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Abstract

A fast vortex method has been developed by using special-purpose computers,

MDGRAPEs, those were exclusively designed for molecular dynamics simula-

tions. This is an attempt to make a bridge between vortex method and molec-

ular dynamics calculations. The three main issues have been solved regarding

the implementation of the MDGRAPE on vortex methods those are the efficient

calculation of the Biot-Savart and stretching equation, the optimization of the

table domain, and the round-off error caused by the partially single precision

calculation in the MDGRAPE.

A mathematical formulation for the 3D vortex method has been developed

for calculation using a special-purpose computer MDGRAPE-2. A rigorous as-

sessment of this hardware has been made for a few representative problems and

compared the results with and without it. It is found that the generation of appro-

priate function tables, which are used to call libraries, embedded in MDGRAPE-2

is of primary importance in order to retain accuracy. The error arising from the

approximation is evaluated by calculating three pairs of vortex rings imping-

ing to themselves. Consequently, acceleration of about 100 times is achieved by

MDGRAPE-2 while the error in the statistical quantities such as kinetic energy

and enstrophy remain negligible.

MDGRAPE-3, successor of MDGRAPE-2, has been applied to the same cal-

culations and the improvement in speed was 1000 times faster when compared

with the host PC and 25 times compared with MDGRAPE-2 for N = 106. Some

issues regarding the comparative study between MDGRAPE-2 and MDGRAPE-3

have been investigated carefully.

The simultaneous use of the fast multipole method (FMM) with MDGRAPE-

2 and MDGRAPE-3 has been successfully applied to the same calculations to
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investigate the possibility of further accelerations. The various forms of FMM and

their performance on MDGRAPE-2 and MDGRAPE-3 have been investigated.

With the help of these acceleration techniques the dynamics of two colliding

vortex rings have been studied and the computation time has been reduced by

a factor of 2000 compared to a direct calculation on a standard PC. The global

kinetic energy and enstrophy have been investigated to address the numerical

accuracy. The results have good agreement when compared with the previous

and referenced work. The reconnection of the vortex rings was clearly observed,

and the discretization error became nearly negligible for the calculation using 107

elements.
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Nomenclature

Roman Symbols

u Velocity

u Velocity component in i-direction

v Velocity component in j-direction

w Velocity component in k-direction

V Volume

x, x′ Position of vortex particles

t Time

d Dimension

r Distance between position vector

p Order of multipole moment

N Number of particles

O Order of calculation cost

G Green’s Function

Y Spherical harmonics

S Distance between two rings

R Radius of vortex ring

r Radius of cross-section

L Level of box division

g Arbitrary function of a function table

fi Pairwise force

A, a Scaling factor

B, b Scaling factor

K, E Kinetic Energy

k Wave number space
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D Material derivative

Greek Symbols

ω Vorticity

γ Vortex strength

Γ Circulation

∇ Vector operator

∆ Differential operator

δ Partial differential operator, Difference operator

ν Kinemetic viscosity

π ≈ 3.1415926...

σ Core radius

ζ Cutoff Function, Enstrophy

Ω Enstrophy

α Spherical coordinate

β Spherical coordinate

θ Spherical coordinate

φ Spherical coordinate

ρ Spherical coordinate

Φi Potential

ε Softening parameter

η Efficiency

Other Symbols

erf Error function

exp Exponential Function

Acronyms

VM Vortex Method

FMM Fast Multipole Method

MD Molecular Dynamics

MDG2 MDGRAPE-2

MDG3 MDGRAPE-3

PCI Peripheral Component Interconnect

API Application Programming Interface
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FPGA Field Programmable Gate Array

LSI Large-scale Integrated

SIMD Single Instruction Multipole Data

GPU Graphics Processing Units

FLOPS Floating Point Operations

GRAPE GRAvity PipE

MD-GRAPE Molecular Dynamics GRAvity PipE

ASIC Application-Specific Integrated Circuit

M2M Multipole to Multipole expansion

M2L Multipole to Local translation

L2L Local to Local expansion

P 2M2 Pseudo-Particle Multipole Method

stx Stretching term part 1

tx Stretching term part 2

FE Function Evaluator

VIC Vortx-in-Cell Method

MLS Moving Least Squares

RVM Random Vortex Method

CSM Core Spreading Method

PSE Particle Strength Exchange

VRM Vortex Redistribution Method

SPH Smooth Particle Hydrodynamics

MPS Moving Particle Semi-implicit Methods

viii



Contents

Acknowledgements ii

Abstract iv

Nomenclature vi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The need for acceleration techniques . . . . . . . . . . . . . . . . 3

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Purpose of the present study . . . . . . . . . . . . . . . . . . . . . 8

2 Numerical Methods 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Vortex Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Formulation of 3D Vortex Element Method (VEM) . . . . 12

2.2.2 Viscous Diffusion . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Cutoff Function . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Fast Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 The Tree Algorithm . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Fast Multipole Method (FMM) . . . . . . . . . . . . . . . 18

2.3.3 Other Fast Methods . . . . . . . . . . . . . . . . . . . . . 21

ix



CONTENTS

3 Acceleration Techniques for Vortex Methods 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The MDGRAPE-2 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Basic Structure . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Calculation Procedures . . . . . . . . . . . . . . . . . . . . 27

3.3 Difficulties to use MDGRAPE-2 . . . . . . . . . . . . . . . . . . . 29

3.3.1 Function Table . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Function Evaluator . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Error in Function Evaluator of MDGRAPE-2 chip . . . . . 31

3.3.4 Cutoff fucntion . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Performance and Implementations . . . . . . . . . . . . . . . . . . 32

3.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 The MDGRAPE-3 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Basic Architecture . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Calculations System . . . . . . . . . . . . . . . . . . . . . 42

3.6 Performance and Implementations . . . . . . . . . . . . . . . . . . 44

3.6.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Comparative Study between MDGRAPE-2 and MDGRAPE-3 . . 49

3.7.1 Scaling Error . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.2 CPU-time and L2 norm error . . . . . . . . . . . . . . . . 51

3.8 FMM on MDGRAPE . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Fast Vortex Method Calculation using a Special-purpose Com-

puter 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Mathematical Formulations . . . . . . . . . . . . . . . . . . . . . 59

4.3 Typical Distribution of Vortex Elements . . . . . . . . . . . . . . 62

4.4 Optimum Range of a Function Table . . . . . . . . . . . . . . . . 67

4.5 Convection Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



CONTENTS

4.6.1 Computational Algorithm . . . . . . . . . . . . . . . . . . 75

4.6.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 The Study of Colliding Vortex Rings using a Special-purpose

Computer and FMM 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 FMM on MDGRAPE-3 . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Elapsed Time . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Momentum Effect on FMM Accuracy . . . . . . . . . . . . 92

5.2.3 Optimization of FMM . . . . . . . . . . . . . . . . . . . . 94

5.2.4 Test for CPU-time and Error . . . . . . . . . . . . . . . . 98

5.3 Vortex Ring Calculation . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Calculation Conditions . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Comparison with previous calculations . . . . . . . . . . . 107

5.3.3 Calculation with Improved Initial Conditions . . . . . . . . 112

5.3.4 Effect of Temporal Resolution . . . . . . . . . . . . . . . . 113

5.3.5 Effect of Spatial Resolution . . . . . . . . . . . . . . . . . 116

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Conclusions and Outlook 122

6.1 Fast Vortex Method . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Appendices 128

A Vortex Methods 128

A.1 Biot-Savart Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2 Stretching term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



CONTENTS

B Mathematical Formulations of MDGRAPE-2 132

B.1 Biot-Savart Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2 Stretching Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.3 Cut-off Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C Calculation Algorithm and Sample Program of MDGRAPE 141

C.1 Formation of ring . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2 MDGRAPE Calculation . . . . . . . . . . . . . . . . . . . . . . . 143

D Fast Multipole Method with Special-Purpose Computer 146

D.1 General Idea of FMM . . . . . . . . . . . . . . . . . . . . . . . . . 146

D.2 Hot-spot of FMM calculation . . . . . . . . . . . . . . . . . . . . 147

D.3 MDGRAPE for direct calculation . . . . . . . . . . . . . . . . . . 149

D.4 Mathematical Formulations of FMM . . . . . . . . . . . . . . . . 150

D.4.1 Vortex Methods on FMM . . . . . . . . . . . . . . . . . . 152

D.5 Sample ForTran Code . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 159

xii



List of Figures

2.1 Relation between interaction cells (shaded) and neighbor cells of a

hatched cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Bottleneck of vortex method calculation . . . . . . . . . . . . . . 24

3.2 Block diagram of a pipeline of an MDGRAPE-2 chip . . . . . . . 26

3.3 The basic structure of vortex methods calculation in MDGRAPE-2

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Function Evaluator unit of a pipeline of an MDGRAPE-2 chip(Narumi

[1997]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Relative and absolute error of MDGRAPE-2 chip . . . . . . . . . 31

3.6 Function table in vortex method calculation. . . . . . . . . . . . . 32

3.7 Calculation time against the vortex elements. ◦ –without the use

of MDGRAPE-2 ; ¤ –with the use of MDGRAPE-2. . . . . . . . 33

3.8 The results of efficiency measurement for the MDGRAPE-2 board. 34

3.9 The flowchart for VM calculation using MDGRAPE-2. . . . . . . 36

3.10 Block diagram of the force calculation pipeline in the MDGRAPE-

3 chip (Taiji et al. [2003]) . . . . . . . . . . . . . . . . . . . . . . 41

3.11 The basic structure of vortex methods calculation in MDGRAPE-3

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.12 Calculation time against the vortex elements. ◦–without the use

of MDGRAPE-3 ; ¤–with the use of MDGRAPE-3. . . . . . . . . 44

3.13 The results of efficiency measurement for the MDGRAPE-3 board. 45

3.14 The flowchart for VM calculation using MDGRAPE-3. . . . . . . 47

3.15 Different ranges of a function table. . . . . . . . . . . . . . . . . . 50

xiii



LIST OF FIGURES

3.16 Comparative scaling error between MDGRAPE-2 and MDGRAPE-

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.17 Acceleration using MDGRAPE-2 and MDGRAPE-3 . . . . . . . . 53

3.18 Accuracy of MDGRAPE-2 and MDGRAPE-3 . . . . . . . . . . . 54

3.19 Flow of FMM calculation without multipoles . . . . . . . . . . . . 56

4.1 Typical distributions of vortex elements (head-on) . . . . . . . . . 63

4.2 Typical distributions of vortex elements (offset) . . . . . . . . . . 65

4.3 Typical distributions of vortex elements (inclined) . . . . . . . . . 66

4.4 Range of a function table. . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Scaling error for function table in six different ranges. ◦ with

MDGRAPE-2; — without MDGRAPE-2 . . . . . . . . . . . . . . 70

4.6 Convection error for MDGRAPE-2 for different numbers of elements(head-

on). Here, ¤ –maximum value of all δ, × –average value of all δ,

∗ –minimum value of all δ . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Convection error (offset). . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Convection error(inclined). . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Initial condition for the computation of the collision of two vor-

tex rings. Here R—radius of ring, r—radius of cross-section, S—

distance between two rings . . . . . . . . . . . . . . . . . . . . . . 76

4.10 Initial condition for the computation of the collision of two vor-

tex rings. Here R—radius of ring, r—radius of cross-section, S—

distance between two rings . . . . . . . . . . . . . . . . . . . . . . 77

4.11 Initial condition for the computation of the collision of two vor-

tex rings. Here R—radius of ring, r—radius of cross-section, S—

distance between two rings, θ—inclined angle . . . . . . . . . . . 77

4.12 Snapshots of vortex elements for different time (head-on). . . . . . 79

4.13 Kinetic energy and enstrophy of head-on collisions. . . . . . . . . 81

4.14 Snapshots of vortex elements for different time (offset). . . . . . . 83

4.15 Kinetic energy and enstrophy of offset collisions. . . . . . . . . . . 84

4.16 Snapshots of vortex elements for different time (inclined). . . . . . 85

4.17 Time series of kinetic energy and enstrophy compared with Winck-

elmans work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiv



LIST OF FIGURES

5.1 Elapsed time on MDGRAPE-3(Biot-Savart) . . . . . . . . . . . . 91

5.2 Elapse time with and without the use of pseudo-particle method.

Here, brown→Direct calculation, yellow→M2L calculation, blue→
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Accuracy of FMM at different moments . . . . . . . . . . . . . . . 95

5.4 Change in optimum box level for different methods . . . . . . . . 97

5.5 Cputime and error of Biot-Savart calculation . . . . . . . . . . . . 99

5.6 Cputime and error of stretching term calculation . . . . . . . . . . 101

5.7 CPU-time of different methods . . . . . . . . . . . . . . . . . . . 102

5.8 |L2| of different methods . . . . . . . . . . . . . . . . . . . . . . . 103

5.9 Cpu-time of FMM, MDGRAPE-3, and both . . . . . . . . . . . . 104

5.10 Accuracy of FMM, MDGRAPE-3, and both . . . . . . . . . . . . 105

5.11 Time history of kinetic energy & enstrophy . . . . . . . . . . . . . 108

5.12 Visualization of vortex elements (tΓ/R2 = 10) . . . . . . . . . . . 110

5.13 Time history of kinetic energy & enstrophy . . . . . . . . . . . . . 111

5.14 Energy Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.15 Effect of Temporal Resolution on the Energy Spectra . . . . . . . 114

5.16 Effect of Temporal Resolution on the Decay of Kinetic Energy and

Enstrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.17 Position of Vortex Elements for Case A . . . . . . . . . . . . . . . 117

5.18 Position of Vortex Elements for Case B . . . . . . . . . . . . . . . 118

5.19 Effect of Spatial Resolution on the Energy Spectra . . . . . . . . . 119

5.20 Effect of Spatial Resolution on the Decay of Kinetic Energy and

Enstrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

D.1 Hot-spot of FMM calculation . . . . . . . . . . . . . . . . . . . . 148

D.2 Direct calculation of FMM in MDGRAPE . . . . . . . . . . . . . 149

xv



List of Tables

2.1 Examples of 3D cutoff functions for VM (Winckelmans [2004]) . . 16

3.1 Hosts for performance measurement . . . . . . . . . . . . . . . . . 35

4.1 Function and coefficients . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Accelaration ratio at N = 106 . . . . . . . . . . . . . . . . . . . . 106

5.2 Breakdown of the Number of Elements . . . . . . . . . . . . . . . 113

xvi



Chapter 1

Introduction

1.1 Background

N -Body simulations were devised in the 1950s and have been widely used since

the 1970s when digital computers became powerful enough and affordable. Today

it is considered to be an orthodox method for studying particle systems. The

classical N -body problem simulates the evolution of a system of N bodies, where

the force exerted on each body arises due to its interaction with all other bodies

in the system. N -Body algorithms have numerous applications in areas such

as astrophysics, molecular dynamics, plasma physics and computational fluid

dynamics using the vortex method. For each of these computational problems

the calculation takes on a slightly different form but each share common features.

The vortex methods have been developed and applied for analysis of com-

plicated, unsteady and vortical flows related with problems in a wide range of

industries, because they consist of simple algorithm based on physics of flow

(Anderson and Greengard [1986]; Koumoutsakos and Leonard [1995]; Shankar

[1996a]; Mansfield et al. [1999]; Cottet et al. [2000]; Barba et al. [2004]). Leonard

[1980] summarized the basic algorithm and example of its applications.

The emergence of the vortex method can be traced to the 1930s, with the

Rosenhead [1931] calculations of the Kelvin-Helmohltz instabilities. The use

of the fractional-step, Lagrangian vortex scheme for incompressible viscous flow

was originally proposed by Chorin [1973]. The scheme was named random walk

1



1.1 Background

method and later, Chorin [1978] modified his method for wall boundary condi-

tions. The method has been proved to converge for unbounded domains by Beale

and Majada [1981, 1982].

During the following decades, different vortex methods were proposed to solve

the Navier-Stokes equations. There are several detailed reviews vortex methods

in incompressible flow (Leonard [1980]; Anderson and Greengard [1986]). The

development and applications of vortex methods were described by Cottet et al.

[2000].

The vortex methods have made remarkable advancements in the past decade,

but still face numerous challenges, especially involving viscous diffusion schemes

and the high computation cost.

The evolution of viscous vortex methods in the last two decades mainly in-

cludes the particle strength exchange(PSE) method developed by Degond and

Mas-Gallic [1989], core-spreading method of Kuwahara and Takami [1973]; Leonard

[1980], a deterministic particle method proposed by Fishelov [1990] and several

hybrid vortex methods thereafter.

The difficulty of calculating diffusion in Lagrangian methods stands out when

I look back at the history of Vortex Methods. Early studies were based on inviscid

flows, e.g. the filament methods and panel methods. The theorems of Helmholtz

and Kelvin state that for an inviscid fluid, vortex lines move as material fluid ele-

ments, and the Lagrangian treatment of vortex filaments is a straightforward so-

lution of the vorticity equation without diffusion. An excellent review by Leonard

[1985] gives a detailed description of such methods. Another approach for inviscid

flows is the solution of the potential equations. Panel methods solve the poten-

tial equations using the boundary integral approach, and have been applied to

numerous aerodynamic problems. For extremely high Reynolds number flows the

viscosity is confined to a very thin region near the solid boundaries, thus justifies

the use of such idealized equations to some extent. The review by Hess [1990]

summarizes nicely the most important achievements in this field.

The vortex method solves time-dependent incompressible flow problems by

discretizing the vorticity into vortex elements and following these elements in

time. This results in a volume mesh-free algorithm and saves significant time in

preprocessing when compared to the conventional Navier-Stokes approach where
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1.2 The need for acceleration techniques

grids need to be generated. The significant advantages of vortex methods is of its

grid free nature and the calculation takes only the region of entire domain where

vorticity exist. It has an advantage in solving high Reynolds number flows with

complex geometries. The computational elements are automatically concentrated

and thus no need to distribute elements in critical regions compared with grid-

based methods. In the computation of the velocity field from the vorticity, far-

field boundary conditions are satisfied explicitly (Stock [2007]).

One of the main difficulties with vortex methods is that the cost of the evalua-

tion of the velocity field induced by N vortices is of O(N2). In these calculations,

the largest computational load occurs in the routine that calculates the Biot-

Savart law and the stretching term in the vorticity equation. This is expensive,

particularly in three dimensions where a large number of elements are computed

simultaneously, and calculation load becomes highly expensive. The large num-

ber of elements are required to accurate calculation for high Reynolds number

flows which consumed very high computation cost.

1.2 The need for acceleration techniques

There has always been a strong relationship between progress in vortex methods

and advancements in acceleration techniques that utilize this method. When the

classical vortex methods became popular nearly 30 years ago, the calculation cost

of the N-body solver was O(N2) for N particles. Due to this enormous calculation

cost, the intention at that time was not to fully resolve the high Reynolds number

fluid flow, but to somewhat mimic the dominant vortex dynamics using discrete

vortex elements.

The advance of fast algorithms made it possible to achieve a scaling of O(N)

(Warren and Salmon [1994]; Cheng et al. [1999]), and with the help of the rapid

development in computational hardware, a calculation involving millions of vortex

elements became possible (Ploumhans et al. [2002]). The application of fast N -

body solvers to vortex methods enabled the calculation of millions of vortex

elements (Salmon et al. [1994]). The fast algorithms were also applied to the

boundary integral equations (Winckelmans et al. [1996]). Furthermore, fast N -

body solvers were not only used for vortex particle methods, but also vortex tube
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methods (Collins et al. [1999]). These efforts led to a new paradigm, i.e. solving

flows of moderate Reynolds numbers and fully resolving these flows. The vortex

method was recognized as a discretization method rather than an attempt to

model vortex dynamics, because the computational power that is neccessary to

prove these claims became available.

However, the high proportionality constant of the fast N-body solvers pre-

vented them from matching the speed of fast Poisson solvers. Since the main-

stream methods in computational fluid dynamics use fast Poisson solvers, it was

still difficult for vortex methods to be considered as an alternative to conventional

grid based methods.

The shortcomings of the fast N -body solvers can partly be circumvented by

the use of hybrid methods, while the Lagrangian nature of the convection cal-

culation is retained. The vortex-in-cell (VIC) is a typical hybrid method, and

its accuracy and speed are quite close to that of the spectral method (Cottet et

al. [2002]). The particle-mesh method is another hybrid approach(Hockney et

al. [1973, 1981]). Sbalzarini et al. [2006] developed a particle-mesh library that

calculates one vortex method iteration for 268 million particles took 85 s on 128

processors. This is comparable to the performance of the state-of-the-art finite

difference methods using processors of comparable performance.

Based on the above discussions, significant acceleration techniques are neces-

sary to reduce the computation cost of direct interaction calculation for millions

of particles.

1.3 Motivation

In order to accelerate the N−body simulations, various methods have been ex-

plored from the point of view of both software and hardware.

With respect to software, Barnes and Hut [1986] developed the tree code for

reducing cost of gravitational N -body problems. The tree code is an O(N log N)

algorithm based on a hierarchical octree representation of space in three dimen-

sions. It computes interactions between distant particles and reduces the number

of operations by means of a first order approximation. Many existing implementa-

tions of tree code algorithms only use up to quadropole moments and calculation
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costs rise quickly when high accuracy is required. Ploumhans et al. [2002] has been

used treecode for vortex method calculation with parallel computers to reduce

the excessive calculation cost. Greengard and Rokhlin [1987] invented the fast

multipole method (FMM) which reduced the calculation cost of particle simula-

tions. The FMM is an approximate algorithm of which the calculation cost scales

proportional to O(N). In the FMM, the long-range forces are approximated by

multipole expansion truncated at a certain degree, while the contributions from

particles within nearby regions are calculated directly in a usual manner without

approximation. Including higher order terms in multipole approximations and/or

increasing the size of a nearby region can improve the computational accuracy.

However, either effort substantially increases the computation time. In particular,

the computation of a high-order term is very expensive.

With respect to hardware, the use of both vector and parallel computers

have been investigated. Susukita et al. [2003] has been developed a hardware

accelerator MDGRAPE-2 to execute the N -body simulation. MDGRAPE-2, the

GRAPE (Gravity Pipe, developed by Sugimoto et al. [1990]) series machine, is a

special-purpose computer exclusively dedicated for molecular dynamics calcula-

tions between point-charge or point-mass particles. MDGRAPE-3 was developed

as a successor of MDGRAPE-2 with the speed up 12.5 times higher than that of

MDGRAPE-2 (Taiji et al. [2003]). Both of the hardwares can be used for vortex

method calculations as of its mathematical architectures are similar as molecular

dynamics calculations. Its performance are much higher than that of ordinary

computers. Its can speed up force calculations about 10-1000 times when com-

pared to general-purpose (defined as ’host’ or ’direct’ hereafter) computers of the

same cost.

Parallel computation is another hardware technique rather than special-purpose

hardware. There are several articles have been published based on the parallel

computers to accelerate vortex method calculations. Warren and Salmon [1994]

have been developed a fast tree code using 1024 parallel processors for many body

problems and the calculation time has been reduced significantly. The authors

also mentioned the three difficulties to use parallel computers for large N calcu-

lation. In later year, Warren and Salmon [1995] have been developed a portable

particle program by using high performance cluster computers and applied to
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vortex particle methods to reduce the calculation cost. Winckelmans et al. [1996]

has been calculated 3D viscous flows without boundaries on parallel computers

and computation cost has been reduced from O(N2) to O(NlogN). Ploumhans

et al. [2002] has been used HP V-class 64 CPU and accelerated 3D vortex method

calculation for a million of particles. A massively parallel single instruction mul-

tipole data stream (SIMD) processor has been desigend and applied to the RC4

keysearch problem and able to achieve a high level of parallelism as well as uti-

lize the higher memory bandwidth available on the device (Stanley et al. [2003]).

This approach can be applied to other applications to accelerate the parallel based

computations.

Considered the above-mentioned discussions regarding the different hardware

acceleration techniques, my approach is to use special-purpose computers in

favour of following reasons.

It is important to note that fast Poisson solvers cannot be processed on such

special hardware, and only N-body solvers enjoy the benefit of these special-

purpose computers. Liu et al. [2007] used the Graphics Processing Unit(GPU) to

speed up the scientific calculations of tornado. Recently Stock and Gharakhani

[2008] have been used general-purpose graphics processing unit(GPGPU) for par-

allel vortex particle methods and speedup the calculation significantly. The ref-

erenced paper reported the speedup nearly 1000 times over the direct method for

practical problems (N = 106) on an AMD Opteron 246 processor with version 5.2

of the pgf90 compiler. Further details of GPGPU and its related software can be

found in Bedorf [2007]; Belleman et al. [2008]; Elsen et al. [2007]. Ever since the

GRAPE (Sugimoto et al. [1990]) was first introduced, these special-purpose com-

puters have constantly outperformed the leading general purpose computers of the

same price (Makino and Taiji [1998]; Narumi et al. [2006]). The special-purpose

computers can also be used for the boundary integral calculation (Takahashi et

al. [2006]). At this point, it is not yet evident which will prevail; fast Poisson

solvers on parallel general purpose architecture, or fast N-body solvers on parallel

special-purpose processors.

The long computation time due to the above-mentioned O(N2) problem may

be reduced when applied to a special-purpose computer. Nevertheless, the vortex

methods calculations have the same mathematical architecture as a multibody
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problem, thus permitting the use of special-purpose computers of multibody prob-

lems.

The present research aims to solve the 3D complex flows by investigating the

high Reynolds number effects and the error is being isolated from the boundary

effect(Orszag and Patterson [1972]; Rogallo [1981]). Vortex ring is an important

element in turbulent flows, and the studies of their interaction may be applicable

to the complex fluid flows. The study of vortex rings collisions, both with a

solid boundary and with other rings, have provided a plenty of information about

vortex dynamics which is one of the most fundamental means of understanding

fluid motion, especially at high Reynolds number flows.

