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Abstract

In industrial applications, system engineers often encounter the daunting task of designing

controllers for unknown or uncertain systems. The complexity of this process can be greatly

increased by the magnitude of the system and the presence of nonlinear dynamics. Adaptive

and iterative control theories have emerged as a powerful tool to design efficient and robust

controllers, despite this lack of information. They have been successfully applied throughout

a wide range of engineering discipline to achieve desired performance and provide information

about parametrically uncertain systems.

As a vital component of most industrial processes, the control of mechanical systems has

generated immense research interest. While adaptive and iterative control algorithms have been

used to resolve many issues, there remain to this day countless topics that must be addressed

by a diligent and knowledgeable system engineer. It is therefore the objective of this thesis

to explore the various issues involved with adaptive and iterative control of parametrically

uncertain mechanical systems. The focus of this study is narrowed by considering three specific

applications, each representing different aspects of the general control problem: iterative control

of an unknown multi-mass motor system; adaptive control of vehicular suspension systems; and

robust adaptive friction compensation.

Chapter 1 begins with an introduction to the control problem of parametrically uncertain

mechanical systems. This is elaborated in Chapter 2, which provides a literature review of

existing control methods for multi-mass torsional motors, vehicular suspension systems and

friction compensation, along with mathematical preliminaries that are utilized throughout the

thesis. The motivation of this research is presented in detail.

The results of this study are presented in Chapter 3 to 5. First, a linear, two-mass torsional

motor system with parametric uncertainties is considered in Chapter 3. A novel iterative

feedback tuning method is proposed that yields an optimal controller, while simultaneously
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identifying unknown system parameters and reducing the number of required experiments per

iteration. Chapter 4 investigates the semi-active vibration control of an unknown vehicular

suspension system with magnetorheological damper. A total adaptive control algorithm that

combines an inverse controller with linear-parameterization and a suitable reference feedback

controller is proposed. Stability and robustness conditions for the total system consisting of the

two adaptation algorithms are clarified. Chapter 5 extends the use of a linearly-parameterized

approximation function to the friction compensation problem. The newly proposed generalized

Maxwell-slip model is employed to describe friction effects. The result is a robust adaptive

friction compensator that greatly reduces positional and velocity tracking error in the presence

of friction. Finally, Chapter 6 summarizes the main results of this study and concludes with

suggestions for future research.
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Chapter 1

Introduction

In industrial applications, system engineers often encounter the daunting task of designing

controllers for unknown or uncertain systems. Not only must they guarantee that certain per-

formance criterions are met, but it is expected that information about the system be identified,

often in an online manner. The complexity of this process can be greatly increased by the

magnitude of the system and the presence of nonlinear dynamics.

Adaptive and iterative control theories have emerged as a powerful tool to design efficient

and robust controllers, despite this lack of information. They have been successfully applied

throughout a wide range of engineering discipline to achieve desired performance and provide

information about parametrically uncertain systems. This includes an astounding mix of appli-

cations, such as electrical power grids, biological systems, geo-mechanics, and even economics

and other social studies.

As a vital component of most industrial processes, the control of mechanical systems have

generated immense research interest, with particular emphasis on parametrical uncertainties

and robustness. While adaptive and iterative control algorithms have been used to resolve

many issues, there remain to this day countless topics that must be addressed by a diligent and

knowledgeable system engineer.

It is therefore the objective of this thesis to explore the various issues involved with adaptive

and iterative control of parametrically uncertain mechanical systems. The focus of this study

is narrowed by considering three specific applications, each representing different aspects of the

general control problem. In particular, the iterative control of an unknown multi-mass torsional

motor system, adaptive control of vehicular suspension systems, and robust adaptive friction
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compensation are considered.

1.1 Multi-mass Torsional Motor System

Torsional motor systems are an integral part of many industrial and mechanical processes.

However, velocity control of such multi-mass systems when physical parameters are uncertain

or unknown is a complicated task. It is therefore desirable to develop an effective and easily

implemented method for achieving control performance of an uncertain system.

A commonly employed approach for controller design is iterative feedback tuning (IFT)

[18,19]. The IFT algorithm involves the minimization of a performance function by a gradient-

based tuning method. However, the tuning process is greatly hindered when system knowledge

is lacking or incomplete. Without an accurate mathematical description of the system, it is not

possible to analytically calculate the gradient of the output error with respect to the controller

parameters. In such a situation, IFT requires determining the system transfer function using

separate identification techniques or performing additional experiments for gradient estimation.

However, prohibitive experimental conditions, such as cost, stability issues, and closed-loop

identifiability, mean that these are not always viable solutions.

This thesis addresses the iterative tuning problem for an unknown two-mass motor system.

It has been demonstrated that a direct relationship exists between the physical parameters of a

two-mass system and the linear gains of a feedforward controller [27] that was constructed using

the command generator tracking (CGT) theory [9, 22]. The feedforward controller includes

a suitable reference model that generates signals necessary for establishing this relationship

[17, 27]. This concept was further developed by investigating the feasibility of using IFT to

determine the feedforward and feedback controller parameters as the error is minimized [33,

34]. However, a system identification method called output oversampling [52] was required to

determine the system transfer function, which is necessary for iterative tuning.

Therefore, one of the purposes of this thesis is to propose a novel iterative tuning algorithm

for the feedforward and feedback controllers. The structure of the feedforward and feedback

controllers is chosen to establish a clear relationship between physical model parameters of the

two-mass motor system and the feedforward controller based on CGT theory [9]. From this

relationship, the controller can be tuned directly by estimates of the physical model param-

eters to minimize tracking error. In addition, an estimated system transfer function can be
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analytically obtained from the estimated model parameters at each iteration. This estimated

transfer function allows for the direct calculation of the output error gradients with respect to

the feedforward and feedback controller parameters that are required to conduct IFT.

The proposed algorithm is an efficient integration of IFT [18, 19] and the feedforward con-

troller designed using CGT [27,33,34]. In utilizing system information provided by the feedfor-

ward controller to construct an estimated system transfer function, the additional experiments

for gradient estimation, required by ordinary IFT in the case of an unknown system, become

unnecessary. This reduction in the number of experiments performed per iteration is beneficial

in terms of efficiency and cost. Likewise, a separate system identification process is no longer

required. The proposed tuning algorithm is self-sufficient in minimizing the output error, as the

system transfer function can be estimated directly from the relationship with the feedforward

controller parameters. It also has the additional benefit of identifying the physical parameters

of the system as the output error is improved.

The resulting, unified algorithm provides a powerful tool for achieving trajectory track-

ing of a completely unknown two-mass system. The validity and efficiency of the method is

demonstrated by velocity control experiments. It is noted that no prior knowledge of system

parameters or transfer function is required to implement this algorithm.

1.2 Adaptive Damper Control of Suspension System

Magnetorheological (MR) damper is a promising semi-active device in areas of vibration iso-

lation for suspension systems and civil structures. The viscosity of MR fluid is controllable

depending on input voltage or current. The MR damper inherently has hysteresis character-

istics in nonlinear friction mechanism, and many efforts have been devoted to the modeling

of nonlinear behavior from static and dynamic points of view [49, 58]. Static or quasi-static

models include no dynamics but can express a nonlinear mapping from velocity to damping

force [13, 40, 58]. It is not easy to identify the hysteresis curve by using a small number of

model parameters from actual road surface excitation data. To model the hysteresis dynamics

explicitly, the Bouc-Wen model and its variations have also been investigated, in which the

input-output relation is expressed by a set of nonlinear differential equations [49, 58]. Ham-

merstein class of nonlinear model was also investigated [48]. These models can simulate the

nonlinear behavior of the MR damper, however it includes too many nonlinear model parame-
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ters to be identified in a real-time manner. Alternative modeling is based on the LuGre friction

model [41] which was originally developed to describe nonlinear friction phenomena [11]. It

has a relatively simple structure and the number of model parameters can also be reduced.

However, it is not adequate for real-time design of an inverse controller. Thus, an MR damper

model based on the LuGre model and an analytical method for adaptive inverse controller

design has been explored [42, 54].

It is desired that the input to MR damper be determined so that the specified damping

force is produced to attenuate vibrations of the suspension system. The necessary damping

force can be calculated to minimize the linear quadratic (LQ) or linear quadratic gaussian

(LQG) performance when the linear dynamic equation is given for the controlled structure. A

clipped-optimal control algorithm has also been applied [15], in which a linear optimal controller

is combined with a force feedback loop designed to adjust the input voltage. Its modification

was also considered in [28, 59]. These approaches did not use any inversion dynamics of MR

damper. By regarding the total system including the MR damper and structure as a nonlinear

controlled system, nonlinear control design methods can also be applied, such as neuro-control

approach [12], sliding mode control [28], adaptive skyhook control [60], gain scheduled control

[38], bilinear H∞ control [46] and others.

The purpose of this research is to provide a new fully adaptive control approach which

can deal with uncertainties in both models of MR damper and suspension mechanism. The

proposed approach consists of two adaptive controllers. The first is an adaptive inverse control

for compensating the nonlinear hysteresis dynamics of the MR damper, which can be realized

by identifying a forward model of the MR damper and then calculating the input voltage to

MR damper to generate a reference damping force. It can also be realized by directly updating

the inverse model of MR damper without identification of the forward model, which works as

an adaptive inverse controller. The other is an adaptive reference control based on an adaptive

skyhook approach [60], which gives the desired damping force to match the seat dynamics to a

specified reference dynamics even in the presence of uncertainties in the suspension structure.

Another purpose of this study is to clarify stability condition for the total system consisting

of the two adaptation algorithms. Validity of the proposed algorithm is also examined in

simulation studies.
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1.3 Adaptive Friction Compensation

It is widely recognized that most mechanical systems involving two or more contact surfaces

with relative motion, would experience to varying degrees some form of frictional effects. The

presence of dynamic friction in such industrial applications as robotic manipulators, hydraulic

systems, precision engineering, and so forth, can lead to significant tracking error, or even in-

stability. Passive friction compensation techniques, such as lubrication, present only a partial

solution to the problem, and should be complemented by an effective control scheme [6]. How-

ever, the task of controller design is greatly complicated by nonlinearities of the surface contact

mechanics, structural and parametric uncertainties.

The demand for an accurate and efficient friction compensation method has led to immense

research efforts from control engineers. Most notably, the works of Armstrong-Hélouvry [4,5], in

which important contributions from tribology, lubrication, and physics literatures are restated

in a control framework, have generated considerable interest in the friction problem. A com-

prehensive overview and survey of friction characteristics and classical compensation methods

can be found in the references [4, 5, 39]. Traditionally, the friction process is characterized by

two regimes: the so-called presliding or micro-slip regime; and the gross sliding regime. Impor-

tant properties of friction that have been observed include presliding hysteresis, stick-slip limit

cycling, non-local memory, non-drifting property, viscosity, the nonlinear Stribeck effect, static

and Coulomb friction. A generic friction model based upon these physical considerations and

experimental data has been proposed [1]. Though the generic friction model is highly accurate

and captures all the important properties of friction, its mathematical complexity renders it an

invalid choice for controller design. However, the generic friction model remains a powerful tool

for analyzing the fidelity and accuracy of other friction models, which are classified by their

static and dynamic characteristics.

Currently, friction compensation schemes are divided into non-model and model-based meth-

ods. Studies have shown that simple PD or PID controllers suffer significant performance degra-

dation due to the nonlinear characteristics of friction, which can lead to hunting behaviors and

instability [5]. Several observer-based nonlinear friction compensation scheme have been pro-

posed [20]. Black-box methods employing neural networks or fuzzy logic for friction compensa-

tion have also been widely researched [25, 26, 44]. In comparison, the potential of model-based

adaptive friction compensation has been demonstrated by several researchers. These efforts in-
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clude the modeling and compensation of Coulomb friction [3,16], a control scheme for dynamic,

linear friction [30], and nonlinear static mapping of the Stribeck effect [31]. These methods pro-

vide powerful arguments for the use of adaptive control in friction compensation, but do not

combine it with a sufficiently complex and accurate dynamic friction model.

To this end, several dynamic friction models have been developed [7,14], the most popular of

which is the LuGre model [11]. Due to its relative simplicity, extensive literature exists regarding

the use of the LuGre friction model in various compensation schemes [10, 32, 43]. However, it

has been pointed out that the LuGre model compromises fidelity in favor of simplicity. Most

notably, the LuGre model does not explicitly account for friction lag characteristics, and its

hysteresis-like behavior fails to exhibit non-drifting and non-local memory properties [53].

Therefore, this thesis develops a robust adaptive compensation scheme using the generalized

Maxwell-slip (GMS) friction model, which has been proposed as a more accurate representation

of the friction phenomenon than the LuGre model [2, 29]. The GMS model consists of parallel

elementary blocks, and separates frictional mechanism into two regimes: sticking and slipping.

This results in a hybrid system, with two separate models. Maxwell-slip functions are utilized

to describe the hysteresis behavior in the sticking regime. For the slipping regime, a state rate

law is employed that includes the Stribeck effect and an explicit term for describing frictional

lag characteristics. The GMS model yields results that correspond to experimental observation,

while maintaining a simpler structure than the generic friction model [1]. Offline identification

algorithms of the GMS model using Nelder-Mead simplex [55] and particle swarm optimization

(PSO) [23, 24, 37] have been presented. However, designing an adaptive controller using the

GMS model can be difficult due to its switching nature and also the nonlinear Stribeck effect.

The main novelty of this study is the proposal of a polynomial Stribeck function that is

readily applicable to the GMS friction model. The validity of using a polynomial approximation

function to describe the Stribeck effect has been investigated in previous works [8,21,35,36,56].

By using the polynomial approximation function, the development of adaptive control laws are

simplified, as friction models can be linearly-parameterized. For the reasons outlined above, the

GMS friction model is chosen for the model-based adaptive controller. Previous investigations

[35,36] suggest that issues of robustness may occur due to unmodeled dynamics, which include

dynamic perturbations, switching uncertainties, and the approximation error of the polynomial

equation. Therefore, this study specifically addresses the issue by introducing a sliding-mode

based smooth adaptive robustifying term into the control law [47]. Stability analysis is presented
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to show the robustness of the algorithm, provided that a bound on the unmodeled terms is

known to exist. The validity of the proposed robust adaptive control algorithm based upon the

GMS friction model is demonstrated by simulation results.

1.4 Outline and Contributions

As stated above, the main purpose of this thesis is the study of iterative and adaptive algorithms

for identification and control of mechanical systems involving parametric uncertainties. This

section gives an overview of the thesis and a summary of the contributions chapter by chapter.

Chapter 2

Chapter 2 gives a short introduction to the various mechanical systems that are dealt with

in this thesis, and the associated control problems. This chapter gives the motivation that

prompted the start of this study, and the overall direction of this thesis.

Chapter 3

Chapter 3 explores the issue of using iterative methods to design efficient controllers for para-

metrically uncertain torsional motor systems. A 2DOF control structure is proposed, and a

direct relationship between controller parameters and physical model parameters is established

by employing the CGT concept. This is utilized to estimate system parameters at each it-

eration, which then allows the analytical calculation of error gradients necessary for iterative

tuning.

Chapter 4

Chapter 4 continues the exploration of parametrically uncertain mechanical systems by consid-

ering the adaptive control design of a vehicle suspension system via a semi-active MR damper.

The control structure consists of a reference feedback controller, responsible for generating an

active damping force that guarantees desirable performances, and an inverse controller, whose

main purpose is the linearization of the MR damper so that almost active damping force can

be achieved. Robust LQ design and adaptive skyhook method are employed to construct the
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reference feedback controller for the case where the suspension system parameters are known

and unknown, respectively. Forward modeling and inverse model via polynomial approximation

is considered for design of the adaptive inverse controller.

Chapter 5

This chapter extends the study to friction compensation schemes. A robust adaptive feedfor-

ward control algorithm is developed from the GMS friction model, and applied to the velocity

and position control of a system with unknown mass. Procedures are outlined for identifying

the GMS model using PSO, and simulations are conducted to verify the validity of the proposed

controller design.

Chapter 6

The final chapter of this thesis gives concluding remarks and some suggestions for future re-

search.
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Chapter 2

Literature Review

Parametric uncertainty in mechanical systems greatly hinders the controller design process.

Whether caused by incomplete system knowledge or varying operational conditions, these un-

certainties prevent the formulation of effective control schemes with guaranteed robustness and

performance. The motivation of this research is the examination of various adaptive and iter-

ative methods to overcome this obstacle. Specifically, it examines three applications in which

parametric uncertainties play an important role: multi-mass torsional motor systems; semi-

active control of suspension systems; and friction compensation of parametrically uncertain

systems.

This chapter introduces the main issues involving parametric uncertainties of mechanical

systems. It presents fundamental knowledge and theories regarding the various systems that

will be dealt with by this thesis, as well as an overview of existing control techniques. As such,

it clarifies the problem settings of Chapter 3 to 5 and provides the motivation behind this

research.

2.1 Multi-mass Torsional Motor Systems

Torsional motor systems form an integral part of many industrial and mechanical processes.

When the system involves multiple masses and connecting shafts, this can lead to compli-

cated controller design. Multi-mass linear systems also require greater knowledge about system

parameters that are not always available or are uncertain.

The control of an uncertain multi-mass torsional motor system may be approached from
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Figure 2.1: N -mass torsional system.

either an adaptive or iterative framework. Adaptive methods are powerful tools for dealing

with parametrically uncertain systems. However, they can involve complex adaptation laws

which may prove cumbersome when dealing with large amounts of parameters.

In contrast, iterative tuning methods exist to determine optimal controller parameters, and

are especially suited to systems that under go repetitive action. Iterative methods often yield

greater assurances regarding the stability of the overall algorithm. As most torsional motor

systems in industrial applications fall into this repetitive category, an iterative tuning approach

is taken by this study for controller design.

This section clarifies the mathematical preliminaries necessary for developing iterative con-

trol schemes of multi-mass torsional motor systems. It begins with a general description of the

multi-mass system, and follows with an overview of the command generator tracking (CGT)

theory that will form the basis of the controller employed in this research. A brief explanation

of existing iterative tuning methods, as well as an analysis of their short-comings, is presented.

Finally, the motivation of this research is discussed.

2.1.1 System Description

A multi-mass torsional motor system is depicted in Figure 2.1, and consists of a number of

inertial masses connected to a motor by a system of shafts or belts. The relevant physical

parameters include the masses or inertial moments of the motor and loads, as well as the spring

and damping constants of each shaft or belt. For the N -mass system depicted in Figure 2.1,
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the mathematical expression is given as follows:

ẋp(t) = Apxp(t) + bpup(t) (2.1)

yp(t) = cT
p xp(t) (2.2)

where:

xp(t) =
[

ω1(t) τ1(t) ω2(t) τ2(t) . . . ωN−1(t) τN−1(t) ωN(t)
]T

Ap =

























−C1/J1 −1/J1 0 0 . . . 0 0 0

1/K1 0 −1/K1 0 . . . 0 0 0

0 1/J2 −C2/J2 −1/J2 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1/KN−1 0 −1/KN−1

0 0 0 0 . . . 0 1/JN −CN/JN

























bp =
[

1/J1 0 . . . 0
]T

cp =
[

1 0 . . . 0
]T

Here, Ji and Ci are the inertial moment and viscous damping constant of each mass, respectively,

and Ki is the spring constant of each shaft. Also, ωi(t) is the velocity of each mass, while τi(t)

is the torque in each shaft. Mass 1 is assumed to be driving motor that will be subjected to an

input torque, while masses 2 to N represent loads. The output of the system is given by the

velocity of the driving motor, and the control objective is the design of an input torque up(t)

such that yp(t) tracks a given trajectory ym(t) to a pre-determined degree of accuracy.

2.1.2 Command Generator Tracking Theory

The control objective can be restated in a manner such that it represents a CGT problem. Let

the reference model of a given system be defined according to:

ẋm(t) = Amxm(t) + bmum(t) (2.3)

ym(t) = cT
mxm(t) (2.4)

Here, um(t) is a reference signal that has a derivative up to the N th degree. The main result of

the CGT principle is summarized in the following theorem.
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Theorem 2.1 (Command Generator Tracking) There exist ideal states and input when perfect

tracking is achieved. These ideal states and input are expressable as a linear combination of

the states of the reference model, the reference input, and all of the derivatives of the input:

[

x∗

p(t)

u∗

p(t)

]

=

[

S11 s12 s13 . . . s1(N+2)

sT
21 s22 s23 . . . s2(N+2)

]





















xm(t)

um(t)

u̇m(t)
...

u
(N)
m (t)





















(2.5)

The perfect tracking problem becomes one of determining solvable expressions for all ele-

ments of the S matrix, where:

S =

[

S11 s12 s13 . . . s1(N+2)

sT
21 s22 s23 . . . s2(N+2)

]

(2.6)

By examining the above theorem, it is noted that the ideal input to the plant, u∗

p(t), is deter-

mined as:

u∗

p(t) = sT
21xm(t) + s22um(t) + s23u̇m(t) + . . . + s2(N+2)u

(N)
m (t) (2.7)

The method for determining the S matrix will be given in this thesis for the case of a 2-mass

torsional motor system.

2.1.3 Iterative Feedback Tuning

In many industrial applications which involve repetitive motions, iterative feedback tuning

(IFT) can be considered as a viable alternative to adaptive control. A brief discussion of the

conventional IFT method is considered [18, 19]. Assume an unknown system whose discrete

transfer function is described by Go(z), and a general 2DOF controller C(z, k). Here, C(z, k) =

{Cr(z, k) Cy(z, k)} are the discrete feedforward and feedback controllers defined by the gain

vector k = [K1, K2, . . . , KM ], where M is the length of k. This configuration is shown in

Figure 2.2. The control objective is the tracking of the desired response ym. The controller is

parameterized at iteration i by the gain vector k(i). In this paper, the performance criterion is

chosen as a quadratic function based upon N measured, discrete-time, error signals given as:
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+

−

um(m) yp(m)up(m)

Go(z)

Cy(z,k)

Cr(z,k)

Figure 2.2: A general 2DOF discrete-time controller.

J(k(i)) =
1

2N

N
∑

m=1

(Ly ỹ(m, k(i)))2 (2.8)

In (2.8), the notation ỹ(m, k(i)) signifies the error signal at sampling instant mTs, with the

controller C(z, k(i)) operating in the closed loop. For the sake of simplicity, the frequency

weighted filter Ly is taken to be 1. The optimal controller parameter k∗ is defined by:

k∗ = arg min
k

J(k) (2.9)

This can be obtained by the following iterative algorithm:

k(i+1) = k(i) − γ(i)R(k(i))−1 ∂J(k(i))

∂k
(2.10)

∂J(k(i))

∂k
=

1

N

N
∑

m=1

(

ỹ(m, k(i))
∂ỹ(m, k(i))

∂k

)

(2.11)

Here, γ(i) is a sequence of positive real numbers that determines the step-size, and R(k(i)) is a

sequence of positive definite matrices. This study defines R(k(i)) as:

R(k(i)) =
1

N

N
∑

m=1

diag





(

∂ỹ(m, k(i))

∂K1

)2

, . . . ,

(

∂ỹ(m, k(i))

∂KM

)2


 (2.12)

Notice that the solution of (2.11) requires the gradient of the output with respect to each

controller parameter in k(i). For the discrete-time, closed-loop system, the gradient is given as:

∂ỹ(m, k(i))

∂k
= To(z, k

(i))

(

∂Cr(z, k
(i))

∂k
um(m) −

∂Cy(z, k
(i))

∂k
yp(m, k(i))

)

(2.13)
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where:

To(z, k
(i)) =

Go(z)

1 + Cy(z, k
(i))Go(z)

To calculate the error gradient in (2.13), it is obvious that the transfer function Go(z) is

necessary. Without this information, conventional IFT requires additional experiments to be

performed in order to obtain a suitable estimate of the gradient, or the use of separate system

identification procedures. Instead, a novel iterative algorithm will be presented by this study

that can simplify the tuning process by eliminating these extra procedures.

