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1 Introduction

For viscous, heat-conductive and isotropic Newtonian fluids, we have long history
of study. However, it is mainly in the last fifty years that the mathematical theory
for the fundamental system of equations describing the motion of such fluids has
been established by many mathematicians. The motion of fluids mentioned above
is governed by the following equations in Eulerian coordinate system correspond-
ing to the conservation laws of mass, momentum and energy (see for example,
Lamb [35], Landau-Lifshitz [36], Serrin [58] and Imai [16]):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρt +∇· (ρv) = 0,

ρ
Dv

Dt
= ∇· T + ρf ,

ρ
De

Dt
= T : D−∇· qth + ρQ.

(1.1)

Unknown quantities, functions of time variable t > 0 and space variable x =
(x1, x2, x3) ∈ R3, are the distributions of the density ρ = ρ(x, t), the velocity
vector field v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) and the absolute temperature
θ = θ(x, t). Here

D

Dt
=

∂

∂t
+ v ·∇

is the material derivative; T = (tij) (i, j = 1, 2, 3) is the stress tensor given by

T = (−p+ µ0∇· v) I+ 2µD,
p = p(ρ, θ) is the pressure, D is the velocity deformation tensor with elements

dij =
1

2

µ
∂vi
∂xj

+
∂vj
∂xi

¶
, (i, j = 1, 2, 3)

I is the unit tensor of degree 3, µ = µ(ρ, θ) and µ0 = µ0(ρ, θ) are coefficients of
the shear (or the first) and the dilatational (or the second) viscosity, respectively,
which satisfy µ > 0 and 3µ0 + 2µ ≥ 0; f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) is
the vector field of external forces per unit mass; e = e(ρ, θ) is the internal energy
per unit mass; T : D =

P3
i,j=1 tijdij; qth is the thermal flux; Q is the heat supply

per unit mass and unit time. In addition to this system, it is necessary to take
into account a more phenomenal situation from the physical point of view: the
combustion processes which produce the energy of the fluid itself and by which
the chemical composition of the medium changes. Introducing the quantity, “the
mass fraction of the reactant” z = z(x, t), coupling the equation

ρ
Dz

Dt
= −∇· qch − ρφzm (1.2)
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which describes the processes of the unimolecular reactions (see [72]) with (1.1),
and taking in (1.1)3 as

Q = λφzm, (1.3)

we obtain the system of a chemically active fluid model. Here m ≥ 1 is the kinetic
order of the reaction, qch is the chemical flux, a positive constant λ means the
difference in heat between the reactant and the product, and φ = φ(ρ, θ) is the
reaction rate function defined by, for example,

φ(ρ, θ) =

(
0 for 0 ≤ θ ≤ θi,

Kρm−1θse−A/(θ−θi) for θ > θi
(1.4)

from the Arrhenius law (see [50]). In (1.4) positive constants A and K are the
activation energy and the coefficient of rate of reactant, respectively, s ∈ R and
non-negative value θi is the ignition temperature. Furthermore, according to
Newton-Fourier’s law, we can take the explicit formulas for the flux(

qth = −κ∇θ,
qch = −dρ∇z,

(1.5)

where κ = κ(ρ, θ) > 0 is the thermal conductivity and a positive constant d is the
species diffusion coefficient.
One may consider equations (1.1) or (1.1), (1.2) in

S
t>0

¡
Ωt × {t}

¢
, where

Ωt ⊆ R3 is a domain occupied by the fluid at t > 0, together with the initial or
the initial-boundary conditions.

1.1 Historical studies of compressible viscous fluid

At first, we mention the history of studies for compressible viscous (and heat-
conductive) fluid briefly (see for example, [48,60]).

1.1.1 Well-posedness of the problems in three-dimensions

In 1959, for the system of equations (1.1) with (1.5)1, Serrin [57] firstly proved the
uniqueness theorem for the initial-boundary value problem in a bounded domain.
Temporally local existence theorems for the Cauchy problem of (1.1) with (1.5)1

are firstly established by Nash [47] in 1962 (however, it is pointed out in [66] that
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this work contained several ambiguous aspects), and independently by Itaya [17]
in 1971 (uniqueness of the solution was proved in [19]).
As for the initial-boundary value problem of (1.1) with (1.5)1 in both bounded

and unbounded domains, the temporally local existence of the unique solution in
anisotropic Hölder spaces was proved by Tani when f, p, e, κ are suitably smooth
functions of their arguments. More precisely, in 1977 he settled corresponding the
first-initial boundary value problem [65]; in 1981 the free-boundary problem [66],
in which, since for each t > 0 the shape of the domain Ωt is unknown a priori,
free-surface represented by the equation F = F (x, t) = 0 must be also determined
by coupling with (1.1) another equation called the kinematic boundary condition

DF

Dt
= 0 on St, t > 0. (1.6)

Here St := ∂Ωt for t > 0, on which it is imposed the dynamical and the thermal
boundary conditions

Tn = −pen, qth · n = −κe(θ − θe), (1.7)

where n = n(x, t) is the unit vector of the outward normal to St and (pe,κe, θe) =
(pe, κe, θe)(x, t) are the external pressure, the external thermal conductivity and
the external absolute temperature, respectively. For the free-boundary problem
Secchi-Valli [56] found a unique solution in Sobolev spaces under the the conditions
µ = µ(ρ), µ0 = µ0(ρ), κ = κ(ρ, θ,v) and 3µ0 + 2µ > 0. Secchi also solved,
in Sobolev spaces, various initial-boundary value problems of (1.1) with (1.5)1

locally in time: in [52] on the problem in a fixed bounded domain under the
conditons µ = 0, µ0 = µ0(ρ, θ,v), κ = κ(ρ, θ, v) and 3µ0 + 2µ > 0; in [55] on the
free-boundary problem for self-gravitating fluids, i.e., the external force field is
given by the formula

f = −∇Ug, (1.8)

where Ug = Ug(x, t), the gravitational potential, is defined (with containing the
unknown quantity ρ) by

Ug(x, t) = −G
Z
Ωt

ρ(s, t)

|x− s| ds (1.9)

with the Newtonian gravitational constant G. It is also known that Ug satisfies
the Poisson equation

4Ug = 4πGρ (1.10)

in Ωt for t > 0. Other unique local in time existence theorems are found, for
example, in [53,54,69—71].
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1.1.2 Global solvability of the problems

Although local in time well-posedness of the problems for (1.1) with (1.5)1 has
been almost established under conditions general enough, as concerns global in
time solvability of the problems there exist only partial results. Matsumura-
Nishida solved globally in time the Cauchy problem [38] in 1980 and the initial-
boundary value problem [39] in 1983 for (1.1) with (1.5)1 under the assumptions
that f (a given potential force) is sufficiently small and the initial value (ρ0,v0, θ0)
is sufficiently close to a positive constant state (ρ̄, 0, θ̄). They also showed that
the corresponding stationary problem has a unique solution (ρ̃, 0, θ̃) near (ρ̄, 0, θ̄)
and the global in time solution converges to this stationary one as time tends to
infinity. Their methods were applied to various problems by many authors, for
example, Kawashima-Nishida [26], Okada-Kawashima [49], Ducomet [6] and so
on. It is also noteworthy to pointout another method due to Solonnikov-Tani of
obtaining global in time solvability of the problem in a series of papers [61—63].
They considered a free-boundary problem for a barotropic model with a surface
tention on the free-boundary, and proved the existence of global in time solution
and its convergence to a stationary solution in Sobolev-Slobodetskĭı spaces under
some smallness assumptions of the initial data.
On the other hand, in spacially one-dimensional case, where all the quantities

are depending only on x1 and t, global in time solvability of various problems
(mainly under the assumption that coefficients of viscosities and the thermal con-
ductivity are constants) was investigated by many authors without any small-
ness assumption on the initial data. Firstly, in 1968 the Cauchy problem for
a one-dimensional barotropic model was solved globally in time by Kanel’ [25].
Itaya [18] and Tani [64] obtained analogous results for the system of generalized
Burgers’ equations. As for full one-dimensional model of (1.1) with (1.5)1, in 1977
Kazhikhov-Shelukhin [32] firstly proved the global in time solvability of the prob-
lem without any external force and with the Dirichlet boundary condition with
respect to the velocty, for a polytropic and ideal fluid, which has the equations of
state (

p(ρ, θ) = Rρθ,

e(ρ, θ) = cθ
(1.11)

with the perfect gas constantR and a positive constant c. Moreover, Kazhikhov [29]
proved that the solution of this problem converges to the one of the correspond-
ing stationary problem as time tends to infinity. For them it is necessary to get
a priori estimates of the solution, among which the most important one is the
boundedness of the density form below by a strictly positive constant. To ob-
tain such an estimate they derived a useful representation formula of the density
in [32] (an analogous formula of the density for the system of generalized Burgers’
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equations had been obtained by Itaya [18]). After these pioneering works, many
studies have been done including Nagasawa’s ones, in which the global existence
and the asymptotic behavior in the free-boundary case for the polytropic and ideal
gas were investigated under no external force: in [43, 46] with a free-boundary to
a surrounding vacuum state, i.e., pe ≡ 0 in (1.7); in [44, 45] with the one pushed
inward by surroundings, i.e., pe = p(t) > 0. For other works, see below (§2.4).
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2 Formulation of the problems

In this thesis we consider the free-boundary problem decsribing the motion of some
typical gaseous stars composed by compressible, viscous, heat-conductive and
chemically reactive gas. Such problems are formulated as follows: to determine
the domain Ωt and quantities ρ,v, θ, z through equations (1.1)-(1.3), (1.5) with
the boundary conditions (1.6), (1.7) together with

qch · n = 0 on St, t > 0 (2.1)

and the initial conditions

(Ωt, ρ, v, θ, z)|t=0 = (Ω0, ρ0, v0, θ0, z0). (2.2)

From the physical point of view, it is natural to take into account the self-
gravitation (1.8), (1.9) as an external force driving the motion of gas.
In the stellar interior, the radiation phenomenon is not negligible at the high

temperature regime which is relevant to our models. In general, for radiative gas
one has to consider the radiative transfer of photons with hydrodynamical move-
ment and the relativistic treatment for the system. However, in the special case
that the stellar matter is in local themodynamical equilibrium and the degree of
the absorption of emitted radiation is rather high, that is to say, the mean free
path of photons is much shorter than the typical length of the gaseous flow, it
is known that instead of coupling the radiative transfer one can use the usual
hydrodynamic model with the pressure, the internal energy and the conductivity
added by the special radiative effects (see for example, [40]). This means that p
and e are given by p = pG+pR and e = eG+ eR, respectively, where pG = pG(ρ, θ)
and eG = eG(ρ, θ) are the gaseous (elastic) contributions, whereas pR = pR(θ) and
eR = eR(ρ, θ) are the radiative ones. As a rule pG(ρ, θ) is determined in the com-
plicated way dependent on several factors, mainly the degree of the ionization of
gas and the degeneracy of electrons and ions. If stellar matter is not in sufficiently
low temperature and high density, that is, the degeneracy of both electrons and
ions is of sufficiently low degree (including non-degenerate case), the ideal-gas ap-
proximation (1.11)1 is widely accepted for both the electron pressure and the ion
pressure. Since almost all parts of the stellar body may be in this situation, we
assume pG(ρ, θ) = Rρθ. In this case from the thermodynamical relations, it easily
follows that eG is depending only on θ, i.e., eG = C(θ) and C

0(θ) = cv(θ), where
cv(θ) is the specific heat capacity at constant volume. Here for simplicity we as-
sume cv(θ) is a positive constant, that is to say, eG = cvθ. The gas consisting of
normal stars can be regarded as a “black body”, so that the radiative pressure pR
and the energy of radiation per unit mass eR are given by the Stefan-Boltzmann
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law (see for example, [2])

pR(θ) =
a

3
θ4, eR(ρ, θ) =

a

ρ
θ4

with the radiation-density constant a > 0.
We also assume that the thermal conductivity in (1.5)1 has the form

κ(ρ, θ) = κ1 + κ2
θq

ρ
(2.3)

with positive constants κ1,κ2 and q, which is motivated by the fact that in the
radiating regime one has to take into account the flux qth from not only the
heat-conductive contribution qcd, but also the radiative contribution qrad given
by

qcd = −κ1∇θ, qrad = −
1

3

c

κ̂ρ
∇(ρeR)

with the speed of light c and the Rossland mean absorption coefficient κ̂ = κ̂(ρ, θ).
Here κ̂ is defined such that the quantity 1/(κ̂ρ) is the mean free path of a photon
inside the media. Hence

qth = qcd + qrad = −
µ
κ1 +

4ac

3

θ3

κ̂ρ

¶
∇θ.

If κ̂(ρ, θ) is nearly a constant, then q ≈ 3 in (2.3). Furthermore we assume that
the reaction is first-order and define the reaction rate function as

φ = φ(θ) = Kθβe−A/θ (2.4)

with a non-negative number β, which corresponds to the case that m = 1 in
(1.2)-(1.4) and s ≥ 0, θi = 0 in (1.4).

2.1 Several stellar models of self-gravitating viscous gas

We restrict our analysis to the following two models under the assumptions that
µ and µ0 are constants, and pe is a non-negative constant, κe ≡ 0 in (1.7).

