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Preface

Far better an approximate answer to the right question, which is
often vague, than an exact answer to the wrong question, which
can always be made precise.
(The future of data analysis, Annals of Mathematical Statistics 33:1-67, 1962)

— John W. Tukey

Modelling is a fundamental of Science. It is of much importance to create

a model which leads people to many discoveries. A better model can be

constructed in a framework which better captures the reality. The Data

modelling starts from establishment of such a framework by honestly looking

at the observed data.

Biological data modelling is somewhat specific because the variability of

data remains significant even if the experiment were carefully designed. It

is nothing more than the sign of alive that homoeostasis or constancy is

maintained in any of biological phenomena. It is also often the case when

biological data is obtained only once as a function of time. The aim of this

thesis to seek for possible ways to a good biological data modelling, which

will be suggested by three case studies.

The first case study is on modelling five bird count series observed

monthly. Each of the series was decomposed into three components: long

trend, short trend and irregular by two step smoothing. It was clearly

shown that a simple linear transformation of the long trends as a whole
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is a good modelling for capturing relationships between bird count series and

environmental changes. It turned out that there are two bird groups, one

of which increases in number as an increase of resident area and the other

decreases as a decrease of farmland area. Each short trend also allows us to

understand the seasonality of the behaviour of each bird.

The second case study is on modelling swimmers’ speeds over the course

of a male 200 m free-style race. The model is based on a dynamical model

reflecting the trade–off between drag and propulsion in swimming. It does

not only fit well the data but also provide a good description of the swimming

strategies of each swimmer from phase to phase in the race. An individual

factor measuring how much faster or slower the individual swims relative to

the average swimming speed is estimated. This factor is, as expected, closely

related to the final outcome of the race.

The third case study is on modelling membrane potential of a neuron.

A simple but powerful input and output system has been created by noting

that each nerve cell system has two different type of synapses; chemical and

electrical ones. Three phase model has been introduced for the input as well

as for the spikes, which is a simplified Hodgkin–Huxley model but with an

extra phase, pre–activation phase. Spike occurrences are modelled by a point

process with the intensity proportional to the derivative of the input. The

model would be applicable for any other membrane potential changes of a

neuron as an integrated model.

An important implication of these case studies is that the models created

are not a simple extension of existing theories or models. Such models

could not be obtained without careful analysis of the given data. Honest

approach to the data was a key to success. As a summary, it is shown that
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data–driven approach is likely to open a new horizon particularly in biological

data modelling because an innovative modelling is always necessary to cope

with the large variability of the data.
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Chapter 1

Introduction

1.1 Biological data

Biological data is the data collected from biologicals sources, whose

variability remain lage even if experiments were carefully organised. It

is nothing more than the sign of alive but can be a burden of biological

data modelling. Specific features of biological data indispensable in the

modelling are Homoeostasis (Constancy), Uncontrollable observation and

Time dependency. In the subsequent sections, we concentrate our attention

into the following three biological data.

1. Bird count data (Bird);

2. Swimming race data (Human);

3. Neural membrane potential data (Neuron).

Table 1.1 summarises the specific features of those three data sets. Most

important feature would be the constancy, in other words, the homogeneity

of the data is retained in a group of birds, in each phase of swimming races

and membrane potential changes by focusing on the constancy. This suggests

that a better modelling approach is, as a first step, to construct a model only

1
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Table 1.1: Specific features of the data dealt in this thesis.

Bird Human Neuron
Homoeostasis Environment Race Ion
Constancy Group Phase Phase

Uncontrollable Open system Competition In vivo
Observation Once Once Once

Time dependency Yes Yes Yes

for such data sets holding true for constancy since the model built might be

simple and easily interpreted.

1.2 Modelling

1.2.1 Modelling process

There is no definite way of biological data modelling but there are two basic

principles which any data scientist should observe, although those are quite

general and applicable for any scientific data modelling. The first principle

is ”Be honest to the given data” and the second one is ”Keep a good relation

to the scientist in the field”. The latter makes possible to discuss what is the

target of modelling and how to approach the problem. Sometimes it results

in re-sampling or re-experiments.

In the process of modelling, preliminary analysis of the data is also

important. Only a good preliminary analysis can provide a successful model

which fits the data well and gives good explanation. It is often the case when

it results in coming back to the first stage, the data collection stage. The

value of modelling is, of course, how large the impact is of the model created

to the field of science. New discovery or constructive suggestion is modes

most desirable as a result of the modelling.
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Table 1.2: Fundamental aspects of the data.

Bird Human Neuron
Observation Count Elapsed time Membrane potential

Variety Species Individual Cluster
Constancy Group Phase Phase

Time dependency Long, Short Lap Trend, Spike

1.2.2 Data and mechanism behind

In the stage of preliminary analysis, a crucial point is to grasp various aspects

of the data in an appropriate manner. Table 1.2 summarises fundamental

aspects of the data employed in the three case studies. Correct understanding

of the aspects leads people to correct modelling, although it is not enough. As

was mentioned, the constancy may suggest a framework for better modelling.

Is is also necessary to consider whether it could be able to ignore the difference

between individual.

Furthermore, it is also of importance to capture the mechanism behind

the data for successful modelling. It can be achieved only by continuous

discussion with the scientists in the underlying research field. In the case of

physics, such well known structures have been given by differential equations.

However, such models show sometimes different behaviour from the data

observed. This suggests that the assumptions for such model may not be

true and the model need to be improved.

1.2.3 Complexity and accuracy of the model

Modelling is an endless work. A well known principle of modelling is to make

a good balance between the complexity and accuracy of modelling (Akaike,

1973, Konishi and Kitagawa, 1996, 2007). In other word, parsimonious model
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is most desirable. But there is always room for improvement of the model

created. Efforts to improve the model is necessary, but time and data are

limited. A criterion for the stop of our effort would be if the model has

reflected all necessary information in the data.

1.3 Smoothing technique: loess

Smoothing techniques are of use to extract structures lying behind data,

especially, if any significant structure cannot be assumed. There is a useful

technique called local polynomial regression proposed by Cleveland (1979),

Cleveland and Devlin (1988) which is available on S–PLUS as a function

lowess or loess.

Local polynomial regression assumes a smooth function f (x), as an

expected structure, behind data (xi, yi) , i = 1, 2, . . . , n, which are observed

and locally approximate using polynomials. The weight used for weighted

least squared method for estimation is

n∑
i=1

w

(
|xi − x|
dδ (x)

)
{yi − fx (xi)}2 →

fx

min, (1.1)

where

dδ (x) = max
i;xi∈Uδ(x)

|xi − x| .

Here Uδ (x) is the nearest neighbour of x defined by [nδ], which is the

maximum integer of nδ. The smoothing parameter δ means the proportion of

observations in the nearest neighbour. Further, fx is a p–degree polynomial

given by

fx (z) =

p∑
k=0

βk (x) (z − x)k .
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The weight function w for weighted least squared in S–PLUS is a tori cubic

weight

w (x) =


(1 − x3)

3
(0 ≤ x < 1) ,

0 (otherwise) .

Introduce some matrix notations, for convenience. Put

X (x) =

 1 (x1 − x) · · · (x1 − x)p

...
...

. . .
...

1 (xn − x) · · · (xn − x)p

 , β̂ (x) =

 β̂0 (x)
...

β̂p (x)

 ,

W (x) = diag

[
w

(
x1 − x

dδ (x)

)
, · · · , w

(
xn − x

dδ (x)

)]
, y =

 y1
...

yn

 .

X (x) is an n× (p + 1) design matrix and W (x) is an n×n diagonal matrix

of weights.

The solution of the least squares problem can be written as

β̂ (x) = A−1 (x) XT (x) W (x) y ,

where

A (x) = XT (x) W (x) X (x) .

A (x) = {am,r (x)} is the (p + 1) × (p + 1) symmetric matrix and its (m, r)

element is written as

am,r (x) =
n∑

i=1

(xi − x)m+r−2 w

(
xi − x

dδ (x)

)
. (1.2)

The smoothed value at x is given by

β̂0 (x) =
1

det A (x)

p∑
k=0

adj (A (x))1,k+1

n∑
i=1

(xi − x)k w

(
xi − x

dδ (x)

)
yi , (1.3)

where adj (A (x))1,k+1 is the cofactor of ak+1,1 (x).

This technique will be used in Section 2 and 4 for extracting some

structures which could not assume any mechanisms behind the data.



Chapter 2

Bird count series modelling to
explore environmental changes

2.1 Introduction

Relationships between avifauna and natural environment have been

attracting many researchers’ interests in ecology. However, their interests

have been rather biased to abundance of species, particularly in field studies

conducted in Japan, see Higuchi et al. (1982), Anada and Fujimaki (1984),

Hirano et al. (1985, 1989), Murai and Higuchi (1988), Kurosawa (1994),

Ootaka and Nakamura (1996) and Maeda (1998). Although frequency

changes of each species would be of much importance to capture the effects

of human activities which are apt to cause environmental changes for birds,

not so many works have been done on the number of birds observed in an

area for each species but there are several papers, Hirano (1996), Komeda

and Ueki (2002), Uchida et al. (2003), Shimadzu and Shibata (2005).