2.1.4 Research Motivation

Torsional motor systems form an integral part of many industrial and mechanical processes.

When the system involves multiple masses and connecting shafts, this can lead to compli-

cated controller design. Multi-mass linear systems also require greater knowledge about system

parameters which are not always available or are uncertain.

As outlined in the previous sections, the control of an uncertain multi-mass torsional motor

system may be approached from either an adaptive or iterative framework. Adaptive methods

are powerful tools for dealing with parametrically uncertain systems. However, they can involve

complex adaptation laws which may prove cumbersome when dealing with large amounts of

parameters.

In contrast, iterative tuning methods exist to determine optimal controller parameters and

are especially suited to systems that under go repetitive action. Iterative control typically

signifies greater assurances regarding the stability of the overall algorithm. As most torsional

motor systems in industrial applications fall into this repetitive category, an iterative tuning

approach is taken by this study for controller design.

Most iterative methods are gradient-based and requires precise knowledge about system

parameters. An alternative approach is the iterative feedback tuning (IFT) method, developed

by [18, 19]. This algorithm substitutes a priori information about the system with additional

experiments per iteration to estimate the error gradient. The number of required additional

experiments is related to the size of the controller. Obviously, this is an impractical approach

when dealing with systems that involves high operational cost or is time-sensitive.

Thus, this study formulates a novel iterative tuning algorithm based upon IFT that would

eliminate the need for these additional experiments. It explores the relationship between phys-
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ical model parameters and the gains of a feedforward controller designed by using CGT theory.

This is utilized to construct an estimated system transfer function at each iteration, which

is then used to estimate the error gradient required for iterative tuning. In this manner, the

performance objective can be realized, while allowing the simultaneous identification of system

parameters. The proposed algorithm is, to the author’s knowledge, currently the only existing

method for identifying all the physical parameters of a two-mass motor system in an online

manner while achieving trajectory tracking objectives.

2.2 Vibration and Suspension Systems

The second topic of this thesis continues the investigation of control methods for applications

in vibration and suspension systems involving parametric uncertainties. Vibration suppression

is an important field for structural and mechanical engineers. It is inherently related to the

integrity of the system and other performance criterions. In particular, this thesis will focus on

uncertain vehicle suspension systems installed with a magnetorheological (MR) damper.

Vehicle suspension system is a critical component in ensuring ride comfort, safety, road

damage minimization, and overall vehicle performance. Numerous researches by mechanical

engineers and the automotive industry have led to passive, semi-active, and active control

solutions. Of these, passive control is the simplest but suffers from a narrow range of operational

frequency and is highly susceptible to parametric uncertainties. Active control provides ideal

performance over a wide range of frequency and is able to adapt to changing environmental

conditions. However, it consumes a large amount of power and thus should be avoided. In

recent years, semi-active controls via electrorheological (ER) and MR dampers have emerged

as an efficient and economically feasible alternative to active actuator control of suspension

systems.

In the following section, a basic description of a vehicle suspension system consisting of

the car chassis and wheel assembly is presented. This is followed by a discussion of active

damping controller via conventional and robust linear quadratic (LQ) designs for the case of

known system parameters. This is extended to the uncertain case by application of the adaptive

skyhook method. The issue of semi-active damping using MR damper is then considered, with

an overview of existing MR damper models and control techniques. Finally, the motivation of

this research and its direction is presented.
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Figure 2.3: Suspension system with actuator damping.

2.2.1 System Description

The structure of a suspension system is presented in Figure 2.3. Mathematically, the dynamical

equation is given as:

Msẍs + Cs(ẋs − ẋu) + Ks(xs − xu) = −up (2.14)

Muẍu + Cs(ẋu − ẋs) + Ks(xu − xs) + Kt(xu − xr) = up (2.15)

x = xs − xu (2.16)

where x is the relative displacement between the car chassis and the wheel assembly; Ms is the

sprung mass, which represents the car chassis; Mu is the unsprung mass, which represents the

wheel assembly; Cs and Ks are damping and stiffness of the uncontrolled suspension system,

respectively; Kt serves to model the compressibility of the pneumatic tire. xs and xu are the

displacements of the sprung and unsprung mass, respectively; xr is the road displacement input;

up is the damping force supplied to the system. This can be represented in the state-space form
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as:

ẋp = Axp + bup + eẋr (2.17)

where:

xp =
[

xs − xu xu − xr ẋs ẋu

]T

A =















0 0 1 −1

0 0 0 1

−Ks/Ms 0 −Cs/Ms Cs/Ms

Ks/Mu −Kt/Mu Cs/Mu −Cs/Mu















b =
[

0 0 −1/Ms 1/Mu

]T

e =
[

0 −1 0 0
]T

2.2.2 Active Damping Control

Active damping control via actuators has been extensively explored in the literature. Assuming

a sufficiently large power supply, an arbitrary damping force may be injected as the input signal

up = FA. The question of active damping control thus becomes the design of this input signal.

Traditionally, this is accomplished for the case of known and constant suspension parameters by

using conventional linear quadratic control. However, system parameters are often unavailable

or uncertain. This has inspired the development of adaptive methods such as the skyhook

method in order to generate an appropriate active damping force. These methods are presented

in the following section.

Conventional LQ Control

Linear quadratic (LQ) design of the active damping force is possible when exact information

exists regarding the physical parameters of the suspension system. LQ controller design is a

well-established discipline and numerous papers exist regarding the methodology. This section

presents the preliminary mathematical background of optimal LQ control.

Consider the suspension system given in the previous discussion. Assuming that information

about the suspension system parameters is available, the following performance function is
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defined:

J2 =

∫

∞

0

[

xT
p FA

]

[

Q 0

0T r

][

xp

FA

]

dt

=

∫

∞

0

(

xT
p Qxp + rF 2

A

)

dt (2.18)

where Q = qI, while q > 0 and r > 0. Assuming that the road perturbation ẋr is a random

signal with zero mean, the active control force is given by:

FA = −kT xp (2.19)

k =
Pb

r
(2.20)

and P is the solution of the corresponding Riccati equation:

Q + PA + AT P − rkkT = 0 (2.21)

If all of the states are not available, an observer can be designed from the sensor data, for

instance xs − xu and ẍs, and an output controller is implemented.

Adaptive Skyhook Method

LQ control design is effective only in the case when the physical parameters of the suspension

system are available. However, when the system involves parametric uncertainties, the Riccati

equation cannot be solved. In this case, it becomes necessary to apply adaptive control methods.

While several adaptive schemes have been proposed for active damping control of uncertain

systems, this thesis employs an adaptive reference feedback controller constructed from the

skyhook method. The adaptive reference feedback control can match the chassis dynamical

response to a desired reference dynamics even when the suspension system involves parametric

uncertainty.

Following the adaptive scheme [60], the desired reference dynamics is specified by:

ẍs + 2ζωẋs + ω2(xs − xu) = 0 (2.22)

where ω is the natural frequency, ζ is a damping constant, and s is the Laplace operator. Then,

the control error ξ is given by:

ξ = ẋs + (s + 2ζω)−1ω2(xs − xu) (2.23)
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Define the parameter vector as:

θS =
[

Ms Cs Ks

]T

(2.24)

Now the active damper force is given as:

FA = κξ − θ̂
T

SϕS (2.25)

where κ > 0 is a design constant, and:

θ̂S =
[

M̂s Ĉs K̂s

]T

(2.26)

ϕS =
[

−ω2s(xs−xu)
(s+2ζω)

ẋs − ẋu xs − xu

]T

(2.27)

Here, θ̂S is the parameter estimates of θS given by the following adaptive law:

˙̂
θS = ˙̃

θS = −ΓSϕSξ − σSΓSθ̂S (2.28)

where θ̃S = θ̂S − θS. ΓS is a positive-definite matrix, and σS is a positive design constant.

For practical implementation, ΓS is chosen constant. The main stability result for the adaptive

reference feedback controller is presented in the following theorem.

Theorem 2.2 Assume κ > 0 is satisfied. Then the control law (2.25), along with the adaptive

law (2.28), guarantees that the control error signal ξ and the parameter estimation errors θ̃S

remain bounded and converge to a small neighborhood of the origin.

Proof: Consider a candidate of the Lyapunov function as:

VS =
1

2
Msξ

2 +
1

2
θ̃

T

SΓ−1
S θ̃S (2.29)

Taking the time-derivative of VS and using the control law (2.25):

V̇S = Msξξ̇ + θ̃
T

SΓ−1
S

˙̃
θS

= ξ
(

Msẍs + Ms(s + 2ζω)−1ω2s(xs − xu)
)

+ θ̃
T

SΓ−1
S

˙̃
θS

= ξ
(

−θT
SϕS − FA

)

+ θ̃
T

SΓ−1
S

˙̃
θS

= ξ
(

−κξ + θ̃
T

SϕS

)

+ θ̃
T

SΓ−1
S

˙̃
θS

(2.30)
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Now using the adaptive law (2.28):

V̇S = −κξ2 − σSθ̃
T

S θ̂S

≤ −κξ2 −
σS

2
θ̃

T

S θ̃S +
σS

2
θT

SθS (2.31)

Thus:

V̇S ≤ −cSVS + λS (2.32)

where:

cS = min

{

2κ,
σS

λmax(Γ
−1
S )

}

(2.33)

λS =
σS

2
θT

SθS (2.34)

Since κ and σS are positive design constants, λS/cS > 0 and the following result is obtained:

0 ≤ VS(t) ≤ λS/cS + (VS(0) − λS/cS) e−cSt (2.35)

Thus, the control error ξ and the parameter estimation errors θ̃S are uniformly bounded and

converge to a small neighborhood of the origin. It is also noted that if the σ-modification term

is set to zero, then asymptotic convergence of ξ is guaranteed. �

2.2.3 Semi-active Control via MR Damper

While active control of suspension systems provide ideal performance over a wide range of

frequency, it suffers from the requirement of a sufficiently large power supply. In reality, this

is a severe limitation that must be avoided. In recent years, this has led to increased research

activities in semi-active control via ER or MR dampers.

Semi-active dampers produce variable damping force dependent upon applied voltage or

current. This thesis considers the application of the MR damper for vibration suppression of

vehicle suspension systems. The following section presents an overview of the MR damper

mechanics and existing semi-active control methods.

Magnetorheological Damper

MR damper is a semi-active device in which the viscosity of the fluid is controllable by the

input voltage or current. It can be installed in place of the actuator between the chassis and
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Figure 2.4: Suspension system with MR damper.

the wheel assembly, as shown in Figure 2.4. A cross sectional diagram of a typical MR damper

is shown in Figures 2.5 and 2.6. A variety of approaches have been taken to modeling of the

nonlinear hysteresis behavior of the MR damper.

The stress-strain behavior of the Bingham viscoplastic model [45] is often used to describe

the behavior of MR fluids. In this model, the plastic viscosity is defined as the slope of the

measured shear stress versus shear strain rate data. Thus, for positive values of the shear rate,

γ̇, the total stress is given by:

τ = τy + ηγ̇ (2.36)

where τy is the yield stress induced by the magnetic field and η is the viscosity of the fluid.

Based on this model of the rheological behavior of ER and MR fluids, [50, 51] proposed an

idealized mechanical model, denoted the Bingham model, for the behavior of an ER damper.

The Bingham model consists of a Coulomb friction element placed in parallel with a viscous

damper. In this model, for nonzero piston velocity, ẋ, the force generated by the device is given

as:

FMR = FCsgn(ẋ) + c0ẋ + F0 (2.37)
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Figure 2.5: Cross-sectional diagram of a typical MR damper.
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Figure 2.6: MR damper fluid when subjected to a magnetic field.

where c0 is the damping coefficient and FC is the frictional force, which is related to the fluid

yield stress. An offset F0 is included to account for the nonzero mean observed in the measured

force due to the presence of the accumulator.

One model that is numerically tractable and has been used extensively for modeling hys-

teretic systems is the Bouc-Wen model [57]. The Bouc-Wen model is extremely versatile and

can exhibit a wide variety of hysteretic behavior. A schematic of this model is shown in Figure

2.7. The force in this system is given by:

FMR = c0ẋ + k0 (x − x0) + αz (2.38)

ż = −γ|ẋ||z|n−1z − βẋ|z|n + Aẋ (2.39)

where z is an internal state variable. By adjusting the parameters of the model γ, β and A,

one can control the linearity in the unloading and the smoothness of the transition from the

pre-yield to the post-yield region. In addition, the force F0 due to the accumulator can be

directly incorporated into this model as an initial deflection x0 of the linear spring k0.
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Figure 2.7: Bouc-Wen Model of the MR damper.

The Bouc-Wen model was generalized to describe the MR damper by introducing fluctuating

magnetic fields [49, 58]. The proposed model is shown in Figure 2.8, and the applied force is

given by:

FMR = c0 (ẋ − ẏ) + k0 (x − y) + k1 (x − x0) + αz (2.40)

or equivalently:

FMR = c1ẏ + k1 (x − x0) (2.41)

where the evolutionary variable z is determined by:

ż = −γ|ẋ − ẏ||z|n−1z − β (ẋ − ẏ) |z|n + A (ẋ − ẏ) (2.42)

and:

ẏ =
1

(c0 + c1)
(c0ẋ + k0 (x − y)) (2.43)

To construct a valid model, the functional dependence of the parameters on the applied voltage

or current must be determined. It was discovered in [49] that the steady state yield level appears

to vary linearly with the applied voltage, and have nonzero initial value. The viscous damping
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Figure 2.8: Mechanical model of the MR damper.

constants also vary linearly with the applied voltage. Therefore, the following relationships

were established:

α(u) = αa + αbu (2.44)

c0(u) = c0a + c0bu (2.45)

c1(u) = c1a + c1bu (2.46)

u̇ = −η (u − v) (2.47)

where v is the applied voltage. In this model, a total of 14 parameters is required to describe

the MR damper.

Compared to the Bouc-Wen model [49, 58], the LuGre model has a simpler structure and

smaller number of parameters is needed for expression of its behavior [41]. The LuGre model

may also be modified so that a necessary input voltage can be analytically calculated to produce

the specified command damping force FA [42]. Therefore, this research will employ the LuGre

model to describe the MR damper.
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Clipped-Optimal Control

The MR damper is a semi-active device, and therefore does not have the ability to generate

arbitrary damping force as would an active actuator. The response of the MR damper is

dependent on the relative displacement and velocity at the point of attachment. Clipped-

optimal control was proposed as an algorithm for the control of a semi-active MR damper [15],

in which a linear optimal controller is combined with a force feedback loop designed to adjust

the input voltage. Its modification was also considered in [28, 59].

In the clipped-optimal control scheme, the MR damper will only be turned on by a fixed

positive voltage, or turned off by applying zero voltage. No intermediate voltage is used. If

the magnitude of the force produced by the damper is smaller than the desired force and the

two forces have the same sign, the voltage applied to the damper is increased to the maximum

level so as to increase the force produced by the damper in order to match the desired control

force. Otherwise, the command voltage is set to zero. The algorithm for selecting the voltage

signal is mathematically stated as [15]:

v = VmaxH ((FA − FMR)FMR) (2.48)

where Vmax is the maximum permissible voltage and FA is the desired control force produced

by an active control scheme, such as the LQ controller or the skyhook method described in

the previous section. H(·) is the Heaviside step function. A graphical representation of the

algorithm is given in Figure 2.9.

Robust LQ Control with Dissipativity

In the active damping control section, conventional LQ design was presented as a viable method

for achieving vibration suppression. However, the semi-active constraint of the MR damper

signifies that FMR 6= FA and therefore it is necessary to define the following disturbance term:

δMR = FMR − FA (2.49)

which is assumed to be bounded by:

‖δMR‖2 ≤ ∆MR (2.50)

Restating (2.17) in terms of FA and δMR:
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Figure 2.9: Clipped-optimal control algorithm.

ẋp = Axp + bFA + bδMR + eẋr (2.51)

The presence of this disturbance term implies that conventional LQ control may not yield a

satisfactory control signal. It thus becomes necessary to restate the control objective in an H∞

framework. The robust control objective with dissipativity becomes:

J∞ = sup
δMR∈L2

‖z‖2

‖δMR‖2
< γ (2.52)

where:

z =

[

(

Q − r−1ssT
)

1

2 0

r−
1

2 sT r
1

2

][

xp

FA

]

(2.53)

Here, Q = qI and s =
[

0T s1 s2

]T

, while q > 0 and r > 0. Therefore:

‖z‖2 =

∫

∞

0

[

xT
p FA

]

[

Q s

sT r

][

xp

FA

]

dt

=

∫

∞

0

(

xT
p Qxp + 2xT

p sFA + rF 2
A

)

dt (2.54)
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Assuming that the road perturbation ẋr is a random signal with zero mean, the active control

force considering the dissipativity is given by:

FA = −kT xp (2.55)

k =
Pb + s

r
(2.56)

and P is the solution of the corresponding Riccati equation:

Q + PA + AT P − Pb
(

1 − γ−2
)

bT P = 0 (2.57)

If all of the states are not available, an observer can be designed from the sensor data, for

instance xs − xu and ẍs, and an output controller is implemented.

2.2.4 Research Motivation

The motivation of this research was inspired by the inherent uncertainties involved in mechanical

suspension systems. Vibration problem is a great concern in structural mechanics and the

automotive industries, where systems are commonly subjected to high level of excitation from

external sources. The introduction of a damping force, via passive, semi-active, or active

methods, is necessary to mitigate these disturbances and ensure structural integrity.

This portion of the thesis focuses primarily on vehicle suspension systems. The essential

role of the suspension mechanism is to ensure ride comfort, vehicle safety, road damage mini-

mization, and overall vehicle performance. Conventional passive suspensions have been shown

to provide adequate damping only in certain frequency ranges and no online feedback action

is utilized. The effectiveness of passive damping solutions is also offset by varying operational

parameters, such as the mass of the chassis. Active suspension systems via actuators can cir-

cumvent these limitations by providing an arbitrary damping force which can adapt to system

variations and guarantee improved performance over a wide range of frequency. Thus, it has

been extensively studied and various schemes have been proposed. However, active suspensions

suffer from a requirement of a large power supply.

This led to a shift in focus towards semi-active damping design, which is capable of providing

significant improvements over passive suspension systems while consuming much less power than

active control schemes. The switch to semi-active suspension has been further accelerated by the

growing availability and economic feasibility of electrorheological (ER) and magnetorheological

(MR) dampers.
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The MR damper has been successfully employed in a wide range of vibration suspension

systems, such as bridges, helicopter rotors, suspension seats, and seismic reduction. In par-

ticular, it has found wide-spread interest in the automotive industry as a method of vehicle

suspension. Many control strategies have been developed for the MR damper, such as skyhook,

groundhook, hybrid control, H∞ control, and model-following sliding mode control.

However, practical applications involving the MR damper is considerably limited by its

hysteretic and nonlinear characteristics. As outlined in the previous section, modeling of the

MR damper is an important component of controller design. A wide range of model exists to

describe the MR damper, including the Bouc-Wen hysteresis model, neural network or fuzzy

models, nonlinear blackbox model, NARX model, and viscoelastic-plastic model. Recently, a

linearized model based upon the LuGre friction formulation has been proposed and investigated.

This has allowed the design of an inverse controller so that the MR damper outputs almost

active damping force.

This research expands upon the idea of an inverse controller that linearizes the MR damper,

thus allowing almost active damping force to be applied to the suspension system. It deals with

the inherent hysteretic and nonlinear behaviors of the MR damper, while considering parametric

uncertainties. The inverse control is also combined with a reference controller using robust LQ

design or the skyhook method to provide a total suspension system. Robustness and stability

conditions will be considered in the presence of uncertainties in both the vehicle suspension

and MR damper systems.

2.3 Friction Compensation

The final topic explored in this thesis is the control of mechanical systems acting under the

influence of friction. It is widely recognized that most mechanical systems involving two or

more contact surfaces with relative motion would experience, to varying degrees, some form of

frictional effects. The presence of dynamic friction in such industrial applications as robotic

manipulators, hydraulic systems, precision engineering, and disc drives, can lead to significant

control error, or even instability. A summarized list of friction-induced errors in mechanical

systems is given in Table 2.1.

It is a common approach to apply passive compensation techniques, such as lubrication

and hardware design, to mitigate frictional effects. However, this is only a partial solution
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Table 2.1: Friction-induced errors in mechanical systems.

Task Error Main Friction Contributor

Regulator Steady-state error or hunting Stiction

Tracking with velocity reversal Stand-still, lost motion Stiction

Tracking at low velocities Stick-slip oscillation Stribeck effect, stiction

Tracking at high velocities Large tracking error Viscosity

to the problem, and should be complemented by an effective control scheme. The necessity

for applying control theories to friction compensation results from the nonlinearity of surface

contact mechanics, structural and parametric uncertainties. This is further complicated by

environmental and operational factors which can greatly impact frictional behaviors.

As a result, the study of friction compensation continues to garner immense research interest

from mechanical and control engineers alike. Numerous researches exist in the field of tribology

that characterize the important effects of friction. These properties include static and dynamic

behaviors, such as hysteresis, the Stribeck effect, frictional lag, and stick-slip mechanics. Various

models have been proposed throughout the years that attempt to combine the greatest amount

of accuracy in describing these frictional effects while maintaining a mathematical simplicity

that facilitates design and control purposes.

In this section, the main frictional properties are presented, especially those with the greatest

significance to positional and velocity tracking. A brief survey of popular friction models is then

presented, along with a comparison of the benefits and costs of each. A detailed description of

the newly proposed generalized Maxwell-slip (GMS) friction model is also given that will form

the mathematical preliminaries of this research. Finally, the motivation of this research and its

direction is discussed.

2.3.1 Friction Characteristics

Tribology refers to the science and technology of interacting surfaces in relative motion, with

particular emphasis on friction, wear and lubrication. Due to the pervasive presence of friction

in all mechanical systems where two or more surfaces are in contact, the study of friction has

inspired immense research efforts amongst mechanical and control engineers over the years.
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ẋ (t)

Ff (t)

Figure 2.10: Asperity-view of friction mechanism.

This has led to a deep understanding of the complex mechanisms behind the friction process,

which manifest themselves as static or dynamic properties, such as hysteresis, the Stribeck

effect, frictional lag, and stick-slip mechanics.

In general, the friction mechanism is divided into two regimes: micro-slip or sticking regime;

and gross sliding or slipping regime. An asperity-based description, in which the contact sur-

faces are viewed as a number of asperity or bristles, is often used to describe this phenomenon

and is shown in Figure 2.10. The micro-slip regime refers to the effects of friction observed

as two contact surfaces begin to experience relative displacement from a stationary position.

The individual asperities undergo elastic deformation that results in a proportional, spring-like

force opposing the direction of motion. At a certain static level, the asperity force reaches its

maximum break-away value, and each asperity enters the gross sliding regime, which is dom-

inated by the Stribeck effect, Coulomb friction, and frictional lag. The switching mechanism

between two regimes is referred to as stiction, and is a main cause of tracking error in mechan-

ical systems. This asperity-based view of the friction process has resulted in the identification

of several key properties.