The collision of vortex rings contain millions of particles has been chosen as

a test case for the present calculations. The following characteristics of this flow

allow to focus on the assessment of the proposed acceleration technique. The flow

does not involve solid or periodic boundaries, thus causes minimum complication

in the implementation of the FMM itself. Also, the initial condition is simple

to generate using vortex methods. Furthermore, although the initial flow field

is quite simple, the collision of the rings results in a highly turbulent state, and

is greatly affected by the Reynolds number of the initial situation. This allows

me to demonstrate the ability to handle high Reynolds number flows by using a

large number of particles, which becomes possible with the use of the proposed

acceleration method.

1.4 Previous Studies

Vortex dominated flows are often very complex such as free jets (Liu et al. [2000]).

The jet development is characterized by the dynamics of large scale vortex rings.

In past decade, vortex rings have been studied in the broader arena of vortex

interactions (Shariff and Leonard [1992]). The strong effects have been devoted

to study of the interaction of vortex rings in various configurations.

It is evident from previous studies, a large number of particles is necessary

to capture the essential characteristics of the vortex ring collision. Winckelmans

and Leonard [1993] performed a vortex method calculation of the impingement

of two identical inclined vortex rings, and investigated the physical properties at
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Re = 400. Authors suggested that a large number of particles is necessary wher-

ever stretching of vortex is intense. Mammetti et al. [1999] studied the collision

of vortex rings with a solid boundary using vortex methods and suggested that

for low Re < 350 the vorticity is too weak to generate a secondary vortex and for

higher Re it generates a secondary vortex ring. Chatelain et al. [2003] calculated

the reconnection of two offset vortex rings at Re = 250 and suggested that higher

Re is necessary to produce the fast mechanism of energy transfer. Authors used

tree code to accelerate the calculation and observed that the computational re-

sources are important for large numbers calculation for entire time. Cottet et al.

[2002] has used the Vortex-in-Cell(VIC) method for acceleration and found that

the cost is still larger than a grid-based poisson solver. Even though high com-

putation cost, the vortex method would become advantages for high Reynolds

number external flows, where the vorticity concentrated to a finite region.

It can be clearly observed from previous studies that the simultaneous use

of fast algorithms with fast computers led to a new paradigm to accelerate the

calculation of multibody problems retained the accuracy in an acceptable level.

The first implementation of fast algorithms on GRAPE architecture was presented

by Makino [1991], and showed a 30-50 times increase in computational speed

compared to the treecode without GRAPE for the simulation of astrophysical

problems. The implementation of the FMM on MDGRAPE-2 was presented by

Chau et al. [2002a,b] and similar results were obtained. The application of P 2M2

tree code on MDGRAPE-2 presented by Kawai et al. [2004] and accelerates the

calculation by a factor of 20-200 compared with conventional PCs. Yatsuyanagi

et al. [2003a] has used MDGRAPE-2 to accelerate the velocity calculation of

Biot-Savart integral equation for the simulation of 2D magnetohydrodynamics

problems using the current vortex method.

1.5 Purpose of the present study

The main focus of the present study is to accelerate the vortex method cal-

caultions for high Reynolds number flows without the loss of numerical accuracy.

This is an attempt to make an interface between vortex method and molec-

ular dynamics calculations. To be succeeded, the special-purpose computers
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MDGRAPE-2 and MDGRAPE-3 have been used for entire calculations. The

three main issues have been solved regarding the implementation of the MD-

GRAPE on vortex methods are the efficient calculation of the Biot-Savart and

stretching equation, the optimization of the table domain, and the round-off error

caused by the partially single precision calculation in the MDGRAPE. Further-

more, the FMM will be implemented on MDGRAPE-2 and MDGRAPE-3 for

further acceleration of the present calculations. The simultaneous use of the

above two methods is possible since the MDGRAPE still has a scaling of O (N2)

and the FMM can be used to reduce it.

In this study, a number of techniques to make the vortex methods calculation

manageable are implemented.

Firstly, a mathematical formulation for the 3D vortex method has been de-

veloped for calculation using a special-purpose computer MDGRAPE-2 that was

originally designed for molecular dynamics simulations. A rigorous assessment

of this hardware has been made for a few representative problems and compared

the results with and without it. It is found that the generation of appropriate

function tables, which are used to call libraries, embedded in MDGRAPE-2 is

of primary importance in order to retain accuracy. The cross product calcula-

tion which is not considered in the original command set must be handled in a

proper manner, which is treated in some previous works, e.g., Yatsuyanagi et al.

[2003a,b] and Elmegreen et al. [2002, 2004]. Consequently, acceleration about 50

times is achieved by MDGRAPE-2 while the error in the statistical quantities

such as kinetic energy and enstrophy remain negligible(Sheel et al. [2007]).

Secondly, MDGRAPE-3, successor and 12.5 times faster than that of MDGRAPE-

2, has been applied to the same calculations and the improvement in speed was

1000 times faster when compaerd with the host PC and 25 times compared with

MDGRAPE-2 for N = 106. The only difference between the MDGRAPE-2 and

MDGRAPE-3 is that the latter can simultaneously calculate along with the host

machine, but can only handle a small number of source particles at once (Narumi

et al. [2006]). Some issues regarding the comparative study between MDGRAPE-

2 and MDGRAPE-3 will be investigated carefully.

Thirdly, the simultaneous use of the FMM and MDGRAPE-2 and -3 has

been implemented to investigate the posiibility of further acceleration without
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the loss of numerical accuracy. The effect of the order of multipole momentums

have been investigated for FMM accuracy. Optimum level of box divisions has

been determined for MDGRAPE calculation. The performance and accuracy

have been investigated by calculating the collision of two identical inclined vortex

rings. The time history of kinetic energy and enstrophy have been compared with

the host calculation. The reconnection of the vortex rings was clearly observed,

and the discretization error became nearly negligible for the calculation using 107

elements(Sheel et al. [2008]).

The thesis is organised as follows. In chapter 2, basic numerical methods

are discussed, acceleration techniques are discussed in chapter 3, in chapter 4 a

fast vortex method is developed by using MDGRAPE-2, the simultaneous use of

the FMM with MDGRAPE-2 and MDGRAPE-3 are explained in chapter 5 and

finally the concluding remarks are in chapter 6.
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Chapter 2

Numerical Methods

2.1 Introduction

In this chapter I will briefly describe the basic elements of the vortex methods

and the other fast methods have been used in the present calculations. Fur-

ther details and applications of those methods can be found in Anderson and

Greengard [1986]; Barnes and Hut [1986]; Barnes [1990]; Greengard and Rokhlin

[1987], Leonard [1980, 1985]. The mathematical formulations can be found in

Anderson and Greengard [1986]; Cheng et al. [1999]; Chorin [1993], Hernquist

[1987]; Hernquist and Katz [1989], Puckett [1993], Raviart [1985], and Schmidt

et al. [1991].

The main difficulty for vortex methods to be accepted in the mainstream of

computational fluid dynamics are; (a) the numerical complexity of calculating

the velocity using the Biot-Savart law, which is in fact analogous to an ”N -

body problem” and hence requires O(N2) operations for N vortex elements, (b)

diffusion error; and (c) the loss of discretization accuracy due to the distortion

of the particle distribution. The details reviewed can be found in Barba et al.

[2004].

First I will discuss the vortex methods and its formulation for a fast vortex

method, then viscous diffusion schemes will be discussed and finally the other

fast methods will be discussed in subsequent sections.
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2.2 Vortex Methods

2.2 Vortex Methods

Vortex methods are part of a wider class of methods: the Lagrangian methods

used to simulate unsteady, convection-dominated, problems. Those are expressed

by transport equations written in conservative form, often with a diffusion term,

and eventually with a source/depletion term (Shankar [1996a]).

Despite its potential to become a totally grid-free and very accurate fluid

dynamics solver, vortex methods suffer the reputation of being some obscure

”model” to mimic vortex dynamics. This is certainly not the case since the

governing equations are discretized without any modeling whatsoever. The in-

compressible vortex method solves the Poisson equation for velocity along with

the vorticity equation, just like the Poisson equation for pressure and the Navier-

Stokes equation are coupled in the primitive variable formulation. It is true that

Lagrangian methods have a difficulty in achieving higher order spatial accuracy

compared to Eulerian methods, but this is a relative matter and does not mean

that they are inconsistent. It is strongly believe that, given a sufficient amount of

consideration for the diffusion schemes and validating these schemes by progres-

sively increasing the complexity of the flow field starting from the most simple

ones, the vortex method will become an alternative method of computational

fluid dynamics, especially advantageous for complex external flows.

2.2.1 Formulation of 3D Vortex Element Method (VEM)

Vortex element method have been growing in popularity in last three decades.

As their name indicates, they are based on the discretization of vorticity-a quan-

tity that has a compact support in many physical problems-thereby making this

approach interesting (Chatelain et al. [2005]).

The three-dimensional incompressible flow of a viscous fluid has been studied

here. The evolution equation for vorticity is

Dωi

Dt
= (ωi · ∇)u + ν∇2ωi (2.1)

where ω is the vorticity defined as ω = ∇ × u, u is the velocity of the vortex

element, (ω · ∇)u is called the stretching term and represents the rate of change
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of vorticity by deformation of vortex lines, ν is the kinematic viscosity, and the

term ν∇2ω represents the change of vorticity by viscous diffusion. The velocity

field in a three-dimensional problem is,

u(x) = − 1

4π

∫
(x− x′)× ω(x′)

|x− x′|3 dV (x′) (2.2)

where x, and x′ are the positions of vortex elements and dV is the volume of the

element. Using the Winckelmans and Leonard [1993] model as a cut-off function

(Eq. 2.10), the Biot-Savart law is formulated as follows

ui = − 1

4π

N∑
j=1

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2
rij × γj (2.3)

where rij = ri− rj, σj and γj are the distances of the position vector, core radius

and strength of element. The subscript i stands for the target elements, while j

stands for the source elements. The stretching term of Eq. (2.1) can be discretized

as follows:
dωi

dt
= (ωi · ∇)u (2.4)

If I put vortex strenght γi = ωid
3xi in Eq. (2.4), then it becomes

dγi

dt
= (γi · ∇) ui (2.5)

Hence, the vortex strength of an individual element is expressed by Eq. (2.3)

in a discretized formulation as

dγi

dt
=

1

4π

∑
j=1

{
−|rij|2 + (5/2)σ2

j(|rij|2 + σ2
j

)5/2
γi × γj

+3
|rij|2 + (7/2)σ2

j(|rij|2 + σ2
j

)7/2
(γi · rij) (rij × γj)

}
(2.6)

where all notations carry the same meaning as in Eq. (2.3). For details mathe-

matical formualtions, referred Appendix A.
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2.2.2 Viscous Diffusion

Vortex methods originate in inviscid methods and recent studies mostly focus on

their extension to viscous flows. Though, this has not been a straightforward

task and the diversity of methods has become quite large. The random vortex

method (RVM) by Chorin [1973] uses a stochastic interpretation of the diffusion

equation. It has served an important role in the early development of viscous

diffusion schemes, but its slow convergence rate prompted the development of al-

ternative methods. The core spreading method (CSM) by Kuwahara and Takami

[1973] and Leonard [1980] uses a deterministic approach, which changes the stan-

dard deviation of the Gaussian distribution to match the fundamental solution

of the diffusion equation. A straightforward implementation of this method lacks

convergence due to the fact that the ever-expanding Gaussian distribution moves

with the velocity at its center. Local spatial refinement (Rossi [1996]) can cir-

cumvent this problem, though this will introduce a large amount of error without

careful consideration (Barba et al. [2005]; Barba [2006]; Huang [2005]).

The particle strength exchange (PSE) by Degond and Mas-Gallic [1989] redis-

tributes the strength among vortex elements by solving the integral equation of

the Laplacian operator. The location of elements are used as quadrature points,

thus requires them to be nearly uniform for an accurate calculation(Chatelain et

al. [2002]). The vortex redistribution method (VRM) by Shankar [1996b] also

redistributes the strength of vortex elements but by solving an underdetermined

system of equations to equate the truncated Taylor series of the new distribu-

tion with that of the exactly diffused vorticity. Although, restrictions of particle

nonuniformity are not as severe as the PSE, it is obvious that a sufficient number

must exist in the neighborhood. The insertion and merging of particles is still an

open area of research, as is the case with CSMs.

In most cases a vortex element has three properties, circulation, core radius,

and velocity. The CSM changes the core radius, PSE and RVM change the

circulation to account for diffusion. The diffusion velocity method by Ogami

and Akamatsu [1991] modifies the velocity instead, where the diffusion velocity

becomes the product of −ν/ω and the gradient of vorticity. For regions of zero

vorticity the −ν/ω becomes singular, so an algorithm which does not increase
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the vorticity magnitude outside of the computational vorticity support (Grant

and Marshall [2005]) is essential to this scheme. There exist many other ways to

calculate the viscous diffusion of vorticity using a semi-Lagrangian discretization,

such as the vortex in cell (VIC), free Lagrangian, triangulated, moving particle

semi-implicit method(MPS)(Koshizuka et al. [1995]), and moving least squares

(MLS). The present study focuses on pure Lagrangian schemes (with remeshing

in some cases), thus semi-Lagrangian methods are out of scope.

In particular, I will focus only the scheme of core spreading method as follows.

The CSM is way to discretize the viscous diffusion equation

Dωi

Dt
= ν∇2ωi, (2.7)

where the Green’s function solution is

ωi =
γj

(4πνt)d/2
exp

(
−|xj − xi|2

4νt

)
. (2.8)

ω is the vorticity, ν is the kinematic viscosity, γ is the circulation, x is the position

vector, and d is the dimensionality of the problem. The subscript i stands for the

target elements, while j stands for the source elements. The CSM uses a cutoff

function ζ to discretize the diffusion equation. In this case the vorticity at an

arbitrary point can be expressed as

ωi =
∑

j

γjζ (|xj − xi|) . (2.9)

A common choice for the cutoff function is the Gaussian distribution

ζ =
1

(2πσ2)d/2
exp

(
−|xj − xi|2

2σ2

)
. (2.10)

If I substitute (2.10) into (2.9), I can see that changing the variance of the Gaus-

sian distribution according to

σ2 = 2νt (2.11)

will result in the heat kernel (2.8). σ is often referred to as the core radius of the

vortex blob, and represents the physical length scale of the vortex elements.
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Table 2.1: Examples of 3D cutoff functions for VM (Winckelmans [2004])

Function g(ρ) f(ρ) ζ(ρ) r

Low-order algebraic ρ3

(ρ2+1)3/2
1

(ρ2+1)1/2
3

(ρ2+1)5/2 0

High-order algebraic ρ3(ρ2+5/2)

(ρ2+1)5/2

(ρ2+3/2)

(ρ2+1)3/2

15/2

(ρ2+1)7/2 2

Gaussian erf
(

ρ
21/2

)− ρ
(

2
π

)1/2
e−ρ2/2 1

ρ
erf

(
ρ

21/2

) (
2
π

)1/2
e−ρ2/2 2

The radial basis function interpolation(Barba et al. [2005]) is used every ten

time steps to ensure the convergence of the core spreading method(Yokota et al.

[2007]). The convection is solved by updating the position of vortex elements

according to their velocity
dxi

dt
= ui (2.12)

2.2.3 Cutoff Function

A number of 3D cutoff functions ζ(ρ) and their associted f(ρ) and g(ρ) have been

used in vortex method calculations. Here I will introduce some of them which are

mostly used summarized in Table 2.1. For the details and further explanations can

be found in Hald [1987]; Winckelmans and Leonard [1993]; Winckelmans [2004].

The cutoff function is used for convergence of field discretization in vortex method

calculation. It is an Gaussian smoothing function. In my calculation I have used

hig-order algebraic function as of ζ(ρ).

2.3 Fast Methods

Vortex methods are a powerful tool for the simulation of incompressible flows at

high Reynolds number. They rely on a discrete Lagrangian representation of the

vorticity field to approximately satisfy the Kelvin and Helmholtz theorems which

govern the dynamics of vorticity for inviscid flows. A time-splitting technique can

be used to include viscous effects. The diffusion equation is considered separately

after convecting the particles with an inviscid vortex method. In the present
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work, the viscous effects are represented by the three dimensions core spreading

method.

In order to accurately compute the viscous transport of vorticity, gradients

of velocity need to be well resolved. As the Reynolds number is increased, these

gradients get steeper and more particles are required to achieve the requisite

resolution. In practice, the computing cost associated with the convection step

dictates the number of vortex particles and puts an upper bound on the Reynolds

number that can be simulated with confidence. That threshold can be increased

by reducing the asymptotic time complexity of the convection step from O(N2)

to O(NlogN). The nearfield of every vortex particle is identified. Within that

region, the velocity is computed by considering the pairwise interaction of vor-

tices.

There are some well-known fast algorithms already been used to accelerate

the vortex method calculations. Some of them are briefly introduced here as a

general review. The details can be found in corresponding referenced papers.

2.3.1 The Tree Algorithm

Appel [1985] introduced a gridless method for many body simulations with a

computational complexity estimated to be of the order O(NlogN). Basically Ap-

pel introduced binary treecode for many-body simulations. A tree is a common

hierarchical data structure used for many computer science applications. A tree

is a recursive structure that usually maps an ordered set of data from an internal

definition to some data space. Tree parts are often named after their contem-

poraries in family trees; trees contain nodes known as parent, child, and sibling.

Trees are made of nodes, which can contain both data to be stored and always

link to further levels in the tree. The tree code for two dimension flow has been

developed by Barnes and Hut [1986].

An octree is a tree data-structure based on a cell with eight children. Each cell

of an octree represents a cube in physical space. Each child represents one octant

of its parent. At the leaves of the tree are the computational cells of the grid,

and these cells are classified as either Cartesian or cut. These computational

17



2.3 Fast Methods

cells hold the state vectors, spatial-derivatives of the states, centroid, volume,

time-step, and any other information needed by the flow solver.

In tree code, the forces from a group of distant particles are approximated

by multipole expansions. Hierarchical tree structure is used for grouping of the

particles. The calculation procedures are available in Hernquist [1987]; Hernquist

and Katz [1989]; Pfalzner and Gibbon [1996].

The calculation cost of tree code is O(NlogN), since the cost is proportional to

the number of levels of the tree. For the implementation on GRAPE hardwares,

see Makino [1991] and Athanassoula et al. [1998]. Most of existing implementa-

tions of tree code use only up to a quadrupole moment and calculation cost rises

quickly when high accuracy is required. For the implementation on distributed-

memory parallel computers, see Salmon et al. [1994]; Warren and Salmon [1994].

2.3.2 Fast Multipole Method (FMM)

FMM was initially introduced by Rokhlin [1985] as a fast solution method for

integral equations for two dimensional Laplace’s equation. In his paper the term

”FMM” did not appear but the main framework of FMM was constructed. Af-

ter Rokhlin’s work, Greengard and Rokhlin [1987, 1988] refined the algorithm,

applied FMM to two and three-dimensional N -body problems with Coulombic

potential and showed the applicability of FMM to various fields.

Rokhlin uses FMM in conjunction with an iterative solver to reduce the com-

putational complexity for the matrix-vector multiplication from O(N2) to O(N).

In FMM Rokhlin uses multipole moments to represent distant particle groups and

introduces a local expansion to evaluate the contribution from distant particles in

the form of a series. The multipole moment associated with a distant group can

be translated into the coefficient of the local expansion associated with a local

group. In addition to Rokhlin’s work, Greengard introduces the hierarchical de-

composition of a spatial domain with a quad-tree in two dimensions and oct-tree

in three dimensions to carry out efficient and systematic grouping of particles

with tree structures. Greengard uses FMM to reduce the computational cost

for the pairwise force calculation from O(N2) to O(N). A new version of the

FMM for the evaluation of potential fields in three dimensions was introduced
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2.3 Fast Methods

by Greengard and Rokhlin [1997]. In the last decades, FMM has been applied

to various fields such as molecular dynamics (MD), vortex methods (Hu et al.

[1997]; Cheng et al. [1999]). The fact that FMM was nominated as one of the

top 10 algorithms of the century along with Fast Fourier Transform (FFT), QR

algorithm, etc. in Board et al. [1995]; Board and Schulten [2000] show how much

influence it had on numerical analyses.

Mathematical Formulations

Mathematical formulations of FMM to compatible with vortex method calcula-

tion have been introduced here briefly. The detail formulations and its imple-

mentation for three dimensional case is given in Schmidt et al. [1991]; Cheng et

al. [1999]; Gumerov and Duraiswami [2004]; Yokota et al. [2007] and in appendix

D.

The deduced form of original Biot-Savart equation (Eq. 2.3) can be written

as

ui ≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γjMj

}
×∇Si (2.13)

ui ≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γjLj

}
×∇Ri. (2.14)

Where the operators S, M , R, L are defined in appendix D.

Similarly, the stretching term of Eq. (2.4) can be written as

Dγi

Dt
≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γj ×∇Mj

}
(γi · ∇Si) (2.15)

Dγi

Dt
≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γj ×∇Lj

}
(γi · ∇Ri) . (2.16)

The cutoff function does not appear in these equations since they are used to

calculate the effect of the far field, for which it would have negligible effect.

19



2.3 Fast Methods

Interaction cell

Objective cell

Neighbor cell

Figure 2.1: Relation between interaction cells (shaded) and neighbor cells of a

hatched cell.

Brief Algorithm

Here the FMM for three dimensional case has been described briefly. It is assumed

that all particles are uniformly distributed in a unit cube.

First, an oct-tree structure has been constructed by hierarchical subdivision

of the cube. The division procedure starts from the root cell at refinement level

l = 0, which covers the entire system. Here the refinement level l is defiend as the

depth of the tree. The procedure has been repeated until a given refinement level

lmax is reached. The level lmax is chosen so that the average number of particles

in one leaf cell roughly equals the prescribed number which is determined to

optimize the calculation speed.

In the next step, the multipole expansions are calculated for all leaf cells, then

form multipole expansions for all non-leaf cells in coarser level by shifting and

adding up expansions of their children. This step is called as upward pass as

the tree traverse from leaf to root. In this step multipole expansion translations

M2M has been performed.

The last step is downward in which the tree traverse from root to leaf. First

the local expansion is formed at geometric center of each cell due to potential

fieldof its interaction list.

The interaction list of a cell is the set of cells which are children of the nearest

neighbors of the cell’s parents and which are not neighbors of the cell itself.

20



2.3 Fast Methods

Neighbor list of a cell is set of cells in the same level with the cell in question and

have contact with the cell. Figure 2.1 shows the relation between neighbor and

interaction cells of an object cell.

The potential field due to interaction list of the cell are calculated by convert-

ing their multipole expansion to local expansion of the cell and adding them up

(M2L conversion). Then the local expansions at different refinement levels are

summed up to obtain total potential field at all leaf cells.

Finally, the total force is being calculated on each particle. The total force is

calculated as a sum of the distant and neighbor contributions. The distant part

is calculated by evaluating the local expansion of the leaf cell at the position of

the particle. The neighbor part is directly calculated by evaluating the particle-

particle forces. The time complexity of FMM is O(N). Therefore, the scaling of

FMM is better than that of tree code. The most time consuming parts of FMM

are multipole to local (M2L) translations and the direct interaction of particles.

The detail mathematical formulations used of FMM according to Cheng et

al. [1999]; Gumerov and Duraiswami [2004]. Further details can be found in

Appendix D.

2.3.3 Other Fast Methods

There are two more fast methods have been used to accelerate the vortex method

calculations. One is Anderson’s method which has been introduced by Anderson

[1992]. The author proposed a simple formulation of FMM based on Poisson’s

formula. Poisson’s formula gives the solution of the boundary value problem of

the Laplace equation. The details discussion and mathematical formulations are

discussed there and reference there in. In Anderson’s method potential value is

used to express the multipole/local expansion, while the original FMM uses the

coefficients of the expansion terms. The advantage of Anderson’s method over

the original FMM is it’s simplicity.

The other one is pseudo-particle multipole method (P 2M2) has been proposed

by Makino [1999]. Makino’s and Anderson’s methods are quite similar. Both

approximate the multipole expansion by discrete values on points on a sphere

(Hardin and Sloane [1996]). The difference is that P 2M2 assigns mass to points
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2.3 Fast Methods

while Anderson’s method assigns potential. The continuous mass distribution

is again approximated by finite number of pseudo-particles, and the potential

exerted by these pseudo-particles are calculated in the same way as that exerted

by physical particles.

Conceptually, physical particles are converted to pseudo-particles in the two

ways. First, multipole expansion has been calculated from the physical particles.

Then mass of pseudo-particles are assigned so that they have the same multi-

pole expansion as physical particles. For details algorithm and mathematical

formulations can be found in Makino [1999] and Kawai et al. [2001].

Since M2L is dominant part in FMM calculation, total calculation speed for

the same expansion order would be faster for P 2M2. Also P 2M2 has an additional

advantage that it can make use of special-purpose computers to achieve further

accelerations.
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Chapter 3

Acceleration Techniques for

Vortex Methods

3.1 Introduction

One of the main difficulties of vortex methods to be accepted in the mainstream

of computational fluid dynamics is the numerical complexity of calculating the

velocity using the Biot-Savart law, which is in fact analogous to an ”N -body

problem” and hence requires O(N2) operations for N vortex elements as of Fig.

3.1.

The large number of elements are required for accurate vortex methods cal-

culation at high Reynolds number flows which is very high computation cost.

Therefore, significant acceleration techniques are necessary to reduce the compu-

tation cost of N -body interaction calculation for millions of particles having the

cost of O(N2) with growing N .

There are two techniques to reduce the force calculation cost of an N -body

simulation which have been discussed in chapters 1 and 2, respectively. In the

hardware techinques, there are two techniques, one is parallel computers and

the other is special-purpose computers. To accelerate the vortex methods calcu-

lation, parallel calculation has been widely used in previous studies (Liu et al.

