
Statistical Models for Data Which Include
Angular Observations

Shogo Kato

September 2007



Contents

1 Preliminaries 1

1.1 Introduction and summary . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic concepts and distributions . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Basic concepts of circular statistics . . . . . . . . . . . . . . . 4

1.2.2 Von Mises distribution . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Generalized von Mises distribution . . . . . . . . . . . . . . . 6

1.2.4 Wrapped Cauchy distribution . . . . . . . . . . . . . . . . . . 8

1.2.5 Exit distribution . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Circular–Circular Regression Models 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Circular regression model . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Regression curve . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Some properties of the proposed regression model . . . . . . . 16

2.2.3 Comparison with existing regression models . . . . . . . . . . 18

2.3 Related bivariate circular distribution . . . . . . . . . . . . . . . . . . 18

2.4 Estimation and test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Fisher information matrix . . . . . . . . . . . . . . . . . . . . 20

2.4.3 A test of independence . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Distributions for Angular Observations 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Distributions with specified marginal distributions . . . . . . . . . . . 28

3.2.1 Definition of the proposed models . . . . . . . . . . . . . . . . 28

3.2.2 Properties of the proposed models . . . . . . . . . . . . . . . . 31

3.2.3 Distributions on the disc . . . . . . . . . . . . . . . . . . . . . 35

3.3 Distributions on the cylinder . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 A further study of the Johnson and Wehrly model . . . . . . . 37

3.3.2 An extension of the Mardia and Sutton model . . . . . . . . . 39

3.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Modality of the distribution with density (3.3.5) . . . . . . . . . 46

B Derivation of density (3.3.6) . . . . . . . . . . . . . . . . . . . . 49

4 Distributions for a Pair of Unit Vectors 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Model for a pair of unit vectors . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Definition of the proposed model . . . . . . . . . . . . . . . . 52

4.2.2 Probability density function . . . . . . . . . . . . . . . . . . . 53

4.3 Properties of and inference for the proposed model . . . . . . . . . . 54

4.3.1 Marginals and conditionals . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Random vector simulation . . . . . . . . . . . . . . . . . . . . 56

4.3.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.5 Pivotal statistic . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Bivariate circular case . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Transformation of random vectors and parameters . . . . . . . 58

iii



4.4.2 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Random vector generator . . . . . . . . . . . . . . . . . . . . . 60

4.4.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Related models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Generalizations of model (4.2.1) . . . . . . . . . . . . . . . . . 62

4.5.2 Related distributions on R2 and on the cylinder . . . . . . . . 63

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Derivation of density (4.2.1) . . . . . . . . . . . . . . . . . . . . 65

B Proofs of Theorems 4.2 and 4.3 . . . . . . . . . . . . . . . . . . . 65

Acknowledgements 68

Bibliography 69

iv



Chapter 1

Preliminaries

1.1 Introduction and summary

In a variety of scientific fields, observations are described as directions. In mete-

orology, for example, wind directions measured at a weather station are data of

this type. Or biologists may be interested in the analysis of the gene locations of

bacteria which can be expressed as directions. The directions of magnetic field in a

rock sample are of interest for some geologists. A set of observations expressed as

directions are referred to as directional data.

Since these directions can be expressed as points on the sphere, a set of directional

observations is also called spherical data. In particular, two-dimensional spherical

data is referred to as circular data. Statistics for these spherical data is called

directional statistics, while the one which specialises in handling circular data is

referred to as circular statistics.

There are enormous contexts which handle linear data, namely, a set of Rn-valued

observations. However, comparatively little work has been done if the observations

are directions or points on the sphere. Some techniques for analysing this type of

observations are summarized in the following monographs.

Mardia (1972) and Mardia and Jupp (2000) provided a theoretical overview of

the statistics of directional data. Biological aspects of statistics of circular data
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were extensively studied in Batschelet (1981). Watson (1983) developed theoretical

statistics on the general dimensional sphere. Fisher et al. (1987) and Fisher (1993)

considered some techniques for the analysis of three-dimensional spherical data and

circular ones, respectively. Jammalamadaka and SenGupta (2001) focused on the

topics in circular statistics.

Although these monographs introduce some methods to analyse directional data,

there are still various topics which have not been sufficiently investigated. For in-

stance, there is not enough discussion on statistical models for multiple observations

which include directional ones such as the data on the torus, cylinders or discs. Al-

though scientists actually face a lot of datasets consisting of multiple angular or

mixtures of linear and circular observations, there are only a limited number of

works in statistics which tackle this problem.

Given this situation, in this thesis, we propose some new statistical models for the

analysis of observations which include angular ones. The main topic of the thesis is to

propose the following three models, based on the papers by Kato et al. (to appear),

Kato and Shimizu (to appear) and Kato (submitted). First, a circular–circular

regression model is proposed, which is a regression model in which both covariates

and responses are angular variables. Second, some probability distributions for

observations which include angular ones are provided. One of them is a class of

tetravariate distributions with specified bivariate distributions, while the others are

distributions defined on the cylinder which are obtained using the maximum entropy

principle under some constraints on certain moments. The third model we introduce

is a distribution for a pair of unit vectors which is generated by Brownian motion.

The subsequent chapters are organized as follows. In the rest of this chapter, we

provide a brief overview of basic concepts of circular statistics and important models

in directional statistics. First we introduce some key concepts such as trigonometric

moments, mean direction and mean resultant length. Then we discuss some well-

known distributions on the circle and sphere, namely, the von Mises, the generalized

2



von Mises, the wrapped Cauchy and exit distributions.

The works in Chapters 2, 3 and 4 are based on the manuscripts by Kato et al.

(to appear), Kato and Shimizu (to appear) and Kato (submitted), respectively. The

particular emphasis is given to Chapters 2 and 3, which are the main chapters of

the thesis. The other chapter, Chapter 4, provides a work which is related to the

works in Chapters 2 and 3.

Chapter 2 provides a regression model in which both covariates and responses

are angular variables. The regression curve is expressed as a form of the Möbius

circle transformation. The angular error is assumed to follow a wrapped Cauchy or,

equivalently, circular Cauchy distribution. A bivariate circular distribution is pro-

posed to model our circular regression. Some properties of the regression, including

estimation and testing procedures, are obtained. The proposed methods are applied

to marine biology and wind direction data.

Chapter 3 discusses some stochastic models for dependence of observations which

include angular ones. First, we provide a theorem which constructs four-dimensional

distributions with specified bivariate marginals on certain manifolds such as two

tori, cylinders or discs. Some properties of the submodel of the proposed mod-

els are investigated. The theorem is also applicable to the construction of a related

Markov process, models for incomplete observations, and distributions with specified

marginals on the disc. Second, two maximum entropy distributions on the cylinder

are discussed. The circular marginal of each model is distributed as the general-

ized von Mises distribution which can be a symmetric or asymmetric, unimodal or

bimodal shape. The proposed cylindrical model is applied to two datasets.

In Chapter 4, we propose a bivariate model for a pair of dependent unit vectors

which is generated by Brownian motion. Both marginals have uniform distributions

on the sphere, while the conditionals follow so-called “exit” distributions. Some

properties of the proposed model, including parameter estimation, are investigated.

Further study is given to the bivariate circular case by transforming variables and
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parameters into the form of complex numbers. Some desirable properties, such as

multiplicative property and log-infinite divisibility, hold for this submodel. As a

related topic, the proposed distribution is generalized so that both marginals have

exit distributions. We also show how it is possible to construct distributions in

the plane and on the cylinder by applying bilinear fractional transformations to the

proposed bivariate circular model.

1.2 Basic concepts and distributions

Before we embark on the main topic, we briefly introduce some preliminary knowl-

edge about directional statistics. First, we provide key concepts of circular statistics.

Then we discuss some well known distributions on the circle and the sphere. The

distributions we discuss here are the von Mises distribution, the wrapped Cauchy

distribution, the generalized von Mises distribution and the exit distribution.

1.2.1 Basic concepts of circular statistics

Because of the geometrical difference between the line and the circle, some of the

standard techniques for the linear data can not be directly applied to handle the

circular data. Therefore it is necessary to develop statistical techniques for circular

data, which are different from the ones for linear data.

In circular statistics, a random variable which takes values on the circle, say Θ,

is often expressed in terms of radians as [0, 2π) or [−π, π). If Θ has the probability

density function or the density, f(θ), then it satisfies the following properties:

1. f(θ) ≥ 0 a.e.,

2.

∫ 2π

0

f(θ)dθ = 1.

The pth trigonometric moment of Θ, φΘ(p), is defined by

φΘ(p) = E(eipΘ), p ∈ Z.
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In particular, the argument of the first trigonometric moment, i.e. arg {φΘ(1)}, is

called mean direction of Θ, while the absolute value of that, |φΘ(1)|, is referred to

the mean resultant length of Θ.

Using the Fourier series theory, one can recover the density for Θ from its trigono-

metric moments on a natural assumption. Under a condition
∑∞

p=1 |φΘ(p)|2 < ∞,

the density for Θ is given by

f(θ) =
1

2π

∞∑
p=−∞

φΘ(p)e−ipθ, 0 ≤ θ < 2π.

See Mardia and Jupp (2000, Sections 3.4.1 and 4.2.1) for details.

On occasions, a circular variable is expressed in the form of complex number via

the transformation Z = eiΘ. Then the variable Z takes values on the unit circle in

the complex plane. The trigonometric moments, mean direction and mean resultant

length of Z are defined in a similar manner as in the [0, 2π)-valued random variable

Θ.

Note that the circular variable can be expressed in the vectoral form using the

transformation X = (cos Θ, sin Θ)′. It is clear that the random vector X takes values

on the unit circle in R2.

1.2.2 Von Mises distribution

The von Mises distribution was introduced as a statistical model by von Mises

(1918) and was discussed earlier by Langevin (1905) in the context of physics. The

distribution is defined by the density

f(θ) =
1

2πI0(κ)
exp {κ cos(θ − µ)} , 0 ≤ θ < 2π, (1.2.1)

where κ ≥ 0, µ ∈ [0, 2π) and Ij denotes the modified Bessel function of the first

kind and order j which is given by

Ij(z) =
1

2π

∫ 2π

0

cos(jθ) exp {z cos θ} dθ =
∞∑

r=0

1

Γ(r + j + 1) r!

(z

2

)2r+j

, z ∈ C.
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We write Θ ∼VM(µ, κ) if a random variable Θ has the density (1.2.1).

Assume Θ is a random variable from VM(µ, κ). Then the pth trigonometric

moment of Θ is given by

E(eipΘ) =
Ip(κ)

I0(κ)
eipµ, p ∈ Z.

In particular, the mean direction and mean resultant length of Θ are given by µ and

I1(κ)/I0(κ), respectively.

The von Mises distribution is obtained as a maximum entropy distribution sub-

ject to certain moments. Let f be a density of the circular distribution with support

S = {θ ∈ [0, 2π) ; f(θ) > 0}. Then the density which maximizes the entropy

E = −
∫

S

log {f(θ)} f(θ) dθ,

subject to E(cos Θ) = a, E(sin Θ) = b, a2 + b2 < 1, corresponds to the density of

the von Mises distribution.

Downs (1966) showed a method to generate a von Mises distribution through

conditioning the bivariate normal distribution with some restriction on mean vector

and variance-covariance matrix. Let X be a R2-valued random vector which obeys

the bivariate normal distribution N(µ, σ2I) where µ = (ξ cos η, ξ sin η), ξ, σ > 0, 0 ≤

η < 2π. Transform the bivariate random vector X = (X1, X2)
′ into polar co-

ordinates (R, Θ)′ by putting (X1, X2) = (R cos Θ, R sin Θ). Then the conditional

distribution of Θ given R = r is the von Mises distribution VM(η, rξ/σ2).

1.2.3 Generalized von Mises distribution

Rukhin (1972) discussed an asymmetric distribution on the circle as the distribution

which has nontrivial sufficient statistics for location parameters on the circle with

positive and continuous density. Preceding his work, the distribution originally

appeared as a special case of the model proposed by Maksimov (1967). In directional

statistics, this distribution is considered an extension of the von Mises distribution,
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which has the density

f(θ) = C1 exp [κ1 cos(θ − µ1) + κ2 cos {2(θ − µ2)}] , 0 ≤ θ < 2π, (1.2.2)

where κ1, κ2 ≥ 0, 0 ≤ µ1, µ2 < 2π and C1 is the normalizing constant

C−1
1 = 2π

[
I0(κ1)I0(κ2) + 2

∞∑
r=1

Ij(κ2)I2j(κ1) cos {2j(µ1 − µ2)}

]
, (1.2.3)

where Ij denotes the modified Bessel function of the first kind and order j. We denote

the generalized von Mises distribution with density (1.2.2) by GVM(µ1, µ2, κ1, κ2).

This density can be used to represent symmetric or asymmetric, unimodal or bi-

modal shapes depending on the choice of µ1, µ2, κ1, κ2. When κ2 = 0, generalized

von Mises distribution reduces to the von Mises distribution VM(µ1, κ1). Yfantis

and Borgman (1982) studied some properties of this model, including modes and

parameter estimation.

The generalized von Mises is also obtained by conditioning a bivariate normal

distribution without any restriction on the parameters. Let X = (X1, X2)
′ be a

R2-valued random vector which obeys the bivariate normal distribution N2(µ, Σ)

where µ = (ξ cos η, ξ sin η)′ , ξ ≥ 0, 0 ≤ η < 2π,

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, σ1, σ2 > 0, −1 < ρ < 1.

We transform the random vector X by putting (X1, X2) = (R cos Θ, R sin Θ), R >

0, 0 ≤ Θ < 2π. Then the conditional distribution of Θ given R = r is the generalized

von Mises distribution GVM(µ1, µ2, κ1, κ2) where

cos µ1 = −rξ(ρσ1σ2 sin η − σ2
2 cos η)

σ2
1σ

2
2(1 − ρ2)κ1

, sin µ1 = −rξ(ρσ1σ2 cos η − σ2
1 sin η)

σ2
1σ

2
2(1 − ρ2)κ1

,

cos 2µ2 = − r2(σ2
2 − σ2

1)

4σ2
1σ

2
2(1 − ρ2)κ2

, sin 2µ2 =
r2σ1σ2ρ

2σ2
1σ

2
2(1 − ρ2)κ2

,

κ1 =
r2

2σ2
1σ

2
2(1 − ρ2)

√{
(σ2

2 − σ2
1)

2

}2

+ ρ2σ2
1σ

2
2,

κ2 =
rξ

σ2
1σ

2
2(1 − ρ2)

√
(ρσ1σ2 sin η − σ2

2 cos η)2 + (ρσ1σ2 cos η − σ2
1 sin η)2.
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1.2.4 Wrapped Cauchy distribution

Let Θ be a random variable which takes values on the circle [0, 2π). Then Θ has the

wrapped Cauchy distribution or, equivalently, circular Cauchy distribution when the

density for Θ is

f(θ) =
1

2π

1 − ρ2

1 − 2ρ cos(θ − µ) + ρ2
, 0 ≤ θ < 2π,

where 0 ≤ ρ < 1, 0 ≤ µ < 2π. For convenience, we write Θ ∼ WC(µ, ρ) if a

random variable Θ has the above density.