Stribeck Effect

Immediately after transition into the gross sliding regime, the friction force experiences an

initial, negatively sloped decline from its maximum static friction value to a certain Coulomb

friction level. This phenomenon is commonly referred to as the Stribeck effect, where the
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Figure 2.11: (a) Friction force for sinusoidal velocity at 2.5Hz (dotted) and 7.5Hz (solid); (b) frictional

lag in 2 quadrant for sinusoidal velocity at 2.5Hz (dotted), 7.5Hz (solid), and 10Hz (dashed); (c) non-

local memory in sticking regime; and (d) non-drifting property.

amount and rate of decline is dependent on the materials comprising the contact surfaces and

the presence of any lubrication. Upon reaching the Coulomb friction level, the friction behavior

is governed by a constant Coulomb force and a certain velocity-dependent viscous term. The

Stribeck effect is a nonlinear, static function usually described by the following mathematical

expression:

s(ẋ) = FC + (FS − FC) e
−

“

|ẋ|
VS

”σS

(2.58)

where FC is the Coulomb friction parameter, FS represents static friction, VS is the Stribeck

velocity, and σS is a shaping factor. The Stribeck effect is shown in Figures 2.11(a) and 2.11(b).
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Frictional Lag

Another important property is frictional lag, which refers to the rate dependency of the friction

force in the gross sliding regime. Friction lag is a dynamic behavior that results in a larger

friction force for increasing velocities than for decreasing velocities, and becomes more apparent

for large acceleration and deceleration. This is illustrated in Figure 2.11(b).

Presliding Hysteresis

In the presliding regime, the mechanics of friction is dominated by the spring-action of the

asperity. The interplay between stiction and elastic deformation of each asperity results in a

hysteresis behavior. The friction force is a function of the displacement at one time instant,

as well as the history of displacement and friction force. Key properties of this hysteretic

spring motion are non-local memory and non-drifting properities, which are shown in Figures

2.11(c) and 2.11(d). The hysteresis behavior continues until each asperity reaches its maximum

attainable static friction level, after which it moves into the gross sliding regime.

2.3.2 Friction Models

Combining knowledge gleaned from tribological studies about the nature of friction, applied

mathematicians and control engineers have developed several models to describe the friction

process. This includes both static and dynamic models that varies greatly in terms of complexity

and accuracy. This section presents some of the most popular friction models that are relevant

from the perspective of control engineers involved with designing mechanical systems.

Static Friction Models

Traditionally, friction was viewed as a rate-independent, static function of velocity and displace-

ment. These static friction models represent the classical framework for friction compensation

and analysis. The simplest of these is the Coulomb friction model, named after Charles Au-

gustin de Coulomb, which is independent of contact surface area and is expressible as:

Ff = FCsgn(ẋ) (2.59)

where FC is the Coulomb friction parameter, which is proportional to the normal load. The

magnitude of FC varies depending on the material of the contact surface and the presence of
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lubrication, as determined by FC = µFN , where µ is the material-dependent friction coefficient

and FN is the normal load. Note that the Coulomb friction does not specify a friction force for

zero velocity, which may vary on any value in the interval between −FC and FC . The Coulomb

friction model has been extensively used for friction compensation as a result of its relative

simplicity.

Another important component of a static friction model is viscous friction, a velocity-

dependent force that is caused by the viscosity of lubricants. Generally it is stated as:

Ff = FV ẋ (2.60)

An alternative expression that provides better fit to experimental data is:

Ff = FV |ẋ|
δV sgn(ẋ) (2.61)

where δV depends on the geometry of the application.

As mentioned in the previous section, stiction force and the Stribeck effect are also significant

properties that may be combined with Coulomb and viscous friction to form a unified, static

friction model. Generally, this is given as:

Ff = FV ẋ + sgn(ẋ)

(

FC + (FS − FC) e
−

“

|ẋ|
VS

”σS

)

= FV ẋ + sgn(ẋ)s(ẋ) (2.62)

where s(ẋ) is the Stribeck curve as defined previously. This static model can be obtained

by measuring friction force for motion with constant velocity and is sometimes asymmetrical.

Various modifications exist of this static friction model, such as the Karnopp and Armstrong

models, which are included as references in this thesis.

Dynamic Friction Models

While static friction models have been widely employed for control purposes, they do not

conform to certain observable friction behaviors. In particular, they fail to include the hysteresis

behavior during presliding motion. In order to describe these properties, the development of

dynamic friction model becomes necessary. This is driven both by intellectual curiosity and

increasingly stringent demand on precision and accuracy of mechanical systems. The complexity

and accuracy of each model varies, as shown in Table 2.2.
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Table 2.2: Friction model comparison table.

Property Static Dahl Bliman- Lugre Leuven GMS

Sorine

Stribeck ◦ - - ◦ ◦ ◦

Presliding - ◦ ◦ ◦ ◦ ◦

Break-away - - ◦ ◦ ◦ ◦

Friction lag - - - ◦ ◦ ◦

Non-drifting - - - - ◦ ◦

Transition - - - - - ◦

Dynamic friction models were originally developed to describe the hysteresis behavior during

presliding motion. The Dahl friction model was proposed as a simple mathematical description

of the friction process based upon the stress-strain curve in classical solid mechanics. It models

the stress-strain curve by the following differential equation:

dFf

dx
= σ

(

1 −
Ff

FC

sgn(ẋ)

)α

(2.63)

where x is the relative displacement, σ is the stiffness coefficient, and α is a shaping factor

of the stress-strain curve. The magnitude of the friction force will never exceed the Coulomb

friction value if its initial condition satisfies |Ff(0)| < FC . The Dahl model may also be restated

in the time domain as:

dFf

dx
=

dFf

dt

dx

dt
= σẋ −

Ff

FC

|ẋ| (2.64)

where α = 1. It is a generalization of ordinary Coulomb friction, and does not account for the

Stribeck effect or stiction.

Similar to the Dahl model, the Bliman-Sorine friction models are rate-independent descrip-

tions, in which the magnitude of friction is a function of sgn(ẋ) and the space variable z defined

by:

z =

∫ t

t0

|v(τ)|dτ (2.65)
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Bliman-Sorine models vary in complexity, and are expressed as linear systems in the space

variable z as:

dxz

dz
= Axz + bsgn(ẋ) (2.66)

Ff = cT xz (2.67)

The first-order Bliman-Sorine model reduces to the Dahl model and does not describe stiction or

the Stribeck effect. To overcome this obstacle, a second-order model is usually employed, which

is essentially a parallel connection of a fast and slow Dahl model. The fast model has higher

steady-state friction level. The force from the slow model is subtracted from the fast model,

resulting in stiction. However, it was observed that the second-order model only approximates

the Stribeck effect and does not conform to observed friction characteristics.

A generic friction model based upon physical considerations and experimental data has been

proposed [1]. It minutely examines all mechanisms involved in the friction process, resulting in

a complex mathematical description. The complexity of the generic friction model renders it

impractical for use in controller design, and further discussion is omitted. However, the generic

friction model remains a powerful tool for analyzing the fidelity and accuracy of other friction

models.

Other dynamical friction models can be found in the literature. However, of particular

interest are the LuGre and GMS friction models. These models represent a suitable combination

of accuracy and simplicity, and a detailed description will be given in the following section.

LuGre Friction Model

The LuGre friction model was proposed by [11] and effectively combines static and Dahl friction

models. As such, it is capable of describing presliding hysteresis and the Stribeck effect. The

two regimes are described by a single set of equations that results in a smooth transition

between presliding and sliding actions. The friction force is expressed in terms of an internal

state variable z as:

dz

dt
= ẋ − σ0

|ẋ|

s(ẋ)
z (2.68)

Ff = σ0z + σ1ż + σV ẋ (2.69)

The LuGre model is based on the asperity concept, and employs a nonlinear differential equation

to implicitly describe frictional lag in the sliding regime, hysteresis in the presliding regime,
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and a rate-dependent varying break-away force. It is determined by the stiffness parameter σ0,

the micro-viscous friction coefficient σ1, and gross viscosity coefficent σV , in addition to the

parameters associated with the Stribeck effect.

It is noted that the steady-state solution of the LuGre friction model reduces to the static

friction model:

zss =
1

σ0
s(ẋ)sgn(ẋ) (2.70)

Ff,ss = σ0zss + σvẋ = s(ẋ)sgn(ẋ) + σV ẋ (2.71)

Likewise, when σ0 = 0, σ1 = 0, and FS = FC , the LuGre model essentially reduces to the Dahl

model.

The mathematical simplicity of the LuGre moel has resulted in its popularity for control

purposes, in particular identification, dissipativity, and adaptive control considerations. Its

main advantage is an integrated friction model without the need of a switching function. How-

ever, this comes at a cost to accuracy. Specifically, it is not capable of describing non-local

behavior in the presliding regime and does not explicitly account for frictional lag.

GMS Friction Model

The generalized Maxwell-slip (GMS) friction model is an extension of the Leuven model. The

Leuven model introduces the concept of an explicit, non-local hysteresis function and is struc-

turally similar to the LuGre model. It also employs an internal state variable z which serves

to model the average deflection of the asperity junctions. However, the Leuven model is con-

siderably more complex than the LuGre model, and as such is subjected to implementation

problems.

Attempts to improve the Leuven model eventually led the recent formulation of the GMS

friction model. The GMS model maintains a simpler structure than the generic model while

providing more accuracy than the LuGre model. However it has a switching structure which

can result in a complicated controller design process.

The GMS model is an asperity-based description of the friction phenomenon. It consists of

parallel connections of elementary blocks, shown in Figure 2.12 and expressed by:

Ff =
N
∑

i=1

Fi (2.72)
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Figure 2.12: Parallel connections of N elementary blocks in the GMS model.

Here, N represents the number of elementary blocks employed by the GMS model, and viscous

friction is neglected. Each elementary block is governed by a set of two dynamical equations,

depending on whether it is in a sticking or slipping state. The sticking state contains a Maxwell-

slip equation to describe hysteresis and other presliding characteristcs. The slipping state

equation results in frictional lag and the Stribeck effect. Mathematically, this is expressed as:

• If the elementary block is sticking, the differential equation is given by:

Ḟi = kiẋ (2.73)

and the elementary block remains sticking until |Fi| > αis(ẋ) = Wi.

• If the elementary block is slipping, the differential equation is given by:

Ḟi = C

(

αisgn(ẋ) −
Fi

s(ẋ)

)

(2.74)

and the elementary block remains slipping until the velocity goes through zero.

Here, C is a constant term introduced by the GMS model to directly account for frictional lag

dynamics, and
∑

αi = 1. Notice the hybrid structure of the GMS model; two separate models

are used to represent the sticking and slipping states. From a control perspective, any controller

constructed using the GMS model would have to account for this switching structure.
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Several offline methods have been proposed to identify the parameters associated with the

GMS model. Experimental identification procedures using the Nelder-Mead Simplex algorithm

has been presented [55]. Another method is the use of particle swarm optimization (PSO),

which is a global minimization technique designed for nonlinear problems that avoids being

trapped by local minimums [23,24]. It is therefore especially suited to the identification of the

GMS friction model, which has been explored previously [37].

Considering only the slipping state of friction under constant velocity, the steady-state

equation for each elementary block reduces to:

Fi,ss = αisgn(ẋ)s(ẋ) (2.75)

Defining δi,D = Fi − Fi,ss, the frictional force equation in the slipping regime becomes:

Fi = Fi,ss + δi,D

= αisgn(ẋ)s(ẋ) + δi,D (2.76)

Analysis of the above equation reveals that the friction force is comprised of two terms: a static

term corresponding to the Stribeck effect; and a dynamic term δi,D that acts as a perturbation.

2.3.3 Model-Based Friction Compensation Schemes

Friction compensation schemes are commonly categorized as model and non-model based algo-

rithms. This section presents an overview of existing model-based approaches that have been

explored in the literature. Most model-based friction compensation schemes have a feedforward

structure with an appropriate friction model included in the forward loop of the controller. The

role of the friction model is to generate an estimated friction force that would effectively cancel

out frictional effects and result in linearization of the closed loop transfer function.

A key component of model-based compensation schemes is the model itself. The choice

of friction model is a trade-off between complexity and accuracy. Some of the more popular

friction models for control purposes have been outlined in the previous section. Another impor-

tant consideration for control engineers is the amount of available knowledge regarding system

parameters. As friction is a complicated process whose internal mechanisms are difficult or

impossible to discern, uncertainty about frictional parameters is a daunting obstacle. This has

inspired many research into friction compensation from an adaptive or robust framework.
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As stated in previous sections, static friction models and nonlinear mappings are mathe-

matically simple and have thus been employed extensively for friction compensation. Notable

works include the modeling and compensation of Coulomb friction by [3, 16]. A more precise

approach was taken by [31], which considers nonlinear static mapping of the Stribeck effect.

These methods provide powerful arguments for the use of adaptive control in friction com-

pensation, but do not combine it with a sufficiently complex and accurate dynamic friction

model.

To this end, several dynamic friction models have been developed [7,14], the most popular of

which is the LuGre model [11]. Due to its relative simplicity, extensive literature exists regarding

the use of the LuGre friction model in various compensation schemes [10, 32, 43]. However, it

has been pointed out that the LuGre model compromises fidelity in favor of simplicity. Most

notably, the LuGre model does not explicitly account for friction lag characteristics, and its

hysteresis-like behavior fails to exhibit non-drifting and non-local memory properties [53]. As

of the beginning of this research, no effective compensation method has been proposed for the

Leuven or GMS friction models.

2.3.4 Non-Model-Based Friction Compensation Schemes

A different approach is non-model-based friction compensation. As previously stated, knowl-

edge about the structure and parameters of any model-based approach is subjected to a high

degree of uncertainty. This is augmented by variations in environmental and operational con-

ditions. Non-model-based friction compensation attempts to circumvent these obstacles by

taking a data- or signal-based control tactic. A common method employed by engineers is the

conventional PD or PID controller. The main benefits of the PD/PID controller is its simplicity

and intuitive structure. In this case, the control signal is formulated using only the error signal

and its respective derivatives. However, studies have shown that simple PD or PID controllers

suffer significant performance degradation due to the nonlinear characteristics of friction, which

can lead to hunting behaviors and instability [5]. This can be improved with the use of a stiff

PD controller. An alternative is observer-based nonlinear friction compensation scheme [20].

Black-box methods employing neural networks or fuzzy logic for friction compensation have

also been widely researched [25, 26, 44].

Though non-model-based friction compensation schemes may provide suitable system per-
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formance, they do not yield additional knowledge about the friction mechanism. Moreover,

changes in physical parameters or operating conditions would necessitate a redesign of the con-

troller. In the interest of specifically addressing this uncertainty issue in mechanical systems,

this research thus takes a model-based approach to friction compensation.

2.3.5 Research Motivation

It has been widely established that friction is present in most mechanical systems. However,

frictional parameters are highly uncertain and may vary greatly with changes in environmental

conditions, such as temperature, wear, material, geometry, and lubrication. This falls directly

within the scope of this thesis, which aims to study the application of adaptive and learning

control algorithms to uncertain mechanical systems.

The main difficulty in dealing with friction compensation is finding the right balance be-

tween modeling precision and complexity. The previous sections have established the major

characteristics of friction that a good model should accurately describe and presented some of

the more popular models that have been explored in the literature. Particular emphasis was

placed in examining the structure of the LuGre model and the GMS friction model. Though

the LuGre model has drawn considerable research interest in recent years due to its relatively

simple structure that utilizes an integrated equation to describe frictional dynamics, it is noted

that it does so at the price of fidelity to observed data. After careful consideration of this fact,

this study focuses on developing a friction compensation scheme using the GMS friction model.

The GMS friction model provides a highly accurate description of the friction process. It

is an asperity-based model with two separate sets of equations to govern the dynamics in the

presliding and sliding regimes. Using a parallel connection of elementary blocks, the Maxwell-

slip hysteresis functions capture the relevant presliding behaviors of friction that play a major

role in systems involving high precision and multiple zero-velocity crossing. It also introduces

a term in the sliding regime dynamics to directly account for frictional lag.

From a control perspective, the GMS model is an attractive candidate for friction com-

pensation. At the time of this research, no effective algorithms have yet been proposed based

upon the GMS friction model. However, the main difficulty that must be addressed when

utilizing the GMS model is its switching structure and the nonlinearity of the Stribeck effect.

The motivation of this research is the development of a comprehensive friction compensation



2.3. Friction Compensation 41

scheme based upon the GMS friction model which simultaneously addresses these problems

while considering uncertainties and other robustness issues involving system parameters.
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Chapter 3

Multi-Mass Torsional Motor System

This chapter begins the investigation of adaptive and iterative control methods for parametri-

cally uncertain mechanical systems by considering the velocity control of a linear multi-mass

torsional motor system. Torsional motor systems are widely employed in industrial and robotic

processes, and are often tasked with performing repetitive movements along a given trajec-

tory. However, system parameters are seldom accurately known or are subjected to changes

depending on operating conditions. It is therefore desirable that an iterative tuning method be

established that can produce optimal controllers despite these uncertainties, while simultane-

ously providing as much information about the system as possible.

In the following chapter, an introduction to the velocity control problem of parametrically

uncertain torsional motors is given. The mathematical description of a general two-mass motor

system will be presented. The proposed 2-degree-of-freedom (2DOF) controller is discussed,

which includes a reference model in the feedforward path. The command generator tracking

(CGT) theory is then used to establish a clear relationship between the optimal gains of the

feedforward controller and the physical model parameters of the two-mass torsional motor sys-

tem. This relationship is critical to the proposal of a novel algorithm for iterative feedback

tuning (IFT) of a completely unknown two-mass torsional motor system. By defining the feed-

forward controller gains in terms of physical model parameter estimates, the error gradient

necessary for iterative tuning becomes analytically calculable, thus eliminating the require-

ments of additional experiments per iteration as demanded by conventional IFT methods. The

effectiveness of the proposed method in achieving trajectory tracking and identification of all

physical parameters is demonstrated via experimentation.
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3.1 Introduction

Torsional motor systems are an integral part of many industrial and mechanical processes,

where they are often employed for repetitive tasks along fixed trajectories. The design of an

efficient velocity controller generally requires precise knowledge about system structures and

parameters. However, this information is seldom available to control engineers in actual appli-

cations, or varies depending on operating conditions. Lacking accurate parametric knowledge

about the system can greatly complicate the controller design process. It is therefore necessary

for control engineers to develop an effective and easily implementable method to achieve con-

trol performance objectives of an uncertain system, while at the same time yielding as much

information about the system as possible.

A popular method for controller design of a mechanical system is iterative feedback tun-

ing (IFT) [18, 19]. The IFT algorithm involves the minimization of a performance function

by a gradient-based tuning method. However, the tuning process is greatly hindered when

system knowledge is lacking or incomplete. Without an accurate mathematical description of

the system, it is not possible to analytically calculate the gradient of the output error with

respect to the controller parameters. In such a situation, IFT requires determining the system

transfer function using separate identification techniques or performing additional experiments

for gradient estimation. Prohibitive experimental conditions, such as cost, stability issues, and

closed-loop identifiability, mean that these are not always viable solutions.

This study addresses the iterative tuning problem of an unknown two-mass motor system.

It has been demonstrated that a direct relationship exists between the physical parameters of

a two-mass system and the linear gains of a feedforward controller [27] that was constructed

using the CGT theory [9, 22]. The feedforward controller includes a suitable reference model

that generates signals necessary for establishing this relationship [17, 27]. This concept was

further developed by investigating the feasibility of using IFT to determine the feedforward

and feedback controller parameters as the error is minimized [33, 34]. However, a system

identification method was required to determine the system transfer function, which is necessary

for iterative tuning.

Therefore, one of the purposes of this study is to propose a novel iterative tuning algorithm

for the feedforward and feedback controllers. The structure of the feedforward and feedback

controllers is chosen to establish a clear relationship between physical model parameters of the
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two-mass motor system and the feedforward controller based on CGT theory [9]. From this

relationship, the controller can be tuned directly by estimates of the physical model param-

eters to minimize tracking error. In addition, an estimated system transfer function can be

analytically obtained from the estimated model parameters at each iteration. This estimated

transfer function allows for the direct calculation of the output error gradients with respect to

the feedforward and feedback controller parameters that are required to conduct IFT.

The proposed algorithm is an efficient integration of IFT [18, 19] and the feedforward con-

troller designed using CGT [27,33,34]. In utilizing system information provided by the feedfor-

ward controller to construct an estimated system transfer function, the additional experiments

for gradient estimation, required by ordinary IFT in the case of an unknown system, become

unnecessary. This reduction in the number of experiments performed per iteration is beneficial

in terms of efficiency and cost. Likewise, a separate system identification process is no longer

required. The proposed tuning algorithm is self-sufficient in minimizing the output error, as the

system transfer function can be estimated directly from the relationship with the feedforward

controller parameters. It also has the additional benefit of identifying the physical parameters

of the system as the output error is improved.

The resulting, unified algorithm provides a powerful tool for achieving trajectory tracking

of a completely unknown two-mass system. The validity and efficiency of the method is demon-

strated by velocity control experiments of a two-mass motor system. It is noted that no prior

knowledge of system parameters or transfer function is required to implement this algorithm.

The proposed algorithm is, to the author’s knowledge, currently the only existing method for

identifying all the physical parameters of a two-mass motor system in an online manner while

achieving trajectory tracking objectives.

3.2 System Description

A two-mass, torsional motor system is shown in Figure 3.1. The experimental set-up for a

two-mass motor system, as depicted in Figure 3.2, is considered. The motor input is given by a

continuous-time, torque command input up(t). J1 and J2 are the inertial moment of the motor

and load respectively. C1 and C2 are the viscous damping constants of the motor and load

respectively. K1 denotes the shaft time constant and τ1(t) is the shaft torque. The motor and

load speed are denoted as ω1(t) and ω2(t). The speed of the motor ω1(t) is required to track the
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ω2ω1

τ1

J 1 , C1 J 2 , C2

K 1

up

Figure 3.1: Two-mass torsional motor system.

output of a reference model with time constant Td. The two-mass system can be represented

by the following continuous-time state-space model:

ẋp(t) = Apxp(t) + bpup(t) (3.1)

yp(t) = cT
p xp(t) (3.2)

where:

xp(t) =
[

ω1(t) τ1(t) ω2(t)
]T

Ap =









−C1/J1 −1/J1 0

1/K1 0 −1/K1

0 1/J2 −C2/J2









bp =
[

1/J1 0 0
]T

cp =
[

1 0 0
]T

The transfer function Go(s) from up(t) to yp(t) is expressed as:

yp(t) = Go(s)up(t) (3.3)

Go(s) =
No(s)

Do(s)
(3.4)

where:

No(s) =
1

J1

(

s2 +
C2

J2
s +

1

K1J2

)

Do(s) = s3 +

(

C1

J1
+

C2

J2

)

s2 +

(

1

K1J1
+

1

K1J2
+

C1C2

J1J2

)

s +
C1 + C2

K1J1J2
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1

J2s + C2

1

J1s + C1

1

K1s

−

+

+

up

ω1 = yp

τ1

ω2

−

Figure 3.2: Block diagram of two-mass motor system.

It is assumed that all physical model parameters in the above transfer function are unknown

and should be determined.

3.3 Proposed Controller Structure

3.3.1 Feedforward and Feedback Controllers

The proposed reference model of the controlled system has the following state-space represen-

tation:

ẋm(t) = Amxm(t) + bmuM(t) (3.5)

ym(t) = cT
mxm(t) (3.6)

where:

xm(t) =
[

xm1
(t) xm2

(t) xm3
(t)
]T

Am =









0 1 0

0 0 1

0 0 0









bm =
[

0 0 1
]T

cm =
[

1 0 0
]T
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+

+
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ỹ
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xI

Figure 3.3: CGT-based 2DOF controller.