Problem 1 A three-dimensional spherically symmetric stellar model

Until now, many astrophysicists have studied the sytem of equations (1.1) or (1.1)-
(1.2) mainly in the spherically symmetric framework (see for example, [2, 33]).
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Following them, here we also restrict our analysis to the one in the spherically
symmetric case.
From the physical observations it is widely acceptable that almost all mass of

a gaseous star is concentrated near its centre despite of the wide distribution of
gaseous particles; for example, it is said that only about 10% of the solar mass
lies outside the ball of radius R¯/2, where R¯ is the radius of the sun. From
this, roughly speaking, one can regard that a stellar interior consists of two parts,
the central condensation and the stellar envelope. Since the motion of gaseous
star described by (1.1), (1.2) admits a great variety, it is needless to say that the
situation mentioned above is certainly contained in it. However, we also know that
stars, in way of their evolution, usually have the core in the centre composed of the
heavy chemical elements (for example, helium, carbon, oxygen, etc.) produced by
the burning of the light gas, hydrogen. Due to high temperature near the centre
of the star, “hydrogen burning” begins first near the centre and the products are
gradually accumulated there. From these phenomenal points of view, we may
assume that there exists a spherical rigid core in the centre of the star, and focus
our interest on the motion of outer gaseous part like the stellar envelope. In
this situation it is natural to take into account, as the external forces driving the
motion of gas around the core, both the self-gravitation of gas and the potential
force of the core, where the latter is usually regarded as the dominant factor of f
in (1.1)2.
Let us reduce (1.1), (1.2) to the ones in the polar coordinate system with the

spherical symmetricity. Setting with r := |x|

ρ(x, t) = ρ̂(r, t), v(x, t) = v̂(r, t)
x

r
, θ(x, t) = θ̂(r, t), z(x, t) = ẑ(r, t),

we have with omitting the hats⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt +
(r2ρv)r
r2

= 0,

ρ(vt + vvr) =

µ
−p+ ζ

(r2v)r
r2

¶
r

+ ρ(fg + fc),

ρ(et + ver) =

µ
−p+ ζ

(r2v)r
r2

¶
(r2v)r
r2

− 4µ
µ
(v2)r
r

+
v2

r2

¶
+
(r2κθr)r
r2

+ λρφz,

ρ(zt + vzr) =
(r2dρzr)r
r2

− ρφz

(2.5)

in
S
t>0

¡
Dt×{t}

¢
, whereDt :=

©
r ∈ R |R0 < r < R(t)

ª
for any t ≥ 0, and R0 > 0

is a radius of the core. Here fluctuating boundary function R(t) and ρ = ρ(r, t),
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v = v(r, t), θ = θ(r, t), z = z(r, t) are unknown functions, a positive constant
ζ := 2µ+ µ0 is the bulk viscosity which satisfies the relation 3ζ − 4µ ≥ 0. In this
spherically symmetric case the self-gravitation of gas per unit mass fg = fg(r, t)
is directly given by Newton’s law

fg(r, t) = −
G

r2

Z r

R0

4πρ(s, t)s2 ds, (2.6)

whereas the potential force of the core fc = fc(r) is given by

fc(r) = −
GM0

r2
(2.7)

with the mass of the core M0.

Remark. If we consider a model for the gaseous star without the central rigid
core, the external force f in (1.1)2 is given by the self-gravitation (1.8), (1.9) only.
In this case it is from this force term in (1.1)2 that a difficulty for temporally
global existence problem comes. In fact, multiplying (1.1)2 by v, integrating it by
part over Ωt× [0, t] and combining the integration of ρe+λρz, we have an energy
identity

E(t) :=

Z
Ωt

µ
1

2
ρ|v|2 + ρe+ λρz +

1

2
ρUg

¶
dx+ pe|Ωt| = E(0)

with the volume of domain |Ωt|. Since Ug < 0, we cannot obtain a priori bounds
for other terms in E(t). In addition to this, the spherical symmetricity brings to
another serious difficulty, singularity at the origin r = 0 even if f ≡ 0 in (1.1)2
(see (3.3) with M0 = 0 under R0 = 0 in (2.12) if f 6≡ 0; (3.4) if f ≡ 0).

Imposed boundary conditions are on the free-surface for t > 0⎧⎪⎪⎪⎨⎪⎪⎪⎩
dR(t)

dt
= v(R(t), t),µ

−p+ ζ
(r2v)r
r2

− 4µv
r
, θr, zr

¶ ¯̄̄̄
r=R(t)

= (−pe, 0, 0)
(2.8)

from (1.6), (1.7) and (2.1), on the core for t > 0

(v, θr, zr)
¯̄
r=R0

= (0, 0, 0).

The initial conditons are for r ∈ D0
(ρ, v, θ, z)|t=0 =

¡
ρ0(r), v0(r), θ0(r), z0(r)

¢
.
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In order to transform our problem to the one with fixed domain we introduce
the Lagrangian transformation. For given smooth velocity field v(r, t) and for
arbitrary fixed point (r, t) ∈ S t>0

¡
Dt × {t}

¢
we consider the Cauchy problem⎧⎨⎩

dRr,t(τ)
dτ

= v
¡
Rr,t(τ), τ

¢
for τ ∈ (0, t),

Rr,t(t) = r

and the solution curve Rr,t(τ) uniquely exists as long as v is suitably smooth. Let
Rr,t(0) = ξ. This is uniquely solvable in r as

r = Rξ,0(t) = ξ +

Z t

0

v
¡
Rξ,0(τ), τ

¢
dτ,

where Rξ,0(τ) (0 ≤ τ ≤ t) is the solution of the problem⎧⎨⎩
dRξ,0(τ)
dτ

= v
¡
Rξ,0(τ), τ

¢
for τ ∈ (0, t),

Rξ,0(0) = ξ.

Owing to the kinematic boundary condition (2.8)1 this mapping (r, t) 7→ (ξ, t) is
one-to-one from Dt × {t} onto D0 × {t} for each t > 0. Next, we introduce the
mass variable

ξ 7→ x =

Z ξ

R0

ρ0(s)s
2 ds

and obtain relations between r and x by v(R0, t) = 0

r = r̃(x, t) =

µ
R0

3 + 3

Z x

0

ds

ρ̃(s, t)

¶1/3
, r̃t = ṽ, r̃x =

1

ρ̃ r̃2
,

where tilde “˜” represents the transformed functions.
Consequently, by putting the specific volume v(x, t) := 1/ρ̃(x, t), the velocity

u(x, t) := ṽ(x, t) and (r, θ, z, p, e,φ)(x, t) := (r̃, θ̃, z̃, p̃, ẽ, φ̃)(x, t), and normalizing

the total mass
R R(0)
R0

ρ0(s)s
2 ds = 1 our problem becomes in (0, 1)× (0,∞)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt = (r
2u)x

ut = r
2

µ
−p+ ζ

(r2u)x
v

¶
x

−G x+M0

r2
,

et =

µ
−p+ ζ

(r2u)x
v

¶
(r2u)x − 4µ(ru2)x +

µ
r4κθx
v

¶
x

+ λφz,

zt =

µ
dr4zx
v2

¶
x

− φz

(2.9)
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with the boundary conditions for t > 0⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ
−p+ ζ

(r2u)x
v
− 4µu

r

¶ ¯̄̄̄
x=1

= −pe,

u|x=0 = 0,
(θx, zx)|x=0,1 = (0, 0),

(2.10)

the initial conditions for x ∈ [0, 1]
(v, u, θ, z)|t=0 =

¡
v0(x), u0(x), θ0(x), z0(x)

¢
(2.11)

and the relations

r = r(x, t) =

µ
R0

3 + 3

Z x

0

v(ξ, t) dξ

¶1/3
, rt = u, rx =

v

r2
. (2.12)

Here we assume the compatibility conditions⎧⎪⎨⎪⎩
µ
−p0 + ζ

(r0
2u0)

0

v0
− 4µu0

r0

¶ ¯̄̄̄
x=1

= −pe,

u0(0) = θ0
0(0) = θ0

0(1) = z00(0) = z00(1) = 0

(2.13)

with p0 := Rθ0/v0 + (a/3)θ0
4 and r0 := (R0

3 + 3
R x
0
v0(ξ) dξ)

1/3.

For this problem we shall establish the existence of the unique global in time
classical solution to the system (2.9)-(2.11) together with (2.12), (2.4), the equa-
tions of state

p = R
θ

v
+
a

3
θ4, e = cvθ + avθ

4 (2.14)

and the conductivity

κ = κ1 + κ2vθ
q (2.15)

under the hypotheses (2.13).

Problem 2 A one-dimensional stellar model

Here we consider one-dimensional motion of gaseous star. Denoting x1 and v1 by
y and v, respectively, for the unknown quantities (ρ, v, θ, z) = (ρ, v, θ, z)(y, t) the
system of equations to be solved are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv)y = 0,

ρ(vt + vvy) =
³
− p+ (µ0 + 2µ)vy

´
y
+ ρf,

ρ(et + vey) =
³
− p+ (µ0 + 2µ)vy

´
vy + (κθy)y + λρφz,

ρ(zt + vzy) = (dρzy)y − ρφz
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in
S
t>0

¡
D0
t × {t}

¢
, where D0

t := {y ∈ R | y1(t) < y < y2(t)} for any t ≥ 0, and
yi(·) (i = 1, 2) are fluctuating unknown boundary functions (we put y1(0) = 0,
y2(0) = L). Hereafter we denote the bulk viscosity µ0 + 2µ, which is a positive
constant, by µ. Here we assume that the external force per unit mass f = f(y, t)
is given by f = −Uy, where U = U(y, t) is the solution of the boundary value
problem for each t > 0 (

Uyy = Gρ in D0
t,

U |y=y1(t) = U |y=y2(t) = 0
(2.16)

with a positive constant G corresponding to the Newtonian gravitational constant.
One can regard that this definition of f gives the one-dimensional general self-
gravitation similar to the one given by (1.8)-(1.10). Imposed boundary conditions
corresponding to (1.6), (1.7) and (2.1) are for t > 0, i = 1, 2⎧⎪⎨⎪⎩

dyi(t)

dt
= v(yi(t), t),

(−p+ µvy, θy, zy)|y=yi(t) = (−pe, 0, 0),
(2.17)

respectively, and the initial conditions are for y ∈ D0
0

(ρ, v, θ, z)|t=0 =
¡
ρ0(y), v0(y), θ0(y), z0(y)

¢
.

Similarly to Problem 1, we transform this problem into the one of the La-
grangian coordinate. For given smooth velocity field v(y, t) and for any fixed
point (y, t) ∈ S t>0

¡
D0
t × {t}

¢
, finding the solution Yy,t(τ) of the problem⎧⎨⎩

dYy,t(τ)
dτ

= v
¡
Yy,t(τ), τ

¢
for 0 < τ < t,

Yy,t(t) = y

and putting Yy,t(0) = ξ, we have

y = Yξ,0(t) = ξ +

Z t

0

v
¡
Yξ,0(τ), τ

¢
dτ.

Then we introduce the mass transformation

ξ 7→ x =

Z ξ

0

ρ0(s) ds.

From these changes of variable problem (2.16) is reduced to(
(ρ̃ Ũx)x = G in (0,M),

Ũ |x=0 = Ũ |x=M = 0
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for each t > 0, where M =
R L
0
ρ0(ξ) dξ and tilde “˜” represents the transformed

functions. Through the relations f̃ = −ρ̃ Ũx we can get the explicit formula

f̃(x, t) = −G
Ã
x−

RM
0
ηρ̃(η, t)−1 dηRM

0
ρ̃(η, t)−1 dη

!
. (2.18)

Consequently, by putting the specific volume v(x, t) := 1/ρ̃(x, t), the velocity
u(x, t) := ṽ(x, t) and (θ, z, p, e,φ)(x, t) := (θ̃, z̃, p̃, ẽ, φ̃)(x, t), and normalizingM =
1 our problem becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt = ux,

ut =
³
−p+ µux

v

´
x
−G

Ã
x−

R 1
0
ηv(η, t) dηR 1
0
v(η, t) dη

!
,

et =
³
−p+ µux

v

´
ux +

µ
κ
θx
v

¶
x

+ λφz,

zt = d
³zx
v2

´
x
− φz

(2.19)

in (0, 1)× (0,∞) with the boundary conditions for t > 0³
−p+ µux

v
, θx, zx

´ ¯̄̄̄
x=0, 1

= (−pe, 0, 0) (2.20)

and the initial conditions for x ∈ [0, 1]
(v, u, θ, z)|t=0 =

¡
v0(x), u0(x), θ0(x), z0(x)

¢
. (2.21)

Now, by integration of (2.19)2 with respect to x over [0, 1] we get

d

dt

Z 1

0

u dx = −G
Ã
1

2
−
R 1
0
ηv(η, t) dηR 1
0
v(η, t) dη

!
. (2.22)

Denoting u−
R 1
0
u dx by u again, we obtain the final form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt = ux,

ut =
³
−p+ µux

v

´
x
−G

µ
x− 1

2

¶
,

et =
³
−p+ µux

v

´
ux +

µ
κ
θx
v

¶
x

+ λφz,

zt = d
³zx
v2

´
x
− φz

(2.23)

15



in (0, 1)× (0,∞) with the same initial-boundary conditions (2.20) and (2.21). For
this system it is natural that initial function u0 (which corresponds to u0−

R 1
0
u0 dx

for the original system (2.19)) satisfiesZ 1

0

u0 dx = 0. (2.24)

We also assume the compatibility conditionsµ
−p0 + µ

u0
0

v0

¶ ¯̄̄̄
x=0,1

= −pe, θ0
0(0) = θ0

0(1) = z0
0(0) = z0

0(1) = 0. (2.25)

For this problem we shall establish the existence of the unique global in time
classical solution to the system (2.23), (2.20), (2.21) with (2.4), (2.14), (2.15) un-
der the hypotheses (2.24), (2.25). From (2.22) it is easily seen that this solution
leads to the one for the original problem (2.19)-(2.21) describing the exact one-
dimensional self-gravitating fluid model.

The difficulty of two problems described above is mainly caused by the ra-
diative terms of the equations of state and (v, θ)-dependence of the conductivity.
Although our problems can be solved only for some large q (see §2.3), this value
of q seems to be physically admissible [75].

