(Rd) % G
(
Φ

(
Ilog(Rd)

))
= G

(
L(Rd)

)
= Φ(G(Rd) ∩ Ilog(Rd)).

Proof of (i). The proof of Theorem C (i) in [BMS06] also works here. Let µ ∈ I(Rd),

and µ̃ = G(µ). Let ν and ν̃ be the Lévy measures of µ and µ̃. We have∫
|x|>2

log |x|ν̃(dx) =

∫ ∞

0

ϕ(s)ds

∫
|x|>2/s

log(s|x|)ν(dx)

=

∫
Rd

ν(dx)

∫ ∞

2/|x|
ϕ(s) log(s|x|)ds =

∫
Rd

p(x)ν(dx)

where

p(x) =

∫ ∞

2/|x|
ϕ(s) log sds + log |x|

∫ ∞

2/|x|
ϕ(s)ds.

Note that p(x) = o(|x|2) as |x| ↓ 0 and j(x) ∼ log |x| as |x| → ∞. Thus,
∫
|x|>2

log |x|
ν̃(dx) < ∞ if and only if

∫
|x|>2

log |x|ν(dx) < ∞.

Proof of (ii). (“If” part.) It is enough to show that f(t) = a∗(t) satisfies (3.2)− (3.4)

in Lemma 3.3 for every µ ∈ Ilog(Rd). Note that a(+0) = ∞ and a(∞) = 0. Since∫ ∞

0

a∗(t)2dt = −
∫ ∞

0

s2da(s) = 2

∫ ∞

0

sds

∫ ∞

s

ϕ(v)dv < ∞,

we have (3.2).

As to (3.3), we have∫ ∞

0

dt

∫
Rd

(|a∗(t)x|2 ∧ 1)ν(dx)

= −
∫ ∞

0

da(s)

∫
Rd

(|sx|2 ∧ 1)ν(dx)

= 2

∫ ∞

0

s−1ds

∫ ∞

s

ϕ(v)dv

(∫
|x|≤1/s

|sx|2ν(dx) +

∫
|x|>1/s

ν(dx)

)
=: 2(I1 + I2)
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say. Here

I1 =

∫
Rd

|x|2ν(dx)

∫ 1/|x|

0

sds

∫ ∞

s

ϕ(v)dv

=

(∫
|x|≤1

+

∫
|x|>1

)
|x|2ν(dx)

∫ 1/|x|

0

sds

∫ ∞

s

ϕ(v)dv

=: I11 + I12,

say, and

I11 ≤
∫
|x|≤1

|x|2ν(dx)

∫ ∞

0

sds

∫ ∞

s

ϕ(v)dv < ∞,

I12 ≤
∫
|x|>1

|x|2ν(dx)

∫ 1/|x|

0

sds ≤ 2−1

∫
|x|>1

ν(dx) < ∞.

Also,

I2 =

∫
Rd

ν(dx)

∫ ∞

1/|x|
s−1ds

∫ ∞

s

ϕ(v)dv

=

(∫
|x|≤1

+

∫
|x|>1

)
ν(dx)

∫ ∞

1/|x|
s−1ds

∫ ∞

s

ϕ(v)dv

=: I21 + I22,

say, and

I21 ≤
∫
|x|≤1

ν(dx)

∫ ∞

1/|x|
s−1ds

∫ ∞

s

ϕ(v)dv,

≤ C1

∫
|x|≤1

x2ν(dx) < ∞

I22 ≤
∫
|x|>1

ν(dx)

∫ ∞

1/|x|
s−1ds

∫ ∞

s

ϕ(v)dv

≤
∫
|x|>1

ν(dx)

{∫ 1

1/|x|
s−1ds

∫ ∞

0

ϕ(v)dv +

∫ ∞

0

ds

∫ ∞

s

ϕ(v)dv

}
= C2

∫
|x|>1

(log |x| + C3)ν(dx) < ∞,

since µ ∈ Ilog(Rd), where C1, C2, C3 > 0. This shows (3.3).

For (3.4), we have∫ ∞

0

∣∣∣∣a∗(t)γ + a∗(t)

∫
Rd

x

(
1

1 + |a∗(t)x|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ dt
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≤ −|γ|
∫ ∞

0

sda(s) −
∫ ∞

0

∣∣∣∣s ∫
Rd

x

(
1

1 + |sx|2
− 1

1 + |x|2

)
ν(dx)

∣∣∣∣ da(s)

=: I3 + I4,

say, where

I3 ≤ 2|γ|
∫ ∞

0

ds

∫ ∞

s

ϕ(v)dv < ∞,

I4 ≤ 2

∫ ∞

0

ds

∫ ∞

s

ϕ(v)dv

∣∣∣∣∫
Rd

(
x|x|2|s2 − 1|

(1 + |sx|2)(1 + |x|2)

)
ν(dx)

∣∣∣∣
≤ 2

∫ ∞

0

|s2 − 1|ds

∫ ∞

s

ϕ(v)dv

∫
Rd

|x|3

(1 + |sx|2)(1 + |x|2)
ν(dx)

= 2

∫ ∞

0

|s2 − 1|ds

∫ ∞

s

ϕ(v)dv

(∫
|x|≤1

+

∫
|x|>1

)
|x|3

(1 + |sx|2)(1 + |x|2)
ν(dx)

=: 2(I41 + I42),

say. Here

I41 ≤
∫ ∞

0

|s2 − 1|ds

∫ ∞

s

ϕ(v)dv

∫
|x|≤1

|x|3

(1 + |x|2)
ν(dx) < ∞,

and

I42 ≤
∫
|x|>1

|x|3

1 + |x|2
ν(dx)

∫ ∞

0

s2 + 1

1 + |sx|2
ds

∫ ∞

s

ϕ(v)dv

=

∫
|x|>1

|x|3

1 + |x|2
ν(dx)

(∫ 1

0

+

∫ ∞

1

)
s2 + 1

1 + |sx|2
ds

∫ ∞

s

ϕ(v)dv

=: I421 + I422,

say. Furthermore,

I421 ≤
∫
|x|>1

|x|3

1 + |x|2
ν(dx)

∫ 1

0

s2 + 1

1 + |sx|2
ds

∫ ∞

0

ϕ(v)dv

≤
∫
|x|>1

|x|3

1 + |x|2
ν(dx)

∫ 1

0

1

1 + |sx|2
ds

≤
∫
|x|>1

|x|2

1 + |x|2
ν(dx)

∫ ∞

0

1

1 + t2
dt < ∞,

and

I422 =

∫
|x|>1

|x|3

1 + |x|2
ν(dx)

∫ ∞

1

s2 + 1

1 + |sx|2
ds

∫ ∞

s

ϕ(v)dv
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≤
∫
|x|>1

|x|3

(1 + |x|2)2
ν(dx)

∫ ∞

1

(s2 + 1)ds

∫ ∞

s

ϕ(v)dv < ∞.

Thus we have (3.4). This completes the proof of (“if” part) of (ii).

(“Only if” part.) Suppose
∫ ∞

0
a∗(t)dX

(µ)
t exists and let ν̃ be its Lévy measure.

We have ∫
|x|>1

ν̃(dx) =

∫ ∞

0

dt

∫
1{|a∗(t)x|>1}(x)ν(dx)

= −
∫ ∞

0

da(s)

∫
1{|x|>1/s}(x)ν(dx)

= −
∫

Rd

ν(dx)

∫ ∞

1/|x|
da(s)

≥ 2

∫
|x|>1

ν(dx)

∫ ∞

1/|x|
s−1ds

∫ ∞

s

ϕ(v)dv

≥
∫
|x|>1

ν(dx)(C1 log |x| + C2),

for some C1, C2 > 0. Thus, µ ∈ Ilog(Rd). This completes the proof of (“only if” part)

of (ii).

Proof of (iii). Recall that for µ ∈ Ilog(Rd)

CΦ(µ)(z) =

∫ ∞

0

Cµ(ze−t)dt,

and for µ ∈ I(Rd),

CG(µ)(z) =

∫ 1

0

Cµ(zh∗(s))ds.

Let µ ∈ Ilog(Rd). We have, for z ∈ Rd,

C(ΦG)(µ)(z) =

∫ ∞

0

CG(µ)(e
−tz)dt =

∫ ∞

0

dt

∫ 1

0

Cµ(h∗(s)e−tz)ds

C(GΦ)(µ)(z) =

∫ 1

0

CΦ(µ)(h
∗(s)z)ds =

∫ 1

0

ds

∫ ∞

0

Cµ(e−th∗(s)z)dt.