[2000]; Ploumhans et al. [2002]; Sbalzarini et al. [2006]). Eventhough accelerate

the calculation significantly, there are some difficulties to use parallel computa-

tions for longer calculations. It has limitations with parallelization according to
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N Accelerating N-body calculation

N2 Calculation

Hardware: parallel calculation, special-purpose computer

Software: Tree code, FMM, P2M2 Pseudo-particle multipole method etc.

Figure 3.1: Bottleneck of vortex method calculation

hardware specifications. The memory bandwith is a big problem to calculate

for large number of vortex elements which required special consideration. Power

consumption and heat dissipation interupt the longer time calculations. These

problems are becoming serious for advanced scientific computation. Shortcom-

ings of parrallel computers, the special-purpose approach can solve parallelization

limit thoroughly. It has relax power consumption according to hardware specifi-

cation. The cost-performance is minimum 100 times better than that of parallel

computation using ordinary cluster computers (Taiji et al. [2003]).

The special-purpose computer has been used in the present calculations to

avoid the difficulties of parallel computations with higher speed. Hardware ac-

celerators such as GRAPE-2A (Ito et al. [1993, 1994]), MD-GRAPE (Fukushige

et al. [1996]), MD Engine (Toyoda et al. [1999]), MDGRAPE-2 (Susukita et al.

[2003]), and MDGRAPE-3 (Taiji et al. [2003]; Narumi et al. [2006]) have been

developed and successfully applied to MD simulations (Saito [1992]; Komeiji et al.

[1997]; Susukita et al. [2003]). Yatsuyanagi et al. [2003a] has used MDGRAPE-2

to accelerate the velocity calculation of Biot-Savart integral equation for the sim-

ulation of 2D magnetohydrodynamics problems using the current vortex method.
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3.2 The MDGRAPE-2

In this chapter, some new acceleration techniques have been discussed which are

used to accelerate present vortex method calculation at high Reynolds number

flows.

3.2 The MDGRAPE-2

At first an MDGRAPE-2 board has been used to develop a fast vortex method.

There are some steps to make MDGRAPE-2 as a compatible of vortex method

calcaulation which will be discussed consequently. MDGRAPE-2 is a calculation

accelerator board which dramatically increases the speed of molecular dynamics

calculations by calculating the general force exerted between all pairs of particles

in an N -body particle simulations (Narumi et al. [2001]; Susukita et al. [2003]). A

brief discussion of MDGRAPE-2 architecture is introduced here, referred Narumi

[1997] for details discussions.

3.2.1 Basic Structure

An MDGRAPE-2 board is a PCI long size card exclusively designed for MD sim-

ulations. This board is composed of four MDGRAPE-2 chips, interface logic, cell

index counter, cell memory, particle index counter, and particle memory (Fig-

ure 3.13 in Narumi [1997]). A node computer communicates with MDGRAEP-2

chips and particle memory through interface logic. The index of a particle is

determined by dual counters to support cell-index method. Cell index counter

specifies the neighboring cell index c, and cell memory outputs the range of in-

dices in the cell c. Particle index counter indicates the particle index j to particle

memory. The position, charge, and particle type of a particle j are supplied to

all of the MDGRAPE-2 chips and 8 Mbyte of SSRAM is used for the particle

memory.

An MDGRAPE-2 chip is a data-flow-type numerical-processor LSI that is

specially dedicated for molecular dynamics simulations. It is composed of four

identical MDGRAPE-2 pipelines, one Input Unit, one Neighbor List Unit, and

one Control Unit as shown in Figure 5.1 in Narumi [1997]. Four Pipelines calcu-

late the forces on 24 different i-particles from one j-particle and accumulate them
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Figure 3.2: Block diagram of a pipeline of an MDGRAPE-2 chip

in every six clock cycles. Using Neighbor flags, supplied by Pipelines, Neighbor

List Unit makes lists of neighbor particles of 24 i-particles. Control Unit con-

trols the multiplexers and registers in the chip. Input Unit receives coordinates

of j-particles (xj, yj, zj), and scale factors (Aj, Bj), respectively. These data are

stored in registers and kept in the next six clock cycles. Peak performance of an

MDGRAPE-2 chip corresponds to about 16 GFlops at a clock frequency of 100

MHz.

An MDGRAPE-2 pipeline calculates the pairwise force ~fi,j as:

~fi,j = bijg
(
aijr

2
ij

)
~rij (3.1)

where g() is an arbitrary central force, and aij and bij are coefficients determined

by particle types of particles i and j. Figure 3.2 shows the block diagram of the

pipeline of an MDGRAPE-2 chip. The pipeline calculates ~rij and aijr
2
ij, and then

evaluate g() in the function evaluator(Figure 3.4). Function evaluator performs

fourth-order interpolation segmented by 1, 024 region. The coefficients of the in-

terpolation function are stored in the RAM in function evaluator. Therefore, it

can be used any arbitrary central force by changing the contents of the RAM.

After the function evaluator, the pipelines multiplies bij and ~rij, and then accu-

mulates them. The relative accuracy of a pairwise force is about 10−7, since most

of the arithmetice units in the pipeline use IEEE754 single floating point format.
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Host
Position, function table
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O(N) O(N) O(N2)

PCI Interface

MDGRAPE-2

Figure 3.3: The basic structure of vortex methods calculation in MDGRAPE-2

system

The double floating point format is used for accumulating the force in order to

prevent the underflow when large number of particles are used.

3.2.2 Calculation Procedures

Figure 3.3 represent the system that performs vortex method calculations consists

of a host and MDGRAPE-2. The host is a PC or a workstation. MDGRAPE-2

consists of one or multiple MDGRAPE-2 boards. Each board is connected to

the host as an extension board via a PCI bus (or PCI buses linked by PCI-PCI

bridges). A special-purpose computer work as a back-end hardware and the host

PC work as a front-end processor. The host computer calculates and update

the positions of particles and send it to special-purpose computer. The special-

purpose computer then calculates the induced velocity by using Biot-Savart law

and stretching term which dominate the total calculation cost.

Since the load on MDGRAPE-2 is much heavier than those for host computer

and communication interfaces between them, the total performance of the system

is determined by the super-highspeed special-purpose computers rather than the

host computer or communications, for a large number of particles. When the

system performs VM simulations, MDGRAPE-2 calculates velocity from Biot-

Savart law and Stretching term from vorticity equation. The host performs the

other tasks such as giving the initial state of particles, time integration and the
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3.2 The MDGRAPE-2

control of MDGRAPE-2. The host sends necessary data for velocity or potential

calculation to MDGRAPE-2 and receives velocity or potential from it via PCI

bus (or the PCI buses).

A single board increases the computing speed of an ordinary PC to 64GFlops

comparable to a supercomputer. The calculation of interactions between particles

as represented by potential and force are carried out in MDGRAPE-2. In case of

calculating the potential,

Φi =
N∑

j=1

bijg(w) =
N∑

j=1

bijg
(
aij

(|rij|2 + ε2
ij

))
(3.2)

and the force calculations

fi =
N∑

j=1

bijg(w)rij =
N∑

j=1

bijg
(
aij

(|rij|2 + ε2
ij

))
rij (3.3)

are treated similarly, where g(w) is an arbitrary function equivalent to an inter-

molecular force, and aij, bij, εij are arbitrary coefficients which are settled down

for every model. To apply these libraries to the calculation of a vortex method,

Biot-Savart law in Eq. (2.3) is expressed as follows.

ui =
N∑

j=1

Bjg
(
Aj

(|rij|2 + ε2
ij

))
rij (3.4)

where Aj, Bj are arbitrary constants. The details mathematical formulations are

introduced in chapter 4

The function g() for an arbirary value a|rij|2 is calculated by interpolation,

from values that are tabulated prior to the execution of the main program. If the

interparticle distance is such that a|rij|2 falls out of this tabulated domain, the

MDGRAPE-2 assumes g() is zero. The number of tabulated points is constant.

Thus, defining the table in a large domain would result in larger spacing between

the tabulated points, and therefore a larger interpolation error. On the contrary,

defining the table in a small domain would yield a higher probability that the in-

terparticle spacing would fall outside the tabulated domain, which can also cause

errors. The optimum range will be investigated for the vortex ring calculation by

Sheel et al. [2007] for MDGRAPE-2 also in chapter 4.
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3.3 Difficulties to use MDGRAPE-2

There are some difficulties to use MDGRAPE-2 for vortex method calculations

to be solved while the architecture of the hardware is simple. First, the board

is exclusively designed for molecular dynamics simulations but it is not designed

for vector product calculations while Biot-Savart law contains vector product

term. Second, it is important to produce an optimum function table in order

to calculate the cut-off function considering the computational domain where

the vortex elements are distributed. Third, due to hardware specifications, the

subroutine runs partly with single precision, hence special care is necessary for

floating-point operations. These difficulties have been solved carefully here as

follows and in chapter 4.

3.3.1 Function Table

It is observed that an appropriate function table is essential to maintain the satis-

factory accuracy for MDGRAPE-2 calculations. The hardware of MDGRAPE-2

is a board, which is mounted on a PCI-slot of a PC. The main program runs on

the host PC, while the force calculation is done on the board via subroutine calls.

Due to hardware specifications the subroutine runs partly with single precision,

hence special care is necessary for floating-point operations. The important issue

here is to rewrite the function table in MDGRAPE-2 that determines the formula

of Eqs. (2.3) and (2.6) so that the range of the function table contains all elements

inside the computational domain. The regorous investigation of computational

domain is discussed in chapter 4. This is considered to be the primary importance

of present research.

3.3.2 Function Evaluator

A Function Evaluator (FE) unit, a unit of pipeline of an MDGRAPE-2 chip(Fig.

3.2), evaluates Bjg(w) cf. Eq. (3.4). It is composed of two 32-bit floating-point

multipliers (32FMAJ, 32FMBJ), one 32-bit function evaluator (32FE) as shown in

figure 3.4. The squared distance, r2 from distance vector unit, is multiplied with
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32FMAJ & 32FMBJ: 32-bit Floating-point Multipliers

Figure 3.4: Function Evaluator unit of a pipeline of an MDGRAPE-2 chip(Narumi

[1997])

the scale factor Aj by a 32-bit floating-point multiplier (32FMAJ). A Function

Evaluator (32FE) evaluates g(w) by 4-th order polynomial interpolation as,

g(w) = c0 + w(c1 + w(c2 + w(c3 + wc4))) (3.5)

In 32FE, c0, c1, c2, c3, and c4 are represented by 2’s complement integer format.

The others are represented by unsigned integer format. The four coefficients are

stored in a 1024-word 104-bit RAM on the board. The result of 32FE is multi-

plied with another scale factor Bj by a 32-bit floating-point multiplier (32FMBJ).

The product Bjg(Ajr
2) is sent to an accumulator unit. An accumulator unit ac-

cumulates forces in the force mode and potentials in the potential mode.

The basic concept on calculation of an arbitrary function by the FE unit is

as follows:

A whole range [xmin, xmax) is divided into 210 segments. Assuming that an

input x belongs to the (k + 1)-th segment, i.e., x ∈ [xk, xk+1), the function f(x)

is approximated by a polynomial of degree 4;

f(x) '
4∑

i=0

c
(k)
i (∆x)i (3.6)

where ∆x is defined as the difference of x from the center of the segment xc;

∆x = x− xc (3.7)

xc =
xk + xk+1

2
(3.8)

The coefficients c
(k)
i are constants in each segment. For details see in Narumi

[1997] ans Susukita et al. [2003].
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Figure 3.5: Relative and absolute error of MDGRAPE-2 chip

3.3.3 Error in Function Evaluator of MDGRAPE-2 chip

The net relative accuracy in the MDGRAPE-2 chip is set to 10−7, since this

accuracy is usually satisfactory in MD simulations. All the arithmatic units in an

MDGRAPE-2 chip except FE use 64-bit and 32-bit floating-point format, which

has an error smaller than 10−7. In the calculation of the Biot-Savart law, the FE

in a pipeline of MDGRAPE-2 chip calculates equation as follows.

g1(w) =
w + 5/2

(w + 1)5/2
; w = (|rij|/σj)

2 (3.9)

Figure 3.5 shows the relative difference in g1(w) = (w + 5/2) /(w + 1)5/2; where

w = (|rij|/σj)
2 between that calculated by double precision and that calculated

by the software emulator of the FE. Relative accuracy is achieved 10−7, which has

been evaluated by 4-th order polynomial interpolation as of Eq. (3.5). Further

details are introduced in chapter 4.
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Min Max

( ) maxmin: ≤≤ wwg (Domain of function)Function:

g(w) Function Table

Figure 3.6: Function table in vortex method calculation.

3.3.4 Cutoff fucntion

The cut-off function is used in the vortex method calculation. It has the same

shape between all particle interactions. It is important to produce an optimum

function table in order to calculate the cut-off function considering the compu-

tational domain where the vortex elements are distributed (Chapter 4, section

4.3).

The function g (w) (Fig. 3.6) is created prior to calculation and read during

calculation. The domain of the function g (w) is set to wmin ≤ w ≤ wmax where

(wmax/wmin) ≤ 232 according to hardware specifications. To secure accurate

calculations, it is important to know the domain correctly prior to calculation are

discussed in chapter 4.

3.4 Performance and Implementations

3.4.1 Performance

The peak performance of the MDGRAPE-2 board is 64GFlops at 250MHz PC

when the board calculates Coulomb forces for 30000 or more particles. This
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Figure 3.7: Calculation time against the vortex elements. ◦ –without the use of

MDGRAPE-2 ; ¤ –with the use of MDGRAPE-2.

performance is not the same when vortex method has been calculated using this

board. The CPU-time and effciency of VM calculations have been shown in

Figures 3.7 and 3.8, respectively.

The computation time has been preformed and compared with ordinary PC

(Intel Pentium 4 2.66GHz). The CPU-time has been calculated from Biot-Svart

law (Eq. 2.3) and run for one time step while the number of particles are in-

creased.

Figure 3.7 shows the calculation time against the number of vortex elements

N with and without the use of MDGRAPE-2. The CPU-time has been achieved

for the collision of two inclined vortex rings. The legends ’Intel P4(2.66GHz)’

and ’MDGRAPE-2’ represent the calculation time without and with the use of

MDGRAPE-2, respectively. It is clearly observed that the calculation time is

reduced by a factor of 100 for N ∼ 105. This acceleration rate is below the

expectated rate, but it can be improved by reducing the number of calls to the

MDGRAPE-2 library for cross product calculations.
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Figure 3.8: The results of efficiency measurement for the MDGRAPE-2 board.

The efficiency and breakdown of overhead communication for the host PC

have been calculated as follows.

The total number of pairwise interactions (Nstep) for one time step is counted

from

Nstep = nmd(xmd + ymd + zmd) (3.10)

Where xmd, ymd, and zmd represent the number of pairwise interactions in

x-direction, y-direction, z-direction.

The total number of pairwise interactions (NAPPL) for one second has been

calculated from

NAPPL =
Nstep

CPU Time(sec/step)
(3.11)

Finally the efficiency can be defined by

η =
NAPPL

NGRAPE

(3.12)
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Table 3.1: Hosts for performance measurement

Architecture Host CPU Cache Memory OS Compiler

MDGRAPE-2 Intel P4 512KB 1GB Linux 8.0 ifort

2.66GHz (2GB Kernel 2.4.18-14

(1CPU 1 core) Swap memory)

MDGRAPE-3 Xeon 5160 4096KB 32GB Cent 4.3 (Final) ifort

3.00 GHz (0GB Kernel 2.6.9-

(1CPU 2 core) Swap memory) 34 ELsmp

Where NGRAPE represent the total number of pairwise interactions for one sec-

ond (peak performance of MDGRAPE-2) for coulom force calculation which is

NGRAPE = 5.5× 108.

Result of the efficiency measurements is shown in Figure 3.8. Host use for the

measurement is listed in Table 3.1. The N in x-axis represents the number of

pariwise interactions particles for one second (NAPPL) and the y-axis represents

the maximum efficiency of corresponding N . The solid line represents the peak

performance of MDGRAPE-2 board for molecular dynamics calculations and cir-

cle represents the maximum efficiency (η) of vortex method calculations. From

the results of this measurement, it is proved that the efficiency is improved with

increase of number of particles, the board provides high performance if the num-

ber of particles is large. It is observed from the figure that the efficiency of the

present calculation is 70% compared with the peak performance of MDGRAPE-2

for the largest N . This bellow efficiency may caused in due to power supply to

MDGRAPE-2 during the calculation. This performance does not depend on the

host PC instead of N and MDGRAPE-2 (Susukita et al. [2003]).

3.4.2 Implementations

Here I will show a sample program that use MDGRAPE-2 run on the host. To

use MDGRAPE-2, the program calls the interface to it. To calculate the Biot-

Savart law expressed as Eq. 2.3, the program calls as follows. The corresponding
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Figure 3.9: The flowchart for VM calculation using MDGRAPE-2.
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flowchart is shown in Figure 3.9.

VM (Biot-Savart) program using the MDGRAPE-2 API’s

C Initialization of particle positions and scale coefficients

do i = jsta,jend

nmd = i-jsta+1

amd(nmd) = 1/sj(i)∗∗ 2

pos(1,nmd) = xj(i)

pos(2,nmd) = yj(i)

pos(3,nmd) = zj(i)

bxmd(nmd) = gxj(i)/sj(i)∗∗ 3

bymd(nmd) = gyj(i)/sj(i)∗∗ 3

bzmd(nmd) = gzj(i)/sj(i)∗∗ 3

enddo

C Allocate and capture MDGRAPE-2 board for velocity calculation

n unit = m2 allocate unit(’force.table’,m2 force, ∗ xminf,xmaxf,null integer)

call m2 set positions(n unit,pos,nmd)

call m2 set rscales(n unit,amd,nmd)

C Positions stored in memory

do i = n0,n1

nmdd = i-n0+1

pos(1,nmdd) = xi(i)

pos(2,nmdd) = yi(i)

pos(3,nmdd) = zi(i)

end do

call m2 set charges(n unit,bxmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,xmd)

call m2 set charges(n unit,bymd,nmd)

call m2 calculate forces(n unit,pos,nmdd,ymd)

call m2 set charges(n unit,bzmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,zmd)

C Calculate total velocities and communicate with host machine
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call m2 free unit(n unit)

C Other finalization with host PC

VM (Stretching) program using the MDGRAPE-2 API’s

Sample programs for stretching term calculations using the MDGRAPE-2 API’s

are as follows. The flowchart is as of Figure 3.9.

C Initialization of particle positions and scale coefficients

C Allocate and capture MDGRAPE-2 board for vortex strength calculation in

potential mode

n unit = m2 allocate unit(’potential.table’,m2 potential,

∗ xminf,xmaxf,null integer)

call m2 set positions(n unit,pos,nmd)

call m2 set rscales(n unit,amd,nmd)

call m2 set charges(n unit,bxmd,nmd)

call m2 calculate potentials(n unit,pos,nmdd,bxmd)

call m2 set charges(n unit,bymd,nmd)

call m2 calculate potentials(n unit,pos,nmdd,bymd)

call m2 set charges(n unit,bzmd,nmd)

call m2 calculate potentials(n unit,pos,nmdd,bzmd)

C Calculate total strength and communicate with host machine

C Other calculation by host PC

call m2 free unit(n unit)

C Other initialization of particle positions and scale coefficients

C Allocate and capture MDGRAPE-2 board for vortex strength calculation in

force mode

n unit = m2 allocate unit(’force.table’,m2 force, ∗ xminf,xmaxf,null integer)

call m2 set positions(n unit,pos,nmd)

call m2 set rscales(n unit,amd,nmd)
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call m2 set charges(n unit,bmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,gmd)

call m2 set charges(n unit,bxmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,xmd)

call m2 set charges(n unit,bymd,nmd)

call m2 calculate forces(n unit,pos,nmdd,ymd)

call m2 set charges(n unit,bzmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,zmd)

call m2 set charges(n unit,bmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,gmd)

call m2 set charges(n unit,bxmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,xmd)

call m2 set charges(n unit,bymd,nmd)

call m2 calculate forces(n unit,pos,nmdd,ymd)

call m2 set charges(n unit,bzmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,zmd)

call m2 set charges(n unit,bmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,gmd)

call m2 set charges(n unit,bxmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,xmd)

call m2 set charges(n unit,bymd,nmd)

call m2 calculate forces(n unit,pos,nmdd,ymd)

call m2 set charges(n unit,bzmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,zmd)

C Calculate total strength and communicate with host machine

C Other calculation by host PC

call m2 free unit(n unit)

C Other finalization with host PC
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3.5 The MDGRAPE-3

MDGRAPE-3 is a successor of MDGRAPE-2 and the third model of MD-GRAPE

series. The nominal peak performance of the board for a Coulomb force calcu-

lation is 2.16 TFLOPS at 250 MHz for classical molecular dynamics simulations

(Taiji et al. [2003]; Narumi et al. [2006]). The basic architecture and calculation

systems are simlar as of its predecessor, MDGRAPE-2. The brief introduction of

this processor is as follows.

3.5.1 Basic Architecture

The block diagram of an MDGRAPE-3 board can be seen in Narumi et al. [2006]

(Fig. 1). It consists of twelve MDGRAPE-3 chips, and each chip is connected in

serial to send/receive the data. Since the memory is embeded in the MDGRAPE-

3 chip, the board will be extremely simple. The speed of the communication

between the chips will be 1.3 Gbytes/sec, which corresponds to an 80-bit word

transfer at 133 MHz. For these connections 1.5V-CMOS I/O cells will be used.

The board has a control FPGA (or ASIC) with a special bus with 1 Gbytes/sec

peak speed. The force calculations are parallelized as follows.

Parallelization in index i (i-parallelization) is adopted between the 40 parallel

pipeline in each chip, and the forces on different particles are calculated. This

is the most efficient solution since the pipelines in a chip share the memory

unit due to the broadcast memory architecture. Typically, the parallelization

in index j (j-parallelization) is used between 12 chips on the board, and the

forces from different particle groups are calculated. The j-parallelization is used

for two reasons. First, the number of j-particles in a single-step calculation is

multiplied by the number of connected chips. The chip has memory for only

32,768 particles; however, more particles often need to be considered. Second,

the use of i-parallelization between the chips increases the number of i-particles

to as high as 480. By using the cell-index method, the number of i-particles

required for performing a parallel calculation may often be as small as 100; a large

number of pipelines tends to increase their idle time. In the j-parallelization,

each chip calculates a partial force. When the resulting force is returned, the

MDGRAPE-3 chips accumulate the partial forces to decrease the amount of data
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Figure 3.10: Block diagram of the force calculation pipeline in the MDGRAPE-3

chip (Taiji et al. [2003])

transferred to the host computer. Thus, the MDGRAPE-3 board is equivalent to

an MDGRAPE-3 chip having 12-times higher processing speed and memory.

Figure 3.10 shows the block diagram of the force calculation pipeline of an

MDGRAPE-3 chip. It will consist of three subtractor units, six adder units,

eight multiplier units, and one function-evaluation unit. It can perform about 33

equivalent operation per cycle. In this case the function-evaluation unit calculates

x−3/2, which is equivalent to 16 floating-point operations. The count depends

on the velocity to be calculated. Most of the arithmetic operations are done

in 32-bit single-precision floating-point format, with the exception of the force

accumulation. The induced velocity is accumulated in 80-bit fixed-point format

and it can be converted to 64-bit double-precision floating-point format.

The function evaluator, which allows calculation of an arbitrary smooth func-

tion, is the most important part of the pipeline. This block is almost the same

those in MDGRAPE-2 (section 3.2). It has a memory unit which contains a ta-

ble for polynomial coefficients and exponents, and a hardwared pipeline for the

fourth-order polynomial evaluation. It interpolates an arbitrary smooth function
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g(x) using segmented fourth-order polynomials by the Horner’s method

g(x0 + ∆x) = (((c4[x0]∆x + c3[x0])∆x + c2[x0])∆x + c1[x0])∆x + c0[x0], (3.13)

where x0 is the center of the segmented interval, ∆x = x−x0 is the displacement

from the center, and ck[x0] are the coefficients of the polynomial.

The MDGRAPE-3 chip has 20 force calculation pipelines, a j-particle memory

unit, a cell-index controller, a force summation unit, and a master controller. The

master controller manages the timings and the inputs/outputs of the chip. The

j-particle memory unit holds the coordinates of j-particles for 32,768 bodies and

corresponds to the ’main memory’ in general-purpose computers. Thus, the chip

is designed using the memory-in-the-chip architecture and no extra memory is

necessary on the system board. The amount of the memory is 6.6 Mbits and

will be cnstructed by a static RAM. The same output of the memory is sent to

all the pipelines simultaneously. The details of MDGRAPE-3 chip and its block

diagram are in Taiji et al. [2003] (figure 4). Each pipeline calculates using the

same data from j-particle unit and individual data stored in the local memory of

the pipeline. Because the two-body force calculation is given by

F i =
∑

j

f(ri, rj) (3.14)

fro the parallel calculation of multipole F i, we can use the same ri. This paral-

lelization scheme, ’the broadcast memory architecture’, is one of the most impor-

tant advantages of the GRAPE systems. It enables the coefficient parallelization

at low bandwith realized by simple hardware.

3.5.2 Calculations System

One small MDGRAPE-3 board (consists of 2 chips) has the peak performance of

330 GFlops. In order to communicate with the host computer, a field-programmable

gate array (FPGA, Xilinx XC2VP30) is installed on the board. It also controls

the chips, thermal sensors, and so on. The board is connected to the host by a 10-

Gbps serial communication link with a 4-lane 2.5-Gbps Xilinx RocketIO through
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Host PC
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Induced velocity

MDGRAPE-3 Board
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Position, Integration, etc. Data Transfer Velocity Calculation

Figure 3.11: The basic structure of vortex methods calculation in MDGRAPE-3

system

an InfiniBand cable. The host computer has an interface card with an FPGA

(Xilinx XC2VP7) attached to a PCI-X bus (Fig. 3.11). The present calculations,

Xeon 5160 (3.0GHz) duel core processor has been used as a host PC. The cal-

culation and data transfer systems are same as of MDGRAPE-2. It can speed

up force calculation about 100-1000 times faster than that of general purpose

computers of the same cost and the time complexity of force calculation is O(N2)

for direct summation algorithm.