2.2 Function spaces

We introduce some function spaces used in this thesis (see for example, [14, 34]).
Let Ω := (0, 1) and m a non-negative integer. By Cm+α(Ω) for 0 < α < 1 we
denote the spaces of functions which are Hölder continuous with exponent α up
to order m, with the norm

|u|m+α :=
mX
k=0

sup
x∈Ω

|Dku(x)|+ sup
x,x0∈Ω
x 6=x0

|Dmu(x)−Dmu(x0)|
|x− x0|α ,

where D = ∂/∂x. Let T be a positive constant and QT := Ω × (0, T ). For a
function u defined on QT , we denote for 0 ≤ σ, σ0 ≤ 1

|u|(0) := sup
(x,t)∈QT

|u(x, t)|,

|u|(σ)x := sup
(x,t),(x0,t)∈QT

x 6=x0

|u(x, t)− u(x0, t)|
|x− x0|σ ,
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|u|(σ)t := sup
(x,t),(x,t0)∈QT

t 6=t0

|u(x, t)− u(x, t0)|
|t− t0|σ .

We define Cσ,σ0
x, t (QT ) as the spaces of continuous functions u(x, t) with the norm

|u|σ,σ0 := |u|(0) + |u|(σ)x + |u|(σ0)t .

We also say that u ∈ C2+α, 1+α/2x, t (QT ) for 0 < α < 1 if u is continuous over QT ,

has continuous derivatives ux, uxx, ut and (uxx, ut) ∈
³
C
α,α/2
x, t (QT )

´2
. Its norm is

defined by

|u|2+α, 1+α/2 := |u|(0) + |ux|(0) + |uxx|α,α/2 + |ut|α,α/2.

2.3 Statements of theorems

Our main result for Problem 1 is

Theorem 1 (Global Solution of Problem 1) Let α ∈ (0, 1), 3 ≤ q < 9 and
0 ≤ β < q + 9. Assume that

(v0, u0, θ0, z0) ∈ C1+α(Ω)×
³
C2+α(Ω)

´3
satisfies (2.13) and v0(x) > 0, θ0(x) > 0, 0 ≤ z0(x) ≤ 1 for any x ∈ Ω, and
3ζ − 4µ > 0, pe > 0. Then there exists a unique solution (v, u, θ, z) of the initial-
boundary value problem (2.9)-(2.11) with (2.12), (2.4), (2.14), (2.15) such that

(v, vx, vt, u, θ, z) ∈
³
C
α,α/2
x, t (QT )

´3
×
³
C
2+α, 1+α/2
x, t (QT )

´3
for any positive number T . Moreover for any (x, t) ∈ QT

v(x, t) > 0, θ(x, t) > 0, 0 ≤ z(x, t) ≤ 1.

This result has been already announced in [68].
For Problem 2, we obtain the following theorem.

17



Theorem 2 (Global Solution of Problem 2) Let α ∈ (0, 1), q ≥ 3 and 0 ≤
β < q + 9. Assume that

(v0, u0, θ0, z0) ∈ C1+α(Ω)×
³
C2+α(Ω)

´3
satisfies (2.24), (2.25) and v0(x) > 0, θ0(x) > 0, 0 ≤ z0(x) ≤ 1 for any x ∈ Ω,
and pe > 0. Then there exists a unique solution (v, u, θ, z) of the initial-boundary
value problem (2.23), (2.20), (2.21) with (2.4), (2.14), (2.15) such that

(v, vx, vt, u, θ, z) ∈
³
C
α,α/2
x, t (QT )

´3
×
³
C
2+α, 1+α/2
x, t (QT )

´3
for any positive number T . Moreover for any (x, t) ∈ QT

v(x, t) > 0, θ(x, t) > 0, 0 ≤ z(x, t) ≤ 1.

In [67] for 4 ≤ q ≤ 16 and 0 ≤ β ≤ 13/2 the global in time solvability of Problem 2
was established in the same spaces as in Theorem 2. Theorem 2 is its improve-
ment.

Remark. The range of values of q and β guaranteeing the global in time solvabil-
ity of Problems 1 and 2 are different from each other. This difference essentially
comes from the one of the equations of motion

ut = r
2σx + 4µr

2
³u
r

´
x
−G x+M0

r2
, σ = −p+ ζ

(r2u)x
v
− 4µu

r
for Problem 1,

ut = σx −G
µ
x− 1

2

¶
, σ = −p+ µux

v
for Problem 2,

where σ is the stress of gas in each model. The conservation form of the latter
allows us to solve Problem 2 for wider range of q and β than that of Problem 1
(see Lemma 4.6, §4.1).

Proof of theorems mentioned above is based on the temporally local existence
theorem and a priori estimates. As already mentioned in §1.1.1, the fundamental
theorem about the existence and the uniqueness of the local in time classical
solution was established by Tani and Secchi; especially in [53, 54] self-gravitating
radiative fluid was considered. Since it is easy to see that their argument is
applicable without any essential modification to our reacting, three-dimensional
spherically symmetric or one-dimensional cases (see for example, [60]), we omit
the proof of the following proposition.
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Proposition 1 (Local Solutions of Problems 1 and 2) Let α ∈ (0, 1). As-
sume that

(v0, u0, θ0, z0) ∈ C1+α(Ω)×
³
C2+α(Ω)

´3
satisfies the compatibility conditions (2.13) or (2.25) and for a positive constant
M

|v0|1+α, |u0, θ0, z0|2+α ≤ M,

v0(x), θ0(x) ≥ 1/M, 0 ≤ z0(x) ≤ 1 for any x ∈ Ω.

Then there exists a unique solution (v, u, θ, z) of our two initial-boundary value
problem such that

(v, vx, vt, u, θ, z) ∈
³
C
α,α/2
x, t (QT ∗)

´3
×
³
C
2+α, 1+α/2
x, t (QT ∗)

´3
for some positive number T ∗ = T ∗(M). Moreover for some positive constant
M∗ = M∗(M,T ∗)

|v, vx, vt|α,α/2, |u, θ, z|2+α, 1+α/2 ≤ M ∗,

v(x, t), θ(x, t) > 1/M∗, 0 ≤ z(x, t) ≤ 1 for any (x, t) ∈ QT∗ .

2.4 Related results

After the pioneering paper [32] due to Kazhikhov and Shelukhin problems with
one space variable have been studied under various situations.
Firstly as concerns the one-dimensional problem closely related to Problem 2,

we mention the results for models with no external forces. Models for a react-
ing mixture, in which (1.2) is taken into account and gases are polytropic and
ideal, have been studied many authors including Poland-Kassoy [50], Bebernes-
Bressan [1], Chen [3], Yanagi [73], Guo-Zhu [15], Chen-Hoff-Trivisa [4] and so
on. In [15, 73] the temporal asymptotics for m ≥ 1, s = 0, θi = 0 in (1.2)-(1.4)
were investigated. The case θi > 0 was treated in [3, 4], and especially in [4]
the binary mixtures which have different physical parameters in each species of
gases were investigated for the particular case d = 0 in (1.2). The motion of
fluids with some general equations of state and thermal conductivity were inves-
tigated by Dafermos-Hsiao [5], Kawohl [27], Jiang [21, 22], Qin [51] and so on.
Since most of them considered the situation that the pressure and the internal
energy are due to only the gaseous thermal movements, that is, the radiative
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contribution given by the Stefan-Boltzmann law is not taken into account, the
low growth power in θ for p, e, κ are assumed (see [5, 21, 27]). This situation
was extended by Qin [51] to the case of any growth power r in θ as follows: for
paremeters r ≥ 0, r+1 ≤ q < (5r+ 3)/2, and positive constants p1, p2, c,κ0 and
p3(v), p4(v), N(v),κ1(v) depending on any positive number v,

(i) 0 < p1 ≤ vp(v, θ) ≤ p2(1 + θr+1), |pθ(v, θ)| ≤ p4(v)(1 + θr),

− p3(v)(1 + θr+1) ≤ pv(v, θ) ≤ −p4(v)(1 + θr+1),

(ii) 0 ≤ e(v, 0), c(1 + θr) ≤ eθ(v, θ) ≤ N(v)(1 + θr),

(iii) κ0(1 + θq) ≤ κ(v, θ) ≤ κ1(v)(1 + θq), |κv(v, θ)|+ |κvv(v, θ)| ≤ κ1(v)(1 + θq)

for any v ≥ v. However, our radiative case (2.14) is not contained in this as-
sumption (the difference is also seen in the boundary conditions, i.e., he discussed
the problem under the Dirichlet condition for u). For radiative (and reactive)
gas under the Dirichlet boundary condition for u Ducomet [10] showed the global
existence for q ≥ 4 in (2.15) and for q ≥ 6 the exponential decay of the solu-
tion to a constant steady state determined by initial data. Other explicit forms
of state functions were also considered for example, by Lewicka-Mucha [37] for
p(v, θ) = θ/vr with any r ≥ 1, e(ρ, θ) = cvθ in the reactive case. Kazhikhov-
Nikolaev [30, 31] and Kazhikhov [28] investigated an isothermal model with a
non-monotonic state function p(v) satisfying the following:

(i) p(v) ≥ p(v1) for 0 < v < v1, p(v) ≤ p(v1) for v1 < v,

(ii) if p0(v) < 0, then p0(v) ≤ kv−1

for a positive constant k and at least one number v1 ∈ (0,∞). This aimed at the
investigation of the model with the well-known van der Waals equations of state

p(v, θ) =
Rθ

v − b −
a

v2
(2.26)

with positive constants a and b. Since the right-hand side of (2.26) is meaningful
only for v > b, it is necessary to obtain uniform a priori estimate v(x, t) > b.
However it have not been succeeded until now.
Ducomet [7,8,11] and Ducomet-Zlotnik [12,13] studied one-dimensional stellar

models similar to ours, i.e., radiative and reactive gas in the external force field
with the free-boundary. In [11] the temporally global existence of the solution
was shown for q = 4 in (2.15) and β = 0 in (2.4). However, in a series of
papers [7,8,11—13] they adopted as a self-gravitation, a special form characterized
by the “pancakes model”, which is relevant to some large-scale structure of the
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universe (see [59]),

f̃(x, t) = −G
µ
x− 1

2
M

¶
with gaseous total mass M , not the exact form (2.18). Although the temporally
global existence of the solution for any q ≥ 2 was established recently in [12, 13],
they were discussed not for the pure free-boundary case (2.20) but for the Dirich-
let condition of θ.
On the other hand, three-dimensional spherically symmetric motion of a com-

pressible viscous polytropic ideal fluid was also investigated by many authors.
Itaya [20] studied the model with no external forces in the annulus domain.
Yanagi [74] discussed this problem with a small potential force like (2.7), not
the self-gravitation which is described by the unknown quantity ρ. In the exte-
rior domain (outside of a sphere) Jiang [23] considered same equations as in [20]
(see also [24]), and by using the method in [23] Nakamura, Nishibata and Yanagi
extended Jiang’s model to the one with a large potential force (in [42] for the isen-
tropic gas, in [41] for the polytropic and ideal gas). Ducomet [9] also considered
a spherically symmetric stellar model of polytropic and ideal gas having central
rigid core, however he took fg only as external force field, but not fr which is
dominant in the present situation.
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3 Proof of Theorem 1: Three-dimensional spher-

ically symmetric problem

In this section, we consider Problem 1. In order to prove Theorem 1 it is sufficient
to establish the following a priori boundedness since we had the temporally local
existence theorem (Proposition 1).

Proposition 2 (A priori Estimates for Problem 1) Let T be an arbitrary pos-
itive number. Assume that α, q, β, µ, ζ, pe and the initial data satisfy the hy-
potheses of Theorem 1, and that the problem (2.9)-(2.11) with (2.12), (2.4), (2.14),
(2.15) has a solution (v, u, θ, z) such that

(v, vx, vt, u, θ, z) ∈
³
C
α,α/2
x, t (QT )

´3
×
³
C
2+α, 1+α/2
x, t (QT )

´3
.

Then there exists a positive constant C depending on the initial data and T such
that

|v, vx, vt|α,α/2, |u, θ, z|2+α, 1+α/2 ≤ C,

v(x, t), θ(x, t) ≥ 1/C, 0 ≤ z(x, t) ≤ 1 for any (x, t) ∈ QT .

In proving Proposition 2, we need several lemmas concerning the estimates of the
solution and its derivatives. Our methods are mainly based on the techniques in
Dafermos-Hsiao [5], Kawohl [27] and Jiang [21]. We use C0 and C, CT as positive
constants depending on the initial data and other constants, but the former does
not depend on T , and k · k denotes the usual L2(Ω)-norm.

3.1 Estimates in Sobolev spaces

Lemma 3.1 For any t ∈ [0, T ]Z 1

0

µ
1

2
u2 + e+ λz + pev

¶
dx ≤ E0 (3.1)

with

E0 :=

Z 1

0

µ
1

2
u0
2 + e0 + λz0 + pev0

¶
dx+

Z 1

0

G(x+M0)

µ
1

R0
− 1

r0

¶
dx,

e0 := cvθ0 + av0θ0
4.
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Proof. Let σ := −p + ζ
(r2u)x
v
− 4µu

r
. Multiplying (2.9)2 by u and integrating it

by part over [0, 1] with the help of the boundary condition, we have

d

dt

Z 1

0

µ
1

2
u2 + pev −G

x+M0

r

¶
dx+

Z 1

0

σ(r2u)x dx

= 4µ

Z 1

0

r2u
³u
r

´
x
dx. (3.2)

Adding the integration of e+λz over [0, 1]× [0, t] to the integration of (3.2) yieldsZ 1

0

µ
1

2
u2 + e+ λz + pev −G

x+M0

r

¶
dx

=

Z 1

0

µ
1

2
u0
2 + e0 + λz0 + pev0 −G

x+M0

r0

¶
dx. (3.3)

From r ≥ R0 in QT , we have (3.1).