In this chapter, the data observed over 35 years at Jiyu–Gakuen in Tokyo,

Japan, is used to explore relationships between the number of individuals and

environmental changes due to human activities. The data has been collected

monthly in a well organised way. By two step smoothing technique, each bird

6
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count series is decomposed into three components, long trend, short trend and

irregular. To explorer relationships between those long trends and several

environment indices, the scale and location of each long trend is adjusted.

As a consequence, two bird groups are popped up. One is the group of Turtle

Dove (Streptopelia orientalis), Brown–eared Bulbul (Hypsipetes amaurotis)

and Great Tit (Parus major) and the adjusted long trends all fit well to the

curve of increasing residential area. Another is the group of Tree Sparrow

(Passer montanus) and Gray Starling (Sturnus cineraceus) and the adjusted

long trends all fit well to the curve of decreasing farmland area. It will be

shown that each short trend provides significant information on the seasonal

behaviour of each species.

2.2 Bird census

There have been various bird censuses conducted but not necessarily well

organised. Its objective, the period or the method varies census by census.

Census by a national institution is usually well organised and the data is

open to public on the web. Two examples of such censuses are Common Bird

Census (CBC; http://www.bto.org/index.htm) conducted by British Trust

for Ornithology (BTO) over the whole of the United Kingdom since 1962,

and Breeding Bird Survey (BBS; http://www.mp2-pwrc.usgs.gov/bbs/)

conducted by the United States Geological Survey (USGS) and the Canadian

Wildlife Service (CWS) since 1966.

On the other hand, bird censuses in Japan are usually conducted by

individuals or small groups, so that the collected data are not necessarily

open to public but scattered over individuals or groups in Japan. In this

respect, the data collected at Jiyu–Gakuen is valuable because it is the result



Chapter 2. Bird count series modelling 8

of a continuous survey of the number of birds in a fixed area over 35 years

and the data is open to public as is explained later.

2.3 Data

2.3.1 Natural environment of observational place

Higashi–Kurume city where Jiyu–Gakuen is located is 20 km far from the

centre of Tokyo and on the centre of Musashino plateau on the loamy layer

of Kanto. She covers 12.92 km2 area lying 6.5 km east and west, 3.5 km

south and north and has three rivers crossing to the east: the Kurome River,

Ochiai River and Tateno River.

Jiyu–Gakuen campus is located on the southeast end of Higashi–Kurume

city as is shown in Figure 2.1 and covers 100,000 m2. Many trees and

bushes are found in the campus, for example, Japanese maple (Acer

palmatum), Japanese zelkova (Zelkova serrata), Ginkgo (Ginkgo biloba),

Korean hornbeam (Carpinus tschonoskii), Red pine (Pinus densiflora),

Japanese white oak (Quercus myrsinaefolia), and Japanese aucuba (Aucuba

japonica). Also farm place, glass land and several ponds can be found in the

campus.

2.3.2 Data collection

Once a month, the census is conducted by about 40 students of the secondly

school and the number of birds for each species are recorded. Whole area of

the campus is investigated before noon (about 30 min between 9 to 11 am)

of a fine day with no rain and light wind.

Various types of bird census have been conducted (Bibby et al., 2000). For

example, Territory mapping used in CBC is the census to identify territory
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Figure 2.1: Jiyu–Gakuen in Tokyo, Japan.
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of each bird and Point counts used in BBS or Line transects frequently used

in Japan is the census to know the number of birds in an area. Line transects

is advantageous in mountainous area. Although census has to be carefully

designed depending on target species, environment conditions and quality

of participants to the survey, complete sampling is adopted in this survey

because of the quality of participants (Kira, 2000).

The data observed is available from Kira et al. (2002) or on the web

http://www.stat.math.keio.ac.jp/DandDIII/Examples/JiyuBirdCount.dad

which is organised along with the DandD (Data and Description) rule

(Shibata, 2001, Yokouchi and Shibata, 2001).

2.3.3 Target species

More than 60 species have been observed for 32 years from 1967 to 1998, but

some of them are not frequently observed as is seen on Table 2.1. In this

chapter, only eight species out of 60 species are taken into consideration.

In those eight species, Azure–winged Magpie and Oriental Greenfinch are

exceptional. As is seen in the count series shown in Figure 2.2, the count

series of each species does not show any clear trend but rather oscillating. The

reason is not the same for those two species. Oriental Greenfinch is a winter

visitor of which the number largely depends on richness of foods (seeds of

grass and trees) during autumn to winter. On the other hand, Azure–winged

Magpie is usually moving within small bevy so that, the observed number

can be large if the census were organised during their occasional visit.
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Table 2.1: Observed frequency of birds for each species.

Rank Frequency Name Latin name
1 383 Tree Sparrow Passer montanus
2 377 Rufous Turtle Dove Streptopelia orientalis
3 362 Great Tit Parus major
4 354 Brown–eared Bulbul Hypsipetes amaurotis
5 344 Grey Starling Sturnus cineraceus
6 328 Azure–winged Magpie Cyanopica cyana
7 305 Oriental Greenfinch Carduelis sinica
8 236 Jungle Crow Corvus macrorhynchos
9 127 Hause Swallow Hirundo rustica
10 118 Duskey Thrush Turdus naumanni eunomus
11 101 Black–faced Bunting Emberiza spodocephala
12 89 Bull–headed Shrike Lanius bucephalus
13 88 Bamboo Partridge Bambusicola thoracica
14 84 White Wagtail Motacilla alba
15 82 Japanese Pygmy Woodpecker Dendrocopos kizuki
16 64 Bush Warbler Cettia diphone
17 54 Spotbill Duck Anas poecilorhyncha
18 54 Hawfinch Coccothraustes coccothraustes
19 54 Japanese White–eye Zosterops japonicus
20 50 Japanese Grosbeak Eophona personata
21 50 Gray Wagtail Motacilla cinerea
22 47 Rock Dove Columba livia var. domestica
23 44 Carrion Crow Corvus corone
24 40 Japanese Wagtail Motacilla grandis
25 31 Daurian Redstart Phoenicurus auroreus
26 24 Japanese Green Woodpecker Picus awokera
27 15 Thick–billed Shrike Lanius tigrinus
28 14 Japanese Lesser Sparrow Hawk Accipiter gularis
29 13 Little Egret Egretta garzetta
30 10 Siberian Meadow Bunting Emberiza cioides
31 10 Rustic Bunting Emberiza rustica
32 10 Coal Tit Parus ater
33 9 Common Cuckoo Cuculus canorus
34 8 Hause Martin Delichon urbica
35 8 Pale Thrush Turdus pallidus
36 7 Oriental Cuckoo Cuculus saturatus
37 7 Brown Hawk Owl Ninox scutulata
38 6 Narcissus Flycatcher Ficedula narcissina
39 6 Jay Garrulus glandarius
40 6 Crowned Willow Warbler Phylloscopus coronatus
41 4 Goshawk Accipiter gentilis
42 4 Skylark Alauda arvensis
43 3 Indian Rose–necked Parakeet Psittacula krameri manillensis
44 2 White–rumped Swift Apus pacificus
45 2 Black Kite Milvus migrans
46 2 Varied Tit Parus varius
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47 2 Ashy Minivet Pericrocotus divaricatus
48 2 Siberian Bluechat Tarsiger cyanurus
49 2 Brown Thrush Turdus chrysolaus
50 2 Naumann’s Thrush Turdus naumanni naumanni
51 1 Teal Anas crecca
52 1 Indian Tree Pipit Anthus hodgsoni
53 1 Jungle Nightjar Caprimulgus indicus
54 1 Blue–and–white Flycatcher Cyanoptila cyanomelana
55 1 Red–breasted Flycatcher Ficedula parva
56 1 Black–headed Gull Larus ridibundus
57 1 Grey–spotted Flycatcher Muscicapa griseisticta
58 1 Night Heron Nycticorax nycticorax
59 1 Honey Buzzard Pernis apivorus
60 1 White’s Ground Thrush Zoothera dauma
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Figure 2.2: Count series of Oriental Greenfinch and Azure–winged Magpie.

The target species are now six species; Turtle Dove，Brown–eared

Bulbul，Great Tit，Tree Sparrow，Gray Starling and Jungle Crow, which

are indicated by bold font on Table 2.1. As a consequence, those are the

species categorised into resident bird being observed over year in this area.

It is naturally expected that their number of such a bird is strongly related

with environmental changes.

2.4 Time series decomposition through loess

In time series analysis, seasonal adjustment has been widely used to extract

seasonal movements. The expectation is to find a seasonal structure lying

behind the data. Particularly in economics, considered are yearly, monthly

or weekly seasonalities. However, in terms of birds, weekly or monthly

seasonality would not be reasonable. Even if there were yearly seasonality,
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it would not be so exact as in economical time series. Therefore, two step

smoothing technique will be employed in place of seasonal adjustment, to

decompose the original time series into three components.