We claim that∫ ∞

0

dt

∫ 1

0

|Cµ(h∗(s)e−tz)|ds =

∫ ∞

0

dt

∫ ∞

−∞
|Cµ(ue−tz)|ϕ(u)du < ∞. (3.9)

Note that G(µ) is symmetric and it is unchanged even if we replace µ by µ̄(B) =

2−1(µ(B) + µ(−B)). (See [MR02].) Hence, without loss of generality, we assume µ is
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symmetric. Thus to show (3.9), it is enough to show that∫ ∞

0

dt

∫ ∞

0

|Cµ(ue−tz)|ϕ(u)du < ∞. (3.10)

The proof of (3.10) is as follows. The idea is from Barndorff–Nielsen et al. [BMS06].

If the generating triplet of µ is (A, ν, γ), then

|Cµ(z)| ≤ 2−1(trA)|z|2 + |γ||z| +
∫

Rd

|g(z, x)|ν(dx),

where

g(z, x) = ei⟨z,x⟩ − 1 − i⟨z, x⟩(1 + |x|2)−1.

Hence

|Cµ(ue−tz)| ≤ 2−1(trA)u2e−2t|z|2 + |γ||u|e−t|z| +
∫

Rd

|g(z, ue−tx)|ν(dx)

+

∫
Rd

|g(ue−tz, x) − g(z, ue−tx)|ν(dx) =: J1 + J2 + J3 + J4,

say. The finiteness of
∫ ∞

0
dt

∫ ∞
0

(J1 + J2)ϕ(u)du is trivial.

Noting that |g(z, x)| ≤ Cz|x|2(1 + |x|2)−1 with a positive constant Cz depending

on z, we have∫ ∞

0

dt

∫ ∞

0

J3ϕ(u)du

≤ Cz

∫
Rd

ν(dx)

∫ ∞

0

dt

∫ ∞

0

|ue−tx|2
(
1 + |ue−tx|2

)−1
ϕ(u)du

= Cz

∫
Rd

ν(dx)

∫ ∞

0

ϕ(u)du

∫ ∞

0

|ue−tx|2
(
1 + |ue−tx|2

)−1
dt

= Cz

∫
Rd

ν(dx)

∫ ∞

0

ϕ(u)du

∫ u|x|

0

s
(
1 + s2

)−1
ds

= 2−1Cz

∫
Rd

ν(dx)

∫ ∞

0

ϕ(u) log
(
1 + u2|x|2

)
du

=: K3

say. Since log(1 + v) ≤ C(v1(0,2](v) + (log v)1(2,∞)(v)) for v > 0 for an absolute

constant C, we have

K3 ≤2−1CCz

∫
Rd

|x|2ν(dx)

∫ √
2/|x|

0

ϕ(u)u2du

+ CCz

∫
Rd

ν(dx)

∫ ∞

√
2/|x|

ϕ(u)(log u + log |x|)du,
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which is finite since
∫
|x|≤2

|x|2ν(dx) < ∞ and
∫
|x|>2

log |x|ν(dx) < ∞. say.

As to
∫ ∞

0
dt

∫ ∞
0

J4ϕ(u)du < ∞, note that for a > 0,

|g(az, x) − g(z, ax)| = |⟨az, x⟩||x|2|1 − a2|(1 + |x|2)−1(1 + a|x|2)−1

≤ |z||x|3a(1 + a2)(1 + |x|2)−1(1 + a|x|2)−1.

Then∫ ∞

0

J4dt ≤|z|
∫

Rd

|x|3

1 + |x|2
ν(dx)

∫ ∞

0

ue−t + u3e−3t

1 + u2e−2t|x|2
dt

=|z|
∫

Rd

|x|3

1 + |x|2
ν(dx)

∫ u|x|

0

v|x|−1 + v3|x|−3

(1 + v2)v
dv

≤2−1π|z|
∫

Rd

|x|2

1 + |x|2
ν(dx) + |z|

∫
Rd

1

1 + |x|2
ν(dx)

∫ u|x|

0

v2

1 + v2
dv

= : J41 + J42,

say. Then
∫ ∞
0

J41ϕ(u)du < ∞ is evident and∫ ∞

0

J42ϕ(u)du ≤ |z|
∫

Rd

1

1 + |x|2
ν(dx)

∫ ∞

0

v2

1 + v2
dv

∫ ∞

v/|x|
ϕ(u)du

≤ |z|
∫

Rd

1

1 + |x|2
ν(dx)

∫ ∞

0

2−1vϕ(v/|x|)dv

≤ 2−1|z|
∫

Rd

|x|2

1 + |x|2
ν(dx)

∫ ∞

0

yϕ(y)dy < ∞.

This completes the proof of (3.10). Thus

C(ΦG)(µ)(z) =

∫ ∞

0

dt

∫ 1

0

Cµ(ze−th∗(s))ds

= −
∫ ∞

0

dt

∫ ∞

−∞
Cµ(ze−tv)dh(v)

=

∫ ∞

0

dt

∫ ∞

0

Cµ(ze−tv)2ϕ(v)dv

= 2

∫ ∞

0

ϕ(v)dv

∫ ∞

0

Cµ(ze−tv)dt

= 2

∫ ∞

0

ϕ(v)dv

∫ v

0

Cµ(zs)s−1ds

= 2

∫ ∞

0

Cµ(zs)s−1ds

∫ ∞

s

ϕ(v)dv,

where the change of the order of integrals is assured by (3.9) and (3.10). Thus we

have

C(ΦG)(µ)(z) = −
∫ ∞

0

Cµ(zs)da(s),
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and hence

C(ΦG)(µ)(z) =

∫ ∞

0

Cµ(za∗(t))dt.

We have the form of ν̃ as follows by (3.6).

ν̃(B) =

∫ ∞

0

dt

∫
Rd

1B(xa∗(t))ν(dx)

= −
∫ ∞

0

da(s)

∫
Rd

1B(xs)ν(dx)

=

∫ ∞

0

ν(s−1B)s−1ds

∫ ∞

s

ϕ(v)dv.

This concludes the proof of (iii).

Proof of (iv). We first show that the radial component of the Lévy measure of (ΦG)(µ)

satisfies (3.1). We have

ν̃(B) = ν(ΦG)(µ)(B) =

∫ ∞

0

νG(µ)(e
tB)dt

=

∫ ∞

0

dt

∫
S

λ(dξ)

∫ ∞

0

1etB(rξ)gξ(r
2)dr,

where λ is a probability measure appearing in the polar decomposition of νµ and

gξ(r
2)dr is the radial component of νµ. Then

ν̃(B) =

∫
S

λ(dξ)

∫ ∞

0

gξ(r
2)dr

∫ ∞

0

1B(e−trξ)dt

=

∫
S

λ(dξ)

∫ ∞

0

gξ(r
2)dr

∫ r

0

1B(yξ)y−1dy

=

∫
S

λ(dξ)

∫ ∞

0

1B(yξ)y−1dy

∫ ∞

y

gξ(r
2)dr

=:

∫
S

λ(dξ)

∫ ∞

0

1B(yξ)ν̃ξ(dy),

where

ν̃ξ(dy) =

(
y−1

∫ ∞

y

gξ(r
2)dr

)
dy.

This ν̃ξ satisfies
∫ ∞

0
(1 ∧ y2)ν̃ξ(dy) < ∞. For∫ ∞

0

(1 ∧ y2)ν̃ξ(dy)

=

∫ 1

0

ydy

∫ ∞

y

gξ(r
2)dr +

∫ ∞

1

y−1dy

∫ ∞

y

gξ(r
2)dr
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=

∫ 1

0

gξ(r
2)dr

∫ r

0

ydy +

∫ ∞

1

gξ(r
2)dr

∫ 1

0

ydr +

∫ ∞

1

gξ(r
2)dr

∫ r

1

y−1dy < ∞,

where the last integral is finite because ν is the Lévy measure of a µ ∈ Ilog(Rd). Put

g̃ξ(x) =

∫ ∞

x1/2

gξ(r
2)dr.

We then have
d

dx
g̃ξ(x) = −2−1x−1/2gξ(x).

Since gξ and x−1/2 are completely monotone, x−1/2gξ(x) is completely monotone.