The MDGRAPE-3 chip functions as the core LSI of the system, and it per-

forms the force calculations. To be used MDGRAPE-3, it is necessary to mod-

ify the program in order to call the application programing interface (API) of

this system. The MDGRAPE-3 board can perform force calculations on many

i-particles without any control of the host computer. Therefore, the host com-

puter can perform other calculations, while the board performs the force calcula-

tions. Consequently, parallel calculations can be conveniently performed by the

MDGRAPE-3 system since it can perform long calculations without host. One

major problem in this sense is that the MDGRAPE-3 chips can only handle two

types of calculations. The Coulomb potential

Φi =
N∑

j=1

bjg
(
a|rij|2

)
, (3.15)

and Coulomb force

fi =
N∑

j=1

bjg
(
a|rij|2

)
rij. (3.16)
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Figure 3.12: Calculation time against the vortex elements. ◦–without the use of

MDGRAPE-3 ; ¤–with the use of MDGRAPE-3.

g() is an arbitrary function, which must be defined prior to the calculation same

as of MDGRAPE-2. a and bj are constants, which can be used for scaling.

3.6 Performance and Implementations

3.6.1 Performance

The peak performance of the MDGRAPE-3 board is 330GFlops when the board

calculates Coulomb forces for 32000 or more particles. This performance is not

the same when vortex method has been calculated using this board. The CPU-

time and effciency of VM calculations have been shown in Figures 3.12 and 3.13,

respectively.

The computation time has been preformed and compared with ordinary PC.

The CPU-time has been calculated from Biot-Svart law (Eq. 2.3) and run for

one time step while the number of particles are increased.
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Figure 3.13: The results of efficiency measurement for the MDGRAPE-3 board.

Figure 3.12 shows the calculation time against the number of vortex elements

with and without the use of MDGRAPE-3. The calculation time has been ob-

tained for the calculation of the impingement of two identical inclined vortex

rings. It is clearly seen that the computation time is reduced by a factor of 1000

for N ∼ 106. This acceleration rate is above the speed of MD simulations and

it can be further improved by reducing the number of calls to the MDGRAPE-3

library for cross product calculations.

The efficiency and breakdown of overhead communication for the host PC

have been calculated similar as of Equations (3.10) to (3.12).

Result of the efficiency measurements is shown in Figure 3.8. Host use for

the measurement is listed in Table 3.1. The N in x-axis represents the number

of pairwise interactions particles for one second (Eq. 3.11) and the y-axis repre-

sents the maximum efficiency of corresponding N . The solid line represents the

peak performance of MDGRAPE-3 board for molecular dynamics calculations

and circle represents the maximum efficiency(η) of vortex method calculations.

From the results of this measurement, it is proved that the efficiency is improved
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with increase of number of particles and whatever the host is, the board provides

high performance if the number of particles is large. It is clearly observed from

the figure that the efficiency of the present calculation is 98% compared with the

peak performance of MDGRAPE-3(NGRAPE = 1010) for the largest N of VM

calculations.

3.6.2 Implementations

Here again I will show a sample program that use MDGRAPE-3 run on the host.

To use MDGRAPE-3, the program calls the interface to it. To calculate the Biot-

Savart law expressed as Eq. 2.3, the program calls as follows. The corresponding

flowchart is shown in Figure 3.14. The API’s are similar as MDGRAPE-2 except

the CALLing variable names.

VM (Biot-Savart) program using the MDGRAPE-3 API’s

C Initialization of particle positions and scale coefficients

C Allocate and capture MDGRAPE-3 board for velocity calculation

n unit = m3 allocate unit(’force.table’,m3 force, ∗ xminn,xmaxn,null integer)

call m3 set positions(n unit,pos,nmd)

do i = ista,iend

nmdd = i-ista+1

pos(1,nmdd) = xi(i)/sj(1)

pos(2,nmdd) = yi(i)/sj(1)

pos(3,nmdd) = zi(i)/sj(1)

end do

call m3 set charges(n unit,bxmd,nmd)

call m3 calculate forces(n unit,pos,nmdd,xmd)

call m3 set charges(n unit,bymd,nmd)

call m3 calculate forces(n unit,pos,nmdd,ymd)

call m3 set charges(n unit,bzmd,nmd)

call m3 calculate forces(n unit,pos,nmdd,zmd)

C Calculate total velocities and communicate with host machine

call m3 free unit(n unit)
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Figure 3.14: The flowchart for VM calculation using MDGRAPE-3.
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C Other finalization with host PC

Sample programs for stretching term calculations using the MDGRAPE-3 API’s

are as follows. The flowchart is as of Figure 3.14.

VM (Stretching) program using the MDGRAPE-3 API’s

C Initialization of particle positions and scale coefficients

C Allocate and capture MDGRAPE-3 board for vortex strength calculation in

potential mode

n unit = m3 allocate unit(’potential.table’,m3 potential, ∗ xminn,xmaxn,null integer)

call m3 set positions(n unit,pos,nmd)

call m3 set charges(n unit,bxmd,nmd)

call m3 calculate potentials(n unit,pos,nmdd,bxmd)

call m3 set charges(n unit,bymd,nmd)

call m3 calculate potentials(n unit,pos,nmdd,bymd)

call m3 set charges(n unit,bzmd,nmd)

call m3 calculate potentials(n unit,pos,nmdd,bzmd)

C Calculate total strength and communicate with host machine

C Other calculation by host PC

call m3 free unit(n unit)

C Other initialization of particle positions and scale coefficients

C Allocate and capture MDGRAPE-3 board for vortex strength calculation in

force mode

n unit = m3 allocate unit(’force.table’,m3 force, ∗ xminn,xmaxn,null integer)

call m3 set positions(n unit,pos,nmd)

call m3 set charges(n unit,bxmd,nmd)

call m3 calculate forces(n unit,pos,nmdd,xmd)

call m3 set charges(n unit,bymd,nmd)

call m3 calculate forces(n unit,pos,nmdd,ymd)

call m3 set charges(n unit,bzmd,nmd)

call m3 calculate forces(n unit,pos,nmdd,zmd)

call m3 set charges(n unit,bxmd,nmd)
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call m3 calculate forces(n unit,pos,nmdd,xmd)

call m3 set charges(n unit,bymd,nmd)

call m3 calculate forces(n unit,pos,nmdd,ymd)

call m3 set charges(n unit,bzmd,nmd)

call m3 calculate forces(n unit,pos,nmdd,zmd)

call m3 set charges(n unit,bxmd,nmd)

call m3 calculate forces(n unit,pos,nmdd,xmd)

call m3 set charges(n unit,bymd,nmd)

call m3 calculate forces(n unit,pos,nmdd,ymd)

call m3 set charges(n unit,bzmd,nmd)

call m3 calculate forces(n unit,pos,nmdd,zmd)

C Calculate total strength and communicate with host machine

C Other calculation by host PC

call m3 free unit(n unit)

C Other finalization with host PC

3.7 Comparative Study between MDGRAPE-2

and MDGRAPE-3

The difficulties to use MDGRAPE-3 are the same as of MDGRAPE-2 and which

has been solved in details for MDGRAPE-2. The only difference between them is

that MDGRAPE-3 can simultaneously calculate along with the host machine, but

can only handle a small number of source particles at once (Narumi et al. [2006]).

However, these differences do not have any effect on the same critical issues once

solved and the findings of MDGRAPE-2 can be directly used for MDGRAPE-3.

3.7.1 Scaling Error

Here I will first confirm that MDGRAPE-3 outputs the same results as the pre-

vious calculations using MDGRAPE-2. Figure 3.15 shows typical velocity distri-

bution on a logarithmic scale, calculated from Eq. (2.3), with and without the

use of MDGRAPE for six different input ranges, where a single source particle
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Figure 3.15: Different ranges of a function table.
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is positioned at the origin and 1000 target particles are distributed from 10−4 to

104. Xeon 5160(3.0GHz), MDG2, and MDG3 stand for calculations without MD-

GRAPE, with MDGRAPE-2, and with MDGRAPE-3, respectively. The velocity

becomes zero when |rij|/σj falls outside of the range of the table. Otherwise, the

results of the Biot-Savart calculation on MDGRAPE-2 and MDGRAPE-3 match

those of the results on the host computer in each case.

Figure 3.16 shows the comparative error for different input ranges between

MDGRAPE-2 and MDGRAPE-3. It can be easily observed that the errors are

different for different ranges. The errors in figures 3.16(a) and 3.16(b) are below

10−5. The rest of errors are larger and are not satisfactory in the vortex method

calculations. The optimum range is determined 1e−2 ∼ 1e6 for entire calculations.

3.7.2 CPU-time and L2 norm error

The calculation cost and accuracy are important issues for any numerical simu-

lation. In this calculation these two factors have been investigated carefully. The

calculation has been accelerated retained the accuracy at an acceptable label.

The CPU-time has been compared with different acceleration techniques at one

time step by changing the number of particles.

The L2 norm error is defined as the difference in the induced velocity of the

same particles between the host and MDGRAPE for the same time step as follows.

L2(norm error) =

∑
((uhost − umd)

2 + (vhost − vmd)
2 + (whost − wmd)

2)∑
(u2

host + v2
host + w2

host)
(3.17)

where the suffices md and host represent with and without the use of MDGRAPE,

respectively.

Figure 3.17 shows the cpu-time for one time step against the number of

vortex elements with and without the use of MDGRAPE. The legends ’Xeon

5160(3.0GHz)’, ’MDG2’, and ’MDG3’ correspond to the calculations without the

use of MDGRAPE and with the use of MDGRAPE-2 and MDGRAPE-3. It

is clearly seen that the calculation time has been reduced with the use of both

schemes for N ∼ 106 when compared with the host calculation time. From the

figure it is shown that MDGRAPE-3 calculation has been further accelerated than

MDGRAPE-2 when compared with host calculation. The MDGRAPE-3 is 1000
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Figure 3.16: Comparative scaling error between MDGRAPE-2 and MDGRAPE-

3.
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Figure 3.17: Acceleration using MDGRAPE-2 and MDGRAPE-3

times faster when compared with the host calculation and 25 time faster com-

pared with the MDGRAPE-2. This means that MDGRAPE-3 imply much faster

calculation than MDGRAPE-2 which leads me to use the new special-purpose

computer.

Numerical accuracy is an important issue for any numerical simulation and

engineering applications as well. Therefore, here I will check the accuracy of

MDGRAPE-3 calculations compared with that of MDGRAPE-2. It is already

observed in Fig. 3.17 that MDGRAPE-3 is faster compared with MDGRAPE-2.

I must check the accuracy of present calculation before going to implement the

actual calculation on it. Figure 3.18 represent the L2 norm error as of Eq.(3.17)

for Biot-Savart calculation compared between the old and new board. It is shown

that both error are in the same order of magnitude and below 10−5. On the one

hand MDGRAPE-3 gives less error for small number of elements but it keeps

the same order of magnitude compared to large numbers. On the other hand

MDGRAPE-2 gives large error for large number of elements but it keeps the same

order of magnitude with small number of elements. This negligible discrepency
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Figure 3.18: Accuracy of MDGRAPE-2 and MDGRAPE-3

may caused by slightly different hardware specifications and the floating point

operations between them.

3.8 FMM on MDGRAPE

In this section the calculation algorithm of the simultaneous use of the FMM and

MDGRAPE has been discussed. The most time consuming parts of FMM calcu-

lations are the multipole to local(M2L) translations and the direct summation. A

breif mathematical formulations has been in chapter 2. For details mathematical

formulations of FMM and its implementation on vortex methods calculation can

be found in Cheng et al. [1999], and Yokota et al. [2007].

Since the MDGRAPE chips can only handle two types of calculations. The

Coulomb potential (Eq. 3.15) and the Coulomb force (Eq. 3.16). The direct form

of the Biot-Savart equation (2.3) and the stretching term (2.6) can be calculated

by using a combination of (3.15) and (3.16), but the mutipole and local expansions

and their translations are impossible to calculate. Therefore, the MDGRAPE
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3.8 FMM on MDGRAPE

can only be used for the final step of the FMM where it calculates the direct

interaction of particles.

The inefficiency of the above method resides in the fact that only one of the

two hot spots of the FMM is calculated on MDGRAPE. It is possible to calculate

both hot spots on the FMM if one can convert the multipole to local translation

into a direct calculation. This requires the use of two independent methods, the

Poisson integral method by Anderson [1992] and the pseudo-particle method by

Makino [1999]. Instead of calculating the multipole and local expansions at the

center of the boxes, these methods calculate the physical properties of interest at

quadrature points placed on a spherical shell surrounding the boxes. In contrast

to the original FMM, which uses 5 different equations for the expansions and

translations, these methods use only 2. One for the multipole translation

Qi =
N∑

j=1

qi

p∑
n=0

2n + 1

K

(
ρj

rs

)n

Pn (cos γij) (3.18)

and another for local translations

Qi =
N∑

j=1

qi

p∑
n=0

2n + 1

K

(
rs

ρj

)n+1

Pn (cos γij) . (3.19)

The notations still follow that of Cheng et al. [1999], but additional variables

have been introduced. Q and q are the physical property of interest, which are

the potential for Anderson’s method, and circulation for Makino’s method. Q

represents the physical property after the translation and q represents the one

before. K is the number of quadrature points on the sphere surrounding the

box, so the index i runs from 1 to K, and rs is the radius of this sphere. γij is

the angle between the position vector of source and target particles. Given that

xi = (ri, θi, φi) and xj = (ρj, αj, βj), γij can be written as

cos γij =
xi · xj

riρj

(3.20)

Next, I will give a brief explanation of how these two methods are actually

used. Suppose that the Biot-Savart equation has been calculated here. The flow

of calculation is shown in Fig. 3.19. In this procedure the potential equation

Φi =
N∑

j=1

γj

4πrij

(3.21)
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3.8 FMM on MDGRAPE

Figure 3.19: Flow of FMM calculation without multipoles

is also calculated.

Step. 1© Eq. (3.21) is calculated for the quadrature points on a large sphere,

having a radius twice as that of the circumscribing sphere. Then a system of

equations has been solved to calculate the circulation of the quadrature points

on the circumscribing sphere.

Step. 2© Makino’s method (Eq. 3.18) is used to translate the circulation onto

the larger spheres.

Step. 3© Eq. (3.21) is calculated for the quadrature points on the non-neighboring

spheres. In the corresponding figure only the adjacent boxes (3 × 3) are defined

as neighbors, which is different from the actual case. Since the interaction is

calculated between the quadrature points on the circumscribing sphere instead of

the multipole moments at the center of the box, the quadrature points become

too close for a far field approximation. In the present method the definitioin of

neighbors is expand to a larger region (5 × 5) to retain accuracy. Consequntly,

the coarsest level in this calculation should be level 3 instead of 2.

Step. 4© Anderson’s method, Eq. (3.19) is used to translate the potential onto

the smaller spheres.

Step. 5© Eq. (3.21) is calculated for the quadrature points on the remaining

non-neighboring spheres. The neighbor region is 5 × 5, so the number of source

boxes can reach 875 per target. This increase is quite large and will slow down

the method considerably.

Step. 6© Solve a system of equations to determine the circulation of the quadra-

ture points on a large sphere, having a radius twice as that of the circumscribing

sphere. Then, calculate Eq. (2.3) to obtain the velocity of all particles in the

corresponding box.
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3.9 Conclusions

Step. 7© Calculate the remaining induced velocity using Eq. (2.3) for all par-

ticles in the light grey box in the last figure.

Now, the two most time consuming steps 5© and 7© can both be calculated

on the MDGRAPE. In this case the complexity of the calculation should remain

O(N).

3.9 Conclusions

In this chapter, several acceleration techniques have been proposed and devel-

oped a fast vortex method. Some critical issues have been solved to be used these

techniques for vortex method calculations. It is found that the generation of a

function table is essential for accurate MDGRAPE calculations. The accuracy

and speed have been compared for two differenet special-purpose computers. It is

observed that MDGRAPE-3 has been reduced compuation cost is 25 times com-

pared with MDGRAPE-2 for the same calculation while the numerical accuracy

retained same. The performance of MDGRAPE-2 and MDGRAPE-3 boards has

been investigated for vortex method calculations and compared with the peak

performance of both boards for Coulomb force calculation. The simultaneous use

of the FMM and MDGRAPE have been proposed for further acceleration of the

present vortex method calculations. The details analyses and its application to

vortex rings collisions will be discussed in the following chapters 4 and 5.
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Chapter 4

Fast Vortex Method Calculation

using a Special-purpose

Computer

4.1 Introduction

In this chapter, a mathematical formulation has been developed for the 3D vortex

method calculation using a special-purpose computer MDGRAPE-2 that was

originally designed for molecular dynamics simulations. A rigorous assessment

of this hardware has been made for a few representative problems and compared

the results with and without it. It is found that the generation of appropriate

function tables, which are used to call libraries, embedded in MDGRAPE-2 is

of primary importance in order to retain accuracy. The error arising from the

approximation is evaluated by calculating a pair of vortex rings impinging to

themselves.

The three critical issues regarding the implementation of the MDGRAPE-2 on

vortex method have been solved. Due to the simple architecture of MDGRAPE-

2, the efficient calculation of the Biot-Savart and Stretching equations have been

performed. It is required to generate an optimum function table when the em-

bedded libraries are called from the main routine. The cross product calcula-

tion which is not considered in the original command set must be handled in a

proper manner, which is treated in some previous works, e.g., Yatsuyanagi et al.
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4.2 Mathematical Formulations

[2003a,b], Elmegreen et al. [2002, 2004] and Sheel et al. [2007]. Due to hardware

specifications force calculates partly with single precision, hence the minimization

of the round-off error has been determined. Consequently, special attentions are

necessary for the floating-point operations. These points are discussed one after

another in the subsequent sections.

4.2 Mathematical Formulations

MDGRAPE-2 is a special-purpose hardware for the calculation of force or poten-

tial between point-mass or point-charge particles that was originally designed for

molecular dynamics simulation. The calculation of interactions between particles

as represented by potential and force are carried out in MDGRAPE-2. In case of

calculating the potential,

Φi =
N∑

j=1

bijg(w) =
N∑

j=1

bijg
(
aij

(|rij|2 + ε2
ij

))
(4.1)

and the force calculations

fi =
N∑

j=1

bijg(w)rij =
N∑

j=1

bijg
(
aij

(|rij|2 + ε2
ij

))
rij (4.2)

are treated similarly, where g(w) is an arbitrary function equivalent to an inter-

molecular force, and aij, bij, εij are arbitrary coefficients which are settled down

for every model. To apply these libraries to the calculation of a vortex method,

Biot-Savart law in Eq. (2.2) is expressed as follows.

ui =
N∑

j=1

Bjg
(
Aj

(|rij|2 + ε2
ij

))
rij (4.3)

where Aj, Bj are arbitrary constants. To implement Eqs. (2.3) and (2.4), it is

required to take special treatment to the cross-product calculation in MDGRAPE-

2 which is similar to Yatsuyanagi et al. [2003a,b] and Elmegreen et al. [2002, 2004]

as follows.

The calculation of the cross product rij × γj is considered.

rij = (xij, yij, zij) ; γj =
(
γx

j , γy
j , γz

j

)
(4.4)
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4.2 Mathematical Formulations

The total moment is

∑
j

rij × γj =
∑

j

(
yijγ

z
j − zijγ

y
j , zijγ

x
j − xijγ

z
j , xijγ

y
j − yijγ

x
j

)
(4.5)

The cross product is considered with regard to the sum of the following three

tensor products.

∑
j

rij ⊗ γx
j =

∑
j

(
xijγ

x
j , yijγ

x
j , zijγ

x
j

)
(4.6)

∑
j

rij ⊗ γy
j =

∑
j

(
xijγ

y
j , yijγ

y
j , zijγ

y
j

)
(4.7)

∑
j

rij ⊗ γz
j =

∑
j

(
xijγ

z
j , yijγ

z
j , zijγ

z
j

)
(4.8)

It should be noted that only non-diagonal components of Eqs. (4.6) to (4.8)

are required for the calculation of a moment of Eq. (4.5).

From Eq. (2.3), the Biot-Savart law reduces according to Eq. (4.3) as

ui = − 1

4π

∑
j

1

σ3
j

g1 (w) (rij × γj) (4.9)

where g1(w) is a function for velocity calculation defined as

g1(w) =
w + 5/2

(w + 1)5/2
; w = (|rij|/σj)

2 (4.10)

The stretching term appearing in Eq. (2.6) can be divided into two parts. The

first and second terms of the right hand side of Eq. (2.6) have been defined as

stx and tx, respectively. The mathematical details are as follows.

First Part:

stx = − 1

4π

∑
j

|rij|2 + (5/2)σ2
j(|rij|2 + σ2

j

)5/2
γi × γj

= − 1

4π

∑
j

g1 (w) (γi × γj)
1

σ3
j

= − 1

4π

∑
j

g1 (w)
(
γy

i γ
z
j − γz

i γ
y
j , γz

i γ
x
j − γx

i γz
j , γx

i γy
j − γy

i γ
x
j

) 1

σ3
j

(4.11)

where g1 (w) is defined as above Eq. (4.10) which is summarized in Table 4.1.
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4.2 Mathematical Formulations

Table 4.1: Function and coefficients

g(w) [w = (rij/σj)
2] Aj Bj εij

g1(w) = w+5/2

(w+1)5/2
1
σ2

j

γj

σ3
j

0

g2(w) = w+7/2

(w+1)7/2
1
σ2

j

γj

σ5
j

0

Second Part:

tx =
3

4π

∑
j

|rij|2 + (7/2)σ2
j(|rij|2 + σ2

j

)7/2
(γi · rij) (rij × γj)

=
3

4π

∑
j

g2 (w) (γi · rij) (rij × γj)
1

σ5
j

=
3

4π

∑
j

g2 (w) (γi · rij)
(
yijγ

z
j − zijγ

y
j , zijγ

x
j − xijγ

z
j , xijγ

y
j − yijγ

x
j

) 1

σ5
j

(4.12)

where g2 (w) is a function for the stretching term calculation summarized in Table

4.1 and defined as

g2 (w) =
w + 7/2

(w + 1)7/2
(4.13)

From Eq. (4.12) we can write for γx
j as follows.

Ii =
∑

j

g2 (w) (γi · rij)
(
γx

j /σ5
j

) · rij

= (γi · ri)
∑

j

g2 (w)
(
γx

j /σ5
j

) · rij −
{

γx
i

∑
j

g2 (w)
(
xjγ

x
j /σ5

j

) · rij

+γy
i

∑
j

g2 (w)
(
yjγ

x
j /σ5

j

) · rij + γz
i

∑
j

g2 (w)
(
zjγ

x
j /σ5

j

) · rij

}

= (γi · ri)S− (γx
i T1 + γy

i T2 + γz
i T3) (4.14)
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4.3 Typical Distribution of Vortex Elements

with

S =
∑

j

g2 (w)
γx

j

σ5
j

· rij

T1 =
∑

j

g2 (w)
xjγ

x
j

σ5
j

· rij

T2 =
∑

j

g2 (w)
yjγ

x
j

σ5
j

· rij

T3 =
∑

j

g2 (w)
zjγ

x
j

σ5
j

· rij

Similar formulations can be readily obtained for the other two components, γy
j

and γz
j .

To solve Eq. (4.9), it is necessary to call the library in Eq. (4.2), embedded in

MDGRAPE-2, three times to compute the cross-product in a three-dimensional

problem. Similarly, to solve Eq. (4.11), it is required to call the library in Eq. (4.1)

three times. Finally, for the Eq. (4.12), it is required to call library in Eq. (4.2)

for
(
γx

j , γy
j , γ

z
j

)×4, i.e. twelve times according to Eq. (4.14). The values shown in

Table 1 were substituted for function g (w) and constants Aj, Bj, εij are defined

for each calculation. Further details fo mathematical expressions can be found in

Appendix B.

The generation of function tables has been discussed in chapter 3. An op-

timum range of a function table will be determined for a pair of vortex rings

calculations by considering the computational domain of vortex elements dis-

tributed there in. The typical distribution of vortex elements has been observed

to determine the computational domain before optimized a function table as fol-

lows.

4.3 Typical Distribution of Vortex Elements

In order to examine the validity and the applicability of the present method,

the three different configurations of two identical colliding vortex rings have been

invesitgated; the details of the computational algorithms and results are discussed

in section 4.6. The typical distribution of vortex elements for each configuration
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4.3 Typical Distribution of Vortex Elements
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Figure 4.1: Typical distributions of vortex elements (head-on)

has been observed carefully. Once finished, the determination of an optimal range

of a function table will be determined hereafter.

Head-on Collisions

Figure 4.1 shows the histogram of the distance between vortex elements scattering

over the computational domain in head-on collisions. The results are extracted

from the data at non-dimensional times tΓ/R2 = 1, 10, 50 and 100. In the

figures, the abscissa w carries the same meaning as that defined in the function
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4.3 Typical Distribution of Vortex Elements

table, cf. also in Eq. (4.10). It is seen from Fig. 4.1(a) that the minimum and

maximum distance in computational domain at time tΓ/R2 = 1 are 3.90 and

103.2, respectively. These values vary as a function of time which are 2.94 and

60.37, respectively at tΓ/R2 = 100. The density of vortex elements is changed

as a function of time and observed here carefully. It is clearly seen that the total

number of distributed particles have been changed. In Fig. 4.1(a), it was 2000

and in Fig. 4.1(d) it was 1200 and is different at different time stages. Because

the initial distribution of particles in a vortex rings and the particle distributions

after collisions between two rings are not the same. Consequently computational

domain has been changed.