The distribution is derived as the wrapped distribution of the Cauchy distribu-

tion on the real line. Assume that a random variable X has the Cauchy distribution

with density

f(x) =
1

π

σ

σ2 + (x − µ)2
, −∞ < x < ∞,

where −∞ < µ < ∞ and σ > 0. Then the wrapped distribution of the Cauchy

distribution is given by Θ ≡ X (mod 2π). After some algebra, it follows that

Θ ∼ WC(µ, e−σ2
). See, for example, Jammalamadaka and SenGupta (2001) for the

detailed calculation of the density.

McCullagh (1996) discussed the wrapped Cauchy distribution in the form of

complex numbers. In this thesis we basically follow his representation of the wrapped

Cauchy distribution. Let Θ ∼ WC(µ, ρ) and put Z = eiΘ and ϕ = ρeiµ. Then the

density of Z is

f(z) =
1

2π

|1 − |ϕ|2|
|z − ϕ|2

, z ∈ Ω, (1.2.4)

where |ϕ| < 1, Ω = {z ∈ C ; |z| = 1}. McCullagh (1996) extended the parameter

space of ϕ to C\Ω. In this thesis, we further extend the domain of ϕ to C and define

Z = ϕ for ϕ ∈ Ω. In the same way as McCullagh (1996), we denote the wrapped

Cauchy distribution in (1.2.4) by Z ∼ C∗ (ϕ).

Here arg(ϕ) is a mean direction and |ϕ| a mean resultant length of Z. The

distribution is unimodal and symmetric about z = arg(ϕ). When |ϕ| is equal to
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0, the distribution is the uniform distribution on the circle. As |ϕ| tends to 1, the

distribution approaches a point distribution with singularity at Z = ϕ.

The properties of the wrapped Cauchy distribution have been investigated, for

example, by Mardia (1972) and McCullagh (1996). The following hold for the

wrapped Cauchy distribution:

(i) Z ∼ C∗(ϕ) =⇒ β0Z ∼ C∗(β0ϕ), β0 ∈ Ω,

(ii) Z1 ∼ C∗(ϕ1), Z2 ∼ C∗(ϕ2), Z1⊥Z2, |ϕ1|, |ϕ2| ≤ 1 =⇒ Z1Z2 ∼ C∗(ϕ1ϕ2),

(iii) Z ∼ C∗(ϕ) =⇒ Z + β1

1 + β1Z
∼ C∗

(
ϕ + β1

1 + β1ϕ

)
, β1 ∈ C,

(iv) Z ∼ C∗(ϕ) =⇒ Z ∼ C∗(1/ϕ).

The properties (i) and (iii) show that if Z is distributed as a uniform distribution

C∗(0), then the Möbius circle transformation of Z generates the wrapped Cauchy

distribution; i.e. β0(Z + β1)/(1 + β1Z) ∼ C∗ (β0β1) where β0 ∈ Ω and β1 ∈ C.

Note that (ii)–(iv) do not hold for the von Mises distribution.

1.2.5 Exit distribution

A random variable which takes values on the unit sphere in Rd is called a d-

dimensional spherical variable. Some distributions for the spherical variable or,

simply, spherical distributions are introduced in Mardia and Jupp (2000, Chapter

9). In this section we introduce a spherical distribution, i.e. the exit distribution,

which is related to the distribution given in Chapter 4.

The exit distribution for the sphere appears, for example, in Durrett (1984,

Section 1.10) as a distribution related to the Brownian motion. The exit distribution

for the d-dimensional sphere, Exitd(η), is of the form

f(x) =
1

Ad−1

1 − ∥η∥2

∥x − η∥d
, x ∈ Sd−1, (1.2.5)
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where η ∈ {ζ ∈ Rd ; ∥ζ∥ < 1}, Sd−1 = {x ∈ Rd ; ∥x∥ = 1}, Ad−1 is a surface area of

Sd−1, i.e. Ad−1 = 2πd/2/Γ(d/2), and ∥ · ∥ is the Euclidean norm. This distribution

is unimodal and rotationally symmetric about x = η/∥η∥, with the concentration

being controlled by ∥η∥. In particular, when ∥η∥ = 0, the distribution reduces to

the spherical uniform. As ∥η∥ → 1, it tends to a point distribution with singularity

at x = η. It is noted that the exit distribution coincides with the wrapped Cauchy

distribution for d = 2. Suppose X = (X1, X2)
′ ∼ Exit2(η) where η = (η1, η2)

′. On

putting Z = X1 + iX2, the distribution of Z is given by Z ∼ C∗(η1 + iη2).

The exit distribution is derived as follows. Let {Bt} be Rd-valued Brownian

motion starting at B0 = η where d ≥ 2 and η ∈ {x ∈ Rd ; ∥x∥ < 1}. Suppose that

τ is the smallest time at which the Brownian particle hits the d-dimensional unit

sphere, i.e. τ = inf{t ≥ 0 ; ∥Bt∥ = 1}. Then Bτ ∼ Exitd(η).
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Chapter 2

Circular–Circular Regression
Models

2.1 Introduction

Some regression models in which both covariates and responses take values on the

circle have been proposed in the literature. Rivest (1997) provided a model for

predicting the y-direction using a rotation of the “decentred” x-angle, which was

applied to the prediction of the direction of earthquake displacement in terms of the

direction of steepest descent. Downs and Mardia (2002) proposed a regression model

in which the regression curve is expressed as a form of the Möbius transformation or

tangent function, with application to data on circadian biological rhythms and wind

directions. See Fisher (1993, p.168) for earlier works on circular–circular regression

models.

The Möbius transformation is well known as a mapping which carries the com-

plex plane onto itself. With some restrictions on the parameters, this mapping maps,

for example, the unit circle onto itself or the unit circle onto the real line. One of the

earlier works in directional statistics in which the Möbius transformation appeared

was given by McCullagh (1996). In this paper he discussed the connection between

the real Cauchy distribution and the wrapped or circular Cauchy distribution via

the Möbius transformation. The Möbius transformation was also used in the link
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functions of regression models by Downs and Mardia (2002) and Downs (2003).

Minh and Farnum (2003) induced some probabilistic models on the circle by using a

bilinear transformation which maps the real line onto the unit circle and is related to

the Möbius transformation in form. Jones (2004) proposed the Möbius distribution

on the disc which is generated by applying the Möbius transformation to the sym-

metric beta or Pearson type II distribution. McCullagh (1989) and Seshadri (1991)

transformed their distributions via a one-to-one mapping which has the same form

as the Möbius transformation and maps the interval (−1, 1) onto itself.

The wrapped Cauchy distribution was used as a statistical model by Mardia

(1972, p.56) and Mardia and Jupp (2000, p.51). Its distributional properties and

estimation were investigated by Kent and Tyler (1988) and McCullagh (1996). Mc-

Cullagh (1996) showed that the wrapped Cauchy distribution is obtained by applying

a bilinear transformation to the Cauchy distribution on the real line and is closed

under the Möbius transformation. It has the additive property and a central limit

theorem holds for this distribution (Kolassa and McCullagh, 1990).

In this chapter we propose a new circular–circular regression model and study

some properties, including estimation and testing procedures, of this model. Its

regression curve is expressed as a form of the Möbius circle transformation, and the

angular error is distributed as a wrapped Cauchy distribution.

In Section 2.2 some properties of the proposed model, including its regression

curve, are investigated. In addition, we compare our regression model with some

existing models. A bivariate circular distribution, which could be useful for our

regression model, is presented in Section 2.3. Next Section 2.4 considers parame-

ter estimation, the Fisher information matrix, and a test of independence for the

proposed model. In Section 2.5 our model is applied to marine biology and wind

direction data.
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2.2 Circular regression model

Let responses Y1, . . . , Yn be independent, and let x1, . . . , xn be nonstochastic covari-

ates which take values on the unit circle, Ω, in the complex plane. In the proposed

regression model, the conditional distribution of Yj given x1, . . . , xn has the wrapped

Cauchy distribution with mean direction arg{v(xj)} defined in Section 2.2.1 and

mean resultant length φ ∈ [0, 1].

In Section 2.2.1 we define the regression curve v and investigate its properties.

Some properties of the regression model are discussed in Section 2.2.2. Comparison

with existing regression models is given in Section 2.2.3.

2.2.1 Regression curve

Suppose β0 and β1 are complex parameters with β0 ∈ Ω and β1 ∈ C. The regression

curve of the proposed regression model is defined by

v = v(x; β0, β1) = β0
x + β1

1 + β1x
, x ∈ Ω, (2.2.1)

where the mapping with |β1| ≠ 1 will be called a Möbius circle transformation, and

this transformation is a one-to-one mapping which carries the unit circle onto itself.

The Möbius circle transformation is obtained by a composition of transforma-

tions of the following four types:

(1) Translations: z → z + b,

(2) Rotations: z → az, a ∈ Ω,

(3) Homotheties: z → rz, r > 0,

(4) Inversion: z → 1/z.

Note that these transformations exhibit the action of the group on the complex

plane, not on the circle. For β1 ̸= 0, v can be expressed as

v = β0

(
1

β1

+
λ

β1x + 1

)
, λ = β1 −

1

β1

.
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In (2.2.1) β0 is evidently a rotation parameter, but the interpretation of β1 is more

complicated. However, the function of β1 in (2.2.1) for |β1| < 1 is revealed as

follows. Assume, without loss of generality, that β0 = 1. Then, for any β1 ∈ C

and any x ∈ Ω, (2.2.1) implies that β1 is the projection point for the straight line

projection of −x on the unit circle to the point v on the unit circle. From this fact,

β1 can be intuitively interpreted as the parameter that attracts the points on the

circle toward β1/|β1| with the concentration of points about β1/|β1| increasing as

|β1| increases. An exception is the point x = −β1/|β1|, which is invariant under the

Möbius circle transformation for any |β1| < 1.

Figure 2.1(a) exhibits the behaviour of (2.2.1) for some specified values of β1

for |β1| < 1. Figure 2.1(a) explicitly shows that as |β1| approaches 1, v (x ̸=

− exp(πi/12)) converges to a point β1/|β1| = exp(πi/12). It is also clear from the

figure that as |β1| tends to 0, v approaches the identity mapping. When |β1| = 1,

the mapping (2.2.1) maps the unit circle onto the point β1, i.e. v = β1 for any x.

For the case of |β1| > 1, (2.2.1) can be expressed as

v = β0
x + β1

1 + β1x
= β0

x̃ + β̃1

1 + β̃1x̃
, (2.2.2)

where x̃ = (β1/|β1|) (β1x/|β1|) and β̃1 = 1/β1. The above expression (2.2.2) shows

that the Möbius circle transformation with |β1| > 1 consists of two types of trans-

formations, namely, reflection and the Möbius circle transformation with |β̃1| < 1,

i.e.

x 7−→ (β1/|β1|) (β1x/|β1|) and x 7−→ β0(x + β̃1)/(1 + β̃1x).

Figure 2.1(b) displays an example in which equation (2.2.2) holds for selected value of

β0, β1 and x. The figure clearly shows the fact that the Möbius circle transformation

with |β1| > 1 is made up of the two transformations mentioned above.
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Figure 2.1. a plot of v(x; β0, β1) for regression curve (2.2.1) for x =
exp (−πi/4) with β0 = 1, arg(β1) = π/6 and: |β1| = 0.3; |β1| = 0.6;
|β1| = 0.9. Points on the plot are defined by vj = v(x; 1, bj), bj =
0.3j exp(πi/6), j = 1, 2, 3. (b) plot of v, x, x̃, β1, β̃1 for equation (2.2.2)
for β0 = 1, x = exp(−πi/6), β1 = 5 exp(πi/6)/3. Parameters β1 and β̃1

are expressed as b and b̃ on the plot, respectively.
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2.2.2 Some properties of the proposed regression model

This subsection discusses some properties of the proposed regression model. For

simplicity of expression, we consider a case in which a single pair of a covariate and

a response are observed.

Let x be a covariate which takes values on the unit circle in the complex plane

and let Y be a response. The complex parameters are β0 ∈ Ω and β1 ∈ C. The

proposed regression model is given by

Y = β0
x + β1

1 + β1x
ε, x ∈ Ω, (2.2.3)

where ε ∼ C∗(φ), 0 ≤ φ ≤ 1. Here the restriction on the domain of φ is valid

because the mean direction of the angular error should be 0 and C∗(φ) = C∗(1/φ)

holds for any φ ∈ C. We have already discussed the interpretation of β0 and β1

in Section 2.2.1. The parameter φ is the concentration or precision parameter. If

φ = 1, then covariates and responses are correlated without error. The smaller the

value of φ the less concentrated the error variables. When φ = 0, the variable ε has

a uniform distribution on the circle.

The conditional distribution of Y given x is

Y |x ∼ C∗ (
ϕY |x

)
where ϕY |x = exp (iµY.x) φ and µY.x = arg

(
β0

x + β1

1 + β1x

)
.

(2.2.4)

The following theorem holds for our regression model by applying well-known result

in complex analysis. See Rudin (1987, Theorem 11.9) for the proof.

Theorem 2.1 If Y ∼ C∗(ϕ) where |ϕ| ≤ 1, then E{g(Y )} = g(ϕ) for any mapping

g on the closed unit disc which is continuous on the closed unit disc and analytic on

the open unit disc.