There are two typical smoothing techniques:

• Spline smoothing;

• Local polynomial regression.

Spline smoothing fits a piecewise polynomial function to the given data,

where the pieces are specified by the given knots. It is assumed that the

derivatives of the function are continuous up to an order. On the other

hand, local polynomial regression provides the smoothed value by fitting a

polynomial by weighted regression in a neighbourhood of each target point.

Kernel smoothing is a variant of local polynomial regression where the order

of polynomials is zero. An implementation of the local polynomial regression

is loess by Cleveland (Cleveland, 1979, Cleveland and Devlin, 1988) which

is available on S–PLUS. There are good examples and detailed discussions

on polynomial regression modelling in Chambers and Hastie (1992) or Fan

and Gijbels (1996). Several works have been done for bird count series to

find relation to environmental conditions by using such a local polynomial

regression technique. For example, James et al. (1996) applied the technique

to BBS data for 26 years from 1966 to 1992 and analysed 26 species of

American Warblers observed in the central America. Their main result is

that the number of birds largely depends on the altitude of observational

place, but also they found that the deterioration of food environment by air

pollution as a cause of possible.

Here it is assumed that the original series Zi (t) of species i can be
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decomposed into two components and noise as

Zi (t) = Li (t) + Si (t) + Ii (t) (t = 1, . . . , 384) .

where Li (t) is long trend which behaves slow in decade–long span, Si (t) is

short trend having yearly span and Ii (t) is irregular. The long trend Li (t)

is extracted by applying smoothing technique loess to the original series

Zi (t). Further, the short trend Si (t) is extracted from Zi (t) − Li (t) by the

same way with shorter span. Such decomposition approach called two step

smoothing was applied for a financial time series (Shibata and Miura, 1997).

An example of the decomposition for Tree Sparrow is shown in Figure 2.3.

The top panel is the original series Zi (t) and the bottoms are following the

order, long trend Li (t), short trend Si (t) and irregular Ii (t).

Without any assumption of specific cycles, local polynomial regression

provides smoothing values. This is desirable aspects if it is not able to assume

any structure behind the data. It is necessary to chose a smoothing parameter

δ by span and a degree of polynomial p by degree in S–PLUS. There are

several discussions on selection of these parameters (Fan and Gijbels, 1996).

However it is important how extract a reasonable trend which can be easily

interpreted. Choice of parameters will be discussed in following.

2.5 Relationships between bird count series

and environmental factors

Applying such smoothing technique to each of six species listed in Section

2.3.3 to extract long trend, it was clearly shown that those species are

categorised into two groups, one of which increases and another decreases.

Turtle Dove, Great Tit, Brown–eared Bulbul and Jungle Crow are included
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Figure 2.3: Count series decomposition of Tree Sparrow.
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Figure 2.4: The long trend of Jungle Crow.

into the former group and Tree Sparrow and Gray Starling are included into

the latter group. As to Jungle Crow, it is also increasing, but Figure 2.4 shows

the different increase competitive of Figure 2.6. Such increase of Jungle Crow

has been recently reported especially in urban areas over Japan. There are

several causes possible, for example, the growth of trees. It would not be

appropriate to discuss this species same as other so it will be dropped from

the target and leave this for the future. For instance, only five species; Turtle

Dove, Brown–eared Bulbul, Great Tit, Tree Sparrow and Gray Starling are

analysed.

The long trends extracted from each count series are compared with

environmental factors to find any clear relationships between them. Although

there are, as candidates, several environmental factors, temperature, the

area of classification of land, for example. It is consequently found that
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four environmental factors of Higashi–Kurume city which may have strong

relationships with the number of individuals:

• Resident area [km2], increase;

• Farmland [km2], decrease;

• Length of paved road [km], increase;

• Length of unpaved road [km], decrease.

These four factors are, as expected, related each other. However, such

relations are not specific.

It would be the easiest way to overlay these two different time series

having different scale. So a linear transformation is adopted for the long trend

of each species to adjust their scale parameter ai and location parameter bi as

close as possible to each environmental factor; the area of farmland F (t) or

the resident area R (t). The parameters are defined by least squared method,

384∑
t=1

{F (t) − (aiLi (t) + bi)}2 −→
ai,bi

min (i = 1, 2) ,

384∑
t=1

{R (t) − (aiLi (t) + bi)}2 −→
ai,bi

min (i = 3, 4, 5) .

(2.1)

It is interesting to note that smoothing parameter δ for the long trend can

be re–estimated so as to minimise the squared error simultaneously with the

location and scale parameters. Such re–estimated smoothing parameters will

be given in the next section.

2.5.1 Long trend

The estimated parameters (δ, ai, bi) which minimise the least squared error

(2.1) are estimated with the degree of polynomial p = 1. The parameters
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Table 2.2: Estimated smoothing parameter (span).

Resident area Farmland Paved road Unpaved road
Tree Sparrow - 15 yr - 14 yr
Gray Starling - 29 yr - 27 yr
Turtle Dove 32 yr - 32 yr -

Brown–eared Bulbul 16 yr - 25 yr -
Great Tit 19 yr - 29 yr -

Table 2.3: Estimated parameters adjust to resident area and farmland.

Resident area Farmland
ai bi ai bi

1 Tree Sparrow - - 0.038 1.215
2 Gray Starling - - 0.116 1.167
3 Turtle Dove 0.478 −0.638 - -
4 Brown–eared Bulbul 0.461 −0.028 - -
5 Great Tit 0.876 −0.417 - -

are shown in Table 2.2, 2.3, and 2.4. Attention to the increase of decrease of

each time series, it is easily understand which environmental factor should

be related with the bird count series. So then the parameters of those 3

species, Turtle Dove，Great Tit and Brown–eared Bulbul showing a increase

trend are adjusted as close as possible to the resident area or the length of

paved road in Higashi–Kurume city. The other hand, the rest of species;

Tree Sparrow and Gray Starling are adjusted to the area of farmland and

the length of unpaved road. Un estimated parameters are indicated by ”-”.

Figure 2.6 and 2.5 show the transformed long trends using parameters

(Table 2.3, 2.4) and environment factors. These figures show that the long

trends all are quite similar with environment changes, which means that

the estimated parameters are significant. This show that the smoothing
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Table 2.4: Estimated parameters adjust to the length of paved or unpaved
road.

Paved road Unpaved road
ai bi ai bi

1 Tree Sparrow - - 1467.282 −32246.85
2 Gray Starling - - 4613.627 −36988.11
3 Turtle Dove 18405.29 −114019.4 - -
4 Brown–eared Bulbul 17448.08 −86633.47 - -
5 Great Tit 31743.47 −91209.35 - -

parameter chosen as p = 1 was enough, as well.

The estimated parameters for the three species; Turtle Dove,

Brown–eared Bulbul and Great Tit in Table 2.4 take larger value than those

of Table 2.3. This is because of the discontinuous behaviour of the length of

paved road in Higashi–Kurume city. However, as is shown in Figure 2.6 and

2.5, their long trends show quite similar behaviour with referred environment

changes even those having quite different properties. There is lying behind

that the scenario of urbanisation would be considered. In fact, such rapid

increase of resident area and decrease of farmland led by the high economic

growth period in Japan. It is clearly shown that the resident area was lager

than the farmland even since 1974.

These consideration naturally lead that the essential environmental

factors for bird may be the change of resident area and farmland. Such

close relationships between birds and the length of paved or unpaved road

would be coincidence. It is not sure whether such significant relationship can

be found from the observations in other place. This result implies the highly

adaptability of birds to environment.

The two groups in Figure 2.5 can be well explained from the view



Chapter 2. Bird count series modelling 21

Year

k
m

2

1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

Resident area
Rufous Turtle Dove (Streptopelia orientalis)
Brown-eared Bulbul (Hypsipetes amaurotis)
Great Tit (Parus major)

Farmland

Tree Sparrow (Passer montanus)

Grey Starling (Sturnus cineraceus)

Figure 2.5: The long trends and changes of resident area and farmland in
Higashi–Kurume city.

Table 2.5: Ecological characteristics of each species.

Feeding Nesting
Tree Sparrow Open land Open forest
Gray Starling Open land Open forest
Turtle Dove Open forest Forest

Brown–eared Bulbul Forest Forest
Great Tit Forest Forest
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point of ecological theory, the preference of environmental conditions of each

species. Such preference of environmental characteristics of each species are

summarised in Table 2.5. The increase of resident area leads the increase

of garden plants and shade trees which make small green island. As a

consequence, Turtle Dove, Brown–eared Bulbul and Great Tit which can

adopt by themselves are increase. On the other hand, Tree Sparrow and

Gray Starling which feed on farmland decreased. That is, the decrease of

Tree Sparrow and Gray Starling were largely depending on the condition of

feeding place.