Lemma 3.2 For any t ∈ [0, T ]

U(t) +

Z t

0

V (τ) dτ ≤ C1, (3.4)

where C1 is a positive constant independent of T and⎧⎪⎪⎪⎨⎪⎪⎪⎩
U(t) :=

Z 1

0

h
cv(θ − 1− log θ) + R(v − 1− log v)

i
dx,

V (t) :=

Z 1

0

∙
η
(r2u)x

2

vθ
+ η0

vu2

r2θ
+
r4κθx

2

vθ2
+ λ

φ

θ
z

¸
dx,

η :=
3ζ − 4µ
6

> 0, η0 :=
12(3ζ − 4µ)
3ζ + 4µ

µ > 0.

Proof. Rewriting (2.9)3 as

eθθt + θpθ(r
2u)x =

ζ

v
(r2u)x

2 − 8µu
r
(r2u)x + 12µ

v

r2
u2 +

µ
r4κ

v
θx

¶
x

+ λφz (3.5)

and multiplying this by θ−1, we have

d

dt

µ
cv log θ + R log v +

4

3
avθ3

¶
= ζ

(r2u)x
2

vθ
− 8µ(r

2u)xu

rθ
+ 12µ

vu2

r2θ
+
1

θ

µ
r4κθx
v

¶
x

+ λ
φ

θ
z. (3.6)
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Noting the identity

ζ
(r2u)x

2

vθ
− 8µ(r

2u)xu

rθ
+ 12µ

vu2

r2θ
=
3ζ − 4µ
6

(r2u)x
2

vθ

+
12(3ζ − 4µ)
3ζ + 4µ

µ
vu2

r2θ
+
1

vθ

" r
3ζ + 4µ

6
(r2u)x − 4µ

r
6

3ζ + 4µ

vu

r

#2
and integrating (3.6) over [0, 1]× [0, t], we have

U(t) +

Z t

0

V (τ) dτ ≤ C0
µ
1 +

Z 1

0

vθ3 dx

¶
.

From Hölder’s inequality for γ ∈ [0, 4]Z 1

0

vθγ dx ≤
µZ 1

0

vθ4 dx

¶γ/4µZ 1

0

v dx

¶(4−γ)/4
(3.7)

(3.4) follows.

Lemma 3.3 For any (x, t) ∈ QTZ 1

0

z dx+

Z t

0

Z 1

0

φz dx dτ =

Z 1

0

z0 dx, (3.8)

1

2

Z 1

0

z2 dx+

Z t

0

Z 1

0

µ
dr4

v2
zx
2 + φz2

¶
dx dτ =

1

2

Z 1

0

z0
2 dx, (3.9)

0 ≤ z(x, t) ≤ 1. (3.10)

Proof. Equalities (3.8)-(3.9) are easily obtained by integrating (2.9)4 over [0, 1]×
[0, t]. Let b be a positive constant, and define W := e−btz. Then W satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Wt + (b+ φ)W =

µ
dr4

v2
Wx

¶
x

in QT ,

Wx|x=0,1 = 0 for t ∈ [0, T ],
W |t=0 = z0 ≥ 0 for x ∈ [0, 1].

Using the comparison theorem (see [3]), we conclude that z is non-negative. Ap-
plying the same arguments to the function 1− z, we finally obtain (3.10).
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Lemma 3.4 For any (x, t) ∈ QT

v(x, t) ≥ CT . (3.11)

Proof. Since (2.9)2 can be written as

ut
r2
= −px + ζ(log v)xt −G

x+M0

r4
,

integrating this over [x, 1]× [0, t] with the help of (2.10)1, we have the identity

log
v0
v
+
1

ζ

Z t

0

p dτ =
1

ζ

" Z 1

x

µ
u

r2
− u0
r02

¶
dξ +

Z t

0

Z 1

x

2u2

r3
dξ dτ

#

+
pe
ζ
t+ log

µ
r0(1)

r(1, t)

¶4µ/ζ
+
1

ζ

Z t

0

Z 1

x

G(ξ +M0)

r4
dξ dτ, (3.12)

which immediately yields

min
(x,t)∈QT

v(x, t) ≥ min
x∈Ω

v0(x)

µ
R0
r0(1)

¶4µ/ζ
× exp

(
−1
ζ

∙
2
√
2

R02
E0

1/2 +

µ
pe +

4E0
R03

+
G(1 +M0)

R04

¶
T

¸)
.

Combining this lemma and (3.7), we immediately obtain the next corollary.

Corollary 3.1 For any t ∈ [0, T ] and γ ∈ [0, 4]

kθ(·, t)kLγ(Ω) ≤ CT . (3.13)

Lemma 3.5 For any t ∈ [0, T ] and γ ∈ [0, q + 4], q ≥ 0Z t

0

max
x∈Ω

θ(x, τ)γ dτ ≤ CT . (3.14)
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Proof. For any γ ≥ 0 and (x, t) ∈ QT we have

θ(x, t)γ/2 ≤
µZ 1

0

θ dx

¶γ/2

+
γ

2

Z 1

0

θγ/2−1|θx| dx

≤ C0
µ
1 +

Z 1

0

v1/2θγ/2

r2κ1/2
· r

2κ1/2|θx|
v1/2θ

dx

¶
≤ C0

"
1 +

µZ 1

0

vθγ

r4κ
dx

¶1/2
V (t)1/2

#
. (3.15)

Since θγ ≤ C0(1+ θq+4) holds for any γ ∈ [0, q+4], we have from (3.1) and (3.13)Z 1

0

vθγ

r4κ
dx ≤ C0

Z 1

0

vθγ

1 + vθq
dx ≤ C0

Z 1

0

(v + θ4) dx ≤ C,

which yields (3.14) from (3.15) and (3.4).

In [32], Kazhikhov and Shelukhin firstly derived the useful representation for-
mula of v for the case that the gas is polytropic and ideal. In our radiative case
we can derive the similar one.

Lemma 3.6 The identity

v(x, t) =
1

P(x, t)Q(x, t)R(x, t)

×
µ
v0(x) +

R

ζ

Z t

0

θ(x, τ)P(x, τ)Q(x, τ)R(x, τ) dτ

¶
(3.16)

holds, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(x, t) :=

µ
r0(1)

r(1, t)

¶4µ/ζ
exp

∙
1

ζ

Z 1

x

µ
u

r2
− u0
r02

¶
dξ

¸
,

Q(x, t) := exp

½
pe
ζ
t+

1

ζ

Z t

0

Z 1

x

∙
2u2

r3
+
G(ξ +M0)

r4

¸
dξ dτ

¾
,

R(x, t) := exp

µ
− a
3ζ

Z t

0

θ(x, τ)4 dτ

¶
.

Proof. Going back to (3.12), taking exponent and dividing the pressure part intoZ t

0

R

ζ

θ

v
dτ +

a

3ζ

Z t

0

θ4 dτ , we have

1

v
exp

µZ t

0

R

ζ

θ

v
dτ

¶
=
1

v0
PQR.
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Multiplying this by
R

ζ
θ and integrating it with respect to t, we obtain

exp

µZ t

0

R

ζ

θ

v
dτ

¶
= 1 +

1

v0

Z t

0

R

ζ
θPQRdτ.

Lemma 3.7 For any (x, t) ∈ QT

v(x, t) ≤ CT . (3.17)

Proof. At first, from (3.1) it is easily seen that for any (x, t) ∈ QT

C0
−1 ≤ P(x, t) ≤ C0. (3.18)

From (3.4), Jensen’s inequality and mean value theorem we find a point x∗(t) ∈
[0, 1] for each fixed t ∈ [0, T ] such that

θ(x∗(t), t)− log θ(x∗(t), t)− 1 ≤ C1
cv
, α0 ≤ θ(x∗(t), t) ≤ β0

with two positive roots α0 and β0 of the equation y − log y − 1 = C1/cv. Since

θ(x, t)2 = θ(x∗(t), t)2 + 2

Z x

x∗(t)
θ(ξ, t)θξ(ξ, t) dξ,

we have

1

2
α0

4 − C0V (t) ≤ θ(x, t)4 ≤ 2β04 + C0V (t). (3.19)

Let us decompose v into two parts v1 + v2, where

v1 = v1(x, t) :=
v0(x)

(PQR)(x, t)
,

v2 = v2(x, t) :=
R

ζ

Z t

0

(PQR)(x, τ)

(PQR)(x, t)
θ(x, τ) dτ.

Using (3.18) and (3.19), we immediately obtain

C0 e
− t
ζ

h³
pe+

4E0
R0

3+
G(1+M0)

R0
4

´
− 1
6
aα04

i
≤ v1(x, t) ≤ C0 e−

t
ζ (pe−

2
3
aβ04). (3.20)
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Also (3.15) with γ = 2, (3.18) and (3.19) yield

v2(x, t) ≤ C0
Z t

0

e−
1
ζ (pe−

2
3
aβ04)(t−τ)

³
1 + V (τ)

´
dτ, (3.21)

and hence v2 is bounded from above by (3.4).

Remark. If pe is sufficiently large, then for any (x, t) ∈ QT
C0
−1 ≤ v(x, t) ≤ C0.

Indeed, (3.20) and (3.21) together with the assumption pe ≥
2

3
aβ0

4 imply that v1

is decreasing exponentially in t and v2 is uniformly bounded. Also since we have
θ(x, t) ≥ C2 − C3V (t) for some positive constants C2, C3 by using (3.15) with
γ = 2, v2(x, t) is estimated from below by

C0

Z t

0

e
− 1
ζ (pe−

1
6
aα04)(t−τ)− 1

ζ

R t
τ

R 1
x

∙
2u(ξ,τ0)2
r(ξ,τ 0)3 +

G(ξ+M0)

r(ξ,τ0)4

¸
dξ dτ 0×

³
C2 − C3V (τ)

´
dτ

≥ C0
¡
1− e−C0t

¢
− C0

Z t

0

e−C0(t−τ)V (τ) dτ,

whose right hand side has a positive lower bound for sufficiently large t.

Lemma 3.8 For any t ∈ [0, T ]Z t

0

k(r2u)xk2 dτ ≤ CT . (3.22)

Proof. Rewriting (3.2) as

d

dt

Z 1

0

µ
1

2
u2 + pev −G

x+M0

r

¶
dx+

Z 1

0

µ
ζ

v
(r2u)x

2 + 12µ
u2v

r2

¶
dx

=

Z 1

0

³
p+ 8µ

u

r

´
(r2u)x dx

and integrating this with respect to t, we obtainZ t

0

k(r2u)xk2 dτ ≤ C
µ
1 +

Z t

0

kpk2 dτ
¶

≤ C
µ
1 +

Z t

0

max
x∈Ω

θ4 ·
Z 1

0

θ4 dx dτ

¶
.
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From this one can easily derive (3.22) by virtue of Lemma 3.5.

Corollary 3.2 For any t ∈ [0, T ]Z t

0

kuxk2 dτ ≤ CT . (3.23)

Proof. From ux =
1

r2
(r2u)x − 2

v

r3
u we haveZ t

0

kuxk2 dτ ≤ 2
Z t

0

µ
1

R02
k(r2u)xk2 + 4

Z 1

0

v2

r6
u2 dx

¶
dτ,

and hence (3.23) follows from Lemma 3.8.

Lemma 3.9 If q ≥ 2, then for any t ∈ [0, T ]

kvxk2 +
Z t

0

Z 1

0

θvx
2 dx dτ ≤ CT . (3.24)

Proof. Since (2.9)1 and (2.9)2 imply³ u
r2
− ζ

vx
v

´
t
= −px − 2

u2

r3
−G x+M0

r4
,

multiplying this by
u

r2
− ζ

vx
v
and integrating it with respect to x lead to

d

dt

°°° u
r2
− ζ

vx
v

°°°2 + Z 1

0

θvx
2 dx

≤ C
∙
1 + V (t) + max

x∈Ω
(u2 + θ) · kuk2 +max

x∈Ω

µ
1 + θ2 +

θ8

1 + θq

¶
·
°°° u
r2
− ζ

vx
v

°°°2¸ .
Note that (2.10)2 and Cauchy-Schwarz’ inequality imply

(r2u)(x, t) =

Z x

0

(r2u)x dx ≤ C0V (t)1/2
µZ 1

0

vθ dx

¶1/2
,

so that for (x, t) ∈ QT
|u(x, t)| ≤ C0V (t)1/2, (3.25)
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and Z t

0

max
x∈Ω

θ8

1 + θq
dτ ≤ C

holds from Lemma 3.5 for q ≥ 2. Applying Gronwall’s inequality to the above
inequality gives (3.24).

To obtain higher order estimetes of u and θ we introduce the function

K = K(v, θ) :=

Z θ

0

κ(v, ξ)

v
dξ,

which has the estimates

|K| ≤ C(1 + θq+1), |Kv|, |Kvv| ≤ Cθ (3.26)

(see [21, 27]). Multiplying (3.5) by

µ
1

r4
K

¶
t

, integrating it over [0, 1] × [0, t] and

using the boundary condition of θ, we haveZ t

0

Z 1

0

eθθt

µ
1

r4
K

¶
t

dx dτ +

Z t

0

Z 1

0

r4κ

v
θx

µ
1

r4
K

¶
xt

dx dτ

=

Z t

0

Z 1

0

∙
−θpθ(r2u)x +

ζ

v
(r2u)x

2 − 8µu
r
(r2u)x

+ 12µ
v

r2
u2 + λφz

¸ µ
1

r4
K

¶
t

dx dτ. (3.27)

Here⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ
1

r4
K

¶
t

=
1

r4
κ

v
θt +

1

r4
Kv(r

2u)x −
4

r5
Ku,µ

1

r4
K

¶
xt

=
1

r4

³κ
v
θx

t́
+
1

r4
Kv(r

2u)xx +
1

r4
Kvvvx(r

2u)x +
1

r4

³κ
v v́

vxθt

− 4
r7
κθt −

4

r5
κ

v
uθx −

4

r5
Kux −

4

r5
Kvuvx +

20v

r8
Ku− 4v

r7
Kv(r

2u)x.