Thus g̃ξ is completely monotone. Hence

ν̃ξ(dy) = g̃ξ(y
2)y−1dy,

where g̃ξ is completely monotone. Thus the Lévy measure of µ̃ is that of (ΦG)(µ) and

thus µ̃ belongs to the class M(Rd). Thus M(Rd) ⊃ G(L(Rd)).

The last equality is a consequence of (i) and (iii). Namely, by (i),

G(Ilog(Rd)) = G(Rd) ∩ Ilog(Rd).

Thus by (iii),

(ΦG)(Ilog(Rd)) = Φ(G(Rd)∩Ilog(Rd)) =

{
L

(∫ ∞

0

a∗(t)dX
(µ)
t

)
, µ ∈ Ilog(Rd) ∩ Isym(Rd)

}
.

It remains to show M(Rd) ̸= G(L(Rd)). It is enough to show it for d = 1.

Consider a Lévy measure ν(dr) = ϕ(r)|r|−1dr. Then the corresponding infinitely

divisible distribution µ belongs to M(R). Suppose µ ∈ G(L(R)). Then, by (iii), ν

also satisfies

ν(B) =

∫ ∞

0

ν0(s
−1B)h(s)s−1ds,

where h(s) =
∫ ∞

s
ϕ(x)dx and ν0 is a symmetric Lévy measure. Consider B ∈

B((0,∞)). Then we have

ν(B) =

∫ ∞

0

∫
R

1B(sx)ν0(dx)h(s)s−1 ds

=

∫ ∞

0

∫ ∞

0

1B(r)h(rx−1)r−1 drν0(dx).

Thus

ν(dr) =

(∫ ∞

0

h(rx−1)ν0(dx)

)
r−1dr, r > 0.

44



By our assumption, for any r > 0,

ϕ(r) =

∫ ∞

0

h(rx−1) ν0(dx).

Let h > 0 and consider

1

h
(ϕ(r + h) − ϕ(r)) =

∫ ∞

0

1

h

(
h((r + h)x−1) − h(rx−1)

)
ν0(dx). (3.11)

We have

|h((r + h)x−1) − h(rx−1)| = ϕ((r + θh)x−1)hx−1 ≤ ϕ(rx−1)hx−1,

where 0 < θ < 1. Thus we can interchange the limit as h → 0 and the integral in

(3.11), and we get

−rϕ(r) = −
∫ ∞

0

ϕ(rx−1)x−1 ν0(dx), for any r > 0.

Changing variable from r to r1/2, we get

r1/2ϕ(r1/2) =

∫ ∞

0

ϕ(r1/2x−1)x−1 ν0(dx).

The right hand side is completely monotone, but the left had side is not. This

contradicts our assumption that µ ∈ G(L(R)). The proof of (iv) is now completed.

3.5 More about the classes M(R) and G(L(R)) when

d = 1

We first note that

G(L(Rd)) = {µ ∈ Isym(Rd) : νµ(B) = E[ν0(Z
−1B)], B ∈ B(Rd \ {0}), (3.12)

for the Lévy measure ν0 of µ0 ∈ L(Rd)}.

This follows from Proposition 2.7 (v). When d = 1, we again mention that µ is of

type G if and only if µ = L(V 1/2Z) for some infinitely divisible nonnegative random

variable V independent of the standard normal random variable Z. That is, µ is

a variance mixture of normal distributions. The goal here is to characterize the

distribution of the random variance V in the case of µ ∈ M(R). We begin with the

following.
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Proposition 3.11. µ ∈ G(L(R)) if and only if µ = L(V 1/2Z) with L(V ) ∈ L(R+).

Proof. (“Only if” part.) Suppose µ ∈ G(L(R)). Since µ ∈ G(R), there exists V such

that µ = L(V 1/2Z) and L(V ) ∈ I(R+). Also from (3.12), there exists a Lévy measure

ν0 of an element in L(R) such that νµ(B) = E[ν0(Z
−1B)]. It is known ([MR01]) that

for every x > 0,

ν0([x,∞)) = 2−1νV ([x2,∞)). (3.13)

Since ν0 is the Lévy measure of some µ0 ∈ L(R),

ν0(dx) = k0(x)x−1dx, x > 0, (3.14)

for some nonincreasing function k0. It follows from (3.13) and (3.14) that∫ ∞

x

k0(y)y−1dy = 2−1

∫ ∞

x2

νV (dy), x > 0.

By the change of variables u = y2 on the left hand side above, we have

2−1

∫ ∞

x2

k0(u
1/2)u−1du = 2−1

∫ ∞

x2

νV (dy), x > 0.

Thus, we have

νV (dy) = k1(y)y−1dy,

where k1(y) = k0(y
1/2) is nonincreasing. Hence L(V ) ∈ L(R+).

(“If” part.) Suppose µ = L(V 1/2Z) and L(V ) ∈ L(R+). Then there exits a

nonincreasing function k1(y) such that

νV (dy) = k1(y)y−1dy.

Then by (3.13), ∫ ∞

x

ν0(dy) = 2−1

∫ ∞

x2

k1(y)y−1dy

=

∫ ∞

x

k1(u
2)u−1du, x > 0.

Thus, ν0(dy) = k0(y)y−1dy, where k0(y) = k1(y
2) is nonincreasing. Hence ν0 is the

Lévy measure of some µ0 ∈ L(R). Since νµ(B) = E[ν0(Z
−1B)], where ν0 is defined

by (3.13) from νV , we have µ ∈ G(L(R)). This completes the proof.

We have the following.
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Theorem 3.12. µ ∈ M(R) if and only if µ = L(V 1/2Z), where L(V ) ∈ I(R+) has

an absolutely continuous Lévy measure νV of the form

νV (dr) = ℓ(r)r−1 dr, r > 0. (3.15)

The function ℓ is given by

ℓ(r) =

∫ ∞

r

(x − r)−1/2 ρ(dx), (3.16)

where ρ is a measure on (0,∞) satisfying the integrability condition∫ 1

0

x1/2 ρ(dx) +

∫ ∞

1

(1 + log x)x−1/2 ρ(dx) < ∞. (3.17)

Proof. (i) (“Only if” part.) Suppose µ ∈ M(R). Since M(R) ⊂ G(R), we have

µ = L(V 1/2Z) for some V ∈ I(R+). Thus, we get for z ∈ R,

E
[
eizV 1/2Z

]
= E

[
e−V z2/2

]
= exp

{
−2−1Az2 +

∫ ∞

0+

(e−vz2/2 − 1) νV (dv)

}
= exp

{
−2−1Az2 +

∫ ∞

0+

νV (dv)

∫ ∞

−∞
(eizv1/2u − 1)ϕ(u) du

}
= exp

{
−2−1Az2 +

∫ ∞

−∞
(eizx − 1)dx

∫ ∞

0+

ϕ(v−1/2x)v−1/2 νV (dv)

}
,

where A ≥ 0. Therefore, the Lévy measure νµ of µ is of the form

νµ(dx) =

(∫ ∞

0+

ϕ(v−1/2x)v−1/2 νV (dv)

)
dx. (3.18)

By the definition, µ ∈ M(R) if and only if νµ(dx) = |x|−1g(x2)dx, where g is com-

pletely monotone. Thus, by Proposition 1.10, g can be written as

g(r) =

∫ ∞

0

e−ry/2 Q(dy), r > 0,

for some measure Q on (0,∞). By (3.18), we get∫ ∞

0+

ϕ(v−1/2x)v−1/2 νV (dv) = |x|−1g(x2). (3.19)

Since

r−1/2 = (2π)−1/2

∫ ∞

0

e−rw/2w−1/2 dw, r > 0,
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we obtain

r−1/2g(r) = (2π)−1/2

∫ ∞

0

∫ ∞

0

e−r(w+y)/2w−1/2 dwQ(dy)

= (2π)−1/2

∫ ∞

0

Q(dy)

∫ ∞

y

e−ru/2(u − y)−1/2 du

= (2π)−1/2

∫ ∞

0

e−ru/2du

∫ u

0

(u − y)−1/2 Q(dy).

Taking x = r1/2 > 0 in (3.19), we get

(2π)−1/2

∫ ∞

0+

e−r/2vv−1/2 νV (dv) = (2π)−1/2

∫ ∞

0

e−ru/2du

∫ u

0

(u−y)−1/2 Q(dy). (3.20)

Let

ρ(dx) = −x1/2Q(d(x−1)).