2.5.2 Short trend

On decomposition of bird count series, middle trend was possible to take into

consideration. However, it was not significant because of its low variation in

value. Therefore a short rend is derived from each original series Zi (t) by

extracting long trend Li (t) like Zi (t) − Li (t) with p = 2.

Figure 2.7 shows the difference due to the choice of the degree of

polynomials. Estimated short trend when p = 1 or p = 2 are shown on

the top and bottom panel of Figure 2.7, respectively. It is clearly shown that

there is unnatural behaviour in the top panel (p = 1) which cannot follow

the original. On the other hand, the case (p = 2) seems to work well.

Smoothing parameter δ was chosen as one year for Tree Sparrow, Gray

Starling, Turtle Dove and Great Tit but half year only for Brown–eared

Bulbul because of their wandering.

The estimated short trends are shown in Figure 2.8 and their seasonality

can be found in Figure 2.9. There are three groups recognised by their

behaviour. The first is Brown–eared Bulbul, the second includes Turtle Dove
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Figure 2.7: Differences in short trends due to the difference of polynomial
degrees (Tree Sparrow).

and Great Tit, and the third includes Tree Sparrow and Gray Starling. Figure

2.9 shows their significant difference between these three groups which is due

to their seasonality.

The short rend of Brown–eared Bulbul shows definitely different

behaviour from others. This is because that Brown–eared Bulbul had been a

winter wandering species but now has been resident species ever since 1973.

Such phenomena has been widely known over Japan. However, the some of

individuals is still wandering so two groups were found in their seasonality. As

to the second group including Turtle Dove and Great Tit, it is also shown that

the increase in winter especially from November to February. This is because

that they are also resident species but some on them are still wandering and

visiting the observation place in winter. Great Tit was also winter species in

old days. These species show increase in winter but this implies that seasonal



Chapter 2. Bird count series modelling 25

1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-
4
0

-
1
0

2
0
4
0

Tree Sparrow (Passer montanus)

1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-
3
0

-
1
0

5
2
0

Grey Starling (Sturnus cineraceus)

1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-
1
0
0

1
0
2
0
3
0

Rufous Turtle Dove (Streptopelia orientalis)

1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-
6

0
4

8
1
2

Great Tit (Parus major)

1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

-
2
0

-
5

5
1
5

3
0

Brown-eared Bulbul (Hypsipetes amaurotis)

（
in

di
vi

du
al

）

Figure 2.8: Estimated short trends of each species.
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Figure 2.9: Seasonal movement of short trends.
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Figure 2.10: Boxplot of irregular series of each species.

effects are greater than migration effects. On the other hand, Tree Sparrow

and Gray Starling show their increase in the period from April to June. This

is because of migration in high possibility. After the increase, there is a

decrease due to dispersion of young birds.

It is interesting to note here that the similarity between groups recognised

by the long trend and short trend. This implies that Tree Sparrow and Gray

Starling which show significant increase in migration are decrease in long

range. On the other hand, Brown–eared Bulbul, Turtle Dove and Great Tit

which show significant increase in winter wandering increase in long range.

2.5.3 Irregular series

Figure 2.10 shows the box plots of irregular series Ii (t). This shows that

irregulars are symmetrically distributed but having heavy tail rather than
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Table 2.6: Correlation between irregulars

Tree Sparrow Gray Starling Brown–eared Bulbul Turtle Dove Great Tit
1

0.144 1
0.075 0.028 1
0.212 0.130 0.236 1
0.119 0.101 0.060 0.127 1

the normal distribution. There is no significant regular behaviour that is

supported by low correlation coefficients.

This kind of aspects of irregular series are expected as being reflected the

interaction between these species. This outcomes are quite natural because

these species analysed here are independent in terms of the food chain theory

in ecology.

These results show that the decomposition of count series through

smoothing technique work quite well.

2.6 Summary

The five bird count series observed on a monthly basis from 1967 to 1998 at

Jiyu–Gakuen, Higashi–Kurume city in Tokyo are simultaneously analysed.

Each count series is decomposed into three components, long trend, short

trend and irregular by two step loess smoothing. This decomposition explains

well the relationship between the bird count and some of environmental

changes. By selecting appropriate locations and scales as well as the

smoothing parameters so as to minimise the residual sum of squares,

it is shown that each five long trend very similarly moves with one of

environmental factors. Turtle Dove, Brown–eared Bulbul and Great Tit
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Figure 2.11: Irregular series of each species.
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increased its number to link with the enlargement of resident area. Tree

Sparrow and Gray Starling gradually decreased its number to link with the

decrease of farmland. Such two bird groups are well described by their

environment preference. Variation of each short trend can be explained by the

effects of breeding season or winter wandering. The fact that each irregular

series has no significant trend and very low correlation coefficients suggests

a success of our decomposition.



Chapter 3

Swimmers’ speeds modelling
over the course of a race

3.1 Introduction

There have been many attempts to model aspects of swimming from

various points of view including biomechanics, physiology and race analysis.

However, there appear to have been few that model swimming speed over

the course of a race. In this chapter, a new model of swimming speed and its

variation over the race is proposed. This model is fitted to elapsed times at

several points along the side of a pool. The model provides a good description

of the strategies adopted by each swimmer over the course of the race. As

a consequence, it should be of use to trainers, national selectors and those

interested in the biomechanics of swimming.

The observations used here are elapsed times observed at 21 check

points in the 34 preliminary male 200 m freestyle race held in the 2004

Japan Swimming Championships. A suitable dynamical model is fitted that

includes a parameter describing the individual effect of each swimmer. Since

a swimmer’s strategy may change from location to location in a lap, each

lap is split into three phases, the first, middle and last. Similarities between

31
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phases over laps were used, although the first and last laps need special

attention, leading to a more parsimonious model with reduced number of

parameters. This is an important consideration here since the number of

observations is limited. Section 3.3 demonstrates how to accomplish this

task.

The proposed model builds directly on the deterministic models of Amar

(1920), Karpovich (1933), Kolmogorov and Duplishcheva (1992) and Takagi

et al. (1999). It extends these models by accounting for propulsion and

setting them in a suitable stochastic framework. Related work from the

view point of race analysis includes Arellano et al. (1994), Chengalur and

Brown (1992), Craig and Pendergast (1979), Craig et al. (1985), Ikuta et

al. (1998), Kjendlie et al. (2004), Matsui et al. (1997), Okuno et al. (2003)

and Shimadzu et al. (2007). These papers focus mainly on the swimming

speed in the middle phase, which is decomposed into a product of the stroke

length (m/cycle) and stroke ratio (cycle/min). Relations between these two

factors are mainly discussed from a largely empirical point of view. It would

be natural to concentrate on such aspects if swimming in the middle phase

of the race were the key to winning. However, the proposed model shows

that swimming strategies in other phases are equally important for a good

outcome.

The approach adopted here is to model all phases of the race to allow

a better understanding of individual strategies for each phase and their

impact on the race as a whole. In this way, an overall integrated strategy for

improvement of swimming performance can be developed for the entire race.
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3.2 Data

The 2004 Japan Swimming Championships was not only one of the major

swimming competitions in Japan, but also part of the selection procedure

for the Athens Olympic games. For the male 200 m freestyle race, only 34

qualified swimmers holding a record faster than 1:50.8 were invited. The

race was recorded on video tapes by the Medicine and Scientific Committee

of Japan Swimming Federation, with the aim of using them for scientific

research. The purpose and the design of the video recording were clearly

explained by the committee to team managers prior to the race and they

gave their informed consent. The authors are allowed to use these video

tapes from the committee with the proviso that the privacy and dignity of

the swimmers should be protected.

The race was recorded on video tapes by five video cameras (60 frames per

second) placed parallel to the swimming direction. To minimise perspective

bias, each camera focused on just one of the intervals: 5–7.5, 10–15, 20–30,

35–40, 42.5–45 m. Based on the time stamp which was accurate to within 5

milliseconds on each frame, elapsed times were measured when a swimmer’s

head reached each one of 21 check points: 0, 15, 20, 30, 45, 50, 57.5, 70, 80,

95, 100, 107.5, 120, 130, 145, 150, 157.5, 170, 180, 195 and 200 m, with the

exception of the ends of the pool where elapsed times were measured when

a swimmer touched the wall. The second check point in the first lap was

placed at 15 m instead of 7.5 m since it is hard to identify the location of

each swimmer for 15 m after a dive. More details of the data collection can

be found in Matsui et al. (1997).



