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Abstract 

 

 

 

The key to damage detection of civil engineering structures is to find an effective 
damage indicator. The damage indicator is expected to promptly detect the damage 
and accurately identify the damage state. For this purpose, a novel damage indicator 
defined as the distance measures of AR models was proposed.  

The AR model has been successfully applied to parameterize the dynamical responses, 
typically the acceleration response. The premise of this approach is that the distance 
between the AR models, fitting the dynamical responses from the damaged and 
undamaged structures, may be correlated with the information of the damage, 
including the damage location and severity. 

The distance measures of AR models have been widely used in speech recognition 
even if they are not known in civil engineering application. This research attempted to 
explore the feasibility of using the distance measures of AR modeling as the damage 
indicators. Two distance measures were considered as the damage indicators: one is 
the cepstral distance, and the other is the Itakura distance.  

However, the current distance measures are limited to single-input single-output 
(SISO) models. In civil engineering, the structures are in general multi-input 
multi-output (MIMO) models. When dealing with the MIMO with mutually 
correlated excitations, the distance measures are able to detect the damage but not 
damage localization. To overcome the difficulty, the pre-whitening filter is introduced 
to remove the mutual correlations among the multiple outputs. Thus, we propose a 
damage detection methodology combining the distance measures of AR models and 
the pre-whitening filter. 
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To evaluate the proposed methodology, numerical and experimental data have been 
tested. The structure models for the evaluations are five storey models. In numerical 
evaluations, we consider different types of excitations, including mutually 
uncorrelated and correlated excitations. The damage scenarios are simulated by the 
different levels of inter-storey stiffness reduction, from 2% to 10%, and by the 
damages appearing on different storey. The measurement noises are also considered 
by adding measurement noises with 10% level to the acceleration outputs. In 
experimental evaluations, the damages scenarios include the cases of removing the 
columns and the braces. Results of the evaluations indicate that the distance measures 
of AR models are qualified for the damage indicators, and that the pre-whitening 
filters are crucial for the distance measures to carry out damage detection, especially 
for damage localization.  
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Chapter 1 

Introduction 

 

 

 

1.1  Current Damage Detection Methods 

The civil engineering structures, such as buildings or bridges, begin to deteriorate 
once they are constructed and used. Damage can accumulate incrementally over long 
period of service time such as that associated with fatigue or corrosion damage 
accumulation. Damage can also result from extreme events such as an earthquake or 
blast loading (Sohn et al. 2003). With deteriorating structures increasing dramatically, 
the costs of maintenance become prohibitive and heavily bear on the country 
economics (De Roeck 2003). Damage detection is the process to inspect the structure 
and determine if the structure is safe and reliable. If the damaged is detected, the 
damage location and severity are further identified. Therefore, early and accurate 
damage detection can not only prevent catastrophic failures but also save costs for 
maintenance significantly.  

Some traditional damage detection techniques using non-destructive evaluation 
(NDE), such as acoustic, magnetic and thermal field, radiography, and eddy current 
methods, have been developed. Such methods are primarily used for damage 
characterization and as a severity check, requiring a priori knowledge of the possible 
damage sites (Farrar et al. 2007). The NDE methods are ‘local’ damage detection 
methods, which is usually carried out in a local manner after the damage has been 
detected and located. Also the results obtained from NDE are often inconclusive and 
difficult to interpret. The NDE sensors can provide the possible damage by 
monitoring the changes in stress or strain states. However, it may be time consuming 
and too expensive to instrument all elements and components that are possibly critical, 
and access is not always possible (Chang et al. 2003, Humar et al. 2006).  
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Chapter 1 —— Introduction 

As a comparably recent category of damage detection methods, the vibration-based 
methods have become most acceptable tools to determine the safety of structures. The 
premise of vibration-based damage detection approach is that the damage will 
significantly alter the measured dynamic response, due to changes in stiffness, mass 
or energy dissipation (Sohn et al. 2003). These methods are ‘global’ damage detection 
methods. Most vibration-based methods are concerned about finding shifts in modal 
frequencies, mode shapes, flexibility matrix, and shape curvature and so on (Doebling 
et al. 1998, Carden et al. 2004, Worden et al. 2004). These methods are often referred 
to as modes-based methods because of the damage indicators in the modal domain. 
The modes-based methods offer some advantages such as: no requirement of a prior 
of damage location information; no requirement of a mass of sensors; easy 
interpretation of modal parameters and so on. However, a major limitation associated 
with the modes-based methods is that the vibration characteristics, in modal domain, 
are global properties of the structure. As a result, it may be difficult for the global 
properties to identify the local damage unless the damage is very severe or the 
measurements are accurate at fairly high rate. Furthermore, the modes-based methods 
rely heavily on the physical or finite element model of structure, which is a 
time-consuming task, especially for a complex and large structure.  

Within the broader family of vibration-based methods, time-series-based methods 
become another important category (Fassois et al. 2007). Such methods are 
data-based rather than physics-based, thus bringing an obvious advantage, that is, no 
physical or finite element models are required. The AR model, the most typical time 
series model, has been receiving attentions in damage detection field. The AR 
parameters have been treated as damage indicators to identify structural damage by 
some researchers. For examples: Worden et al. (2000) considered statistical process 
control approach to damage detection, using the mean and variance of the residuals of 
the AR model to form the statistical process control charts; A statistical pattern 
recognition methodology was presented by Sohn et al. (2001). The dynamic signals 
recorded were modeled using autoregressive (AR) time series models. By statistically 
examining changes in AR coefficients, they could classify signals from either 
undamaged or damaged systems; Fanning et al. (2001) used the mean and variance of 
the residuals of the AR model to form the statistical process control charts; Nair et al. 
(2006) proposed a sensitive damage indicator which only takes the first three AR 
coefficients of Auto-Regressive Moving-Average (ARMA) model; Mattson et al. 
(2006) chose the standard deviation of the residual of vector AR (VAR) model as the 
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damage indicator; De Lautour et al. (2006) used the AR coefficients as input features 
into an Artificial Neural Network (ANN). The damage and its extent were identified 
by observing the changes in AR coefficients. However, a disadvantage of these 
methods is that, without the benefits of pattern recognition tools, they can not provide 
information on damage localization or quantification. 

 

 

1.2  Proposed Method 

In this research, a novel damage indicator defined as distance measure between AR 
models is proposed. Most current time-series based damage detection methods are 
concerning about the changes in residuals of models, while the proposed method tries 
to find the changes in AR parameters by distance measures. The premise of this 
approach is that the distance between the AR models, fitting the dynamical responses 
from the damaged and undamaged structures, may be correlated with the information 
of the damage, including the damage location and severity. In this method, a baseline 
model is required to be compared with the structure to be inspected. In general, the 
newly-built or safety identified structure is referred to as the baseline state. 

The distance measures of AR models have been widely used in speech recognition, 
such as the cepstral distance and the Itakura distance (Rabiner 1993, Chapter 4). We 
assume that the dynamical responses from the structure are recognized as the sound 
of the vibration structure. Based on this assumption, the application of distance 
measure to recognize the possible damaged civil engineering structure is explored in 
this research. However, the distance measures of AR models are proposed for the 
single-input single-output (SISO) models. The civil engineering structures are in 
general multiple-input multiple-output (MIMO) models with mutually correlated 
inputs. This results in the difficulty that the distance measures are not good for 
damage localization. To overcome this difficulty, a pre-whitening transform technique 
is introduced to remove the correlations among the structural responses.  

The flowchart of the proposed damage detection method is shown in Figure 1.1. The 
procedure of the method is composed of the steps as follows: 
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 Firstly, the sensor signals, typically acceleration measured from each storey, are 
decorrelated to remove the mutual correlations by using the pre-whitening filter.  

 Secondly, the uncorrelated signals are parameterized by AR modeling. The AR 
models are used to fit the vibration signals from the baseline structure and the 
structure to be identified. 

 Thirdly, the damage indicator is defined as the distance measure between AR 
models. This distance measures can be obtained by either the cepstral distance or 
the Itakura distance.  

 Finally, damage detection and localization are carried out based on the results of 
distance measures. 

Pre-whitening filter 

Uncorrelated signals 

AR modeling 

Damage indicator by distance measures of AR Models: 
Cepstral distance or Itakura distance 

Pre-whitening filter  

Sensor signals from identified structure 

Uncorrelated signals 

AR modeling 

Damage detection and damage localization 

Sensor signals from baseline structure 

 
Figure 1.1: Flowchart of proposed damage detection method. 
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1.3  Overview of Thesis 

ided into three parts. They are described in the three 
chapters respectively.  

give an introduction of AR model, and present three model 
parameter estimation methods and four model order selection criteria. This chapter 

with the distance measures of AR model. Two distance measures, the 
cepstral distance and the Itakura distance, are introduced. We propose to use the 

apter 3 by introducing the 
pre-whitening filter. Before the AR modeling, the sensor signals are passed through 

nd list the limitations 
and unresolved problems. 

The work in this thesis is div

In Chapter 2, we first 

builds the basis for the study of damage detection using AR modeling. We evaluate 
the performances of various methods and criteria by the data samples of acceleration 
measurements. 

Chapter 3 deals 

distance measures as the damage indicators for damage detection of civil engineering 
structures. Numerical verifications show that the distance measures succeed in 
damage detection and localization without pre-whitening filter when dealing with the 
multiple mutually uncorrelated excitations, but fail in damage localization when 
dealing with the multiple mutually correlated excitations 

Chapter 4 overcomes the difficulty encountered in Ch

the pre-whitening filter to remove the mutual correlations. The proposed damage 
detection method combines the distance measures with the pre-whitening filters. 
Numerical and experimental evaluations show how the pre-whitening filters improve 
the identifying ability of damage location of distance measures. 

Finally in Chapter 5, we give a conclusion remark of our work a
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Chapter 2 

Autoregressive Model 

 

 

 

In this chapter, we give insight into the properties of autoregressive model and the 
parameter estimation methods and the model order selection criteria. In Section 2.1, 
we first present an overview of the basics of three classes of parametric models of 
linear time invariant dynamic system: autoregressive (AR) models, moving average 
(MA) models and mixed autoregressive⁄moving average (ARMA) models. In the 
ARMA class models, we will particularly discuss about the AR signals, which are 
most frequently used in applications. The process of fitting the parametric model 
involves two separate stages, namely: 

1. The estimation of parameters of the model; 
2. The determination of order of the model. 

Then, in Section 2.2, we introduce three widely used methods of extracting the AR 
model parameters from a given measured signal values. These methods are:  

1. The Yule-Walker method;  
2. The Least Squares method; 
3. The Burg’s method.  

In Section 2.3, we discuss about how to determine the model order, which is a crucial 
important issue of AR modeling. Four famous model selection criteria are introduced:  

1. The Final Prediction Error Criterion (FPE); 
2. The Akaike Information Criterion (AIC); 
3. The Bayesian AIC (BIC); 
4. The Schwarz Bayesian Criterion (SBC). 
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Chapter 2 —— Autoregressive Model 

For application in SHM, we focus on the AR modeling of dynamical responses from 
structures, for example the acceleration time series. In Section 2.4 we show the 
performances of the above various methods and criteria on the data samples, which 
were measured from a shake table test of five-storey building model.  

 

 

  Introduction of Autoregressive Model 

In this section, we describe three classes of parametric single-input-single-output 
(SISO) models: ARMA model, MA model and AR model. A few properties for the 
three models are given. 