Using the result we obtain the mean direction and the mean resultant length of

Y |x,

arg {E(Y | x)} = µY.x = arg (β0x) − 2 arg
(
1 + β1x

)
, |E(Y | x)| = φ.
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More generally, the kth trigonometric moment of Y | x is

E
(
Y k |x

)
= ϕk

Y |x. (2.2.5)

Since the wrapped Cauchy distribution is closed under rotation and the Möbius

circle transformation (see properties (i) and (iii) in Section 2.2.2), we obtain

γ0
Y + γ1

1 + γ1Y

∣∣∣∣ (X = x) ∼ C∗
(

γ0

ϕY |x + γ1

1 + γ1ϕY |x

)
, (2.2.6)

where γ0 ∈ Ω, γ1 ∈ C. Because of the fact that the linear fractional transformations

form a group under composition, the parameter of the wrapped Cauchy (2.2.6) can

also be expressed as the linear fractional transformation

γ0

ϕY |x + γ1

1 + γ1ϕY |x
=

a00x + a01

a10x + a11

,

where a00 = γ0(β0φ + γ1β1), a01 = γ0(γ1 + β0β1φ), a10 = β1 + γ1β0φ, a11 =

1 + γ1β0β1φ.

Although property (2.2.6) is mathematically attractive, it is remarked here that

the absolute values of the parameters in (2.2.6) depend on x and therefore ho-

moscedasticity no longer holds. This formulation should be avoided unless het-

eroscedasticity is desired. To avoid this heteroscedasticity, one can transform Y to

W = γ0{(Y +γ1)/(1+γ1Y )} and then use the model set up by (2.2.3) and (2.2.4) for

W |x. Similarly, the following property holds for the Möbius circle transformation

of the covariate

Y

∣∣∣∣ γ0
x + γ1

1 + γ1x
∼ C∗

(
b00x + b01

b10x + b11

)
, (2.2.7)

where γ0 ∈ Ω, γ1 ∈ C, b00 = β0(1+γ1β1)φ, b01 = β0(γ1 +β1)φ, b10 = γ1 +β1, b11 =

1 + γ1β1.

If we assume that x is an observed value of a random variable X which has

the wrapped Cauchy distribution C∗(ϕ) and is independent of ε in (2.2.3), then the

marginal distribution of Y is given by

Y ∼ C∗
(

β0
ϕ + β1

1 + β1ϕ
φ

)
. (2.2.8)

The above is obvious from properties (i), (ii) and (iii) in Section 1.2.4.
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2.2.3 Comparison with existing regression models

McCullagh (1996, Equation 28) proposed a regression model in which the error

is assumed to follow a Cauchy distribution on the real line. Although his model

looks similar to ours at first glance, his model and ours are different. His model is

not circular–circular, but planar–linear regression model. In addition, our model is

obtained neither by wrapping Y | z nor by transforming Y ′ = (1 + iY )/(1 − iY ),

which are the transformations to generate a wrapped Cauchy distribution from a

Cauchy distribution on the real line.

Our proposed regression model also has some relationship with the models of

Fisher and Lee (1992) and Downs and Mardia (2002). Fisher and Lee (1992) pro-

posed a linear–circular regression model in which the link function is expressed as a

form of tangent function. Tangent function is also used in the link function of the

circular–circular regression model of Downs and Mardia (2002). After some algebra,

it is shown that our regression curve corresponds to their link function. However

our model is different from theirs. The major distinction is the distribution for the

angular error. In their model the angular error assumes the von Mises distribution,

whereas in our model we assume that the angular error is distributed as the wrapped

Cauchy. Our model has some desirable properties that their model does not have

such as Theorem 2.1 and properties (2.2.5)–(2.2.8).

2.3 Related bivariate circular distribution

To our knowledge, no bivariate angular distribution has been used to model circular–

circular regression. We now provide a bivariate circular distribution which could be

helpful in modelling our circular–circular regression. It has the density

f(x, y) =
1

(2π)2

|1 − φ2|∣∣y − ϕY |x
∣∣2 |1 − |δ|2|

|x − δ|2
, x, y ∈ Ω, (2.3.1)

where |δ| ≠ 1 and the other parameters are defined in the same way as in (2.2.3)

and (2.2.4). The following properties hold for this distribution:
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(1) Y | (X = x) ∼ C∗ (
ϕY |x

)
,

(2) Y ∼ C∗
(

β0
δ + β1

1 + β1δ
φ

)
,

(3) X ∼ C∗ (δ).

Hence, the marginals and the conditional of Y given x are wrapped Cauchy distri-

butions. The distribution (2.3.1) takes maximum (minimum) value for each x at

y = exp(iµY.x) (exp(−iµY.x)). For β1 ∈ Ω, X and Y are independently distributed

as C∗(δ) and C∗(β0β1φ), respectively. The closer |β1| gets to 0, the closer exp(iµY.x)

is to being a pure rotation of X. For φ = 0, X and Y are independently distributed

as C∗(δ) and the circular uniform distribution C∗(0), respectively. The larger the

value of φ, the greater the correlation between X and Y . See Fisher and Lee (1983)

for a definition of circular correlation.

2.4 Estimation and test

2.4.1 Parameter estimation

Maximum likelihood estimation for the wrapped Cauchy distribution was investi-

gated by Kent and Tyler (1988). However we cannot apply these results to the

conditional distribution Y | x directly, since the mean direction is a function of the

covariate x. Therefore we need to obtain the maximum likelihood estimates of the

wrapped Cauchy distribution in a different manner.

Let Yj |xj (j = 1, . . . , n) be a set of random samples from the wrapped Cauchy

distribution C∗(ϕYj |xj
). The log-likelihood function for these samples is given by

log L = C +
n∑

j=1

{
log

∣∣1 − φ2
∣∣ − 2 log

∣∣yj − β0(xj + β1)φ/(1 + β1xj)
∣∣} .

Transform the covariates and responses by equating (xj, Yj) = (eiθxj , eiΘYj ) and, for

convenience, reparametrize (β0, β1) = (eiθ0 , reiθ1) where r > 0, 0 ≤ θ0, θ1 < 2π.
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Then the log-likelihood function can be expressed as

log L = C + n log(1 − φ2) −
n∑

j=1

log
{
1 − 2φ cos

(
ΘYj

− µYj |xj

)
+ φ2

}
, (2.4.1)

where µYj |xj
= θ0 + θxj

− 2 arg
{

1 + rei(θxj−θ1)
}

.

If β1 is known, the maximum likelihood estimates of θ0 and φ are obtained by

the recursive algorithm by Kent and Tyler (1988). The method of moments gives

the estimators of θ0 and φ as follows:

θ̂0 = arg (Cn + iSn) and φ̂ =
1

n
|Cn + iSn| ,

where Cn =
∑n

j=1 cos[ΘYj
− θxj

+ 2 arg{1 + rei(θxj−θ1)}] and Sn =
∑n

j=1 sin[ΘYj
−

θxj
+ 2 arg{1 + rei(θxj−θ1)}].

2.4.2 Fisher information matrix

Using the log-likelihood for (θ0, r, θ1, φ) given by (2.4.1). We find that

−E

(
∂2

∂θ0∂φ
log L

)
= −E

(
∂2

∂r∂φ
log L

)
= −E

(
∂2

∂θ1∂φ
log L

)
= 0.

Hence, φ and (θ0, r, θ1) are orthogonal. The other elements of the Fisher information

matrix are calculated as

E

{(
∂

∂θ0

log L

)2
}

=
2nφ2

(1 − φ2)2
,

E

{(
∂

∂r
log L

)2
}

=
2φ2

(1 − φ2)2

n∑
j=1

(
∂µYj |xj

∂r

)2

,

E

{(
∂

∂θ1

log L

)2
}

=
2φ2

(1 − φ2)2

n∑
j=1

(
∂µYj |xj

∂θ1

)2

,

E

{(
∂

∂φ
log L

)2
}

=
2n

(1 − φ2)2
,

E

{(
∂

∂θ0

log L

)(
∂

∂r
log L

)}
=

2φ2

(1 − φ2)2

n∑
j=1

∂µYj |xj

∂r
,
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E

{(
∂

∂θ0

log L

)(
∂

∂θ1

log L

)}
=

2φ2

(1 − φ2)2

n∑
j=1

∂µYj |xj

∂θ1

,

E

{(
∂

∂r
log L

)(
∂

∂θ1

log L

)}
=

2φ2

(1 − φ2)2

n∑
j=1

∂µYj |xj

∂r

∂µYj |xj

∂θ1

,

where

∂µYj |xj

∂r
=

−2 sin(θxj
− θ1)

1 + 2r cos(θxj
− θ1) + r2

,
∂µYj |xj

∂θ1

=
2r{r + cos(θxj

− θ1)}
1 + 2r cos(θxj

− θ1) + r2
.

2.4.3 A test of independence

To investigate if the model (2.2.3) provides a better fit than the independence model,

we test H0 : r = 1 against H1 : r ̸= 1. The likelihood ratio test gives the test statistic

as T = −2 log(max L0/ max L1), where max L0 = maxθ0,φ L (θ0, φ, r = 1, θ1 = 0) and

max L1 = maxθ0,r,θ1,φ L (θ0, r, θ1, φ) . Under the null hypothesis, T is asymptotically

distributed as a chi-square distribution with two degrees of freedom. Here max L0

is easily obtained using the algorithm of Kent and Tyler (1988). We reject the null

hypothesis when T is large.

Other large sample theories, such as Wald test and score test, could also be useful

for inference for the proposed model.

2.5 Examples

Example 2.1 In a marine biology study by Dr. Robert R. Warner at University of

California, Santa Barbara (Lund, 1999), whether the spawning time of a particular

fish (TS) depends on the time of the low tide (TLT ) is of interest. The data were

gathered in St. Croix, the U.S. Virgin Islands. To study the dependence of TS on

TLT , we converted the period 0 to 24 hours of TS and TLT to [0, 2π). Paired TS and

TLT are thus bivariate circular data, and they are plotted as circles in Figure 2.2.

In the following, we apply model (2.4) to investigate whether and how TS depends

on TLT .
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Figure 2.2. planar plot of the spawning time of certain fish and the time
of low tide. Both times are converted into angles [0, 2π).

The maximum likelihood estimates of the parameters are θ̂0 = 0.47, r̂ = 0.95, θ̂1 =

3.06 and φ̂ = 0.87. The maximum log-likelihood and AIC of the model are equal to

−11.28 and 30.56, respectively. Approximate 90% confidence intervals for θ0, r, θ1

and φ are (−0.11, 1.05), (0.89, 1.00), (2.46, 3.66) and (0.84, 0.90) by the Fisher in-

formation matrix in Section 2.4.2. The test of independence for model (2.4) yields

the test statistic T = −2 {(−14.81) − (−11.28)} = 7.06. This test is highly sig-

nificant and the assumption of independence is rejected. Circular distances of all

observations lie in [0, 0.25]. Here the circular distance is defined by d(Y, Ŷ ) =

1 − cos(Y − Ŷ ) where Y is a response and Ŷ is a predictor in radians given by

Ŷ = θ̂0 + x − 2 arg{1 + rei(x−θ̂1)}.

Example 2.2 The wind direction at 6 a.m. and 12 noon was measured each day
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at a weather station in Milwaukee for 21 consecutive days. (Johnson and Wehrly,

1977, Table 2). We use model (2.2.3) for regressing the wind direction at 12 noon

on that at 6 a.m.

The maximum likelihood estimates of the parameters are θ̂0 = 1.27, r̂ = 0.53, θ̂1 =

2.59 and φ̂ = 0.55. The maximum log-likelihood and AIC of the model are −32.26

and 72.52, respectively. Approximate 90% confidence intervals for θ0, r, θ1 and φ

are (0.91, 1.63), (0.31, 0.74), (2.31, 2.87) and (0.37, 0.73). Judging from the AIC,

model (2.2.3) provides a better fit than the Downs and Mardia model, whose AIC is

74.56. The test of independence for the model (2.2.3) in Section 2.4.3 yields the test

statistic as T = −2{(−38.48) − (−32.26)} = 12.44. This test is highly significant

and the assumption of independence is rejected.

The plot of circular distances is given in Figure 2.3(a). The observation numbers

of outliers are marked on the plot. Apart from five outliers, model (2.2.3) seems to

provide a satisfactory fit to the data. Finally, the predictors and responses except for

the outliers are plotted by observation numbers in Figure 2.3(b). The plots on the

larger circle refer to the responses, while those on the smaller one are the predictors

from model (2.2.3). A short line between the predictor and response means a good

fit of the model to the observation. Judging from Figure 2.3(b), our model seems to

provide satisfactory fit to the data. For the interpretation of how the responses are

transformed through the Möbius circle transformation, see Section 2.2.1.

2.6 Discussion

Circular–circular regression is useful for analyzing bivariate circular data. Among

existing regression models, the raison d’être of our model is its tractability and

expandability. The tractability derives from the theory of the Möbius circle trans-

formation and the wrapped Cauchy distribution. As discussed in Section 2.2.2 in

this thesis, the wrapped Cauchy is related to the Möbius circle transformation, and
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Figure 2.3. (a) plot of circular distance, and (b) plot of predictors and co-
variates, in which the predictors are plotted on the smaller circle whereas
the responses are marked on the larger one.
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thus enables us to obtain a number of desirable properties for our model. As for the

expandability, our regression model could provide some topics to other related fields.

For example, the related bivariate circular distribution, which is briefly discussed

in Section 2.3, could be a possible field in which it is worth carrying out further

research. It could be also interesting to investigate the properties of the regression

model which has the angular error proposed by Jones and Pewsey (2005) instead of

the wrapped Cauchy in (2.2.3). Their model includes the wrapped Cauchy and von

Mises as special cases and might be used to discriminate in applications between

these two distributions.
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Chapter 3

Distributions for Angular
Observations

3.1 Introduction

In directional statistics, various methods have been proposed in the literature to

obtain distributions on manifolds such as the sphere, cylinder, disc or torus. A

family of distributions with specified marginals on the cylinder was given by Johnson

and Wehrly (1978). Wehrly and Johnson (1980) also proposed distributions on

the torus constructed in a similar manner and studied a related Markov process

on the circle and statistical inference for it. Shimizu and Iida (2002) proposed a

Pearson type VII distribution on an arbitrary dimensional sphere by using scale

mixtures of multivariate normal distributions. Jones (2002) proposed distributions

on the disc with a single specified marginal. Another distribution on the disc was

provided by Jones (2004), who generated the distribution through applying the

Möbius transformation to the bivariate spherically symmetric beta or Pearson type

II distribution. Multivariate distributions with specified conditionals on certain

manifolds were discussed by SenGupta (2004). For other methods of obtaining

multivariate distributions on certain manifolds, see Mardia and Jupp (2000) and

Jammalamadaka and SenGupta (2001).