Chapter 3. Swimmers’ speeds modelling 34

3.3 Model

3.3.1 An underpinning deterministic model

A well known model for swimming speed v (t) at time t is given by the

differential equation,
dv (t)

dt
= −αv (t)2,

which was proposed by Amar (1920). There have been several experiments

to estimate the value of the drag parameter α > 0 in relation to the

body characteristics of each swimmer (Karpovich, 1933, Kolmogorov and

Duplishcheva, 1992, Takagi et al., 1999). However, this model ignores the

effect of propulsion which needs to be taken into account in swimming. A

more general model is
dv (t)

dt
= −αv (t)2 + β, (3.1)

where β ≥ 0 measures the propulsion generated by the swimmer’s stroke

action. The solution of the differential equation (3.1) can be explicitly written

as

v (t) =


1

αt + 1
v0

(β = 0)

2
√

κ

1 − c1e−2α
√

κt
−
√

κ (β > 0)

(t ≥ 0) ,

where v0 is the initial speed, κ = β/α and c1 = (v0 −
√

κ) / (v0 +
√

κ). The

model is continuous in terms of β so that

lim
β→+0

v (t) = lim
δ→+0

2δ

1 − c1 (δ) e−2αtδ
− δ

= lim
δ→+0

2e2αtδ

2αtc1 (δ) − dc1 (δ) /dδ

=
1

αt + 1
v0

,
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where δ =
√

κ and dc1 (δ) /dδ = −2v0/v0
2.

It is better to write the speed as a function of distance x rather than time

t since our observed elapsed times are measured in terms of distance. To

derive v (x) from v (t), it is enough to consider the case when β > 0,

x (t) = x0 +

∫ t

0

v (s) ds

= x0 + 2
√

κ

∫ t

0

(
1

1 − c1e−2α
√

κs
− 1

2

)
ds

= x0 +
√

κt +
1

α
log

(
1 − c1e

−2α
√

κt

1 − c1

)

= x0 +
1

2α
log

(
c1

v (t) +
√

κ

v (t) −
√

κ

)
+

1

α
log

(
2
√

κ

v (t) +
√

κ

1

1 − c1

)

= x0 +
1

2α
log

(
4c1κ

v (t)2 − κ

1

(1 − c1)
2

)
,

where the formula used here is given by

t =
1

2α
√

κ
log

(
c1

v (t) +
√

κ

v (t) −
√

κ

)
.

This yields

v (x)2 =
4c1κ

(1 − c1)
2 e−2α(x−x0) + κ,

and the swimming speed v (x) at distance x is given by

v (x) =


v0e

−α(x−x0) (β = 0)

√
c2e−2α(x−x0) + κ (β > 0)

(x ≥ x0) , (3.2)

provided that the speed at the initial distance x0 is v0 and c2 = v0
2 − κ.

However it is not appropriate to apply this model to the whole race directly

since the male 200m freestyle race consists of four laps of the pool, each of

length 50m. It is clear that α or β will not stay constant over the race, nor
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even in a lap so a natural approach is to split each lap into several phases

within which these parameters might be expected to be constant.

For simplicity, three phases are introduced for each lap. The first phase

(from 0m to x1m) is just after a dive or turn where drag, but no stroke

propulsion, are expected (α > 0, β = 0). By contrast, drag and propulsion

are both expected (α > 0, β > 0) in the middle phase (from x1 m to x2 m)

and in the last phase (from x2 m to 50 m). It is also natural to assume that

a swimmer’s speed stays constant in the middle phase since every swimmer

should have reached an equilibrium swimming state in this phase, so that

v (x1) = v (x) = v (x2) for x1 ≤ x ≤ x2, that is, κ = v0
2. Such an equilibrium

no longer holds true in the last phase where a swimmer should have prepared

for a turn or the end of the race. Also, note that the drag parameter in the

first phase can be different from that in other phases because of the dive or

turn in the first phase.

Combining these assumptions, a model for swimming speed of a lap which

consists of three phases is then

v (x; θ) =



v0e
−α0x (0 ≤ x < x1) , (First phase)

v (x1) (x1 ≤ x < x2) , (Middle phase)

√
c2e−2α(x−x2) + κ (x2 ≤ x < 50) , (Last phase)

where θ = (v0, α0, x1, x2, α, β), c2 = v (x1)
2 − κ and κ = β/α. Note that the

break points x1 and x2 are also parameters which can differ from lap to lap.

Figure 3.1 shows a stylised picture of the swimming speed v (x). Then the

swimming speed over the whole race is given as

vj (x) = v (x − 50 (j − 1) ; θj) ,
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Figure 3.1: A stylised picture of swimming speed v (x) over one lap of the
race. The lap is divided into 3 phases, a first phase just after a dive or turn,
a middle phase and a last phase just before a turn or the finish of the race.

for 50 (j − 1) ≤ x < 50j, j = 1, 2, 3, 4, where θj = (v0j, α0j, x1j, x2j, αj, βj)

is the vector of parameters for lap j. Therefore the set of parameters

{θj; j = 1, 2, 3, 4} determines a swimming speed model over the race. The

estimation of such unknown parameters will be discussed in Section 3.3.2.

An important aspect of the model is the specification of an individual

effect for each swimmer. We model the swimming speed of swimmer i in lap

j as

µivj (x) , j = 1, 2, 3, 4,

where µi is a multiplicative factor, specific to the individual swimmer, that

is assumed to be constant over the race, and vj (x) is the common swimming

speed of swimmers in lap j. This multiplicative model allows for a simple

understanding of a swimmer’s performance relative to the common swimming

speed vj (x). In particular, the values of the multiplicative factors µi provide
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an overall measure of swimming performance that can be used to discriminate

between swimmers.

3.3.2 A stochastic model for swimming speed

The observed elapsed times are not free from random fluctuations due to the

swimmers as well as random errors in the observational process. If Tij (k)

denotes the elapsed time of swimmer i at distance xj (k), where k denotes a

check point in lap j, it is assumed that

Tij (k) =

∫ xj(k)

0

1

µivj (x)
dx + σBi (xj (k)) , (3.3)

where {Bi (x) ; 0 ≤ x < 200} is standard Brownian motion representing

accumulated error up to distance xj (k). Brownian motion is a continuous

time process, which is widely used in various disciplines. Its basic property

is that any increment Bi (x + ∆x) − Bi (x) is normal with mean zero and

variance ∆x and distributed independently of any other non-overlapping

increment.

Thus

∆Tij (k) =
1

µi

∫ xj(k)

xj(k−1)

1

vj (x)
dx + σ

√
∆xj (k) εijk,

where ∆Tij (k) = Tij (k) − Tij (k − 1), ∆xj (k) = xj (k) − xj (k − 1) and the

εijk are independent standard normal random variables. The parameters of

the model can now be estimated by weighted least squares

34∑
i=1

4∑
j=1

5∑
k=1

r2
ijk

∆xj (k)
,

where

rijk = ∆Tij (k) − 1

µi

∫ xj(k)

xj(k−1)

1

vj (x)
dx.
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The squared residual r2
ijk is divided by ∆xj (k) because the residuals {rijk}

are expected to be independently distributed normal random variables with

mean zero and variance σ2∆xj (k). The normality will be checked in Section

3.4.3.

To keep the model parsimonious, the number of parameters

{θj; j = 1, 2, 3, 4} are now reduced by assuming similarities between phases

over laps. The model for the first phase is assumed to be common over

laps other than the first phase in the first lap since this starts from a dive.

It is also assumed that the parameters α0j and x1j are common over the

laps other than the first (α02 = α03 = α04 and x12 = x13 = x14), and that

the x2j are common over laps other than the last (x21 = x22 = x23). The

break point in the last lap x24 is different since all swimmers are focused on

completing the race rather than making a turn. Furthermore, it is assumed

that the drag parameter αj for the last phase in each lap is known. For stable

estimates, it is adopted that αj = 0.428 or αj = 0.37 for any lap j, that are

the constants known from the results of an experiment by Toussaint et al.

(1988) and Karpovich (1933) for a 70 kg swimmer. It will be seen that the

choice of either of these values does not lead to any significant difference in

the final results. These considerations reduce the total number of parameters

to be estimated to 48 for the whole race.

Fortunately, it is possible to apply the above parameter estimation

procedure without any numerical integration. It is enough to prove (3.4)
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only when β > 0. Letting v0 = v (0), we have∫ x

0

1

v (u)
du =

∫ v(x)

v0

1

v

du

dv
dv

= −
∫ v(x)

v0

1

αv2 − β
dv

=
1

2α
√

κ

{
log

(
v (x) +

√
κ

v (x) −
√

κ

)
− log

(
v0 +

√
κ

v0 −
√

κ

)}
.

The integration of 1/v (x) for the swimming speed given in (3.2) is explicitly

written as

∫ x

0

1

v (u)
du =


1

α

(
1

v (x)
− 1

v0

)
(β = 0) ,

1

2α
√

κ

{
log

(
v (x) +

√
κ

v (x) −
√

κ

)
− log

(
v0 +

√
κ

v0 −
√

κ

)}
(β > 0) .

(3.4)

To estimate the parameters, a program for solving nonlinear least squares,

nlminb in S–PLUS (Chambers and Hastie, 1992), was employed.

3.4 Result

3.4.1 Common swimming speed and its parameters

The estimated parameters assuming αj = 0.428 and αj = 0.37 for the last

phase of each lap are listed in Table 1 and Table 2 respectively. Note that

the choice has little effect on the parameter estimation, as expected.