( )The parametric methods are based on modeling the data sequence nx  as the output 
of a linear discrete-time system, which is characterized by a rational or system 
function in the z -domain: 

( ) ( )
( )

( )

( )∑

∑

=

−

=

−

+
== p

i

i

j

j

zia

zjb

zA
zBzH

1

0

1

q

qp

( )
2

( )

                 (2.1.1) 

 

2.1.1 ARMA Model 

The above linear discrete-time system can also be described by a linear 
constant-coefficient difference equation as follows 

( ) ( ) ( ) ( ) ( )∑∑
==

−=−+
ji

jnejbinxianx
01

             (2.1.2) 

where  is the input sequence to the system, assumed to be white noise of variance 

equal to . This expression is called an autoregressive moving average (ARMA) 
process of order , and it is usually denoted as

ne

σ
qp, ( ) ( )
( )

qpARMA , . The  constitute 
the AR part and the  the MA part of the model, and they are referred to as the AR 
parameters and MA parameters. 

ia

ib
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The zeros of rational function ( )zH  are the values of z  for which ( ) 0=zH . The poles 
of rational function  are the values of( )zH z  for which ( ) ∞=zH . Since  
and  are polynomials in the

( )
( )

zB

zA z -domain, they can be expressed in factored form as 

( ) ( )
( ) ( ) ( )( ) ( )( ) ( )( )

)( )( ) ( )( ) (( )

( )
( )( )

( )( )∏

∏

=

=+−

+−

−

−
=

−−−
−−−

==

p

i

q

jpq

pq

iz

jz
zb

pzzz
qzzzzb

zA
zBzH

1

10

21
210

α

β

ααα
βββ

L

L

         (2.1.3) 

Thus, the rational system function ( )zH  has  finite zeros atq ( ) ( ) ( )qz βββ ,,2,1 L=  
(the roots of the numerator polynomial), p  finite poles at ( ) ( ) ( )qz ααα ,,2,1 L=  (the 

roots of the denominator polynomial), and qp − zeros (if qp < ) or poles (if qp < ) at 

the origin . 0=z

 

2.1.2 MA Model 

The second possible model is obtained by setting ( ) 1=zA , so that the rational system 
function reduces to 

( ) ( ) ( )∑
=

−==
j

jzjbzBzH
0

q

q

( )
( )

                 (2.1.4) 

Then (2.1.2) becomes 

( ) ( ) ( )∑
=

−=
j

jnejbnx
0

,                   (2.1.5) 

which is called a moving average (MA) process of order q  and denoted as . In 
this case,  consists of  zeros, whose values are determined by the MA 
parameters , i.e. the roots of the polynomial

( )qMA

zH q
jb ( )zB .  
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Since the system function in (2.1.4) contains only nontrivial zeros and the 
corresponding system is also called an all-zero system. 

 

2.1.3 AR Model 

If  and , the resulting rational system function of the model reduce to 0=q ( ) 10 =b

( ) ( ) ( )∑
=

−+
== p

i

iziazA
zH

1

1

11                 (2.1.6) 

Then (2.1.2) becomes 

( ) ( ) ( ) ( )neinxianx
i

=−+∑
=1

p

,                (2.1.7) 

which is called an autoregressive (AR) process of order p , or denoted as . In 
this case,  consists of

( )
( )

pAR

zH p  poles, whose values are determined by the AR 
parameters , i.e. the roots of the polynomial( )ia ( )

1−

zA .  

Since the system function in (2.1.4) contains only nontrivial poles and the 
corresponding system is also called an all-pole system. If the poles lie inside the unit 
circle, the AR model is guaranteed to be stable. 

 

Brief Forms Using Delay Operator 

By using the filter delay operator (q ( ) ( )knxnxq −=k− ), the system function (2.1.1) 
can be written as 

( )( ) ( )qA
qBqH = ,                      (2.1.8) 

The corresponding difference equation becomes 

( ) ( ) ( ) ( )neqBnxqA =                   (2.1.9) 
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Hence, the three parameter models are summarized in brief forms as below: 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )nenxqAModelAR

neqBnxModelMA
neqBnxqAModelARMA

=
=
=

:
:

:
          (2.1.10) 

Of the three linear models the AR model is by far the most widely used. The reasons 
are twofold.  

1. The AR model is suitable for representing spectra with narrow peaks (resonance). 
This is an important feature since narrowband spectra are quite common in 
practice. 

2. The AR model results in very simple linear equations for the AR parameters. The 
estimation of AR parameters is a well-established topic and the stability of the 
estimated AR polynomial can be guaranteed. 

 

 

  Model Parameter Estimation  

In this section, we are concerned with the estimation of the AR model parameters. 
The study on model parameter estimation for the ARMA classic models has a 
relatively long history. For a historical perspective, we referred to the related books 
by Priestley (1994), Stoica et al. (1997), Proakis et al. (2006) and others. 

 

 Yule-Walker Method 

The Yule-Walker method for estimating the AR parameters is based on the 
Yule-Walker equation consisting of covariance elements, which are replaced by the 
sample covariances in practical parameter estimation process (Yule 1927, Walker 
1931). Before introducing the Yule-Walker method, let’s examine the covariance 
structure of ARMA process since almost all the parameter estimation methods exploit 
this covariance structure. The expression provides a convenient method for estimating 
the ARMA parameters by replacing the true autocovariances with estimates obtained 
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from data. 

(2.1.2) can be written as  

( ) ( ) ( ) ( ) ( ) ( )( 10,
01

=−=−+ ∑∑
==

bjnejbinxianx
ji

)
qp

        (2.2.1) 

Multiplying the above expression by ( )knx −∗

}
qp

∗

( )

 and taking expectation yields 

( ) ( ) ( ) ( ) ( ) ( ){∑∑
=

∗

=

−−=−+
ji

knxjneEjbikriakr
01

         (2.2.2) 

Hereafter, the symbol denotes the conjugate transpose of a vector and  the 
expectation operator (which averages over the ensemble of realizations). In (2.2.2), 

is the autocovariance sequence of output signal

( )⋅ {}⋅E

kr ( )nx , defined as 

( ) ( ) ( ){ }knxnxEkr −= ∗

( )

                   (2.2.3) 

Since the system function  is asymptotically and casual, we have qH

( ) ( )
( ) ( 1, 0

0

=== ∑
=

− hqh
qA
qBqH

k

k
k )

∞

.              (2.2.4) 

Then, the input  to the system and the corresponding output( )ne ( )nx are related via 
the convolution sum 

( ) ( ) ( ) ( )∑
=

−==
0k

k knehneqHnx
∞

)

                (2.2.5) 

The term ( ) ({ }knxjneE −− ∗  becomes 

( ) ( ){ } ( ) ( )

∗
−

∞

=
+

∗

∞

=

∗∗∗
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⎭
⎬
⎫

⎩
⎨
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∑

kj
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s
s
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2

0
,

2

0

σδσ
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where the Kronecker delta skj +,δ satisfies: 0, =+ skjδ  if skj += , otherwise 0, =+ skjδ . 
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Considering the convention that 0=kh  for 0<k , (2.2.2) becomes 

( ) ( ) ( ) ( )∑∑
=

∗
−

=

=−+
j

kj
i
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0

2

1

σ
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              (2.2.7) 

When , the above equation reduces to mk >

( ) ( ) ( ) mkikriakr
i

>=−+∑
=

,0
1

               (2.2.8) 

Hence, for AR process, since 0=m , (2.2.8) holds for . Thus for , from 
(2.2.7) we have 

0>k 0=k

( ) ( ) ( ) ( ) 2

0

2

1

0 σσ ==−+ ∑∑
=
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= j
j

i
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             (2.2.9) 

Combining (2.2.8) and (2.2.9) for pk ,,2,1 L=  gives the following system of linear 
equations 
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The above equations are called the Yule-Walker equations, which are basis of many 
AR parameter estimation methods.  

If ( ){ }p
kkr 0=  were known, solving (2.2.10) gives the parameters for AR process of 

order p  

( ) ( ) ( )[ ]paaa ,,2,1 L=θ T

T

                  (2.2.11) 

Hereafter, denotes transpose of a vector or matrix. ( )⋅
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Then, by using all but the first row of (2.2.10) 
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or, written in brief 

0=+ θRr                      (2.2.13) 

where and the covariance matrix of output signal  ( ) ( ) ( )[ prrrr ,,2,1 L= ]T ( )nx
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        (2.2.14) 

The solution of the above equations is 

rR−=θ 1−                         (2.2.15) 

( ) ( ){ } ( )For the available signal samples Nxx L,1 , the estimate of the covariance lag  
can be obtained. There are two standard means to obtain the sample covariance: 

kr

( ) ( ) ( ) 101ˆ
1

−≤≤−
−

= ∑
+=

∗ Nkknxnx
kN

kr
kn

N

         (2.2.16) 

and 

( ) ( ) ( ) 101ˆ
1

−≤≤−= ∑
+=

∗ Nkknxnx
N

kr
kn

N

          (2.2.17) 

The first estimator is called standard unbiased autocovariance sequence, and the 
second one standard biased autocovariance sequence. In common, the latter one is 
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most commonly used since that the estimate covariance matrix  obtained from the 
biased autocovariance sequence 

R̂
( ){ }0,ˆ ≥kkr  is guaranteed to be positive definite. 

By inserting the sample covariances ( ){ }kkr 0ˆ =
p

2

 into and solving (2.2.12) gives the 

estimates of AR parameters . Since the estimate of covariance matrix  is positive 
definite, the solution to (2.2.12)  is unique. Once  is known, the estimate of input 
variance can be obtained from the first row of (2.2.10). 

θ̂ R̂
θ̂ θ̂

σ̂

 

 

  Least Squares Method 

The least squares method of AR parameter estimation is based on a least squares 
minimization criterion which minimizes the prediction error variance. The least 
squares AR model uses the time-domain relation ( ) ( ) ( )nenxqA = . The least squares 
estimator is developed by considering the closely related problem of linear prediction. 

Firstly, let’s relate the Yule-Walker equations to the linear prediction problem. 
Assume  be an AR process of order( )nx p . Rewriting (2.1.7) gives 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )nxnx

nnxinxianxne T

i

ˆ

1

+=

+=−+=

∆

=
∑ θϕ

p

T

( )

           (2.2.18) 

where . ( ) ( ) ( )[ ]T pnxnxn −−= L,1ϕ

( )nx̂  is interpreted as a linear prediction of nx  from the p  previous 
samples .  is interpreted as the corresponding prediction 
error.  

( ) ( ) ( )pnxnx −− ,,1 L ne

Then the AR parameter vectorθ  is estimated by minimizing the prediction error 
variance 

( ){ }22 neEp =σ
∆

                      (2.2.19) 
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Combining (2.2.17) and (2.2.19) gives 

( ){ } ( ) ( )[ ] ( ) ( )[ ]{ }
( ) θθθθ

θϕϕθσ

Rrrr

nnxnnxEneE Tc
p

∗∗∗

∗∗

+++=

++==

0

22
∆

        (2.2.20) 

where r  and have been defined in (2.2.13) and (2.2.14). The symbol denotes the 

conjugate transpose of a vector or matrix and the symbol

R ( )⋅ ∗

( )⋅ c denotes the conjugate of 
a vector or matrix. The AR parameter vectorθ  that minimizes (2.2.20) is given by  

rR−=θ 1−                         (2.2.21) 

and the minimum prediction error 

( ) rRrrp 0 −=σ 12 −∗                     (2.2.22) 

It can be found that (2.2.20) and (2.2.21) are exactly the Yule-Walker equations in 
(2.2.10). The Yule-Walker equations can therefore be interpreted as the solution to 
the problem of finding the best linear predictor of ( )nx  from its p  most recent past 
samples. For this reason, AR modeling is sometimes referred to as linear predictive 
modeling. 

The least square AR parameter estimation method is based on a finite-sample 
approximate solution of the above minimization problem. For the available signal 

samples , the minimization of the prediction error variance( ) ( ){ Nxx L,1 } ( ){ }2neE  is 

approximated by the finite sample cost function 
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where we assume  

( ) Nnnnx ><= ;1,0                 (2.2.24) 

The estimate of AR parameter vectorθ  that minimizes the cost function ( )θf  is 
given by  

( ) ( )xXXX ∗∗−=θ̂
−1                    (2.2.25) 

The definition of x and in (2.2.24) depend on the choices of  and . For 
example, for and , 

X 1N 2N

11 =N pNN +=2 x and  become X
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( ) ( ) ( )

      (2.2.26) 

( ) ( ) ( )⎥⎢ +−−⎥⎢ 0

Notice the Toeplitz structure of , and note thatX x  matches this Toeplitz structure 
when it is appended to the left of ; that is, X [ ]Xx  also shares the Toeplitz structure.  

The two most common choices for  and  are: 1N 2N

1. and11 =N pNN +=2 , as shown above. This choice yields the so-called 
autocorrelation method. 