This chapter consists of two parts. The first provides four-dimensional distri-
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butions with specified bivariate marginals on certain manifolds such as two tori,

cylinders or discs. These distributions provide models for observations which are

represented as points on two bivariate manifolds. For example, in meteorology, two

pairs of wind directions, which are measured at two locations at two points in time,

are observations on two tori. Another example is given for two pairs of wind direc-

tion and speed, i.e., observations on two cylinders. Or observations may lie on two

discs. Certain properties of the submodel of the proposed models are investigated.

We also study a related Markov process on bivariate manifolds. Then models for

incomplete observations are constructed. They can be applied in the modelling of

two observations such as one on the circle and the other on the torus. Distributions

with specified marginals on the disc are also discussed. The second part of the chap-

ter discusses two distributions on the cylinder. The first distribution was originally

proposed by Johnson and Wehrly (1978) as a maximum entropy distribution subject

to constraints on certain moments. We investigate other properties of this distribu-

tion. The second distribution is a new distribution which is obtained as a maximum

entropy distribution or a conditional distribution of a trivariate normal distribution.

This distribution can be viewed as an extension of the distribution by Mardia and

Sutton (1978). The common property of these two distributions is that the circular

marginal of each model is distributed as Maksimov’s (1967) generalized von Mises

distribution. The distribution includes the von Mises distribution as a special case

and has a unimodal or bimodal, symmetric or asymmetric shape depending on the

choice of parameters. Occasionally, real circular data can exhibit bimodal. For ex-

ample, data on the orientation of dragonflies of the genus Sympetrum with respect

to the sun’s azimuth as given in Example 1.6.2. of Batschelet (1981) are bimodal.

Other datasets are asymmetrically distributed. Pewsey (2000) proposed a model

for asymmetrically distributed data from a study of bird migration. When both a

circular variable and linear one are considered jointly, the corresponding data are

distributed on a cylinder with, potentially, an asymmetrical or bimodal (or both)
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circular component. The two distributions discussed may provide useful models for

analyzing this kind of cylindrical data.

Subsequent subsections are organized as follows. Section 3.2 provides a theorem

which constructs families of four-dimensional distributions on certain manifolds with

specified bivariate marginal distributions. A related Markov process and models for

incomplete observations are constructed. An investigation of some of the properties

of a submodel of the proposed four-dimensional distributions is then presented. In

addition distributions with specified marginals on the disc are constructed using the

theorem from Section 3.2. They include the bivariate spherically symmetric beta

distributions on the disc. In Section 3.3 the properties of the two distributions on

the cylinder described in the preceding paragraph are studied, and the proposed

model is applied to two cylindrical datasets. The chapter closes with an appendix

which considers the modality of the cylindrical distribution and the derivation of

the density of the other.

3.2 Distributions with specified marginal distri-

butions

3.2.1 Definition of the proposed models

The following theorem provides continuous distributions on certain manifolds with

specified bivariate marginal distributions. The theorem is applicable to the con-

struction of distributions on two tori, cylinders and discs.

Theorem 3.1 Let (X1, X2) have a specified density f1(x1, x2) and distribution func-

tion (d.f.) F1(x1, x2) on the support M1 ⊂ R2 and (Y1, Y2) have a specified density

f2(y1, y2) and d.f. F2(y1, y2) on the support M2 ⊂ R2. Suppose that f11(x1) (f21(y1))

is the marginal density of X1 (Y1) and F11(x1) (F21(y1)) its d.f. Let g(·) be a density

on the circle and h(·, ·) a density on the torus. Then

p1±(x1, x2, y1, y2) = 2πf1(x1, x2)f2(y1, y2)
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×g

[
2π

{
1

f11(x1)

∂F1(x1, x2)

∂x1

± 1

f21(y1)

∂F2(y1, y2)

∂y1

}]
, (3.2.1)

p2(x1, x2, y1, y2) = 4π2f1(x1, x2)f2(y1, y2)

×h

[
2π {F11(x1) ± F21(y1)} ,

2π

{
1

f11(x1)

∂F1(x1, x2)

∂x1

± 1

f21(y1)

∂F2(y1, y2)

∂y1

} ]
(3.2.2)

are densities on M1 × M2, where (x1, x2) ∈ M1, (y1, y2) ∈ M2. Both have the

marginal distributions of (X1, X2) ((Y1, Y2)) with density f1(x1, x2) (f2(y1, y2)). Here

the right hand side of (3.2.2) permits the four combinations of signs, i.e. (+, +),

(+,−), (−, +) and (−,−).

Proof It is clear that p1±(x1, x2, y1, y2) ≥ 0. We show∫
M2

∫
M1

p1±(x1, x2, y1, y2)dx1dx2dy1dy2 = 1.

Consider the integral∫
M2

∫
M1

p1±(x1, x2, y1, y2)dx1dx2dy1dy2

= 2π

∫
M2

f2(y1, y2)

∫
M1

f1(x1, x2)

×g

[
2π

{
1

f11(x1)

∂F1(x1, x2)

∂x1

± 1

f21(y1)

∂F2(y1, y2)

∂y1

}]
dx1dx2dy1dy2.

(3.2.3)

Making the change of the variable t = t(x2) = 2π{∂F1(x1, x2)/∂x1}/f11(x1), (3.2.3)

is calculated as∫
M2

∫
M1

p1±(x1, x2, y1, y2)dx1dx2dy1dy2

=

∫
M2

f2(y1, y2)

∫
R

∫ 2π

0

g

{
t ± 2π

f21(y1)

∂F2(y1, y2)

∂y1

}
f11(x1)dtdx1dy1dy2

=

∫
M2

f2(y1, y2)

∫
R

f11(x1)dx1dy1dy2
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=

∫
M2

f2(y1, y2)dy1dy2

= 1.

From this result, it is obvious that the marginal density of (Y1, Y2) is f2(y1, y2).

Similarly, we can show that the marginal density of (X1, X2) is f1(x1, x2).

By making the change of the variables t1 = t1(x2) = 2π{∂F1(x1, x2)/∂x1}/f11(x1)

and t2 = t2(x1) = 2π{F11(x1) ± F21(y1)}, we can also show that∫
M2

∫
M1

p2(x1, x2, y1, y2)dx1dx2dy1dy2 = 1.

The marginal density can be obtained using a similar approach to that used above.

2

Example When M1 = M2 = [0, 2π) × R for the distributions (3.2.1) and (3.2.2),

distributions on two cylinders are constructed. For some examples of distributions

on the cylinder, see Section 3.3. When M1 = M2 = [0, 2π)2, distributions on two

tori are constructed. Distributions on two tori or discs can be obtained in a similar

manner.

It is not necessary for M1 and M2 to be the same manifolds. Actually, on

specifying M1 as a torus and M2 a cylinder, we obtain families of distributions on

the direct product of the torus and the cylinder. Similarly, distributions on the

direct product of the torus and the disc can be constructed.

Remark As in Wehrly and Johnson (1980), families of distributions for a Markov

process can be constructed using Theorem 3.1, as follows.

Let {Xi} , Xi = (Xi1, Xi2)
′, i = 0, 1, . . . be random variables taking values on

M ⊂ R2 such that

p(x0) = f(x01, x02),

p(xn|x0, x1, . . . , xn−1) = p(xn|xn−1)

= 2πf(xn1, xn2) g

[
2π

{
1

f1(xn1)

∂F (xn1, xn2)

∂xn1

± 1

f1(xn−1,1)

∂F (xn−1,1, xn−1,2)

∂xn−1,1

}]
, n = 1, 2, . . . ,
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where f(xn1, xn2) denotes a density on M , F (xn1, xn2) its d.f., f1(xn1) the marginal

density of Xn1, and g(·) a density on the circle. Then {Xi} is a Markov process on

M with initial distribution p(x0) and the stationary transition density p(xn|xn−1).

Similarly, we can construct an alternative Markov process using (3.2.2) as the

stationary density.

Remark The following corollary provides models for two observations such as one

on the circle and the other on the torus. These may be useful, in meteorology and

the environmental sciences, for example, as models for a model for incomplete pairs

of wind directions observed at two locations at two points in time.

Corollary 3.1 Let (X1, X2) have a specified density f1(x1, x2) and d.f. F1(x1, x2)

on the support M1 ⊂ R2 and Y a specified density f2(y) and d.f. F2(y) on the

support M2 ⊂ R. Suppose that f11(x1) is the marginal density of X1. Let g(·) be a

density on the circle. Then

p(x1, x2, y) = 2πf1(x1, x2)f2(y)

×g

[
2π

{
1

f11(x1)

∂F1(x1, x2)

∂x1

± F2(y)

}]
is a density on M1 × M2, where (x1, x2) ∈ M1, y ∈ M2. It has the marginal

distribution of (X1, X2) (Y ) with the density f1(x1, x2) (f2(y)).

Note that Corollary 3.1 can be considered a special case of Theorem 3.1. Actually,

on putting M2 = [0, 1) × M, M ⊂ R, and f2(y1, y2) = f2(y2), y2 ∈ M in Theorem

3.1, we obtain Corollary 3.1.

3.2.2 Properties of the proposed models

In this subsection we investigate some properties of the distributions proposed in

Theorem 3.1. We focus on distributions with density (3.2.1) and discuss some depen-

dence properties for them. Clearly, if g in (3.2.1) is uniformly distributed, (X1, X2)

and (Y1, Y2) are independent and distributed as f1(x1, x2) and f2(y1, y2), respectively.
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When g is not uniform, (3.2.1) describes a distribution for which there is association

between (X1, X2) and (Y1, Y2).

Here we discuss a submodel of the distribution with density (3.2.1) defined as

follows. Suppose that X2 and Y2 take values on the circle [0, 2π) and X1 and Y1 are

defined on M11 and M21 (M11,M21 ⊂ R), respectively. Assume that the conditionals

of X2|(X1 = x1) and Y2|(Y1 = y1) are unimodal and symmetric with mode at µ1 and

µ2 (0 ≤ µ1, µ2 < 2π), respectively. The function g in (3.2.1) is assumed to follow a

cardioid distribution with density

g(θ) =
1

2π
{1 + 2ρ cos(θ − µ)} , 0 ≤ θ < 2π; 0 ≤ ρ ≤ 1

2
, −π ≤ µ < π. (3.2.4)

The d.f.’s of (X1, X2) and (Y1, Y2) are defined as

F1(x1, x2) =

∫ x1

−∞

∫
A

f1(u1, u2)du2du1, F2(y1, y2) =

∫ y1

−∞

∫
B

f2(v1, v2)dv2dv1,

where A = [µ1, x2 + 2πk1), B = [µ2, y2 + 2πk2), k1 = [(µ1 − x2)/(2π) + 1], k2 =

[(µ2 − y2)/(2π) + 1], and [a] = max {n ∈ Z ; n ≤ a}. We write p1c± to denote the

density of this distribution.

The cardioid distribution is a unimodal distribution on the circle. It is symmetric

about µ and takes its maximum value at θ = µ and minimum value at θ = µ + π.

If ρ = 0, the distribution is the circular uniform. As ρ increases the distribution

becomes more concentrated around µ.

There are certain distributions which are suitable for (X1, X2) ((Y1, Y2)) in p1c±.

When (X1, X2) are distributed on the cylinder, the distribution of Johnson and

Wehrly (1978) discussed in Section 3.3 and the one proposed in Theorem 1 of their

paper might be useful. The conditionals of the circular component of these models,

X2|(X1 = x1), are symmetric about a constant µ. As for distributions on the disc,

the Möbius distribution (Jones, 2004) has a symmetric conditional for X2|(X1 = x1)

with its mean direction not depending on x1. The submodel of the distribution

proposed by Mardia (1975, Equation 2.12) with b = d = µ = 0 might be used for

the distribution on the torus.
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The following property holds for the model with density p1c±.

Theorem 3.2 Let (X1, X2, Y1, Y2) be a random vector which has the density p1c±

and let µ = 0. Then the following inequalities hold for (X1, X2, Y1, Y2):

P (X1 ∈ E1, −x2 < X2 − µ1 ≤ x2, Y1 ∈ E2, −y2 < Y2 − µ2 ≤ y2)

≥ P (X1 ∈ E1, −x2 < X2 − µ1 ≤ x2) P (Y1 ∈ E2, −y2 < Y2 − µ2 ≤ y2), (3.2.5)

P (X1 ∈ E1, −x2 < X2 − µ1 + π ≤ x2, Y1 ∈ E2, −y2 < Y2 − µ2 + π ≤ y2)

≥ P (X1 ∈ E1, −x2 < X2 − µ1 + π ≤ x2) P (Y1 ∈ E2, −y2 < Y2 − µ2 + π ≤ y2),

P (X1 ∈ E1, −x2 < X2 − µ1 + π ≤ x2, Y1 ∈ E2, −y2 < Y2 − µ2 ≤ y2)

≤ P (X1 ∈ E1, −x2 < X2 − µ1 + π ≤ x2) P (Y1 ∈ E2, −y2 < Y2 − µ2 ≤ y2),

P (X1 ∈ E1, −x2 < X2 − µ1 ≤ x2, Y1 ∈ E2, −y2 < Y2 − µ2 + π ≤ y2)

≤ P (X1 ∈ E1, −x2 < X2 − µ1 ≤ x2) P (Y1 ∈ E2, −y2 < Y2 − µ2 + π ≤ y2),

for any E1 ∈ B(M11), E2 ∈ B(M21), 0 ≤ x2, y2 ≤ 1
2
π, where B(M) denoting a Borel

set of M .