The reference model and an input generator with a desired time constant Td are incorporated

directly into the feedforward path of a simple adaptive controller (SAC) [17, 22], as shown in

Figure 3.3. This formulates the CGT-based controller. Unlike the SAC theory, this study

proposes the inclusion of the reference model and input generator so that a clear relationship

between the feedforward controller and the physical model estimates can be established using

the CGT theory. The command input is formally defined as:

up(t) = kT r(t) (3.7)

where:

r(t) =
[

ỹ(t) xI(t) xm1
(t) xm2

(t) xm3
(t) uM(t)

]T

k =
[

KP KI Kx1
Kx2

Kx3
KuM

]T

ỹ(t) = ym(t) − yp(t)
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Here, k is a vector of controller parameters. The 2DOF controller in Figure 3.3 can also be

expressed in the transfer function form, where Cr(s, k) and Cy(s, k) are the feedforward and

feedback controllers respectively, as:

up(t) = Cr(s, k)um(t) − Cy(s, k)yp(t) (3.8)

where:

Cr(s, k) =
1

Dcr(s)

(

KuM
s4 + Kx3

s3 + Kx2
s2 + (Kx1

+ KP ) s + KI

)

(3.9)

Cy(s, k) =
KP s + KI

s
(3.10)

Dcr(s) = s(Tds + 1)3 (3.11)

The following results are obtained using the CGT theory [9,22]. Assuming that the controlled

system satisfies the almost strictly positive real (ASPR) property and the reference signal um(t)

satisfy the PE condition, the ideal states x∗

p(t) and the ideal input u∗

p(t), that is, the states

and input when the output error ỹ(t) between the controlled system and the reference model

is forced to zero, is expressable as:

x∗

p(t) = S11xm(t) + s12uM(t) (3.12)

u∗

p(t) = sT
21xm(t) + s22uM(t) (3.13)

From (3.1), (3.2), (3.5), and (3.6), along with the above equations, it follows that:

ẋ∗

p(t) = S11ẋm(t) + s12u̇M(t)

= S11Amxm(t) + S11bmuM(t)

= Apx
∗

p(t) + bpu
∗

p(t)

=
(

ApS11 + bps
T
21

)

xm(t) + (Aps12 + bps22)uM(t) (3.14)

In the first line of (3.14), u̇M(t) → 0 when the input is a step signal. Since u∗

p(t) signifies that

ym(t) = yp(t), we also have:

ym(t) = cT
p x∗

p(t)

= cT
p S11xm(t) + cT

p s12uM(t)

= cT
mxm(t) (3.15)
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It follows from (3.14) and (3.15) that:

S11Am = ApS11 + bps
T
21

S11bm = Aps12 + bps22

cT
m = cT

p S11, 0 = cT
p s12















(3.16)

Note from (3.13) that s21 and s22 are the linear coefficients of the reference model states and

input that produce the ideal input signal. They correspond to the ideal gains of the proposed

feedforward controller when the error is forced to zero. Solving (3.16) yields the following

relationship between the controller gains defined in (3.7) and the ideal controller gains in (3.13):

Property 3.1 If the control input can force the output error ỹ to zero, the controller gains

converge to:

lim
ỹ→0

Kx1
= C1 + C2

lim
ỹ→0

Kx2
= J1 + J2 − K1C

2
2

lim
ỹ→0

Kx3
= −2K1C2J2 + K2

1C
3
2

lim
ỹ→0

KuM
= −K1J

2
2 − K3

1C
4
2 + 3K2

1C
2
2J2



































(3.17)

Proof: The proposed feedforward controller is derived by noting that u∗

p(t) corresponds to

the ideal control input when the error is minimized. This input is expressable as a linear

combination of the reference model input and states, given in (3.13). The proposed feedforward

controller structure is designed to include the reference model and input generator, so that as

the gains approach s21 and s22, the ideal control input signal will be realized. Let S11, s12, s21

and s22 in (3.13) be denoted as:

S11 =









w1,1 · · · w1,3

...
. . .

...

w3,1 · · · w3,3









, s12 =









x1

...

x3









sT
21 =

[

y1 · · · y3

]

, s22 = z (3.18)

Then, solving for the components of s21 and s22 will yield the ideal feedforward gains. Using

the CGT theory, the relationships in (3.16) are determined. Given the controlled system and

reference state space model in (3.1), (3.2), (3.5) and (3.6), it is now possible to solve for S11,

s12, s21 and s22 by rewriting (3.16) as:

ApS11 + bps
T
21 = S11Am :
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−C1/J1 −1/J1 0

1/K1 0 −1/K1

0 1/J2 −C2/J2

















w1,1 · · · w1,3

...
. . .

...

w3,1 · · · w3,3









+









1/J1

0

0

















y1

...

y3









T

=









w1,1 · · · w1,3

...
. . .

...

w3,1 · · · w3,3

















0 1 0

0 0 1

0 0 0









(3.19)

Aps12 + bps22 = S11bm :








−C1/J1 −1/J1 0

1/K1 0 −1/K1

0 1/J2 −C2/J2

















x1

...

x3









+









1/J1

0

0









z =









w1,1 · · · w1,3

...
. . .

...

w3,1 · · · w3,3

















0

0

1









(3.20)

cT
p S11 = cT

m :

[

1 0 0
]









w1,1 · · · w1,3

...
. . .

...

w3,1 · · · w3,3









=









1

0

0









T

(3.21)

cT
p s12 = 0 :

[

1 0 0
]









x1

...

x3









= 0 (3.22)

Solving these equations will yield S11, s12, s21 and s22. The calculation is straightforward,

with the solutions s21 and s22 given by:

s21 :

y1 = C1 + C2

y2 = J1 + J2 − K1C
2
2

y3 = −2K1C2J2 + K2
1C

3
2

s22 :

z = −K1J
2
2 − K3

1C
4
2 + 3K2

1C
2
2J2

Comparing (3.7) and (3.13), the solution of s21 and s22 leads directly to Property 3.1. �
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This relationship between the feedforward controller gains and the true physical model

parameters leads to the definition of the ideal controller gains as:

k∗ =
[

k∗

PI
T

k∗

x
T K∗

uM

]T

(3.23)

where:

k∗

PI =
[

K∗

P K∗

I

]T

k∗

x =
[

K∗

x1
K∗

x2
K∗

x3

]T

Here, K∗

P and K∗

I are the optimal but previously unknown PI gains, while k∗

x and K∗

uM
are

defined by (3.17).

3.3.2 Discrete-Time Implementation

In practical implementation, the control action is discrete-time. Note that for a discrete-time

system with sampling interval Ts, the proposed controller can be modified by replacing the

Laplace s-operator with the following δ-operator:

δ =
(1 − z−1)

Tsz−1
(3.24)

Here, z−1 is the backward shift operator with respect to sampling time Ts, given as z−1 = e−Tss.

To preserve the ASPR property of the controlled system when it is discretized with a zero-order

holder, the following phase-lead compensator may be included in the controlled system [27]:

u′

p(m) =
2Tsδ + 1

Tsδ + 1
up(m) (3.25)

This is shown in Figure 3.4(a). The equivalent transfer function of the controlled system,

which consists of the two-mass motor and a phase-lead compensator, when discretized with the

δ-operator, is expressed as:

Geq(δ) =

(

2Tsδ + 1

Tsδ + 1

)

Go(δ) (3.26)

Here, Go(δ) refers to the discretized transfer function of the two-mass motor system given

in (3.4). The complete closed-loop system is illustrated in Figure 3.4(b), where C(δ, k) =

{Cr(δ, k) Cy(δ, k)} are the feedforward and feedback controllers in (3.9) and (3.10), when

discretized with the δ-operator.
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up(m) yp(m)2-Mass 

System

Phase Lead 

Compensator

u
′

p
(m)

ZOH ZOH

Controlled System, Geq(δ)

(a)

+
−

r(m) yp(m)

up(m)

Geq(δ)

Cy(δ,k)

Cr(δ,k)

(b)

Figure 3.4: (a) Controlled system with phase lead compensator, and (b) closed-loop system, dis-

cretized with the δ-operator.

3.4 Proposed Tuning Algorithm

3.4.1 Conventional Iterative Feedback Tuning

The proposed iterative tuning scheme makes use of Property 3.1, which establishes a direct re-

lationship between the feedforward controller and the physical model parameters of the system.

This information is essential for eliminating the gradient experiments required by conventional

IFT [18,19].

A brief discussion of the conventional IFT method is considered. Assume an unknown sys-

tem whose transfer function is described by (3.26), and the controller in (3.8) when discretized

by the δ-operator. The control objective is the tracking of the desired response ym(m). Without

using Property 3.1, the controller is parameterized at iteration i by the gain vector k(i). In this

paper, the performance criterion is chosen as a quadratic function based upon N measured,

discrete-time, error signals given as:

J(k(i)) =
1

2N

N
∑

m=1

(Ly ỹ(m, k(i)))2 (3.27)
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In (3.27), the notation ỹ(m, k(i)) signifies the error signal at sampling instant mTs, with the

controller C(δ, k(i)) operating in the closed loop. For the sake of simplicity, the frequency

weighted filter Ly is taken to be 1. The optimal controller parameter k∗ is defined by:

k∗ = arg min
k

J(k) (3.28)

This can be obtained by the following iterative algorithm:

k(i+1) = k(i) − γ(i)R(k(i))−1∂J(k(i))

∂k
(3.29)

∂J(k(i))

∂k
=

1

N

N
∑

m=1

(

ỹ(m, k(i))
∂ỹ(m, k(i))

∂k

)

(3.30)

Here, γ(i) is a sequence of positive real numbers that determines the step-size, and R(k(i)) is a

sequence of positive definite matrices. This study defines R(k(i)) as:

R(k(i)) =
1

N

N
∑

m=1

diag





(

∂ỹ(m, k(i))

∂KP

)2

, . . . ,

(

∂ỹ(m, k(i))

∂KuM

)2


 (3.31)

Notice that the solution of (3.30) requires the gradient of the output with respect to each

controller parameter in k(i). For the discrete-time, closed-loop system shown in Fig. 3.4, the

gradient is given as:

∂ỹ(m, k(i))

∂k
= To(δ, k

(i))

(

∂Cr(δ, k
(i))

∂k
um(m) −

∂Cy(δ, k
(i))

∂k
yp(m, k(i))

)

(3.32)

where:

To(δ, k
(i)) =

Geq(δ)

1 + Cy(δ, k
(i))Geq(δ)

To calculate the error gradient in (3.32), it is obvious that the transfer function Geq(δ) is

necessary. Without this information, conventional IFT requires additional experiments to be

performed in order to obtain a suitable estimate of the gradient, or the use of separate system

identification procedures. Instead, the novel iterative algorithm presented in this study can

simplify the tuning process by eliminating these extra procedures.
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3.4.2 Novel Iterative Tuning Algorithm

This study proposes using the derived relationship between feedforward controller parameters

and the physical parameters in Property 3.1 to achieve the iterative feedback tuning of the

unknown two-mass controlled system. First, the physical model parameter estimates, which

also includes the PI gains, are defined as:

ρ =
[

KP KI Ĵ1 Ĵ2 Ĉ1 Ĉ2 K̂1

]T

(3.33)

The feedforward controller gains are then restated in terms of ρ as:

Kx1
= Ĉ1 + Ĉ2

Kx2
= Ĵ1 + Ĵ2 − K̂1Ĉ

2
2

Kx3
= −2K̂1Ĉ2Ĵ2 + K̂2

1 Ĉ
3
2

KuM
= −K̂1Ĵ

2
2 − K̂3

1 Ĉ
4
2 + 3K̂2

1 Ĉ
2
2 Ĵ2



























(3.34)

The feedforward and feedback controllers in (3.9) and (3.10) can also be expressed as C(s, ρ) =

{Cr(s, ρ) Cy(s, ρ)}, using (3.34). This allows for direct tuning of the controller by physical

model parameter estimates to achieve output error minimization. A key component of this

proposed algorithm is that the physical model estimates can be used to construct an estimated

system transfer function for iterative tuning.

Property 3.2 The convergence of physical model estimates ρ to the ideal parameters ρ∗ as

the output error ỹ(m) approaches zero is guaranteed by using Property 3.1 and (3.34), where

ρ∗ =
[

K∗

P K∗

I J1 J2 C1 C2 K1

]T

(3.35)

Proof: The ideal input is defined as:

u∗

p(t) = k∗T
r(t) (3.36)

Therefore, the actual input and controller parameters can be expressed as:

up(t) = kT r(t) (3.37)

k = k∗ + ∆k (3.38)

where ∆k is a small deviation from k∗. Similarly, the estimated physical parameters can also

be expressed approximately as:

ρ = ρ∗ + ∆ρ (3.39)
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The relationship between ∆k and ∆ρ can be determined as:

∆k = M∆ρ (3.40)

M =

























1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 1 0

0 0 1 1 0 m4,6 m4,7

0 0 0 m5,4 0 m5,6 m5,7

0 0 0 m6,4 0 m6,6 m6,7

























(3.41)

where:

m4,6 = −2K1C2

m4,7 = −C2

m5,4 = −2K1C2

m5,6 = 3K2
1C

2
2 − 2K1J2

m5,7 = 2K1C
3
2 − 2C2J2

m6,4 = 3K2
1C

2
2 − 2K1J2

m6,6 = 6K2
1C2J2 − 4K3

1C
3
2

m6,7 = 6K1C
2
2J2 − 3K2

1C
4
2 − J2

2

Substituting (3.37) into (3.1):

ẋp(t) = Apxp(t) + bpup(t)

= Apxp(t) + bpk
T r(t)

= Apxp(t) + bpKP ỹ(t) + bpKIxI(t) + bpkx
T xm(t) + bpKuM

uM(t) (3.42)

Define the state error as:

x̃(t) = xp(t) − x∗

p(t) (3.43)

Then, the state error dynamics becomes:

˙̃x(t) = ẋp(t) − ẋ∗

p(t)

= Apxp(t) + bpKP ỹ(t) + bpKIxI(t) + bpkx

T xm(t) + bpKuM
uM(t) − Apx

∗

p(t)

−bpK
∗

I xI(t) − bpk
∗

x
T
xm(t) − bpK

∗

uM
uM(t)

=
(

Ap + bpK
∗

P cT
p

)

x̃(t) + bp∆kT r(t) (3.44)
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Substituting (3.40) into (3.44) gives:

˙̃x(t) =
(

Ap + bpK
∗

P cT
p

)

x̃(t) + bp [M∆ρ]T r(t) (3.45)

Therefore, the output error can be expressed as:

ỹ(t) = yp(t) − ym(t)

= cT
p (xp(t) − x∗

p(t)) = cT
p x̃(t)

= W (s)
[

∆ρT MT r(t)
]

(3.46)

where

W (s) = cT
p (sI − (Ap + bpK

∗

P cT
p ))−1bp

It can easily be shown that the two-mass system is output stablizable, and therefore W (s) is

SPR. Therefore, assuming that MT r(t) satisfies the PE condition, it is guaranteed that ρ → ρ∗

as the output error is minimized. �

The novel tuning process is summarized as:

(Step 1) Start the iterative procedure with an arbitrary stabilizing controller C(δ, ρ(1)), pa-

rameterized by ρ according to (3.33) and (3.34). Set iteration number i = 1.

(Step 2) With the controller C(δ, ρ(i)) in the loop, perform one experiment with the reference

signal um(m). Substitute the physical model estimates ρ(i) into (3.26) to obtain the

estimated transfer function Ĝ
(i)
eq (δ).

(Step 3) Tuning directly by the physical parameter estimates, the performance criterion is

redefined as:

J(ρ(i)) =
1

2N

N
∑

m=1

(Ly ỹ(m, ρ(i)))2 (3.47)

and the iterative algorithm becomes:

ρ(i+1) = ρ(i) − γ(i)R(ρ(i))−1∂J(ρ(i))

∂ρ
(3.48)

where:

∂J(ρ(i))

∂ρ
=

1

N

N
∑

m=1

(

ỹ(m, ρ(i))
∂ỹ(m, ρ(i))

∂ρ

)

(3.49)

R(ρ(i)) =
1

N

N
∑

m=1

diag

(

(

∂ỹ(m, ρ(i))

∂KP

)2

, . . . ,

(

∂ỹ(m, ρ(i))

∂K̂1

)2
)

(3.50)
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The gradient is then estimated by:

∂ ˆ̃y(m, ρ(i))

∂ρ
= T̂o(δ, ρ

(i))

(

∂Cr(δ, ρ
(i))

∂ρ
um(m) −

∂Cy(δ, ρ
(i))

∂ρ
yp(m, ρ(i))

)

(3.51)

T̂o(δ, ρ
(i)) =

Ĝ
(i)
eq (δ)

1 + Cy(δ, ρ(i))Ĝ
(i)
eq (δ)

(3.52)

Notice that the gradient experiments of IFT are no longer required because Ĝ
(i)
eq (δ) is

available. The exact mathematical expressions for ∂Cr(δ, ρ
(i))/∂ρ and ∂Cy(δ, ρ

(i))/∂ρ

can be derived as:

∂Cr(δ, ρ)

∂KP
=

δ

Dcr(δ)

∂Cr(δ, ρ)

∂KI
=

1

Dcr(δ)

∂Cr(δ, ρ)

∂Ĵ1

=
δ2

Dcr(δ)

∂Cr(δ, ρ)

∂Ĵ2

=

(

3Ĉ2
2K̂

2
1 − 2Ĵ2K̂1

)

δ4 − 2Ĉ2K̂1δ
3 + δ2

Dcr(δ)

∂Cr(δ, ρ)

∂Ĉ1

=
δ

Dcr(δ)

∂Cr(δ, ρ)

∂Ĉ2

≈
6Ĵ2Ĉ2K̂

2
1δ

4 − 2Ĵ2K̂1δ
3 − 2Ĉ2K̂1δ

2 + δ

Dcr(δ)

∂Cr(δ, ρ)

∂K̂1

≈
−Ĵ2

2 δ4 − 2Ĵ2Ĉ2δ
3 − Ĉ2

2δ
2

Dcr(δ)

Similarly, the controller gradient of the feedback controller Cy(δ, ρ) in (3.10) discretized

by the δ-operator is also derived as:

∂Cy(δ, ρ)

∂K̂P

= 1

∂Cy(δ, ρ)

∂K̂I

=
1

δ

∂Cy(δ, ρ)

∂Ĵ1

= . . . =
∂Cy(δ, ρ)

∂K̂1

= 0

Thus, all the gradients can be calculated analytically.

(Step 4) With the controller C(δ, ρ(i+1)) in the loop, repeat from step (2) with i = i + 1 until

a suitable performance level is reached.
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ỹ(m)→ 0

Objective reached

C
(

δ, ρ(i)
)

Ĝ
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Figure 3.5: Novel iterative tuning algorithm.

Thus, the proposed iterative tuning scheme combines the CGT theory and the IFT algorithm

to greatly simplify the tuning process. The flow chart of the proposed tuning algorithm based

upon feedforward estimation is shown in Figure 3.5. In tuning the feedforward controller

parameters directly by physical model estimates, the transfer function Ĝ
(i)
eq (δ) of the system and

the controller gradients are available. Therefore, the additional gradient experiments of IFT

are no longer required, providing an advantageous decrease in experimental time and cost. It is

also no longer necessary to perform closed-loop identification at every iteration. The proposed

algorithm depends only on input-output data to achieve trajectory tracking of a completely

unknown system, thus preserving the essence of IFT. From a system identification viewpoint,
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Figure 3.6: Experimental set-up (Torsional Control System Model 205a, manufactured by ECP).

it also provides an additional benefit of determining all the physical parameters and transfer

function of the system. Clearly, the efficiency of the algorithm increases as Ĝo(δ) → Go(δ).

3.5 Experimental Results

The proposed scheme is verified by using the two-mass motor system in Figure 3.6. The

experimental apparatus is a Torsional Control System Model 205a, manufactured by Educa-

tional Control Products (ECP), and configured with two inertial masses. Other experimental

components include the Interface PCI-6201 Encoder Board, PCI-3521 Digital/Analog Board,

PCI-6103 Timer Board, and a computer unit. The experiment is implemented in discrete-time,

with sampling interval Ts = 0.01 [s]. The time constant of the reference model is chosen as

Td = 0.03 [s].

The true plant parameters are determined using off-line, open-loop identification for com-
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Table 3.1: Physical parameters estimated by feedforward identification (Inertia Ratio 1:1).

Parameters Initial Converged Open Loop

KP 0 0.15924 −

KI 0 0.01125 −

Ĵ1 (kg-m2) 5.00 × 10−3 2.43 × 10−3 2.43 ± 0.00 × 10−3

Ĉ1 (N-m/rad/s) 4.00 × 10−3 1.35 × 10−3 1.26 ± 0.27 × 10−3

Ĵ2 (kg-m2) 4.00 × 10−3 1.92 × 10−3 1.89 ± 0.06 × 10−3

Ĉ2 (N-m/rad/s) 3.00 × 10−3 1.02 × 10−3 1.14 ± 0.29 × 10−3

K̂1 (rad/N-m) 1.00 × 100 8.11 × 10−1 8.07 ± 0.09 × 10−1

parison with the parameters identified by the proposed on-line iterative tuning algorithm. The

prediction error method (PEM) is employed to identify the transfer function and physical pa-

rameters of the system. Ten identification trials were conducted by exciting the two-mass motor

system with varying input signals of persistently exciting condition. The input voltage signals

consist of random gaussian noise and steady-state components. An example of the input volt-

age and the measured output velocity used for identification are shown in Figure 3.7. Two

experimental configurations are used, with inertia ratio of 1:1 and 1:3. The average values

and standard deviations of the physical model parameters determined by open-loop identifi-

cation are given in Tables 3.1 and 3.2. The bode diagram for the nominal transfer functions

constructed from the average values are shown in Figure 3.8. This average transfer function

is considered as the nominal system in this experiment and will be used to compare with the

physical parameter identification results.

The effectiveness of the proposed iterative algorithm in tuning the controller (3.8) for high

performance tracking is illustrated for a two-mass system with inertia ratio of 1:1 and 1:3.

The experiment time per iteration is 150 seconds. At each iteration, an estimated transfer

function model of the system and the estimated gradients are constructed from the updated

physical model parameters. Thus the controller parameter tuning as well as the physical model

parameter identification can be executed simultaneously.

For an inertia ratio of 1:1, the estimated parameters converge to the true physical param-

eters after 40 iterations. The initial and converged values are compared to the true open-loop
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Table 3.2: Physical parameters estimated by feedforward identification (Inertia Ratio 1:3).

Parameters Initial Converged Open Loop

KP 0.02 0.15764 −

KI 0.002 0.00272 −

Ĵ1 (kg-m2) 5.00 × 10−3 2.43 × 10−3 2.43 ± 0.00 × 10−3

Ĉ1 (N-m/rad/s) 4.00 × 10−3 1.25 × 10−3 1.26 ± 0.27 × 10−3

Ĵ2 (kg-m2) 1.60 × 10−2 7.46 × 10−3 7.44 ± 0.09 × 10−3

Ĉ2 (N-m/rad/s) 3.00 × 10−3 1.05 × 10−3 1.14 ± 0.29 × 10−3

K̂1 (rad/N-m) 1.00 × 100 8.08 × 10−1 8.07 ± 0.09 × 10−1

identified system in Table 3.1, and Figures 3.9 and 3.10. The converged controller parameters

are shown in Figures 3.11 and 3.12. It is evident from the performance index J in Figure

3.13 that the iterative tuning algorithm is successful in minimizing tracking error. To analyze

this, Figure 3.14 shows the output velocity and tracking error of the initial controller. It is

clear that the tracking performance is unacceptable. This is compared to Figure 3.15, which

corresponds to the output velocity and tracking of the final controller obtained by the proposed

iterative tuning algorithm. The performance has been significantly improved. It is also noted

that the proposed algorithm requires 40 experimental trials over 40 iterations. In conventional

IFT, three experiments are required per iteration. The first two experiments are necessary

for gradient estimation, while the last experiment determines the output error. Therefore, the

conventional IFT approach would have required 120 experimental trials over 40 iterations.