2. and . This choice corresponds to removing the first11 += pN NN =2 p  and 
last p  rows of x  and  in (2.2.26). Hence, all the arbitrary zero values are 
eliminated. This choice yields the so-called covariance method. This method is 
called the covariance least squares method, or the least squares method. 

X
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Other choices have also been suggested. For example, the prewindow method 
uses and11 =N NN =2 ; and the postwindow method uses 11 += pN and . pNN +=2

The least squares methods can be interpreted as approximate solutions to the 
Yule-Walker equations in (2.2.12) by recognizing that XX ∗ ∗ and  are, to within 
a multiplicative constant, finite-sample estimates of  and

xX
R r , respectively. In fact, it 

is easy to show that for the autocorrelation method, the elements of ( )
N

XX ∗ ( ) and
N

xX ∗

 

are exactly the biased autocovariance sequence estimates (2.2.17), which is used in 
the Yule-Walker AR parameter estimation method.  

( ) ( )⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡−= ∗∗ xX

N
XX

N
11θ̂

−1

              (2.2.27)  

Hence, a consequence can be found that: the autocorrelation of least squares method 
is equivalent to the Yule-Walker method. 

For small or medium sample lengths, the Yule-Walker and covariance least squares 
methods may behave differently. The least square model has been found to be more 
accurate than the Yule-Walker method. That is, the estimated AR parameters of the 
former are on the average closer to the true values than those of the latter.  

The theoretical explanation of this behavior is not possible since the finite-sample 
statistical analysis of these methods is underdeveloped. A heuristic explanation is the 
assumption that, for the autocorrelation method of least squares method (the 
Yule-Walker method), the signal samples ( ) 0=nx  outside of the interval . 

Hence, 

Nn ≤≤1

( )
N

XX ∗

 and ( )
N

xX ∗

 are biased estimates of  andR r  in (2.2.12) and 

(2.2.13), which results in the bias in Yule-Walker estimated of the AR parameter. 
Whereas, for the covariance least squares method, any measurement data outside the 

available interval  are not used, henceNn ≤≤1 ( )
pN

XX
−

∗

 and ( )
pN

xX
−

∗

 are unbiased 

estimates of  andR r  in (2.2.12) and (2.2.13). 

On the other hand, The Yule-Walker method is always guaranteed to be stable, while 
the least squares method may be unstable. Stability of the model is often an important 
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requirement. The lack of guaranteed stability is a drawback of the least squares 
method. However, the case is that the AR model estimated by least square method is 
unstable only infrequently.  

For large sample length, the difference between the covariance matrix estimates used 
by the Yule-Walker method and least squares method diminishes. Consequently, the 
Yule-Walker and least squares estimates of AR parameters nearly coincide with each 
other when considering a long AR process. 

 

 

  Burg’s Method 

The Burg’s method is based on forward and backward prediction errors, and on 
estimation of the reflection coefficients. This method was developed by Burg (1975). 
Assume we have the data measurements ( )nx  for Nn L,2,1= . Then we define the 
forward and backward prediction errors for a p order AR model as 

( ) ( ) ( ) ( ) Npninxianxne
i

ppf ,,1,ˆˆ
1

, L+=−+= ∑
=

p

         (2.2.28) 

( ) ( ) ( ) ( ) Npnipnxiapnxne
p

i
ppb ,,1,ˆˆ

1
, L+=+−+−= ∑

=

∗       (2.2.29) 

where the hats used in the equations denoted estimated quantities, and we explicitly 
denote the order p  in both the prediction error sequences and the AR parameters. 

The AR parameters are related to the reflection coefficients  by pk̂

( )
( ) ( )

⎪⎩

⎪
⎨
⎧

=

−=−+
=

∗
−−

pik

piipakia
ia

p

ppp

,ˆ
1,,1,ˆˆˆ

ˆ 11 L
          (2.2.30) 

The Burg’s method considers the recursive-in-order estimation of  given that the 

AR parameters for order  have been computed. In practice, the Burg’s method 

finds  to minimize the arithmetic mean of the forward and backward prediction 

error variance estimates: 

pk̂

1−p

pk̂
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( ) ( )[ ]prpr bf
k p

ˆˆ
2
1min

ˆ
+=                    (2.2.31) 

where 

( ) ( )∑
+=−

=
pn

pff ne
pN

pr
1

2

,ˆ1ˆ
N

                 (2.2.32) 

( ) ( )∑
+=−

=
pn

pbb ne
pN

pr
1

2

,ˆ1ˆ
N

1−p

                 (2.2.33) 

and where  are assumed to be known form the recursion at the previous 

order. 

( ){ }
11ˆ
=− ip ia

Show that the prediction errors satisfy the following recursive-in-order expressions 

( ) ( ) ( )1ˆˆˆˆ 1,1,, −+= −− neknene pbppfpf               (2.2.34) 

( ) ( ) ( )neknene pfppbpb 1,1,, ˆˆ1ˆˆ −
∗

− +−=               (2.2.35) 

Combining the above (2.2.34) with (2.2.35), and developing a recursive-in-order 
algorithm for estimating the AR parameters, the reflection coefficient is given by 

( ) ( )

( ) ( )[ ]∑

∑

+=
−−
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∗
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−+
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= N

pn
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1,1,

1ˆˆ

1ˆˆ2
ˆ

N

,             (2.2.36) 

which minimize (2.2.31). 

A recursive-in-order algorithm for estimating the AR parameters is as follows: 

1. Initialize ( ) ( ) ( )nxnene bf == 0,0, ˆˆ ; 

2. Compute  and  for( )ne pf 1,ˆ − ( )ne pb 1,ˆ − Npn ,,1L+= from (2.2.34) and (2.2.35); 

3. Compute  from (2.2.36); pk̂

4. Compute  for  from (2.2.30). ( )napˆ pn ,,1L=
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The vector of AR parameters can then be obtained by ( ) ( )[ ]Tpp paa ˆ,,1ˆˆ L=θ . 

The Burg’s method of AR model estimation is guaranteed to be stable. In addition, 
the Burg algorithm is computationally simple. On the other hand, the burg method is 
suboptimal in that it estimates the p reflection coefficients by decoupling 
an p -dimensional minimization problem into the p  one-dimensional minimizations 
in (2.2.31). This is in contrast to the least squares method, in which the AR 
parameters are found by an p -dimensional minimization. 

For large sample length, the three AR model estimation methods give very similar 
performance. For short or medium sample length, the Burg’s method usually behaves 
somewhere between the Yule-Walker method and the least square method. 

 

 

  Model Order Selection 

A very important issue of the use of the AR model is the selection of the model 
order p (Proakis and Manolakis, 2006). In the preceding sections we have discussed 
the problem of parameter estimation on the assumption that the orders of the AR 
operators were known a priori. In practice, the orders of these operators are almost 
invariably unknown. And the model orders constitute, in effect, additional unknown 
parameters for which suitable values have to be inferred from the data. As a general 
rule, if we select a model with too low an order, we obtain a highly smoothed 
spectrum. On the other hand, if the order is selected too high, we run the risk of 
introducing spurious low-level peaks in the spectrum.  

We mentioned previously that one indication of the performance of the AR model 
fitting is the variance of the prediction error. The error variance is, in general, is 
different for each of the estimators described above. The characteristic of this 
prediction error is that it decreases as the order of the AR model is increased. We can 
decide the model order, by monitoring the rate of decrease and deciding to terminate 
the process when the rate of decease becomes relatively slow. However, it is apparent 
that this approach may be imprecise and ill defined.  

 

 
 
 
 

- 20 -



 
 
 
 
 

Chapter 2 —— Autoregressive Model 

Many theoretical discussions and experimental results on the model order selection 
have been given in literature [e.g., the papers by Gersch and Sharpe 1973, Ulrych and 
Bishop 1975, Tong 1975 and 1977, Jones 1976, Nuttall 1976, Berryman 1978, 
Kashyap 1980, Pukkila 1988 and Rezek et al. 1997, the books by Orfanidis 1985, 
Marple 1987, Wei 1990, Priestley 1994, Proakis and Manolakis 2006]. However, 
there is no definite result for the different model order selection criteria. In the 
absence of any prior information regarding the physical process that resulted in the 
data, it is apparent that one should try different model orders and different criteria. 
We now describe some widely used techniques of determining the order of AR 
model. 

Two most famous criteria for selecting the model order have been developed by 
Akaike (1969, 1974). With the first, called the Final Prediction Error (FPE) criterion, 
the order is selected to minimize the performance indicator 

( ) 2ˆ ppN
pNpFPE σ

−
+

=                      (2.3.1) 

where N  is the number of observations to which the model is fitted, and  the 

estimated variance of the linear prediction error. Using this criterion, the fitting AR 
model has the property that it leads to the estimated one step prediction with the 
smallest mean square error. If we plot

2ˆ pσ

( )pFPE  against p  the graph will, in general, 
show a definite minimum value at a particular value of p  at which the FPE attains its 
minimum value as the appropriate order of the model. 

The second criterion proposed by Akaike (1974) is called Akaike Information 
Criterion (AIC). This very general criterion, which is based on information theoretic 
concepts, can be used for statistical model identification in a wide range of situations 
and is not restricted to the time series context. When a model involving p  
independently adjusted parameters is fitted to data, the AIC is defined by 

( ) pNpAIC p 2ˆln += σ 2

2 2

                   (2.3.2) 

Note that the term  decreases and therefore  also decreases as the order of the 

AR model is increased. However,  increases with an increase of order

ˆ pσ ˆln pσ

p2 p . Hence, a 
minimum value can be obtained. If we plot ( )pAIC  against p  the graph will, in 
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general, show a definite minimum value, and the appropriate order of the model is 
determined by that value of p  at which ( )pAIC  attains its minimum value. 

There is an asymptotically equivalent relationship between AIC and FPE. For large 
data length N , 
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,           (2.3.3) 

Hence, we have 

( ) ( )[ ]pFPENpAIC ln≈                    (2.3.4) 

The AIC criterion has largely replaced the FPE criterion, and is now generally 
accepted as one of the most reliable methods for order determination. It has been 
widely applied to both simulated and real data with very successful results and has 
become a firmly established tool in time series model fitting. 

In addition, there are some alternative criteria. Akaike (1979) has developed a new 
order determination criterion, called Bayesian Information Criterion (BIC), which is 
derived from a Bayesian modification of the AIC criterion. For a model involving 
p parameters fitted to observations ( )nx  for Nn ≤≤1 , the BIC criterion takes the 

form 

( ) ( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
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⎝

⎛
−++−−−= − 1
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lnln1lnˆln 2

2
12

p

X
p ppNpNppNNpBIC

σ
σσ    (2.3.5) 

where,  is the variance of raw sample from the observations, while  is the 

variance of estimated prediction error. When

2 2ˆ Xσ ˆ pσ

p  is small relative to N  we may use 
the approximation ( ) ( )( ) pNppN →−−− 1ln , so that 
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( ) ( ) ( )
⎥
⎥
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p

XppNppAICpBIC
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σ         (2.3.6) 

Hence, the difference between BIC and AIC has the effect of increasing the weigh 
attached to the “penalty term”, which take account of the number of AR parameters. 
Consequently, the minimization of BIC criterion generally leads to lower orders than 
those obtained by minimizing AIC. Shibata (1976) shown that when the true model 
is , the estimate  derived from the AIC criterion is not a consistent estimate 

of , but rather tends to overestimate . On the other hand, the estimate obtained 

form the BIC criterion may well underestimate the true order. 