Offset Collisions

Figure 4.2 shows the histogram of the distance between vortex elements scattering

over the computational domain in offset collisions. The results are extracted from

the data at non-dimensional times tΓ/R2 = 1, 10, 50 and 100. In the figures,

the abscissa w carries the same meaning as of head-on collisions. It is seen from

Fig. 4.2(a) that the minimum and maximum distance in computational domain

at time tΓ/R2 = 1 are 3.5 and 66.45, respectively. These values vary as a function

of time. Consequently, it is observed from Fig. 4.2(d) that they are 3.1 × 109

and 1.35 × 1011 at tΓ/R2 = 100. It is also clearly seen that the total number

of distributed particles have been changed. In Fig. 4.2(a), it was 1200 and in

Fig. 4.2(d) it was 6000 which has been varied at different time stages. This

indicates that the density of vortex elements is not same for different times and

also for different configurations of vortex rings. It can be shown that the particle

distrubutions of head-on and offset collisions are not same is expected.

Inclined Collisions

Figure 4.3 shows the histogram of the distance between vortex elements scattering

over the computational domain in inclined collisions. The results are extracted

from the data at non-dimensional times tΓ/R2 = 1, 10, 50 and 100. In the figures,

the abscissa w carries the same meaning as of previous two configurations. It is

seen from Fig. 4.3(a) that the minimum and maximum distance in computational
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0 20 40 60 80
0

200

400

600

800

1000

1200

w

N
um

be
r 

of
 E

le
m

en
ts

(a) tΓ/R2 = 1

0 20 40 60 80
0

200

400

600

800

1000

w

N
um

be
r 

of
 E

le
m

en
ts

(b) tΓ/R2 = 10

0 0.5 1 1.5 2

x 10
5

0

500

1000

1500

2000

2500

3000

3500

4000

w

N
um

be
r 

of
 E

le
m

en
ts

(c) tΓ/R2 = 50

0 2 4 6 8

x 10
11

0

1000

2000

3000

4000

5000

6000

w

N
um

be
r 

of
 E

le
m

en
ts

(d) tΓ/R2 = 100

Figure 4.2: Typical distributions of vortex elements (offset)
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Figure 4.3: Typical distributions of vortex elements (inclined)
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4.4 Optimum Range of a Function Table

domain at time tΓ/R2 = 1 are 3.76 and 99.37, respectively. These values vary as

a function of time. Consequently, it is followed from Fig. 4.3(d) that they are

2.156 and 127.2 at tΓ/R2 = 100. It is also clearly seen that the total number of

distributed particles have been changed. In Fig. 4.3(a), it was 1200 and in Fig.

4.3(d) it was 1500 and is different at different time stages. Same observations

have been found here as of head-on and offset collisions.

In summary, an optimal range of a function table will be determined for

the collision of two identical vortex rings considered the computational domain

discussed above. The range of a function table must contains all vortex elements

of colliding vortex rings for longer calculations.

4.4 Optimum Range of a Function Table

The table range must be adjusted for individual problem being calculated. It is

necessary to generate a new function table for a new problem. The preparation of

the function table operation takes only a few minutes, which does not affect the

performance of the entire calculations. To simulate high Reynolds number flows

using vortex method, it is required to incorporate large number of vortex elements

for small-scale structures. There is no connection between the number of elements

and the range of function table. The range is the key factor in maintaining the

accuracy and the single precision calculation of MDGRAPE-2 board, which does

not have any influence on the calculation of high Reynolds number flows.

Based on the above observations, it appears that the table ranges have been

defined carefully prior to use MDGRAPE-2. Various function tables are gener-

ated with different finite input ranges in the host calculation. The output ranges

of those function tables have been checked for the accuracy of MDGRAPE-2 and

found that all ranges are not satisfied with the computational domain, which

was determined in previous section (4.3). Figure 4.4 shows the finite range of a

function table of one of the input domains is 2−12 ≤ w ≤ 220 where w = |rij|/σj.

Figure 4.4(a) shows a typical velocity distribution on a logarithmic scale, calcu-

lated from Eq. (2.3), with and without the use of MDGRAPE-2, where a single

source particle is positioned at the origin and 1000 target particles are distributed

from 10−4 to 102. Intel P4(2.66GHz) and MDGRAPE-2 stand for calculations
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Figure 4.4: Range of a function table.
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4.5 Convection Error

without the use of MDGRAPE-2, and with the use of MDGRAPE-2, respectively.

The velocity becomes zero when |rij|/σj falls outside of the range of the table.

Otherwise, the results of the Biot-Savart calculation on Intel P4(2.66GHz) and

MDGRAPE-2 match each other. It can be observed from figs. 4.4(c) and 4.4(d)

that the minimum and maximum output ranges are 2−12 and 220, respectively.

These ranges are different for different input domains which will be discussed

next.

Figure 4.5 shows a typical velocity distribution on a logarithmic scale, calcu-

lated from Eq. (2.3), with and without the use of MDGRAPE-2, for six different

input ranges. Consequently, six different output ranges have been observed. Figs.

4.5(a) to 4.5(f) represent the ranges and scaling errors of six different types of in-

put ranges of function tables where the x-axis stands for the range of the function

g(w) and the y-axis for induced velocity u. The output ranges of these figures

are mentioned in each. It is observed that the finite range of 2−12 ≤ w ≤ 220 has

been satisfied by the computational domain of the present entire calculations to

obtain significant accuracy.

4.5 Convection Error

The issue here is to evaluate the overall error caused by the use of MDGRAPE-2.

The final result of the calculation has been compared in terms of the position

of the particles for the present test cases. The convection error is defined as the

difference in the position of the same particles between the host and MDGRAPE-

2 for the same time steps. Here convection error is defined as the distance δ is as

follows.

δ (difference) =
√

(xhost − xmd)2 + (yhost − ymd)2 + (zhost − zmd)2 (4.15)

where the suffices md and host represent with and without the use of MDGRAPE-

2, respectively.

The three different configurations of a pair of identical vortex rings have been

choosen. The main objective to validate the special-purpose computer and its

accuracy for vortex method calculations. The calculation alogorithm of vortex
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Figure 4.5: Scaling error for function table in six different ranges. ◦ with

MDGRAPE-2; — without MDGRAPE-2
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rings collisions and its physical properties have been simulated using MDGRAPE-

2 after investigated the convection errors.

Head-on Collisions

Figure 4.6 represents the convection error of head-on collisions of two identical

vortex rings calculated by Eq. (4.15) for different number of iterations. In all

figures, δmax, δmean and δmin stand for the maximum, average and minimum

values of δ evaluated from all of the particles in the domain. It is observed that δ

slightly increases for a larger number of elements. This means that MDGRAPE-

2 induces certain errors for calculations with a large number of elements but

the error stays within a finite range. This error is caused by the influence of

self-induced velocities from the initial position of the particles.

The errors vary for different iterations. In fig. 4.6(a) at initial time iteration,

all errors are below 10−8. These values increase for time iterations 5 and 10. In

fig. 4.6(b), it was below 10−5 at time iteration 5 and it was below 10−4 in fig.

4.6(c).

Offset Collisions

Figure 4.7 represents the convection error of offset collisions of two identical

vortex rings calculated by Eq. (4.15) for different numbers and iterations. In

all figures, δmax, δmean and δmin stand for the maximum, average and minimum

values of δ evaluated from all of the particles in the domain. It is observed that δ

slightly decreases for a larger number of elements. This means that MDGRAPE-2

reduces certain errors for these calculations with a large number of elements but

the error remains constant within a finite range. This improvement is caused by

the influence of self-induced velocities from the initial position of the particles.

The errors vary for different iterations. In fig. 4.7(a) at initial time iteration,

all errors are below 10−6. These values increase for time iterations 5 and 10. In

figs. 4.7(b) and 4.7(c), it was below 10−4 in both time iterations 5 and 10.
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Figure 4.6: Convection error for MDGRAPE-2 for different numbers of

elements(head-on). Here, ¤ –maximum value of all δ, × –average value of all

δ, ∗ –minimum value of all δ
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Figure 4.7: Convection error (offset).
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Figure 4.8: Convection error(inclined).
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Table 4.2: Initial Conditions

Position R r σ Γ0 N ReΓ S

Head-on 0.5 0.05 0.05R 1 2× 314× 91 2500 1

Offset 0.5 0.03 0.05R 1 2× 104× 7 250 R/2

Inclined 1 0.05 0.065 1 2× 502× 61 400 2.7

Inclined Collisions

Figure 4.8 represents the convection error of inclined collisions of two identical

vortex rings calculated by Eq. (4.15) for different number of iterations and num-

ber of particles. The legends stand for same meaning according to previous two

cases. The overall behavior are similar as of head-on collisions except the quan-

titative behavior. This error is caused by the influence of self-induced velocities

from the initial position of the particles.

The errors vary for different iterations. In fig. 4.8(a) at initial time iteration,

all errors are below 10−8. These values increase for time iterations 5 and 10. In

fig. 4.8(b), it was below 10−7 at time iteration 5 and it was below 10−5 in fig.

4.8(c).

In summary, the overall errors induced from MDGRAPE-2 calculations remain

as of expectated level within the finite ranges. These results indicate that the use

of MDGRAPE-2 does not induce any extra error which resist the vortex method

calculations while it accelerates the calculations significantly.

4.6 Application

4.6.1 Computational Algorithm

In order to check the validity and the application of the prpoposed acceleration

method, three different configurations of colliding vortex rings have been simu-

lated as test case. One of the three configurations will be used for other methods

to investigate in details. The initial conditions are details as follows and summa-

rized in table 4.2.
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Figure 4.9: Initial condition for the computation of the collision of two vortex

rings. Here R—radius of ring, r—radius of cross-section, S—distance between

two rings

The head-on collision has been considered as the first test case to compare the

result with and without MDGRAPE-2. In the entire simulations it is assumed the

initial radius of vortex ring is R = 0.5, cross section radius r = 0.05 ( Fig. 4.9),

Reynolds number ReΓ = 2500, core radius σ = 0.05R, circulation of ring Γ = 1

and number of elements N = 57148 where the number of cross-section in the

circumference direction is 314, while the number of elements in each cross-section

is 91. All elements are evenly distributed.

Second, the offset collisions is applied according to Chatelain et al. [2003].

In this case, the initial radius of the vortex rings is R = 0.5, the cross-section

radius is r = 0.03 ( Fig. 4.10), where core radius σ = 0.05R, and Reynolds

number ReΓ = 250 have been used, the number of particles is N=1456 where the

number of cross-section in the circumference direction is 104, while the number

of elements in each cross-section is 7. All elements are evenly distributed. The

initial rings are placed at a distance of R/2 apart in the z direction, offset by R

along the y axis and they move in opposite directions along the z-axis.

Finally, the inclined collisions is considered according to Winckelmans and

Leonard [1993]. Here I assumed that the initial radius of the vortex rings is R = 1
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Figure 4.10: Initial condition for the computation of the collision of two vortex

rings. Here R—radius of ring, r—radius of cross-section, S—distance between

two rings

θ

Figure 4.11: Initial condition for the computation of the collision of two vortex

rings. Here R—radius of ring, r—radius of cross-section, S—distance between

two rings, θ—inclined angle
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while the cross-section radius r = 0.05, see Fig. 4.11. The Reynolds number based

on the ring circulation is ReΓ = 400, and the core radius σ = 0.065. The rings

are inclined at an angle θ = 15◦ relative to the z-axis. The total number of

elements used for the preliminary calculation was N = 6× 104, with the number

of cross sections in the circumference direction being 502, while 61 elements were

distributed in each cross-section. All elements were evenly distributed.

In all calculations, the viscous diffusion was calculated using the core-spreading

method developed by Leonard [1980]. For convection of the particles, the sec-

ond order accurate Adams-Bashforth method was used in the calculation of time

advances (Moin [2001]).

The kinetic energy K or E and enstrophy Ω or ζ are evaluated from the

particle positions and strengths according to Winckelmans and Leonard [1993],

are defined as follows.

E(orK) =
1

16π

∑
i,j

[
2 (γi · γj)(
r2

ij + σ2
j

)1/2
+

(rij · γi) (rij · γj)− r2
ij (γi · γj)(

r2
ij + σ2

j

)3/2

]
(4.16)

and

Ω(orζ) =
1

4π

∑
i,j

[
5σ4

j − r2
ij

(
r2

ij + 3.5σ2
j

)
(
r2

ij + σ2
j

)7/2
(γi · γj)

+3

(
r2

ij

(
r2

ij + 4.5σ2
j

)
+ 3.5σ4

j i
)
σ2

j(
r2

ij + σ2
j

)9/2
(rij · γi) (rij · γj)] (4.17)

4.6.2 Numerical Results

In the following the numerical results have been discussed in details. The MDGRAPE-

2 has been used to develop a fast vortex method. Three different configurations

of colliding vortex rings have been tested and simulated. The numerical results

are discussed separately as follows.

Head-on Collisions

Figure 4.12 shows snap-shots of head-on collision of the vortex rings at various

time stages . The initial setup in colliding ring simulations consists of two coaxial

vortex rings initially placed at upward and downward of the plane z = 0. In Fig.
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(a) tΓ/R2 = 1

(b) tΓ/R2 = 3

(c) tΓ/R2 = 8

Figure 4.12: Snapshots of vortex elements for different time (head-on).
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4.12(a), the rings are initially placed at a distance of 0.4 apart in the z-direction.

As the rings approach to each other, they are stretched in the radial direction

by the velocity induced by the other ring. In Fig. 4.12(b), the impingement

and the increase in ring diameter and the subsequent merger of the rings are

clearly depicted. By the end of the simulation, in Fig. 4.12(c), early signs of

reconnection can be observed. After the impingement from the initial position,

the rings expand outwards rapidly, which leads to the formation of small-scale

structures yet to further time steps in our calculation.

The evolution of the kinetic energy and enstrophy for the various cases is

plotted in Fig. 4.13. These quantities are evaluated from the particle posi-

tions and strengths, as defined in Winckelmans and Leonard [1993]. In the figure

4.13(a), K represents the kinetic energy against the different time span, Host and

MDGRAPE-2 stand for the calculation without and with the use of MDGRAPE-

2. It can be easily observed that the results of host and MDGRAPE-2 calculations

coincide with each other. In the present calculations the flow is incompressible

and unbounded, so there are no (physical) kinetic energy sources. The kinetic

energy can be dissipated by both viscosity and mathematical scheme. Enstrophy

is dissipated by viscosity, but can also be generated by stretching of vortex lines.

Figure 4.13(a) also shows that for the single ring the kinetic energy experiences

a steady monotonic decrease, amounting to a 4.5% drop by the end of the cal-

culation. For the colliding ring simulations, the kinetic energy decreases in the

initial stages at the same rate as for the single ring, but then the rate of decline

increases.

In the figure 4.13(b), ζ represents the enstrophy against the different time

span. In this case also the results of host and MDGRAPE-2 calculations coincide

with each other. Enstrophy is dissipated by viscosity, but can also be generated

by stretching of vortex lines. Figure 4.13(b) also shows that for the single ring the

decay of the kinetic energy is accompanied by a similar decay in the enstrophy,

with a 13% drop at the end of the calculation. On the other hand, the enstrophy

increases in the colliding ring calculations, indicating significant vortex stretching.

The similar explanations can be found in Mansfield et al. [1999] work. The present

calculated results agreed with Mansfield work up to certain time (here 8) even

though all calculation conditions are not exactly the same.
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Figure 4.13: Kinetic energy and enstrophy of head-on collisions.
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Offset Collisions

Figure 4.14 shows the snapshots of the position of vortex elements of offset col-

lisions in different times. Initially rings are apart from each other in opposit

direction along the z-axis (fig. 4.14(a)). At time progress, the both rings are

approach each other and stretched. It can be seen that the stretched has been

started in Fig. 4.14(b). The strong colliding behavior has been observed in

Fig. 4.14(c) and represents the reconnection process according to Chatelain et al.

[2003]. To obtain the similar results compared with Chatelain et al. [2003] work,

furher modifications are needed.

Figure 4.15 represents the kinetic energy and enstrophy, respectively according

to head-on collisions. The qualitative result has good agreement with referred

work upto tΓ/R2 = 1.6 but does not match the quantitative results as because

the definitions and numerical schemes are different from our calculations. In this

case also the results of MDGRAPE-2 differed from Host compared with that

of head-on collision. This is also due to the difference in particle distribution

between the two cases. It is highly considered to improve the quantitative results

by increasing the number of elements in further research.

Inclined Collisions

Figure 4.16 shows the snapshots of vortex elements of two colliding inclined vortex

rings at various time stages. The initial setup in colliding ring simulations consists

of two identical vortex rings initially inclined at an angle θ = 15◦. In Fig. 4.16(a),

the rings are initially placed at a non-dimensional distance of s = 2.7 in the z-

direction. Each vortex ring approaches by self-induced velocity from this initial

stage. At t∗ = 3 in Fig. 4.16(b), where t∗ = tΓ/R2 with Γ being the initial

circulation, the first impact occurs and the two vortex rings are stretched and

deformed. As time progresses, considerable differences appear in each stage. At

t∗ = 8, the arced-shape structure is formed and the downward stretch is strong,

cf. Fig. 4.16(c).

The evolution of the kinetic energy of host and MDGRAPE-2 compared with

Winckelmans work are shown in Fig. 4.17(a). In the present calculations the

flow is incompressible and unbounded, so there are physically no kinetic energy
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(a) tΓ/R2 = 0

(b) tΓ/R2 = 0.8

(c) tΓ/R2 = 1.6

Figure 4.14: Snapshots of vortex elements for different time (offset).
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Figure 4.15: Kinetic energy and enstrophy of offset collisions.
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(a) tΓ/R2 = 1

(b) tΓ/R2 = 3

(c) tΓ/R2 = 8

Figure 4.16: Snapshots of vortex elements for different time (inclined).
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Figure 4.17: Time series of kinetic energy and enstrophy compared with Winck-

elmans work. 86
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sources. The kinetic energy can be dissipated by both viscosity and numerical

errors. From the comparison between the results obtained with the various time

steps, it has been observed that there is no significant difference between host

calculation and MDGRAPE-2. It is shown in Fig. 4.17(a) for the time step

∆t = 0.08, it is easily observed that the agreement with the existing data of

Winckelmans and Leonard [1993] is also satisfactory.

On the other hand, the slight difference in the decay of enstrophy, Fig. 4.17(b),

is observed between the present computation and that by Winckelmans and

Leonard [1993], though this is due to the difference in the treatment of viscous

diffusion schemes and has nothing to do with the accuracy of MDGRAPE-2.

Totsuka and Obi [2005, 2007] have also observed a similar tendency in the com-

putation of two-dimensional homogeneous isotropic turbulence where the decay

of enstrophy is subject to the choice of diffision approximation. Nevertheless, the

main target of this article is to discuss the issues related to the use of MDGRAPE-

2 in combination with vortex method calculation and accuracy of different viscous

diffusion schemes does not have any influence on the assessment and the accuracy

of MDGRAPE-2.

4.7 Conclusions

A special-purpose computer MDGRAPE-2 for N -body simulations was applied

to the calculation of the vortex method. A mathematical formulation has been

developed for 3D vortex method using this special-purpose computer. The calcu-

lation cost has been reduced significantly for present calculations. The definition

of the function table range plays an essential role to achieve satisfactory accuracy

in MDGRAPE-2. The acceptable accuracy has been achieved by investigating for

three different configurations of impinging vortex rings. The results have good

agreement when compared with the host calculations and referenced work. Fur-

ther acceleration can be achieved with use of MDGRAPE-3 and the simultaneous

use of FMM with MDGRAPE-2 and MDGRAPE-3 are discussed in chapter 5.
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Chapter 5

The Study of Colliding Vortex

Rings using a Special-purpose

Computer and FMM

5.1 Introduction

The main focus of this chapter is to implement the fast algorithms on special-

purpose processors. The first implementation of fast algorithms on the GRAPE (

Sugimoto et al. [1990]) architecture was presented by Makino [1991], and showed

a 30-50 times increase in computational speed compared to the treecode without

GRAPE. The implementation of the fast multipole method (FMM) on MDGRAPE-

2 was presented by Chau et al. [2002a,b] and similar results were obtained. The

application of P 2M2 tree code on MDGRAPE-2 was presented by Kawai et al.

[2004] and accelerates the calculation by a factor of 20-200 compared with con-

ventional PCs. The above mentioned implementations have been applied to as-

trophysical problems and MD simulations.

In this study, the possibility of further acceleration will be investigated with

the simultaneous use of the FMM by Cheng et al. [1999] using special-purpose

hardware; MDGRAPE-3 (Narumi et al. [2006]). Some issues regarding the opti-

mum level of the FMM, and the use of pseudo-particle methods (Makino [1999])

are addressed. The collision of two inclined vortex rings at high Reynolds num-

bers has been simulated in this calculation to check the validity and applicability
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of new method. The dynamics of the colliding vortex rings have been studied

and the computation time has been reduced by a factor of 2000 compared to a

direct calculation on Xeon 5160 (3.0GHz).

At first the various forms of FMM and their performance on MDGRAPE-3

have been discussed. Then this method is applied to the vortex method calcu-

lation of colliding vortex rings. The effect of spatial and temporal resolution at

high Reynolds numbers is investigated by comparing the energy spectrum and

decay rate of the kinetic energy and enstrophy. The reconnection of the vortex

rings was clearly observed, and the discretization error became nearly negligible

for the calculation using 107 elements.

5.2 FMM on MDGRAPE-3

The section focuses on the simultaneous use of the FMM and MDGRAPE-3.

The details mathematical formulations and calculation algorithm are discussed in

chapters 2 and 3, respectively. The optimization techniques and its performance

on the calculation of two colliding inclined vortex rings will be discussed below.

In the present calculations, the FMM by Cheng et al. [1999] has been used.

The most time consuming parts of the FMM are the multipole to local(M2L)

translation and the direct calculation. The balance between these two steps is

dependent on the level of box divisions. Dividing the particles into excessively

small boxes will result in an enormous amount of multipole to local translations,

whereas not dividing them enough would result in a large amount of direct cal-

culation of neighboring particles. These two steps must be balanced by changing

the level of box divisions according to the number of particles being calculated.

The mutipole and local expansions and their translations are impossible to

calculate on the GRAPE architecture. Therefore, in a straightforward implemen-

tation of the FMM, MDGRAPE-3 can only be used for the final step of the FMM

where the direct interaction of the particles is calculated.

The inefficiency of the above method rests in the fact that only one of the

two hot-spots of the FMM is calculated on MDGRAPE-3. The hot-spots of

FMM are discussed in appendix D. It is possible to calculate both hot-spots

of the FMM on MDGRAPE-3 if the multipole to local translation is converted
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into an N-body interaction. This requires the use of two independent methods -

the Poisson integral method by Anderson [1992], and the pseudo-particle method

by Makino [1999]. Instead of calculating the multipole and local expansions

at the center of the boxes, these methods calculate the physical properties of

interest at quadrature points(Hardin and Sloane [1996]) placed on a spherical

shell surrounding the boxes. Details of the implementation of these algorithms

on MDGRAPE-2 are given in Chau et al. [2002a,b] and on MDGRAPE-3 are in

chapter 3.

In Anderson’s method, the multipole expansion of the potential due to a

clump of particles is effectively expressed in terms of the values of potentials on

a sphere surrounding the particles. The potential outside the sphere is given by

the surface integral on that sphere, which is then approximated by the sum over

sampling points. This method, though elegant, appears to be rather indirect.

An alternative approach is to use multiple particles to represent the multi-

pole expansion. The basic idea here is to place small number of pseudoparti-

cles which reproduce the multipole expansion of the original physical particles

(Makino [1999]).

The difference is that the value of potential is used in Anderson’s method

and the mass distribution itself is used in Makino’s method. The advantage of

Makino’s method is that it can be applied in special-purpose computer compared

with Anderson’s method.

Some critical issues to be used FMM such as elapsed time, momentum effect

of its accuracy and optimization of the calculation will be discussed in consequent

sections before applying to vortex rings calculation.

5.2.1 Elapsed Time

In this section, the elapsed time has been investigated for every step of FMM

and pseudo-particle multipole method(PP-FMM) calculation with and without

the use of MDGRAPE-3. This analysis will leads to estimate and optimize the

calculation cost and use of both techniques to implement in actual vortex method

calculations.
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Figure 5.1: Elapsed time on MDGRAPE-3(Biot-Savart)
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Figure 5.1 shows the elapsed time to implement the FMM and the pseudopar-

ticle multipole method(PP-FMM) on MDGRAPE-3 for Biot-Savart calculation

which calculates induced velocity from vorticity transport equation, Eq. (2.1).

Elapsed time of different calculations represent in different colours. It can be

easily seen that the brown colour consumed half of the total time in both cases

which stands for direct calculation. This means it is required to reduce direct

calculation time to get the maximum efficiency of these methods. In Fig. 5.1(b),

multipole to local translation(M2L) consumed second largest time which contrary

to pseudo-particle method. This may caused for the limitations of MDGRAPE-3

hardware specifications. Total time of PP-FMM calculation is larger than that

of FMM calculation for the same calculation condition. This may caused for the

neighbor region of pseudo-particles.

Figure 5.2 shows the elapsed time with and without the use of MDGRAPE-3.

In Figure 5.2(a), it can be observed that direct calculation consumed most of the

calculation time without using MDGRAPE-3. The pseudo-particle FMM bal-

anced between the direct and M2L calculation (Fig. 5.2(b)) but the total elapsed

time is larger than FMM only. Both of the direct and M2L calculation time have

been reduced further and balanced when pseudo-paticle method has been imple-

mented on MDGRAPE-3 shown in Figure 5.2(c). The total time also reduced

in this case. It is clearly observed that the between direct and M2L calculation

is performed with the use of PP-FMM with MDGRAPE-3. The simultaneous

use of FMM and MSGRAPAE-3 reduced the total calculation time significantly.