Then ℓ(r) in (3.16) becomes

ℓ(r) = −
∫ ∞

r

(x − r)−1/2x1/2Q(d(x−1))

=

∫ r−1

0

(y−1 − r)−1/2y−1/2Q(dy)

=

∫ r−1

0

(1 − yr)−1/2Q(dy)

= r−1/2

∫ r−1

0

(r−1 − y)−1/2Q(dy).

Thus by (3.20), ∫ ∞

0+

e−r/2vv−1/2 νV (dv) =

∫ ∞

0

e−ru/2u−1/2ℓ(u−1) du

or ∫ ∞

0+

e−r/2vv−1/2 νV (dv) =

∫ ∞

0

e−r/2vv−3/2ℓ(v) dv, r > 0.

Therefore

v−1/2 νV (dv) = v−3/2ℓ(v) dv, v > 0,

which yields (3.15).

The integrability condition (3.17) for ρ is obtained from the fact that

∞ >

∫
R
(x2 ∧ 1) νµ(dx) =

∫
R
(|x| ∧ |x|−1)g(x2)dx.

48



For, this yields that∫ 1

0

xdx

∫ ∞

0

e−x2y/2 Q(dy) < ∞ and

∫ ∞

1

x−1dx

∫ ∞

0

e−x2y/2 Q(dy) < ∞,

and hence ∫ ∞

0

[
y−1(1 − e−y/2) + 2−1

∫ ∞

y

u−1e−u/2 du

]
Q(dy) < ∞.

It is obvious that the above condition is equivalent to∫ 1

0

(1 + log y−1)Q(dy) +

∫ ∞

1

y−1Q(dy) < ∞. (3.21)

On the other hand,∫ 1

0

x1/2ρ(dx) = −
∫ 1

0

xQ(d(x−1)) =

∫ ∞

1

y−1Q(dy)

and∫ ∞

1

(1 + log x)x−1/2ρ(dx) = −
∫ ∞

1

(1 + log x)Q(d(x−1)) =

∫ 1

0

(1 + log y−1)Q(dy).

Thus, we get (3.17) from (3.21). The (“only if” part) is thus proved.

(ii) (“If” part.) Suppose µ = L(V 1/2Z) and the Lévy measure νV of V satisfies

(3.15)–(3.17).

We first claim that the integrability condition (3.17) implies that νV is really a

Lévy measure on (0,∞) of a positive infinitely divisible random variable, namely it

satisfies ∫ ∞

0

(r ∧ 1)νV (dr) < ∞. (3.22)

We have ∫ ∞

0

(r ∧ 1)νV (dr) =

∫ 1

0

rνV (dr) +

∫ ∞

1

νV (dr).

As to the first integral, we have∫ 1

0

rνV (dr) =

∫ 1

0

ℓ(r)dr =

∫ 1

0

dr

∫ ∞

r

(x − r)−1/2ρ(dx)

=

∫ 1

0

ρ(dx)

∫ x

0

(x − r)−1/2dr +

∫ ∞

1

ρ(dx)

∫ 1

0

(x − r)−1/2dr

= 2

∫ 1

0

x1/2ρ(dx) + 2

∫ ∞

1

(
x1/2 − (x − 1)1/2

)
ρ(dx)
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≤ 2

∫ 1

0

x1/2ρ(dx) + C

∫ ∞

1

x−1/2ρ(dx),

where C > 0 is a constant. Next, as to the second integral,∫ ∞

1

νV (dr) =

∫ ∞

1

r−1ℓ(r)dr

=

∫ ∞

1

r−1dr

∫ ∞

r

(x − r)−1/2ρ(dx)

=

∫ ∞

1

ρ(dx)

∫ x

1

r−1(x − r)−1/2dr

=

∫ ∞

1

2x−1/2 log(x1/2 + (x − 1)1/2)ρ(dx).

Therefore, (3.17) implies (3.22). Furthermore, as we have already seen, νµ is expressed

as in (3.18). So, to complete the proof, it is enough to show that when we put

g(x2) = |x|
∫ ∞

0

ϕ(v−1/2x)v−1/2νV (dv),

then g(r) is completely monotone on (0,∞). However, for that, it is enough to follow

the proof of the (“only if” part) from the bottom to the top. This concludes the

proof.

Example 3.13. Suppose that the measure ρ in Theorem 3.12 has the density and

for some 0 < α < 1,

ρ(dx) = x−α−1/2dx.

This ρ satisfies the integrability condition (3.17). Then ℓ(r) in (3.16) turns out to be

ℓ(r) = Kr−α, where K =

∫ ∞

1

(u − 1)−1/2u−α−1/2du < ∞.

Thus, νV in (3.15) is the Lévy measure of a positive α-stable distribution, and thus

µ ∈ G(L(R)) $ M(R).

Example 3.14. (Another example of µ such that µ ∈ M(R) but µ /∈ G(L(R)).) Let

ρ in (3.16) satisfy (3.17) and that

ρ([r1, r2]) = 0 for some 0 < r1 < r2 < ∞

and ρ((r2,∞)) > 0. Then the resulting µ belongs to M(R). However,

ℓ(r1) =

∫ ∞

r1

(x − r1)
−1/2ρ(dx) =

∫ ∞

r2

(x − r1)
−1/2ρ(dx)
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<

∫ ∞

r2

(x − r2)
−1/2ρ(dx) = ℓ(r2).

Thus ℓ(r) is not a nonincreasing function so that L(V ) /∈ L((0,∞)). It follows from

Proposition 3.11 that µ = L(V 1/2Z) /∈ G(L(R)).

51



Chapter 4

Nested subclasses of some subclass
of the class of type G
selfdecomposable distributions on
Rd.

4.1 Nested subclasses of M(Rd) and their Lévy mea-

sures

In this section, we construct nested subclasses of M(Rd) as follows. Write M0(Rd) =

M(Rd) and we call gξ(r) in (3.1) the g–function of ν (or µ).

We define nested subclasses of M(Rd) in terms of their Lévy measures.

Definition 4.1 (The class Mk(Rd)). For any k ∈ N, define

Mk(Rd) = {µ̃ ∈ M0(Rd) :

ν in (3.8) is the Lévy measure of some distribution in Mk−1(Rd)}.

M∞(Rd) is defined by ∩∞
k=0Mk(Rd).

For characterizations, we need the following functions. Let η0(x) = ϕ(x) and for

k = 1, 2, . . . ,

ηk(x) =

∫ ∞

0

ϕ(xu−1)ηk−1(u)u−1du. (4.1)

Remark 4.2. (1) limx→+0 ηk(x)x−1 = ∞ and limx→∞ ηk(x)x−1 = 0.

(2) ηk(x) can be written as follows;

ηk(x) =

∫ ∞

0

ϕ(u1)u
−1
1 du1
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· · ·
∫ ∞

0

ϕ(uk−1)u
−1
k−1duk−1

∫ ∞

0

ϕ

x

(
k∏

i=1

ui

)−1
 ϕ(uk)u

−1
k duk.

Then we have following.

Theorem 4.3 (A representation of the Lévy measures of µk ∈ Mk(Rd)). Let µk ∈
Isym(Rd), k = 1, 2, . . ., and denote its Lévy measure by νk. Then, µk ∈ Mk(Rd) if and

only if

νk(B) =

∫ ∞

0

ν0(u
−1B)ηk−1(u)u−1du, B ∈ B0(Rd) (4.2)

where ν0 is the Lévy measure of some µ0 ∈ M0(Rd).

Proof. (i) (“Only if” part.) Let k = 1 and suppose µ1 ∈ M1(Rd). Then, by the

definition

ν1(B) =

∫ ∞

0

ν0(u
−1B)ϕ(u)u−1du

for some Lévy measure ν0 whose distribution is in M0(Rd). We are going to show

the assertion by the induction. Suppose that the assertion is true for some k ∈ N.

Namely, suppose the Lévy measure νk of µk ∈ Mk(Rd) is given by

νk(B) =

∫ ∞

0

ν0(u
−1B)ηk−1(u)u−1du.

Suppose µk+1 ∈ Mk+1(Rd) and denote its Lévy measure by νk+1. Then,

νk+1(B) =

∫ ∞

0

νk(u
−1B)ϕ(u)u−1du (by the definition of Mk+1(Rd)) (4.3)

=

∫ ∞

0

ϕ(u)u−1du

∫ ∞

0

ν0(u
−1v−1B)ηk−1(v)v−1dv

=

∫ ∞

0

ηk−1(v)v−1dv

∫ ∞

0

ν0(y
−1B)ϕ(yv−1)y−1dy

=

∫ ∞

0

ν0(y
−1B)y−1dy

∫ ∞

0

ηk−1(v)ϕ(yv−1)v−1dv

=

∫ ∞

0

ν0(y
−1B)ηk(y)y−1dy (by (4.1)). (4.4)

This shows the assertion is also true for k + 1.