( )0pAR p̂

0p 0p

Schwarz (1978) suggested a Bayesian criterion, called Schwarz Bayesian Criterion 
(SBC), is defined as 

( ) NpNpSBC p lnˆln 2 += σ                 (2.3.7) 

The SBC criterion is similar to Akaike’s BIC in terms of its dependence on . In 
fact, if we use the above approximate for BIC, we may have 

Nln
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p

XpppSBCpBIC
σ
σ           (2.3.8) 

Note that the Minimum Description Length criterion (MDL) (Rissanen, 1978, 1983) 
is also given by (2.3.7). 
Kashyap (1980) showed that the AIC criterion tends is statistically inconsistent 
at ∞→N , while the SBC criterion is statistically consistent. Lutkepohl [1985] 
compared SBC criterion with other order selection criteria in a simulation study and 
found that SBC chose the correct model order most often and led, on the average, to 
the smallest mean-squared prediction error of the fitted AR models. Some experiment 
results indicate that for small sample lengths, the order of the AR model should be 
selected to be in the range 3N  to 2N  for good results.  
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  Illustration Examples 

The comparison researches have indicated that the definitive results can not be 
yielded, either by the AR parameters estimation algorithms or by the model order 
selection criterion methods (the papers by Wear et al. 1995, De Hoon et al. 1996 and 
Schlogl 2006; the books by brockwell et al. 1991, Priestley 1994, Wei 1994, Ljung 
1999, Stoica et al. 1997 and Proakis et al. 2006). For different physical process and 
sample length, the various methods may behave differently. Hence, different 
parameter estimate methods with different model order and various order selection 
criterion should be tried and compared.  

In this section, we will evaluate the above various parameter estimation methods and 
model order selection criteria on the data samples of acceleration outputs measured 
from a shake table test (Building Research Institute of Japan, 2004). The experiments 
using the steel model were carried out under the US-Japan cooperative structural 
research project on Smart Structure Systems. The test structure model is a five-storey 
steel structure, depicted in Figure 2.1 (a). The structural model can be simplified as a 
five degree-of-freedom (DOF) system. Figure 2.1 (b) shows the five-DOF system, 
which is composed of five mass. 

  
Figure 2.1: Experimental building model and its simplified model. 

The weight of every storey is 2.57 ton and storey heights are all 1 m. The length of 
long-side is 3 m, while that of the short-side is 2 m. The excitation of test is a white 
noise with bandwidth of 0~200 Hz generated by the vibration exciter, along the 
long-side direction. On every storey of structure the accelerometers were mounted on 
both long-sides to record the acceleration responses along the long-side direction. The 

(a) (b)
5-mass 

4-mass 

3-mass 

2-mass 

1-mass 
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acceleration time histories were recorded with the sampling period 0.005 second, for 
40.92 seconds sensor signal records. Thus each acceleration record has 8,192 sampled 
data, shown in Figure 2.2. 
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Figure 2.2: Acceleration outputs measured from building model. 

It should be noted that various simulations for each mass have been conducted, not 
only in the analysis of parameter estimation but also that of order selection, almost all 
the results of different masses are the same. Therefore, we only give the results from 
the fifth mass in the following examples. 

 

2.4.1 Parameter Estimation 

Firstly, we discuss the AR modeling of the acceleration data samples by using three 
parameter estimation methods respectively: the Yule-Walker Method, the Least 
Squares Method and the Burg’s method. To evaluate the stability of AR model, we 
will give the graphical interpretations of polar plots of system’s poles for each 
method. The effect of different data length on AR parameter estimation is also 
discussed. We use three data lengths, which are 51, 201 and 501 data samples. 
Although the classification of data length has not been defined yet, the selections of 
data length in this study are similar to the paper by Schlogl (2006). 
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Data length of 51 

Figure 2.3 shows the consecutive sections of 51 data samples, which are cut from the 
original sensor signals. The time interval is [15 15.25] (second). 
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Figure 2.3: Data length of 51: the sections of data samples ([15 15.25] second) cut from the 
original sensor signals. 

For briefty, we only give the analysis results of the acceleration data samples from the 
fifth mass. The maximal model order is set to be 20max =p . Figure 2.4 plots the 20 

AR parameters estimated by using the Burg’s method, least squares method and 
Yule-Walker method respectively. Figure 2.5 shows the estimated prediction error 
variances for three methods. The prediction error variance in case of the Yule-Walker 
method is greatly larger than those for the Burg’s method and the least squares 
method. That’s to say, the Yule-Walker method does not yield a correct AR model for 
the data samples with a small data length. The causes of poor Yule-Walker estimates 
for small data length were discussed in Stoica et al. (1997) and De Hoon et al. (1996). 
An intuitive explanation for this phenomenon is that the Yule-Walker method uses the 
biased autocovariance sequence estimates, but not the unbiased autocovariance 
sequence estimates as the least squares method does (see Section 2.2.2). 
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Figure 2.4: Data length of 51: the estimated AR parameters of AR models fitted to the 

accelerations from the fifth mass, in each case of the Burg’s method, the least squares method 
and the Yule-Walker method. 
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Figure 2.5: Data length of 51: the estimated prediction error variances of AR models fitted to 

the accelerations from the fifth mass, in each case of the Burg’s method, the least squares 
method and the Yule-Walker method. 
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Figure 2.6 shows the polar plots of estimated poles for the three methods respectively. 
It’s known that the pole locations indicate the stability of the AR model. As seen in 
the second panel of Figure 2.6, the least squares method leads to an unstable model, 
because of the four poles locating outside the unit circle, which are marked by the red 
circles. The poles of the estimated models by the other two methods are entirely 
located inside the unit circle, whereby fulfilling the condition for stability.  

However, it should be noted that the poles outside the unit circle are related to the 
high-order AR parameters. Hence the stability of the estimated AR model is possibly 
guaranteed by selecting the lower model order, if the model order selection is 
considered, which will be discussed later in this section.  

Among three methods, the Yule-walker method can’t yield accurate estimates of AR 
parameters for small data length, and the least squares method sometimes lacks 
stability of estimated AR model. While the Burg’s method is the only reliable AR 
parameter estimation method, yielding accurate parameter estimates as well as a 
guaranteed stable AR model. 
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Figure 2.6: Data length of 51: the polar plots of the estimated AR models fitted to the 

accelerations from the fifth mass, in each case of the Burg’s method, the least squares method 
and the Yule-Walker method.  

(The red circle indicates that the pole is located outside the unit circle) 
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Data length of 201 

We here consider a moderately larger data length case. Figure 2.7 shows a 
consecutive section of 201 data samples, which goes through 1 second interval. The 
time interval is [17 18] (second). 

In the same way, Figure 2.8 and Figure 2.9 give the results of estimated AR 
parameters and prediction error variances of the first 20 orders, in each case of the 
Burg’s method, the least squares method and the Yule-Walker method. It would be 
expected that the least squares method and the Burg’s method lead to the almost same 
results of parameter estimates, as shown in Figure 2.9. Compared with the above two, 
the result of the Yule-Walker method is the worst one. It could be concluded that, 
even for moderately larger data length, the Yule-Walker method doses not yield good 
parameter estimates. 

The pole locations for three parameter estimation methods are plotted in Figure 2.10. 
All estimated AR models are guaranteed to be stable in this case. 
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Figure 2.7: Date length of 201: the sections of data samples ([17 18] second) cut from the 
original sensor signals. 
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Figure 2.8: Data length of 201: the estimated prediction error variances of AR models fitted 
to the accelerations from the fifth mass, in each case of the Burg’s method, the least squares 

method and the Yule-Walker method. 
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Figure 2.9: Data length of 201: the estimated prediction error variances of AR models fitted 
to the accelerations from the fifth mass, in each case of the Burg’s method, the least squares 

method and the Yule-Walker method. 
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Figure 2.10: Data length of 201: the polar plots of the estimated AR models fitted to the 

accelerations from the fifth mass, in each case of the Burg’s method, the least squares method 
and the Yule-Walker method.  

 

Data length of 401 

In this section, we consider a larger data length case. Figure 2.11 shows a consecutive 
section of 401 data samples, which goes through 2 second interval. The time interval 
is [18 20] (second).  

Similarly, Figure 2.12 and Figure 2.13 give the results of estimated AR parameters 
and prediction error variances of the first 20 orders for each method. It is seen from 
the figures that, the Yule-Walker method may lead to nearly the same parameter 
estimates as the other two for the large data samples. It can be concluded that each of 
the three parameter estimation methods performs well when fitting the data samples 
with large data length. 

Figure 2.14 shows the results of pole locations, in each case of the three parameter 
estimation methods. The estimated AR models all perform well in stability. It is 
confirmed that the instability led by the least squares method appears infrequently, 
thereby it’s not a serious drawback. 
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Figure 2.11: Data length of 401: the sections of data samples ([18 20] second) cut from the 
original sensor signals. 
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Figure 2.12: Data length of 401: the estimated prediction error variances of AR models fitted 
to the accelerations from the fifth mass, in each case of the Burg’s method, the least squares 

method and the Yule-Walker method. 
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Figure 2.13: Data length of 401: the estimated prediction error variances of AR models fitted 
to the accelerations from the fifth mass, in each case of the Burg’s method, the least squares 

method and the Yule-Walker method. 
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Figure 2.14: Data length of 401: the polar plots of the estimated AR models fitted to the 

accelerations from the fifth mass, in each case of the Burg’s method, the least squares method 
and the Yule-Walker method.  
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2.4.2 Order Selection 

Secondly, the acceleration signals measured from the shake table test are used to test 
four model order selection criteria, introduced in Section 2.3:  

1. The Final Prediction Error Criterion (FPE); 
2. The Akaike Information Criterion (AIC); 
3. The Bayesian AIC (BIC); 
4. The Schwarz Bayesian Criterion (SBC). 

The various acceleration signals from different locations have been evaluated. For 
briefty, we here only give an example of the analysis performed on the data samples 
from the fifth mass. The same three data lengths as the above Section 2.6.2 are used, 
that is data length of 51, 201 and 401. For giving a comparison of different criteria, 
the prediction error variances are obtained by using the same estimation method, the 
Burg’s method. Then, the optimal model orders, based on the different definitions of 
the relative prediction error variances, can be obtained by the above four criteria.  

We first plot relative prediction error variances against the model order. The graph 
will, in general, show a definite local minimum value at a particular value at which 
the criterion attains the appropriate order of the model. From the various relative 
prediction error variances according to four criteria, the optimal model orders are 
decided by local minimum values. Figure 2.15, Figure 2.16 and Figure 2.17 show the 
relative prediction error variances in the cases of three data length, respectively. Table 
2.1, Table 2.2 and Table 2.3 give the results of optimal model orders selected by four 
criteria in the cases of three data length, respectively. .  

It can be seen that, there is no apparent divergences of results for the different criteria 
and different data length in this case. As shown in the Table 2.1, Table 2.2 and Table 
2.3, the optimal orders 4 or 5 are frequently selected in different cases. Hence, it is 
concluded with confidence, the optimal order for the acceleration data samples of this 
shake table test should be selected as 4 or 5. In fact, we used the different parameter 
estimation methods and order selection criteria on the data samples from the other 
masses, and obtained the almost same results. 
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Figure 2.15: Data length of 51: model order selection in each case of the Final Prediction 

Error Criterion (FPE); the Akaike Information Criterion (AIC); the Bayesian AIC (BIC) and 
the Schwarz Bayesian Criterion (SBC). 
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Figure 2.16: Data length of 201: model order selection in each case of the Final Prediction 

Error Criterion (FPE); the Akaike Information Criterion (AIC); the Bayesian AIC (BIC) and 
the Schwarz Bayesian Criterion (SBC). 
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Figure 2.17: Data length of 401: model order selection in each case of the Final Prediction 

Error Criterion (FPE); the Akaike Information Criterion (AIC); the Bayesian AIC (BIC) and 
the Schwarz Bayesian Criterion (SBC). 

 

Table 2.1: Optimal orders selected in the case of data length of 51. 
 

Criterion FPE AIC BIC SBC 
Optimal Order 4 4 4 4 

 

Table 2.2: Optimal orders selected in the case of data length of 201. 
 

Criterion FPE AIC BIC SBC 
Optimal Order 5 5 4 4 

 

Table 2.3: Optimal orders selected in the case of l data length of 401. 
 

Criterion FPE AIC BIC SBC 
Optimal Order 5 5 5 5 
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   Summary 

In this chapter, we have introduced some widely used model estimation methods for 
the AR models such as the Yule-walker method, the least squares method and the 
burg’s method. Four model order selection criteria, which are FPE, AIC, BIC and 
FPE criteria, have also been introduced. To evaluate the various methods and criteria, 
some illustrated examples were given then. 