Consequently, the vortex method calculation can be further accelerated with the

use of this acceleration technique.

5.2.2 Momentum Effect on FMM Accuracy

Multipole moment is the coefficients of a series expansion of a potential due to

continuous or discrete sources (e.g., particle distribution). A multipole moment

usually involves powers (or inverse powers) of the distance to the origin, as well as

some angular dependence. The order of multipole moment p (Eqs. 2.13 to 2.16)

strongly affects the balance between the accuracy and speed of FMM calculation.
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Figure 5.2: Elapse time with and without the use of pseudo-particle method.

Here, brown→ Direct calculation, yellow→ M2L calculation, blue→ Initialization
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In this section the accuracy of FMM calculation has been checked to determine

the order of multipole moment for entire calculations.

Biot-Savart and stretching term calculations have been performed separately

by changing the order of moments from p = 7 to 10 as shown in Fig. 5.3.

Figure 5.3(a) represent L2 norm error for Biot-Savart calculation for different

moments. For p = 7, initially the error is above 10−6 and it was increased for

larger N = 104 which is below 10−4. The error has been decreased when order of

moment increases accordingly. It was below 10−7 initially for p = 9 and 10, also

it is below 10−6 for p = 10.

Figure 5.3(b) represent L2 norm error for stretching term calculation for dif-

ferent p. The similar behaviour as of Biot-Savart calculation has been observed.

The overall error is increased nearly 10−6 compared to Biot-Savart one. This may

influenced for other internal errors of stretching term but it will not have any af-

fect when applied to actual calculations. Here the maximum number of particles

N = 104 has been used. The overall results indicate that the error will be further

increased for larger N . It has been confirmed that the error of FMM calculation

is below 10−5 for the present entire calculations. Therefore, the order of moment

is p = 10 is used in the present vortex method calculation by considering the

above mentioned results.

5.2.3 Optimization of FMM

An optimization problem is to find the variables that minimize or maximize the

objective function while satisfying the constraints. In the present calculation,

a level of box division has been determined to achieve minimum cost for large

number elements calculation. This level is called the optimum level. The optimum

level changes according to the total number of elements N being calculated.

Optimization of FMM calculations is an important issue to use it either with

or without MDGRAPE-3. The order of multipole moments (here ’p’ in Eqs. 2.13

to 2.16) strongly affects to balance the accuracy and speed of FMM calculation.

On the one hand, higher order multipole moments gives the high accuracy but it

requires very high computation cost. On the other hand, lower order multipole
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Figure 5.3: Accuracy of FMM at different moments
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moments causes large amount of error(Figure 5.3) while it requires less compu-

tation cost. The most time consuming parts of FMM are the M2L and direct

calculation. It is important to balance these two steps by determining optimum

level of box divisions according to number of elements are being calculated. I

will briefly discuss the optimization techniques of present FMM calculations as

follows.

The optimum box level will be investigated for the FMM without MDGRAPE-

3, FMM with MDGRAPE-3, and the pseudo-particle method on MDGRAPE-3.

The cpu-time of the Biot-Savart calculation is plotted against the number of

elements for different box levels in Fig. 5.4. L is the level of the oct-tree box

division, where the original domain is divided into 2L × 2L × 2L boxes. N is the

number of elements.

As mentioned earlier, the workload of the multipole to local translation and

direct calculation must be optimized. The calculation cost of the multipole to

local translation is a function of L, but not N . Therefore, the FMM with higher

L has a minimum calculation cost, which is not affected by N . This is clearly

observed in all plots in Fig. 5.4. On the other hand, the direct calculation for

neighboring particles is still a O(N2) operation. Therefore, keeping L constant

and increasing N eventually results in a O(N2) curve, because the direct calcula-

tion will consume most of the computational time. This is also clearly observed

in most plots in Fig. 5.4. The balance of the workload is achieved by simply

selecting the box level L that gives the minimum CPU-time. The wavy nature of

FMM plot in Fig. 5.7 is the result of connecting the minimum lines in Fig. 5.4(a).

When the FMM is used with MDGRAPE-3, the balance changes significantly

due to the acceleration of the direct calculation, as shown in Fig. 5.4(b). The

points at which the lines crossover are not as clear as in Fig. 5.4(a). However,

it will be shown in Fig. 5.7 that there is still a significant gain in speed when

used the FMM on MDGRAPE-3. Furthermore, contrary to my expectations,

the pseudo-particle method on MDGRAPE-3 did not require the use of larger L.

The expectation was that, since the pseudo-particle method can calculate both

the mutipole to local translation and direct calculation on MDGRAPE-3, the

balance of the two should remain somewhat close to the origianl FMM without

MDGRAPE-3. However, the results in Fig. 5.4(c) show that the optimum level
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(a) FMM

(b) FMM-MDG3

(c) PPM-MDG3

Figure 5.4: Change in optimum box level for different methods
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is even lower than that of the FMM on MDGRAPE-3. This is caused by the

increase in the computational cost of the multipole to local translation when I

use pseudo-particle methods. Since these methods require 216 pseudo-particles

to represent a multipole moment of order 10, the calculation cost of the multipole

to local translation is 2162 per box, while the rotation-based FMM requires only

385 calculations per box.

In summary, the optimum level of box division of the FMM on the MDGRAPE-

3 is approximately two levels lower than that of the FMM without the MDGRAPE-

3 because only the direct summation is accelerated.

5.2.4 Test for CPU-time and Error

In this section, the maximum efficiency will be discussed of the proposed scheme

considered the highest accuracy to be achieved. A comparative study among the

different algorithms on different platforms has been observed to select the best

approach for the actual calculation.

The calculation cost and accuracy are an important issue for any numerical

simulation. In this calculation these two factors have been investigated carefully.

The calculation has been accelerated retained the accuracy at an acceptable level.

The cputime has been compared with different acceleration techniques at one time

step by changing the number of particles.

The L2 norm error is defined as the difference in the induced velocity of the

same particles between the host and MDGRAPE-3 for the same time step as

follows.

L2(norm error) =

∑
((uhost − umd3)

2 + (vhost − vmd3)
2 + (whost − wmd3)

2)∑
(u2

host + v2
host + w2

host)
(5.1)

where the suffices md3 and host represent with and without the use of MDGRAPE-

3, respectively.

The Biot-Savart and stretching term calculation are performed separately

and evaluate the cpu-time for different element numbers. The same calcula-

tions are done with and without the MDGRAPE-3. The cpu-time of the Biot-

Savart calculation for one time step is plotted against the number of elements
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Figure 5.5: Cputime and error of Biot-Savart calculation
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in Fig. 5.5. The L2 norm error between the direct calculation and FMM cal-

culations are also shown. The two figures on the top are for the calculations

without the MDGRAPE-3, and the ones below are with the MDGRAPE-3. The

number of elements is changed from 103 − 105 for the calculations without the

MDGRAPE-3, and 103−106 for the calculations with MDGRAPE-3. The legends

’Xeon 5160’, ’fmm’, ’r-fmm’, ’pp-fmm’, and ’pp-tree’ correspond to, the calcula-

tion without FMM, standard FMM, rotation based FMM, pseudo-particle FMM,

pseudo-particle tree code.

The direct calculation on ’Xeon 5160(3.0GHz)’ has a cost of O(N2). The FMM

and rotation based FMM are close to O(N), but the pseudo-particle methods

both have a steeper slope. This is caused by inefficiency in having to expand the

neighbor region, which is the price I must pay for calculating the FMM entirely

on the MDGRAPE-3. If these methods have been used without the MDGRAPE-

3 they are simply slow methods, as shown in Fig. 5.5(a). However, when these

methods are used with the MDGRAPE-3 they are faster than the standard and

rotation based FMM when 104 < N < 105, as shown in Fig. 5.5(c). For larger

N , the pseudo-particle methods are slower due to their steeper slope.

In the present calculations p = 10 has been used and the L2 norm error is

below 10−5 for most calculations. The pseudo-particle methods have an extremely

small error for small N , because these calculations are single level calculations and

do not contain multipole to multipole or local to local translation errors. It can

be seen that using a 5×5 neighbor region makes the multipole to local translation

error quite small. It is not shown here but using a 3×3 neighbor region produces

an excessive amount of error. Therefore, the large neighbor region must be used

despite the fact that the resulting accuracy seems too high compared to standard

FMMs. One resonable way to trade the accuracy surplus of the pseudo-particle

methods would be to reduce p.

The cpu-time and L2 norm error for the stretching term calculation are shown

in Fig. 5.6. The general behavior is identical to the Biot-Savart case, but since the

stretching term equation is more complex than the Biot-Savart, the calculation

takes longer. When compared to the Biot-Savart calculation, the breakeven points

between the different slopes are shifted to a smaller N . Thus, the effect of using

a method with better scaling is more significant for this case.
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(a) Cpu-time (host)
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Figure 5.6: Cputime and error of stretching term calculation
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The CPU-time for all methods (when optimized) are plotted in Fig. 5.7. Xeon

5160(3GHz), MDG3, FMM, FMM-MDG3, and PPM-MDG3 represent the cal-

culation without FMM or MDGRAPE-3, with MDGRAPE-3, with FMM, with

FMM and MDGRAPE-3, and with the pseudo-particle method and MDGRAPE-

3. The direct calculation without MDGRAPE-3 has a high asymptotic constant

and an order of O(N2). All calculations were performed on a dual core Xeon 5160

(3.0GHz) processor. The direct calculation on MDGRAPE-3 has a lower asymp-

totic constant but still has a scaling of O(N2). On the contrary, the FMM with-

out MDGRAPE-3 has a high asymptotic constant, but its complexity is O(N).

The combination of the FMM and MDGRAPE-3 results in a calculation with a

low asymptotic constant and O(N) complexity. The pseudo-particle method on

MDGRAPE-3 has a speed comparable to the FMM on MDGRAPE-3. However,

it appears from Fig. 5.7 that the pseudo-particle method on MDGRAPE-3 does

not quite scale as O(N). At N = 106 the FMM on MDGRAPE-3 is approximately

4 times faster than the FMM.

The |L2| norm error from the direct calculation without MDGRAPE-3 is

shown for all other methods in Fig. 5.8. The MDGRAPE-3 contains errors of

its own, which stem from the partially single precision calculation, and use of
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Figure 5.8: |L2| of different methods

interpolation for the calculation of the cut-off function. This error is constantly

lower than the FMM errors for all N . The error of the pseudo-particle method is

lower than that of MDGRAPE-3 for N < 4× 104, thus the PPM-MDG3 matches

MDG3 until this value.

It is necessary to choose which type of FMM will be used to calculate the

collissions of two vortex rings with N > 106 elements. Considering the results

above, the rotation based FMM has been selected by using MDGRAPE-3 for

the direct calculation. To clarify the acceleration and accuracy achieved by the

combination of FMM and MDGRAPE-3, the results are reploted for the Biot-

Savart and stretching term calculations, without any acceleration, with FMM,

with MDGRAPE-3, and both FMM and MDGRAPE-3 in Figs. 5.9 and 5.10,

respectively. Note that the ’FMM’ in these plots correspond to the ’r-fmm’ in

earlier plots(Figs. 5.5 and 5.6), but for 103 < N < 106. It is clearly seen that

the direct calculation on ’Xeon 5160’ and MDGRAPE-3 both have a scaling of

O(N2), the use of the FMM brings them both down to O(N) in both cases.(Figs.

5.9(a) and 5.9(b)). The MDGRAPE-3 has an small error compared to FMM and

in combination with both in Fig. 5.10(a). The error of MDGRAPE-3 controlled

by its system and using FMM this error goes slightly increase as in the same or-
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Figure 5.9: Cpu-time of FMM, MDGRAPE-3, and both

104



5.2 FMM on MDGRAPE-3

10
3

10
4

10
5

10
6

10
−6

10
−4

10
−2

N

L2  n
or

m
 e

rr
or

MDG3
FMM
FMM−MDG3

(a) Biot-Savart

10
3

10
4

10
5

10
6

10
−6

10
−4

10
−2

N

L2  n
or

m
 e

rr
or

MDG3
FMM
FMM−MDG3

(b) Stretching term

Figure 5.10: Accuracy of FMM, MDGRAPE-3, and both
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Table 5.1: Accelaration ratio at N = 106

Biot-Savart stretching

Xeon 5160 (3.0GHz) Xeon 5160 (3.0GHz)

↓ ×462 ↓ ×119 ↓ ×613 ↓ ×52

FMM MDG3 FMM MDG3

↓ ×4.1 ↓ ×16 ↓ ×2.8 ↓ ×33

FMM+MDG3 FMM+MDG3

der of magnitude when compared with FMM. The calculation time takes longer

and the L2 norm error becomes larger for large N in the case of stretching term

calculations (Figs. 5.9(b) and 5.10(b)) when compared with Biot-Savart calcula-

tion. This error may caused by the vortex strength and the discretization error

of stretching term.

The quantitative acceleration ratio for N = 106 is given in Table. 5.1. For the

Biot-Savart calculation, the FMM alone accelerates the calculation 462 times, and

simultaneous use of the MDGRAPE-3 further accelerates it 4.1 times. From a

different perspective, the MDGRAPE-3 can accelerate the calculation 119 times,

but the simultaneous use of the FMM allows a 16 fold increase from that. Sim-

ilarly, the stretching term calculation is 613 times faster when used the FMM,

and another 2.8 times faster when we combine it with the MDGRAPE-3. The

MDGRAPE-3 accelerates the stretching term calculation 52 times, and another

33 times if we use the FMM on it.

5.3 Vortex Ring Calculation

5.3.1 Calculation Conditions

The initial radius of the vortex rings was R = 1 while the cross-section radius was

r = 0.05, see Fig. 4.11. The rings were inclined at an angle θ = 15◦ relative to the

z-axis. The Reynolds number based on the ring circulation was ReΓ = Γ/ν = 400.

Two types of initial conditions were used for the present investigation. The
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first was identical to the previous calculations (Sheel et al. [2007]) which was used

to validate the present method by reproducing previous results. For this case, the

initial core radius of the vortex elements was σ0 = 0.065, and the total number of

elements was N ≈ 6×104, with the number of cross sections in the circumference

direction being 502, while 61 elements were distributed in each cross-section of

the two rings(Table 4.2). The absolute value of the vortex strength was constant

for all elements.

In the second condition, the initial condition was modified so that the vortex

method could stably calculate until the reconnection occured. This second initial

condition had a Gaussian distribution of vorticity in the cross section, as observed

in experiments (Shariff et al. [1994]). The vortex elements were distributed up

to 3σg, where σg is the standard deviation of the Gaussian distribution. This

allows the diffusion to take place at the regions surrounding the vortex ring.

Furthermore, the initial core radius of the vortex elements σ0 was set to twice

the inter-particle spacing, which guarantees the overlap of elements for long time

calculations.

5.3.2 Comparison with previous calculations

Here I will discuss the validity and comparative results as an implementation

of FMM on the both of MDGRAPE-2 and MDGRAPE-3. The global kinetic

energy and enstrophy have been investigated for the case of MDGRAPE-2 while

other details results are checked for MDGRAPE-3 case. The comparative study

between MDGRAPE-2 and MDGRAPE-3 has been discussed in chapter 3. The

kinetic energy and enstrophy have been calculated according to the Eqs. (4.16)

and (4.17), respectively.

The evolution of the kinetic energy compared with different schemes are shown

in Fig. 5.11(a). In the figure, Intel P4(2.66GHz), MDG2, FMM and FMM-

MDG2 stand for without the use of any acceleration techniques, with the use

MDGRAPE-2, with the use of FMM and with the simultaneous use of the FMM

and MDGRAPE-2. From the comparison among the results obtained with the

various time steps, it has been observed that there is no significant difference

between host calculation among with others.
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Figure 5.11: Time history of kinetic energy & enstrophy
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The evolution of the enstrophy compared with different schemes are shown

in Fig. 5.11(b). The legends are same as of Fig. 5.11(a). From the comparison

between the results obtained with the various time steps, it has been observed

that there is no significant difference between host calculation among with others

in this case also.

The above results indicate that the new methods are calculated accurately in

the present calculation compared with the host and previous calculations as well.

Now I will confirm the validity for the simultaneous use of the FMM and

MDGRAPE-3 by comparing the previous results. In this case, the collision of

vortex rings is calculated using the first condition mentioned in previous section.

In this calculation, the viscous diffusion was calculated using the core-spreading

method discussed in chapter 2. For convection of the particles, the second order

accurate Adams-Bashforth method was used in the calculation of time advances

(Moin [2001]). The kinetic energy K and enstrophy ζ are evaluated from the par-

ticle positions and strengths according to Winckelmans and Leonard [1993], and

are defined in chapter 4(Eqs. 4.16 and 4.17). The energy spectra are calculated

from the velocity distribution along the z-axis at selected times. The fast Fourier

transform has been used to calculate one dimensional energy spectra from this

velocity.

Figure 5.12 shows the position of vortex elements of two colliding vortex rings

in different schemes for the same number of particles at the same time tΓ/R2 =

10. It is clearly observed that the flow patterns are quite similar for different

schemes in Figs. 5.12 (a)-(c). Considered the above results, it is difficult to

analyze the difference pattern without observing the physical characteristics of

ring impingement and will be discussed later.

The evolution of the kinetic energy and enstrophy are compared with that

of Winckelmans and Leonard [1993] in Fig. 5.13. The time is normalized by

the circulation and radius of the vortex ring. The energy and enstrophy are

normalized by their initial values. The Xeon 5160, MDG3, FMM-MDG3, and

Wnkmns93, represent the direct calculation without MDGRAPE-3, direct cal-

culation on MDGRAPE-3, the calculation of FMM on MDGRAPE-3, and the

resutls of Winckelmans and Leonard [1993].

109



5.3 Vortex Ring Calculation

(a) Xeon 5160

(b) MDG3 (c) FMM+MDG3

Figure 5.12: Visualization of vortex elements (tΓ/R2 = 10)
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Figure 5.14: Energy Spectra

The results with and without the FMM and MDGRAPE-3 do not show

any notable difference. The difference between the results of Winckelmans and

Leonard [1993], which is thought to be a consequence of using different viscous

diffusion schemes, is also marginal.

The one dimensional kinetic energy spectra is ploted in figure 5.14. In the

figure x-axis represents the wave number space and y-axis stands for the one

dimensional energy spectra calculated from the velocity distribution along the

z-axis. It is clearly observed that the results have excellent agreement with the

host calculation among with other methods.

5.3.3 Calculation with Improved Initial Conditions

The collision of vortex rings is calculated using the second condition. The num-

ber of particles is changed for 105 ≤ N ≤ 107, while the Reynolds number is

kept constant(ReΓ = 400). The corresponding number of elements per cross sec-

tion and number of cross sections are shown in Table 5.2. These numbers are
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Table 5.2: Breakdown of the Number of Elements

Case A B C

Number of Rings 2 2 2

N per Cross Section 190 418 910

Cross Sections 271 1261 5677

Total 102980 1054196 10332140

determined by choosing a inter-particle distance that yields the total number of

elements closest to N ≈ 105, N ≈ 106, and N ≈ 107.

The initial vorticity distribution has been modified so that it has a Gaussian

distribution in the cross section (Shariff et al. [1994]).

ω =
Γ

2πσ2
exp

(−r2

2σ2

)
(5.2)

Furthermore, the kinetic energy and enstrophy are now calculated by simply

integrating for all particles

K =
1

2

N∑
i

ui · ui (5.3)

ζ =
N∑
i

ωi · ωi (5.4)

5.3.4 Effect of Temporal Resolution

The effect of temporal resolution is investigated for the case of ReΓ = 400 and

N ≈ 105. The kinetic energy spectra at different times is shown in Fig. 5.15.

The energy spectra are calculated in the same way as the previous calculations.

The initial energy spectra in Fig. 5.15(a) are similar to those in Fig. 5.14. As the

calculation proceeds, the vortex ring collides and causes the energy spectra to

change dramatically, as shown in Fig. 5.15(b). At later stages of the calculation,

the difference in temporal resolution results in a significant difference between the

energy spectra, which is clearly shown in Fig. 5.15(d). The results of ∆tΓ/R2 =

0.05 and ∆tΓ/R2 = 0.02 are closer than that of ∆tΓ/R2 = 0.1.
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Figure 5.15: Effect of Temporal Resolution on the Energy Spectra
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Figure 5.16: Effect of Temporal Resolution on the Decay of Kinetic Energy and

Enstrophy
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5.3 Vortex Ring Calculation

The decay of the total kinetic energy and enstrophy are shown in Fig. 5.16.

Both of the kinetic energy and enstrophy are normalized by their initial values.

Compared to the results of the previous calculations shown in Fig. 5.13, the

decay of kinetic energy agrees quite well, where they both decrease to about 0.7

at tΓ/R2 = 8. On the other hand, the enstrophy increases after tΓ/R2 ≈ 15 in

the present calculation. It will be shown next that this increase in enstrophy is

caused by insufficient spatial resolution.

5.3.5 Effect of Spatial Resolution

Before investigating the effect of spatial resolution for turbulent statistics, the

movement of vortex elements for different N at different times are shown as

follows.

The movement of vortex elements for ReΓ = 400 and N for CaseA is plotted

in Fig. 5.17. The vortex elements are initially distributed in a ring shape, having

a cross sectional radius of 3σ, where σ is the cross sectional radius of the vorticity

distribution used in Eq. 5.2. The situation of the rings at tΓ/R2 = 0 is the same

as the schematic shown in Fig. 4.11. At tΓ/R2 = 15, the two rings collide and

begin to merge. At tΓ/R2 = 30, the vorticity ωy near y = 0 is mostly canceled,

and the two rings move as one. At tΓ/R2 = 45 the vortex rings reconnect and

form two new rings again.

The movement of vortex elements for ReΓ = 400 and N for CaseB is plotted

in Fig. 5.18. The plots at tΓ/R2 = 0 and 15 are similar to those of Fig. 5.17.

The plots at later times seem different at first hand, but the only differences are

in the density of the particles. The collision of vortex rings leaves a tail of vortex

elements with very small vorticity near the point of origin (0,0,0). This is seen

in Figs. 5.17(c) and 5.17(d), but is much more dense in Figs. 5.18(c) and 5.18(d),

which causes the figures to appear different.

One of the key features of the present calculation is that the vortex reconnec-

tion is reproduced more realistically than the previous calculations by Winckel-

mans and Leonard [1993] and Fukuda et al. [2005]. These results are supported

by the fact that the present method can handle the diffusion more accurately

since it considers the diffusion in the region surrounding the rings and also uses
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5.3 Vortex Ring Calculation

(a) tΓ/R2 = 0 (b) tΓ/R2 = 15

(c) tΓ/R2 = 30 (d) tΓ/R2 = 45

Figure 5.17: Position of Vortex Elements for Case A

117



5.3 Vortex Ring Calculation

(a) tΓ/R2 = 0 (b) tΓ/R2 = 15

(c) tΓ/R2 = 30 (d) tΓ/R2 = 45

Figure 5.18: Position of Vortex Elements for Case B
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Figure 5.19: Effect of Spatial Resolution on the Energy Spectra

an accurate spatial adaption technique to ensure the convergence of the diffusion

scheme for longer calculations. The reconnection has been observed here is also

similar to the DNS results of Cottet et al. [2000] (p. 245), experimental results

by Kida and Takaoka [1994] and also computations by Chatelain et al. [2003].

The comparison of the position of vortex elements for different N shows little

qualitative difference, although the quantitative difference between the turbulence

statistics is quite large, which will be shown next.

The Reynolds number ReΓ = 400 is kept constant while the number of par-

ticles is increased from N = 105 to N = 107. The energy spectra for different
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Figure 5.20: Effect of Spatial Resolution on the Decay of Kinetic Energy and

Enstrophy
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5.4 Conclusions

N at various time stages are plotted in Fig. 5.19. The overall behavior of the

energy spectra at each time is similar to Fig. 5.15. Initially, there are no notable

differences for larger N in Fig. 5.19(a). Significant differences have clearly been

observed as time progresses. It has been clearly observed that the energy spectra

are closer to each other for larger N in Fig. 5.19(d). The decay of kinetic energy

and enstrophy are shown in Fig. 5.20. These plots also show closer results when N

is larger. It is clearly shown that the enstrophy in Fig. 5.20(b) does not increases

for larger N , as in Fig. 5.16(b). This result shows that the spatial resolution has a

large effect on these calculations and for the calculation of ReΓ = 400, the vortex

method requires N = 107 particles for an accurate calculation. The above results

indicate that for the calculation of further high Reynolds numbers, the vortex

method requires significantly larger N , which is possible by using the proposed

acceleration method.

5.4 Conclusions

The vortex method calculation is accelerated significantly by the simultaneous

use of the FMM and special purpose computers MDGRAPE-2 and MDGRAPE-

3. The FMM on MDGRAPE-3 is about 16 times faster than the MDGRAPE-3

itself, and approximately 4 times faster than the FMM on a Xeon 5160 (3.0 GHz)

for the Biot-Savart calculation of N = 106 elements. The errors involved in the

use of the MDGRAPE-3 are less than the errors of the FMM, and thus are small

enough to perform an accurate vortex method calculation.

The collision of two vortex rings is selected as a test case. The reconnection

of the vortex rings in the present calculation is similar to what is seen in exper-

imental and DNS results. This is a result of the high precision of the stretching

and diffusion calculations. The results of the calculations using more than 106

particles, not only reproduce the qualitative aspects of the reconnection, but also

show nearly negligible discretization error. These features support the use of pure

Lagrangian vortex methods in fairly complex 3-D flows.
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Chapter 6

Conclusions and Outlook

6.1 Fast Vortex Method

A fast vortex method has been developed by using special-purpose computers

those were exclusively designed for molecular dynamics simulations. A mathe-

matical formulation has been developed for the 3D vortex method calculation

using a special-purpose computer MDGRAPE-2. A rigorous assessment of this

hardware has been made for a simple flow calculation using this method. It is

found that the generation of appropriate function tables, which are used to call

libraries, embedded in MDGRAPE-2 is of primary importance in order to retain

accuracy.