The validity of the proposed algorithm is further demonstrated by the second configuration

with inertia ratio 1:3. This exemplifies sudden variations in inertial coefficients. For this case,

the estimated parameters converge to the true physical parameters after 70 iterations. The

initial and converged values are compared to the true open-loop identified system in Table

3.2, and Figures 3.16 and 3.17. The converged controller parameters are shown in Figures

3.18 and 3.19. It is evident from the performance index J in Figure 3.20 that the iterative

tuning algorithm is successful in minimizing tracking error. To analyze this, Figure 3.21 shows

the output velocity and tracking error of the initial controller. It is clear that the tracking

performance is unacceptable. This is compared to Figure 3.22, which corresponds to the output
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velocity and tracking of the final controller obtained by the proposed iterative tuning algorithm.

The performance has been significantly improved.
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Figure 3.7: Input voltage and measured output velocity for open-loop identification.
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Figure 3.9: Bode diagram comparison of results for inertia ratio 1:1.
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Figure 3.10: Discrete-time pole-zero plot of results for inertia ratio 1:1.
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Figure 3.11: Convergence of physical parameter estimates for inertia ratio 1:1.
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Figure 3.14: Velocity output and tracking error of initial iteration for inertia ratio 1:1.
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Figure 3.15: Velocity output and input after 40 iterations for inertia ratio 1:1.
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Figure 3.16: Bode diagram comparison of results for inertia ratio 1:3.
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Figure 3.17: Discrete-time pole-zero plot of results for inertia ratio 1:3.
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Figure 3.18: Convergence of physical parameter estimates for inertia ratio 1:3.



3.5. Experimental Results 71

10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

Iteration

K
P

10 20 30 40 50 60 70
2

2.2

2.4

2.6

2.8
x 10

−3

Iteration

K
I

Figure 3.19: Convergence of PI gains for inertia ratio 1:3.

10 20 30 40 50 60 70
10

−2

10
−1

10
0

10
1

10
2

Iteration

P
er
fo
rm
an
ce
 I
n
d
ex

Figure 3.20: Performance index J for inertia ratio 1:3.



72 Chapter 3 Multi-Mass Torsional Motor System

0 50 100 150
−100

−50

0

50

100

Time (s)

V
el
o
ci
ty
 (
ra
d
/s
)

 

 

0 50 100 150
−50

0

50

Time (s)

T
ra
ck
in
g
 E
rr
o
r 
(r
ad
/s
)

Initial Trajectory

DesiredTrajectory

(a)

(b)

Figure 3.21: Velocity output and tracking error of initial iteration for inertia ratio 1:3.
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Figure 3.22: Velocity output and input after 70 iterations for inertia ratio 1:3.
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3.6 Summary

A new iterative tuning algorithm has been proposed based on the CGT theory, allowing for the

simultaneous achievement of trajectory tracking and identification of all physical paramters in a

two-mass motor system. The resulting tuning procedure is simple and self-sufficient, requiring

no prior knowledge about the system or extra gradient experiments needed by conventional

IFT. The merits of the proposed iterative tuning algorithm are summarized as:

• By including the physical model parameters in the tuning parameters, the tracking per-

formance and the physical model identification can be attained simultaneously. This

eliminates the need to perform separate system identification experiments prior to con-

troller tuning by IFT.

• The additional experiments required by conventional IFT for gradient estimation of an

unknown system are no longer necessary. The number of experiments per iteration is

greatly reduced.

• The two-mass model parameters can be estimated accurately by using the established

relationship between the feedforward controller parameters and the physical model pa-

rameters as the output error is minimized.

Experimentation results show the effectiveness of the algorithm in achieving both high

performance tracking characteristics and estimating all plant parameters.
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Chapter 4

Adaptive Damper Control of

Suspension System

This chapter is concerned with the development of an adaptive semi-active control scheme for

suspension systems installed with magnetorheological (MR) dampers that involve parametric

uncertainties. It considers two separate cases: when the MR damper is unknown but other

suspension parameters are available; and when both the MR damper and suspension parameters

are unknown or time varying. The proposed approach consists of two control algorithms. The

first is an adaptive inverse control for compensating the nonlinear hysteresis dynamics of the

MR damper, which can be realized by identifying a forward model of MR damper and then

calculating the input voltage to generate a reference damping force. It can also be realized

directly by updating an inverse model of MR damper without identification of the forward

model, which then works as an adaptive inverse controller. The other is a robust linear quadratic

(LQ) controller or an adaptive reference feedback controller which gives the desired damping

force to match the seat dynamics to a specified reference dynamics even in the presence of

uncertainties in the suspension structure. The stability of the total system is discussed and

its stability condition is explored. Validity of the proposed algorithm is also examined by

experimentation and simulation studies.
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4.1 Introduction

Magnetorheological (MR) damper is a promising semi-active device in areas of vibration iso-

lation for suspension systems and civil structures. The viscosity of MR fluid is controllable

depending on input voltage or current. It inherently has hysteresis characteristics in nonlinear

friction mechanism, and many efforts have been devoted to the modeling of nonlinear behavior

from static and dynamic points of view [49, 58]. Static or quasi-static models include no dy-

namics but can express a nonlinear mapping from velocity to damping force [13,40,58]. It is not

easy to identify the hysteresis curve by using a small number of model parameters from actual

road suface excitation data. To model the hysteresis dynamics explicitly, the Bouc-Wen model

and its variations have also been investigated, in which the input-output relation is expressed

by a set of nonlinear differential equations [49, 58]. Hammerstein class of nonlinear model was

also investigated [48]. These models can simulate the nonlinear behavior of the MR damper,

however it includes too many nonlinear model parameters to be identified in a real-time manner.

Alternative modeling is based on the LuGre friction model [41] which was originally developed

to describe nonlinear friction phenomena [11]. It has a rather simple structure and the number

of model parameters can also be reduced. However, it is not adequate for real-time design of an

inverse controller. Thus, an MR damper model based on the LuGre model and an analytical

method for adaptive inverse controller design has been explored [42, 54].

It is desired that the input to MR damper be determined so that the specified damping

force is produced to attenuate vibrations of the suspension system. The necessary damping

force can be calculated to minimize the linear quadratic (LQ) or linear quadratic gaussian

(LQG) performance when the linear dynamic equation is given for the controlled structure. A

clipped-optimal control algorithm has also been applied [15], in which a linear optimal controller

is combined with a force feedback loop designed to adjust the input voltage. Its modification

was also considered in [28, 59]. These approaches did not use any inversion dynamics of MR

damper. By regarding the total system including the MR damper and structure as a nonlinear

controlled system, nonlinear control design methods can also be applied, such as neuro-control

approach [12], sliding mode control [28], adaptive skyhook control [60], gain scheduled control

[38], bilinear H∞ control [46] and others.

The purpose of this research is to provide a new fully adaptive control approach which

can deal with uncertainties in both models of MR damper and suspension mechanism. The
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proposed approach consists of two adaptive controllers. The first is an adaptive inverse control

for compensating the nonlinear hysteresis dynamics of the MR damper, which can be realized

by identifying a forward model of the MR damper and then calculating the input voltage to

MR damper to generate a reference damping force. It can also be realized by directly updating

the inverse model of MR damper without identification of the forward model, which works as

an adaptive inverse controller. The other is an adaptive reference control based on an adaptive

skyhook approach [60], which gives the desired damping force to match the seat dynamics to a

specified reference dynamics even in the presence of uncertainties in the suspension structure.

Another purpose of this chapter is to clarify stability condition for the total system consisting

of the two adaptation algorithms. Validity of the proposed algorithm is also examined in

simulation studies.

4.2 Suspension System

Figure 4.1 illustrates a simple suspension system installed with the MR damper between the

car chassis and the wheel assembly. The dynamic equation of this system is expressed by:

Msẍs + Cs(ẋs − ẋu) + Ks(xs − xu) = −FMR(ẋ, v) (4.1)

Muẍu + Cs(ẋu − ẋs) + Ks(xu − xs) + Kt(xu − xr) = FMR(ẋ, v) (4.2)

x = xs − xu (4.3)

where x is the relative displacement between the car chassis and the wheel assembly; Ms is the

sprung mass, which represents the car chassis; Mu is the unsprung mass, which represents the

wheel assembly; Cs and Ks are damping and stiffness of the uncontrolled suspension system,

respectively; Kt serves to model the compressibility of the pneumatic tyre. xs and xu are the

displacements of the sprung and unsprung mass, respectively; xr is the road displacement input;

FMR(ẋ, v) is the damping force supplied by the MR damper, subjected to an applied voltage

v. This can be represented in the state-space form as:

ẋp = Axp + bFMR + eẋr (4.4)
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Figure 4.1: Suspension system with MR damper.

where:

xp =
[

xs − xu xu − xr ẋs ẋu

]T

A =















0 0 1 −1

0 0 0 1

−Ks/Ms 0 −Cs/Ms Cs/Ms

Ks/Mu −Kt/Mu Cs/Mu −Cs/Mu















b =
[

0 0 −1/Ms 1/Mu

]T

e =
[

0 −1 0 0
]T

4.3 Magnetorheological Damper

MR damper is a semi-active device in which the viscosity of the fluid is controllable by the

input voltage or current. A variety of approaches have been taken to model the nonlinear
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hysteresis behavior of the MR damper. Compared to the Bouc-Wen model [49, 58], the LuGre

model has a simpler structure and smaller number of parameters is needed for expression of its

behavior [41]. The LuGre model may also be modified so that a necessary input voltage can

be analytically calculated to produce the specified command damping force FA [42].

The damping force FMR is expressed by:

FMR = σaz + σ0zv + σ1ż + σ2ẋ + σbẋv, (4.5)

ż = ẋ − a0|ẋ|z (4.6)

where z [m] is an internal state variable [m], x is the relative displacement between the car

chassis and the wheel assembly, σ0 [N/(m·V)] is the stiffness of z influenced by the applied

voltage, v [V], σ1 [N·s/m] is the damping coefficient of z, σ2 [N·s/m] is the viscous damping

coefficient, σa [N/m] is the stiffness of z, σb [N·s/(m·V)] is the viscous damping coefficient

influenced by v, and a0 [V/N] is a constant value. The model was validated by experimental

data and the results are presented in the appendix of this chapter [54].

Substituting (4.6) into (4.5) gives the input-output relation as:

FMR = σaz + σ0zv − σ1a0|ẋ|z + (σ1 + σ2) ẋ + σbẋv

= θT
f ϕf + θT

g ϕgv (4.7)

where:

θf =
[

σa σ1a0 σ1 + σ2

]T

(4.8)

ϕf =
[

z −|ẋ|z ẋ
]T

(4.9)

θg =
[

σ0 σb

]T

(4.10)

ϕg =
[

z ẋ
]T

(4.11)

4.4 LQ-Based Adaptive Semi-Active Control Algorithm

This section considers the adaptive semi-active damper control problem when the parameters

of the MR damper is not available, but the suspension is assumed to be known a priori.

Figures 4.2 and 4.3 show schematic diagrams of the proposed adaptive semi-active control for

the suspension system. The adaptive algorithm consists of two controllers: the first is a robust
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Figure 4.2: Proposed adaptive semi-active control scheme based on forward modeling.

LQ controller with full-state feedback that generates a command damping force FA, when the

parameters of the suspension system are known; the second is an adaptive inverse controller

which can give required input voltage v to MR damper so that the damping force FMR is

equal to FA. If the adaptive inverse controller is designed so that the linearization from FA

to FMR can be attained, that is, FA = FMR, almost active control performance is achieved.

For construction of the inverse controller, the forward model of MR damper is identified and

then the input voltage to MR damper is calculated as shown in Figure 4.2. Figure 4.3 gives an

alternative scheme in which the inverse controller is directly updated without identification of

MR damper.

4.4.1 Robust LQ Control with Dissipativity

This section uses robust LQ control to design the active damping force FA. The semi-active

constraint of the MR damper signifies that FMR 6= FA and therefore it is necessary to define

the following disturbance term:

δMR = FMR − FA (4.12)

which is assumed to be bounded by:

‖δMR‖2 ≤ ∆MR (4.13)
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Figure 4.3: Proposed adaptive semi-active control scheme based on inverse modeling.

Restating (4.4) in terms of FA and δMR:

ẋp = Axp + bFA + bδMR + eẋr (4.14)

The robust control objective becomes:

J∞ = sup
δMR∈L2

‖z‖2

‖δMR‖2

< γ (4.15)

where:

z =

[

(

Q − r−1ssT
)

1

2 0

r−
1

2 sT r
1

2

][

xp

FA

]

(4.16)

Here, Q = qI and s =
[

0T s1 s2

]T

, while q > 0 and r > 0. Therefore:

‖z‖2 =

∫

∞

0

[

xT
p FA

]

[

Q s

sT r

][

xp

FA

]

dt

=

∫

∞

0

(

xT
p Qxp + 2xT

p sFA + rF 2
A

)

dt (4.17)

Assuming that the road perturbation ẋr is a random signal with zero mean, the active control

force considering the disspativity is given by:

FA = −kT xp (4.18)

k =
Pb + s

r
(4.19)
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and P is the solution of the corresponding Riccati equation:

Q + PA + AT P − Pb
(

1 − γ−2
)

bT P = 0 (4.20)

If all of the states are not available, an observer can be designed from the sensor data, for

instance xs − xu and ẍs, and an output controller is implemented.

4.4.2 Adaptive Inverse Damper Control

Adaptive Inverse Damper Control via Forward Modeling

Since the internal state z of the MR damper model cannot be measured, the regressor vectors

should be replaced with their estimates as:

ϕ̂f =
[

ẑ −|ẋ|ẑ ẋ
]T

(4.21)

ϕ̂g =
[

ẑ ẋ
]T

(4.22)

where the estimate ẑ is given later by using the updated model parameters.

The output of the identification model is now described as:

F̂MR = θ̂
T

f ϕ̂f + θ̂
T

g ϕ̂gv (4.23)

where θ̂f and θ̂g are the parameter estimates. By using the damping force estimation error

defined by εM = F̂MR − FMR, and the identified parameter â0, the estimate ẑ of the internal

state can be calculated as:

˙̂z = ẋ − â0|ẋ|ẑ − lεM , (4.24)

where l is an observer gain such that 0 ≤ l ≤ 1/σ̂1max, and the upper bound is decided by the

stability of the adaptive observer [54]. The adaptive laws for updating the model parameters

are given as:

˙̂
θf = −Γfϕ̂fεM − σfΓf θ̂f (4.25)

˙̂
θg = −Γgϕ̂gvεM − σgΓgθ̂g (4.26)

where Γf and Γg are positive definite matrices, σf and σg are positive design constants. Though

Γf and Γg may vary with time, it is defined by this research as constant for practical imple-

mentation.
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The role of the adaptive inverse controller shown in Figure 4.2 is to decide the control input

voltage v to the MR damper so that the actual damping force FMR approaches the specified

command damping force FA, even in the presence of uncertainty in the MR damper model.

The input voltage giving FA can be analytically calculated from the identified forward model

of MR damper. Actually using the identified model parameters, the input voltage v is obtained

from (4.7) as:

ρ = θ̂
T

g ϕ̂g (4.27)

dρ =

{

ρ for ρ < −δ, δ < ρ

δ sgn(ρ) for − δ ≤ ρ ≤ δ
(4.28)

vA =
FA − θ̂

T

f ϕ̂f − lεM

dρ
(4.29)

v = sat(vA), 0 ≤ v ≤ Vmax (4.30)

where FA is the optimal control force as determined by the robust LQ controller. vA is assumed

to be fixed near ρ = 0 to avoid division by zero. Due to these saturation effects, the semi-active

force FMR may not fully match the active optimal control force FA. Stability analysis results are

similar to the case of adaptive control via inverse modeling, which is presented in the following

section.

Adaptive Inverse Damper Control via Inverse Modeling

In the previous section, the inverse controller is obtained analytically from the estimated pa-

rameters of the forward model of MR damper. However, as expressed in (4.29), some adjustable

parameters appear in the denominator of the inverse controller and so zero-division should be

avoided. Therefore, linearly parameterized inverse model is considered, as shown in Figure 4.3.

Since the damper force FMR is given as a function of the velocity ẋ, input voltage v and internal

state z as shown in (4.7), its inverse model for the input voltage v can be expressed as a func-

tion of ẋ, z and FMR. Hence, an inverse model which is expressed by a linearly parameterized

polynomial function is considered as:

v =
n
∑

j=0

m
∑

i=0

hi+(m+1)k+1 |ẋ|
i |z|j FMRsgn(ẋ) + δC

(4.31)
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where the inverse model has three inputs of ẋ, z and FMR, and one output of v. z is an internal

state of the MR damper, which can be calculated as given previously by:

ż = ẋ − a0|ẋ|z (4.32)

where a nominal value of a0 is assumed to be known via the forward modeling. δC represents

the unknown approximation error, which is assumed to be bounded:

sup |δC | ≤ ∆C (4.33)

The unknown bound ∆C can be made arbitrary small by increasing the order of polynomial

approximation. In simulation, an inverse model with m = 4 and n = 1 is adopted.

The inverse model is also expressed in vector form as:

v = θT
CϕC + δC (4.34)

where:

θC =
[

h1 h2 . . . h(n+1)(m+1)

]T

(4.35)

ϕC =
[

FMRsgn(ẋ) |ẋ|FMRsgn(ẋ) . . . |z|FMRsgn(ẋ)

|ẋ||z|FMRsgn(ẋ) . . . |ẋ|m|z|nFMRsgn(ẋ)
]T

(4.36)

Then the identified model is expressed as:

v̂ = θ̂
T

CϕC + µ (4.37)

where the identification error εC is defined as:

εC = v̂ − v (4.38)

and µ is a robustifying term given as:

µ = ∆̂CηC tanh((a + bt)εC) (4.39)

Here, ηC > 1 and a, b > 0. The adaptive parameters θ̂C and ∆̂C are adjusted in an on-line

manner so as to minimize the identification error according to the following adaptive laws:

˙̂
θC = −ΓCϕCεC − σCΓC θ̂C (4.40)

˙̂
∆C = γ∆C

|εC| − σ∆C
γ∆C

∆̂C (4.41)
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where ΓC is a positive definite matrix, γ∆C
, σC and σ∆C

are positive design constants. For

practical implementation, ΓC is chosen constant.

Figure 4.3 describes the adaptive damper control via inverse modeling. The control input

voltage v is given as:

vA = θ̂
T

CϕA (4.42)

v =















0 for vA ≤ 0

vA for 0 < vA ≤ Vmax

Vmax for Vmax < vA

(4.43)

where:

ϕA =
[

FAsgn(ẋ) |ẋ|FAsgn(ẋ) . . . |z|FAsgn(ẋ)

|ẋ||z|FAsgn(ẋ) . . . |ẋ|m|z|nFAsgn(ẋ)
]T

(4.44)

Again due to the semi-active nature of the MR damper, FMR may not fully match the active

optimal control force FA. The stability result of the total system given in Figure 4.3 is presented

in the following theorem.

Theorem 4.1 Assume κ > 0 is satisfied, and a0 is known. Then the control law (4.18), along

with the adaptive laws (4.40) and (4.41) guarantee that all error signals remain bounded and

converge to a small neighborhood of the origin.

Proof: It is assumed that a0 is known. From this assumption, the internal state is directly

accessible, i.e., ẑ = z. Define a candidate of the Lyapunov function as:

V =
1

2
xT

p Pxp +
1

2
θ̃

T

CΓ−1
C θ̃C +

1

2γ∆C

∆̃2
C (4.45)

where θ̃C = θ̂C − θC and ∆̃C = ∆̂C − ∆C . Taking the time-derivative of (4.45), using the

control law as defined in (4.42), and applying the adaptive laws (4.40) and (4.41) gives:

V̇1 =
1

2
xT

p

(

PA + AT P − 2PbkT
)

xp

−θ̃
T

CϕCεC + ∆̃C |εC| − σC θ̃
T

C θ̂C − σ∆C
∆̃C∆̂C

= −
1

2
xT

p

(

Q − 2skT + rkkT
)

xp

−ε2
C + δCεC − µεC + ∆̃C |εC | − σC θ̃

T

C θ̂C − σ∆C
∆̃C∆̂C (4.46)
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The following relationship will be employed:

−σθ̃
T
θ̂ ≤ −

σ

2
θ̃

T
θ̃ +

σ

2
θT θ (4.47)

along with (4.33) to obtain:

V̇1 ≤ −
1

2
xT

p

(

Q − 2skT + rkkT
)

xp

+∆̂C (1 − ηC tanh((a + bt)|εC |)) |εC |

−
σC

2
θ̃

T

C θ̃C −
σ∆C

2
∆̃2

C +
σC

2
θT

CθC +
σ∆C

2
∆2

C (4.48)

Notice that the condition:

1 − ηC tanh ((a + bt)|εC |) ≤ 0 (4.49)

is satisfied when:

|εC | ≥ νC =
1

a + bt
ln

(

ηC + 1

ηC − 1

)

, ηC > 1 (4.50)

As t → ∞ and b > 0, the region defined by νC goes to zero, and thus the condition (4.49) is

satisfied as t → ∞. It can be shown that there exists M such that:

Q − 2skT + rkkT = MMT > 0 (4.51)

Therefore:

V̇1 ≤ −c1V1 + λ1 (4.52)

where:

c1 = min

{

λmin(MMT )

λmax(P )
,

σc

λmax(Γ
−1
C )

, γ∆C
σ∆C

}

λ1 =
σC

2
θT

CθC +
σ∆C

2
∆2

C (4.53)

As λ1/c1 > 0, (4.52) results in:

0 ≤ V1(t) ≤ λ1/c1 + (V1(0) − λ1/c1)e
−c1t (4.54)

Therefore all system states xp, error signals θ̃C and ∆̃C are uniformly bounded and converge

to a small neighborhood of the origin. �
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4.5 Simulation Results

This section presents simulation results for the proposed control algorithm when the suspen-

sion system parameters are known. The control algorithm consists of a robust LQ controller,

designed to minimize the seat acceleration and seat-tire displacement, and an adaptive inverse

controller to achieve linearization of the MR damper. The adaptive inverse controller is de-

signed using the forward modeling approach and the inverse modeling approach, as shown in

Figures 4.2 and 4.3.

Consider a suspension system shown in Fig. 4.1, where the parameters are set as Ms = 504.5

[kg], Mu = 62 [kg], Cs = 400 [Ns/m], Ks = 1.31 × 104 [N/m] and Kt = 2.52 × 105 [N/m]. The

parameters of the MR damper are specified as: σ0 = 4.0× 104 [N/mV], σ1 = 2.0× 102 [Ns/m],

σ2 = 1.0 × 102 [Ns/m], σa = 1.5 × 104 [N/m], σb = 2.5 × 103 [Ns/(mV)], a0 = 1.9 × 102, which

are all unknown. An upper limit of input voltage to the MR damper is set at 2.5[V], so v varies

between 0 to 2.5[V]. The base of the dynamic system in Fig. 4.1 is excited by the road surface,

which is given by a random signal sequence with a frequency range of 0-3.5 Hz. To analyze

the effectiveness of each control schemes for various frequency ranges, the road excitation was

designed so that the bandwidth increases every ten seconds from 1Hz, 1.5Hz, 2.5Hz to 3.5Hz.

The initial period of ten seconds has a bandwidth of 3.5Hz to allow for parameter convergences

of the adaptive schemes. The displacement and velocity profile of the road excitation is shown

in Figure 4.4. The following schemes are compared: (1) Passive low damping with 0 [V] fixed,

(2) Passive high damping with 2.5 [V] fixed, (3) Active LQ-based scheme, (4) Forward modeling

based scheme (Proposed), and (5) Inverse modeling based scheme (Proposed).