The estimation methods behaved differently for the different data lengths. In the case 
of short data length, the Yule-Walker method performed the worst while the Burg’ 
method and the least squares methods yielded nearly the same results. On the other 
hand, three methods all perform well in the case of large data length. An intuitive 
explanation for poor Yule-Walker estimates for small data length is that the 
Yule-Walker method uses the biased autocovariance sequence estimates, but not the 
unbiased autocovariance sequence estimates as the least squares method does. 

On the stability, the Burg’s method and the Yule-Walker warranted the estimated AR 
model to be stable in each case, while the least squares method appeared unstable in 
AR modeling infrequently. By comparison, the Burg’s method is the only reliable AR 
parameter estimation method in each case of data length, yielding accurate parameter 
estimates as well as a guaranteed stable AR model. 

In addition, four famous model selection criteria, such as FPE, AIC, BIC and SBC 
have also been evaluated on the data samples with different lengths. Almost the same 
results were obtained by four criteria in each case. Despite of this, the disagreements 
on optimal order selection may arise in the other cases. Therefore, the different 
criteria will also be applied in the following chapters. 
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Chapter 3 

Distance Measure 

 

 

 

This chapter discusses two distance measures of AR models: one is the Itakura 
distance, and the other is the cepstral distance. The distance measures of AR model 
have been successfully applied in image, speech recognition, and biological, 
neurological sequences comparison. In this research, we are interested in the novel 
applications of two distance measures for damage detection and damage localization 
for structural health monitoring. The distance measures of AR models are considered 
as the damage indicators. 

We first introduce the definitions of the two distance measures. After then, the 
performances of the damage indicators defined as the distance measures are evaluated 
by simulation verifications, which are conducted on a five storey building model. The 
analysis on the acceleration data samples are given, including the order selection and 
model stability. In the end of this section, various damage scenarios are simulated, in 
the case of different damage severities and different damage locations. The 
performances of the damage indicators to identify the different scenarios are tested. 

 

 

3.1 Two Distance Measures of AR models 

Typical applications on time series deal with tasks like prediction, forecasting, system 
identification. In civil engineering application, the AR model has been a fast and 
efficient tool to parameterize dynamic responses (Mita, 2003). Estimation of system 
transfer function from ambient vibration responses is a difficult task in the absence of 
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excitations. However, the advantages of the AR modelling for ambient vibration over 
the conventional nonparametric frequency domain methods have been discussed 
(Pardoen 1983, Kadakal et al. 1996). Thus, the AR model and the multivariate AR 
model were successfully used to identify structural dynamic characteristics of system 
subjected to ambient excitations (He et al. 1997, Huang 2001).  

On the other hand, the applications of time series deal with tasks like classification, 
clustering, anomaly detection, noise removal. For SHM, the AR models have been 
receiving increasing attention that the AR parameters were treated as damage 
indicators to estimate structural damage. Worden et al. (2000) considered statistical 
process control approach to damage detection, using the mean and variance of the 
residuals of the AR model to form the statistical process control charts. A statistical 
pattern recognition methodology was presented by Sohn et al. (2001). The dynamic 
signals recorded were modeled using autoregressive (AR) time series models. By 
statistically examining changes in AR coefficients, they could classify signals from 
either undamaged or damaged systems. Mattson et al. (2006) chose the standard 
deviation of the residual of vector AR (VAR) model as the damage indicator. De 
Lautour et al. (2006) used the AR coefficients as input features into an Artificial 
Neural Network (ANN). The damage and its extent were identified by observing the 
changes in AR coefficients. However, a disadvantage of these methods is that, 
without pattern recognition tools, they are unable to damage localization or 
quantification.  

The application of time series on damage detection relies heavily on the ability to 
measure the similarity and dissimilarity between time series (Agrawal et al. 1993 and 
1995, Jagadishi 1995, Kalpakis 2001). Therefore, in this research, we offer a new 
strategy of time-series analysis to understand the dynamic responses recorded on a 
civil infrastructure, by taking into account the variability of distance measure as a 
result of structural damage. The distance between the two AR models is considered to 
be correlated with the position and severity of the damage. Hence, the distance 
measures between AR models are defined as the damage indicators. Two distance 
measure methods are introduced in the next sections: one is the Itakura distance 
(Itakura 1975, Rabiner et al. 1993); the other is the cepstral distance (Martin 2000,). 
Next, we give the definitions of the distance measures. 
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3.1.1 Cepstral Distance 

The first distance measure we are interested in is a weighted Euclidean cepstral 
distance, which is proposed by Martin (2000).  

The cepstrum of a stochastic process is defined as the “inverse Fourier transform of 
the logarithmic power spectrum”. The cepstrum was firstly introduced by Bogert et al. 
(1963), who used it for the detection of echoes. Cepstrum has been applied in a 
variety of areas including audio processing, speech processing, geophysics, machine 
diagnostics, and others (Oppenheim et al. 2004, Ulrych 1971, Stockham 1972, Davis 
et al. 1980, and Wismer’s application note).  

Furthermore, the cepstrum has been also used for measuring the distance between two 
signals. Tohkura (1987) tested a weighted cepstral distance on a speaker-independent 
isolated word recognition system. The experimental results show that the weighted 
cepstral distance measure works substantially better than both the Euclidean cepstral 
distance and the log likelihood ratio distance measures across two different databases. 
Basseville et al. (1989) presented some general tools for measuring distances between 
two parametric models, either the spectral distance measures or the parametric 
spectral distance measures. Kalpakis et al. (2001) used the unweighted cepstral 
distance to cluster time series, and found that it performs much better than other 
widely used methods such as discrete Fourier transform and principal component 
analysis and so on. De Cork et al. (2000, 2002a, 2002b, 2003 and 2004) related the 
weighted cepstral distance proposed by Martin (2000) to the subspace angles, and 
gave a graphical interpretation of the cepstral distance, which is related to the area 
enclosed by the polar plot of the logarithm of the ratio of the transfer functions of two 
models. Bissacco (2001) applied the subspace angles, proposed by De Cork et al., to 
recognize human gaits. Boets et al. (2005 and 2006) considered using the Martin’s 
weighted cepstral distance for time series clustering. The best results were obtained 
with the weighted cepstral distance compared with the other distance measures 
including the unweighted cepstral distance, the distance between spectra, the  
distance and the  distance. 

2H

∞H

In this research, we concern about the Martin’s weighted cepstral distance, which is 
supposed to measure the distance between two parametric models. Martin listed the 
drawbacks of distance measure in the form of weighted Euclidean distance of AR 
parameters, such as the difficulty of finding good weights, the lack of system 
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theoretic properties and the lack of mathematical properties. After then, the cepstral 
distance measure was proposed (Martin 2000). 

Next, we introduce this cepstral distance measure. The cepstral distance between AR 
models can be derived from a cepstral distance between autoregressive 
moving-average (ARMA) models.  

An ARMA process is given by 
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optimal model orders of the AR and MA processes, respectively, and is a white 
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( )where iα  and jβ  are the poles and zeros of the ARMA model. 

The power cepstrum is the inverse Fourier transform of the logarithm of its power 
spectrum  (Oppenheim et al. 1975): ( )zP
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where are the cepstrum coefficients.  nC

Substituting (3.1.2) into (3.1.3), the logarithm of the power spectrum becomes 
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Then, the power cepstrum of the ARMA model can be expressed in terms of the poles 
and zeroes as 
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Since the poles and zeroes occur in complex conjugate pairs, then the above 
expression becomes 
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For two ARMA models M ′  and M ′′  with the associated cepstrum coefficients  
and , the cepstral distance between the models could be defined by a weighted 
Euclidean distance between cepstrums: 

( )
( )

)

nc′

nc ′′

( ) ( ) (∑
=

′′−′=′′′
1

22

n

ncncnM,Md
∞

   (3.1.7) 

Since the cepstral metric is a Euclidean distance, the following property on the set of 
ARMA models holds 

( ) ( )M,MdMM,MMd ′′′=′′′′′′′′′    (3.1.8) 

In other words, if two models M ′  and M ′′ are passed through the same linear filter 
with model M ′′′ , their mutual distance is unaltered.  

( ) ( )Therefore, suppose that ( ) ( )za
zbzH ARMA ′

′
=′  and ( ) ( )za

zbzH ARMA ′′
′′

=′′  are the transfer 

functions of two ARMA models M ′  and M ′′ , and that the third ARMA model M ′′′  

has transfer function ( ) ( ) ( )zbzb
zH

′′′
=′′′ 1 . 

 
 
 
 

- 42 -



 
 
 
 
 

Chapter 3 —— Distance Measure 

Then two AR models  andN ′ N ′′  with transfer functions can be constructed as 
followings: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎪

⎪
⎩

⎪⎪
⎨
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ARMAAR

1

1

    (3.1.9) 

According to the property (3.1.8), there is 

( ) ( )N,NdM,Md ′′′=′′′ ,   (3.1.10) 

Hence, to measure the distance between ARMA models M ′  and M ′′ , it is sufficient 
to consider AR models  andN ′ N ′′  only.  

Furthermore, from the viewpoint of modern spectral analysis, the AR model is proven 
appropriate to approximate the power spectra with sharp peaks and the spectral peaks 
can be represented by the poles of AR model. That’s to say, the AR poles can indicate 
strong structural resonances in the system.  

Therefore, to distinguish between two segments of vibration responses from 
structures in different states, the cepstral distance between AR models can be used. 
Suppose that the structure systems in baseline and unknown states are described by 
AR models  and  with model ordersN ′ N ′′ p′ , p ′′ and the associated poles ( )iα′ , ( )jα ′′ . 
The cepstral distance measure is defined by 
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3.1.2 Itakura Distance 

The Itakura distance was initially developed to measure the similarities between voice 
segments, which are modeled by AR models (Itakura 1975, Gray et al. 1976, Rabiner 
et al. 1993). Since then, it has been widely applied in neurological signals, biological 
sequence comparison and others. For examples: Kong et al. (1995, 1998, 1999) and 
Estrada et al. (2004, 2005) tested the effectiveness of the Itakura distance measure 
when applied to the electroencephalogram (EEG) signals. Muthuswamy et al. (1998) 
presented the measuring of the Itakura distance to quantify the differences between 
the spectra of two neurological signals and found the AR model improves the 
resolution of the spectra. Pham (2006a, 2006b, 2007) considered using both cepstral 
distance and Itkura distance for finding the similarities between related sequences of 
DNA or protein.  
The dynamic responses from structures can be in a sense seemed as the sound of 
structures. Therefore, we are interested in the novel application of Itakura distance 
measure for damage detection in civil engineering field. Suppose that the AR model 
of a segment of vibration response from structure (say acceleration output) in baseline 
state can be expressed by: 

( ) ( ) ( ) ( )neinxianx x

p

i
x =−+∑

=1
   (3.1.12) 

Then, the AR model of a segment in unknown state is given by: 

( ) ( ) ( ) ( )neinyiany y
i

y =−+∑
=1

p

( ) ( )
( ) ( )

   (3.1.13) 

where  and  are the parameters describing the vibration system and 

white noise  and  are the unpredictable parts in the vibration 

signals  and . Suppose that the optimal model order for both time series 
is

( )iax ( )iay

nex ney

nx ny
p . The AR parameters of two time series can be written in compact from: 

( ) ( ) ( )[ ]xxxx paaaA −−−= L211 T    (3.1.14) 

( ) ( ) ( )[ ]yyy paaaA −−−= L211y
T    (3.1.15) 
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The AR parameters  can be optimally determined by minimizing the minimum 

mean square error (MSE), 

( )iax

( )
( ) ( ) ( )

⎪⎭
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   (3.1.16) 

The MSE can also be expressed as 

xxx ARA=11ξ T    (3.1.17) 

where  is the covariance matrix of signalxR ( )ix  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

01

101
10

xxx

xxx

xxx

x

rprpr

prrr
prrr

R

L

MOMM

L

L

   (3.1.18) 

( )The individual element in the matrix krx  is the covariance function of signal , 

which is given by 

( )ix

( ) ( ) ( ) pmmnxnx
N

mr
n

x ,,2,1,0,1
1

L=+= ∑
=

mN−

T

( )

   (3.1.19) 

Actually (3.1.18) and (3.1.19) are equivalent to the covariance matrix in (2.2.12) and 
the standard biased autocovariance sequence in (2.2.17).  