This method has been successfully applied to the calculation of two colliding

vortex rings in three different configurations. The error arising from the approxi-

mation is evaluated by calculating a pair of vortex rings impinging to themselves.

The error in the statistical quantities such as kinetic energy and enstrophy remain

negligible and have good agreement when compared with others similar work.

MGGRAPE-3 is a successor of MDGRAPE-2 has been applied to the similar

calculations and developed fast vortex method. The previous results have been

confirmed and further improved are achieved using this new hardware.

The simultaneous use of the FMM with MDGRAPE-2 and MDGRAPE-3

has been successfully applied to the similar calculations. Further acceleration

has been achieved by using this new acceleration method. The various forms

of FMM and their performance on MDGRAPE-2 and MDGRAPE-3 have been
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investigated. The new technique has been successfully applied to the improved

initial calcultion conditions after a rigorous validation of previous calculations.

6.2 Optimization

It has been observed that the definition of an optimum range of a function table

plays an essential role to control and achieve satisfactory accuracy in MDGRAPE-

2. An optimum range of a function table has been determined after a careful

observation of computational domain of the collisions of a pair of vortex rings.

The similar accuracy has been achieved for Biot-Savart law calculations as of

molecular dynamics simulation. The cross product calculations have been han-

dled in a proper manner, which is not considered in the original command set in

MDGRAPE-2 library.

The computational domain has been determined by checking the typical dis-

tribution of vortex elements for different positions of colliding vortex rings at

various non-dimensional times. It has been found that this domain determines

the optimal range of a function table.

It is found that the table range is different for different problems. It is neces-

sary to generate a new function table for a new problem. It was carefully observed

that the preparation of the function table operation takes only a few minutes,

which does not affect the performance of the entire calculations. To simulate high

Reynolds number flows using vortex method, it is required to incorporate large

number of vortex elements for an accurate calculations. There is no connection

between the number of elements and the range of function table. The range is

the key factor in maintaining the accuracy and the single precision calculation

of MDGRAPE-2 board, which does not have any influence on the calculation of

high Reynolds number flows.

An optimum range of a function table has been determined prior to MDGRAPE-

3 calculation. The generation procedures are similar as of MDGRAPE-2 calcula-

tion and applied to MDGRAPE-3 case.

It has been clearly observed that the most time consuming parts of FMM

calculations are multipole to local(M2L) translations for far field particles and

direct calculations of neighboring particles. The balance between these two steps
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6.3 Accelerations

are dependent on the level of box divisions. An optimum level of box division

has been determined according to the number of particles being calculated.

The most important issue regarding the simultaneous use of the FMM and

MDGRAPE-3 is the balance of the workload between the M2L translation and

the direct calculation. MDGRAPE-3 can handled only the direct calculation,

hence an optimum level has been determined. It has been observed that the

optimum level of box division of the FMM on MDGRAPE-3 is approximately

two levels lower than that of the FMM without MDGRAPE-3 because only the

direct summation is accelerated.

In addition, an optimum level of box divisions has been determined when the

pseudo-particle multipole method implemented on MDGRAPE-3.

6.3 Accelerations

The vortex method calculation is accelerated by the use of a special purpose com-

puter MDGRAPE-2. The collision of two vortex rings is selected as a test case.

The calculation cost has been reduced by a factor of 100 when compared with

the calculation of a conventional PC (Intel Pentium 4 2.66GHz). This accelera-

tion has been furhter improved when applied another special purpose computer,

MDGRAPE-3. MDGRAPE-3 has been applied to the same calculations and

the improvement in speed was 1000 times faster when compared with the host

PC(Xeon 5160 3.00GHz) and 25 times faster compared with MDGRAPE-2 for

N = 106.

Further acceleration has been achieved for the vortex method calculation with

the simultaneous use of the FMM and a special purpose computer MDGRAPE-3.

The dynamics of two colliding vortex rings have been studied and the computation

time has been reduced by a factor of 2000 compared to a direct calculation on

a standard PC(Xeon 5160 3.00GHz). The FMM on MDGRAPE-3 is about 16

times faster than MDGRAPE-3 itself, and approximately 4 times faster than

that of the FMM on a Xeon 5160 (3.0 GHz) for the Biot-Savart calculation of

N = 106 elements. From a different perspective, the MDGRAPE-3 can accelerate

the calculation 119 times, but the simultaneous use of the FMM allows a 16 fold

increase from that. Similarly, the stretching term calculation is 613 times faster
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6.4 Accuracy

when used the FMM, and another 2.8 times faster when we combine it with the

MDGRAPE-3. The MDGRAPE-3 accelerates the stretching term calculation 52

times, and another 33 times if we use the FMM on it.

6.4 Accuracy

The net relative accuracy in the MDGRAPE-2 chip is set to 10−7, since this

accuracy is usually satisfactory in MD simulations. The same accuracy has been

achieved by calculating the Biot-Savart law in the present study which was also

stisfactory for the vortex method calculations.

The scaling errors of function table have been confirmed by comparing with

and without the use of MDGRAPE-2.

The convection error has been evaluated by calculating the difference in the

position of the same particles between the host and MDGRAPE-2 for the same

time step. The error has been checked for different configurations of vortex rings

in three different time iterations. In all cases, MDGRAPE-2 error has been

increased for larger N but it kept constant in finite range. It has been confirmed

that the error is satisfactory for the present vortex method calculations.

It has been confirmed that the errors in MDGRAPE-2 and MDGRAPE-3 are

in similar order while the calculation speed of MDGRAPE-3 is faster than that of

MDGRAPE-2. The overall errors are satisfactory enough for entire calculations.

Basically, the FMM trades accuracy for speed, and the order of multipole

moments p strongly affects the balance between them. The effect of multipole

moments has been investigated and found that it has large influence for the

accuracy of FMM. The multipole moment was considered p = 10 and the error

was below 10−5 in entire calculations which was also satisfactory for the present

vortex method calculation.

The global kinetic energy and enstrophy have been investigated to address the

numerical accuracy. The results have good agreement when compared with the

previous and referenced work. The results with and without the use of the FMM,

MDGRAPE-2, MDGRAPE-3 and the combination of FMM & MDGRAPEs do

not show any notable difference.
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It has been clearly observed that the errors involved in the use of MDGRAPE-

3 are less than the errors of the FMM, and thus are small enough to perform an

accurate vortex method calculation.

The reconnection of the vortex rings in the present calculation is similar to

what is seen in experimental and DNS results. This is a result of the high preci-

sion of the stretching and diffusion calculations. The results of the calculations

using more than 106 particles, not only reproduce the qualitative aspects of the

reconnection, but also show nearly negligible discretization error.

In addition, one-dimensional kinetic energy spectra and corresponding decay

of kinetic energy and enstrophy for high Reynolds numbers have been investi-

gated. The effect of spatial and temporal resolution at high Reynolds numbers

is investigated by comparing the energy spectrum and decay rate of the kinetic

energy and enstrophy.

6.5 Outlook

For the present Reynolds number ReΓ = 400, the qualitative behavior of the

vortex elements shows little difference between the calculations using N ≈ 105

and N ≈ 106 elements. However, the energy spectrum, decay of kinetic energy,

and decay of enstrophy show a large difference between the calculations using

N ≈ 105 and N ≈ 106 elements. This difference decreases drastically when the

number of elements is increased another order of magnitude to 107.

The above discussions indicate that for the calculation of further high Reynolds

numbers, the vortex method requires significantly larger N , which is possible by

using the proposed acceleration method. Therefore, the proposed method will

make a large contribution to the simulations that have been previously difficult

to perform with existing methods.

The collision of vortex rings has been simulated using the present acceleration

method and the computation time has been reduced significantly without loss of

numerical accuracy. The present acceleration rate is not satisfactory enough

to calculate highly turbulent flows. There are still some rooms to improve the

acceleration rate by reconstructing the subroutines which call MDGRAPE library.

In the present routines it is necessary to call library embeded MDGRAPE 18
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times for one cross product term calculation which is a threshold for the total

calculation cost. The acceleration rate can be increased by reducing the CALLing

time in MDRAPE routines. The overall accuracy may be improved further by

making more sophisticated function table using high algebraic smoothing function

for vortex method calculation.

This method can be applied to calculate the homogeneous shear flow, fully

developed channel flow, smoothed particle hydrodynamics (SPH), dissipative par-

ticle dynamics (DPD) for mesoscale polymer description, charged particles in

plasma physics etc. The above-mentioned achievements indicate that the present

method will be an alternative to conventional methods in computational fluid

dynamics in near future.
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Appendix A

Vortex Methods

A.1 Biot-Savart Law

The velocity field on a three-dimensional problem is

u(x) = − 1

4π

∫
(x− x′)× ω(x′)

|x− x′|3 dV (x′) (A.1)

Transfer to summation form in three directions are as follows

u(x) = − 1

4π

N∑
j=0

(x− x′)× Γ

|x− x′|3 (A.2)

The discretized form as follows:

ui = − 1

4π

N∑
j

(yi − yj)γ
z
j − (zi − zj)γ

y
j

{(xi − xj)2 + (yi − yj)2 + (zi − zj)2}1.5
(A.3)

vi = − 1

4π

N∑
j

(zi − zj)γ
x
j − (xi − xj)γ

z
j

{(xi − xj)2 + (yi − yj)2 + (zi − zj)2}1.5
(A.4)

wi = − 1

4π

N∑
j

(xi − xj)γ
y
j − (yi − yj)γ

x
j

{(xi − xj)2 + (yi − yj)2 + (zi − zj)2}1.5
(A.5)

Winckelmans and Leonard [1993] model as a cutoff function: ζ(ξ) = 15
8π(ξ2+1)7/2

Using cutoff function the Biot-Savart law becomes:

u(x) = − 1

4π

N∑
j=0

(x− x′)× Γ

|x− x′|3 × ζ (A.6)
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A.1 Biot-Savart Law

u(x) = − 1

4π

N∑
j=0

|xi − xj|2 + (5/2)σ2
j(|xi − xj|2 + σ2

j

)5/2
(xi − xj)× γj

= − 1

4π

N∑
j=0

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2
rij × γj (A.7)

Second order Adams-Bashforth method has been used for particle convection

with time advancement:

xn+1 = xn +

(
3

2
un − 1

2
un−1

)
dt (A.8)

Core radius has been expanded at the following rate:

dσ2

dt
= 4ν (A.9)

⇒ 2σ
dσ

dt
= 4ν

⇒ dσ

dt
=

2ν

σ

⇒ σn+1 − σn

∆t
=

2ν

σ

⇒ σn+1 = σn +
2ν

σn
dt (A.10)

Finally the Biot-Savart law has been discretized as follows:

u = (ui vi wi) ; rij = (xij yij zij) ; γj =
(
γx

j γy
j γz

j

)

ui = − 1

4π

N∑
j=0

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2

(
yjγ

z
j − zjγ

y
j

)
(A.11)

vi = − 1

4π

N∑
j=0

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2

(
zjγ

x
j − xjγ

z
j

)
(A.12)

wi = − 1

4π

N∑
j=0

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2

(
xjγ

y
j − yjγ

x
j

)
(A.13)
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A.2 Stretching term

A.2 Stretching term

The stretching term of vorticity equation (Eq. 2.1) has been discretized as follows

using the same cutoff function.

dω

dt
= (ω · ∇)ui (A.14)

γi = ωid
3xi;

dγi

dt
= (γi · ∇)ui

dγi

dt
=

1

4π

∑
j

{−|xi − xj|2 + (5/2)σ2
j(|xi − xj|2 + σ2

j

)5/2
γi × γj

+ 3
|xi − xj|2 + (7/2)σ2

j(|xi − xj|2 + σ2
j

)7/2
(γi · (xi − xj))((xi − xj)× γj)} (A.15)

To make the simplicity and clarification, Eq. A.15 has been separated in two

parts as follows.

dγi

dt
= stx + tx; ⇒ γi+1 = γi−1 + (stx + tx)∆t (A.16)

Where

stx =
1

4π

∑
j

−|xi − xj|2 + (5/2)σ2
j(|xi − xj|2 + σ2

j

)5/2
γi × γj

= − 1

4π

∑
j

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2
γi × γj (A.17)

tx =
3

4π

∑
j

|xi − xj|2 + (7/2)σ2
j(|xi − xj|2 + σ2

j

)7/2
(γi · (xi − xj))((xi − xj)× γj)

=
3

4π

∑
j

r2
ij + (7/2)σ2

j(
r2

ij + σ2
j

)7/2
(γi · (xi − xj))((xi − xj)× γj) (A.18)

The above equations are discretized in the following forms.
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A.2 Stretching term

stxi = − 1

4π

∑
j

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2

(
γy

i γ
z
j − γz

i γ
y
j

)
(A.19)

styi = − 1

4π

∑
j

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2

(
γz

i γ
x
j − γx

i γz
j

)
(A.20)

stzi = − 1

4π

∑
j

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2

(
γx

i γy
j − γy

i γ
x
j

)
(A.21)

txi =
3

4π

∑
j

r2
ij + (7/2)σ2

j(
r2

ij + σ2
j

)7/2
(γx

i (x(i)− x(j)) + γy
i (y(i)− y(j)) + γz

i (z(i)− z(j)))

(
(y(i)− y(j))γz

j − (z(i)− z(j))γy
j

)
(A.22)

tyi =
3

4π

∑
j

r2
ij + (7/2)σ2

j(
r2

ij + σ2
j

)7/2
(γx

i (x(i)− x(j)) + γy
i (y(i)− y(j)) + γz

i (z(i)− z(j)))

(
(z(i)− z(j))γx

j − (x(i)− x(j))γz
j

)
(A.23)

tzi =
3

4π

∑
j

r2
ij + (7/2)σ2

j(
r2

ij + σ2
j

)7/2
(γx

i (x(i)− x(j)) + γy
i (y(i)− y(j)) + γz

i (z(i)− z(j)))

(
(x(i)− x(j))γy

j − (y(i)− y(j))γx
j

)
(A.24)
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Appendix B

Mathematical Formulations of

MDGRAPE-2

B.1 Biot-Savart Law

The velocity field on a two-dimensional problem is

u(x) =
1

2π

∫
(x− x′)× ω(x′)

|x− x′|2 ds(x) (B.1)

Transfer to summation form as follows

ui =
1

2π

N∑
j=0

(x− x′)× Γj

|x− x′|2 =
N∑

j=0

rij × Γj

2π|rij|2 (B.2)

Where: Γ =
∫

ωds, ω is the vorticity, rij = ri− rj stands the destance of position

vectors.

Now using the Gaussian smoothing as a cutoff function

ζ =

(
1− exp

(
−

( |rij|
σj

)2
))

Then Biot-Savart law becomes:

ux
i =

N∑
j=0

rij × Γj

2π|rij|2 ×
(

1− exp

(
−

( |rij|
σj

)2
))

(B.3)

Where σj is the core radius of vortex element.
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B.1 Biot-Savart Law

The Biot-Savart law contains cross-product term and MDGRAPE-2 can not

handle this term directly. A special treatment is necessary to make it compatible

for MDGAPE-2 calculation as follows.

rij = (xij, yij, zij),Γj = (Γx
j , Γ

y
j , Γ

z
j);

The total moment is:
∑

j

rij × Γj =
∑

j

(yijΓ
z
j − zijΓ

y
j , zijΓ

x
j − xijΓ

z
j , xijΓ

y
j − yijΓ

x
j ) (B.4)

In 2-D case: zij = 0, Γx
j = 0, Γy

j = 0

ux
i =

N∑
j=0

yijΓ
z
j − zijΓ

y
j

2π|rij|2 ×
(

1− exp

(
−

( |rij|
σj

)2
))

=
N∑

j=0

yijΓ
z
j

2π|rij|2 ×
(

1− exp

(
−

( |rij|
σj

)2
))

−
N∑

j=0

zijΓ
y
j

2π|rij|2 ×
(

1− exp

(
−

( |rij|
σj

)2
))

︸ ︷︷ ︸
0

ux
i =

N∑
j=0

Γz
j

σ2
j
· 1

σ2
j

2π|rij|2 · 1
σ2

j
· 1

σ2
j

×
(

1− exp

(
−r2

ij

σ2
j

))
yij

OR =
N∑

j=0

Γz
j

σj
· 1

σj

2π|rij|2 · 1
σj
· 1

σj

×
(

1− exp

(
−r2

ij

σ2
j

))
yij

=
1

2π

N∑
j=0

Γz
j

σ2
j

·

(
1− exp

(
−r2

ij

σ2
j

))

|rij |2
σ2

j

· 1
1
σ2

j

· |rij|2
|rij|2 ·

1

σ2
j

yij

OR =
1

2π

N∑
j=0

Γz
j

σj

·

(
1− exp

(
−r2

ij

σ2
j

))

|rij |2
σ2

j

· 1

σj

· yij

=
1

2π

N∑
j=0

Γz
j

σ2
j

·

(
1− exp

(
−r2

ij

σ2
j

))

|rij |2
σ2

j
· |rij |2

σ2
j

· 1

σ2
j

· |rij|2yij

OR =
1

2π

N∑
j=0

Γz
j

σj

·

(
1− exp

(
−r2

ij

σ2
j

))

|rij |2
σ2

j

· 1

σj

· yij
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B.1 Biot-Savart Law

ux
i =

1

2π

N∑
j=0

Bz
j ·

(1− exp(−w))

w.w
· Aj · |rij|2yij

=
1

2π

N∑
j=0

Bz
j g

(
Aj

(|rij|2 + ε2
ij

))
yij (B.5)

ux
i =

1

2π
uyz

i − 1

2π
uzy

i (B.6)

In 2-D case:

ux
i =

1

2π
uyz

i (B.7)

Similarly we can calculate:

uy
i =

1

2π

N∑
j=0

Bz
j ·

(1− exp(−w))

w.w
· Aj · |rij|2xij

=
1

2π

N∑
j=0

Bz
j g

(
Aj

(|rij|2 + ε2
ij

))
xij (B.8)

uy
i =

1

2π
uzx

i − 1

2π
uxz

i (B.9)

In 2-D case:

uy
i = − 1

2π
uxz

i (B.10)

Where:

Bz
j =

Γz
j

σ2
j
, g(w) = (1−exp(−w))

w
, Aj = 1

σ2
j
, ε2

ij = 0, w =
(
|rij |
σj

)2

Finally Biot-Savart law becomes

ui =
N∑

j=0

Bjg
(
Aj

(|rij|2 + ε2
ij

))
rij (B.11)

It can be written in discretized forms as follows:

ui =
N∑

j=0

Bx
j g

(
Aj

(|rij|2 + ε2
ij

))
rij (B.12)

vi =
N∑

j=0

By
j g

(
Aj

(|rij|2 + ε2
ij

))
rij (B.13)

wi =
N∑

j=0

Bz
j g

(
Aj

(|rij|2 + ε2
ij

))
rij (B.14)
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B.2 Stretching Term

Where

g(w) =
w + 5/2

(w + 1)5/2
; Aj =

1

σ2
j

; Bj =
γj

σ3
j

(
Bx

j =
γx

j

σ3
j

, By
j =

γy
j

σ3
j

, Bz
j =

γz
j

σ3
j

)

(B.15)

B.2 Stretching Term

The stretching term of vorticity transport equation (Eq. 2.1) has been derived

as follows to make it compatible to MDGRAPE-2 calculation.

stx =
1

4π

∑
j

−|xi − xj|2 + (5/2)σ2
j(|xi − xj|2 + σ2

j

)5/2
γi × γj

= − 1

4π

∑
j

r2
ij + (5/2)σ2

j(
r2

ij + σ2
j

)5/2
γi × γj

= − 1

4π

∑
j

(rij/σj)
2 + 5/2

(
(rij/σj)

2 + 1
)5/2

(
γi × γj

) 1

σ3
j

= − 1

4π

∑
j

g1(w)
(
γi × γj

) 1

σ3
j

= − 1

4π

∑
j

g1(w)
(
γy

i γ
z
j − γz

i γ
y
j , γz

i γ
x
j − γx

i γz
j , γx

i γy
j − γy

i γ
x
j

) 1

σ3
j

= − 1

4π
(γy

i Ki − γz
i Ji, γz

i Ii − γx
i Ki, γx

i Ji − γy
i Ii) (B.16)

Where Ii, Ji, Ki are calculated in potential mode at MDGRAPE-2 as follows.

g1(w) =
(rij/σj)

2 + 5/2
(
(rij/σj)

2 + 1
)5/2

(B.17)

Ii =
∑

j

g1
(
r2

ij

) γx
j

σ3
j

=
∑

j

g1(w)Bx
j ; (B.18)

Ji =
∑

j

g1
(
r2

ij

) γy
j

σ3
j

=
∑

j

g1(w)By
j ; (B.19)

Ki =
∑

j

g1
(
r2

ij

) γz
j

σ3
j

=
∑

j

g1(w)Bz
j ; (B.20)

135



B.2 Stretching Term

tx =
3

4π

∑
j

r2
ij + (7/2)σ2

j(
r2

ij + σ2
j

)7/2
(γi · (xi − xj))((xi − xj)× γj)

=
3

4π

∑
j

(rij/σj)
2 + 7/2

(
(rij/σj)

2 + 1
)7/2

(γi · rij)
(
rij × γj

) 1

σ5
j

=
3

4π

∑
j

g2
(
r2
ij

)
(γi · rij)

(
rij × γj

) 1

σ5
j

(B.21)

=
3

4π

∑
j

g2
(
r2
ij

)
(γi · rij)

(
yijγ

z
j − zijγ

y
j , , zijγ

x
j − xijγ

z
j , xijγ

y
j − yijγ

x
j

) 1

σ5
j

Where,

g2
(
r2

ij

)
=

(rij/σj)
2 + 7/2

(
(rij/σj)

2 + 1
)7/2

(B.22)

γx
j can be expressed in vector Ii as follows

Ii = (Ix
i , Iy

i , Iz
i ) (B.23)

=
∑

j

g2
(
r2

ij

)
(γi · rij)

(
γx

j /σ5
j

) · rij

=
∑

j

g2
(
r2

ij

)
(γi · (ri − rj))

(
γx

j /σ5
j

) · rij

=
∑

j

g2
(
r2

ij

)
(γiri − γirj)

(
γx

j /σ5
j

) · rij

= (γi · ri)
∑

j

g2
(
r2

ij

) (
γx

j /σ5
j

) · rij −
∑

j

g2
(
r2

ij

)
(γi · rj)

(
γx

j /σ5
j

) · rij

= (γi · ri)
∑

j

g2
(
r2

ij

) (
γx

j /σ5
j

) · rij

− {γx
i

∑
j

g2
(
r2

ij

) (
xjγ

x
j /σ5

j

) · rij + γy
i

∑
j

g2
(
r2

ij

) (
yjγ

x
j /σ5

j

) · rij

+ γy
i

∑
j

g2
(
r2

ij

) (
zjγ

x
j /σ5

j

) · rij} (B.24)

= (γi · ri)S− (γx
i T1 + γy

i T2 + γz
i T3) (B.25)

= (γx
i xi + γy

i yi + γz
i zi) (Sx, Sy, Sz)

− {γx
i (T1x, T1y, T1z) + γy

i (T2x, T2y, T2z) + γz
i (T3x, T3y, T3z)}
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B.2 Stretching Term

⇒ Ix
i = (γx

i xi + γy
i yi + γz

i zi) (Sx, Sy, Sz)

− (γx
i T1x + γy

i T2x + γz
i T3x, γx

i T1y + γy
i T2y + γz

i T3y, γx
i T1z + γy

i T2z + γz
i T3z)

=
∑

j

g
(
r2

ij

)
(γi · rij)

(
xijγ

x
j , yijγ

x
j , zijγ

x
j

)
(B.26)

Similarly

Iy
i =

∑
j

g
(
r2

ij

)
(γi · rij)

(
xijγ

y
j , yijγ

y
j , zijγ

y
j

)
(B.27)

Iz
i =

∑
j

g
(
r2

ij

)
(γi · rij)

(
xijγ

z
j , yijγ

z
j , zijγ

z
j

)
(B.28)

Where

S =
∑

j

g2
(
r2

ij

) γx
j

σ5
j

· rij =
∑

j

g2(w)Bx
j · rij (B.29)

T1 =
∑

j

g2
(
r2

ij

) xjγ
x
j

σ5
j

· rij =
∑

j

g2(w)xjB
x
j · rij (B.30)

T2 =
∑

j

g2
(
r2

ij

) yjγ
x
j

σ5
j

· rij =
∑

j

g2(w)yjB
x
j · rij (B.31)

T3 =
∑

j

g2
(
r2

ij

) zjγ
x
j

σ5
j

· rij =
∑

j

g2(w)zjB
x
j · rij (B.32)

Finally Ii becomes,

Ii = (γi · ri)S− (γx
i T1 + γy

i T2 + γz
i T3)

=
∑

j

g2
(
r2

ij

)
(γi · rij)

γx
j

σ5
j

· rij (B.33)

=
∑

j

g2 (w) (γi · rij) Bx
j · rij (B.34)

Similary it can be calculated

Ji = (γi · ri)S− (γx
i T1 + γy

i T2 + γz
i T3) (B.35)
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B.2 Stretching Term

Where,

S =
∑

j

g2
(
r2

ij

) γy
j

σ5
j

· rij =
∑

j

g2(w)By
j · rij (B.36)

T1 =
∑

j

g2
(
r2

ij

) xjγ
y
j

σ5
j

· rij =
∑

j

g2(w)xjB
y
j · rij (B.37)

T2 =
∑

j

g2
(
r2

ij

) yjγ
y
j

σ5
j

· rij =
∑

j

g2(w)yjB
y
j · rij (B.38)

T3 =
∑

j

g2
(
r2

ij

) zjγ
y
j

σ5
j

· rij =
∑

j

g2(w)zjB
y
j · rij (B.39)

Finally Ji becomes,

Ji =
∑

j

g2
(
r2

ij

)
(γi · rij)

γy
j

σ5
j

· rij

=
∑

j

g2 (w) (γi · rij) By
j · rij (B.40)

Similary it can be calculated

Ki = (γi · ri)S− (γx
i T1 + γy

i T2 + γz
i T3) (B.41)

Where,

S =
∑

j

g2
(
r2

ij

) γz
j

σ5
j

· rij =
∑

j

g2(w)Bz
j · rij (B.42)

T1 =
∑

j

g2
(
r2

ij

) xjγ
z
j

σ5
j

· rij =
∑

j

g2(w)xjB
z
j · rij (B.43)

T2 =
∑

j

g2
(
r2

ij

) yjγ
z
j

σ5
j

· rij =
∑

j

g2(w)yjB
z
j · rij (B.44)

T3 =
∑

j

g2
(
r2

ij

) zjγ
z
j

σ5
j

· rij =
∑

j

g2(w)zjB
z
j · rij (B.45)

Finally Ki becomes,

Ki =
∑

j

g2
(
r2

ij

)
(γi · rij)

γz
j

σ5
j

· rij

=
∑

j

g2 (w) (γi · rij) Bz
j · rij (B.46)
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B.3 Cut-off Function

Therefore tx becomes

tx =
3

4π
(Ky

i − Jz
i , Iz

i −Kx
i , Jx

i − Iy
i ) (B.47)

B.3 Cut-off Function

The following cut-off functions have been used to generate an optimum func-

tion table for vortex method calculation with the use of MDGRAPE-2 and

MDGRAPE-3.