We define the quantities:

X :=

Z t

0

Z 1

0

¡
1 + θq+3

¢
θt
2 dx dτ, Y := max

t∈[0,T ]

Z 1

0

¡
1 + θ2q

¢
θx
2 dx,

Z := max
t∈[0,T ]

k(r2u)xxk2.
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By Cauchy-Schwarz’ inequality we have for any t ∈ [0, T ]

max
x∈Ω

θ2q+2 ≤ C + C
Z 1

0

(1 + θ)2q+1|θx| dx

≤ C + Cmax
x∈Ω

(1 + θ)q−1 ·
∙Z 1

0

(1 + θ)4 dx

¸1/2
Y 1/2

≤ C + 1
2
max
x∈Ω

θ2q+2 + CY
q+1
q+3 ,

which gives

|θ|(0) ≤ C + CY 1
2q+6 . (3.28)

Also by the standard interpolation inequality

max
t∈[0,T ]

k(r2u)xk2 ≤ C max
t∈[0,T ]

³
kr2uk2 + kr2uk k(r2u)xxk

´
≤ C + CZ1/2 (3.29)

we have from Cauchy-Schwarz’ inequality

|(r2u)x|(0) ≤ max
t∈[0,T ]

³
k(r2u)xk2 + 2k(r2u)xk k(r2u)xxk

´1/2
≤ C

h
1 + Z1/2 + (1 + Z1/2)1/2Z1/2

i1/2
≤ C + CZ3/8. (3.30)

Estimating each term in (3.27) by using (3.25), (3.26) and (3.28)-(3.30), we have
the following lemma.

Lemma 3.10 If 2 ≤ q < 9 and 0 ≤ β < q + 9, then then there exists a number
δ, 0 < δ < 1 such that

X + Y ≤ CT
¡
1 + Zδ

¢
. (3.31)

Proof. At first, we suppose q ≥ 2, β ≥ 0. Hereafter we use Cε as a positive
constant depending on ε. One can immediately derive the following inequalities
from the definitions of X and Y .Z t

0

Z 1

0

eθθt ·
1

r4
κ

v
θt dx dτ ≥ CX, (3.32)
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Z t

0

Z 1

0

r4κ

v
θx ·

1

r4

³κ
v
θx

t́
dx dτ =

1

2

Z 1

0

³κ
v
θx

´2
dx− 1

2

Z 1

0

µ
κ0
v0
θ0
0
¶2
dx

≥ CY − C (3.33)

with κ0 := κ1 + κ2v0θ0
q. In preperation for estimating other terms in (3.27) we

have for any t ∈ [0, T ]

max
x∈Ω

µ
r4κ

v
θx

¶2
≤
Z 1

0

µ
r4κ

v
θx

¶2
dx+ 2

Z 1

0

¯̄̄̄
r4κ

v
θx

¯̄̄̄ ¯̄̄̄µ
r4κ

v
θx

¶
x

¯̄̄̄
dx

≤ C|1 + θq+2|(0)V (t) + CV (t)1/2
"Z 1

0

(1 + θq+2)

µ
r4κ

v
θx

¶2
x

dx

#1/2
. (3.34)

From (3.5) it followsµ
r4κ

v
θx

¶2
x

≤ C
h
eθ
2θt

2 + θ2pθ
2(r2u)x

2 + (r2u)x
4 + (r2u)x

2u2 + u4 + φ2z2
i
.

Noting the inequalitiesZ t

0

Z 1

0

(1 + θq+2)eθ
2θt

2 dx dτ ≤ C |1 + θ5|(0)X ≤ CX + CXY 5
2q+6 ,

Z t

0

Z 1

0

(1 + θq+2)θ2pθ
2(r2u)x

2 dx dτ

≤ C
¯̄
(1 + θ2)(r2u)x

2
¯̄(0) Z t

0

max
x∈Ω

(1 + θq+4)

Z 1

0

(1 + θ4) dx dτ

≤ C + CY 1
q+3 + CY

1
q+3Z3/4 + CZ3/4,

Z t

0

Z 1

0

(1 + θq+2)(r2u)x
4 dx dτ ≤

¯̄
(1 + θq+2)(r2u)x

2
¯̄(0) Z t

0

k(r2u)xk2 dτ

≤ C + CY q+2
2q+6 + CY

q+2
2q+6Z3/4 + CZ3/4,

Z t

0

Z 1

0

(1 + θq+2)u4 dx dτ ≤ C
¯̄
1 + θq+2

¯̄(0) Z t

0

V (τ)kuk2 dτ ≤ C + CY q+2
2q+6 ,

Z t

0

Z 1

0

(1 + θq+2)φ2z2 dx dτ ≤ C
¯̄
1 + θq+2+β

¯̄(0) Z t

0

Z 1

0

φz2 dx dτ ≤ C + CY q+2+β
2q+6 ,
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we have by integrating (3.34)Z t

0

max
x∈Ω

µ
r4κ

v
θx

¶2
dτ

≤ C
³
1 +X1/2 + Y

q/2+1+β/2
2q+6 + Z3/8 +X1/2Y

5/2
2q+6 + Y

q/2+1
2q+6 Z3/8

´
(3.35)

≤ ε(X + Y ) + Cε
¡
1 + Z3/4

¢
for 0 ≤ β < 3q + 10. Hereafter we assume 0 ≤ β < 3q + 10. The remaining
estimates are as follows.¯̄̄̄Z t

0

Z 1

0

eθθt ·
1

r4
Kv(r

2u)x dx dτ

¯̄̄̄

≤ εX + Cε
¯̄
(r2u)x

2
¯̄(0) Z t

0

max
x∈Ω

(1 + θ)1−q
Z 1

0

(1 + θ)4 dx dτ

≤ εX + Cε
¡
1 + Z3/4

¢
; (3.36)

¯̄̄̄Z t

0

Z 1

0

eθθt ·
4

r5
Ku dx dτ

¯̄̄̄
≤ εX + Cε

¯̄
1 + θ

¯̄(0) Z t

0

max
x∈Ω

(1 + θq+4)kuk2 dτ

≤ ε(X + Y ) + Cε; (3.37)

¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

1

r4
Kv(r

2u)xx dx dτ

¯̄̄̄

≤ C
¯̄
1 + θ

q
2
+2
¯̄(0)

max
t∈[0,T ]

k(r2u)xxk
Z t

0

¡
1 + V (τ)

¢
dτ

≤ C + CY
q/2+2
2q+6 Z1/2 ≤ εY + Cε

¡
1 + Z3/4

¢
; (3.38)

¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

1

r4
Kvvvx(r

2u)x dx dτ

¯̄̄̄

≤ C
¯̄
(r2u)x

¯̄(0)
Y 1/2

µZ t

0

max
x∈Ω

(1 + θ2)kvxk2 dτ
¶1/2

≤ εY + Cε
¡
1 + Z3/4

¢
; (3.39)
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¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

1

r4

³κ
v v́

vxθt dx dτ

¯̄̄̄

≤ εX + Cε

Z t

0

max
x∈Ω

µ
r4κ

v
θx

¶2 Z 1

0

1

(1 + θ)q+3
vx
2 dx dτ

≤ ε(X + Y ) + Cε
¡
1 + Z3/4

¢
; (3.40)

¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

4

r7
κθt dx dτ

¯̄̄̄

≤ εX + Cε
¯̄
(1 + θ)q−7

¯̄(0) Z t

0

max
x∈Ω

µ
r4κ

v
θx

¶2 Z 1

0

(1 + θ)4 dx dτ,

which is estimated from above by

ε(X + Y ) + Cε
¡
1 + Z3/4

¢
(3.41)

for 2 ≤ q ≤ 7 and from (3.35) by

C
³
1 +X1/2 + Z3/8 + Y

(3/2)q−6+β/2
2q+6 +X1/2Y

q−9/2
2q+6 + Y

(3/2)q−6
2q+6 Z3/8

´
≤ ε(X + Y ) + Cε

¡
1 + Zδ1

¢
(3.42)

with a number δ1 (0 < δ1 < 1) for 7 < q < 39 and 0 ≤ β < q + 24;¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

4

r5
κ

v
uθx dx dτ

¯̄̄̄
≤ C

Z t

0

max
x∈Ω

µ
r4κ

v
θx

¶2
· kuk dτ

≤ ε(X + Y ) + Cε
¡
1 + Z3/4

¢
; (3.43)

¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

4

r5
Kux dx dτ

¯̄̄̄
≤ εY + Cε

¯̄
1 + θ2q+2

¯̄(0) Z t

0

kuxk2 dτ

≤ εY + Cε; (3.44)

¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

4

r5
Kvuvx dx dτ

¯̄̄̄
≤ εY + Cε

¯̄
1 + θ2

¯̄(0) Z t

0

V (τ)kvxk2 dτ

≤ εY + Cε; (3.45)
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¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

20v

r8
Ku dx dτ

¯̄̄̄
≤ εY + Cε

¯̄
1 + θ2q+2

¯̄(0) Z t

0

kuk2 dτ

≤ εY + Cε; (3.46)

¯̄̄̄Z t

0

Z 1

0

r4κ

v
θx ·

4v

r7
Kv(r

2u)x dx dτ

¯̄̄̄
≤ εY + Cε

¯̄
1 + θ2

¯̄(0) Z t

0

k(r2u)xk2 dτ

≤ εY + Cε; (3.47)

¯̄̄̄Z t

0

Z 1

0

θpθ(r
2u)x ·

1

r4
κ

v
θt dx dτ

¯̄̄̄
≤ εX + Cε

¯̄
1 + θq+5

¯̄(0) Z t

0

k(r2u)xk2 dτ

≤ ε(X + Y ) + Cε; (3.48)

¯̄̄̄Z t

0

Z 1

0

θpθ(r
2u)x ·

1

r4
Kv(r

2u)x dx dτ

¯̄̄̄
≤ C

¯̄
1 + θ5

¯̄(0) Z t

0

k(r2u)xk2 dτ

≤ εY + Cε; (3.49)

¯̄̄̄Z t

0

Z 1

0

θpθ(r
2u)x ·

4

r5
Ku dx dτ

¯̄̄̄
≤ C

¯̄
1 + θq+5

¯̄(0) Z t

0

³
k(r2u)xk2 + kuk2

´
dτ

≤ εY + Cε; (3.50)

¯̄̄̄Z t

0

Z 1

0

ζ

v
(r2u)x

2 · 1
r4
κ

v
θt dx dτ

¯̄̄̄

≤ εX + Cε
¯̄
(1 + θ)q−3

¯̄(0)¯̄
(r2u)x

2
¯̄(0) Z t

0

k(r2u)xk2 dτ

≤ ε(X + Y ) + Cε
¡
1 + Zδ2

¢
(3.51)

with a number δ2 (0 < δ2 < 1) for 2 ≤ q < 9;¯̄̄̄Z t

0

Z 1

0

ζ

v
(r2u)x

2 · 1
r4
Kv(r

2u)x dx dτ

¯̄̄̄

≤ C
¯̄
(r2u)x

¯̄(0)
max
t∈[0,T ]

k(r2u)xk2
Z t

0

max
x∈Ω

θ dτ ≤ C
¡
1 + Z7/8

¢
; (3.52)
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¯̄̄̄Z t

0

Z 1

0

ζ

v
(r2u)x

2 · 4
r5
Ku dx dτ

¯̄̄̄

≤ C
¯̄
(1 + θ)q−2

¯̄(0) Z t

0

max
x∈Ω

(1 + θq+4)kuk2 dτ + C
¯̄
(r2u)x

2
¯̄(0) Z t

0

k(r2u)xk2 dτ

≤ εY + Cε
¡
1 + Z3/4

¢
; (3.53)¯̄̄̄Z t

0

Z 1

0

h
−8µu

r
(r2u)x + 12µ

v

r2
u2
i 1
r4
κ

v
θt dx dτ

¯̄̄̄

≤ εX + Cε
¯̄
(1 + θ)q−3

¯̄(0)µ
max
t∈[0,T ]

k(r2u)xk2
Z t

0

V (τ) dτ +

Z t

0

V (τ)kuk2 dτ
¶

≤ εX + Cε

h
(1 + Y )

q−3
2q+6 + Z1/2 + (1 + Y )

q−3
2q+6Z1/2

i
≤ ε(X + Y ) + Cε

³
1 + Z

q+3
q+9

´
; (3.54)¯̄̄̄Z t

0

Z 1

0

h
−8µu

r
(r2u)x + 12µ

v

r2
u2
i 1
r4
Kv(r

2u)x dx dτ

¯̄̄̄

≤ C
¯̄
(r2u)x

2
¯̄(0) Z t

0

kθk kuk dτ + C
¯̄
(r2u)x

¯̄(0) Z t

0

max
x∈Ω

θ · kuk2 dτ

≤ C
¡
1 + Z3/4

¢
; (3.55)¯̄̄̄Z t

0

Z 1

0

h
−8µu

r
(r2u)x + 12µ

v

r2
u2
i 4
r5
Ku dx dτ

¯̄̄̄

≤ C
¯̄
(r2u)x

¯̄(0) Z t

0

max
x∈Ω

(1 + θq+1) · kuk dτ + C
¯̄
1 + θq+1

¯̄(0) Z t

0

V (τ)kuk dτ

≤ εY + Cε
¡
1 + Z3/8

¢
; (3.56)¯̄̄̄Z t

0

Z 1

0

λφz · 1
r4
κ

v
θt dx dτ

¯̄̄̄
≤ εX + Cε

¯̄
(1 + θ)q−3+β

¯̄(0) Z t

0

Z 1

0

φz2 dx dτ

≤ ε(X + Y ) + Cε (3.57)

for 0 ≤ β < q + 9;¯̄̄̄Z t

0

Z 1

0

λφz · 1
r4
Kv(r

2u)x dx dτ

¯̄̄̄
≤ C

¯̄
θ(r2u)x

¯̄(0) Z t

0

Z 1

0

φz dx dτ

≤ εY + Cε
¡
1 + Z3/4

¢
; (3.58)
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¯̄̄̄Z t

0

Z 1

0

λφz · 4
r5
Ku dx dτ

¯̄̄̄
≤ C

¯̄
(1 + θq+1) u

¯̄(0) Z t

0

Z 1

0

φz dx dτ

≤ εY + Cε
¡
1 + Z1/4

¢
(3.59)

since

|u|(0) ≤ max
t∈[0,T ]

³
kuk2 + 2kuk kuxk

´1/2
≤ C

¡
1 + Z1/8

¢
(3.60)

results from the standard interpolation inequality and (3.29). Combining (3.32),
(3.33), (3.36)-(3.59) and taking ε sufficiently small, we obtain (3.31).