Proof We prove inequality (3.2.5) for the density p1c+. On setting

t1(u2) =
2π

f11(u1)

∂

∂u1

F1(u1, u2 + µ1), t2(v2) =
2π

f21(v1)

∂

∂v1

F2(v1, v2 + µ2),

the left-hand side of (3.2.5) can be expressed as∫
E1

∫
E2

∫ x2+µ1

−x2+µ1

∫ y2+µ2

−y2+µ2

p1c+(u1, u2, v1, v2)dv2du2dv1du1

=
1

4π2

∫
E1

∫
E2

∫ sx2

−sx2

∫ sy2

−sy2

1 + 2ρ cos(t1 + t2)dt2dt1f11(u1)f21(v1)dv1du1,

(3.2.6)

where sx2 and sy2 satisfy

sx2 =
2π

f11(u1)

∂

∂u1

F1(u1, x2 + µ1), sy2 =
2π

f21(v1)

∂

∂v1

F2(v1, y2 + µ2).
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From the symmetry and unimodality of X2|(X1 = x1) and Y2|(Y1 = y1), it follows

that 0 ≤ sx2 , sy2 ≤ π. Using∫ sx2

−sx2

∫ sy2

−sy2

cos(t1 + t2)dt1dt2 = 4 sin sx2 sin sy2 ≥ 0, 0 ≤ sx2 , sy2 ≤ π,

then ∫
E1

∫
E2

∫ x2+µ1

−x2+µ1

∫ y2+µ2

−y2+µ2

p1c+(u1, u2, v1, v2)dv2du2dv1du1

≥ 1

4π2

∫
E1

∫
E2

∫ sx2

−sx2

∫ sy2

−sy2

1 dt2dt1f11(u1)f21(v1)dv1du1

=

∫
E1

∫
E2

∫ x2+µ1

−x2+µ1

∫ y2+µ2

−y2+µ2

f1(u1, u2)f2(v1, v2)dv2du2dv1du1.

This equals the right-hand side of inequality (3.2.5).

The other inequalities for p1c+ and those for p1c− are proved in a similar manner.

2

Remark If we assume that µ = π, then the signs of all the inequalities are reversed.

Note that the results above are easily applied to the submodel of the bivariate

circular distribution proposed by Wehrly and Johnson (1980) with density

f±(θ1, θ2) = f1(θ1)f2(θ2)g [2π {F1(θ1) ± F2(θ2)}] , 0 ≤ θ1, θ2 < 2π, (3.2.7)

where f1 and f2 are circular densities which are unimodal and symmetric with mode

at µ1 and µ2 (0 ≤ µ1, µ2 < 2π), respectively. The d.f. of f1 (f2) is given by F1 (F2)

and is defined in a similar way as in p1c±. Here we suppose that g is distributed as

a cardioid distribution with µ = 0. Then the following inequality holds for model

(3.2.7).

P (−θ1 < Θ1 − µ1 ≤ θ1, −θ2 < Θ2 − µ2 ≤ θ2)

≥ P (−θ1 < Θ1 − µ1 ≤ θ1) P (−θ2 < Θ2 − µ2 ≤ θ2),

for any 0 < θ1, θ2 < π/2.

34



Similarly, the results analogous to the second through to the fourth inequalities

in Theorem 3.2 can be derived.

Next, we discuss a test of independence of the distribution (3.2.1) by applying a

result from Wehrly and Johnson (1980). Let (X1j, X2j, Y1j, Y2j) (j = 1, . . . , n) be a

random sample from (3.2.1). Suppose that f1(x1, x2) and f2(y1, y2) are completely

specified. Let g be the density of the von Mises distribution VM(µ, κ)

The test of independence can be expressed as a test of: H0 : κ = 0 against H1 :

κ > 0. The likelihood ratio test is based on

Tn =
n∑

j=1

cos (sj − µ̂) ,

where sj is given by

sj = 2π

{
1

f11(x1j)

∂F1(x1j, x2j)

∂x1j

± 1

f21(y1j)

∂F2(y1j, y2j)

∂y1j

}
,

and µ̂ is given by µ̂ = arg(Cn + iSn) where Cn =
∑n

j=1 cos sj, Sn =
∑n

j=1 sin sj.

According to Self and Liang (1987) (see also Shieh and Johnson (2005)), for suf-

ficiently large n, −2 log Tn is approximately distributed as a half and half mixture

of zero and a chi-square random variable, i.e. Z2I[Z > 0] where Z has a standard

normal distribution and I is an indicator function.

If µ is known, this test is uniformly most powerful (see Jammalamadaka and

SenGupta (2001, Section 5.2.3)).

3.2.3 Distributions on the disc

Jones (2002) proposed a class of distributions on the disc with a single specified

marginal density fX(x) and a conditional distribution with density f(y|x). The

joint density is given, trivially, by f(x, y) = fX(x)f(y|x). Jones (2004) also provided

another distribution on the disc, referred to him as the Möbius distribution on the

disc. It is generated through applying the Möbius transformation to the bivariate

spherically symmetric beta or Pearson type II distribution.
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Classes of distributions with specified marginals on the cylinder and the torus

were discussed in Johnson and Wehrly (1978) and Wehrly and Johnson (1980),

respectively. In this subsection we discuss a class of distributions with two specified

marginals on the disc, which could be useful for the marginals of the distribution

we proposed in Section 3.2.1. The proposed model is defined, as follows, in a very

similar way to that used in Wehrly and Johnson (1980).

Let f1(r) be a specified density on [0, 1), f2(θ) a specified density on [0, 2π), and

F1(r) and F2(θ) their d.f.’s, respectively. Let g(·) be a density on the circle. Then

f(r, θ) = 2πf1(r)f2(θ)g [2π {F1(r) ± F2(θ)}] , 0 ≤ r < 1, 0 ≤ θ < 2π,

(3.2.8)

is a density on the disc with the marginal densities f1(r) and f2(θ).

This density can be obtained by applying Theorem 3.1. Actually, on putting

M1 = [0, 1)2, M2 = [0, 1) × [0, 2π), f1(x1, x2) = f1(x2), 0 ≤ x1, x2 < 1 and

f2(y1, y2) = f2(y2), 0 ≤ y1 < 1, 0 ≤ y2 < 2π in (3.2.1), we obtain distributions

with the density (3.2.8). Distributions on the disc obtained in this manner include

the bivariate spherically symmetric beta distribution with density

f(r, θ) =
α

π
r(1 − r2)α−1, 0 ≤ r < 1, 0 ≤ θ < 2π,

where α > 0. It is obtained by setting f1(r) = 2αr(1 − r2)α−1, f2(θ) = 1/(2π), and

g(t) = 1/(2π) in (3.2.8).

We next discuss certain dependence properties of a submodel of (3.2.8). A

straightforward modification of Theorem 3.2 gives the following result.

Corollary 3.2 Let g be the density of the cardioid distribution (3.2.4) and let µ = 0.

Suppose that f2(θ) is symmetric about µ1 (∈ [0, 2π)). Define the d.f.’s of f1(r) and

f2(θ) by F1(r) =
∫ r

0
f1(u)du and F2(θ) =

∫
A

f2(v)dv, respectively, where A = [µ1, θ+

2πk), k = [(µ1 − θ)/(2π) + 1]. Then the following inequalities hold for (3.2.8):

P (R ≤ r1, −θ < Θ − µ1 ≤ θ) ≥ P (R ≤ r1)P (−θ < Θ − µ1 ≤ θ),
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P (R ≤ r1, −θ < Θ − µ1 + π ≤ θ) ≤ P (R ≤ r1)P (−θ < Θ − µ1 + π ≤ θ),

P (R ≤ r2, −θ < Θ − µ1 ≤ θ) ≤ P (R ≤ r2)P (−θ < Θ − µ1 ≤ θ),

P (R ≤ r2, −θ < Θ − µ1 + π ≤ θ) ≥ P (R ≤ r2)P (−θ < Θ − µ1 + π ≤ θ),

where 0 ≤ r1 < sr ≤ r2 < 1, 0 ≤ θ < 1
2
π, F1(sr) = 1

2
.

We briefly discuss the relationship between the distribution with density (3.2.8)

and copulas (e.g., Nelsen (1998) and Drouet Mari and Kotz (2001)). The distribution

(3.2.8) can be viewed as a copula with density c(u, v) = g {2π(u ± v)} , 0 ≤ u, v ≤ 1,

by transforming U = F1(R) and V = F2(Θ). However copulas do not usually assume

that either u or v is a periodic variable. Since g is a periodic function, it is natural

to assume that one or more variables in u and v are periodic.

3.3 Distributions on the cylinder

3.3.1 A further study of the Johnson and Wehrly model

The purpose of this subsection is to discuss two distributions on the cylinder with

a possibly asymmetric or bimodal marginal distribution for the circular component.

The first model was proposed by Johnson and Wehrly (1978) and its property was

briefly discussed in their paper. In this subsection we investigate its properties fur-

ther. The second distribution on the cylinder is a generalization of the distribution

by Mardia and Sutton (1978). We discuss the marginal and conditional distribu-

tions, maximum likelihood estimation and testing of this second distribution and

apply it in the modelling of two datasets.

The model proposed by Johnson and Wehrly (1978) was based on the principle

of maximum entropy subject to constraints on certain moments. In Theorem 2 in

their paper, they introduced a distribution on the cylinder with density

f(θ, x) =
1√
2πσ

e−κ2/(4σ2)C2 exp

{
−(x − λ)2

2σ2
+

κx

σ2
cos(θ − µ)

}
, (3.3.1)
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where 0 ≤ θ < 2π, −∞ < x < ∞, −∞ < λ < ∞, κ, σ > 0 and 0 ≤ µ < 2π. As in

Yfantis and Borgman (1982), C2 is obtained from

C−1
2 = 2π

{
I0

(
κλ

σ2

)
I0

(
κ2

4σ2

)
+ 2

∞∑
j=1

Ij

(
κ2

4σ2

)
I2j

(
κλ

σ2

)}
. (3.3.2)

Johnson and Wehrly (1978) showed that the conditional distribution of X given

Θ = θ is N (λ + κ cos(θ − µ), σ2) and that of Θ given X = x is a von Mises distri-

bution with density

f(θ|x) =
1

2πI0(κx/σ2)
exp

{κx

σ2
cos(θ − µ)

}
, 0 ≤ θ < 2π.

The marginal density of Θ can be expressed as

f(θ) = C2 exp

[
κλ

σ2
cos(θ − µ) +

κ2

4σ2
cos {2(θ − µ)}

]
, 0 ≤ θ < 2π. (3.3.3)

This marginal density is actually the same as that of the generalized von Mises

distribution GVM(µ, µ, κλ/σ2, κ2/(4σ2)). The distribution with density (3.3.3) is

symmetric about µ. It becomes unimodal or bimodal depending on the choice of

the parameters. When λ > κ > 0, it is unimodal with mode at µ and antimode at

µ + π. When κ is larger than λ, the distribution is bimodal with modes at µ and

µ + π and antimodes at µ + π ± arccos(λ/κ). When λ = 0, it reduces to a bimodal

circular distribution and C2 reduces to C−1
2 = 2πI0 {κ2/(4σ2)}.

The marginal density of X is given by

f(x) = C3 exp

{
−(x − λ)2

2σ2

}
I0

(κx

σ2

)
, −∞ < x < ∞, (3.3.4)

where C3 =
√

2π/σ exp {−κ2/(4σ2)}C1. The density (3.3.4) is generally asymmetric.

As κ → 0, it tends to the normal distribution with mean λ and variance σ2.

When λ = 0, the density (3.3.4) can be expressed as

f(x) =

{√
2πσI0

(
κ2

4σ2

)}−1

exp

(
− x2

2σ2
− κ2

4σ2

)
I0

(κx

σ2

)
, −∞ < x < ∞.

(3.3.5)
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When κ2 > 2σ2, (3.3.5) becomes bimodal, taking its maximum value at x =

±(σ2/κ)B−1(1 − 2σ2/κ2), where B(x) = I2(x)/I0(x), x ≥ 0, and minimal value

at x = 0. When κ2 ≤ 2σ2, (3.3.5) is unimodal, taking maximum value at x = 0. See

Appendix A for the proof.

3.3.2 An extension of the Mardia and Sutton model

The second distribution on the cylinder we discuss in this subsection is a generaliza-

tion of the distribution by Mardia and Sutton (1978). Their distribution is obtained

as a conditional distribution of a trivariate normal distribution with some restriction

on parameters, or a maximum entropy distribution subject to constraints on certain

moments. The marginal distribution of the circular component is von Mises. Here

we propose a more flexible model which could be useful for cylindrical data where

the marginal circular component possibly exhibiting asymmetry and/or bimodality

of marginal circular component. The model is defined by the following theorem.

The proof follows immediately from Theorem 13.2.1 of Kagan et al. (1973).

Theorem 3.3 Let (Θ, X) have joint density

f(θ, x) = C4 exp

[
−{x − µ(θ)}2

2σ2
+ κ1 cos(θ − µ1) + κ2 cos{2(θ − µ2)}

]
, (3.3.6)

where 0 ≤ θ < 2π, −∞ < x < ∞, σ > 0, κ1, κ2 > 0, 0 ≤ µ1 < 2π, 0 ≤ µ2 <

π, µ(θ) = µ′+λ cos(θ−ν), −∞ < µ′ < ∞, λ ≥ 0 and 0 ≤ ν < 2π. The normalizing

constant C4 is given by

C−1
4 = (2π)3/2σ

[
I0(κ1)I0(κ2) + 2

∞∑
j=1

Ij(κ2)I2j(κ1) cos {2j(µ1 − µ2)}

]
.

Then f(θ, x) is the maximum entropy density on the cylinder subject to E(X2),

E(X), E(X cos Θ), E(X sin Θ), E(cos Θ), E(sin Θ), E(cos 2Θ) and E(sin 2Θ) tak-

ing specified values consistent with expectation.
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The distribution with density (3.3.6) is also obtainable as a conditional distribu-

tion of a trivariate normal distribution without any constraints on the mean vector

and covariance matrix. See Appendix B for details.

This distribution has the property that the conditional distribution of X given

Θ = θ is N (µ(θ), σ2) and the marginal distribution of Θ is the generalized von

Mises distribution GVM(µ1, µ2, κ1, κ2). As discussed in Section 1.2.3, this marginal

distribution is symmetric or asymmetric, unimodal or bimodal, its shape depending

on the choice of the parameter values. When κ2 = 0, the distribution coincides with

the one proposed by Mardia and Sutton (1978). The conditional distribution of Θ

given X = x is the generalized von Mises distribution GVM(ν1, ν2, λ1, λ2) where

λ1, λ2, ν1 and ν2 satisfy

λ1 cos ν1 =
λ

σ2
(x − µ′) cos ν + κ1 cos µ1,

λ1 sin ν1 =
λ

σ2
(x − µ′) sin ν + κ1 sin µ1,

λ2 cos 2ν2 = − λ2

4σ2
cos 2ν + κ2 cos 2µ2,

and

λ2 sin 2ν2 = − λ2

4σ2
sin 2ν + κ2 sin 2µ2.