(ii) (“If” part.) The assertion is true for k = 1. Namely, by the definition of

M1(Rd), if

ν1(B) =

∫ ∞

0

ν0(u
−1B)ϕ(u)u−1du
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for some ν0, the Lévy measure of some µ0 ∈ M0(Rd), then µ1 whose Lévy measure is

ν1 belongs to M1(Rd). Suppose that the assertion is true for some k ∈ N and suppose

that µk+1 ∈ Isym(Rd) have the Lévy measure νk+1(B) =
∫ ∞

0
ν0(u

−1B)ηk(u)u−1du.

Then from the calculation from (4.3) to (4.4), we have

νk+1(B) =

∫ ∞

0

ϕ(u)u−1du

∫ ∞

0

ν0(v
−1B)ηk−1(v)v−1dv

=

∫ ∞

0

ϕ(u)u−1νk(u
−1B)du

and µk with the Lévy measure νk belongs to Mk(Rd) by the induction hypothesis.

Thus µk+1 ∈ Mk+1(Rd) follows from Definition 4.1. This completes the proof.

The following is a characterization of the Lévy measures of distributions in

Mk(Rd) in terms of the g–function of the Lévy measure.

Theorem 4.4. Let k ∈ N. A µk ∈ Isym(Rd) belongs to Mk(Rd) if and only if its Lévy

measure νk is either zero or it can be represented as

νk(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)gk,ξ(r
2)r−1dr, B ∈ B0(Rd),

where gk,ξ(r) is represented as

gk,ξ(s) =

∫ ∞

0

ηk−1(s
1/2y−1)gξ(y

2)y−1dy. (4.5)

Here gξ(r) is measurable in ξ ∈ S and completely monotone in r for λ– a.e. ξ.

Proof. Recall from (1.5) and (3.1) that

ν0(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)gξ(r
2)r−1dr.

We see by Theorem 4.3 that µk ∈ Mk(Rd) if and only if νk is represented as

νk(B) =

∫ ∞

0

ν0(u
−1B)ηk−1(u)u−1du

=

∫ ∞

0

ηk−1(u)u−1du

∫
S

λ(dξ)

∫ ∞

0

1u−1B(yξ)gξ(y
2)y−1dy.

=

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)r−1dr

∫ ∞

0

ηk−1(ry
−1)gξ(y

2)y−1dy

=

∫
S

λ(dξ)

∫ ∞

−∞
1B(rξ)gk,ξ(r

2)r−1dr.

This completes the proof.
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4.2 Characterizations of Mk(Rd), k ∈ N, by stochas-

tic integrals

In this section, we characterize distributions in Mk(Rd) by stochastic integral repre-

sentations. Let mk(x) =
∫ ∞

x
ηk(u)u−1du, x > 0. Since mk(x) is strictly monotone, we

can define its inverse by m∗
k(t), that is, t = mk(x) if and only if x = m∗

k(t).

Lemma 4.5. For each k ∈ N and |x| > 1, there exists C > 0 such that

∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k ϕ

(
k∏

i=1

ui|x|

)−1
 duk ≤ C(log |x|)k. (4.6)

Proof. For the proof, we use induction argument. Let k = 1 and for |x| > 1, we have∫ ∞

0

ϕ(u)u−1ϕ
(
u−1|x|−1

)
du =

(∫ 1

0

+

∫ ∞

1

)
ϕ(u)u−1ϕ(u−1|x|−1)du

≤
∫ |x|

0

ϕ(w/|x|)w−1ϕ(w−1)dw + C

≤

(∫ 1

0

+

∫ |x|

1

)
w−1ϕ(w−1)dw + C

≤ C +

∫ |x|

1

w−1dw + C

≤ C log |x| + C,

where and in what follows C will denote an absolute positive constant which may be

different from one to another.

Next suppose the statement is true for some k ≥ 1 and show it is also true for

k + 1. We have, for |x| > 1,

∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk+1)u
−1
k+1ϕ

(
k+1∏
i=1

ui|x|

)−1
 duk+1

=

∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k duk(∫ 1

0

+

∫ ∞

1

)
ϕ(uk+1)u

−1
k+1ϕ

(
k+1∏
i=1

ui|x|

)−1
 duk+1

= : H1 + H2,
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say. Here

H1 =

∫ ∞

0

ϕ(u1)u
−1
1 du1

· · ·
∫ ∞

0

ϕ(uk)u
−1
k duk

∫ ∞

1/
Qk

i=1 ui|x|
ϕ

(
k∏

i=1

ui|x|y

)−1
 ϕ(y)y−1dy

≤
∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k duk

(∫ 1/
Qk

i=1 ui

1/
Qk

i=1 ui|x|
+

∫ ∞

1/
Qk

i=1 ui

)
ϕ(y)y−1dy

≤
∫ ∞

0

ϕ(u1)u
−1
1 du1

· · ·
∫ ∞

0

ϕ(uk)u
−1
k dukϕ

(
k∏

i=1

ui|x|

)−1
 log y

∣∣∣1/
Qk

i=1 ui

y=1/
Qk

i=1 ui|x|
+ C

≤ log |x|
∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k ϕ

(
k∏

i=1

ui|x|

)−1
 duk+1 + C

≤C(log |x|)k+1 + C,

since (4.6) is supposed. And

H2 =

∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k duk

∫ 1

0

ϕ

y

(
k∏

i=1

ui|x|

)−1
 y−1ϕ(y−1)dy

≤
∫ 1

0

C(log y−1|x|)ky−1ϕ(y−1)dy (since (4.6) is supposed)

=

∫ ∞

1

C(log |x|w)kw−1ϕ(w)dw ≤ C
k∑

i=0

(log |x|)i.

This shows the statement is true for k + 1. This completes the proof.

Theorem 4.6. For each k ∈ N, the stochastic integral∫ ∞

0

m∗
k(t)dX

(µ)
t

exists for every µ ∈ Ilogk+1(Rd).

Proof. For the proof, we use Lemma 3.3 again. It is enough to show that f(t) = m∗
k(t)

satisfies (3.2)− (3.4) in Lemma 3.3 for every µ ∈ Ilogk+1(Rd). Note that mk(+0) = ∞
and mk(∞) = 0. Since∫ ∞

0

m∗
k(t)

2dt =

∫ ∞

0

s2ηk(s)s
−1ds
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=

∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k duk

∫ ∞

0

sϕ

s

(
k∏

i=1

ui

)−1
 ds

=

∫ ∞

0

ϕ(u1)u1du1 · · ·
∫ ∞

0

ϕ(uk)ukduk

∫ ∞

0

yϕ(y)dy = (2π)−(k+1)/2 < ∞,

we have (3.2).

As to (3.3), we have∫ ∞

0

dt

∫
Rd

(|m∗
k(t)x|2 ∧ 1)ν(dx) = −

∫ ∞

0

dmk(s)

∫
Rd

(|sx|2 ∧ 1)ν(dx)

=

∫ ∞

0

ηk(s)s
−1ds

(∫
|x|≤1/s

|sx|2ν(dx) +

∫
|x|>1/s

ν(dx)

)
=: I1 + I2,

say. Here

I1 =

∫
Rd

|x|2ν(dx)

∫ 1/|x|

0

sηk(s)ds

=

(∫
|x|≤1

+

∫
|x|>1

)
|x|2ν(dx)

∫ 1/|x|

0

sηk(s)ds =: I11 + I12,

say, and

I11 ≤
∫
|x|≤1

|x|2ν(dx)

∫ ∞

0

sηk(s)ds < ∞,

I12 =

∫
|x|>1

|x|2ν(dx)

∫ ∞

0

ϕ(u1)u1du1 · · ·
∫ ∞

0

ϕ(uk)ukduk

∫ 1/|x|

0

ϕ(y)ydy

= (2π)−k/2

∫
|x|>1

|x|2ν(dx)

∫ 1/|x|

0

ϕ(y)ydy

= (2π)−k/2

∫
|x|>1

|x|2ν(dx)|x|−2

∫ 1

0

ϕ(w|x|−1)wdw

≤ (2π)−k/2

∫
|x|>1

ν(dx) < ∞.