Since the regularity of the solution obtained above is not sufficient, the fol-
lowing arguments are rather formal. However, one can justify them by using the
method of difference quotients or mollifiers. In what follows we assume that q and
β are real numbers satisfying 3 ≤ q < 9 and 0 ≤ β < q + 9.

Lemma 3.11 For any t ∈ [0, T ]

kutk2 +
Z t

0

k(r2u)xtk2 dτ ≤ CT
¡
1 + Zδ

¢
(3.61)

with a number δ, 0 < δ < 1.

Proof. Differentiating (2.9)2 with respect to t, multiplying it by ut and integrating
it over [0, 1], we have

d

dt

Z 1

0

1

2
ut
2 dx+

Z 1

0

ζ

v
(r2u)xt

2 dx =

Z 1

0

(
pt

∙
(r2u)xt −

4

r
(r2u)xu+

6v

r2
u2
¸

+ (r2u)xt

∙
8µ

r
ut +

ζ

v2
(r2u)x

2 +
2ζ

rv
(r2u)xu+

2

r
pu+

4µ− 6ζ
r2

u2
¸

− 12µv
r2

ut
2 + ut

"
− 2ζ
rv
(r2u)x

2 +
2

r
(r2u)xp+

6ζ − 24µ
r2

(r2u)xu

− 6v
r2
pu+

24µv

r3
u2 +

2G(x+M0)

r3
u

#
− 4ζ

rv2
(r2u)x

3u+
14ζ

r2v
(r2u)x

2u2

− 8

r2
(r2u)xpu

2 − 16µ+ 12ζ
r3

(r2u)xu
3 +

12v

r3
pu3 +

24µv

r4
u4

)
dx.
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Furthermore, integrating this with respect to t and noting the inequalityZ t

0

Z 1

0

h
pt
2 + (r2u)x

4
i
dx dτ

≤ C
Z t

0

Z 1

0

(1 + θ6)θt
2 dx dτ + C

¯̄
(r2u)x

2
¯̄(0) Z t

0

h
kθk2 + k(r2u)xk2

i
dτ

derived from the equation pt =

µ
R

v
+
4

3
aθ3
¶
θt −

R

v2
θ(r2u)x, we have

kutk2 +
Z t

0

k(r2u)xtk2 dτ

≤ C + CY 4
2q+6 + CZ3/4 + C

Z t

0

Z 1

0

h
pt
2 + (r2u)x

4 + ut
2
i
dx dτ

≤ C
µ
1 +X + Y + Z3/4 +

Z t

0

kutk2 dτ
¶
.

This yields (3.61) by using Gronwall’s inequality and Lemma 3.10.

Lemma 3.12 For any t ∈ [0, T ]
k(r2u)xk2 + kθxk2 + k(r2u)xxk2 + kutk2

+

Z t

0

h
kθtk2 + k(r2u)xtk2

i
dτ ≤ CT , (3.62)

|(r2u)x|(0) + |u|(0) + |θ|(0) ≤ CT . (3.63)

Proof. Squaring the equality

ζr2

v
(r2u)xx = ut + r

2px +
ζr2

v2
(r2u)xvx +G

x+M0

r2
,

integrating it with respect to x and using Lemmas 3.10 and 3.11 and the relation

px =

µ
R

v
+
4

3
aθ3
¶
θx −

R

v2
θvx, we have for any t ∈ [0, T ]

k(r2u)xxk2

≤ C
½
1 + kutk2 + max

t∈[0,T ]

Z 1

0

(1 + θ6)θx
2 dx+

h¯̄
θ2
¯̄(0)

+
¯̄
(r2u)x

2
¯̄(0)i kvxk2¾

≤ C
¡
1 +X + Y + Z3/4

¢
≤ C

¡
1 + Zδ

¢
.
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This implies

Z ≤ C
¡
1 + Zδ

¢
and therefore, Z is bounded. From Lemmas 3.10 and 3.11, (3.60) and (3.28)-
(3.30) we conclude that |u|(0), |(r2u)x|(0), k(r2u)xk, kutk,

R t
0
k(r2u)xtk2 dτ , |θ|(0),

kθxk and
R t
0
kθtk2 dτ are also bounded.

Lemma 3.13 For any (x, t) ∈ QT
θ(x, t) ≥ CT . (3.64)

Proof. By putting Θ :=
1

θ
, (3.5) becomes

eθΘt =

µ
r4κ

v
Θx

¶
x

+
vpθ

2

4(ζ − 4
3
µ)
−
(
ζ − 4

3
µ

v
Θ2
∙
(r2u)x −

vpθ
2(ζ − 4

3
µ)Θ

¸2

+
4µ

3v
Θ2
∙
(r2u)x −

3v

r
u

¸2
+
2r4κ

vΘ
Θx

2 + λφzΘ2

)
.

Since eθ > cv, and pθ ≤ C + C |θ3|(0) ≤ C from (3.63), there exists a positive
constant C4 such that in QT

Θt <
1

eθ

µ
r4κ

v
Θx

¶
x

+ C4.

Therefore eΘ(x, t) := C4 t+max
x∈Ω

£
θ0(x)

−1¤−Θ(x, t) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
LeΘ < 0 in QT ,eΘ¯̄

t=0
≥ 0 for x ∈ [0, 1],eΘx¯̄x=0,1 = 0 for t ∈ [0, T ],

where L is a parabolic operator L := − ∂

∂t
+
1

eθ

∂

∂x

µ
r4κ

v

∂

∂x

¶
. Standard compar-

ison arguments imply min
(x,t)∈QT

eΘ(x, t) ≥ 0, which gives for any (x, t) ∈ QT
θ(x, t) ≥

½
C4 t+max

x∈Ω

£
θ0(x)

−1¤¾−1 .
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Lemma 3.14 For any t ∈ [0, T ]

kzxk2 + kzxxk2 + kztk2 +
Z t

0

kzxtk2 dτ ≤ CT . (3.65)

Proof. Multiplying (2.9)4 by zxx and integrating it with respect to x, we have

d

dt

Z 1

0

1

2
zx
2 dx+

Z 1

0

dr4

v2
zxx

2 dx =

Z 1

0

µ
2dr4

v3
vxzx −

4dr

v
zx + φz

¶
zxx dx.

This yields

kzxk2 +
Z t

0

kzxxk2 dτ ≤ C + C
Z t

0

kzxk2 dτ,

since φ ≤ C |θβ|(0) ≤ C from (3.63) and

max
x∈Ω

zx
2 ≤ εkzxxk2 + Cεkzxk2. (3.66)

Gronwall’s inequality gives bounds of kzxk and
R t
0
kzxxk2 dτ , hence we also obtain

the bound of
R t
0
kztk2 dτ by using (2.9)4 again. Next, differentiating (2.9)4 with

respect to t, multiplying it by zt and integrating that over [0, 1], we also have

d

dt

Z 1

0

1

2
zt
2 dx+

Z 1

0

dr4

v2
zxt

2 dx

=

Z 1

0

∙
2dr4

v3
(r2u)xzxzxt −

4dr3

v2
uzxzxt − φtzzt − φzt

2

¸
dx.

Since |φt| = Ke−A/θ
¡
Aθ−2 + βθ−1

¢
θβ|θt| ≤ C|θt| holds from (3.63) and (3.64), we

have by Cauchy-Schwarz’ inequality

kztk2 +
Z t

0

kzxtk2 dτ ≤ C
Z t

0

³
kzxk2 + kztk2 + kθtk2

´
dτ ≤ C.

Therefore, from

dr4

v2
zxx = zt −

4dr

v
zx +

2dr4

v3
vxzx + φz

we obtain

kzxxk2 ≤ C + Cmax
x∈Ω

zx
2 · kvxk2.

This gives a bound of kzxxk by using (3.66).
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Lemma 3.15 For any t ∈ [0, T ]

kθxxk2 + kθtk2 +
Z t

0

kθxtk2 dτ ≤ CT . (3.67)

Proof. Differentiating (3.5) with respect to t, multiplying it by eθθt and integrating
that over [0, 1], we have

d

dt

Z 1

0

1

2
(eθθt)

2 dx+

Z 1

0

r4κ

v
eθθxt

2 dx

=

Z 1

0

½
θxt
¡
F1θtθx + F2θtvx + F3θx

¢
+ θt

2
¡
F4θx

2 + F5θxvx + F6
¢
+ F7θtθx

2

+F8θtθxvx + θt
£
F9(r

2u)xt + F10ut + F11zt + F12
¤¾
dx, (3.68)

where

F1 := −r4
³κ
v

´
θ
eθ − r4

κ

v
eθθ,

F2 := −r4
κ

v
eθv,

F3 := −
4r3κ

v
eθu− r4

³κ
v

´
v
eθ(r

2u)x,

F4 := −r4
³κ
v

´
θ
eθθ,

F5 := −r4
³κ
v

´
θ
eθv,

F6 := − (pθeθ + θpθθeθ) (r
2u)x + λKe−A/θ

µ
A

θ2
+
β

θ

¶
θβeθz,

F7 := −
4r3κ

v
eθθu− r4

³κ
v

´
v
eθθ(r

2u)x,

F8 := −
4r3κ

v
eθvu− r4

³κ
v

´
v
eθv(r

2u)x,

F9 := −θpθeθ +
2ζ

v
eθ(r

2u)x −
8µ

r
eθu,

F10 := −
8µ

r
eθ(r

2u)x +
24µv

r2
eθu,

F11 := λφeθ,
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F12 := −θpθveθ(r2u)x2 −
ζ

v2
eθ(r

2u)x
3 +

20µ

r2
eθ(r

2u)xu
2 − 24µv

r3
eθu

3.

From Lemmas 3.12-3.14 together with the inequalities

pθ, pθv, pθθ, eθ, eθv, eθθ,
κ

v
,
³κ
v v́

,
³κ
v θ́
≤ C, eθ > cv

by integrating (3.68) with respect to t and using Cauchy-Schwarz’ inequality one
can derive

kθtk2 +
Z t

0

kθxtk2 dτ ≤ C + C
Z t

0

max
x∈Ω

θt
2 ·
³
kvxk2 + kθxk2

´
dτ.

By virtue of

max
x∈Ω

θt
2 ≤ εkθxtk2 + Cεkθtk2

we conclude that kθtk and
R t
0
kθxtk2 dτ are bounded. Therefore, squaring the

equality

r4κ

v
θxx = eθθt + θpθ(r

2u)x −
ζ

v
(r2u)x

2 +
8µ

r
(r2u)xu−

12µv

r2
u2 − 4rκθx

−r4
³κ
v

´
v
vxθx − r4

³κ
v

´
θ
θx
2 − λφz

and integrating it with respect to x, we obtain

kθxxk2 ≤ C + Cmax
x∈Ω

θx
2 ·
³
kvxk2 + kθxk2

´
.

From this one can derive (3.67) by using

max
x∈Ω

θx
2 ≤ εkθxxk2 + Cεkθxk2.

3.2 The Hölder estimates

In this section we shall derive the Hölder estimates of the solution following the
argument due to Kazhikhov-Shelukhin [32]. First, we easily obtain bounds of
|rx, (r2u)x, θx, zx|(0) from (3.62), (3.65) and (3.67). This implies that r, r2u, θ and
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z are uniformly Lipschitz continuous in x. Applying Cauchy-Schwarz’ inequality,
we have

¯̄
(r2u)(x, t)− (r2u)(x, t0)

¯̄
≤
µZ t

t0
(r2u)t

2 dτ

¶1/2
|t− t0|1/2

≤
∙Z t

t0

³
k(r2u)tk2 + 2k(r2u)tk k(r2u)xtk

´
dτ

¸1/2
|t− t0|1/2.

From this together with (r2u)t = r
2ut + 2ru

2 and (3.62) it follows that

|r2u |(1/2)t ≤ C.

Similarly we get |r, θ, z|(1/2)t ≤ C. Namely, we have

(r, u, r2u, θ, z) ∈
³
C
1, 1/2
x, t (QT )

´5
. (3.69)

Moreover, we have

¯̄
(r2u)x(x, t)− (r2u)x(x0, t)

¯̄
≤
µZ x

x0
(r2u)xx

2 dξ

¶1/2
|x− x0|1/2,

and hence

|(r2u)x|(1/2)x ≤ C

by virtue of (3.62). Also |θx, zx|(1/2)x ≤ C follows from (3.65) and (3.67) in the
same manner. Thus by a standard interpolation lemma (see for example, [34],
Chapter II, Lemma 3.1) one can get¡

(r2u)x, θx, zx
¢
∈
³
C
1/3, 1/6
x, t (QT )

´3
.