Suppose that the signals  pass through the AR model parameterized by , the 

MSE will be: 

( )nx yA

yxy ARA=12ξ    (3.1.20) 

Since  are the optimal values from the MSEia 11ξ , we must have 1211 ξξ ≤ . Only if 
the signals  and  are from the same system, i.e., two signals have the 
identical system characteristics, we have

( ) ( )nx ny

1211 ξξ = . When the unknown state is 
different from the baseline state, the MSE 2ξ  will be larger than 1ξ . Thus, the Itakura 
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distance, which tests how far the unknown state parameterized by  is from the 

baseline state parameterized by , is defined as 
yA

xA

( )
xx

T
x

yxy
yx ARA

ARA
ξ
ξ,AAd loglog

11

12 ==′
T

   (3.1.21) 

( )

T

( )

T

Similarly, the AR parameters iay  can be optimally determined by minimizing the 

minimum mean square error (MSE), 
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   (3.1.22) 

The MSE can also be expressed as 

xxx ARA=22ξ    (3.1.23) 

and suppose that the signals  pass through the AR model parameterized by , 

the MSE will be: 

ny xA

xyx ARA=21ξ    (3.1.24) 

( ) ( )Similarly, by testing how well the signals ny  pass through AR model , another 
Itakura distance measure is given by 

ia

( )
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T
y

xyx
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   (3.1.25) 

where  is the covariance matrix of signalyR ( )iy : 
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and  is the covariance function of signal( )kry ( )iy , which is given by 
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( ) ( ) ( ) pmmnyny
N

mr
n

y ,,2,1,0,1
1

L=+= ∑
=

mN−

  (3.1.27) 

Combining two Itakura distance measures (3.1.21) and (3.1.25), a symmetric distance 
measure can then be obtained: 

( ) ( ) (( )yxyxyx AAdAAdAAd ,,
2
1, ′′+′= )    (3.1.28) 

 

 

3.2 Numerical Verification 

 

3.2.1 Building Model 

To verify the performance of two distance measures for damage detection, simulation 
studies has been conducted on a five storey shear building model. This model can be 
simplified as a five degree-of-freedom structure system, as depicted in Figure 3.1. 
The structure system is subjected to ambient excitations on every mass. 

5-mass 

4-mass 

White 
Noises 3-mass 

2-mass 

1-mass 

 
Figure 3.1: Five storey building and its simplified system. 
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Suppose that the mass of every storey is 100 kg, and the lateral stiffness is 1MN/m. 
The damping ratio is assumed to be 3% for all modes. The undamaged natural 
frequencies of the simulated structure system were obtained, as shown in Table 3.1. 

Table 3.1: Natural frequencies of simulated building model. 
Mode Natural Frequency (Hz) 

1 4.53 
2 13.22 
3 20.84 
4 26.78 
5 30.54 

The building structure is assumed to be subjected to ambient excitations, which are 
simulated by multiple white noise processes, each with mean of zero N and variance 
of 1 N2. The white noise excitations are assumed to approximate wind or other 
ambient excitations. We applied the modal superposition algorithm simulate the 
dynamical responses of the structure system. The acceleration responses for five 
masses are obtained, as shown in Figure 3.2. In the simulation, the length of data 
samples is 4001, and the sampling frequency is 200 Hz.  
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Figure 3.2: Simulated acceleration time histories from each storey of the building model 
when subjected to ambient forces 
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3.2.2 Evaluation Method of Distance Measure 

In the evaluation, the damage indicator is defined as the distance measure, either the 
Itakura distance or the cepstral distance. Assume the evaluation of the damage 
indicator is performed when the damage scenario is unknown. The structure without 
damage is considered as the baseline state, while the structure with the damage 
simulated by inter-storey stiffness reduction is considered as the unknown state. The 
procedure of damage detection using the distance measure is depicted in Figure 3.3:  

 Firstly, the vibration signals from building structure, acceleration time histories, 
are parameterized by AR models.  

 Secondly, by using distance measures, either Itakura distance or cepstral distance, 
the distance between the AR models fitting the acceleration time histories from 
structure in baseline state and unknown state are measured. 

 Finally, decision can be drawn that a large distance indicators a possible damage 
in the structure. 

Vibration signals from 
AR model

 
Figure 3.3: Procedure of damage detection by distance measure 

 

3.2.3 Mutually Uncorrelated Ambient Excitations Case 

In this case, we consider the mutually uncorrelated ambient excitations. The 
excitations acting on five masses are simulated by five white noise processes, which 
are mutually independent and uncorrelated. To observe the correlations among the 
multiple inputs, we first give the covariance analysis of the excitations by calculating 
the covariance matrix.  

 

 

Baseline state 

Distance 
Measure

Vibration signals from AR model
Unknown state 
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Covariance analysis 

Since the ambient excitations are created randomly, the excitations are different for 
each time, as well as the corresponding covariance matrix. We can’t give the 
theoretical expressions of covariance matrix but can only give the simulation results. 
For example, we here give a simulation result of the covariance matrices of the 
multiple inputs and outputs of the structural system. 

In this case, the structural responses, the acceleration time histories, were simulated 
from the structure model in the baseline state. The covariance matrices of the input 
forces and output accelerations, which act on and response from the undamaged 
structure, are obtained as follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×=

0.99800.0161- 0.0067-0.0034-0.0047-
0.0161-0.99870.0275-0.0211-0.0246
0.0067-0.0275-1.00420.0080- 0.0140-
0.0034-0.0211-0.0080-0.98680.0131
0.0047-0.02460.0140-0.01311.0015

104
inR  

and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×=

0.78850.2846-0.0450-0.0459-0.0501-
0.2846-1.02370.2954- 0.0570-0.0059-
0.0450-0.2954- 1.04390.2268-0.0241
0.0459-0.0570- 0.2268- 1.10370.2066-
0.0501-0.0059-0.02410.2066-  1.0402

7597.3outR  

It is well known that, for the linear multiple input multiple output (MIMO) system, 
the multiple outputs are mutually uncorrelated if and only if the multiple inputs are 
mutually uncorrelated (Haugh 1976, Hong 1996).  

Hence, it can be seen that the covariance matrix of the inputs  is almost a diagonal 

matrix, and that of the outputs  is near to be diagonal. Note that the covariance 

matrix of outputs is a band matrix, which is similar to the shape of the stiffness matrix 
of the structure system. 

inR

outR
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Model analysis 

Similar to the analysis in Section 2.4.1, we use the three model parameter estimation 
methods, Burg’s method, Least Squares Method and Yule-Walker Method, to 
parameterize the simulated acceleration time histories.  

For example, we give the results of an acceleration time histories, which is from the 
first storey of the building structure in the baseline state. For comparing the different 
model orders, the models with a maximal order of 100 are estimated.  

Figure 3.4 shows the prediction error variances of three methods with a maximal 
model order of 100. It is seen that the three methods yield almost identical results 
when the model orders less than 40, and after then the Burg’s method and the least 
squares perform a litter better than the Yule-Walker method. The three methods are all 
qualified for the task since the model order of 40 is generally enough. 
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Figure 3.4: Estimated prediction error variances of three model parameter estimation methods 

with the maximal order of 100, in the case of mutually uncorrelated ambient inputs and the 
baseline state of building structure. 

Next, the model order selection is analyzed by four criteria: the Final Prediction Error 
Criterion (FPE); the Akaike Information Criterion (AIC); the Bayesian AIC (BIC) and 
the Schwarz Bayesian Criterion (SBC). Here, the prediction error variances were 
calculated by using the Burg’s method. For comparing the different model orders, the 
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models with a maximal order of 50 are estimated.  

Figure 3.5 plots an example of the results of optimal order selection by four criteria. 
Decided by the local minimum, four criteria give the same results of optimal model 
order of 3, as shown in Table 3.2.  

For the various acceleration signals from different masses, the corresponding AR 
models have been evaluated for model order selection. Also the various damage 
scenarios should be considered. The similar results of optimal orders were obtained 
for different cases. The FPE, AIC, SBC and SBC criteria give the same optimal order 
equal to or near to 3. Therefore, the order of 3 is selected to estimate the AR models 
and to measure the distance between AR models. 
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Figure 3.5: Optimal model order selected by the FPE, AIC, BIC and SBC criteria, with the 
maximal order of 50, in the case of mutually uncorrelated ambient inputs and the baseline 

state of building structure. 
 

Table 3.2: Optimal orders selected in the case of mutually uncorrelated ambient excitations 
 

Criterion FPE AIC BIC SBC 
Optimal Order 3 3 3 3 
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Distance measures 

To simulate the structural damage, the inter-storey stiffness reduction ratio, which is 
the most typical damage scenario, is assumed to occur on the structural model. Single 
damage cases occur on each storey respectively, which are ‘1 storey damage’, ‘2 
storey damage’…, and ‘5 storey damage’. The inter-storey stiffness reduction 
between the first mass and the base is called as ‘1-storey damage’, and The 
inter-storey stiffness reduction between the first and second masses is called as ‘2 
-storey damage’, and the rest may be deduced by analogy.  

For evaluating the sensitivity of the proposed damage indicator, minor damage 
severities are selected, which are , , ,  and stiffness reduction. 
Hence, there are a total of 25 damage scenarios. 

%2 %4 %6 %8 %10

The measurement noises are assumed to be white noise processes, which are added to 
the acceleration time histories. The every acceleration response has been added by the 
measurement noise of 10% noise level, which is the ratio of root mean square (RMS) 
of sensor noises to acceleration responses. The corresponding signal over noise ratio 
(SNR) is . dBSNR 20=

Following the procedure of damage detection by distance measures, depicted in 
Figure 3.3, the distance measures between AR models are defined as the damage 
indicators for damage detection. Two distance measures introduced in Section 3.1.1 
and Section 3.1.2, the Itakura distance and the cepstral distance, were both evaluated. 
Firstly, the Burg’s method was used to estimate the AR parameters. The optimal 
model order of 3 obtained above was selected as the model order not only for model 
parameter estimation but also for distance measures. Therefore, the first 3 AR 
parameters estimated by the Burg’s method were used to obtain the distance measures. 
For all the damage scenarios, 25 corresponding damage indicators were obtained, 
either by (3.1.11) or (3.1.28).  
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Figure 3.6: Cepstral distances in the case of mutually uncorrelated ambient excitations. 
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Figure 3.7: Itakura distances in the case of mutually uncorrelated ambient excitations. 
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Figure 3.6 shows the results of cepstral distance measures, and Figure 3.7 shows 
those of Itakura distance. Results show that both two methods are capable of 
identifying the damage and its locations. Since the damage occurs between two 
adjacent storeys, the distance measures for these two storeys are a lot larger than the 
others. As shown in both figures, the magnitude differences of damage indicators can 
exactly imply the possible damage location. 

It should be noted that the gray level in the bar graph implies damage level. The 
distance measures increase monotonically with the inter-storey stiffness reduction, 
which provides the potential to estimate the damage severity. However, for real 
damage quantification, the exact relation between the damage indicator and damage 
severity should be further evaluated carefully.  

Actually, the optimal orders near to 3, such as 2 or 4, have been obtained infrequently 
in some cases. The corresponding AR parameters and distance measure were also 
calculated. It is found that the similar results of distance measures to Figure 3.6 and 
Figure 3.7 could be obtained. 

 

3.2.4 Mutually Correlated Ambient Excitations Case 

Next, we consider the mutually correlated inputs. The inputs are still five white noise 
processes acting on every mass, as depicted in Figure 3.1. In this case, we generate 
five mutually correlated inputs by assuming the white noise processes to be identical. 

Different from the above case, there should be strong correlations among the 
simulated ambient excitations. Therefore, the covariance matrix of the multiple inputs 
should not be a diagonal matrix. Since that the outputs are mutually uncorrelated only 
if the inputs are mutually uncorrelated, the outputs are also mutually correlated.  