ζ0 = − 1√
x

(B.48)

ζ1 = − 1

x3/2
(B.49)

ζ2 = − 1

x5/2
(B.50)

ζ3 = − x + 5/2

(x + 1)5/2
(B.51)

ζ4 = − x + 7/2

(x + 1)7/2
(B.52)

ζ5 = − 15

2 (x + 1)7/2
(B.53)

ζ6 = − 1

x3/2
erf

(√
x/2

)
−

√
x

cosθ
e−x/2 (B.54)

ζ7 = −3 erf(
√

x/2)− (x + 3)
√

x
cosθ

e−x/2

3x5/2
(B.55)

ζ8 =

√
1

cosθ
e−x/2 (B.56)

3D cutoff function

Gaussian:

f(ρ) =
1

(2π)3/2
e−ρ2/2 (B.57)

g(ρ) =
1

4π

(
erf

(
ρ√
2

)
−

√
2

π
ρe−ρ2/2

)
(B.58)
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B.3 Cut-off Function

Low Algebra:

f(ρ) =
3

4π

1

(ρ2 + 1)5/2
(B.59)

g(ρ) =
1

4π

ρ3

(ρ2 + 1)3/2
(B.60)

High Algebra:

f(ρ) =
15

8π

1

(ρ2 + 1)7/2
(B.61)

g(ρ) =
1

4π

ρ3 (ρ2 + 5/2)

(ρ2 + 1)5/2
(B.62)
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Appendix C

Calculation Algorithm and

Sample Program of MDGRAPE

C.1 Formation of ring

The collision of two identical vortex rings has been used as a test case to validate

the present acceleration methods. Here I will introduce initial condition and other

parameters which have been used for entire calculations.

Ring1

Outer:

x = R cosθ + r cosθ cosφ

y = R sinθ cosψ + r sinθ cosφ cosψ + r sinφ sinψ

z = R sinθ sin(−ψ) + r sinθ cosφ sin(−ψ) + r sinφ cosψ

gx = −gb sinθ

gy = gb cosθ cosψ

gz = gb cosθ sin(−ψ)
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C.1 Formation of ring

Inner:

x = R cosθ

y = R sinθ cos(−ψ)

z = R sinθ sin(−ψ)

gx = −gb sinθ

gy = gb cosθ cos(−ψ)

gz = gb cosθ sin(−ψ)

Ring2

Outer:

x = R cosθ + r cosθ cosφ

y = R sinθ cosψ + r sinθ cosφ cosψ + r sinφ sin(−ψ)

z = R sinθ sinψ + r sinθ cosφ sinψ + r sinφ cosψ

gx = −gb sinθ

gy = gb cosθ cosψ

gz = gb cosθ sinψ

Inner:

x = R cosθ

y = R sinθ cosψ

z = R sinθ sinψ

gx = −gb sinθ

gy = gb cosθ cosψ

gz = gb cosθ sinψ

Where

gb =
Γ

2πσ2
exp

(−r2

2σ2

)
(C.1)
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C.2 MDGRAPE Calculation

R = Radius of vortex ring

r = Radius of cross− section of a vortex ring

dx = Inter − particle space

nθ = 2Rπ/dx

θ = 2πi/nθ (i = 1, 2, · · ·nθ)

nr = r/dx

nφ = r/2πnr/dx

φ = 2πk/nj (k = 1, 2, · · ·nφ)

nj = j × nφ (j = 1, 2, · · ·nr)

ncr =
1

2
nφ× nr (nr + 1) + 1

nri = nθ × ncr

nr = k +
1

2
j(j − 1)nφ + (i− 1)ncr

np = 2× nri

ψ = π/6

σ = core radius = 2× dx

sr = number of cross section

Γ0 = initial strength = 1 · 0d0

C.2 MDGRAPE Calculation

The vortex method calculation has been accelerated with the use of special-

purpose computers; MDGAPE-2 and MDGRAPE-3. There are some critical

issues have been solved to make mathematical formulations to call MDGRAPE

libraries. Here is a sample FORTRAN program has been used to simulate the

collision of two identical vortex rings. Other programs are almost similar except

some parameters and communication between Host and MDGRAPEs. The API’s

of MDGRAPE-2 and MDGRAPE-3 are basically same except the CALLing vari-

able names. Here I will show a sample program of Biot-Savart calculation on

MDGRAPE-2.
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C.2 MDGRAPE Calculation

Subroutine for Biot-Savart law calculation for MDGRAPE

subroutine bs3m2(n0,n1,xi,yi,zi,ui,vi,wi, ∗ n2,n3,xj,yj,zj,gxj,gyj,gzj,sj)

implicit real∗ 8(a-h,o-z)

include ’memory.f’

include ’m2 unit.h’

character skip

dimension xi(npmax), yi(npmax), zi(npmax)

dimension ui(npmax), vi(npmax), wi(npmax)

dimension xj(npmax), yj(npmax), zj(npmax)

dimension gxj(npmax),gyj(npmax),gzj(npmax),sj(npmax)

dimension amd(npmax), bmd(npmax)

dimension bxmd(npmax), bymd(npmax), bzmd(npmax)

dimension xmd(3,npmax),ymd(3,npmax),zmd(3,npmax)

dimension pos(3,npmax),gmd(3,npmax)

common/mdg/amd,bmd,bxmd,bymd,bzmd,xmd,ymd,zmd,pos,gmd

pi = 2∗ acos(0.0)

do i = n0,n1

ui(i) = 0

vi(i) = 0

wi(i) = 0

end do

ncall = (n3-n2+1)/mdmax+1

do icall = 1,ncall

iwork1 = (n3-n2+1)/ncall

iwork2 = mod(n3-n2+1,ncall)

jsta = (icall-1)*iwork1+n2+min(icall-1,iwork2)

jend = jsta+iwork1-1

if(iwork2.gt.icall-1) jend = jend+1

do i = jsta,jend

nmd = i-jsta+1

amd(nmd) = 1/sj(i)∗∗ 2
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C.2 MDGRAPE Calculation

pos(1,nmd) = xj(i)

pos(2,nmd) = yj(i)

pos(3,nmd) = zj(i)

bxmd(nmd) = gxj(i)/sj(i)∗∗ 3

bymd(nmd) = gyj(i)/sj(i)∗∗ 3

bzmd(nmd) = gzj(i)/sj(i)∗∗ 3

enddo

n unit = m2 allocate unit(’force.table’,m2 force, xminf,xmaxf,null integer)

call m2 set positions(n unit,pos,nmd)

call m2 set rscales(n unit,amd,nmd)

do i = n0,n1

nmdd = i-n0+1

pos(1,nmdd) = xi(i)

pos(2,nmdd) = yi(i)

pos(3,nmdd) = zi(i)

end do

call m2 set charges(n unit,bxmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,xmd)

call m2 set charges(n unit,bymd,nmd)

call m2 calculate forces(n unit,pos,nmdd,ymd)

call m2 set charges(n unit,bzmd,nmd)

call m2 calculate forces(n unit,pos,nmdd,zmd)

call m2 free unit(n unit)

do i = n0,n1

nmd = i-n0+1

ui(i) = ui(i)-0.25/pi∗ (ymd(3,nmd)-zmd(2,nmd))

vi(i) = vi(i)-0.25/pi∗ (zmd(1,nmd)-xmd(3,nmd))

wi(i) = wi(i)-0.25/pi∗ (xmd(2,nmd)-ymd(1,nmd))

end do

end do

return

end
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Appendix D

Fast Multipole Method with

Special-Purpose Computer

D.1 General Idea of FMM

FMM is a numerical method which has found wide acceptance in the scientific

community. It is a fast summation method for potentials in 1/r and has applica-

tions in many areas such as Laplace and Poisson equations, particle simulations,

molecular dynamics, etc. Another application of the FMM to vortex method

calculations (Cheng et al. [1999]; Yokota et al. [2007]). FMM is an algortihm for

achieving fast products of particular dense matrices with vectors. It is similar to

the Fast Fourier Transform. FMM achieves product in O(N) or O(NlogN) time

and memory. Here I will introduce an example to get an idea of FMM.

If ones want to solve the series as follows

N∑
j=1

1

xi − xj

=
N∑

j=1

1

xi − x∗

1(
1− xj−x∗

xi−x∗

) (D.1)

and Maclaurin expansion

1

1− t
=

p−1∑

k=0

tk (D.2)
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D.2 Hot-spot of FMM calculation

gives

N∑
j=1

1

xi − xj

←− N ×N (D.3)

It can be seen from Eq. (D.3) that it requires O(N2) memory for general calcu-

lation. It can be discretized as follows.

N∑
j=1

1

xi − xj

=
N∑

j=1

1

xi − x∗

{
p−1∑

k=0

(
xj − x∗
xi − x∗

)k
}

=

p−1∑

k=0

(xi − x∗)
−k−1

{
N∑

j=1

(xj − x∗)
k

}

︸ ︷︷ ︸
Does not involve i

← P ×N (D.4)

It is easily observed from Eq. (D.4) that it takes only O(P×N) time and memory

which is lower and faster than Eq. (D.3).

D.2 Hot-spot of FMM calculation

Here I focus on the hot-spot of FMM calculation and the possibility to use MD-

GRAPE. Figure D.2 represents the hot spots of FMM calculation. If I want to

calculate for light gray box, far particles are solved by FMM and the neighbor

particles are solved directly. First step is to calculate Multipole to Multipole

(called M2M) translation that is the summation for all particles in each box and

translate the multipole expansion to the center of larger boxes. Then it performs

the multipole to local (M2L) translation. Here red is source particle and blue is

target. Note that M2L cannot be preformed for neighbors. The next step is to

translate the local expansion to the center of smaller boxes. Then again preform

M2L calculation for the remaining boxes. Calculate the induced velocity up to

this step. Many sources acting on one target in this step and this is one of the

hot-spots of the FMM calculation. Finally calculate the remaining induced ve-

locity by direct calculation for all particles in the light gray box. If the box is too

coarse this could also be the hot-spot of the FMM calculation.
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D.2 Hot-spot of FMM calculation

M2M M2L L2L

red is
source

blue is
target

Neighbor particles are solved directly
M2L

+

If I want to calculate for this box

Far particles are solved by the FMM

Many sources acting on one target
This is the hot-spot of the FMM

Direct

If the box is too coarse
this could also be the hot-spot

General rule : M2L can not be preformed for neighbors

Direct

M2L

Figure D.1: Hot-spot of FMM calculation

The most time consuming parts of the FMM are the multipole to local (M2L)

translation and the direct calculation. The balance between these two steps is

dependent on the level of box divisions. Dividing the particles into excessively

small boxes will result in an enormous amount of multipole to local translations,

whereas not dividing them enough would result in a large amount of direct cal-

culation of neighboring particles. These two steps must be balanced by changing

the level of box divisions according to the number of particles being calculated.

The last plot (most left of below) of Fig. D.2 shows the cputime for differ-

ent steps of FMM calculations. It can be easily observed that the Direct and

M2L calculations consumed most of the time. The cputime of the rest steps is

negligible. It is necessary to balance the cost of direct and M2L calculations.

From these hot spots of FMM I have decided to apply MDGRAPE to solve

the same problems for further acceleration which is the main focus of the present

research.
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D.3 MDGRAPE for direct calculation

Figure D.2: Direct calculation of FMM in MDGRAPE

D.3 MDGRAPE for direct calculation

Here I will discuss how the MDGRAPE board calculate the direct part of FMM

calculation which reduced the total computation cost with the simultaneous use

of FMM and MDGRAPE.

In my calculations, I have used the FMM by Cheng et al. [1999]. The most

time consuming parts of the FMM are the multipole to local translation and the

direct calculation. The balance between these two steps is dependent on the level

of box divisions. Dividing the particles into excessively small boxes will result

in an enormous amount of multipole to local translations, whereas not dividing

them enough would result in a large amount of direct calculation of neighboring

particles. These two steps must be balanced by changing the level of box divisions

according to the number of particles being calculated.

The mutipole and local expansions and their translations are impossible to

calculate on the GRAPE architecture. Therefore, in a straightforward implemen-

tation of the FMM, MDGRAPE can only be used for the final step of the FMM

where the direct interaction of the particles is calculated (Figure D.3).
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D.4 Mathematical Formulations of FMM

In the Figure D.3 the source acting on the target is different for each box

fi =
N∑

j=1

bjg (w) rij (D.5)

so j is different for each box in ablove equation. The number of boxes is

defined by 8level

D.4 Mathematical Formulations of FMM

The necessary mathematical formulations of FMM have been introduced here.

Further details can be found in Carrier et al. [1988]; Schmidt et al. [1991]; Cheng

et al. [1999].

The following coordinates and functions are used to derive mathematical for-

mulation of FMM.

The spherical harmonics of degree n and order m according to the formula

Y m
n (θ, φ) =

√
(n− |m|)!
(n + |m|)!P

|m|
n (cosθ) eimφ (D.6)

Here, the special functions Pm
n are the associated Legendre functions, which

can be defined by Rodrigues’ formula

Pm
n (x) = (−1)m (

1− x2
)m/2 dm

dxm
Pn(x) (Associated) (D.7)

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
(Unassociated) (D.8)

where Pn(x) denotes the Legendre polynomial of degree n as follows

Pn(u) =
4π

2n + 1

n∑
m=−n

Y −m
n (α, β) Y m

n (θ, φ) (D.9)

Also the recurrence relation and identities of Pm
n are defined as

(n−m) Pm
n (x) = x (2n− 1) Pm

n−1(x)− (n + m− 1) Pm
n−2(x) (D.10)

Pm
n (x) = (−1)m (2m− 1)!

(
1− x2

)m/2
(D.11)

Pm
m+1(x) = x (2m + 1) Pm

m (x) (D.12)
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D.4 Mathematical Formulations of FMM

The fast multipole method requires three transformations of the expansions

of the potential. The transformations begin with a multipole expansion of the

potential

Φ(X) =
∞∑

n=0

n∑
m=−n

Mm
n

rn+1
· Y m

n (θ, φ), (D.13)

where

Mm
n =

N∑
i=1

qi · ρn
i · Y −m

n (αi, βi). (D.14)

or a local expansion

Φ(X) =
∞∑

j=0

j∑

k=−j

Lk
j · Y k

j (θ, φ) · rj, (D.15)

where

Lk
j =

N∑

l=1

ql ·
Y −k

j (αl, βl)

ρj+1
l

. (D.16)

Finally the potential function Φ and three transformations M2M , M2L, and

L2L are defined as follows.

Φ =
1

|pi − qi| (D.17)

=
∞∑

n=0

n∑
m=−n

r−n−1
i Y m

n (θi, φi) {
N∑

j=1

ρn
j Y −m

n (αj, βj)} (D.18)

=
∞∑

n=0

n∑
m=−n

rn
i Y m

n (θi, φi) {
N∑

j=1

ρ−n−1
j Y −m

n (αj, βj)} (D.19)

M2M =

j∑
n=0

n∑
m=−n

Ok−m
j−n · i|k|−|m|−|k−m| · Am

n · Ak−m
j−n · ρn · Y −m

n (α, β)

(−1)n Ak
j

(D.20)

M2L =
∞∑

n=0

n∑
m=−n

Om
n · i|k−m|−|k|−|m| · Am

n · Ak
j · Y m−k

j+n (α, β)

(−1)j Am−k
j+n ρj+n+1

(D.21)

L2L =
∞∑

n=j

n∑
m=−n

Om
n · i|m|−|k|−|m−k| · Am−k

n−j · Ak
j · Y m−k

n−j (α, β) ρn−j

(−1)n+j Am
n

(D.22)

Where

Am
n =

(−1)n

√
(n−m)! (n + m)!
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D.4 Mathematical Formulations of FMM

D.4.1 Vortex Methods on FMM

The common form of the Biot-Savart equation is

ui =
∑

j

γj ×Gσ (D.23)

It can also be written in the form of

ui =
∑

j

γjgσ ×∇G (D.24)

where Gσ = gσ∇G and

G =
1

4πrij

(D.25)

gσ =
r2
ij + 5/2σ2

(r2
ij + σ2)5/2

r3
ij (D.26)

Now using the high order algebraic smoothing function, the stretching term

can be written as

Dγi

Dt
=

N∑
j=1

γi · ∇Gσ × γj

=
N∑

j=1

γi · ∇(gσ∇G)× γj (D.27)

The Eqs. (D.24) and (D.27) are calculated using the FMM in order to reduce

the complexity from O(N2) to O(N). G is the Green’s function of the Laplace

equation, which is defined in Eq. (D.25). gσ is the cutoff function, which is

defined in Eq. (D.26). For the FMM equations, I will adopt the conventions used

in Cheng et al. [1999]. By doing so, the Green’s function can be expressed by the

multipole expansion

N∑
j

G ≈ 1

4π

p∑
n=0

n∑
m=−n

r−n−1
i Y m

n (θi, φi)︸ ︷︷ ︸
Si





N∑
j=1

ρn
j Y −m

n (αj, βj)︸ ︷︷ ︸
Mj





(D.28)
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D.5 Sample ForTran Code

and the local expansion

N∑
j

G ≈ 1

4π

p∑
n=0

n∑
m=−n

rn
i Y m

n (θi, φi)︸ ︷︷ ︸
Ri





N∑
j=1

ρ−n−1
j Y −m

n (αj, βj)︸ ︷︷ ︸
Lj





. (D.29)

I define the operators S, M , R, L to simplify the equations in the following steps.

Using these operators, Eq. (D.24) can be written as

ui ≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γjMj

}
×∇Si (D.30)

ui ≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γjLj

}
×∇Ri. (D.31)

Similarly, Eq. (D.27) can be written as

Dγi

Dt
≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γj ×∇Mj

}
(γi · ∇Si) (D.32)

Dγi

Dt
≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

γj ×∇Lj

}
(γi · ∇Ri) . (D.33)

The cutoff function does not appear in these equations since they are used to

calculate the effect of the far field, for which it would have negligible effect. For

details mathematical formulations, see Yokota et al. [2007]

D.5 Sample ForTran Code

A sample fortran program of Biot-Savart law calculation when the FMM imple-

ment on MDGRAPE-3. Here only MDGRAPE-3 API’s are presented in details

and the other parts of FMM calculations are similar as standard 3D FMM cal-

culations.

subroutine bs5(n0,n1,n2,n3,mp,nge,tfmm,npb)

implicit real∗8(a-h,o-z)

include ’m3 unit.h’
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D.5 Sample ForTran Code

dimension nlev(9),tfmm(9)

C Initialization

C Box structure

C Step 1. S-expansion

Calculation for multipole expansion

C Step 2. S—S-translation

Calculation for multipole to multipole translation (M2M)

C Step 3. S—R-translation

Calculation for multipole to local translation (M2L)

C Step 4. R—R-translation

Calculation for local to local translation (M2L)

C S—R-translation

Calculation for multipole to local translation (M2L) again

C Step 5. R-expansion and Final summation

C This part has been calculated by MDGRAPE-3

nmd = 0

nbase = n0

nicall = 1

ista(1) = 1

do i = 1,lbi

call e2b(nfi(i),lbj,li,lev)

do j = 1,li

nnjm(j,i) = nnj(j)

end do

lim(i) = li

nmd = nmd+ndi(i,2)-ndi(i,1)+1

if(nmd.gt.mimax)then

nbase = ndi(i,1)

nicall = nicall+1

iend(nicall-1) = i-1

ista(nicall) = i

nmd = ndi(i,2)-ndi(i,1)+1

end if
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D.5 Sample ForTran Code

ibase(i) = ndi(i,1)-nbase+1

isize(i) = ndi(i,2)-ndi(i,1)+1

end do

iend(nicall) = lbi

nmd = 0

njcall = 1

jsta(1) = 1

do i = 1,lbj

nmd = nmd+ndj(i,2)-ndj(i,1)+1

if(nmd.gt.mjmax)then

njcall = njcall+1

jend(njcall-1) = i-1

jsta(njcall) = i

nmd = ndj(i,2)-ndj(i,1)+1

end if

end do

jend(njcall) = lbj

do jcall = 1,njcall

ic = 0

do i = jsta(jcall),jend(jcall)

jfil(i,1) = ic

n = ndj(i,2)-ndj(i,1)+1

icn = 0

if(n.lt.12)then

ic = ic+12-n

icn = 12-n

end if

jfil(i,2) = icn

end do

do i = 1,lbi

ic = 0

do ij = 1,lim(i)
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D.5 Sample ForTran Code

do j = jsta(jcall),jend(jcall)

if(j.eq.nnjm(ij,i))then

ic = ic+1

jbase(ic,i) = ndj(j,1)-ndj(js ta(jcall),1)+jfil(j,1)

jsize(ic,i) = ndj(j,2)-ndj(j, 1)+1+jfil(j,2)

end if

end do

end do

njsize(i) = ic

end do

nmd = 0

do i = jsta(jcall),jend(jcall)

do j = ndj(i,1),ndj(i,2)

nmd = nmd+1

pos(1,nmd) = xj(j)/sj(1)

pos(2,nmd) = yj(j)/sj(1)

pos(3,nmd) = zj(j)/sj(1)

bxmd(nmd) = gxj(j)/sj(1)∗∗2
bymd(nmd) = gyj(j)/sj(1)∗∗2
bzmd(nmd) = gzj(j)/sj(1)∗∗2

end do

do j = 1,jfil(i,2)

nmd = nmd+1

pos(1,nmd) = 0.0d0

pos(2,nmd) = 0.0d0

pos(3,nmd) = 0.0d0

bxmd(nmd) = 0.0d0

bymd(nmd) = 0.0d0

bzmd(nmd) = 0.0d0

end do

end do

n unit = m3 allocate unit(’force.table’,m3 force, xminn,xmaxn,null integer)

call m3 set positions(n unit,pos,nmd)
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D.5 Sample ForTran Code

do icall = 1,nicall

do i = ndi(ista(icall),1),ndi(iend(icall),2)

nmdd = i-ndi(ista(icall),1)+1

pos(1,nmdd) = xi(i)/sj(1)

pos(2,nmdd) = yi(i)/sj(1)

pos(3,nmdd) = zi(i)/sj(1)

end do

call m3 set charges(n unit,bxmd,nmd)

do i = ista(icall),iend(icall)

if(njsize(i).ne.0)then

call m3 set cells(n unit,jbase(1,i),j size(1,i),njsize(i))

call m3 calculate forces(n unit,pos(1 ,ibase(i)),isize(i), xmd(1,ibase(i)))

else

do j = ibase(i),ibase(i)+isize(i)-1

do k = 1,3

xmd(k,j) = 0.0d0

end do

end do

end if

end do

call m3 set charges(n unit,bymd,nmd)

do i = ista(icall),iend(icall)

if(njsize(i).ne.0)then

call m3 set cells(n unit,jbase(1,i),j size(1,i),njsize(i))

call m3 calculate forces(n unit,pos(1 ,ibase(i)),isize(i), ymd(1,ibase(i)))

else

do j = ibase(i),ibase(i)+isize(i)-1

do k = 1,3

ymd(k,j) = 0.0d0

end do

end do

end if

end do
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call m3 set charges(n unit,bzmd,nmd)

do i = ista(icall),iend(icall)

if(njsize(i).ne.0)then

call m3 set cells(n unit,jbase(1,i),j size(1,i),njsize(i))

call m3 calculate forces(n unit,pos(1 ,ibase(i)),isize(i), zmd(1,ibase(i)))

else

do j = ibase(i),ibase(i)+isize(i)-1

do k = 1,3

zmd(k,j) = 0.0d0

end do

end do

end if

end do

do i = ndi(ista(icall),1),ndi(iend(icall),2)

nmdd = i-ndi(ista(icall),1)+1

ui(i) = ui(i)-2.5d-1/pi∗(ymd(3,nmdd)-zmd(2,nmdd))

vi(i) = vi(i)-2.5d-1/pi∗(zmd(1,nmdd)-xmd(3,nmdd))

wi(i) = wi(i)-2.5d-1/pi∗(xmd(2,nmdd)-ymd(1,nmdd))

end do

end do

call m3 free unit(n unit)

end do

return

end
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