First, the role of the dissipativity term in the robust LQ design is demonstrated. This study

considered the case when s = 0 and when s =
[

0 4 × 103
]T

. Figure 4.5 shows a comparison of

the active damping force FA and the measured damping force FMR for both the non-dissipative

and dissipative LQ controllers. The dissipativity term s serves to prevent the active control

action from behaving too aggressively, thus allowing the MR damper a greater chance to match

the active damping force. This is reflected in Figure 4.6, where the dissipative LQ controller

produces slightly higher RMS acceleration than the non-dissipative LQ controller, due to its

less aggressive actions.

Next, the results of the various control algorithms are presented. The damping results are

compared by the following criterions: (1) the RMS seat acceleration in Figure 4.7, and (2) the
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Table 4.1: Ride comfort evaluation (ISO 2631).

Frequency ISO 2631-1 Low High LQ LQ + MR LQ + MR

Range (Hz) (≤ 1 hour) Damping Damping Active Forward Inverse

0-1 0.8000 0.2491 0.1322 0.1140 0.1705 0.2221

0-1.5 0.6400 0.3746 0.3353 0.1936 0.2781 0.3493

0-2.5 0.5120 0.3724 0.8875 0.2492 0.3291 0.4385

0-3.5 0.4200 0.2702 1.0164 0.2346 0.2874 0.4001

RMS positional deflection of the seat and the tire in Figure 4.8. The results in Figures 4.7 and

4.8 can be analyzed as follows. The passive low damping produces a small damping force and

therefore is suited for higher level of frequencies. The passive high damping provides the stiffest

damping, and performs better during the low frequency ranges. The trade off between low and

high damping can clearly be seen as the bandwidth of the road excitation is increased. The

active control meanwhile provides the best performance regardless of the level of excitation.

The semi-active forward and inverse modeling schemes also perform better overall than the

fixed damping, as it is able to adjust the stiffness to account for the road excitation. It is noted

that there is a trade-off between acceleration and displacement. The performance criterion

should therefore be taken into careful consideration during design of the LQ controller. The

convergence of the feedforward modeling parameters are shown in Figure 4.9. A comparison of

the active and semi-active damping force is given in Figures 4.10 and 4.11.

The evaluation of ride comfort is conducted by comparing the RMS seat acceleration results

with the permissible acceleration as specified by ISO 2631. The amount of RMS acceleration

that a human being can sustain while remaining comfortable is a function of vibration time

and frequency of excitation. For a ride duration of 1 hour, ISO 2631 specifies these values as

given in Table 4.1. By comparing with the results for each methods, it is noted that all values

fall within the permissible range, except for high damping at 2.5 and 3.5Hz excitation, thus

ensuring that the proposed control methods are able to guarantee ride comfort to the human

occupants.
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Figure 4.4: Road excitation, displacement xr and velocity ẋr.
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Figure 4.5: Comparison of FA and FMR for (a,c) non-dissipative LQ, and (b,d) dissipative LQ.
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Figure 4.7: Comparison of RMS seat acceleration for the entire simulation, and divided into frequency

ranges.
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Figure 4.8: Comparison of RMS seat-tire displacement for the entire simulation, and divided into

different frequency ranges.
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Figure 4.10: Comparison of FA and FMR for (a) LQ with forward modeling and (b) LQ with inverse

modeling.
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Figure 4.11: Plot of FA (red, dashed) and FMR versus time for (a) LQ with forward modeling and

(blue, solid) (b) LQ with inverse modeling (green, solid).
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Figure 4.12: Proposed fully adaptive sem-iactive control scheme based on forward modeling.

4.6 Fully Adaptive Semi-active Control Algorithm

This section considers the case when both the MR damper and suspension parameters are un-

known or uncertain. In this case, LQ-based controller design cannot be employed and a fully

adaptive approach is necessary. Figures 4.12 and 4.13 show schematic diagrams of the proposed

fully adaptive semi-active control for the suspension system. The adaptive algorithm consists

of two controllers. The first is an adaptive inverse controller which provides the required in-

put voltage v to MR damper so that the damping force FMR approaches a specified command

damping force FA. If the adaptive inverse controller is designed so that the linearization from

FA to FMR can be attained, that is, FA = FMR, almost active control performance can be real-

ized. For construction of the inverse controller, the forward model of MR damper is identified

and then the input voltage to MR damper is calculated as shown in Figure 4.12. Figure 4.13
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Figure 4.13: Proposed fully adaptive semi-active control scheme based on inverse modeling.

gives an alternative scheme in which the inverse controller is directly updated without identifi-

cation of MR damper. The adaptive reference feedback control can match the chassis dynamic

response to a desired reference dynamics even when the suspension system involves parametric

uncertainty in Ms, Cs and Ks. Since the MR damper is actually a nonlinear semi-active device,

it is difficult to make it behave in an active manner, and fine and complicated tuning is required

for both the adaptive inverse and adaptive reference controllers.

4.6.1 Adaptive Reference Feedback Control

The role of the adaptive reference feedback controller is to provide a desired damper force FA

to the adaptive inverse controller so that the car chassis dynamics can match the reference

dynamics. The desired damper force is decided by the skyhook approach in the case when the

mass and spring constants are both unknown. Following the adaptive scheme [60], the desired
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reference dynamics is specified by:

ẍs + 2ζωẋs + ω2(xs − xu) = 0 (4.55)

where ω is the natural frequency, and ζ is a damping constant. Then, the control error ξ is

given by:

ξ = ẋs + (s + 2ζω)−1ω2(xs − xu) (4.56)

Taking the derivative of (4.56), and employing (4.1):

ξ̇ = ẍs + (s + 2ζω)−1ω2s(xs − xu)

= −
Cs

Ms

(ẋs − ẋu) −
Ks

Ms

(xs − xu) −
1

Ms

FMR + (s + 2ζω)−1ω2s(xs − xu)

= −θT
S,1ϕS,1 − θS,2FMR + (s + 2ζω)−1ω2s(xs − xu) (4.57)

where:

θS,1 =
[

Cs

Ms

Ks

Ms

]T

(4.58)

ϕS,1 =
[

ẋs − ẋu xs − xu

]T

(4.59)

θS,2 =
1

Ms
(4.60)

Then the adaptive control law is given as:

FA =
1

θ̂S,2

(

κξ − θ̂
T

S,1ϕS,1 + (s + 2ζω)−1ω2s(xs − xu)
)

(4.61)

where κ > 0 is a design constant, and θ̂S,1 and θ̂S,2 are corresponding parameter estimates.

Due to parametric uncertainties and the semi-active nature of the MR damper, FMR cannot

match FA as given in (4.61). To develop stable adaptive control laws in the presense of this

semi-active constraint, it is necessary to define an auxiliary signal χ as:

χ̇ = −κχ + θ̂S,2 (FA − FMR) (4.62)

A modified error signal is given by:

ξ̃ = ξ − χ (4.63)
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Employing this modified error signal, the adjustable parameters θ̂S,1 and θ̂S,2 are updated by:

˙̂
θS,1 = − ˙̃

θS,1 = −ΓS,1ϕS,1ξ̃ − σS,1ΓS,1θ̂S,1 (4.64)

˙̂
θS,2 = −

˙̃
θS,2 = −γS,2ξ̃FMR − σS,2γS,2θ̂S,2 (4.65)

where θ̃S,1 = θ̂S,1 − θS,1 and θ̃S,2 = θ̂S,2 − θS,2. ΓS,1 is a positive-definite matrix, γS,2 > 0, σS,1

and σS,2 are positive design constants. For practical implementation, ΓS,1 and γS,2 are chosen

constant. The main stability result for the adaptive reference feedback controller is presented

in the following theorem.

Theorem 4.2 Assume Ms > 0 and κ > 0 are satisfied. Then the control law (4.61), along

with the adaptive laws (4.64) and (4.65), guarantee that the modified error signal ξ̃ and the

parameter estimation errors θ̃S,1 and θ̃S,2 remain bounded and converge to a small neighborhood

of the origin. Furthermore, if FMR = FA, then the control error ξ also converges to a small

neighborhood of the origin.

Proof: Consider a candidate of the Lyapunov function as:

VS =
1

2
ξ̃2 +

1

2
θ̃

T

S,1Γ
−1
S,1θ̃S,1 +

1

2γS,2
θ̃2

S,2 (4.66)

Taking the time-derivative of VS and using the control law (4.61):

V̇S = ξ̃
˙̃
ξ + θ̃

T

S,1Γ
−1
S,1

˙̃
θS,1 +

1

γS,2
θ̃S,2

˙̃
θS,2

= ξ̃
(

ξ̇ − χ̇
)

+ θ̃
T

S,1Γ
−1
S,1

˙̃
θS,1 +

1

γS,2
θ̃S,2

˙̃
θS,2

= ξ̃
(

−θT
S,1ϕS,1 − θS,2FMR + (s + 2ζω)−1ω2s(xs − xu) + κχ − θ̂S,2 (FA − FMR)

)

+θ̃
T

S,1Γ
−1
S,1

˙̃
θS,1 +

1

γS,2
θ̃S,2

˙̃θS,2

= −κξ̃2 + θ̃
T

S,1ϕS,1ξ̃ + θ̃S,2ξ̃FMR + θ̃
T

S,1Γ
−1
S,1

˙̃
θS,1 +

1

γS,2
θ̃S,2

˙̃θS,2 (4.67)

Now using the adaptive laws (4.64) and (4.65):

V̇S = −κξ̃2 − σS,1θ̃
T

S,1θ̂S,1 − σS,2θ̃S,2θ̂S,2

≤ −κξ̃2 −
σS,1

2
θ̃

T

S,1θ̃S,1 −
σS,2

2
θ̃2

S,2 +
σS,1

2
θT

S,1θS,1 +
σS,2

2
θ2

S,2 (4.68)

Thus:

V̇S ≤ −cSVS + λS (4.69)
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where:

cS = min

{

2κ,
σS,1

λmax(Γ
−1
S,1)

, γS,2σS,2

}

(4.70)

λS =
σS,1

2
θT

S,1θS,1 +
σS,2

2
θ2

S,2 (4.71)

Since κ, σS,1 and σS,2 are positive design constants, λS/cS > 0 and the following result is

obtained:

0 ≤ VS(t) ≤ λS/cS + (VS(0) − λS/cS) e−cSt (4.72)

Thus, the modified error ξ̃ and the parameter estimation errors θ̃S,1 and θ̃S,2 are uniformly

bounded and converge to a small neighborhood of the origin. The assumption that Ms > 0 and

some type of parameter projection method is necessary to ensure that θ̂S,2 does not approach

zero. From (4.62), it is clear that if FMR = FA then χ → 0, and therefore the control error ξ

also converges to a small neigborhood of the origin. �

4.6.2 Adaptive Inverse Damper Control

Adaptive Inverse Damper Control via Forward Modeling

Since the internal state z of the MR damper model cannot be measured, the regressor vector

ϕM should be replaced with its estimate ϕ̂M as:

ϕ̂M = (ẑ, ẑv, −|ẋ|ẑ, ẋ, ẋv)T (4.73)

where the estimate ẑ is given later by using the updated model parameters. The output of the

identification model is now described as:

F̂MR = θ̂
T

M ϕ̂M (4.74)

By using the damping force estimation error defined by εM = F̂MR − FMR, and the identified

parameter â0, the estimate ẑ of the internal state can be calculated as:

˙̂z = ẋ − â0|ẋ|ẑ − LεM (4.75)

where L is an observer gain such that 0 ≤ L ≤ 1/σ̂1max, and the upper bound is decided by

the stability of the adaptive observer [54].
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To assure the stability of the adaptive identification algorithm, introduce the normalizing

signal as NM =
(

c1 + ϕ̂T
M ϕ̂M

)1/2
, where c1 > 0. By dividing the signals and errors by NM as

ϕMN
= ϕM/NM , ϕ̂MN

= ϕ̂M/NM and εMN
= F̂MRN

− FMRN
, where FMRN

= FMR/NM and

F̂MRN
= θ̂

T

M ϕ̂MN
, the adaptive law for updating the model parameters is given as:

˙̂
θM = −ΓM ϕ̂MN

εMN
− σMΓM θ̂M (4.76)

where θ̃M = θ̂M − θM . ΓM is a positive-definite matrix and σM is a positive design constant.

For practical implementation, ΓM is chosen constant. Thus, the physical model parameters can

be calculated from the relation (4.7).

The role of the adaptive inverse controller shown in Figure 4.12 is to decide the control

input voltage v to the MR damper so that the actual damping force FMR may coincide with

the specified command damping force FA, even in the presence of uncertainty in the MR damper

model. The input voltage giving FA can be analytically calculated from the identified forward

model of MR damper (4.7). Actually using the identified model parameters, the input voltage

v is obtained from (4.7) as:

ρ = σ̂0ẑ + σ̂bẋ (4.77)

dρ =

{

ρ for ρ < −δ, δ < ρ

δ sgn(ρ) for − δ ≤ ρ ≤ δ
(4.78)

vA =
FA − {σ̂aẑ − σ̂1â0|ẋ|ẑ + (σ̂1 + σ̂2)ẋ − LεM}

dρ
(4.79)

v =















0 for vA ≤ 0

vA for 0 < vA ≤ Vmax

Vmax for Vmax < vA

(4.80)

where FA is the specified command damping force. v is assumed to be fixed near ρ = 0 to avoid

division by zero. Due to the semi-active nature of the MR damper, FMR may not fully match

the desired control force FA. The stability result of the total system given in Figure 4.12 is

presented in the following theorem.

Theorem 4.3 Assume Ms > 0 and κ > 0 are satisfied, and a0 is known. Then the control law

(4.61), along with the adaptive laws (4.64), (4.65) and (4.76) guarantee that all error signals

remain bounded and converge to a small neighborhood of the origin. Furthermore, if FMR = FA,

then the control error ξ also converges to a small neighborhood of the origin.
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Proof: Let a candidate Lyapunov function to the total system with forward modeling be denoted

by:

VM = VS +
1

2
θ̃

T

MΓ−1
M θ̃M (4.81)

From the assumption that a0 is known, the internal state z is available and the regressor vector

ϕMN
can be employed in (4.76). Taking the time-derivative of VM and using the results of

Theorem 4.2, along with the adaptive law (4.76), leads to:

V̇M = V̇S + θ̃
T

MΓ−1
M

˙̃
θM

= V̇S − θ̃
T

MϕMN
εMN

− σM θ̃
T

M θ̂M

= V̇S − ε2
MN

− σM θ̃
T

M θ̂M

≤ V̇S −
σM

2
θ̃

T

M θ̃M +
σM

2
θT

MθM (4.82)

Therefore:

V̇M ≤ −cMVM + λM (4.83)

where:

cM = min

{

cS,
σM

λmax(Γ
−1
M )

}

(4.84)

λM = λS +
σM

2
θT

MθM (4.85)

As λM/cM > 0, the following result is obtained:

0 ≤ VM(t) ≤ λM/cM + (VM(0) − λM/cM) e−cM t (4.86)

Thus, all the error signals associated with the total system, along with the parameter esti-

mation error θ̃M , are uniformly bounded and converge to a small neighborhood of the origin.

Furthermore, if FMR = FA, then the control error ξ also converges to a small neighborhood of

the origin. �

Adaptive Inverse Damper Control via Inverse Modeling

In the previous section, the inverse controller is obtained analytically from the estimated pa-

rameters of the forward model of MR damper. However, as expressed in (4.80), some adjustable
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parameters appear in the denominator of the inverse controller and so zero-division should be

avoided. Therefore, we consider a linearly parameterized inverse model, as shown in Fig. 4.13.

Since the damper force FMR is given as a function of the velocity ẋ, input voltage v and in-

ternal state z as shown in (4.7), its inverse model for the input voltage v can be expressed as

a function of ẋ, z and FMR. Hence, an approximate inverse model, which is expressed by a

linearly parameterized polynomial function, is considered as:

v =

n
∑

j=0

m
∑

i=0

hi+(m+1)k+1 |ẋ|
i |z|j FMRsgn(ẋ) + δC (4.87)

where δC is an approximation error term, and is assumed to have an unknown constant bound

|δC | ≤ ∆C . The inverse model has three inputs of ẋ , z and FMR, and one output of v. z is an

internal state of the MR damper, which can be calculated as given previously by:

ż = ẋ − a0|ẋ|z (4.88)

where a nominal value of a0 is assumed to be known via the forward modeling. In simulation,

an inverse model with m = 4 and n = 1 is adopted.

The inverse model is also expressed in vector form as:

v = θT
CϕC + δC (4.89)

where:

θC =
[

h1 h2 . . . h(n+1)(m+1)

]T

(4.90)

ϕC =
[

FMRsgn(ẋ) |ẋ|FMRsgn(ẋ) . . . |z|FMRsgn(ẋ)

|ẋ||z|FMRsgn(ẋ) . . . |ẋ|m|z|nFMRsgn(ẋ)
]T

(4.91)

Then the identified model is expressed as:

v̂ = θ̂
T

CϕC + µ (4.92)

The identification error εC is defined as:

εC = v̂ − v (4.93)

and µ is a robustifying term given as:

µ = −∆̂CηC tanh((a + bt)εC) (4.94)
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with ηC > 1 and a, b > 0. To assure the stability of the adaptive identification algorithm,

introduce the normalizing signal as NC =
(

c2 + ϕT
CϕC

)1/2
, where c2 > 0. By dividing the

signals and errors by NC as ϕCN
= ϕC/NC, and εCN

= v̂N − vN , where vN = v/NC and

v̂N = θ̂
T

Cϕ̂CN
+ µN , and µN = −∆̂CηC tanh((a + bt)εCN

), the adaptive laws for updating the

model parameters are given as:

˙̂
θC = −ΓCϕCN

εCN
− σCΓC θ̂C (4.95)

˙̂
∆C = γ∆C

|εCN
| − σ∆C

γ∆C
∆̂C (4.96)

where θ̃C = θ̂C − θC and ∆̃C = ∆̂C − ∆C . ΓC is a positive definite matrix, γ∆C
, σC and σ∆C

are positive design constants. For practical implementation, ΓC and γ∆C
are chosen constant.

Figure 4.13 describes the adaptive damper control via inverse modeling. The control input

voltage v is given as:

vA = θ̂
T

CϕA (4.97)

v =















0 for vA ≤ 0

vA for 0 < vA ≤ Vmax

Vmax for Vmax < vA

(4.98)

where:

ϕA =
[

FAsgn(ẋ) |ẋ|FAsgn(ẋ) . . . |z|FAsgn(ẋ)

|ẋ||z|FAsgn(ẋ) . . . |ẋ|m|z|nFAsgn(ẋ)
]T

(4.99)

Again due to the semi-active nature of the MR damper, FMR may not fully match the desired

control force FA. The stability result of the total system given in Figure 4.13 is presented in

the following theorem.

Theorem 4.4 Assume Ms > 0 and κ > 0 are satisfied, and a0 is known. Then the control law

(4.61), along with the adaptive laws (4.64), (4.65), (4.95) and (4.96) guarantee that all error

signals remain bounded and converge to a small neighborhood of the origin. Furthermore, if

FMR = FA, then the control error ξ also converges to a small neighborhood of the origin.

Proof: Let a candidate Lyapunov function to the total system with inverse modeling be denoted

by:

VC = VS +
1

2
θ̃

T

CΓ−1
C θ̃C +

1

2γ∆C

∆̃2
C (4.100)
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Taking the time-derivative of VC and using the results of Theorem 4.2, along with the control

laws (4.95) and (4.96), leads to:

V̇C = V̇S + θ̃
T

CΓ−1
C

˙̃
θC +

1

γ∆C

∆̃C
˙̃∆C

= V̇S − θ̃
T

CϕCN
εCN

+ ∆̃C |εCN
| − σC θ̃

T

C θ̂C − σ∆C
∆̃C∆̂C

= V̇S − ε2
CN

+ µNεCN
− δCεCN

+ ∆̃C |εCN
| − σC θ̃

T

C θ̂C − σ∆C
∆̃C∆̂C

≤ V̇S + ∆̂C (1 − ηC tanh((a + bt)|εCN
|)) |εCN

|

−
σC

2
θ̃

T

C θ̃C −
σ∆C

2
∆̃2

C +
σC

2
θT

CθC +
σ∆C

2
∆2

C (4.101)

Notice that the condition:

1 − ηC tanh ((a + bt)|εCN
|) ≤ 0 (4.102)

is satisfied when:

|εCN
| ≥ νC =

1

a + bt
ln

(

ηC + 1

ηC − 1

)

, ηC > 1 (4.103)

As t → ∞ and b > 0, the region defined by νC goes to zero, and thus the condition (4.102) is

satisfied as t → ∞. Therefore:

V̇C ≤ V̇S −
σC

2
θ̃

T

C θ̃C −
σ∆C

2
∆̃2

C +
σC

2
θT

CθC +
σ∆C

2
∆2

C

≤ −cCVC + λC (4.104)

where:

cC = min

{

cS,
σC

λmax(Γ
−1
C )

, γ∆C
σ∆C

}

(4.105)

λC = λS +
σC

2
θT

CθC +
σ∆C

2
∆2

C (4.106)

As λC/cC > 0, the following result is obtained:

0 ≤ VC(t) ≤ λC/cC + (VC(0) − λC/cC) e−cCt (4.107)

Thus, all the error signals associated with the total system, along with the parameter estimation

errors θ̃C and ∆̃C , are uniformly bounded and converge to a small neighborhood of the origin.

Furthermore, if FMR = FA, then the control error ξ also converges to a small neighborhood of

the origin. �
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4.7 Simulation Results

This section presents simulation results for the proposed control algorithm when the suspen-

sion system parameters are unknown. The control algorithm consists of the adaptive skyhook

method and an adaptive inverse controller to achieve linearization of the MR damper. The

adaptive inverse controller can be designed using the forward modeling approach or inverse

modeling approach, as shown in Figures 4.12 and 4.13.

Consider a suspension system shown in Fig. 4.1, where the parameters are set as Ms = 504.5

[kg], Mu = 62 [kg], Cs = 400 [Ns/m], Ks = 1.31 × 104 [N/m] and Kt = 2.52 × 105 [N/m]. The

parameters of the MR damper are specified as: σ0 = 4.0× 104 [N/mV], σ1 = 2.0× 102 [Ns/m],

σ2 = 1.0 × 102 [Ns/m], σa = 1.5 × 104 [N/m], σb = 2.5 × 103 [Ns/(mV)], a0 = 1.9 × 102, which

are all unknown. An upper limit of input voltage to the MR damper is set at 2.5[V], so v varies

between 0 to 2.5[V]. The base of the dynamic system in Fig. 4.1 is excited by the road surface,

which is given by a random signal sequence with a frequency range of 0-3.5 Hz. To analyze

the effectiveness of each control schemes for various frequency ranges, the road excitation was

designed so that the bandwidth increases every ten seconds from 1Hz, 1.5Hz, 2.5Hz to 3.5Hz.

The initial period of ten seconds has a bandwidth of 3.5Hz to allow for parameter convergences

of the adaptive schemes. The displacement and velocity profile of the road excitation is shown

in Figure 4.4. The following schemes are compared: (1) Passive low damping with 0 [V] fixed,

(2) Passive high damping with 2.5 [V] fixed, (3) Active skyhook-based scheme, (4) Skyhook

control with forward modeling based scheme (Proposed) and (5) Skyhook control with inverse

modeling based scheme (Proposed).