Also,

I2 =

∫
Rd

ν(dx)

∫ ∞

1/|x|
ηk(s)ds =

(∫
|x|≤1

+

∫
|x|>1

)
ν(dx)

∫ ∞

1/|x|
ηk(s)s

−1ds =: I21 + I22,

say. As to I21, we have

I21 ≤
∫
|x|≤1

ν(dx)

∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k duk

(
k∏

i=1

ui

)2 ∫ ∞

1/|x|
2s−3ds
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≤C

∫
|x|≤1

|x|2ν(dx) < ∞.

And

I22 =

∫
|x|>1

ν(dx)

∫ ∞

0

ϕ(u1)u
−1
1 du

· · ·
∫ ∞

0

ϕ(uk)u
−1
k duk

∫ ∞

1/|x|
ϕ

s

(
k∏

i=1

ui|x|

)−1
 s−1ds

=

∫
|x|>1

ν(dx)

∫ ∞

0

ϕ(u1)u
−1
1 du · · ·

∫ ∞

0

ϕ(uk)u
−1
k duk

∫ ∞

1/
Qk

i=1 ui|x|2
ϕ(y)y−1dy

=

∫
|x|>1

ν(dx)

∫ ∞

0

ϕ(u1)u
−1
1 du

· · ·
∫ ∞

0

ϕ(uk)u
−1
k duk

(∫ 1/
Qk

i=1 ui

1/
Qk

i=1 ui|x|2
+

∫ ∞

1/
Qk

i=1 ui

)
ϕ(y)y−1dy

≤
∫
|x|>1

ν(dx)

∫ ∞

0

ϕ(u1)u
−1
1 du

· · ·
∫ ∞

0

ϕ(uk)u
−1
k

ϕ

(
k∏

i=1

ui|x|2
)−1

 log y
∣∣∣1/

Qk
i=1 ui

y=1/
Qk

i=1 ui|x|2
+

k∏
i=1

ui

 duk

=

∫
|x|>1

ν(dx)log |x|2
∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk)u
−1
k ϕ

(
k∏

i=1

ui|x|2
)−1

 duk + C


≤

∫
|x|>1

(
C(log |x|2)k+1 + C

)
ν(dx) (by Lemma 4.5)

≤
∫
|x|>1

(
C(log |x|)k+1 + C

)
ν(dx) < ∞.

For (3.4), we have∫ ∞

0

∣∣∣∣m∗
k(t)γ + m∗

k(t)

∫
Rd

x
((

1 + |m∗
k(t)x|2

)−1 −
(
1 + |x|2

)−1
)

ν(dx)

∣∣∣∣ dt

≤− |γ|
∫ ∞

0

sdmk(s)

−
∫ ∞

0

∣∣∣∣s∫
Rd

x
((

1 + |sx|2
)−1 −

(
1 + |x|2

)−1
)

ν(dx)

∣∣∣∣ dmk(s) =: I3 + I4,
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say, where

I3 ≤|γ|
∫ ∞

0

ηk(s)ds < ∞,

I4 ≤
∫ ∞

0

ηk(s)ds

∣∣∣∣∫
Rd

((
x|x|2|s2 − 1|

) (
(1 + |sx|2)(1 + |x|2)

)−1
)

ν(dx)

∣∣∣∣
≤

∫ ∞

0

|s2 − 1|ηk(s)ds

∫
Rd

|x|3
(
(1 + |sx|2)(1 + |x|2)

)−1
ν(dx)

=

∫ ∞

0

|s2 − 1|ηk(s)ds(∫
|x|≤1

+

∫
|x|>1

)
|x|3

(
(1 + |sx|2)(1 + |x|2)

)−1
ν(dx) =: I41 + I42,

say. Here

I41 ≤
∫ ∞

0

|s2 − 1|ηk(s)ds

∫
|x|≤1

|x|3
(
1 + |x|2

)−1
ν(dx) < ∞,

and

I42 ≤
∫
|x|>1

|x|3
(
1 + |x|2

)−1
ν(dx)

∫ ∞

0

(
s2 + 1

) (
1 + |sx|2

)−1
ηk(s)ds

=

∫
|x|>1

|x|3
(
1 + |x|2

)−1
ν(dx)(∫ 1

0

+

∫ ∞

1

) (
s2 + 1

) (
1 + |sx|2

)−1
ηk(s)ds =: I421 + I422,

say. Furthermore,

I421 =

∫
|x|>1

|x|3
(
1 + |x|2

)−1
ν(dx)

∫ 1

0

(
s2 + 1

) (
1 + |sx|2

)−1
ηk(s)ds

=

∫
|x|>1

|x|3
(
1 + |x|2

)−1
ν(dx)(∫ 1/|x|

0

+

∫ 1

1/|x|

) (
s2 + 1

) (
1 + |sx|2

)−1
ηk(s)ds =: I4211 + I4212,

say. We have

I4211 ≤
∫
|x|>1

|x|ν(dx)

∫ 1/|x|

0

ηk(s)ds

=

∫
|x|>1

|x|ν(dx)

∫ ∞

0

ϕ(u1)u1du1 · · ·
∫ ∞

0

ϕ(uk)ukduk

∫ 1/|x|

0

ϕ(y)dy
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= (2π)−2/k

∫
|x|>1

|x|ν(dx)

∫ 1/|x|

0

ϕ(y)dy

= (2π)−2/k

∫
|x|>1

|x|ν(dx)|x|−1

∫ 1

0

ϕ(w|x|)dw ≤ (2π)−2/k

∫
|x|>1

ν(dx) < ∞,

and

I4212 ≤
∫
|x|>1

ν(dx)

∫ 1

1/|x|

(
|sx|(s2 + 1)

) (
1 + |sx|2

)−1
ηk(s)s

−1ds

≤
∫
|x|>1

ν(dx)

∫ 1

1/|x|
ηk(s)s

−1ds

≤
∫
|x|>1

ν(dx)

∫ ∞

1/|x|
ηk(s)s

−1ds = I22 < ∞.

Also

I422 =

∫
|x|>1

|x|3
(
1 + |x|2

)−1
ν(dx)

∫ ∞

1

(
s2 + 1

) (
1 + |sx|2

)−1
ηk(s)ds

≤
∫
|x|>1

|x|3
(
1 + |x|2

)−2
ν(dx)

∫ ∞

1

(s2 + 1)ηk(s)ds < ∞.

Thus we have (3.4). This completes the proof.

Let M1 = M1 = M.

Definition 4.7. Let k ∈ N. Define the mapping Mk+1 by

Mk+1(µ) = L
(∫ ∞

0

m∗
k(t)dX

(µ)
t

)
, µ ∈ Ilogk+1(Rd)

and Mk+1 be the (k+1) times iteration of M. That is, Mk+1(µ) can be defined with

Mk+1(µ) = M(Mk(µ)) if and only if Mk(µ) is defined and belongs to Ilog(Rd).

Theorem 4.8. For k ∈ N,

Mk(Rd) = M(Mk−1(Rd) ∩ Ilog(Rd)).

Proof. The proof is almost the same as that of Theorem 3.5 (i) in Chapter 3. Let

µk−1 ∈ Mk−1(Rd) ∩ Ilog(Rd) and µk = M(µk−1). Also let νk−1 and νk be the Lévy

measures of µk−1 and µk, respectively. Then by Theorem 3.5, we have νk(B) =∫ ∞
0

νk−1(s
−1B)ϕ(s)s−1ds. Thus µk ∈ Mk(Rd) by the definition 4.1, and M(Mk−1(Rd)∩

Ilog(Rd)) ⊂ Mk(Rd).
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Conversely, suppose that µk ∈ Mk(Rd). Then by the definition of Mk(Rd) and

Theorem 3.5 again, we see that µk = L
(∫ ∞

0
m∗(t)dX

(µ)
t

)
for some µ ∈ Mk−1(Rd) ∩

Ilog(Rd). This means that µk ∈ M(Mk−1(Rd)∩Ilog(Rd)), and Mk(Rd) ⊂ M(Mk−1(Rd)∩
Ilog(Rd)), completing the proof.

Corollary 4.9. For k ∈ N,

Mk(Rd) = Mk+1(Ilogk+1(Rd)) ∩ Isym(Rd).

We next show

Theorem 4.10. For k ∈ N

Mk+1(Ilog(Rd)) = Mk+1(Ilogk+1(Rd)).