 

Covariance analysis 

In the same way, we here give a simulation example of the covariance matrices of 
multiple inputs and outputs of the structural system. This example used the 
acceleration signals from the baseline state, i.e. the undamaged structural model. The 
covariance matrices of the input forces and output accelerations are obtained by 
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simulation as follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×=

0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407

104
inR  

and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2.66772.22051.76871.48821.2504
2.22052.24141.94571.55091.2921
1.76871.94572.03631.75291.3370
1.48821.55091.75291.86811.5043
1.25041.29211.33701.50431.6183

outR  

From the results, it can be seen that the covariance matrices of both inputs and 
outputs are full matrices. That’s to say, there exist strong correlations among the 
inputs and outputs.  

 

Model analysis 

In the same way, three model parameter estimation methods, the Yule-Walker 
Method, the Least Squares Method, and the Burg’s method were used to parameterize 
the simulated acceleration time histories. For example, we also give the results of the 
baseline state of the building structure. The setting factors for simulation are the same 
as the above case: the length of data samples is selected as 4001, the sampling 
frequency is 200 Hz, and the models with a maximal order of 100 are estimated. 

Figure 3.8 shows the prediction error variances of three methods with a maximal 
model order of 100. The results are similar to the results of mutually uncorrelated 
excitations case, as shown in Figure 3.4. The three methods yield almost identical 
results when the model orders less than 60, while the divergence starts to appear only 
if the model order is larger than 60. It can be concluded that, in general, the three 
methods are all qualified for the large data sample length case. 
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Figure 3.8: Estimated prediction error variances of three model parameter estimation methods 

with the maximal order of 100, in the case of mutually correlated ambient inputs and the 
baseline state of building structure. 

In the same way, four order selection criteria, the Final Prediction Error Criterion 
(FPE), the Akaike Information Criterion (AIC), the Bayesian AIC (BIC) and the 
Schwarz Bayesian Criterion (SBC), have been evaluated. The prediction error 
variances were calculated by using the Burg’s method. For comparing the different 
model orders, the models with a maximal order of 50 are estimated.  

Figure 3.9 plots an example of the results of optimal order selection by four criteria. 
Decided by the local minimum of the relative error variances, four criteria give the 
same results of optimal model order of 2, as shown in Table 3.3.  

Furthermore, various AR models of acceleration signals from different masses in 
different damage scenarios have been evaluated. Almost all the criteria give the same 
optimal order of 2. Therefore, the order of 2 is selected for both model estimation and 
distance measure. 
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Figure 3.9: Optimal model order selected by the FPE, AIC, BIC and SBC criteria, with the 

maximal order of 50, in the case of mutually correlated ambient inputs and the baseline state 
of building structure. 

 

Table 3.3: Optimal orders selected in the case of mutually correlated ambient excitations 
 

Criterion FPE AIC BIC SBC 
Optimal Order 2 2 2 2 

 

Distance measures 

In the case of mutually correlated ambient inputs, the damage indicators defined as 
the distance measures are calculated in the same way. Following the procedure of 
damage detection by distance measures, depicted in Figure 3.3, the distance measures 
between AR models are defined as the damage indicators for damage detection. Due 
to the optimal order selection criteria, the first two AR parameters are used to 
calculate the distance measures of AR models, either by (3.1.11) or (3.1.28).  
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Figure 3.10: Cepstral distances in the case of mutually correlated ambient inputs. 

 

0 1 2
x 10-3

1-mass

2-mass

3-mass

4-mass

5-mass

1-Storey Damage 

 

 

2%
4%
6%
8%
10%

0 2 4
x 10-4

1

2

3

4

5

2-Storey Damage 

0 1 2
x 10-4

1

2

3

4

5

3-Storey Damage 

Itakura Distance

0 0.5 1
x 10-4

1

2

3

4

5

4-Storey Damage 

0 0.5 1
x 10-4

1

2

3

4

5

5-Storey Damage 

 
Figure 3.11: Itakura distances in the case of mutually correlated ambient inputs. 
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Various AR models of acceleration signals from different masses in different damage 
scenarios have been evaluated. Almost all the criteria give the same optimal order of 
2. Therefore, the order of 2 is selected for both model estimation and distance 
measure. Figure 3.10 and Figure 3.11 show the results of cepstral distance measures 
and Itakura distance measures, respectively for the 25 damage scenarios. Similar 
results were obtained from the two distance measures.  

It is observed from both figures that the distance measures can detect the damage by 
finding the changes in magnitudes, while failed in damage localization. It is difficult 
to identify the damage location from the distribution of the distance measure 
indicators. This is probably because that there are strong correlations among the 
multiple excitations.  

It is assumed that the correlations deteriorate the ability of the distance measure to 
identify the damage location. Hence, to overcome the difficulty of application of 
distance measures to mutually correlated excitations case, it is necessary to remove 
the correlations, which will be discussed in the following chapter. 

 

 

3.3 Summary 

In this chapter, two distance measures between AR models are introduced. One is the 
cepstral distance, and the other is the Itakura distance. The two distance measures 
have been widely applied in speech recognition, neurological sequences comparison, 
and machine diagnostics and so on. Based on the assumption that the structural 
response (typically the acceleration) is seemed as the voice of structure, the feasibility 
of the distance measures on damage detection in civil engineering structures were 
investigated. For this purpose, the damage indicators were defined by the distance 
measures between the AR models, which are used to fit the acceleration responses 
from the structures. 

The procedure of damage detection using the distance measure has been proposed in 
this chapter. Firstly, the vibration signals from building structure, acceleration time 
histories, are parameterized by AR models. Secondly, by using distance measures, 
either Itakura distance or cepstral distance, the distance between the AR models 
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fitting the acceleration time histories from structure in baseline state and unknown 
state are measured. Finally, decision can be drawn that a large distance indicators a 
possible damage in the structure. 

Extensive numerical simulations have been carried out to evaluate the proposed 
damage detection method using the distance measures of AR models. The model 
order selection criteria, introduced in Chapter 2, were applicable to obtain the optimal 
orders not only for AR modeling but also distance measures. Both distance measures 
were calculated on the AR parameters with the orders selected by the criteria. In the 
mutually uncorrelated excitations case, the damage indicators succeeded in damage 
detection including exact damage localization. While in the mutually correlated 
excitations case, the damage indicators could only detect the changes in structure, but 
failed in identifying the damage locations. The most likely reason for this is that the 
correlations among the multiple outputs deteriorated the performance of damage 
indicators for damage localization. 
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Chapter 4 

Pre-whitening Filter 

 

 

 

As seen in Chapter 3, distance measures failed in damage localization when the 
multiple ambient excitations are mutually correlated. In practice, the excitations 
acting on civil engineering structures are mutually dependent and correlated, such as 
wind and traffic loading. To overcome this difficulty, a pre-whitening filter is applied 
to cancel the correlations of excitations before calculating the damage indicators.  

In this chapter, we will first introduce a symmetric whitening algorithm, which is 
applied to remove the correlations of the input exaltations. The damage detection 
methodology combining the distance measure and the pre-whitening filter follows. In 
the end of this chapter, the effect of the pre-whitening on the damage indicator to 
damage location is tested on both numerical and experimental data. 

 

 

4.1 Introduction of Pre-whitening Filter 

The decorrelation techniques play important roles in signal processing. They are the 
basis for modern subspace methods of spectrum analysis and array processing and 
often used in a preprocessing stage in order to eliminate redundancy or to reduce 
noise (Cichocki et al. 2002). A whitening transform technique, the symmetric 
whitening algorithm is introduced here. This signal pre-processing technology is 
applied to pre-whiten (decorrelate) the sensor signals from vibration structure before 
conducting the proposed damage detection methodology. 
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In whitening, the m -dimension sensor signals ( )kx  are pre-processed by using the 
following whitening transformation: 

( ) ( )kWxky =    (4.1.1) 

where  denotes the whitened signals, and( )ky W  is the mm ×  whitening matrix. For 

this purpose, the matrixW is chosen so that the covariance matrix ( ) ( ){ }TkykyE  
becomes the unit matrix . Thus the components of the whitened signals  are 

mutually uncorrelated and they have unit variance, i.e.: 
mI ( )ky

{ } { } mxxyy IWWRWWxxEyyER ==== TTTT    (4.1.2) 

In general, the sensor signals ( )kx  are mutually correlated, i.e., the covariance 

matrix  is a full (not diagonal) matrix. It should be noted that the matrixxxR W  is not 

unique, since by multiplying an arbitrary orthogonal matrix toW from the left, then a 
newW generates, and (4.1.2) still preserved.  

Usually, since the covariance matrix of sensor signals ( )kx  is symmetric positive 
definite, it can be decomposed as following: 

T2121
xxxxxx VΛΛVR =    (4.1.3) 

{ }where  is an orthogonal matrix andxV mx ,λ,,λλdiagΛ L21=  is a diagonal matrix 

with positive eigenvalues 021 >≥≥≥ mλλλ L . Hence, under the condition that the 

covariance matrix is positive definite, the required decorrelation matrix can be 
computed as following: 

T
x

m

T
xx V

λ
,,

λ
,

λ
diagVΛW

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== − 111

21

21 L    (4.1.4) 

or 

T21−
xx VUΛW =    (4.1.5) 

whereU  is an arbitrary orthogonal matrix. 
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By substituting (4.1.3) and (4.1.4) or (4.1.5) into (4.1.2), it can be easily verified that: 

{ } mxxxxxxxyy IΛVVΛVVΛyyER === TTT −− 2121    (4.1.6) 

mxxxxxxxyy IUΛVVΛVVUΛR == TTT −− 2121    (4.1.7) 

 

 

4.2 Proposed Damage Detection Methodology 

Combining the distance measure and the pre-whitening filter, the procedure of 
damage detection methodology is plotted in Figure 4.1:  

 Firstly, the vibration signals from building structure, acceleration time histories, 
are pre-processed by the pre-whitening filters to remove the correlations. 

 Secondly, the whitened acceleration signals are parameterized by AR models.  

 Thirdly, using the distance measures, Itakura distance or cepstral distance, the 
distance between the AR models fitting the acceleration time histories from 
structure in baseline state and unknown state are measured. 

 Finally, decision can be drawn that a large distance indicators a possible damage 
in the structure. 

Vibration signals from 
Pre-whitening Filter AR model

 
Figure 4.1: Procedure of damage detection methodology using the distance measure and the 

pre-whitening filter 
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4.3 Numerical Verification 

 

To verify the proposed methodology combining the distance measures and the 
pre-whitening filters, we first give the simulation verifications on numerical data.  

Figure 4.2 shows the building model used for the numerical verification. In this 
evaluation, the structural model is the same as that used in numerical evaluations in 
Section 3.2. The structural parameters of the building model, which can be referred to 
Section 3.2.1, are unchanged. The simplified five degree of freedom system and the 
output accelerations induced by the ambient forces are depicted in this figure.  
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Figure 4.2: Simplified structural system and simulated acceleration time histories induced by   

mutually correlated ambient excitations. 

 

In this case, we again consider the mutually correlated ambient excitations. The 
structural system is assumed to be subjected to five ambient excitations on every 
mass, which were simulated by five white noise processes. We assume the white 
noise processes are identical. Hence there are strong correlation among the multiple 
inputs and outputs, as analyzed in Section 3.2.4. 
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The difference between this part and Section 3.2.4 is that we here use the procedure 
of damage detection method, as described in Figure 4.1. In this evaluation, the 
acceleration time histories are pre-processed by the pre-whitening filter, before 
calculating the distance measures. The purpose of this step is to remove the 
correlations among the multiple outputs due to the mutually correlated inputs. 

 

Covariance analysis 

To observe the correlations among the inputs and outputs of the system, we give the 
covariance analysis by calculating the covariance matrices. For comparing with the 
results without using the pre-whitening filter, we used the same case as the example 
described in Section 3.2.4.  

In section 3.2.4, we gave the covariance analysis of the input signals and the 
processed output signals as following: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×=

0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407
0.04070.04070.04070.04070.0407

104
inR  

and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2.66772.22051.76871.48821.2504
2.22052.24141.94571.55091.2921
1.76871.94572.03631.75291.3370
1.48821.55091.75291.86811.5043
1.25041.29211.33701.50431.6183

outR  

The covariance matrices of the input signals and the unprocessed output signals are 
both full matrices. Hence, to remove the correlations among the multiple outputs, the 
pre-whitening filter was applied on the output signals. Then, the covariance matrix of 
the whitened output signals is given as following: 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.00030.0000-0.00000.0000-0.0000-
0.0000-1.00030.0000-0.00000.0000-
0.00000.0000-1.00030.0000-0.0000-
0.0000-0.00000.0000-1.00020.0000
0.0000-0.0000-0.0000-0.00001.0002

_ whitenedoutR  

It can be seen that the covariance matrix of the pre-whitened output accelerations is 
almost a unit matrix. As a result, the correlations have been removed by using the 
pre-whitening filter. 