The marginal distribution of X has a complex form. When λ = 0, it is N(µ′, σ2).

If λ ̸= 0, then the distribution is asymmetric. Detailed properties are not easily

derived.

Next, we discuss parameter estimation based on maximum likelihood. Let

(Θi, Xi), i = 1, . . . , n be a random sample from (3.3.6). Using a similar approach

to that of Mardia and Sutton (1978), the maximum likelihood estimates of the

parameters are given by

λ̂ =
s1

1 − r2
23

{
s−2
2 (r23r13 − r12)

2 + s−2
3 (r23r12 − r13)

2
}1/2

,

cos ν̂ =
s1

s2λ̂

r23r13 − r12

r2
23 − 1

, sin ν̂ =
s1

s3λ̂

r12r23 − r13

r2
23 − 1

, σ̂2 = s2
1(1 − r2

1.23),
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where

s2
j =

n∑
i=1

(xji − xj)
2/n, rjk =

n∑
i=1

(xji − xj)(xki − xk)/(nsjsk),

r2
1.23 =

r2
12 + r2

13 − 2r12r13r23

1 − r2
23

, xj =
n∑

i=1

xji/n, j ̸= k, j = 1, 2, 3,

x1i = xi, x2i = cos θi, x3i = sin θi, i = 1, . . . , n.

Maximum likelihood estimation for the other parameters, i.e., κ1, κ2, µ1 and µ2, is

essentially the same as that for the generalized von Mises distribution

GVM(µ1, µ2, κ1, κ2). See Yfantis and Borgman (1982) for the details of maximum

likelihood estimation for that distribution.

To investigate if there is dependence between x and θ, one can test H0 : λ = 0

against H1 : λ > 0. The likelihood ratio test approach leads the test statistic

T = −n log
(
1 − r2

1.23

)
. (3.3.7)

Because λ is on the boundary under H0, the limiting distribution of T is not a

chi-square distribution but an equally weighted mixture of zero and a chi-square

random variable, Z2I[Z > 0], as discussed in Section 3.2.2. The null hypothesis is

rejected when T is large. Note that the test of independence is the same as that for

the distribution proposed by Mardia and Sutton (1978).

Next we construct a test for the adequacy of the Mardia and Sutton submodel as

a special case of our model, namely, H0 : κ2 = 0 versus H1 : κ2 > 0. The likelihood

ratio test statistic is given by

T = −2 log
max L0

max L1

, (3.3.8)

where Li is the likelihood under Hi, i = 0, 1. It is easy to get max L1 using the

method to calculate the maximum likelihood estimates described above. max L0 is

also easily obtained since the maximum likelihood estimators are given in (2.4)–(2.8)

of Mardia and Sutton (1978). Since κ2 is on the boundary of parameter space under

the null hypothesis, the limiting distribution of T is that of Z2I[Z > 0] as described

above.
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Figure 3.1. A planar plot of cylindrical data on the movements of blue
periwinkles taken from Fisher (1993).

3.3.3 Examples

Example 3.1 As our first illustrative example, we consider a cylindrical dataset,

n = 30, on the movements of blue periwinkles. The observations are directions (θ)

and distances (x) moved by small blue periwinkles after they had been transplanted

downshore from the height at which they normally live. The data are taken from

Table B.20 of Fisher (1993).

A planar plot of the data, Figure 3.1, seems to show that there is dependence

between the distances and directions. In fact the test of independence with test

statistic (3.3.7) yields T = −31(1− r2
1.23) = 4.68 with P ≪ 0.05. This test is highly

significant and the assumption of independence is emphatically rejected.

Next we fit the model with density (3.3.6) and the Mardia and Sutton (1978)

42



Direction

D
is

ta
nc

e

0 1 2 3 4 5 6

0
20

40
60

80
10

0
12

0

Figure 3.2. A contour plot of density (3.3.6) fitted to the blue peri-
winkles data from Fisher (1993).
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Figure 3.3. A histogram of the directions of movement of the blue
periwinkles, and the fitted marginal circular densities for the full model
(3.3.6) (solid line) and the Mardia and Sutton (1978) submodel (dashed
line).
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Table 3.1. Maximum likelihood estimates of the parameters and max-
imum log-likelihood and AIC values for the model with density (3.3.6)
and the Mardia and Sutton model fitted to the blue periwinkles data
from Fisher (1993).

Model κ1 κ2 µ1 µ2 µ′ λ σ ν logL AIC

Model (3.3.6) 3.00 1.49 2.11 0.953 28.6 29.6 24.4 1.03 –170.7 357.5

Mardia & Sutton 2.59 – 1.62 – 28.6 29.6 24.4 1.03 –176.9 365.8

submodel and compare the results. Table 3.1 shows the maximum likelihood esti-

mates of the parameters, log-likelihood and AIC values for the models. According

to the AIC criterion, our full model gives a better fit than the Mardia and Sutton

submodel. The test of the adequacy of the full model based on the test statistic in

(3.3.8) results in a T -value of 12.3 with a corresponding P ≪ 0.001. Clearly, here,

there is significant improvement in fit using the full model (3.3.6) as compared to

its Mardia and Sutton submodel. Figure 3.2 presents a contour plot of the fitted

density for the full model (3.3.6). The figure seems to show a reasonable fit of our

model to the dataset.

Finally we consider the marginal circular distribution of the dataset. Figure 3.3

displays a histogram of the circular data and the two fitted densities. It appears

that the circular data are asymmetrically distributed. Also, the large-sample test

of circular reflective symmetry of Pewsey (2002) yields a test statistic value of T =

b2/var(b2)
1/2 = −2.77, with an associated p-value P (T ≤ −2.77) < 0.003, and

this test emphatically rejects the underlying symmetry. This result provides some

evidence that the cylindrical model with the asymmetric circular marginal is a more

appropriate one for fitting to this dataset.

Example 3.2 Another example consists of observations of January surface wind

direction (θ) and temperature (x) at Kew at 12h GMT for the years 1956–60. The

data are taken from Table 1 of Mardia and Sutton (1978) and a planar plot of
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Table 3.2. Maximum likelihood estimates of the parameters and max-
imum log-likelihood and AIC values for the model with density (3.3.6)
and the Mardia and Sutton submodel fitted to the data from Mardia
and Sutton (1978).

Model κ1 κ2 µ1 µ2 µ′ λ σ ν logL AIC

Model (3.3.6) 1.02 0.529 4.23 0.481 42.1 5.01 4.86 –2.78 –126.7 269.4

Mardia & Sutton 1.14 – 4.02 – 42.1 5.01 4.86 –2.78 –128.1 268.2

the dataset is given in Figure 1 of their paper. Table 3.2 shows the maximum

likelihood estimates, log-likelihood and AIC values for both models. In this case,

the AIC value for the Mardia and Sutton submodel is lower than that of our full

model. There the Mardia and Sutton submodel is judged to be better, where the

penalty for the two parameter increase is taken into account. Figure 3.4 exhibits a

histogram of the circular data and the two fitted densities. The large-sample test of

circular reflective symmetry of Pewsey (2002) finds no evidence that the underlying

distribution is not reflectively symmetric. Also, a visual comparison of the two fitted

densities suggest that little or no improvement in fit arised from the generalized von

Mises distribution. Therefore, in this case, our conclusion is that the Mardia and

Sutton submodel is the more suitable for these data.

Appendices

A Modality of the distribution with density (3.3.5)

The density (3.3.5) becomes unimodal or bimodal, depending on the values of κ and

σ. That can be shown by differentiating (3.3.5) with respect to x, and equating to

zero,

d

dx
f(x) =

{√
2πσI0

(
κ2

4σ2

)}−1

exp

(
− x2

2σ2
− κ2

4σ2

)
×

{
− x

σ2
I0

(κx

σ2

)
+

κ

σ2
I1

(κx

σ2

)}
= 0. (3.3.9)
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Figure 3.4. A histogram of the wind directions from Mardia and Sut-
ton (1978), and the fitted marginal circular densities for the model with
density (3.3.6) (solid line) and the Mardia and Sutton (1978) submodel
(dashed line).
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Using the fact that I0(x) − I2(x) = 2I1(x)/x, (3.3.9) gives

I2

(κx

σ2

)/
I0

(κx

σ2

)
= 1 − 2σ2

κ2
.

Let B(x) denote the ratio of the Bessel functions

B(x) =
I2(x)

I0(x)
, x ≥ 0.

Then B(x) has the following properties:

(a) 0 ≤ B(x) ≤ 1, x ≥ 0

(b) lim
x→+0

B(x) = 0, lim
x→∞

B(x) = 1

(c)
dB(x)

dx
> 0

The proof is as follows.

(a) It is obvious that B(x) ≥ 0. Using the fact that A(x)(= I1(x)/I0(x)) ≥ 0, x ≥ 0,

we have

B(x) =
I0(x) − (2/x)I1(x)

I0(x)
= 1 − 2

x
A(x) ≤ 1, x > 0.

(b) Clearly limx→+0 B(x) = 0. By using the fact that limx→∞ A(x) = 1 (See Jam-

malamadaka and SenGupta (2001)),

lim
x→∞

B(x) = lim
x→∞

{
1 − 2

x
A(x)

}
= 1.

(c) The p variate von Mises-Fisher distribution on the unit sphere Ωp in Rp has

density

f(x) =
(κ

2

)p/2−1 {
Γ(p/2)Ip/2−1(κ)

}−1
exp (κµ′x) , x ∈ Ωp,

where κ ≥ 0, µ ∈ Ωp. The Fisher information for the maximum likelihood estimator

of κ (Mardia and Jupp, 2000, p. 199) is given by

−E

[
∂2

∂κ2
log f(X)

]
= A′

p(κ),
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where Ap(z) = Ip/2(z)/Ip/2−1(z). As the Fisher information is positive, we have

d

dz

{
I2(z)

I0(z)

}
=

d

dz

{
I1(z)

I0(z)
· I2(z)

I1(z)

}
=

d

dz
{A2(z)A4(z)}

= A′
2(z)A4(z) + A2(z)A′

4(z)

> 0, z > 0.

On using the properties of B(x), it is shown that (3.3.5) is unimodal when

κ2 > 2σ2 and bimodal otherwise.

B Derivation of density (3.3.6)

We noted that the density (3.3.6) can be obtained by conditioning a trivariate normal

distribution without any constraints on the mean vector and covariance matrix. The

exact derivation of the model is described as follows.

Let Y be a random vector which follows the trivariate normal distribution with

mean vector η = (η1, η2, η3)
′ and covariance matrix

Σ =

 σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

 ,

where −∞ < ηi < ∞, σi > 0 (i = 1, 2, 3), −1 < ρ23 < 1 and 1 − ρ2
12 − ρ2

13 − ρ2
23 +

2ρ12ρ13ρ23 > 0. We transform the trivariate random vector Y = (X,X1, X2)
′ =

(X,R cos Θ, R sin Θ)′ where R > 0, 0 ≤ Θ < 2π. Then the conditional distribu-

tion of (Θ, X) given R = r can be shown to have density (3.3.6) by defining new

parameters as

µ(θ) = η1 + a1η2 + a2η3 + λ cos(θ − ν), σ2 =
σ2

1ρ

1 − ρ2
23

,

κ1 cos µ1 = r(b1η2 − b2η3), κ1 sin µ1 = r(b3η3 − b2η2),

κ2 cos 2µ2 =
r2

4
(b3 − b1), κ2 sin 2µ2 =

1

2
b2r

2,

where

a1 =
σ1

σ2

ρ13ρ23 − ρ12

1 − ρ2
23

, a2 =
σ1

σ3

ρ12ρ23 − ρ13

1 − ρ2
23

,
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b1 =
1

σ2
2(1 − ρ2

23)
, b2 =

ρ23

σ2σ3(1 − ρ2
23)

, b3 =
1

σ2
3(1 − ρ2

23)
,

λ cos ν = −a1r, λ sin ν = −a2r, ρ = 1 − ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23.

The following properties hold between the new parameters and the original ones:

1. κ1 = 0 ⇐⇒ η2 = η3 = 0

2. κ2 = 0 ⇐⇒ σ2 = σ3, ρ23 = 0

3. λ = 0 ⇐⇒ ρ12 = ρ13 = 0

The values taken by the parameters κ1, κ2 and λ range from 0 to infinity depending

on the values of the original parameters. It is also clear that σ > 0, 0 ≤ µ1, ν <

2π, 0 ≤ µ2 < π and −∞ < µ′ < ∞.
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Chapter 4

Distributions for a Pair of Unit
Vectors

4.1 Introduction

In a variety of scientific fields, observations are described as pairs of d-dimensional

unit vectors. In meteorology, for example, wind directions at the weather station in

Milwaukee at 6 a.m. and noon (Johnson and Wehrly, 1977) are a data of this type

with d = 2. Another example with d = 3 is consisting of the directions of magnetic

field in a rock sample before and after some laboratory treatment (Stephens, 1979).

For the analysis of data of the type, various stochastic models have been proposed

in the literature. Mardia (1975) provided a class of distributions for two unit vectors

using the principle of maximum entropy subject to constraints on certain moments.

Wehrly and Johnson (1980) proposed a family of bivariate circular distributions

having specified marginals. Their submodel with von Mises marginals was studied

by Shieh and Johnson (2005). Saw (1983) introduced bivariate families for pairs

of dependent unit vectors, one of which is an offset distribution of the multivariate

normal distribution with some restrictions on parameters. Rivest (1988) provided

another model for two dependent unit vectors which is a generalization of the Fisher-

von Mises distribution. A general class of bivariate distributions with exponential

conditionals was proposed and discussed by Arnold and Strauss (1991) and Arnold
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et al. (1999), and a special case of their model defined on the two-dimensional torus

was considered by SenGupta (2004). Recent work by Alfonsi and Brigo (2005)

proposed new families of copulas based on periodic functions.

The main purpose of the chapter is to introduce a new distribution for a pair of

dependent unit vectors which is generated by Rd-valued Brownian motion. To our

knowledge, distributions on this manifold have not previously been proposed based

on Brownian motion. In this chapter, a new approach is taken to provide a tractable

model. This method enables us to define a distribution with uniform marginals and

derive some desirable properties.