Proof. We note that µ̃ ∈ Mk+1(Ilogk+1(Rd)) if and only if

µ̃ = L
(∫ ∞

0

m∗
k(t)dX

(µ)
t

)
, µ ∈ Ilogk+1(Rd)

and that µ̃ ∈ Mk+1(Ilogk+1(Rd)) if and only if

µ̃ = L
(∫ ∞

0

m∗(t)dX
(µ)
t

)
,

where µ ∈ Ilog(Rd) and has the Lévy measure νk−1 of the form in (4.2).

We next claim that, for any µ ∈ Ilogk+1(Rd),∫ ∞

0

ϕ(u)u−1du

∫ ∞

0

|Cµ(uvz)|ηk−1(v)v−1dv < ∞, z ∈ Rd. (4.7)

If it would be proved, we could exchange the order of the integrals in the calculation

of cumulants below.

The proof of (4.7) is as follows. The idea is from Barndorff–Nielsen et al. [BMS06].

If the generating triplet of µ is (A, ν, γ), then

|Cµ(z)| ≤ 2−1(trA)|z|2 + |γ||z| +
∫

Rd

|g(z, x)|ν(dx),

where

g(z, x) = ei⟨z,x⟩ − 1 − i⟨z, x⟩(1 + |x|2)−1.

Hence

|Cµ(uvz)| ≤ 2−1(trA)u2v2|z|2 + |γ||u||v||z| +
∫

Rd

|g(z, uvx)|ν(dx)
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+

∫
Rd

|g(uvz, x) − g(z, uvx)|ν(dx) =: J1 + J2 + J3 + J4,

say. The finiteness of
∫ ∞

0
ϕ(u)u−1du

∫ ∞
0

(J1 + J2)ηk−1(v)v−1dv is easily to be shown

by the same calculation as in the proof of Theorem 4.6.

Noting that |g(z, x)| ≤ Cz|x|2(1 + |x|2)−1 with a positive constant Cz depending

on z, we have∫ ∞

0

ϕ(u)u−1du

∫ ∞

0

J3ηk−1(v)v−1dv

≤ Cz

∫
Rd

ν(dx)

∫ ∞

0

ϕ(u)u−1du

∫ ∞

0

|uvx|2
(
1 + |uvx|2

)−1
ηk−1(v)v−1dv

= Cz

∫
Rd

ν(dx)

∫ ∞

0

|sx|2
(
1 + |sx|2

)−1
ηk(s)s

−1ds

= Cz

(∫
|x|≤1

ν(dx) +

∫
|x|>1

ν(dx)

) ∫ ∞

0

|sx|2
(
1 + |sx|2

)−1
ηk(s)s

−1ds

=: J31 + J32,

say, and

J31 ≤ Cz

∫
|x|≤1

|x|2ν(dx)

∫ ∞

0

sηk(s)ds < ∞,

J32 = Cz

∫
|x|>1

ν(dx)

(∫ 1/|x|

0

+

∫ ∞

1/|x|

)
|sx|2

(
1 + |sx|2

)−1
ηk(s)s

−1ds

=: J321 + J322,

say. We have

J321 ≤ 2−1

∫
|x|>1

|x|ν(dx)

∫ 1/|x|

0

ηk(s)ds < ∞,

by the finiteness of I4211 in the proof of Theorem 4.6.

Also, we have the finiteness of J322 by Lemma 4.5.

As to J4, note that for a > 0,

|g(az, x) − g(z, ax)| = |⟨az, x⟩||x|2|1 − a2|(1 + |x|2)−1(1 + a|x|2)−1

≤ |z||x|3a(1 + a2)(1 + |x|2)−1(1 + a|x|2)−1.

Then ∫ ∞

0

ϕ(u)u−1du

∫ ∞

0

J4ηk−1(v)v−1dv
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≤|z|
∫

Rd

ν(dx)

∫ ∞

0

ϕ(u)u−1du∫ ∞

0

|x|3uv(1 + u2v2)(1 + |x|2)−1(1 + u2v2|x|2)−1ηk−1(v)v−1dv

=|z|
∫

Rd

ν(dx)

∫ ∞

0

|x|3s(1 + s2)(1 + |x|2)−1(1 + |sx|2)−1ηk(s)s
−1ds

=|z|
(∫

|x|≤1

+

∫
|x|>1

)
ν(dx)

∫ ∞

0

|x|3(1 + s2)(1 + |x|2)−1(1 + |sx|2)−1ηk(s)ds

= : J41 + J42,

say. Here

J41 ≤ |z|
∫
|x|≤1

|x|2ν(dx)

∫ ∞

0

|x|(1 + s2)(1 + |x|2)−1(1 + |sx|2)−1ηk(s)ds

≤ 2−1|z|
∫
|x|≤1

|x|2ν(dx)

∫ ∞

0

(1 + s2)
(
1 + |sx|2

)−1
ηk(s)ds

≤ 2−1|z|
∫
|x|≤1

|x|2ν(dx)

∫ ∞

0

(1 + s2)ηk(s)ds < ∞,

and

J42 = |z|
∫
|x|>1

|x|3
(
1 + |x|2

)−1
ν(dx)

∫ ∞

0

(
1 + s2

) (
1 + |sx|2

)−1
ηk(s)ds < ∞.

The finiteness of J42 follows from that of I42 in the proof of Theorem 4.6.

This completes the proof of (4.7).

If we calculate the necessary cumulants, we have

CMk+1(µ)(z) =

∫ ∞

0

Cµ(m∗
k(t)z)dt

= −
∫ ∞

0

Cµ(uz)dmk(u) =

∫ ∞

0

Cµ(uz)ηk(u)u−1du

CMk+1(µ)(z) =

∫ ∞

0

CMk(µ)(m
∗(t)z)dt =

∫ ∞

0

dt

∫ ∞

0

Cµ(m∗(t)m∗
k−1(s)z)ds

=

∫ ∞

0

dm(u)

∫ ∞

0

Cµ(uvz)dmk−1(v)

=

∫ ∞

0

ϕ(u)u−1du

∫ ∞

0

Cµ(uvz)ηk−1(v)v−1dv

=

∫ ∞

0

Cµ(yz)y−1dy

∫ ∞

0

ϕ(yv−1)ηk−1(v)v−1dv

=

∫ ∞

0

Cµ(yz)ηk(y)y−1dy = CMk+1(µ)(z).

This completes the proof of Theorem 4.10.
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The following is a goal of this section and a Mk–version of Theorem 3.5 (i).

Namely, any µ ∈ Mk(Rd) has the stochastic integral representation defined in Defini-

tion 4.7.

Theorem 4.11.

Mk(Rd) = Mk+1(Ilogk+1(Rd)) ∩ Isym(Rd).

Proof. The statement is an immediate consequence of Corollary 4.9 and Theorem

4.10.

4.3 The classes M∞(Rd)

Theorem 4.12.

M∞(Rd) ⊃ Ssym(Rd),

where Ssym(Rd) is the class of all symmetric stable distributions on Rd.

Proof. Let k ≥ 1. When µA is Gaussian with zero mean and covariance matrix A,

suppose {Xt} is a Gaussian Lévy process such that the covariance matrix of X1 is

c−1
k A, where ck =

(∫ ∞
0

m∗
k(t)

2dt
)
. Then we have

µA = L
(∫ ∞

0

m∗
k(t)dXt

)
∈ Mk(Rd)

for any k ≥ 1. Hence µ ∈ M∞(Rd).

When µ is non–Gaussian α–stable with the Lévy measure ν, we have

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)r−(1+α)dr =

∫
S

λk(dξ)

∫ ∞

0

1B(rξ)ckr
−(1+α)dr,

where

ck =

∫ ∞

0

m∗
k−1(t)

αdt and λk(dξ) = c−1
k λ(dξ).

We also have

ckr
−(1+α) = −r−(1+α)

∫ ∞

0

uαdmk−1(u) = r−1

∫ ∞

0

(ur−1)αηk−1(u)u−1dt

= r−1

∫ ∞

0

ηk−1(ry
−1)y−(1+α)dy = r−1

∫ ∞

0

ηk−1(ry
−1)g(y2)y−1dy,
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where

g(s) = s−α/2,

which is completely monotone. Thus, by Theorem 4.4, ckr
−(1+α) can be regarded as

gk,ξ(r)r
−1, implying that ν is the Lévy measure of a distribution in Mk(Rd). This is

true for all k, and thus µ ∈ M∞(Rd).