Next, the results of the various control algorithms are presented. The damping results

are compared by the following criterions: (1) the RMS seat acceleration in Figure 4.14, and

(2) the RMS positional deflection of the seat and the tire in Figure 4.15. The results in

Figures 4.14 and 4.15 are similar to the LQ control case, and can be analyzed as follows. The

passive low damping produces a small damping force and therefore is suited for higher level

of frequencies. The passive high damping provides the stiffest damping, and performs better

during the low frequency ranges. The trade off between low and high damping can clearly

be seen as the bandwidth of the road excitation is increased. The active control meanwhile

provides the best performance regardless of the level of excitation. The semi-active forward

and inverse modeling schemes also perform better overall than the fixed damping, as it is able



106 Chapter 4 Adaptive Damper Control of Suspension System

Table 4.2: Ride comfort evaluation (ISO 2631).

Frequency ISO 2631-1 Low High Skyhook Skyhook + Skyhoook +

Range (Hz) (≤ 1 hour) Damping Damping Active MR Forward MR Inverse

0-1 0.8000 0.2491 0.1322 0.0940 0.1744 0.2241

0-1.5 0.6400 0.3746 0.3353 0.1434 0.2727 0.3697

0-2.5 0.5120 0.3724 0.8875 0.1758 0.3197 0.3841

0-3.5 0.4200 0.2702 1.0164 0.1546 0.2667 0.2952

to adjust the stiffness to account for the road excitation. The convergence of the skyhook

parameters estimates are shown in Figure 4.16. It is clear that the suspension parameters can

be identified very rapidly and accurately, as shown in Figure 4.17. The convergence of the

feedforward modeling parameters are shown in Figure 4.18. A comparison of the active and

semi-active damping force is given in Figure 4.19. In contrast to the robust LQ control design

with dissipativity, the adaptive skyhook method produces a more aggressive damping force and

therefore results in more discrepancies between the desired damping force and the semi-active

damping force. However, the auxiliary function introduced in this research guarantees that the

adaptive algorithm remains robust with respect to this error.

The evaluation of ride comfort is conducted by comparing the RMS seat acceleration results

with the permissible acceleration as specified by ISO 2631. The amount of RMS acceleration

that a human being can sustain while remaining comfortable is a function of vibration time

and frequency of excitation. For a ride duration of 1 hour, ISO 2631 specifies these values as

given in Table 4.2. By comparing with the results for each methods, it is noted that all values

fall within the permissible range, except for high damping at 2.5 and 3.5Hz excitation, thus

ensuring that the proposed control methods are able to guarantee ride comfort to the human

occupants.
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Figure 4.14: Comparison of RMS seat acceleration for the entire simulation, and divided into fre-

quency ranges.
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Figure 4.15: Comparison of RMS seat-tire displacement for the entire simulation, and divided into

different frequency ranges.
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Figure 4.16: Convergence of skyhook parameter estimates.
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Figure 4.17: Convergence of suspension parameter estimates.
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Figure 4.18: Convergence of MR parameter estimates for skyhook control with forward modeling.
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Figure 4.19: Plot of FA (red, dashed) and FMR versus time for (a) skyhook control with forward

modeling (blue, solid) and (b) skyhook control with inverse modeling (green, solid).
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4.8 Summary

This study presents a fully adaptive semi-active control algorithm which consists of the adaptive

inverse controller compensating for nonlinear hysteresis dynamics of MR damper, and the

adaptive reference controller matching the seat response to a reference dynamics even if the

mass and spring constants are unknown. The forward modeling or inverse modeling scheme was

introduced for realizing the adaptive inverse controller. Validation of the two modeling schemes

was examined through identification experiments using an actual MR damper. Conditions for

assuring stability of the total control system have been clarified, and the effectiveness of the

proposed scheme has been validated in numerical simulation.

4.9 Appendix: Model Validation by Experiments

Experiments for the adaptive identification were made using a small type of MR damper (RD-

1097-01) provided by Lord Corp. A laser sensor was placed to measure the displacement x of

the piston rod of the MR damper, and a strain sensor was installed in series with the damper

to measure the output force FMR. The signals x, v and FMR were sampled at a rate of 1 kHz.

The identified forward model has two inputs of velocity ẋ and voltage v and one output FMR.

The time profiles of the inputs ẋ and v applied to the MR damper are illustrated in Figure 4.20.

The convergence behavior of the forward model parameters θ̂M of the MR damper is plotted

in Figure 4.21. The dotted line shows the least squares parameter estimates obtained by batch

processing, which are listed in Table 4.3.

To observe the hysteresis characteristics of the MR damper, a sinusoid displacement with

amplitude of 1.5cm is applied for three constant voltages 0, 1 and 1.25 V. The measurement

results show that the MR damper has a hysteresis behavior between the displacement x and

damper force FMR as shown in Figure 4.22(a), and the hysteresis property between FMR and ẋ

shown in Figure 4.22(b). Figure 4.23(a)(b) gives the estimated hysteresis behavior obtained by

the recursive forward modeling with the adaptive observer. The forward model is very precisely

identified by the proposed adaptive scheme.

The inverse model with ten adjustable parameters (m = 4 and n = 1) were also identified

using the data set of the two inputs FMR and ẋ, and one output v. The profiles of the ten

inverse model parameters are summarized in Figure 4.24. It can be seen that the inverse model
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Table 4.3: Identified model parameters.

Parameters LS estimate Initial values

σ0 [N/m· V] 3.95 × 104 2.90 × 104

σ1 [N·s/m] 0.131 -

σ2 [N·s/m] 92.5 8.00

σa [N/m] 1.51 × 104 3.50 × 103

σb [N·s/(m·V)] 24.9 5.00

a0 [m−1] 2.85 × 103 2.00 × 104

parameters converge very quickly to the LS estimates obtained by batch processing.



114 Chapter 4 Adaptive Damper Control of Suspension System

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

Time (s)

V
el
o
ci
ty
 (
m
/s
)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

Time (s)

V
o
lt
ag
e 
(V
)
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Figure 4.22: Measured hysteresis characteristics of MR damper
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Figure 4.23: Estimated hysteresis characteristics of MR damper with always updated parameters

obtained by the proposed adaptive identification method.
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Figure 4.24: Parameter behavior of adaptive inverse controller for compensation of nonlinearity of

MR damper.
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Chapter 5

Adaptive Friction Compensation

This chapter develops an adaptive friction compensator using the generalized Maxwell-slip

(GMS) friction model, with a new, linearly-parameterized Stribeck function. It employs a

polynomial equation that is linear-in-the-parameter to approximate the nonlinear Stribeck ef-

fect in the GMS model, and simplifies the design of an adaptive friction compensator. The

proposed compensator has a switching structure to accomodate for the hybrid nature of the

GMS model, and contains a robustifying term to account for unmodelled dynamics. The va-

lidity and effectiveness of the proposed, linearly-parameterized friction compensator is verified

by simulations for the velocity and position control of an inertia system under the influence of

dynamic friction.

5.1 Introduction

It is widely recognized that most mechanical systems involving two or more contact surfaces

with relative motion, would experience to varying degrees some form of frictional effects. The

presence of dynamic friction in such industrial applications as robotic manipulators, hydraulic

systems, precision engineering, and so forth, can lead to significant tracking error, or even in-

stability. Passive friction compensation techniques, such as lubrication, present only a partial

solution to the problem, and should be complemented by an effective control scheme [6]. How-

ever, the task of controller design is greatly complicated by nonlinearities of the surface contact

mechanics, structural and parametric uncertainties.

The demand for an accurate and efficient friction compensation method has led to immense
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research efforts from control engineers. Most notably, the works of Armstrong-Hélouvry [4,5], in

which important contributions from tribology, lubrication, and physics literatures are restated

in a control framework, have generated considerable interest in the friction problem. A compre-

hensive overview and survey of friction characteristics and classical compensation methods can

be found in the references [4, 5, 39]. Traditionally, the friction process is characterized by two

regimes: the so-called presliding or micro-slip regime; and the gross sliding regime. Important

properties of friction that have been observed include the presliding hysteresis, stick-slip limit

cycling, non-local memory, non-drifting property, viscosity, the nonlinear Stribeck effect, static

and Coulomb friction. A generic friction model based upon these physical considerations and

experimental data has been proposed [1]. Though the generic friction model is highly accurate

and captures all the important properties of friction, its mathematical complexity renders it an

invalid choice for controller design. However, the generic friction model remains a powerful tool

for analyzing the fidelity and accuracy of other friction models, which are classified by their

static and dynamic characteristics.

Currently, friction compensation schemes are divided into non-model and model-based meth-

ods. Studies have shown that simple PD or PID controllers suffer significant performance degra-

dation due to the nonlinear characteristics of friction, which can lead to hunting behaviors and

instability [5]. Several observer-based nonlinear friction compensation scheme have been pro-

posed [20]. Black-box methods employing neural networks or fuzzy logic for friction compensa-

tion have also been widely researched [25, 26, 44]. In comparison, the potential of model-based

adaptive friction compensation has been demonstrated by several researchers. These efforts in-

clude the modeling and compensation of Coulomb friction [3,16], a control scheme for dynamic,

linear friction [30], and nonlinear static mapping of the Stribeck effect [31]. These methods pro-

vide powerful arguments for the use of adaptive control in friction compensation, but do not

combine it with a sufficiently complex and accurate dynamic friction model.

To this end, several dynamic friction models have been developed [7,14], the most popular of

which is the LuGre model [11]. Due to its relative simplicity, extensive literature exists regarding

the use of the LuGre friction model in various compensation schemes [10, 32, 43]. However, it

has been pointed out that the LuGre model compromises fidelity in favor of simplicity. Most

notably, the LuGre model does not explicitly account for friction lag characteristics, and its

hysteresis-like behavior fails to exhibit non-drifting and non-local memory properties [53].

Therefore, this chapter develops a robust adaptive compensation scheme using the general-
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ized Maxwell-slip (GMS) friction model, which has been proposed as a more accurate represen-

tation of the friction phenomenon than the LuGre model [2, 29]. The GMS model consists of

parallel elementary blocks and separates frictional mechanism into two regimes: sticking and

slipping. This results in a hybrid system, with two separate models. Maxwell-slip functions are

utilized to describe the hysteresis behavior in the sticking regime. For the slipping regime, a

state rate law is employed that includes the Stribeck effect and an explicit term for describing

frictional lag characteristics. The GMS model yields results that correspond to experimental

observation, while maintaining a simpler structure than the generic friction model [1]. Offline

identification algorithms of the GMS model using Nelder-Mead simplex [55] and particle swarm

optimization (PSO) [23,24,37] have been presented. However, designing an adaptive controller

using the GMS model can be difficult due to its switching nature and also the nonlinear Stribeck

effect.

The main novelty of this paper is the proposal of a polynomial Stribeck function that is

readily applicable to the GMS friction model. The validity of using a polynomial approximation

function to describe the Stribeck effect has been investigated in previous works [8,21,35,36,56].

By using the polynomial approximation function, the development of adaptive control laws are

simplified, as friction models can be linearly-parameterized. For the reasons outlined above, the

GMS friction model is chosen for the model-based adaptive controller. Previous investigations

[35,36] suggest that issues of robustness may occur due to unmodeled dynamics, which include

dynamic perturbations, switching uncertainties, and the approximation error of the polynomial

equation. Therefore, this study specifically addresses this problem by introducing a sliding-

mode based smooth adaptive robustifying term into the control law [47]. Stability analysis is

presented to show the robustness of the algorithm, provided that a bound on the unmodeled

terms is known to exist. The validity of the proposed robust adaptive control algorithm based

upon the GMS friction model is demonstrated by simulation results.

5.2 Problem Statement

The objective of this chapter is the control of a mass acting under the influence of friction

forces. Consider the following state-space representation of a simple mass system:

mẋp = Apxp + bT
p (u − Ff ) (5.1)
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Figure 5.1: Parallel connection of N elementary blocks in the GMS model.

where:

xp =
[

x ẋ
]T

, Ap =

[

0 m

0 0

]

, bp =
[

0 1
]T

Here, m is the mass, while x and ẋ are the mass position and velocity, respectively. u is the

input force and Ff represents friction. To describe the effects of friction, this study employs the

generalized Maxwell-slip (GMS) friction model [2, 29]. The GMS model is an asperity-based

description of the friction phenomenon. It consists of parallel connections of elementary blocks,

shown in Figure 5.1, and expressed by:

Ff =
N
∑

i=1

Fi (5.2)

Here, N represents the number of elementary blocks employed by the GMS model, and viscous

friction is neglected. Each elementary block is governed by a set of two dynamical equations,

depending on whether it is in a sticking or slipping state. The sticking state contains a Maxwell-

slip equation to describe hysteresis and other presliding characteristcs. The slipping state

equation results in frictional lag and the Stribeck effect. Mathematically, this is expressed as:

• If the elementary block is sticking, the differential equation is given by:

Ḟi = kiẋ (5.3)
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and the elementary block remains sticking until |Fi| > αis(ẋ) = Wi.

• If the elementary block is slipping, the differential equation is given by:

Ḟi = C

(

αisgn(ẋ) −
Fi

s(ẋ)

)

(5.4)

and the elementary block remains slipping until the velocity goes through zero.

Here, C is a constant term introduced by the GMS model to directly account for frictional lag

dynamics, and
∑

αi = 1. s(ẋ) describes the Stribeck effect, which is generally expressed by

the following function:

s(ẋ) = FC + (FS − FC) e
−

“

|ẋ|
VS

”σS

(5.5)

where FC is the Coulomb friction parameter, FS represents static friction, VS is the Stribeck

velocity, and σS is a shaping factor. Notice the hybrid structure of the GMS model; two separate

models are used to represent the sticking and slipping states. From a control perspective, any

controller constructed using the GMS model would have to account for this switching structure.

Considering only the slipping state of friction under constant velocity, the steady-state

equation for each elementary block reduces to:

Fi,ss = αis(ẋ)sgn(ẋ) (5.6)

Defining δi,D = Fi − Fi,ss, the frictional force equation in the slipping regime becomes:

Fi = Fi,ss + δi,D

= αis(ẋ)sgn(ẋ) + δi,D (5.7)

Analysis of the above equation reveals that the friction force is comprised of two terms: a static

term corresponding to the Stribeck effect; and a dynamic term δi,D that acts as a perturbation.

A Lyapunov argument can be used to show that, given bounds on the parameter values, then

the dynamic term δi,D is bounded [11,32]. This is formally stated in Lemma 5.1. The stability

of the adaptive control design makes use of the consequential property that the dynamic effects

are bounded by a constant term.

Lemma 5.1 Assuming that the system parameters are bounded, the dynamic perturbations in

the slipping state of each elementary block in the GMS friction model are also bounded.
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Proof: Define a candidate Lyapunov function as:

Vi =
1

2
F 2

i (5.8)

Then the derivative of (5.8) along the frictional dynamics is given as:

V̇i = FiḞi

= FiC

(

αisgn(ẋ) −
Fi

s(ẋ)

)

= C |Fi| sgn(Fi)sgn(ẋ)

(

αi −
|Fi|

s(ẋ)

)

(5.9)

In the slipping state, it is noted that the sign of Fi and ẋ are always the same and are different

from zero. Therefore, V̇i is negative definite if:

|Fi| ≤ αis(ẋ) = |Fi,ss| ≤ αiFS (5.10)

From (5.7) and (5.10), it is clear that since Fi and Fi,ss are bounded, the perturbation term

δi,D must also be bounded. �

5.3 Identification of GMS Model

Several offline methods have been proposed to identify the parameters associated with the GMS

model. Experimental identification procedures using the Nelder-Mead Simplex algorithm has

been presented [55]. Another method is the use of particle swarm optimization (PSO), which

is a global minimization technique designed for nonlinear problems that avoids being trapped

by local minimums [23, 24]. It is therefore especially suited to the identification of the GMS

friction model.

The PSO algorithm can be applied to identify the nonlinear GMS model by considering I

particles uniformly distributed across the parameter space. Each particle has its own position,

p, transfer vector, q, and the best position visited so far by the particle, pbest. All particles

share gbest, or the best position visited by all the particles so far. In the (r + 1)th transfer, the

jth coordinate component of the transfer vector of the ith particle is manipulated according to

the following equation:

qr+1
ij = w · qr

ij+c1 · rand1 ·
(

pbest,ij − pr
ij

)

+ c2 · rand2 ·
(

gbest,ij − pr
ij

)

(5.11)
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Figure 5.2: Example of particle movement per iteration.

where i = 1, · · · , I, and I is the size of the swarm; j = 1, · · · , J , and J is the size of the

space of a given problem, which in this case corresponds to the number of parameters in the

GMS model. c1 and c2 are positive constants; rand1 and rand2 are random numbers uniformly

distributed in [0, 1]; and r determines the iteration number. The weighting function w is chosen

as:

w = wmax −
wmax − wmin

rmax
× r (5.12)

where wmax and wmin are the initial and final weight, rmax is the maximum iteration number,

and r is the current iteration. Then each particle moves according to the following equation:

pr+1
ij = pr

ij + qr+1
ij (5.13)

An example of particle movement determined by the PSO algorithm is shown in Figure 5.2.

A general flow chart of the PSO is given in Figure 5.3. The identification of the GMS model

using the PSO algorithm was explored and presented by the author [37]. It may also be used to

determine the required number of elementary blocks to accurately describe the friction process.
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Figure 5.3: A general flow chart of PSO.

5.4 Linearly-Parameterized GMS Model

The GMS model described in the previous section employs a Stribeck function that contains

nonlinear parameterization. While each term in (5.5) has a physical meaning, the task of

designing an adaptive friction compensator for the resulting nonlinear friction model becomes

complicated due to the presence of nonlinearity, which results in control issues such as stability,

robustness and convergence. Therefore, this study proposes a new approximator function for

the Stribeck effect that is linearly-parameterized and has a polynomial form:

s(ẋ) = s∗(ẋ, n) + δS (5.14)

where:

s∗(ẋ, n) = β1 + β2 |ẋ| + . . . + βn |ẋ|
n−1

=
n
∑

i=1

βi |ẋ|
i−1 (5.15)
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Here, s∗(ẋ, n) is the proposed linearly-parameterized approximator function, δS is the approx-

imation error, and n is the order of the approximator function. A bound on δS on any closed

and bounded interval Ωẋ = [ẋmin, ẋmax] exists and can be expressed as:

sup
Ωẋ

|δS| ≤ ∆S (5.16)

The main contribution of this study is that, using this new Stribeck equation, the GMS

friction model is linearly-parameterized, allowing for the applications of linear adaptive control

theories for compensation.

Employing the linearly-parameterized Stribeck function, each elementary block of the GMS

model becomes:

• In the sticking state, the friction force is given as:

Fi = θi,stickωstick (5.17)

where:

θi,stick = ki

ωstick =

∫ t

t0

ẋ(τ)dτ

and remains sticking until |Fi| > αi(s
∗(ẋ, n) + δS).

• In the slipping state, the friction force is described by:

Fi = θT
i,slipωslip + αisgn(ẋ)δS + δi,D (5.18)

where:

θi,slip =
[

αiβ1 αiβ2 . . . αiβn

]T

=
[

θi,1 θi,2 . . . θi,n

]T

ωslip = sgn(ẋ) ·
[

1 |ẋ| . . . |ẋ|n−1
]T

and remains slipping until the velocity goes through zero.

This linearly-parameterized friction model is used to construct a suitable adaptive controller

for compensation.
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To express the two regimes of the GMS model in a unified framework, define the indicator

function χ[X] of the event X as:

χ[X] =

{

1 if X is true

0 otherwise
(5.19)

This allows the expression of the GMS model as:

Ff = θT ω +

N
∑

i=1

χi,slip (αisgn(ẋ)δS + δi,D) (5.20)

where:

θ =
[

θ1,stick . . . θN,stick θT
1,slip . . . θT

N,slip

]T

ω =
[

χ1,stickωstick . . . χN,stickωstick χ1,slipω
T
slip . . . χN,slipω

T
slip

]T

χi,stick = χ [Fi is sticking]

χi,slip = χ [Fi is slipping]

Notice that χi,stick and χi,slip are mutually exclusive events that indicate the current state of

each elementary block in the GMS model. That is, each elementary block must either be

sticking or slipping, but cannot be both, at any given time.

5.5 Adaptive Friction Compensator

This section formulates an adaptive friction compensator that consists of a friction estimator

and a linear controller. Using the proposed linearly-parameterized GMS model, a compensator

is designed with adaptation for all the linearly-occurring parameters. Perturbations due to

the dynamic friction effects, δi,D, are considered as a disturbance. This study proposes two

algorithms for velocity and positional control of a mass acting under the influence of friction

as described by the GMS model.

5.5.1 Velocity Control

The structure of the adaptive friction compensator for velocity control is shown in Figure 5.4.

The system is given as a mass acting under the influence of friction as described by the GMS
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Figure 5.4: Adaptive friction compensator for velocity control.

model. The control objective is the velocity tracking of a desired trajectory defined by ẋd, that

is assumed to be designed such that ẍd exists and is bounded. A velocity tracking error is

stated as:

ev = ẋd − ẋ (5.21)

The proposed control law is give as:

u = m̂ẍd + κvev + F̂f + λ (5.22)

where m̂ is the estimated value of the mass, and λ is a robustifying term to be defined later.

The friction force estimate, F̂f , is defined as:

F̂f = θ̂
T
ω̂ (5.23)

where:

θ̂ =
[

θ̂1,stick . . . θ̂N,stick θ̂
T

1,slip . . . θ̂
T

N,slip

]T

ω̂ =
[

χ̂1,stickωstick . . . χ̂N,stickωstick χ̂1,slipω
T
slip . . . χ̂N,slipω

T
slip

]T

χ̂i,stick = χ
[

F̂i is sticking
]

χ̂i,slip = χ
[

F̂i is slipping
]
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Here θ̂ are the estimates of the parameters of the linearly-parameterized friction model. It is

noted that the true GMS friction model can thus be expressed in terms of ω̂ as:

Ff = θT ω̂ + δ (5.24)

where:

δ = δsw +

N
∑

i=1

[χi,slip (αisgn(ẋ)δS + δi,D)]

δsw = θT (ω − ω̂) (5.25)

Here, δ is an uncertainty term that arises from the switching error between the true GMS model

and friction compensator, δsw, the approximation error δS, and dynamic perturbation terms

δi,D. It can easily be shown that ∆ is a bounded term. That is:

sup
Ωẋ

|δ| ≤ ∆ (5.26)

Setting the robustifying term λ as:

λ = ∆̂η∆ tanh ((a + bt)ev) (5.27)

where ∆̂ is the estimate of ∆, a and b are user-defined positive constants, κ∆ > 1. The

parameter estimation errors are defined as:

m̃ = m̂ − m (5.28)

θ̃ = θ̂ − θ (5.29)

∆̃ = ∆̂ − ∆ (5.30)

The adaptive laws are established according to:

˙̃m = ˙̂m = γmẍde2 − σmγmm̂ (5.31)

˙̃
θ =

˙̂
θ = Γθω̂ev − σθΓθθ̂ (5.32)

˙̃∆ =
˙̂
∆ = γ∆|ev| − σ∆γ∆∆̂ (5.33)

where Γθ, γm, γ∆, σm, σθ and σ∆ are positive. The main stability result of the proposed method

is now presented.
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Theorem 5.1 Consider the mass system acting under the influence of friction as given in

(5.1) and assume that (5.26) holds, but is unknown. The control signal (5.22) together with the

adaptive laws (5.31), (5.32), and (5.33), guarantees that Lyapunov function defined as:

V =
1

2
me2

v +
1

2
γ−1

m m̃2 +
1

2
θ̃

T
Γ−1

θ θ̃ +
1

2
γ−1

∆ ∆̃2 (5.34)

is uniformly bounded and converges to a small neighborhood of the origin. The same property

holds for the error signals ev, m̃, θ̃, and ∆̃.