The estimated parameters in Table 3.1 and Table 3.2 are largely consistent

with the experience of swimmers and their trainers. They also provide a good

description of the characteristics of swimming in a race. Diving not only

affects the initial speed v̂0j but also the drag parameter α̂j and the location

parameter x̂1j. As expected, v̂01 and x̂11 in the first lap are higher than the
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Table 3.1: Estimated parameters (αj = 0.428).

Lap v̂0j α̂0j x̂1j x̂2j β̂j

j = 1 4.11 0.09 9.32 1.17

j = 2 3.06 36.74 1.09

j = 3 3.00 0.08 7.05 1.04

j = 4 2.93 45.00 1.42

Table 3.2: Estimated parameters (αj = 0.37).

Lap v̂0j α̂0j x̂1j x̂2j β̂j

j = 1 4.10 0.09 9.32 1.16

j = 2 3.06 36.55 1.09

j = 3 3.00 0.08 7.05 1.04

j = 4 2.92 45.00 1.43

values in other laps. It is also possible to see how swimmers exhaust their

energy as the race progresses with the initial speed v̂0j in each lap decreasing

by approximately 0.07 m/s per lap. A reason why the drag parameter α̂01 in

the first lap is higher than other laps could be due to the impact of diving.

The effect of the finish line is also apparent with the values of x̂24 and

β̂4 in the last lap being higher than those in the other laps. Since no turn is

necessary at the end of the last lap, each swimmer makes their break for the

finish line over the last phase of the race.

Figure 3.2 illustrates the estimated common swimming speed. The

speeds in the middle phase in each lap are 1.83, 1.73 1.67 and 1.65 m/sec

respectively. These values are consistent with the values reported by Matsui

et al. (1997) and Ikuta et al. (1998). Any unnatural behaviour of the common
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Figure 3.2: Estimated common swimming speed v̂j (x) over the course of the
race as a function of distance x and lap j (j = 1, 2, 3, 4).

swimming speed, especially around the break points, is most likely due to

the assumptions made for the parsimonious parameterisation discussed in

the previous section. Such behaviour could be improved if more check points

were set and more data collected, particularly around phase boundaries.

3.4.2 Individual parameters

Individual effects are measured by parameter µi, i = 1, 2, . . . , 34. Figure 3.3

shows that, as expected, the estimated µi are strongly and inversely related

to the final time taken to complete the race. The reason why the µ̂i are

not exactly placed on the theoretical line is not only because of estimation

and measurement error, but also because of the random fluctuations of effort

by each swimmer in the race. The point in the top left corner of the plot

corresponds to the winner of the race. The isolation of this point from the

others suggests that the winner is significantly faster than the others, with

his individual factor being more than 3% faster than the averaged swimming

speed. By contrast, the point in the bottom right of the plot corresponds

to the slowest swimmer whose factor was about 2% slower. As mentioned
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Figure 3.3: Individual fitted parameters µ̂i plotted as a function of race times
together with the theoretical relationship.

previously, these factors are important as they discriminate between the

swimmers.

3.4.3 Discussion

Figure 3.4 plots the standardised residuals,{
ε̂ijk =

r̂ijk

σ̂
√

∆xj (k)
; i = 1, 2, . . . , 34

}
for every lap j and check point k. The dashed horizontal lines placed at

±3.03 indicate the 95% confidence bound for the standardised residuals of

each swimmer. The bound b = 3.03 is calculated so that

P (|Ejk| < b, j = 1, 2, 3, 4, k = 1, 2, . . . , 5) = 0.95,
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Figure 3.4: Standardised residuals with 95% confidence bounds.

where the {Ejk} are independent standard normal random variables. In fact,

b is the solution of 1 − (1 − p)20 = 0.05/2 where b = Φ−1 (1 − p) and Φ (·) is

the standard normal distribution function.

Three standardised residuals lie outside the 95% confidence bounds.

These are for swimmers ranked 13, 28 and 31 whose residual plots are shown

in Figure 3.5. Residual plots such as these should be of use to swimmers

and their trainers to evaluate their performance and the strategy they have

adopted in a race. For example, the plot of the swimmer ranked 13 suggests

that his rank would improve if he swam faster in the first and last lap.

The swimmer ranked 28 has residuals that take high values before making

a turn which implies a need to improve his turn technique. It is clear that
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Figure 3.5: Standardised residuals for 3 outlying swimmers.
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Figure 3.6: Q–Q plot of standardised residuals.

the swimmer ranked 31 started well, but exhausted his energy before the

finish and failed to keep up with the other swimmers in the last lap. No

doubt there are other factors that affect swimming performance (e.g. health,

fitness, strategy etc) and these could be accounted for, but are left for future

investigation.

With the exception of the three outlying swimmers mentioned above, the

normal Q–Q plot (normal quantile–quantile plot; Chambers et al. (1983)) of

the standardised residuals ε̂ijk was highly linear which supports the normality

of the εijk (Figure 3.6). This indicates that the parsimonious model adopted

is a good fit to the data.
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3.5 Summary

A stochastic model of swimming speed over the entire course of a race has

been developed. It builds on a deterministic physical model that reflects the

trade–off between drag and propulsion in swimming. The model has been

simplified to cope with the limited number of observations, noting similarities

and dissimilarities between the four laps of the race where each lap is divided

into three separate phases. The elapsed times that are observed are modelled

as a function of a deterministic function of distance swum, lap of the race

and phase of the lap, together with accumulated stochastic error which is

modelled using Brownian motion.

The model fits the data well, is easy to understand and interpret, and also

provides a good description of the swimming strategies of each swimmer from

phase to phase in the race and over the race as a whole. An individual factor

measuring how much faster or slower an individual swimmer performs relative

to the average swimming speed of the race is simultaneously estimated in the

course of fitting the model. This factor is, as expected, closely related to the

final outcome of the race.

The model can be used to analyse and quantitatively evaluate the

performance of individual swimmers. As a consequence, it should be of use to

trainers and national selectors to improve individual swimming performances

and to identify a swimmer’s future potential. The model is also intended to

be of interest to engineers and scientists concerned with the biomechanics of

swimming and we hope that it will lead to a number of further developments.



Chapter 4

Membrane potential modelling
led by an in vivo measurement
of a single neuron

4.1 Introduction

This chapter concerns with modelling membrane potential measured from

a single neuron. There have been many attempts in modelling membrane

potential of neurons. A well known pioneering work is the Hodgkin–Huxley

model (Hodgkin and Huxley, 1952) that is now still leading researches in

neuroscience. For example, Rose and Hindmarsh (1989), Rinzel (1990),

Wilson (1999) are inspired by the Hodgkin–Huxley model. However, there

appears to have been few attempts to model membrane potential by in vivo

measurement of a single neuron. In this chapter, a simple input–output

system is proposed for a single neuron. It is incorporating the existence of

different types of synapses that electrical and chemical, as a key to modelling.

The input through electrical synapse is directly transfered to the membrane

but that through chemical one is delayed and modified within the process. It

is regarded that a slowly varying part of the membrane potential would be

48



Chapter 4. Membrane potential modelling 49

the input through the electrical synapse and introduced a three phase model

for each spike due to the input through chemical synapse. The three phase

model is quite general so that it can be used as a model for the input signal.

Occurrence time of each spike is modelled by an inhomogeneous Poisson

process with the intensity which is proportional to a positive part of the

derivative of the input. Every part of modelling is inspired by investigating

every detail of the observed data and the validity is checked again with the

data. This approach is time exhausting and laborious but a rewarding way

of modelling the data.

4.2 Data

4.2.1 Data collection

Earthworms (Eisenia fetida) from the commercial supplier (Verdex Co., Ltd.,

Kitakyushu, Japan) were maintained in a box filled with moist soil at 4 days

prior to experiments. It is used only mature earthworms whose clitellums

were clearly visible and body weights were more than 300 mg. The earthworm

was anesthetised in 10% ethanol for 10 min or chilled earthworm saline

(125.5 mM NaCl, 10.0 mM NaHCO3, 2.5 mM KCl, 2.0 mM CaCl2, 1.0 mM

MgCl2 and 10.0 mM Tris–Buffer) for 3 min, and dissected for the isolation

of segmental ganglia of the ventral nerve cord following clitellum.

Intra–cellular recording was made using a sharp glass micro–electrode

filled with 100 mM potassium acetate (30–80 MΩ). Time series of

intra–cellular potential were acquired with an amplifier (MEZ–8300, Nihon

Koden, Tokyo, Japan), and digitised using Power Lab/8SP with Chart 5.2

(AD Instruments, Colorado Springs, CO) over 40 sec with 0.05 msec time

resolution.
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Figure 4.1: Observed time series and examples of zoomed clusters.