Recalling that (2.9)1 and v|t=0 = v0 ∈ C1+α(Ω), we derive v ∈ C1/3, 1/6x, t (QT ). Since
it follows from (3.16) that

vx(x, t) =
1

(PQR)(x, t)

(
v0
0(x)− A(x, t)v0(x)

+
R

ζ

Z t

0

h
θx(x, τ) + θ(x, τ)

¡
A(x, τ)− A(x, t)

¢i
(PQR)(x, τ) dτ

)
(3.70)
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with

A(x, t) :=
1

ζ

½
u0
r02
− u

r2
−
Z t

0

∙
2u2

r3
+
G(x+M0)

r4

¸
dτ − 4

3
a

Z t

0

θ3θx dτ

¾
,

we can easily check vx ∈ Cσ,σ/2
x, t (QT ) with σ := min{α, 1/3}.

Next we consider (2.9)2, (2.9)3 and (2.9)4 as the linear equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(r2u)t −
ζr4

v
(r2u)xx +

ζr4vx
v2

(r2u)x −
2u

r
· r2u

= −Rr
4θx
v

+
Rr4θvx
v2

− 4
3
ar4θ3θx −G(x+M0),

θt −
r4κ

eθv
θxx −

1

eθ

h
4rκ+ r4

³κ
v

´
v
vx + r

4
³κ
v

´
θ
θx

i
θx +

pθ(r
2u)x
eθ

θ

=
1

eθ

∙
ζ(r2u)x

2

v
− 8µ(r

2u)xu

r
+
12µvu2

r2
+ λφz

¸
,

zt −
dr4

v2
zxx +

µ
2dr4vx
v3

− 4dr
v

¶
zx + φz = 0,

(3.71)

whose coefficients and right hand sides are Hölder continuous in x with exponent σ
and in t with exponent σ/2. By the classical Schauder estimates (see for example,
[14, 34]) we obtain

|r2u, θ, z|2+σ, 1+σ/2 ≤ C.

This implies ¡
v, (r2u)x, θx, zx

¢
∈
³
C
1, 1/2
x, t (QT )

´4
(3.72)

by the interpolation lemma and (2.9)1. Going back to (3.70) with (3.69) and
(3.72), we obtain

vx ∈ Cα,α/2
x, t (QT ). (3.73)

Therefore, applying the Schauder estimates to (3.71) again, we have

|r2u, θ, z|2+α, 1+α/2 ≤ C. (3.74)
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Finally, from (3.69), (3.72)-(3.74) and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ux =
1

r2
(r2u)x −

2v

r3
u,

uxx =
1

r2
(r2u)xx −

4v

r5
(r2u)x +

10v2

r6
u− 2vx

r3
u,

ut =
ζr2

v
(r2u)xx −

ζr2vx
v2

(r2u)x −
Rr2θx
v

+
Rr2θvx
v2

− 4
3
ar2θ3θx −G

x+M0

r2

we obtain

|u|2+α, 1+α/2 ≤ C.
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4 Proof of Theorem 2: One-dimensional prob-

lem

In this section we consider Problem 2. In order to prove Theorem 2, we shall
establish the following a priori boundedness.

Proposition 3 (A priori Estimates for Problem 2) Let T be an arbitrary pos-
itive number. Assume that α, q, β, pe and the initial data satisfy the hypotheses
of Theorem 2, and that the problem (2.23), (2.20), (2.21) with (2.4), (2.14), (2.15)
has a solution (v, u, θ, z) such that

(v, vx, vt, u, θ, z) ∈
³
C
α,α/2
x, t (QT )

´3
×
³
C
2+α, 1+α/2
x, t (QT )

´3
.

Then there exists a positive constant C depending on the initial data and T such
that

|v, vx, vt|α,α/2, |u, θ, z|2+α, 1+α/2 ≤ C,

v(x, t), θ(x, t) ≥ 1/C, 0 ≤ z(x, t) ≤ 1 for any (x, t) ∈ QT .

We prove this proposition in the following subsections. We use constants C0, C,
Cε and CT as the same as in §3.

4.1 Estimates in Sobolev spaces

We first show several lemmas similar to the ones in §3.1.

Lemma 4.1 For any t ∈ [0, T ]Z 1

0

µ
1

2
u2 + e+ λz + f(x)v

¶
dx = E0, (4.1)

U(t) +

Z t

0

V (τ) dτ ≤ C0, (4.2)

Z 1

0

z dx+

Z t

0

Z 1

0

φz dx dτ =

Z 1

0

z0 dx, (4.3)

1

2

Z 1

0

z2 dx+

Z t

0

Z 1

0

µ
d

v2
zx
2 + φz2

¶
dx dτ =

1

2

Z 1

0

z0
2 dx, (4.4)
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and for any (x, t) ∈ QT
0 ≤ z(x, t) ≤ 1. (4.5)

Here ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0 :=

Z 1

0

µ
1

2
u0
2 + e0 + λz0 + f(x)v0

¶
dx,

U(t) :=

Z 1

0

h
cv(θ − 1− log θ) + R(v − 1− log v)

i
dx,

V (t) :=

Z 1

0

µ
µux

2

vθ
+
κθx

2

vθ2
+ λ

φ

θ
z

¶
dx

and f(x) := pe +
1

2
Gx(1− x).

Proof. It is easy to see from (2.23) and (2.20) that

d

dt

Z 1

0

µ
1

2
u2 + f(x)v

¶
dx+

Z 1

0

µ

v
ux
2 dx =

Z 1

0

pux dx (4.6)

and

d

dt

Z 1

0

(e+ λz) dx =

Z 1

0

³
−p+ µ

v
ux

´
ux dx.

Adding these equalities and integrating it over [0, t], we obtain (4.1).
Rewriting (2.23)3 as

eθθt + θpθux =
µ

v
ux
2 +

³κ
v
θx

´
x
+ λφz (4.7)

and multiplying this by θ−1, we have

d

dt

µ
cv log θ + R log v +

4

3
avθ3

¶
=
µux

2

vθ
+
1

θ

³κ
v
θx

´
x
+ λ

φ

θ
z.

Integrating this over [0, 1]× [0, t] yields

U(t) +

Z t

0

V (τ) dτ ≤ C0
µ
1 +

Z 1

0

vθ3 dx

¶
.

From Hölder’s inequalityZ 1

0

vθγ dx ≤
µZ 1

0

vθ4 dx

¶γ/4µZ 1

0

v dx

¶(4−γ)/4
for 0 ≤ γ ≤ 4 (4.8)
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and (4.1), (4.2) follows.
Equalities (4.3), (4.4) are easily obtained by integrating (2.23)4 over [0, 1]×[0, t]

and using (2.20). For the pointwise estimate (4.5) of z is obtained in the same
manner as in the proof of Lemma 3.3.

Since
³
µ
ux
v

´
x
= µ(log v)xt follows from (2.23)1, integration of (2.23)2 over

[0, x]× [0, t] yields

log
v0
v
+
1

µ

Z t

0

p dτ =
1

µ

∙Z x

0

(u0 − u) dξ + f(x) t
¸
. (4.9)

Hence, we can obtain a lower bound of v:

min
(x,t)∈QT

v(x, t) ≥ min
x∈Ω

v0(x) exp

½
− 1
µ

∙
2
√
2E

1/2
0 +

µ
pe +

G

8

¶
T

¸¾
. (4.10)

This together with (4.8) leads toZ 1

0

θγ dx ≤ C for 0 ≤ γ ≤ 4. (4.11)

From (4.9) the following representation formula of v holds in the same manner as
in the proof of Lemma 3.6.

Lemma 4.2 The identity

v(x, t) =
1

P(x, t)Q(x, t)R(x, t)

×
µ
v0(x) +

R

µ

Z t

0

θ(x, τ)P(x, τ)Q(x, τ)R(x, τ) dτ

¶
(4.12)

holds, where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(x, t) := exp

∙
1

µ

Z x

0

¡
u0(ξ)− u(ξ, t)

¢
dξ

¸
,

Q(x, t) := exp

µ
1

µ
f(x) t

¶
,

R(x, t) := exp

µ
− a
3µ

Z t

0

θ(x, τ)4 dτ

¶
.
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From (4.11) we obtain (see Lemma 3.5)

Lemma 4.3 For any t ∈ [0, T ] and γ ∈ [0, q + 4], q ≥ 0Z t

0

max
x∈Ω

θ(x, τ)γ dτ ≤ CT . (4.13)

Since the pointwise lower bound of v is already obtained in (4.10), here we get
the upper one, i.e.,

Lemma 4.4 For any (x, t) ∈ QT

v(x, t) ≤ CT . (4.14)

Proof. Decomposing v in (4.12) into v1 + v2, where

v1 = v1(x, t) :=
v0(x)

(PQR)(x, t)
,

v2 = v2(x, t) :=
R

ζ

Z t

0

(PQR)(x, τ)

(PQR)(x, t)
θ(x, τ) dτ,

we have the following estimates (see the proof of Lemma 3.7):

C0 e
− t
µ(f(x)−

1
6
aα04) ≤ v1(x, t) ≤ C0 e−

t
µ(f(x)−

2
3
aβ04), (4.15)

v2(x, t) ≤ C0
Z t

0

e−
1
µ(f(x)−

2
3
aβ04)(t−τ)

³
1 + V (τ)

´
dτ (4.16)

with positive roots α0 and β0 of the equation y − log y − 1 = C0/cv, where C0 is
the constant appeared in the right-hand side of (4.2). From (4.15) and (4.16) the
boundedness of v from above is obtained.

Remark. If pe is sufficiently large, then for any (x, t) ∈ QT

C0
−1 ≤ v(x, t) ≤ C0.

Indeed, (4.15) and the assumption pe ≥
2

3
aβ0

4 imply that v1 is decreasing with
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respect to t exponentially. Therefore, the uniform boundedness of v from above
follows from (4.16). Also we have for any (x, t) ∈ QT

v2(x, t) ≥ C0
Z t

0

e−
1
µ(f(x)−

1
6
aα04)(t−τ)

³
C0 − C0V (τ)

´
dτ

≥ C0
¡
1− e−C0t

¢
− C0

Z t

0

e−C0(t−τ)V (τ) dτ,

whose right-hand side is uniformly bounded from below for sufficiently large t.

Lemma 4.5 For any t ∈ [0, T ]

(i)

Z t

0

kuxk2 dτ ≤ CT , (4.17)

(ii) kvxk2 +
Z t

0

Z 1

0

θvx
2 dx dτ ≤ CT if q ≥ 2. (4.18)

Proof. Integrating (4.6) with respect to t and using Lemma 4.3, we have (4.17)
(see the proof of Lemma 3.8).
On the other hand, (2.23)1 and (2.23)2 imply³

u− µvx
v

´
t
= −px −G

µ
x− 1

2

¶
.

Multiplying this by u− µvx
v
and integrating over [0,1], we have

d

dt

Z 1

0

1

2

³
u− µvx

v

´2
dx+

Z 1

0

µR

v3
θvx

2 dx

=

Z 1

0

R

v2
uθvx dx−

Z 1

0

∙µ
R

v
+
4

3
aθ3
¶
θx +G

µ
x− 1

2

¶¸³
u− µvx

v

´
dx. (4.19)

Firstly, we have for any ε > 0¯̄̄̄Z 1

0

R

v2
uθvx dx

¯̄̄̄
≤ ε

Z 1

0

θvx
2 dx+ Cεmax

x∈Ω
θ ·
Z 1

0

u2 dx.

The second term of the right-hand side of (4.19) is estimated as follows.¯̄̄̄Z 1

0

∙µ
R

v
+
4

3
aθ3
¶
θx +G

µ
x− 1

2

¶¸³
u− µvx

v

´
dx

¯̄̄̄
≤ C
∙
1 +

Z 1

0

κ
θx
2

θ2
dx+

Z 1

0

θ2(1 + θ3)2

κ

³
u− µ

v
vx

´2
dx

¸
≤ C
∙
1 + V (t) + max

x∈Ω

µ
1 + θ2 +

θ8

1 + θq

¶
·
Z 1

0

³
u− µvx

v

´2
dx

¸
.
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If q ≥ 2, then Gronwall’s inequality gives (4.18) in virtue of Lemma 4.3.

Lemma 4.6 If q ≥ 4, then for any t ∈ [0, T ]Z t

0

kuxk3L3(Ω) dτ ≤ CT . (4.20)

Proof. We use a method due to Dafermos-Hsiao [5]. Putting w =
R x
0
u dξ and

using (2.24), we get a new system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
wt =

µ

v
wxx − p+ f(x) in QT ,

w|t=0 = w0(x) :=
Z x

0

u0(ξ) dξ for x ∈ [0, 1],

w|x=0,1 = 0 for t ∈ [0, T ].

General theory of linear parabolic equations (see for example, [34]) givesZ t

0

kwxxk3L3(Ω) dτ ≤ C
µ
kw0kW 4/3

3 (Ω)
+

Z t

0

k− p+ f(x)k3L3(Ω) dτ
¶
.

Therefore, we haveZ t

0

kuxk3L3(Ω) dτ ≤ C
µ
1 +

Z t

0

kpk3L3(Ω) dτ
¶

≤ C
∙
1 +

Z t

0

µZ 1

0

θ3 dx+ max
0≤x≤1

θ8 ·
Z 1

0

θ4 dx

¶
dτ

¸
.

If q ≥ 4, then the right-hand side is bounded.

In the same manner as in §3.1 we introduce the function

K = K(v, θ) :=

Z θ

0

κ(v, ξ)

v
dξ.

Multiplying (4.7) by Kt and integrating it over [0, 1]× [0, t], we haveZ t

0

Z 1

0

eθθtKt dx dτ +

Z t

0

Z 1

0

κ

v
θxKxt dx dτ

=

Z t

0

Z 1

0

³
−θpθux +

µ

v
ux
2 + λφz

´
Kt dx dτ. (4.21)
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Here ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Kt =

κ

v
θt +Kvux,

Kxt =
³κ
v
θx

´
t
+Kvuxx +Kvvvxux +

³κ
v

´
v
vxθt,

|Kv|, |Kvv| ≤ Cθ.