4.4 More about the classes Mk(R) when d = 1

In Chapter 3, we have characterized class M0(R) in terms of V in V 1/2Z as a vari-

ance mixture of normal distribution. We characterize the distribution of the random

variance V in the case of µ ∈ Mk(R).

Theorem 4.13. Let k = 1, 2, · · · . A necessary and sufficient condition for that

µ ∈ M0(R) belongs to a smaller class Mk(R) is that

ρ(dx) = 2−1 (2πx)−1/2

{∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk−2)u
−1
k−2duk−2 (4.8)

∫ ∞

0

ϕ(uk−1)u
−1
k−1g

x

(
k−1∏
i=1

ui

)−2
 duk−1

}
dx,

where g(·) is completely monotone.

The proof is almost the same as that of Theorem 3.12 in Chapter 3.

Proof. (i) (“Only if” part.) Suppose µ ∈ Mk(R). Since Mk(R) ⊂ G(R), we have

µ = L(V 1/2Z) for some V ∈ I(R+). Thus, we get for z ∈ R,

E
[
eizV 1/2Z

]
= E

[
e−V z2/2

]
= exp

{
−2−1Az2 +

∫ ∞

0+

(e−vz2/2 − 1) νV (dv)

}
= exp

{
−2−1Az2 +

∫ ∞

0+

νV (dv)

∫ ∞

−∞
(eizv1/2u − 1)ϕ(u) du

}
= exp

{
−2−1Az2 +

∫ ∞

−∞
(eizx − 1)dx

∫ ∞

0+

ϕ(v−1/2x)v−1/2 νV (dv)

}
,

where A ≥ 0. Therefore, the Lévy measure ν of µ is of the form

ν(dx) =

(∫ ∞

0+

ϕ(v−1/2x)v−1/2 νV (dv)

)
dx. (4.9)
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By Theorem 4.4, µ ∈ Mk(R) if and only if ν(dx) = |x|−1gk(x
2)dx, where gk is given

by (4.5). Since µ ∈ M0(R), gk is completely monotone. By Proposition 1.10, it can

be written as

gk(r) =

∫ ∞

0

e−ry/2 Q(dy), r > 0,

for a measure Q on (0,∞) given by,

Q(dy) = (2π)−1/2 (2y)−1

{∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk−2)u
−1
k−2duk−2∫ ∞

0

ϕ(uk−1)u
−1
k−1g

y−1

(
k−1∏
i=1

ui

)−2
 duk−1

}
dy,

where g(·) is completely monotone.

By (4.9), we get ∫ ∞

0+

ϕ(v−1/2x)v−1/2 νV (dv) = |x|−1gk(x
2). (4.10)

Since

r−1/2 = (2π)−1/2

∫ ∞

0

e−rw/2w−1/2 dw, r > 0,

we obtain

r−1/2g(r) = (2π)−1/2

∫ ∞

0

∫ ∞

0

e−r(w+y)/2w−1/2 dwQ(dy)

= (2π)−1/2

∫ ∞

0

Q(dy)

∫ ∞

y

e−ru/2(u − y)−1/2 du

= (2π)−1/2

∫ ∞

0

e−ru/2du

∫ u

0

(u − y)−1/2 Q(dy).

Taking x = r1/2 > 0 in (4.10), we get

(2π)−1/2

∫ ∞

0+

e−r/2vv−1/2 νV (dv) (4.11)

= (2π)−1/2

∫ ∞

0

e−ru/2du

∫ u

0

(u − y)−1/2 Q(dy).

Let

ρ(dx) = − x1/2Q(d(x−1))
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(
= − 2−1 (2πx)−1/2

{∫ ∞

0

ϕ(u1)u
−1
1 du1 · · ·

∫ ∞

0

ϕ(uk−2)u
−1
k−2duk−2 (4.12)

∫ ∞

0

ϕ(uk−1)u
−1
k−1g

x

(
k−1∏
i=1

ui

)−2
 duk−1

}
dx

)
.

Then ℓ(r) in (3.16) becomes

ℓ(r) = −
∫ ∞

r

(x − r)−1/2x1/2Q(d(x−1)) =

∫ r−1

0

(y−1 − r)−1/2y−1/2Q(dy)

=

∫ r−1

0

(1 − yr)−1/2Q(dy) = r−1/2

∫ r−1

0

(r−1 − y)−1/2Q(dy).

Thus by (4.11), ∫ ∞

0+

e−r/2vv−1/2 νV (dv) =

∫ ∞

0

e−ru/2u−1/2ℓ(u−1) du

or ∫ ∞

0+

e−r/2vv−1/2 νV (dv) =

∫ ∞

0

e−r/2vv−3/2ℓ(v) dv, r > 0.

Therefore

v−1/2 νV (dv) = v−3/2ℓ(v) dv, v > 0,

which yields (3.15).

The integrability condition (3.17) for Q is obtained from the fact that

∞ >

∫
R
(x2 ∧ 1) ν(dx) =

∫
R
(|x| ∧ |x|−1)gk(x

2)dx.

For, this yields that∫ 1

0

xdx

∫ ∞

0

e−x2y/2 Q(dy) < ∞ and

∫ ∞

1

x−1dx

∫ ∞

0

e−x2y/2 Q(dy) < ∞,

and hence ∫ ∞

0

[
y−1(1 − e−y/2) + 2−1

∫ ∞

y

u−1e−u/2 du

]
Q(dy) < ∞.

It is obvious that the above condition is equivalent to∫ 1

0

(1 + log y−1)Q(dy) +

∫ ∞

1

y−1Q(dy) < ∞. (4.13)
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On the other hand,∫ 1

0

x1/2ρ(dx) = −
∫ 1

0

xQ(d(x−1)) =

∫ ∞

1

y−1Q(dy)

and∫ ∞

1

(1 + log x)x1/2ρ(dx) = −
∫ ∞

1

(1 + log x)Q(d(x−1)) =

∫ 1

0

(1 + log y−1)Q(dy)).

Thus, we get (3.17) from (4.13) and (4.8) by (4.12). The (“only if” part) is thus

proved.

(ii) (“If” part.) Suppose µ = L(V 1/2Z) and the Lévy measure νV of V satisfies

(3.15)–(3.17).

We first claim that the integrability condition (3.17) implies that νV is really a

Lévy measure on (0,∞) of a positive infinitely divisible random variable, namely it

satisfies ∫ ∞

0

(r ∧ 1)νV (dr) < ∞. (4.14)

We have ∫ ∞

0

(r ∧ 1)νV (dr) =

∫ 1

0

rνV (dr) +

∫ ∞

1

νV (dr).

As to the first integral, we have∫ 1

0

rνV (dr) =

∫ 1

0

ℓ(r)dr =

∫ 1

0

dr

∫ ∞

r

(x − r)−1/2ρ(dx)

=

∫ 1

0

ρ(dx)

∫ x

0

(x − r)−1/2dr +

∫ ∞

1

ρ(dx)

∫ 1

0

(x − r)−1/2dr

= 2

∫ 1

0

x1/2ρ(dx) + 2

∫ ∞

1

(
x1/2 − (x − 1)1/2

)
ρ(dx)

≤ 2

∫ 1

0

x1/2ρ(dx) + const. ×
∫ ∞

1

x−1/2ρ(dx)

= −2

∫ 1

0

xQ(d(x−1)) − const. ×
∫ ∞

1

Q(d(x−1))

= 2

∫ ∞

1

x−1Q(dx) + const. ×
∫ 1

0

Q(dx).

Next, as to the second integral,∫ ∞

1

νV (dr) =

∫ ∞

1

r−1ℓ(r)dr =

∫ ∞

1

r−1dr

∫ ∞

r

(x − r)−1/2ρ(dx)
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=

∫ ∞

1

ρ(dx)

∫ x

1

r−1(x − r)−1/2dr =

∫ ∞

1

(log x + const.)x−1/2ρ(dx)

= −
∫ ∞

1

(log x + const.)Q(d(x−1)) =

∫ 1

0

(log x−1 + const.)Q(dx).

Therefore, (3.17) implies (4.14). Furthermore, as we have already seen, νµ is expressed

as in (4.9). So, to complete the proof, it is enough to show that when we put

gk(x
2) = |x|

∫ ∞

0

ϕ(v−1/2x)v−1/2νV (dv),

then gk(r) is as (4.5) in Theorem 4.4. However, for that, it is enough to follow the

proof of the (“only if” part) from the bottom to the top. This completes the proof.
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