4.2.2 Data exploration

The whole observed time series of membrane potential is shown on the top

panel of Figure 4.1. It is obvious that the series is not only oscillating but

also gradually decaying. The reason for the decay can be thought in various

ways, for example, the electrode used slowly slipped off or some environment

factors are gradually changed. To adjust such decay, the whole original series

is split into 27 clusters of which base level is adjusted as zero since the aim of

this research is modelling the behaviour of the membrane potential in each

clusters rather than such a global movement over the clusters. The beginning

of each cluster is set at 500 msec ahead of the first spike and the end is 500

msec behind of the last spike, and applied a linear transform so that the

levels at the beginning and end of each cluster to be zero. There are two

examples A and B of such an adjusted clusters are shown on the bottom
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Figure 4.2: A simple input–output system for cell membrane potential.

panels of Figure 4.1. The adjusted membrane potential V (t) in each cluster

is modelled. Typically the time t runs from 0 to 1200 or 1500 msec in a

cluster at the longest.

4.3 Model

As is seen from two examples of the clusters in Figure 4.1, there are at

least two major changes on membrane potential; gradual change (trend) and

instantaneous change (spike). There would be various reasons why such two

types of potential changes exist. One of possibilities is that the trend directly

reflects the input to the neuron and the spikes are caused by a side effect

of the changes of the input. Such an observation reminds that there are

two types of synaptic transmissions. One is electrical one and another is

chemical one. The electrical synapse transmits the input signal without any

delay or modification but the chemical synapse transmits it with a delay

and modifications. The signal arriving at the chemical synapse stimulates its

membrane and releases some chemical transmitters from the pre–synaptic

cell into the synaptic cleft. As the transmitters diffuse over the gap the

receptors of the post–synaptic cell starts an activation, a rapid increase of
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the membrane potential. If the increase reaches a threshold, it results in the

opening of an ion channel, for example, sodium channel. Then the opening of

another channel, for example, potassium channel, follow the closing of that

channel as is described by the Hodgkin–Huxley model. Figure 4.2 shows

a schematic picture. The input L(t) goes to the both synapses, chemical

one (white circle) and electric one (filled circle). Instantaneous changes of

membrane potential through chemical synapse invokes the opening and the

closing of the ion channels shown on the top of big circle, the post–nerve cell.

Therefore, it would be convenient introducing three phases for the time

period of each spike as is seen in Figure 4.1, post–synaptic cell activation,

sodium channel opening and the closing and opening of potassium channel.

It is illustrated in Figure 4.3 and will be modelled more precisely. More

formally, let s (t) be a function of a single spike due to the ith activation

of post–synaptic cell starting at time Tj. Thus the accumulated potential

changes by chemical synapse is given by

S (t) =
N∑

j=1

s (t − Tj) ,

where N is the number of spikes occurred within a cluster. It is worthy of

note that chemical transmitting process can cause an instantaneous potential

change so that the activation of post-synaptic cell is also instantaneous.

As a consequence, the membrane potential we have observed is

decomposed into V (t) = L (t) + S (t) + ξ (t), where ξ (t) is a noise.

4.3.1 Model for spikes

The Hodgkin–Huxley model (Hodgkin and Huxley, 1952)

C
dVm (t)

dt
= I (t) − g (t, Vm) (Vm (t) − v) , (4.1)



Chapter 4. Membrane potential modelling 53

has been widely used as a model for the action potential of a membrane,

where C and g (t, Vm) are the capacitance and variable conductance of the

membrane, respectively. The v is an equilibrium voltage and I (t) is the input

current. A simplified model is obtained by assuming that the conductance

g is constant and there is no input current I(t) = 0 . The solution of the

differential equation (4.1) is then

Vm (t) = αeβ(t−t0) + v (t ≥ t0) , (4.2)

where α = Vm (t0) − v, β = −g/C < 0. The voltage Vm(t) exponentially

decays to v if the initial voltage Vm(t0) is less than v and it grows to

v otherwise. Roughly speaking, the Hodgkin-Huxley model works for

describing the firing phenomena of a neuron by combining those two cases.

Applying the model (4.2) to each case, a two phase model for a spike is given

by

s(t) =


α1e

β1(t−τ1) + v1 (τ1 ≤ t < τ2) , (Phase I)

α2e
β2(t−τ2) + v2 (τ2 ≤ t) . (Phase II)

(4.3)

Here β1 = −g1/C, β2 = −g2/C, α1 < 0 and α2 > 0.

An opening of a channel at time t = τ1 with Vm(τ1) < v1 causes an

increase of the membrane potential and results in the closing of the channel

and invoking an opening of another channel before reaching the equilibrium.

In this stage, at time t = τ2, the equilibrium voltage changes from v1 to v2

since the equilibrium voltage v is linked to the conductance g through the

formula v = gV0/g0, where g0 is the global conductance and V0 is the battery

voltage in the equivalent electric circuit model. The newly opened channel

now decays the potential Vm(τ2) > v2 toward to v2.
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Figure 4.3: Three phases model for spikes.

However, it takes into consideration the pre–activation process in the

recepoters of the post–synaptic cell, one more phase, say phase 0, is necessary

before the phases I and II. Within the phase 0, it is natural to assume that

the electric charge is exponentially accumurated, that is,

s(t) = α0e
β0t + v0 (0 ≤ t < τ1) , (Phase 0)

where α0 > 0 and β0 > 0. The positive β0 is in a good contrast with the

β1 < 0 and β2 < 0 in the phase I and II. Figure 4.3 is a schematic view of

the three phase model. The phase 0 is called pre–firing phase (Guerreiro and

de Araujo, 2007, Koch, 1999) where the membrane potential increases to the

threshold Vth, then an activation of the membrane starts. The phase II after

the phase I is corresponding to the refractory period.

Now consider here a model for the occurrence time Tj’s. It is apparently

random so that it would be natural to model it as a point process (Cox and

Isham, 1980, Brillinger, 1992, Kass et al., 2005). One of natural assumptions

is that the intensity is proportional to the input current, that is, the derivative
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of the input voltage L(t) provides the intensity function,

λ (t; κ) =


κ1

(
dL (t)

dt

)
+

(t < τ1) ,

κ2

(
dL (t)

dt

)
+

(τ1 ≤ t) ,

where κ = (κ1, κ2) is the vector of parameters and (·)+ denotes the positive

part. It is worthy of note that time t runs from −∞ to ∞ as same as that

of L(t).

4.3.2 Model for the input

Consider a model for the input signal L(t). Various kind of models can be

considered, but from the shape of the residual V (t) − S(t), it would be a

natural choice to take it as the same shape as that of spikes. This can be

also thought as a dull shape of a spike raised in other neuron and transmitted

to the current neuron,

L(t) =



a0e
b0t + w0 (t < t1) ,

a1e
b1(t−t1) + w1 (t1 ≤ t < t2) ,

a2e
b2(t−t2) + w2 (t2 ≤ t) ,

where a0, b0 > 0, a1, b1 < 0 and a2 > 0, b2 < 0. A difference from the spike

s(t) is that it does not start from a specific time point because the input is

not instantaneous but rather slowly varying.
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Figure 4.4: Collected spikes.

4.4 Model identification

4.4.1 Identification of the spike model

To identify s(t), the first spikes in each cluster are all collected and aligned

so that the peaks are at the same time position and windowed with 50 msec

ahead and 10 msec behind of the peak time. The level is adjusted so that

s(0) = 0. Such collected spikes are shown in Figure 4.4. Although the

three phase model has the eleven parameters, setting the end conditions as

s(0) = s(∞) = 0 reduced two parameters, v0 = −α0 and v2 = 0. Also, it is

possible to save two more parameters from the two continuity conditions at
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Table 4.1: Estimated parameters of the three phase model.

α̂0 β̂0 β̂1 β̂2 v̂1 τ̂1 τ̂2

0.423 0.027 -2.213 -0.272 7.00 59.14 59.80

τ1 and τ2,

α1 = α0e
β0τ1 − α0 − v1,

α2 = α1e
β1(τ2−τ1) + v1.

Then there are seven free parameters to be estimated by non–linear

optimisation program so as to minimise the residual sum of squares. The

estimated parameters are shown in Table 4.1.

From this table, it is clear that the rate of the conductance change from

the phase I to the phase II is g1/g2 = β1/β2 = 8.136 and the relative

equilibrium voltage in the phase I is v1 = 7 mV to that in the phase II.

The shape of the estimated model for spikes is shown in Figure 4.5.

4.4.2 Identification of the input model

Based on the identified model for spikes, it is possible to produce a spike

series S(t) =
∑

j s(t−Tj), where the activation time Tj’s used here are those

directly obtained from the observation. Figure 4.6 shows an example of a

simulated spike series S (t).