Let us introduce the quantities:

X :=

Z t

0

Z 1

0

¡
1 + θq+3

¢
θt
2 dx dτ, Y := max

t∈[0,T ]

Z 1

0

¡
1 + θ2q

¢
θx
2 dx,

Z := max
t∈[0,T ]

kuxxk2.

It is easily seen that the following inequalities hold (see (3.28)-(3.30)):

|θ|(0) ≤ C + CY 1
2q+6 , max

t∈[0,T ]
kuxk2 ≤ C + CZ1/2, |ux|(0) ≤ C + CZ3/8. (4.22)

Estimating each term in (4.21), we can obtain the following lemma.

Lemma 4.7 If q ≥ 2 and 0 ≤ β < q+9, then there exists a number δ, 0 < δ < 1
such that

X + Y ≤ CT
¡
1 + Zδ

¢
. (4.23)

Proof. Let q ≥ 2 and β ≥ 0 first. Since we already have obtained similar result
in Lemma 3.10, and most of terms in (4.21) are estimated in similar ways to that
(see for details, [67]), we immediately obtain the following estimates:Z t

0

Z 1

0

eθθt ·
κ

v
θt dx dτ ≥ CX, (4.24)¯̄̄̄Z t

0

Z 1

0

eθθt ·Kvux dx dτ
¯̄̄̄
≤ εX + Cε

¡
1 + Z3/4

¢
, (4.25)

Z t

0

Z 1

0

κ

v
θx

³κ
v
θx

´
t
dx dτ ≥ CY − C, (4.26)¯̄̄̄Z t

0

Z 1

0

κ

v
θx ·Kvuxx dx dτ

¯̄̄̄
≤ εY + Cε

¡
1 + Z3/4

¢
, (4.27)
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¯̄̄̄Z t

0

Z 1

0

κ

v
θx ·Kvvvxux dx dτ

¯̄̄̄
≤ εY + Cε

¡
1 + Z3/4

¢
, (4.28)

¯̄̄̄Z t

0

Z 1

0

κ

v
θx ·

³κ
v

´
v
vxθx dx dτ

¯̄̄̄
≤ ε (X + Y ) + Cε

¡
1 + Z3/4

¢
(4.29)

for 0 ≤ β < 3q + 10,¯̄̄̄Z t

0

Z 1

0

θpθux ·
κ

v
θt dx dτ

¯̄̄̄
≤ ε (X + Y ) + Cε, (4.30)

¯̄̄̄Z t

0

Z 1

0

θpθux ·Kvux dx dτ
¯̄̄̄
≤ C

¡
1 + Z3/4

¢
, (4.31)

¯̄̄̄Z t

0

Z 1

0

µ

v
ux
2 ·Kvux dx dτ

¯̄̄̄
≤ C

¡
1 + Z7/8

¢
, (4.32)

¯̄̄̄Z t

0

Z 1

0

λφz · κ
v
θt dx dτ

¯̄̄̄
≤ ε (X + Y ) + Cε, (4.33)

¯̄̄̄Z t

0

Z 1

0

λφz ·Kvux dx dτ
¯̄̄̄
≤ εY + Cε

¡
1 + Z3/4

¢
(4.34)

for 0 ≤ β < q + 9.
An estimate essentially different from the one in Problem 1 is¯̄̄̄Z t

0

Z 1

0

µ

v
ux
2 · κ
v
θt dx dτ

¯̄̄̄
≤ εX + Cε

Z t

0

Z 1

0

(1 + θ)q−3ux
4 dx dτ, (4.35)

whose right-hand side is estimated from above by

εX + Cε
¯̄
ux
2
¯̄(0) Z t

0

kuxk2 dτ ≤ εX + Cε
¡
1 + Z3/4

¢
(4.36)

for 2 ≤ q ≤ 3, by

εX + Cε
¯̄
1 + θq−3

¯̄(0)¯̄
ux
2
¯̄(0) Z t

0

kuxk2 dτ

≤ εX + Cε

³
1 + Y

q−3
2q+6 + Y

q−3
2q+6Z3/4 + Z3/4

´
≤ ε (X + Y ) + Cε

¡
1 + Zδ

¢
(4.37)
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with a number δ (0 < δ < 1) for 3 < q < 4 and by

εX + Cε
¯̄
1 + θq−3

¯̄(0)¯̄
ux
¯̄(0) Z t

0

kuxk3L3(Ω) dτ

≤ εX + Cε

³
1 + Y

q−3
2q+6 + Y

q−3
2q+6Z3/8 + Z3/8

´
≤ ε (X + Y ) + Cε

¡
1 + Z3/4

¢
(4.38)

for q ≥ 4 in virtue of Lemma 4.6.
Combining (4.24)-(4.38) and taking ε suitably small, we obtain (4.23).

Lemma 4.8 If q ≥ 3 and 0 ≤ β < q + 9, then for any t ∈ [0, T ]

kuxk2 + kθxk2 + kuxxk2 + kutk2 +
Z t

0

³
kθtk2 + kuxtk2

´
dτ ≤ CT , (4.39)

|ux|(0) + |u|(0) + |θ|(0) ≤ CT . (4.40)

Proof. The following calculations are formal because the regularity of the solu-
tion is not sufficient. However, one can derive the rigorous results by using the
arguments of difference quatients and passing to the limit.
Differentiating (2.23)2 with respect to t, multiplying it by ut and integrating

it with respect to x, we have

d

dt

Z 1

0

1

2
ut
2 dx+

Z 1

0

µ

v
uxt

2 dx =

Z 1

0

³
ptuxt +

µ

v2
ux
2uxt

´
dx.

Since pt =

µ
R

v
+
4

3
aθ3
¶
θt −

R

v2
θux, we get for q ≥ 3

kutk2 +
Z t

0

kuxtk2 dτ

≤ C
∙
1 +

Z t

0

Z 1

0

¡
pt
2 + ux

4
¢
dx dτ

¸

≤ C
∙Z t

0

Z 1

0

¡
1 + θ6

¢
θt
2 dx dτ +

¯̄
ux
2
¯̄(0) Z t

0

¡
kθk2 + kuxk2

¢
dτ

¸
≤ C

¡
1 +X + Z3/4

¢
≤ C

¡
1 + Zδ

¢
(4.41)
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by Lemma 4.7. By squaring (2.23)2 and noting px =

µ
R

v
+
4

3
aθ3
¶
θx −

R

v2
θvx it

follows from (4.41) that for any t ∈ [0, T ]

kuxxk2 ≤ C
∙
1 + kutk2 +

Z 1

0

¡
1 + θ6

¢
θx
2 dx+

³
|θ2|(0) +

¯̄
ux
2
¯̄(0)´ kvxk2¸

≤ C
¡
1 + Y + Zδ

¢
≤ C

¡
1 + Zδ

¢
.

This implies

Z ≤ C
¡
1 + Zδ

¢
,

and hence, we conclude that Z is bounded. Then one can see from (4.22), (4.23)
and (4.41) that X , Y , |θ|(0), kuxk, |ux|(0), kutk and

R t
0
kuxtk2 dτ are also bounded.

The boundedness of u is easily derived from

|u|(0) ≤ C max
t∈[0,T ]

³
kukL1(Ω) + kuxk

´
.

In what follows we assume that q and β are real numbers satisfying q ≥ 3 and
0 ≤ β < q + 9.

Lemma 4.9 For any (x, t) ∈ QT

θ(x, t) ≥ CT , (4.42)

and for any t ∈ [0, T ]

kzxk2 + kzxxk2 + kztk2 +
Z t

0

kzxtk2 dτ ≤ CT , (4.43)

kθxxk2 + kθtk2 +
Z t

0

kθxtk2 dτ ≤ CT . (4.44)

Proof. By putting Θ :=
1

θ
, (4.7) becomes

eθΘt =
³κ
v
Θx

´
x
+
vpθ

2

4µ
−
"
2κΘx

2

vΘ
+
µΘ2

v

µ
ux −

vpθ
2µΘ

¶2
+ λφzΘ2

#
.
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Since eθ > cv, and pθ ≤ C+C |θ3|(0) ≤ C from (4.40), comparison arguments give
(4.42) (see the proof of Lemma 3.13).
Multiplying (2.23)4 by zxx and integrating it over [0, 1], we have

d

dt

Z 1

0

1

2
zx
2 dx+

Z 1

0

d

v2
zxx

2 dx =

Z 1

0

µ
2d

v2
vxzx + φz

¶
zxx dx.

Furthermore, differentiating (2.23)4 with respect to t, multiplying it by zt and
integrating that over [0, 1], we have

d

dt

Z 1

0

1

2
zt
2 dx+

Z 1

0

d

v2
zxt

2 dx =

Z 1

0

µ
2d

v3
uxzxzxt − φtzzt − φzt

2

¶
dx.

Arguments in the proof of Lemma 3.14 give (4.43).
Differentiating (4.7) with respect to t, multiplying it by eθθt and integrating

that over [0, 1], we have

d

dt

Z 1

0

1

2
(eθθt)

2 dx+

Z 1

0

κ

v
eθθxt

2 dx

=

Z 1

0

∙
− pθeθuxθt2 − θpθveθux

2θt − θpθθeθuxθt
2 − θpθeθuxtθt

+
2µ

v
eθuxuxtθt −

µ

v2
eθux

3θt −
³κ
v

´
v
eθvvxuxθxθt −

³κ
v

´
v
eθθuxθx

2θt

−
³κ
v

´
v
eθuxθxθxt −

³κ
v

´
θ
eθvvxθxθt

2 −
³κ
v

´
θ
eθθθx

2θt
2 −

³κ
v

´
θ
eθθxθtθxt

− κ

v
eθvvxθtθxt −

κ

v
eθθθxθtθxt + λe−A/θ

µ
A

θ2
+
β

θ

¶
θβeθzθt

2 + λφeθztθt

¸
dx.

Calculating each term in a standard manner, we have

kθtk2 +
Z t

0

kθxtk2 dτ ≤ C
∙
1 +

Z t

0

max
x∈Ω

θt
2 ·
³
kvxk2 + kθxk2

´
dτ

¸
.

Hence one can obtain (4.44) similarly to the proof of Lemma 3.15.

4.2 The Hölder estimates

From (4.43) and (4.44) we see that |θx|(0) and |zx|(0) are bounded. This and (4.40)
yield

(u, θ, z) ∈
³
C1, 0x, t (QT )

´3
. (4.45)
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Applying Cauchy-Schwarz’ and interpolation inequalities, we have¯̄
u(x, t)− u(x, t0)

¯̄
≤
µZ t

t0
ut
2 dτ

¶1/2
|t− t0|1/2

≤
∙Z t

t0

³
kutk2 + 2kutkkuxtk

´
dτ

¸1/2
|t− t0|1/2,

¯̄
ux(x, t)− ux(x0, t)

¯̄
≤
µZ x

x0
uxx

2 dξ

¶1/2
|x− x0|1/2,

from which, together with (4.39), u ∈ C
0, 1/2
x, t (QT ) and ux ∈ C

1/2, 0
x, t (QT ) fol-

low. Thus by a standard interpolation lemma (see for example, [34], Chapter

II, Lemma 3.1) one can get ux ∈ C1/3, 1/6x, t (QT ). Similarly, using Lemmas 4.8, 4.9
and (4.45), we have

(u, θ, z) ∈
³
C
1, 1/2
x, t (QT )

´3
, (ux, θx, zx) ∈

³
C
1/3, 1/6
x, t (QT )

´3
. (4.46)

Recalling that vt = ux and v|t=0 = v0 ∈ C1+α(Ω), we deduce v ∈ C1/3, 1/6x, t (QT ).
Since it follows from (4.12) that

vx(x, t) =
1

(PQR)(x, t)

(
v0
0(x)− A(x, t)v0(x)

+
R

ζ

Z t

0

h
θx(x, τ) + θ(x, τ)

¡
A(x, τ)− A(x, t)

¢i
(PQR)(x, τ) dτ

)
(4.47)

with

A(x, t) :=
1

µ

∙
u0(x)− u(x, t)−G

µ
x− 1

2

¶
t− 4

3
a

Z t

0

θ(x, τ)3θx(x, τ) dτ

¸
,

one can easily check vx ∈ Cσ,σ/2
x, t (QT ) with σ := min{α, 1/3}.

Next we consider (2.23)2, (2.23)3 and (2.23)4 as the linear equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut −
µ

v
uxx +

³ µ
v2
vx

´
ux = −

R

v
θx +

R

v2
θvx −

4

3
aθ3θx −G

µ
x− 1

2

¶
,

θt −
1

eθ

κ

v
θxx −

1

eθ

h ³κ
v

´
θ
θx +

³κ
v

´
v
vx

i
θx +

µ
pθ
eθ
ux

¶
θ

=
1

eθ

³µ
v
ux
2 + λφz

´
,

zt −
d

v2
zxx +

µ
2d

v3
vx

¶
zx + φz = 0,

(4.48)
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whose coefficients and right-hand sides are Hölder continuous in x with exponent σ
and in t with exponent σ/2. By the classical Schauder estimates (see for example,
[14, 34]) we obtain

|u, θ, z|2+σ, 1+σ/2 ≤ C.

This also implies

(v, ux, θx, zx) ∈
³
C
1, 1/2
x, t (QT )

´4
. (4.49)

Going back to (4.47) with (4.46) and (4.49), we obtain vx ∈ Cα,α/2
x, t (QT ). Hence

applying the Schauder estimates to (4.48) again, we finally conclude

|u, θ, z|2+α, 1+α/2 ≤ C.
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