Section 4.2 suggests a model for two dependent unit vectors and Section 4.3

investigates properties of the proposed model, including parameter estimation and

a pivotal statistic. In Section 4.4 we focus on the bivariate circular case of the

model and discuss its detailed properties. It is shown that some desirable properties,

such as multiplicative property and log-infinite divisibility, hold for this submodel.

In Section 4.5, generalizations of the proposed model are discussed. Also, related

models on R2 and on the cylinder are constructed by applying bilinear fractional

transformations to the proposed model.

4.2 Model for a pair of unit vectors

4.2.1 Definition of the proposed model

Let {Bt ; t ≥ 0} be Rd-valued Brownian motion with d ≥ 2. Starting at B0 = 0, a

Brownian particle will eventually hit a d-sphere with radius ρ (∈ (0, 1)), and let τ1 be

the minimum time at which the particle exits the sphere, i.e. τ1 = inf{t ; ∥Bt∥ = ρ}

where ∥·∥ is the Euclidean norm. After leaving the sphere with radius ρ, the particle

will hit a unit sphere first at the time τ2, meaning τ2 = inf{t ; ∥Bt∥ = 1}. Then the

proposed model is defined by the joint distribution of a random vector(
Q

Bτ1

∥Bτ1∥
, Bτ2

)
,
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where Q is a member of O(d), the group of orthogonal transformations in Rd. It is

remarked here that the reason for multiplying Q by Bτ1/∥Bτ1∥ is to make the model

more flexible without losing its tractability.

4.2.2 Probability density function

For convenience, write (U, V ) = (QBτ1/∥Bτ1∥, Bτ2). It is clear that (U, V ) is a

random vector for which each variable takes values on the unit sphere. The joint

distribution of (U, V ) has density

c(u, v) =
1

A2
d−1

1 − ρ2

(1 − 2ρu′Qv + ρ2)d/2
, u, v ∈ Sd−1, (4.2.1)

where ρ ∈ [0, 1), Q ∈ O(d). The domain of ρ is extended to include ρ = 0 so

that the model includes the uniform distribution. We write (U, V ) ∼ BSd(ρQ) if a

random vector (U, V ) has density (4.2.1). For the derivation of the density (4.2.1),

see Appendix 4.5.2.

The parameter ρ influences the dependence between U and V . When ρ = 0, U

and V are independent and distributed as the uniform distribution on the sphere,

i.e. c(u, v) = 1/A2
d−1 on u, v ∈ Sd−1. As ρ tends to 1, it can be shown that

P (∥U − QV ∥ < ε) → 1 for any ε > 0.

As is clear from the form of (4.2.1), c(u, v) is a function of u′Qv, the inner product

of u and Qv. From this fact, we easily find that the density (4.2.1) takes maximum

(minimum) values for a given v at u = Qv (u = −Qv). Thus the parameter Q

controls the mode of the density. It is known that an orthogonal transformation

Q involves two types of transformations, namely, rotation and/or reflection. In

particular, when d = 2, these transformations can be expressed as

v 7−→
(

cos θ − sin θ
sin θ cos θ

)
v and v 7−→

(
1 0
0 −1

)
v,

where 0 ≤ θ < 2π. If det Q = 1, this transformation consists of only rotation.

Otherwise, if det Q = −1, the transformation is made up of a reflection together

with a rotation.
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4.3 Properties of and inference for the proposed

model

4.3.1 Marginals and conditionals

One important feature of the proposed model is that it has well-known marginals

and conditionals. Suppose (U, V ) ∼ BSd(ρQ). The density for this random vector,

(4.2.1), is O(d)-symmetric in the sense of Rivest (1984, Example 1). It follows then

that the marginals of U and V are uniform distributions on Sd−1 with density

f(x) =
1

Ad−1

, x ∈ Sd−1.

Hence, model (4.2.1) can be viewed as a copula on Sd−1×Sd−1. A difference between

this special copula and the usual ones is the periodicity of the variables for this copula

which the usual one does not assume.

Let Uj be the jth element of U , i.e. U = (U1, . . . , Uj, . . . , Ud)
′. It is known that

the marginal of Uj has a distribution with density

f(uj) =
(1 − uj

2)(d−3)/2

B{1
2
(d − 1), 1

2
}
, −1 < uj < 1,

where denote B(·, ·) the beta function. This model is U-shaped (d = 2), uniform

(d = 3), or unimodal (d ≥ 4). Note that 1
2
(Uj + 1) has a beta distribution on (0, 1),

more specifically, Beta{1
2
(d − 1), 1

2
(d − 1)}.

Both conditional distributions of U given V = v and V given U = u are the

exit distributions for the sphere, i.e. U |(V = v) ∼ Exitd(ρQv) and V |(U = u) ∼

Exitd(ρQ′u).

It is worth remarking that the conditional of W ≡ v′Q′U given V = v has a

family discussed by Leipnik (1947) and McCullagh (1989). As in the latter paper,

write X ∼ H ′(θ, ν) if the density of the random vector X is

f(x) =
1 − θ2

B(ν + 1
2
, 1

2
)

(1 − x2)ν−1/2

(1 − 2θx + θ2)ν+1
, −1 < x < 1,

where −1 < θ < 1 and ν > −1
2
. Then it follows that W |(V = v) ∼ H ′{ρ, (d−2)/2}.
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4.3.2 Some properties

Here we investigate some of the properties of the model with density (4.2.1). The

first is that the distribution is closed under orthogonal transformations:

(U, V ) ∼ BSd(ρQ) =⇒ (Q1U,Q2V ) ∼ BSd(ρQ1QQ′
2), Q1, Q2 ∈ O(d).

The next result is obtainable by applying a result which appears, for example, in

Durrett (1984, Section 1.10).

Theorem 4.1 Suppose that (U, V ) is distributed as BSd(ρQ). Let f be C2 in D

and continuous on D where D = {ζ ∈ Rd ; ∥ζ∥ < 1}. If f is harmonic, namely,

∂2

∂x2
1

f +
∂2

∂x2
2

f + · · · + ∂2

∂x2
d

f = 0,

then E{f(V ) |U = u} = f(ρQ′u) and E{f(U) |V = v} = f(ρQv).

Using this fact, it is easy to show that E{f(U)} = E{f(V )} = f(0).

Rivest (1984, Proposition 1) showed that the calculation of moments is simplified

to some extent for a class of O(d)-symmetric distributions. This fact is helpful when

obtaining the moments and correlation coefficient of the model, which we give in

the following theorem.

Theorem 4.2 Suppose (U, V ) has density (4.2.1). Then

E(U) = E(V ) = 0, E(UU ′) = E(V V ′) = d−1I,

E(UV ′) = d−1ρQ. (4.3.1)

The Jupp and Mardia (1980) coefficient of correlation, r2, is thus

r2 ≡ tr(Σ12Σ
−1
22 Σ21Σ

−1
11 ) = dρ2,

where Σ11 = E(UU ′) − E(U)E(U ′), Σ12 = E(UV ′) − E(U)E(V ′), Σ21 = Σ′
12, and

Σ22 = E(V V ′) − E(V )E(V ′).
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Note the simplicity of these moments and the correlation coefficient. See Appendix

B for the proof.

The following result is useful to construct a pivotal statistic for (ρ,Q), which is

discussed in Section 4.3.5. The proof is also given in Appendix B.

Theorem 4.3 If (U, V ) ∼ BSd(ρQ), then U ′QV ∼ H ′{ρ, 1
2
(d − 2)}.

4.3.3 Random vector simulation

To generate a random vector having density (4.2.1), it is profitable to use the idea

of the tangent-normal decomposition.

Let W be a random variable from H ′{ρ, 1
2
(d − 2)}, and let d(X; ζ) = (I −

ζζ ′)X/∥(I − ζζ ′)X∥ where ζ ∈ Sd−1 and X a random vector having a uniform

distribution on Sd−1. In other words, d(X; ζ) has a uniform distribution on the

(d − 1)-sphere, S⊥, in Rd defined by S⊥ = {η ∈ Rd ; ∥η∥ = 1, ζ ′η = 0}. Then the

conditional of U given V = v can be decomposed into

U | (V = v)
d
= WQv + (1 − W 2)1/2d(X; Qv).

Given this, the generation of variates from (4.2.1) can be carried out using the

following three steps: (i) Generate a random vector V which has a uniform distri-

bution on Sd−1. This is achieved by using the method proposed by Tashiro (1977).

(ii) Generate W , which has H ′{ρ, 1
2
(d − 2)}, as stated in Section 4 of McCullagh

(1989). (iii) Finally, a random vector d(X; Qv) distributed as a uniform distribution

on S⊥ is obtained in a similar manner as in Step (i), and one gets a variate from the

conditional of U given V = v as described in the preceding paragraph. Then the

joint distribution of (U, V ) is BSd(ρQ).

4.3.4 Parameter estimation

Parameter estimation for multivariate distributions is often difficult. This is also the

case for out model. However, one can discuss parameter estimation under certain
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conditions. Here we consider parameter estimation based on the method of moments

and maximum likelihood.

First, the method of moments estimator is constructed from (4.3.1). Assume

that (Uj, Vj) (j = 1, . . . , n (≥ 2)) is a random sample from density (4.2.1) with

unknown parameters ρ and Q. Under the condition, rank(
∑n

j=1 UjV
′
j ) = d, one can

construct an estimator for the parameters based on the moment E(UV ′). This is

done by equating the theoretical and sample moments. Thus we obtain

ρ̂ = d

∣∣∣∣∣det

(
1

n

n∑
j=1

UjV
′
j

)∣∣∣∣∣
1/d

and Q̂ =
d

nρ̂

n∑
j=1

UjV
′
j . (4.3.2)

We note that although Q̂ is an unbiased estimator of Q with det Q̂ = 1, it is not

necessarily an orthogonal matrix.

Next, we consider maximum likelihood estimation. Let (Uj, Vj) (j = 1, . . . , n) be

an iid sample from BSd(ρQ), where Q is known and ρ is unknown. The log-likelihood

for ρ is given by

l(ρ) = C + n log(1 − ρ2) − d

2

n∑
j=1

log(1 − 2ρu′
jQvj + ρ2), (4.3.3)

where C is a constant which does not depend on ρ. The derivative with respect to

ρ is
∂l

∂ρ
=

−2nρ

1 − ρ2
+ d

n∑
j=1

xj − ρ

1 − 2ρxj + ρ2
,

where xj = u′
jQvj ∈ [−1, 1]. From this expression, we find that the maximization

of (4.3.3) with respect to ρ is essentially the same as that of H ′{ρ, 1
2
(d − 2)} with

respect to ρ.

4.3.5 Pivotal statistic

Suppose (U, V ) is a BSd(ρQ) random vector. Define a random variable

T (ρ,Q) =
1 − (U ′QV )2

1 − 2ρU ′QV + ρ2
.
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It is easy to see that 0 < T (ρ,Q) < 1 a.s. for any ρ and Q. As shown in Theorem

4.3, U ′QV ∼ H ′{ρ, 1
2
(d − 2)}. Then by using equations (15.1.13) and (15.3.1) of

Abramowitz and Stegun (1970), one obtains

E {T (ρ, Q)r} =
B{r + 1

2
(d − 1), 1

2
}

B{1
2
(d − 1), 1

2
}

.

Since these moments are equal to those of a beta distribution Beta{1
2
(d − 1), 1

2
}, it

follows that T (ρ,Q) is a pivotal statistic for (ρ,Q) having a Beta{1
2
(d−1), 1

2
} distri-

bution almost surely. Because we know the exact distribution of T (ρ,Q), confidence

intervals for the parameters based on T (ρ,Q) can be obtained in the usual way.

4.4 Bivariate circular case

4.4.1 Transformation of random vectors and parameters

So far we have considered properties of model (4.2.1) for the general dimensional

case. The theme of this subsection is to specifically discuss the bivariate circular

case of the proposed model which possesses some unique properties.

Suppose (U, V ) ∼ BS2(ρQ). Then its density is expressed as

c(u, v) =
1

4π2

1 − ρ2

1 − 2ρu′Qv + ρ2
, u, v ∈ S1.

For further discussion, it is advantageous to transform the random variables and

parameters by taking

(ZU , ZV ) = (U1 + iU2, V1 + iV2) and ψ = ρeiθ,

where U = (U1, U2)
′, V = (V1, V2)

′, and θ is a constant satisfying

Q =

(
cos θ − det Q sin θ
sin θ det Q cos θ

)
, 0 ≤ θ < 2π.

Then it follows that |ψ| < 1 and ZU , ZV ∈ Ω. The density for (ZU , ZV ) is given by

c(zu, zv) =
1

4π2

1 − |ψ|2

|1 − ψzvz
− det Q
u |2

, zu, zv ∈ Ω. (4.4.1)
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If (ZU , ZV ) has density (4.4.1) with det Q = 1, we write (ZU , ZV ) ∼ BC+(ψ).

Similarly, we write (ZU , ZV ) ∼ BC−(ψ) if (ZU , ZV ) has density (4.4.1) with det Q =

−1.

Note that this transformation does not actually change the distribution. All have

done is to express the random variables and the parameters in the form of complex

numbers for the sake of further investigation of the distributions.

As already stated in Section 4.2.2, the marginals of ZU and ZV are circular

uniform, whereas both conditionals of ZU given ZV = zv and ZV given ZU = zu are

exit distributions for the circle, i.e., the wrapped Cauchy distributions. For brevity,

we introduce the notation C∗(ϕ) derived from McCullagh (1996) which denotes the

wrapped Cauchy distribution with density

f(z) =
1

2π

1 − |ϕ|2

|z − ϕ|2
, z ∈ Ω; |ϕ| < 1.

The relationship, |ϕ| = ∥ξ∥ and arg(ϕ) = arg(ξ1 + iξ2) where ξ = (ξ1, ξ2)
′, holds

between the parameters of model (1.2.5) and those of the density above via a trans-

formation Z = X1 + iX2. See McCullagh (1996) and Mardia (1972, pp.51-52) for

further properties of the wrapped Cauchy distribution. For model (4.4.1), it is easy

to show that ZU |(ZV = zv) ∼ C∗(ψzv) and ZV |(ZU = zu) ∼ C∗(ψzu).

4.4.2 Some properties

To investigate other properties of the model, it is useful to calculate its moments.