Then the parameters of the model for L(t) are estimated from the

residual V (t) − S(t) by a non–linear optimisation program similarly as in

the estimation of parameters of the spike s(t). The difference is that it is not

necessary to impose the assumption L(0) = 0, rather it simply assumes that

L(−∞) = L(∞), that is , w0 = w2. Therefore, four parameters are reduced
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Figure 4.5: Estimated spike s(t).
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Figure 4.6: Simulated spike series S (t).
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Table 4.2: Estimated parameters of the model for L (t).
Cluster â0 b̂0 b̂1 b̂2 ŵ0 ŵ1 t̂1 t̂2

1 0.057 0.0044 -0.0014 -0.0085 -0.217 5.022 726.323 1054.364
2 0.057 0.0050 -0.0014 -0.0085 -0.217 6.022 707.323 1029.364
3 0.057 0.0050 -0.0014 -0.0085 -0.217 6.022 727.823 941.750
4 0.077 0.0050 -0.0014 -0.0085 -0.217 6.022 737.173 974.176
5 0.097 0.0050 -0.0014 -0.0085 -0.217 6.022 675.823 959.362
6 0.097 0.0050 -0.0014 -0.0085 -0.217 6.022 736.323 991.434
7 0.097 0.0050 -0.0014 -0.0085 -0.217 6.022 708.323 884.875
8 0.097 0.0050 -0.0014 -0.0085 -0.217 6.022 700.323 883.250
9 0.097 0.0050 -0.0014 -0.0085 -0.217 6.022 595.323 1061.892
10 0.157 0.0050 -0.0014 -0.0085 -0.217 6.022 664.823 900.110
11 0.157 0.0050 -0.0014 -0.0085 -0.217 6.022 645.823 869.236
12 0.157 0.0050 -0.0014 -0.0085 -0.217 6.022 656.823 814.450
13 0.157 0.0050 -0.0014 -0.0085 -0.217 6.022 657.823 814.450
14 0.157 0.0050 -0.0014 -0.0085 -0.217 6.022 657.823 777.395
15 0.157 0.0050 -0.0014 -0.0085 -0.217 6.022 617.973 928.280
16 0.157 0.0050 -0.0014 -0.0085 -0.217 6.022 615.823 853.279
17 0.127 0.0050 -0.0014 -0.0085 -0.217 6.022 689.823 912.900
18 0.207 0.0050 -0.0014 -0.0085 -0.217 6.022 611.323 771.396
19 0.207 0.0050 -0.0014 -0.0085 -0.217 6.022 615.823 833.000
20 0.207 0.0050 -0.0014 -0.0085 -0.217 6.022 642.823 800.733
21 0.207 0.0050 -0.0014 -0.0085 -0.217 6.022 626.323 698.485
22 0.167 0.0050 -0.0014 -0.0085 -0.217 6.022 661.323 929.671
23 0.187 0.0050 -0.0014 -0.0085 -0.217 6.022 676.323 820.667
24 0.187 0.0050 -0.0014 -0.0085 -0.217 6.022 611.323 941.438
25 0.187 0.0050 -0.0014 -0.0085 -0.217 6.022 658.823 876.827
26 0.187 0.0050 -0.0014 -0.0085 -0.217 6.022 643.823 833.241
27 0.187 0.0050 -0.0014 -0.0085 -0.217 6.022 623.823 786.417

as

w0 = w2,

a1 = a0e
b0t1 + w0 − w1,

a2 = a1e
b1(t2−t1) + w1.

The results are shown in Table 4.2. It is worthy of note that estimated

parameters are the same except â0 and t̂2 over all clusters. This suggests

that almost the same input L(t) comes into this neuron after the cluster 10,
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Figure 4.8: Simulated L(t) + S(t) and the original time series.

although t2 varies input to input. Figure 4.7 shows the estimated L(t) for all

clusters.

4.4.3 Results of simulation

An example of the results of simulation based on the identified model V (t) =

L(t) + S(t) for a cluster is shown in Figure 4.8. The gray line is the result

of simulation and the black line is the original time series in this cluster.

It is clear that the simulated data well traces the given data. Figure 4.9 is

a plot of the residual and its decomposition into ξL(t) and ξS(t) and ε(t),

which are respectively the residuals related to L(t) and S(t), and a common

residuals. The roughness of ξS(t) is due to a constant hight of the spikes
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in this simulation. It will be reduced by introduction of randomness to the

hight of the spikes.

4.4.4 Identification of the intensity for the occurrence
time of spikes

In the previous section, the occurrence times of spikes are obtained from

the observed data. Now model it as an inhomogeneous point process as is

described in the previous section. It is necessary to estimate two parameters

κ1 and κ2, since L(t) has already identified. Table 4.3 shows the result of the

estimation.

Figure 4.10 shows the original time series with L(t) and the intensity

function λ̂(t) derived. The intensity function reflects well the occurrence

time of the spikes in the top panel. To check the goodness of fit of the

inhomogeneous Poisson model to the observed occurrence time {Tj, j =

1, 2, .., N}, rescaled time

Zj = Λ̂j+1 − Λ̂j (j = 1, 2, . . . , N) ,

is calculated from

Λ̂j =

∫ Tj

−∞
λ̂(t) dt.

It is possible to check the goodness of fit by a Q–Q plot for a

standard exponential distribution since Zj (j = 1, 2, . . . , N) are expected

to be independently distributed as the exponential distribution as far as

Tj (j = 1, 2, . . . , N) follow to the inhomogeneous Poisson process with the

intensity λ̂(t). Figure 4.11 shows an example of such a Q–Q plot, which

shows a good fit of the model.
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Figure 4.9: The residual and its decomposition.
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Table 4.3: Estimated constants κ1 and κ2

Cluster κ̂1 κ̂2

1 1.453553 11.31297
2 0.6023988 13.5511179
3 0.6023988 11.2892964
4 0.9319404 10.7045732
5 0.4659702 10.3331196
6 0.9319404 8.8725417
7 0.6414121 12.5079983
8 0.6414121 11.8017117
9 0.6414121 11.9391686
10 0.8614148 11.3205296
11 1.073636 8.49214
12 0.5368179 10.5285457
13 0.5368179 10.0272394
14 0.8052269 8.1514682
15 0.8052269 7.9091211
16 0.8052269 6.7710828
17 0.8052269 8.8311471
18 1.073636 6.301583
19 0.8052269 6.924142
20 1.073636 5.567099
21 1.073636 4.820303
22 1.073636 5.183471
23 0.8052269 6.553993
24 0.8052269 4.9054681
25 0.8052269 6.7746739
26 1.073636 5.091122
27 1.073636 4.447863
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Figure 4.10: The original time series with L(t) and the intensity λ̂(t) derived.
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Figure 4.11: Q–Q Plot of Zj (j = 1, 2, . . . , N) for the standard exponential
distribution.
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4.5 Summary

A new model for the membrane potential based on an in vivo observation

of a single neuron is derived. The basic idea is that the input to a neuron

comes through an electrical or chemical synapse. The input through the

electrical synapse is directly reflected to the potential but that through the

chemical synapse is delayed and modified. In this model, spikes are randomly

invoked and follows to an inhomogeneous Poisson process with the intensity

proportional to the derivative of the input. For the shape of a spike, it has

introduced a three phase model, where the three phases correspond to the

pre-activation, activation and post–activation stages. This model is quite

general so that it is also possible to apply this model to the input to the

neuron. The result of simulation shows good fit to the data and suggests

that this model would work well not only for the underlying neuron of earth

worm also for any other neurons.
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Conclusion

In this thesis, three case studies of biological data modelling have been

demonstrated. The first case study is totally exploratory in nature so that

a smoothing technique which can extract some structures behind the data

was applied twice by changing the window width. As a consequence, each of

five bird count series was simultaneously decomposed into three components:

long trend, short trend and irregular. As a result, it was found that there are

two groups whose numbers are closely related with two different environment

factors. Furthermore, the variation of each short trend suggests the effects of

breeding season or winter wandering. In the second case study, it was a key

to introduce a physical model for swimming. A newly developed differential

equation was powerful tool because of easy interpretability of the model. It

describes well the trade–off between drag and propulsion in swimming but

was not enough to explain observed data. The introduction of noise for

swimming speed and that of individual factor as a multiplicative constant

was another key. The fitted model provides us a good description of the

swimming strategies of each swimmer from phase to phase in the race and

over the race as a whole. In the third case study, the Hodgkin–Huxley model

was extended to fit the data observed, incorporating the basic idea that

66
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the input into a neuron comes through an electrical or chemical synapse.

Furthermore, it was assumed that spikes are randomly invoked and following

to an inhomogeneous Poisson process with the intensity which is proportional

to the derivative of the input. This model provides a good description of the

mechanism of membrane potential.

Three case studies look like independent but similar in the sense that

any of the discoveries could not be achieved by a mundanely application of

statistical analysis like regression or a simple modification of already existing

models. The key to success is of course ”Be honest to the given data” and

”Keep a good relation to the scientist in the field” as was described in Chapter

1. Biological data modelling is not specific in this sense, but specific in

other sense because deep understanding of the phenomena behind and good

insight into the modelling are indispensable. In other words, biological data

modelling can be a benchmark study in the practice of data science. My

hope is that many data scientists join us for such a fascinating research

experiences.
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