Proof: Taking the derivative of the candidate Lyapunov function defined by (5.34) and using

(5.1) and (5.22):

V̇ = mev ėv + γ−1
m m̃ ˙̃m + θ̃

T
Γ−1

θ
˙̃
θ + γ−1

∆ ∆̃ ˙̃∆

= ev (mẍd − u + Ff ) + γ−1
m m̃ ˙̃m + θ̃

T
Γ−1

θ
˙̃
θ + γ−1

∆ ∆̃ ˙̃∆

= −κe2
v + m̃

(

γ−1
m

˙̃m − ẍde2

)

+ θ̃
T
(

Γ−1
θ

˙̃
θ − ω̂ev

)

+ Λ (5.35)

where:

Λ = γ−1
∆ ∆̃ ˙̃∆ + δev − λev (5.36)

Substituting the adaptive laws (5.31) and (5.32):

V̇ = −κve
2
v − σmm̃m̂ − σθθ̃

T
θ̂ + Λ

≤ −κve
2
v −

σm

2
m̃2 −

σθ

2
θ̃

T
θ̃ +

σm

2
m2 +

σθ

2
θT θ + Λ (5.37)

Using (5.27) and the adaptive law (5.33):

Λ = γ−1
∆ ∆̃ ˙̃∆ + δev − ∆̂η∆ tanh ((a + bt)ev) ev

= ∆̃|ev| + δev − ∆̂η∆ tanh ((a + bt)|ev|) |ev| − σ∆∆̃∆̂

≤ ∆̃|ev| + ∆|ev| − ∆̂η∆ tanh ((a + bt)|ev|) |ev| −
σ∆

2
∆̃2 +

σ∆

2
∆2

= ∆̂|ev| (1 − η∆ tanh ((a + bt)|ev|)) −
σ∆

2
∆̃2 +

σ∆

2
∆2 (5.38)

Note that:

1 − η∆ tanh ((a + bt)|ev|) ≤ 0 (5.39)

if and only if:

|ev| ≥ ν (5.40)
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where:

ν =
1

a + bt
ln

(

η∆ + 1

η∆ − 1

)

(5.41)

By examining (5.41), it is clear that as t → ∞, ν → 0 when η∆ > 1. Therefore, (5.40) is

satisfied and:

V̇ ≤ −cV + λ (5.42)

where:

c = min

{

2κv

m
, σmγm,

σθ

λmax(Γ
−1
θ )

, σ∆γ∆

}

(5.43)

λ =
σm

2
m2 +

σθ

2
θT θ +

σ∆

2
∆2 (5.44)

As λ/c > 0, (5.42) results in:

0 ≤ V (t) ≤ λ/c + (V (0) − λ/c) e−ct (5.45)

Therefore all error signals ev, m̃, θ̃ and ∆̃ are uniformly bounded and converge to a small

neighborhood of the origin. �

5.5.2 Positional Control

The structure of the adaptive friction compensator for positional control is shown in Figure 5.5.

The system is given as a mass acting under the influence of friction as described by the GMS

model. The control objective is the positional tracking of a desired trajectory defined by xd,

that is assumed to be designed such that ẋd and ẍd exist and are bounded. A position tracking

error is stated as:

e1 = xd − x (5.46)

The following filtered tracking error is defined to facilitate the subsequent design and analysis:

e2 = ė1 + κ1e1 (5.47)

The proposed control law is give as:

u = m̂ẍd + κ1e2 + e1 + m̂κ1ė1 + F̂f + λ (5.48)
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Figure 5.5: Adaptive friction compensator for position control.

where m̂ is the estimated value of the mass, and λ is a robustifying term to be defined later.

The friction force estimate, F̂f , is defined similar to the previous section as:

F̂f = θ̂
T
ω̂ (5.49)

Here θ̂ are the estimates of the parameters of the linearly-parameterized friction model. Define

the robustifying term λ as:

λ = ∆̂η∆ tanh ((a + bt)e2) (5.50)

where ∆̂ is the estimate of ∆, a and b are user-defined positive constants, κ∆ > 1. The

parameter estimation errors are defined as:

m̃ = m̂ − m (5.51)

θ̃ = θ̂ − θ (5.52)

∆̃ = ∆̂ − ∆ (5.53)

The adaptive laws are established according to:

˙̃m = ˙̂m = γm (ẍd + κė1) e2 − σmγmm̂ (5.54)

˙̃
θ =

˙̂
θ = Γθω̂e2 − σθΓθθ̂ (5.55)

˙̃∆ =
˙̂
∆ = γ∆|e2| − σ∆γ∆∆̂ (5.56)
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where Γθ, γm, γ∆, σm, σθ and σ∆ are positive. The main stability result of the proposed method

is now presented.

Theorem 5.2 Consider the mass system acting under the influence of friction as given in

(5.1) and assume that (5.26) holds, but is unknown. The control signal (5.48) together with the

adaptive laws (5.54), (5.55), and (5.56), guarantees that Lyapunov function defined as:

V =
1

2
e2
1 +

1

2
me2

2 +
1

2
γ−1

m m̃2 +
1

2
θ̃

T
Γ−1

θ θ̃ +
1

2
γ−1

ǫ ∆̃2 (5.57)

is uniformly bounded and converges to a small neighborhood of the origin. The same property

holds for the error signals e1, e2, m̃, θ̃, and ∆̃.

Proof: By examining (5.46) and (5.47), it is noted that:

ė1 = −κe1 + e2 (5.58)

ė2 = ë1 + κė1 (5.59)

Taking the derivative of the candidate Lyapunov function defined by (5.57) and using (5.1) and

(5.48):

V̇ = e1ė1 + me2ė2 + γ−1
m m̃ ˙̃m + θ̃

T
Γ−1

θ
˙̃
θ + γ−1

∆ ∆̃ ˙̃∆

= −κe2
1 + e1e2 + e2 (mẍd − u + Ff + mκė1) + γ−1

m m̃ ˙̃m + θ̃
T

Γ−1
θ

˙̃
θ + γ−1

∆ ∆̃ ˙̃∆

= −κe2
1 − κe2

2 + m̃
(

γ−1
m

˙̃m − (ẍd + κė1) e2

)

+ θ̃
T
(

Γ−1
θ

˙̃
θ − ω̂e2

)

+ Λ (5.60)

where:

Λ = γ−1
∆ ∆̃ ˙̃∆ + δe2 − λe2 (5.61)

Substituting the adaptive laws (5.54) and (5.55):

V̇ = −κe2
1 − κe2

2 − σmm̃m̂ − σθθ̃
T
θ̂ + Λ

≤ −κe2
1 − κe2

2 −
σm

2
m̃2 −

σθ

2
θ̃

T
θ̃ +

σm

2
m2 +

σθ

2
θT θ + Λ (5.62)

Using (5.50) and the adaptive law (5.56):

Λ = γ−1
∆ ∆̃ ˙̃∆ + δe2 − ∆̂η∆ tanh ((a + bt)e2) e2

= ∆̃|e2| + δe2 − ∆̂η∆ tanh ((a + bt)|e2|) |e2| − σ∆∆̃∆̂

≤ ∆̃|e2| + ∆|e2| − ∆̂η∆ tanh ((a + bt)|e2|) |e2| −
σ∆

2
∆̃2 +

σ∆

2
∆2

= ∆̂|e2| (1 − η∆ tanh ((a + bt)|e2|)) −
σ∆

2
∆̃2 +

σ∆

2
∆2 (5.63)
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Note that:

1 − η∆ tanh ((a + bt)|e2|) ≤ 0 (5.64)

if and only if:

|e2| ≥ ν (5.65)

where:

ν =
1

a + bt
ln

(

η∆ + 1

η∆ − 1

)

(5.66)

By examining (5.66), it is clear that as t → ∞, ν → 0 when κ∆ > 1. Therefore, (5.65) is

satisfied and:

V̇ ≤ −cV + λ (5.67)

where:

c = min

{

2κ,
2κ

m
, σmγm,

σθ

λmax(Γ
−1
θ )

, σ∆γ∆

}

(5.68)

λ =
σm

2
m2 +

σθ

2
θT θ +

σ∆

2
∆2 (5.69)

As λ/c > 0, (5.67) results in:

0 ≤ V (t) ≤ λ/c + (V (0) − λ/c) e−ct (5.70)

Therefore all error signals e1, e2, m̃, θ̃ and ∆̃ are uniformly bounded and converge to a small

neighborhood of the origin. �

5.6 Simulation Results

Simulation results are presented to illustrate the validity of the proposed linearly-parameterized

GMS model in compensating for frictional dynamics. First, procedures for identifying and

determining the appropriate number of elementary blocks in the GMS model using PSO is

discussed. An analysis is conducted on the accuracy of the polynomial Stribeck function in

describing the Stribeck effect. The effectiveness of the proposed adaptive friction compensator is

then demonstrated by examining the tracking performance for velocity and position trajectories.
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5.6.1 Identification of GMS Model Parameters

A vital component of constructing the adaptive friction compensator is determining initial

parameter estimates and the required number of elementary blocks in the GMS model that

accurately captures frictional characteristics. Using offline optimization methods and available

measurements, the number of elementary blocks can be chosen to provide accuracy while mini-

mizing the number of parameters. One possible method is the PSO algorithm, which has been

explored for identifying the GMS model [37].

A data acquisition experiment is performed by subjecting the mass-friction system to a

random force input, u, and measuring the resulting velocity, ẋ. The same input u is then

injected into a simulation consisting of the estimated system candidates, whose parameters are

defined by the position of each particle in the PSO swarm. This yields a velocity profile ˙̂xi for

particles i = 1, . . . , I. This process is illustrated in Figures 5.6 and 5.7. The PSO algorithm

as outlined in the previous section is used to minimize the following mean-square performance

index when only the velocity is measurable:

Ji =
1

T

T
∑

t=0

(

ẋ(t) − ˙̂xi(t)
)2

(5.71)

where T is the total number of data samples. The random force input and resulting measured

velocity used for PSO identification in this study is shown in Figure 5.8. The true GMS friction
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Figure 5.8: (a) Random force input u and (b) resulting velocity profile for PSO identification.

model is comprised of four elementary blocks with the parameters as given in Table 5.1. Using

the PSO algorithm with a population size of I = 50, and a maximum number of iteration as

rmax = 50, the other PSO parameters are set as:

wmax = 0.9, wmin = 0.4, c1 = 1, c2 = 1 (5.72)

It is assumed that the true number of elementary blocks is unknown. Therefore, PSO identifi-

cation is conducted for various numbers of elementary blocks, ranging from one to six, and a

comparison of the best achievable performance index after 50 iterations is shown in Figure 5.9.

It is noted that the PSO algorithm accurately determined the number of elementary blocks of

the GMS model to be four. The identified GMS model parameters are compared to the true

values in Table 5.1.

5.6.2 Determination of Stribeck Approximation Function

This section deals with the determination of the linearly-parameterized Stribeck function and

analysis of its accuracy in describing the Stribeck effect. The nonlinear Stribeck function is

assumed to be described by (5.5), with the following parameters:

FS = 1.05 [N], FC = 0.2 [N]

VS = 98×10−5 [m/s], σS = 0.78 (5.73)

The approximation of this function by the proposed polynomial Stribeck equation is accom-

plished by using off-line, least-square, curve fitting technique. The identification process was
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Table 5.1: True and identified parameter values of GMS model

Parameter Identified True Parameter Identified True

C 26 24 α1 0.30 0.25

FS [N] 1.04 1.05 α2 0.22 0.25

FC [N] 0.20 0.20 α3 0.27 0.25

VS [m/s] 0.99 × 10−5 0.98 × 10−5 α4 0.21 0.25

σS 0.80 0.78 k1 [N/m] 1.16 × 104 1.00 × 104

k2 [N/m] 0.61 × 104 0.70 × 104

k3 [N/m] 0.44 × 104 0.50 × 104

k4 [N/m] 0.21 × 104 0.30 × 104

conducted for various orders of the linearly-parameterized Stribeck function to determine a

model order that provides good trade-off between modeling accuracy and minimal parameters.

This will be used to construct the adaptive friction compensator. The mapping of the nonlin-

ear Stribeck function is conducted for all the velocity corresponding to the desired operational

range.

Figure 5.10(a) illustrates the Stribeck effect. The model order for the linearly-parameterized

function is varied from 1 to 10. The resulting modeling error is shown in Figure 5.10(b). Based

upon these results, it is determined that n = 4 provides a good approximation of the nonlinear

Stribeck function while maintaining a small amount of parameters. From this observation, the

friction compensator proposed in this reserach is constructed using a linearly-parameterized

Stribeck function of order 4.

5.6.3 Performance of Adaptive Controller

The effectiveness of the proposed adaptive controllers is illustrated for velocity and position

trajectory signals. The frictional dynamics are chosen to be governed by four elementary

blocks. Experimental investigations have determined that a GMS model constructed with four

elementary blocks is sufficient to accurately capture frictional characteristics under realistic

conditions [2,55]. The results indicate that increasing the number of elementary block does not
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Figure 5.9: (a) Best achievable performance index for various elementary blocks after 50 iterations;

and (b) evolution of the performance index for four elementary blocks using PSO.

serve to improve the modeling accuracy. The system parameters are given as:

m = 1 [kg], C = 24 [N/s]

k1 = 1.0×104 [N/m], k2 = 0.7×104 [N/m]

k3 = 0.5×104 [N/m], k4 = 0.3×104 [N/m]

α1 = α2 = α3 = α4 = 0.25 (5.74)

For the Stribeck effect described by the parameters given in (5.73), the coefficients of the

proposed polynomial Stribeck function with a model order of four is determined as outlined

above, and is given in Table 5.2.

Velocity Control

In this section, simulation results for velocity control using the proposed adaptive friction

compensator is presented. The gains κv and κ∆ are chosen as:

κv = 200, κ∆ = 2000 (5.75)

The performance of the proposed adaptive controller is evaluated for the trajectory tracking

of a random step velocity signal, and is compared to a PD controller with the following gains:

kP = 40000, kD = 200 (5.76)
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Figure 5.10: (a) The Stribeck curve; and (b) approximation error of the Stribeck curve for various

model order.

The convergence of the polynomial Stribeck parameters and the Maxwell-slip parameters, when

the reference trajectory satisfies the persistently exciting condition, are shown in Figures 5.11

and 5.12 respectively. This is compared to the true values in Table 5.2. The robustifying

term ∆̂ is also shown in Figure 5.12. Using these converged estimates, trajectory tracking

performances of the proposed adaptive controller and the PD controller are compared in Figure

5.13 for a random step velocity trajectory. It is noted that Figure 5.13 shows the effectiveness

of the proposed adaptive algorithm after convergence in achieving trajectory tracking. The

PD controller also provides acceptable tracking, but exhibits steady-state error in the low-

velocity region, where the Stribeck effect results in a high frictional force. This suggests that

the PD controller may not be suitable for position tracking, as random step position signals

would operate mainly in the zero velocity region. This observation is confirmed in the following

section that deals with positional control. The improvement in tracking performances offered

by the proposed adaptive friction compensation scheme over conventional PD controllers can

also be shown by comparing the RMS error. The RMS tracking error for the conventional PD

controller during the entire simulation is 1.27×10−4 m/s, while the RMS tracking error for the

proposed adaptive algorithm is merely 0.24× 10−4 m/s. The ability of the proposed algorithm

to estimate and compensate for friction forces is further illustrated in Figure 5.14, which shows

the true and estimated friction force for the random step trajectory. The results clearly show

the effectiveness of the proposed adaptive friction compensator in achieving velocity trajectory

tracking and friction estimation despite modeling uncertainties.
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Table 5.2: Initial, converged and LS/True parameter values.

Parameter Initial Converged LS/True

β1 0.3 0.8845 0.9200

β2 0 −482.2020 −516.1794

β3 0 1.31×105 1.37×105

β4 0 −1.24×107 −1.24×107

k1 [N/m] 1.50×104 0.86×104 1.00×104

k2 [N/m] 1.05×104 0.66×104 0.70×104

k3 [N/m] 0.75×104 0.45×104 0.50×104

k4 [N/m] 0.45×104 0.32×104 0.30×104

Positional Control

This section presents the simulation results of the proposed adaptive friction compensator for

position control. The gains κ1 and κ∆ are chosen as:

κ1 = 200, κ∆ = 2000 (5.77)

Similar to the previous section, the results of the proposed adaptive controller is compared to

a PD controller with the following gains:

kP = 40000, kD = 200 (5.78)

Another result using a conventional PID controller is also presented, with the gains set as:

kP = 40000, kI = 400000, kD = 200 (5.79)

The convergence of the polynomial Stribeck parameters and the Maxwell-slip parameters, when

the reference trajectory satisfies the persistently exciting condition, are similar to those shown

in Figures 5.11 and 5.12. In this section, the performance of the proposed adaptive controller

is evaluated for the trajectory tracking of a random step and ramp position signal. Using the

converged estimates, trajectory tracking performances of the proposed adaptive controller, con-

ventional PD and PID controllers are compared in Figures 5.15 and 5.16. It is noted that Figure

5.15 shows the effectiveness of the proposed adaptive algorithm after convergence in achieving
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trajectory tracking of a random step signal. The PD controller, however, exhibits considerable

steady-state tracking error. The PID controller eliminates this steady-state error for a step

signal. However, by examining Figure 5.16, it is seen that both the PD and PID controllers

yield unacceptable tracking results for a ramp trajectory. In particular, the tendencies of these

controllers to cause limit-cycling due to the stick-slip effect and integral wind-up is evident.

This is compared to the proposed adaptive friction compensator, which effectively achieves

position tracking for both random step and ramp trajectories despite modeling uncertainties.
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Figure 5.11: Convergence of linearly-parameterized Stribeck function coefficients.
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Figure 5.15: Comparison of position tracking performance for random step trajectory of proposed

controller after convergence, PD and PID controllers.



5.6. Simulation Results 147

0 2 4 6 8
−3

−2

−1

0

1

2

3
x 10

−3

Time (s)

P
o
si
ti
o
n
 (
m
)

 

 

0 2 4 6 8

−2

−1

0

1

2

x 10
−4

Time (s)

T
ra
ck
in
g
 E
rr
o
r 
(m
)

0 2 4 6 8
−3

−2

−1

0

1

2

3
x 10

−3

Time (s)

P
o
si
ti
o
n
 (
m
)

 

 

0 2 4 6 8

−2

−1

0

1

2

x 10
−4

Time (s)

T
ra
ck
in
g
 E
rr
o
r 
(m
)

0 2 4 6 8
−3

−2

−1

0

1

2

3
x 10

−3

Time (s)
P
o
si
ti
o
n
 (
m
)

 

 

0 2 4 6 8

−2

−1

0

1

2

x 10
−4

Time (s)

T
ra
ck
in
g
 E
rr
o
r 
(m
)

Desired

Proposed

Desired

PD

Desired

PID

(a) (b)

(d) (e) (f)

(c)

Figure 5.16: Comparison of position tracking performance for ramp trajectory of proposed controller

after convergence, PD and PID controllers.
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5.7 Summary

An adaptive friction compensator is proposed using polynomial approximation of the Stribeck

effect. The structure is based upon the GMS friction model, which becomes linearly-parameterized,

allowing for the straight-forward design of adaptive laws. Stability and robustness conditions

with respect to unmodeled dynamics is guaranteed by introducing a robustifying term into the

control signal. The friction force is accurately estimated and compensated for by the adaptive

controller, and allows for trajectory tracking of velocity and position signals.
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Chapter 6

Conclusion

The main objective of this thesis was the exploration of adaptive and iterative control methods

for mechanical systems with parametric uncertainties. Three different systems were considered

that represent varying aspects of the general control problem.

The first topic dealt with by this thesis was the iterative control of a two-mass torsional

motor system with unknown parameters. The high order of the system, in addition to the

interconnection between the different parameters, made this a very interesting control problem.

By including a suitable reference model into the feedforward path of a 2DOF controller, this

research was able to use CGT theory to establish a clear relationship between controller param-

eters and the physical model parameters. This was then used in conjunction with IFT method

to tune the controller parameters. As the controller parameters is optimized, the proposed

algorithm also resulted in the identification of the physical model parameters. The result is a

comprehensive control algorithm suitable for the repetitive tasks usually performed by torsional

motor systems, which provides excellent trajectory tracking while simultaneously identifying all

the parameters of the two-mass motor system. As of the date of this publication, the proposed

method remains the only viable scheme for achieving both objectives in an online manner. The

algorithm presented in this thesis was successfully tested on an experimental system.

The scope of the study was then expanded to include nonlinear mechanical systems with

parametric uncertainties. The second system considered by this research was vibration suppres-

sion of a wheel-chassis assembly with semi-active damping via a magnetorheological damper.

Several different methods was proposed by this research, depending on the available knowledge

of the system. The general concept employed by this study is the combination of a refer-
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ence feedback controller with an adaptive inverse controller to achieve linearization of the MR

damper. When the suspension parameters are known, the reference feedback was developed

using robust LQ controller design. An examination was conducted to determine the benefits

of including dissipativity into the performance function. The robust LQ controller was then

used in conjunction with the proposed adaptive inverse controller, which can be adapted via

forward or inverse modeling, yielding considerable performance improvements while requiring

less power than an active actuator. The adaptive skyhook method was then proposed for the

case of unknown suspension parameters. Due to discrepancies between the desired damping

force and the achievable damping force with the semi-active MR damper, an auxiliary error

signal was developed which guarantees the stability of the adaptive skyhook method despite

this uncertainty. This was again combined with the adaptive inverse controller using forward

or inverse modeling to achieve total adaptive control of an entirely unknown suspension system

with semi-active MR damper.

The last issue considered by this study was the friction compensation problem. Friction

compensation is a highly complicated task that depends greatly upon the accuracy of the friction

model. This thesis developed an adaptive friction compensation scheme using the recently

proposed GMS model. It is the first such method to be developed and displays promising

results. In particular, a polynomial approximation function was proposed by this thesis to

describe the Stribeck effect. This allowed for the utilization of well-established linear control

theories. A smooth sliding mode-based control scheme was included to ensure robustness with

respect to approximation error. The result is an effective compensation scheme that is able to

identify all system parameters as well as the GMS model in an online, adaptive manner. In

addition, the algorithm is highly robust to unmodelled dynamics, such switching error, dynamic

perturbations and approximation error due to the inclusion of the smooth sliding-mode based

control signal.

6.1 Suggestions for Future Work

Despite the impressive results obtained during the course of this research, there are always room

for improvements. Limited by time and resources, the author was not able to complete every

aspect of his research plans. Certain issues remained to be addressed, while the results also

introduced new and fascinating problems. It is therefore the wish of the author to recommend
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some ideas for future work.

The algorithm proposed for the IFT of the unknown two-mass torsional motor system was

finalized by this thesis. Simulation and experimental results both verify the validity and effec-

tiveness of the proposed approach in achieving simultaneous trajectory tracking and parameter

identification. However, the author recommends that further research be conducted on how to

extend this method to higher order systems, for example, a three-mass motor system, and if

possible the development of an adaptive method to complement the proposed iterative tuning

algorithm.

Suspension control is a highly complex problem with many obstacles to be taken into con-

sideration. While this research successfully developed several algorithms for the the adaptive,

semi-active control of an unknown suspension system, the author feels that a deeper integration

can be achieved between the adaptive inverse controller and adaptive reference controller so

as to minimized the differences between the desired damping force and the semi-active MR

force. By taking into account the semi-active constraints of the MR damper when designing

the adaptive feedback control, overall performance and robustness of the algorithm should be

increased. Experimental verification should likewise be conducted.

Lastly, the issue of adaptive friction compensation remains the most interesting problem

from a control perspective. The GMS friction model is relatively new, and the adaptive com-

pensation scheme proposed in this research is the first of its kind. However, the GMS model

introduces several complications such as switching and nonlinearities that should be studied in

more detail. It is the opinion of this author that adaptive friction compensation schemes based

upon the GMS model remains an extremely open and fascinating topic.
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