Assume that (ZU , ZV ) has BC+(ψ). Then the moments for (ZU , ZV ) are obtained,

by applying Theorem 11.13 of Rudin (1987), as

E
(
ZU

jZV
k
)

=


ψj, j = −k ≥ 0,

ψ
−j

, j = −k < 0,

0, otherwise,

for j, k ∈ Z. (4.4.2)

Similarly, we can obtain the moments for BC−. According to Fourier series expan-

sion theory, one can recover the density from these moments if the density f satisfies

f ∈ L2(Ω × Ω). See Dym and McKean (1972, Section 1.10) for details.
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Using these results, the following properties are established. First, the BC+

model has the multiplicative property:

(ZU 1, ZV 1) ∼ BC+(ψ1) ⊥ (ZU 2, ZV 2) ∼ BC+(ψ2)

=⇒ (ZU 1ZU 2, ZV 1ZV 2) ∼ BC+(ψ1ψ2). (4.4.3)

Likewise, it can be shown that the BC− model also has the multiplicative property.

However, the convolution of BC+ and BC− is the uniform distribution, i.e.

(ZU 1, ZV 1) ∼ BC+(ψ1) ⊥ (ZU 2, ZV 2) ∼ BC−(ψ2)

=⇒ (ZU 1ZU 2, ZV 1ZV 2) ∼ BC+(0).

In addition,

(ZU , ZV ) ∼ BC±(ψ) =⇒ (ZU
n, ZV

n) ∼ BC±(ψn) for any n ∈ N.

As n tends to infinity, the distribution of (ZU
n, ZV

n) tends to a uniform distribution

on the torus.

Furthermore, model (4.4.1) is log-infinitely divisible. This is proved as follows.

Let (ZU , ZV ) ∼ BC±(ψ). Then for any positive integer n, the assumption that

(ZU j, ZV j) (j = 1, . . . , n) is an iid sample from BC±(n
√

ψ) yields(
n∑

j=1

log ZU j,

n∑
j=1

log ZV j

)
d
= (log ZU , log ZV ).

4.4.3 Random vector generator

In order to simulate a BC+(ψ) random vector, one could generate R2-valued Brow-

nian motion and record the points of which the Brownian particle hits circles with

radii ρ and 1. However, this algorithm is somewhat inefficient because we need to

simulate Brownian motion at least up to the time at which the particle hits the unit

circle. Another possibility is discussed in Section 4.3.3, but it too is less efficient

than the method proposed below. The focus of this subsection is therefore to discuss
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an algorithm to simulate BC+(ψ) variates which we conclude to be more appealing

than the aforementioned methods.

To obtain the random vector, we use the fact that the marginal of ZU is circular

uniform and the conditional of ZV given ZU = zu is wrapped Cauchy, specifically,

C∗(ψzu). For the generation of a variate from a wrapped Cauchy distribution, we

apply a result from McCullagh (1996) concerning the Möbius transformation of a

circular uniform, namely that

Z ∼ C∗(0) =⇒ Z + β

1 + βZ
∼ C∗(β), |β| < 1. (4.4.4)

An algorithm for generating BC+(ψ) random vectors then involves the following

steps:

Step 1: Generate uniform (0, 1) random numbers U1 and U2.

Step 2: Put ZU = exp (2πiU1) and ZT = exp (2πiU2).

Step 3: Take ZV =
ψZU + ZT

1 + ψZUZT

.

Then the joint distribution of (ZU , ZV ) is BC+(ψ). In Step 2, ZU and ZT are

independent circular uniform random variables. In Step 3, because of property

(4.4.4), the conditional distribution of ZV given ZU = zu is C∗(ψzu). Therefore it

follows that (ZU , ZV ) ∼ BC+(ψ).

BC−(ψ) random vectors can be simulated using a very similar approach.

4.4.4 Parameter estimation

Here we consider parameter estimation for the BC+(ψ) model based on the method

of moments and maximum likelihood. Although we discuss parameter estimation

for the BC+(ψ) only here, it is possible to derive the estimates of the parameters

for the BC−(ψ) model by a straightforward modification of the result below.

First, we consider method of moments estimation based on (4.4.2). Assume

(ZU , ZV ) is a BC+(ψ) random variable. As discussed in Section 4.4.2, its theoretical
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moments are given by (4.4.2). Suppose (ZU j, ZV j) (j = 1, . . . , n) is a random sample

from the BC+(ψ) distribution. The method of moments estimator is obtained by

equating the theoretical and sample moments. Thus we obtain

ψ̂ =
1

n

n∑
j=1

ZU jZV j.

We note that this estimator is the same as (4.3.2), which is the method of moments

estimator based on (4.3.1), if rank(
∑n

j=1 UjV
′
j ) = 2.

Second, turning to the maximum likelihood estimation, it is obvious that the

maximum likelihood estimator coincides with the method of moments estimator,

i.e. ψ̂ = ZU 1ZV 1 for a single observation, i.e. when n = 1. When n is large, the

estimates must be obtained numerically. Note that the likelihood function can be

written as

L(ψ) ∝
n∏

j=1

1 − |ψ|2

|zujzvj − ψ|2
.

This expression suggests that maximum likelihood estimation for the BC+(ψ) model

essentially coincides with that for the wrapped Cauchy distribution C∗(ψ). There-

fore we can obtain estimates by applying the algorithm of Kent and Tyler (1988).

4.5 Related models

4.5.1 Generalizations of model (4.2.1)

As described in Section 4.2.1, the model with density (4.2.1) is generated using

Brownian motion starting at B0 = 0. In this subsection we briefly discuss a dis-

tribution which is generated using Brownian motion starting at B0 = ξ (∥ξ∥ < ρ)

instead of B0 = 0. We define a random vector (U, V ) = (QBτ1/∥Bτ1∥, Bτ2) in the

same way as that used in Section 4.2.1 except that we incorporate the new starting

point. The resulting density for (U, V ) is given by

f(u, v) =
1

A2
d−1

1 − ρ2

(1 − 2ρu′Qv + ρ2)d/2

ρ2 − ∥ξ∥2

(ρ2 − 2ρU ′Qξ + ∥ξ∥2)d/2
, u, v ∈ Sd−1.

(4.5.1)
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The marginals and conditional distributions of V given U = u are the exit distribu-

tions:

U ∼ Exitd(ρ
−1Qξ), V ∼ Exitd(ξ) and V |(U = u) ∼ Exitd (ρQ′u) .

The conditional distribution of U given V = v is not of the familiar form. This

conditional distribution can be unimodal or bimodal and is generally skewed except

for certain special cases such as v = ±ξ/∥ξ∥. We remark here also that the bivariate

circular case of model (4.5.1) is a submodel of the distribution briefly discussed in

Section 2.3 as a model related to the circular–circular regression model.

Another generalization arises out of the use of the method discussed in Saw

(1983). This method enables us to derive a distribution with prescribed marginals.

In the bivariate circular case, it might also be promising to apply the Möbius

transformation to each variable. Let (ZU , ZV ) ∼ BC+(ψ) and define a random

vector

(Z̃U , Z̃V ) =

(
ZU + α1

1 + α1ZU

,
ZV + α2

1 + α2ZV

)
, |α1|, |α2| < 1.

Then, because of property (4.4.4), the marginals of Z̃U and Z̃V have wrapped Cauchy

distributions C∗(α1) and C∗(α2), respectively. Another benefit of this extension is

that its density has a simple and exact form, including the normalizing constant

which does not involve any special functions.

4.5.2 Related distributions on R2 and on the cylinder

In previous subsections in this chapter, we have dealt with distributions for two di-

rectional observations. In this subsection, we provide models on two other manifolds,

namely, R2 and the cylinder.

By applying bilinear fractional transformations to model (4.4.1), a distribution

on R2 is constructed. Let (ZU , ZV ) be distributed as BC−(ψ). Define a random

vector (X,Y ) as

X = i
1 − ZU

1 + ZU

and Y = i
1 − ZV

1 + ZV

.
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Clearly, (X,Y ) takes values in R2. It is straightforward to show that the joint

density for (X,Y ) is

f(x, y) =
1

π2

Im(θ)

|x + y + θ(1 − xy)|2
, x, y ∈ R, (4.5.2)

where θ = i(1 − ψ)/(1 + ψ). Since |ψ| < 1, it is evident that Im(θ) > 0.

This model has the following properties:

X ∼ C(i), Y ∼ C(i),

X|(Y = y) ∼ C

(
θ + y

1 − θy

)
, Y |(X = x) ∼ C

(
θ + x

1 − θx

)
,

where the C(ϕ) notation is derived from McCullagh (1992) and denotes the Cauchy

distribution on the real line with location parameter Re(ϕ) and scale parameter

Im(ϕ). Thus the marginals and conditionals are members of the real Cauchy family.

Further properties of model (4.5.2) are derived using the inverse transformations

ZU = (1 + iX)/(1− iX) and ZV = (1 + iY )/(1− iY ), which map the real line onto

the unit circle in the complex plane.

A related distribution on the cylinder Ω×R is obtained in a similar fashion. Let

(ZU , ZV ) be BC+(ψ) distributed. Define a random vector

(ZΘ, X) =

(
ZU , i

1 − ZV

1 + ZV

)
.

Then the marginals and conditionals of (ZΘ, X) are

ZΘ ∼ C∗(0), X ∼ C(i),

ZΘ|(X = x) ∼ C∗
(

1 + ix

1 − ix
ψ

)
, X|(ZΘ = zθ) ∼ C

(
−i

1 − zθψ

1 + zθψ

)
.

Thus, the marginals are circular uniform and standard Cauchy, while the condition-

als are the wrapped Cauchy and linear Cauchy distributions, respectively.
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Appendices

A Derivation of density (4.2.1)

Let c(u, v) be the joint density of (U, V ) = (QBτ1/∥Bτ1∥, Bτ2) which is defined in

the same way as in Section 4.2.1. Note that the density can be expressed as

c(u, v) = fU(u)gV |U(v|u), u, v ∈ Sd−1,

where fU is a density for the marginal of U and gV |U that for the conditional of V

given U = u. Clearly, the marginal of U is distributed as the uniform distribution

and thus fU(u) = 1/Ad−1. Because of the Markov property of Brownian motion, the

conditional of V given U = u is essentially equivalent to the exit distribution for the

sphere generated by Brownian motion starting at B0 = ρQ′u. (See Durrett (1984,

Section 1.10)). The density for the exit distribution for the sphere is known to be

gV |U(v|u) =
1

Ad−1

1 − ρ2

∥v − ρQ′u∥d
, v ∈ Sd−1.

Thus we obtain the density (4.2.1).

Density (4.5.1) is obtained by a straightforward modification of the above.

B Proofs of Theorems 4.2 and 4.3

Proof of Theorem 4.2 Since the marginals of U and V are uniformly distributed

on the sphere, it is evident that E(U) = E(V ) = 0 and E(UU ′) = E(V V ′) = d−1I.

We show that E(UV ′) = d−1ρI. Because model (4.2.1) is O(d)-symmetric in the

sense of Rivest (1988), calculation of E(UV ′) is simplified by applying Proposition

1 of his paper to

E(UV ′) = diag{E(RjSj)}Q,

where (R,S) ∼ BSd(ρI), R = (R1, . . . , Rd)
′, S = (S1, . . . , Sd)

′. Consider the integral

E(R1S1) =

∫
Sd−1×Sd−1

r1s1c(r, s)drds =

∫
Sd−1

r1

Ad−1

∫
Sd−1

s1

Ad−1

1 − ρ2

∥s − ρr∥d
dsdr.
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Transforming S into S̃ = PS where P is a d × d orthogonal matrix such that

P = (r, p2, . . . , pd)
′, pj = (pj1, . . . , pjd)

′ ∈ Rd, we have∫
Sd−1

r1

Ad−1

∫
Sd−1

s1

Ad−1

1 − ρ2

∥s − ρr∥d
dsdr

=

∫
Sd−1

r1

Ad−1

∫
Sd−1

r1s̃1 +
∑d

j=2 pj1s̃j

Ad−1

1 − ρ2

(1 − 2ρs̃1 + ρ2)d/2
ds̃dr

=

∫
Sd−1

s̃1

dAd−1

1 − ρ2

(1 − 2ρs̃1 + ρ2)d/2
ds̃.

The last equality results on using E(R) = 0 and E(R2
1) = d−1. Then, because if

X ∼ H ′(θ, ν), then E(X) = θ, the above equation can be expressed as∫
Sd−1

s̃1

dAd−1

1 − ρ2

(1 − 2ρs̃1 + ρ2)d/2
ds̃

=
1 − ρ2

dAd−1

2π(d−1)/2

Γ{1
2
(d − 1)}

∫ π

0

cos θ sind−2 θ

(1 − 2ρ cos θ + ρ2)d/2
dθ

=
1 − ρ2

dB{1
2
(d − 1), 1

2
}

∫ 1

−1

t (1 − t2)(d−3)/2

(1 − 2ρt + ρ2)d/2
dt

=
ρ

d
.

The other elements, E(RjSj) (2 ≤ j ≤ d), are calculated in a similar way. 2

Proof of Theorem 4.3 Consider T ≡ U ′QV . The distribution function of T , FT ,

is given by

FT (t) = P (T ≤ t) = EV {P (U ′Qv ≤ t |V = v)}

= EṼ

{
P (U ′ṽ ≤ t | Ṽ = ṽ)

}
,

where Ṽ = QV . Then transform Ũ = PU where P ∈ O(d) such that P =

(ṽ, p2, . . . , pd)
′, pj ∈ Rd, and one obtains

EṼ

{
P (U ′ṽ ≤ t | Ṽ = ṽ)

}
=

∫
Sd−1

1

Ad−1

∫
ũ1≤t

ũ∈Sd−1

1

Ad−1

1 − ρ2

1 − 2ρũ1 + ρ2
dũdṽ

=
1

Ad−1

2π(d−1)/2

Γ{1
2
(d − 1)}

∫
cos θ≤t
0≤θ<π

(1 − ρ2) sind−2 θ

(1 − 2ρ cos θ + ρ2)d/2
dθ

=
1 − ρ2

B{1
2
(d − 1), 1

2
}

∫ t

−1

(1 − x2)(d−3)/2

(1 − 2ρx + ρ2)d/2
dx.
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Thus,

fT (t) =
dFT

dt
(t) =

1 − ρ2

B{1
2
(d − 1), 1

2
}

(1 − t2)(d−3)/2

(1 − 2ρt + ρ2)d/2
. 2
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