(Note that the numbers in the expressions are referred to Matlab output format, in 
which the output display is formatted with 5 digits. This is the reason why there are 
numbers like -0.0000 and 0.0000). 

 

Model analysis 

In this simulation, the settings of simulation are the same as the mutually correlated 
excitations case, as depicted in Section 3.2.4: the length of data samples is 4001, and 
the sampling frequency is 200 Hz.  

Based on the model parameter estimation analysis in Chapter 3, the three methods 
introduced in Chapter 2 are all qualified in the case of large length data samples. 
Since the data length of 4001 is large enough, each model parameter estimation 
method can be used.  

By comparison, the Burg’s method is the only reliable AR parameter estimation 
method, yielding accurate parameter estimates as well as a guaranteed stable AR 
model. Hereafter, the model parameters of AR models are estimated only by using the 
Burg’s method. Figure 4.3 shows the results of estimated prediction error variances. 
For comparing the different model orders, the models with a maximal order of 50 are 
estimated. 
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Figure 4.3: Estimated prediction error variances, with the maximal order of 50, following the 
pre-whitening filter, in the case of mutually correlated ambient inputs and the baseline state 

of building structure. 
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Figure 4.4: Optimal model order selected by the FPE, AIC, BIC and SBC criteria, with the 
maximal order of 50, following the pre-whitening filter, in the case of mutually correlated 

ambient inputs and the baseline state of building structure. 
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Table 4.1: Optimal orders selected in the case of mutually correlated ambient excitations 
using the pre-whitening filter 

 
Criterion FPE AIC BIC SBC 

Optimal Order 3 3 3 3 

Various AR models of data samples from different masses and in different damage 
scenarios have been evaluated. The similar results of optimal orders were obtained.  

Figure 4.4 plot the relative prediction error variances by the FPE, AIC, BIC and SBC 
criteria. Decided by the local minimum, the FPE, AIC, BIC and SBC criteria all give 
the optimal model order of 3, as shown in Table 4.1. Therefore, the order of 3 is 
selected to estimate the AR models and to measure the distance between AR models. 

 

Distance measure 

Figure 4.5 and Figure 4.6 show the results of cepstral distance measures and Itakura 
distance measures in the case of mutually correlated ambient inputs.  

The procedure of damage detection using both distance measures and pre-whitening 
filters, as shown in Figure 4.1, was applied. It should be noted that the accelerations 
time histories have been passed through the pre-whitening filters before calculating 
the distance measures of AR models, either by (3.1.16) or (3.1.27). Due to the 
optimal order selection criteria, the first three AR parameters are used for model 
estimation and distance measure. Form the two figures, similar results show that both 
distance measures yield reasonable damage detection. 

Compared with the results in Section 3.2.3, it is observed that two distance measures 
here succeed in identifying damage and its location when using pre-whitening filter. 
Hence by using the pre-whitening filter, the performance of distance measures, 
especially for damage localization, can be improved evidently. It can be concluded 
that the pre-whitening filter is crucial for the damage indicators when the ambient 
excitations are mutually correlated 
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Figure 4.5: Cepstral distances, following the pre-whitening filter, in the case of mutually 

correlated ambient inputs. 
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Figure 4.6: Itakura distances, following the pre-whitening filter, in the case of mutually 

correlated ambient inputs. 
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4.4 Experimental Verification 

 

In this section, the damage detection methodology, described in Section 4.2, is 
evaluated on the experimental data. The structural responses were gathered from a 
shake table test, which was conducted by the Building Research Institute of Japan 
(2004). The experimental building model is depicted in Figure 4.7. The experiment 
data have been used in Chapter 2 for evaluating the model parameter methods and 
model order selection criteria of AR models.  

The weight of every storey is 2.57 ton and storey heights are all 1 m. The length of 
long-side is 3 m, while that of the short-side is 2 m. The excitation of test is a white 
noise with bandwidth of 0~200 Hz generated by the vibration exciter, along the 
long-side direction. On every storey of structure the accelerometers were mounted on 
both long-sides to record the acceleration responses along the long-side direction. The 
acceleration time histories were recorded with the sampling period 0.005 sec, for 
40.92 sec. Thus each record has 8,192 sampled data. 

(a) (b)

 
Figure 4.7: Experimental building model: (a) long-side; and (b) short-side. 

As depicted in Figure 4.7, the test structure model is a five-storey steel structure. 
Figure 4.7 (a) and Figure 4.7 (b) show the long-side and short-side of the structure, 
respectively. As the original state, the central columns and braces on the long-side 
have been installed on every storey. To evaluate the damage scenarios, the members 
of structures were removed step by step. 
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The five storey building structure model can be simplified as a five degree of freedom 
system. Figure 4.8 plots the diagram of the simplified five degree of freedoms system 
of the experiment building model along the long-side, and the acceleration records 
measured by the accelerometers installed on the model. Since the accelerometers 
were all mounted on the long-side and the members on the long-side were removed to 
simulate the damage scenarios, the long-side of the structure will be considered only. 

As shown in the left part of the figure, the excitation was acted on the base of the 
building model, which is mounted on the shake table. The structure was excited by 
the vibration exciter on the shake table. The measured acceleration outputs were 
plotted in the right part of the figure.  
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 Figure 4.8: Simplified structural system of the experiment building model and acceleration 
time histories induced by vibration exciter at the shake table. 

The mode characteristics of this experimental building model, including the natural 
frequencies and damping ratios of the original structure, have been identified using 
Auto-Regressive eXogenous (ARX) model by Yoshimoto et al. (2002).  

Figure 4.9 shows the Bode plot of the identified ARX model. The sharp peaks 
appearing in the power spectrum indicate the strong structural resonances, i.e. natural 
frequencies in the structure.  

The mode characteristics of the building model including natural frequencies and 
damping ratios were identified, as shown in Table 4.2. 
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Figure 4.9 : Bode plot of identified experimental building model. 

 
 

Table 4.2: Mode characteristics of experimental building model. 
 

Mode Natural Frequency (Hz) Damping Ratio (%) 
1 4.00 1.16 
2 11.98 0.15 
3 19.56 0.32 
4 26.05 0.30 
5 30.47 0.08 

 

Covariance analysis 

The building model is subjected to base excitation with white noise inputs. Although 
the structural system is a single-input-multiple-output (SIMO) model, the excitations 
can be equivalently seemed as five inertial forces acting on every mass.  

We give an example of the covariance matrix of the multiple outputs and the 
pre-whitened acceleration outputs as follows:  
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

724.3434214.441382.6457-126.4825-102.7812-
214.4413379.3122174.030622.7911-15.4881-
82.6457-174.0306458.3612272.5041 92.7655

126.4825-22.7911-272.5041625.8951313.9641
102.7812-15.4881-92.7655313.9641519.5391

  outR  

and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.00030.0000-0.00000.00000.0000-
0.0000-1.00020.00000.0000-0.0000
0.00000.00001.00030.0000-0.0000-
0.00000.0000-0.0000-1.00030.0000
0.0000-0.00000.0000-0.00001.0003

  _ whiteoutR  

From the covariance matrix of the measured outputs , we know that there are 

mutual correlations among the multiple outputs. Hence, the pre-whitening filter is 
also required in this case. Before calculating the distance measures, the acceleration 
time series were pre-processed by the pre-whitening filter to cancel the correlation. 
By passing the pre-whitening filter, the covariance matrix of the pre-whitened 
outputs  becomes a unit matrix. 

outR

measureoutR _

 

Model analysis 

In Chapter 2, the acceleration time histories from this experiment have been used for 
AR model analysis. Three different lengths of data samples have been evaluated for 
various methods. For calculating the distance measures, the even larger length of data 
samples are used. The various lengths of data samples have been tried, it is found that 
the length of data sample, if larger than a definite value (about 400), does not affect 
the AR model on the parameter estimation, and also on the distance measures. 

Next, we give an example of the results on AR parameterization and order selection. 
The length of data sample is 4001, as shown in Figure 4.10. For example, the 
accelerations from the fifth storey were selected for model analysis. Figure 4.11 
shows the results of the prediction error variances.  
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Figure 4.10: Accelerations sections of 4001 data samples ([5 25] second) Measured from 
shake table test  
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Figure 4.11: Estimated prediction error variances, following the pre-whitening filter, with the 
maximal order of 50, in the case of shake table excitations and the baseline state of   

building structure. 
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Figure 4.12 plots the relative prediction error variances by the FPE, AIC, BIC and 
SBC criteria respectively. All the criteria give the optimal order of 5, as shown in 
Table 4.3.  
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Figure 4.12: Optimal model order selected by the FPE, AIC, BIC and SBC criteria, following 
the pre-whitening filter, with the maximal order of 50, in the case of shake table excitations 

and the baseline state of building structure. 

 

Table 4.3: optimal orders selected in the case of shake table test. 
 

Criterion FPE AIC BIC SBC 
Optimal Order 5 5 5 5 

 

The optimal orders selected by four criteria are the same as the case of large length 
case (length of 401) in Section 2.4.2, as shown in Figure 2.17. The results imply that 
the data samples with the length of 401 are large enough for the AR models fitting of 
the accelerations from the shake table tests.  
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4.4.1 Removing of Columns Case 

Assume the structural damages scenarios are simulated by removing the members of 
the building model, such as the columns and braces. In this experiment, the members 
on the long side of the building model were removed step by step. As a result, the 
corresponding inter-storey stiffness was reduced. The purpose of the damage 
indicator defined as the distance measures is to find the location where the 
inter-storey stiffness decreased. 

In the first stage, the central columns, on both long sides of the building model, were 
removed. Three damage scenarios have been considered: the central column on the 
first, third and fifth storey was removed respectively, as shown in Figure 4.13 (a), (b) 
and (c). To distinguish the different AR models fitting the acceleration outputs from 
the structure model in various states, the original structure with full central columns 
and braces, as shown in Figure 4.14, is referred as the baseline state. The unknown 
states are referred to the three damage scenarios by removing the columns on 
different storeys. 

Following the damage detection procedure depicted in Figure 4.1, the measured 
acceleration time histories were passed through the pre-whitened filters, and then the 
distance measures between the baseline state and the three damage scenarios were 
calculated.  

It is noted that the optimal order of AR modeling, 5 obtained by the criteria, does not 
yield reasonable damage detection results, while the order of 2 or 3 can yield ideal 
results. In the most numerical evaluations, the order selection criteria give the optimal 
orders both for AR modeling and distance measures. However, the order selection 
criteria should be carefully used in experimental environment or real application. 

Two distance measures, Itakura distance measure and cepstral distance measure were 
both evaluated. Figure 4.15 and Figure 4.16 plot the results for both distance 
measures without using the pre-whitening filters, and Figure 4.17 and Figure 4.18 
plot the results following the pre-whitening filters.  
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Figure 4.13: Damage scenarios by removing the central columns along the both long-sides on 

the (a) first; (b) third; and (c) fifth storey. 

(a) (b) (c)

 

 
Figure 4.14: Baseline state of structure in the case of damage scenarios by removing the 

central columns on the both long-sides 

 

As shown in Figure 4.15 and Figure 4.16, it is seen that without pre-whitening filter, 
both distance measures failed in damage localization. On the contrary, it is seen in 
Figure 4.17 and Figure 4.18 that the distance measures of the damaged inter-storeys, 
where the columns have been removed, are clearly larger than those of other storeys. 
For each damage scenario, the damage indicators are capable of identifying the 
possible damage location. 
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Figure 4.15: Cepstral distances, without the pre-whitening filter, in the case of shake table test 
and removing the central columns. 
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Figure 4.16: Itakura distances, without the pre-whitening filter, in the case of shake table test 
and removing the central columns. 
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Figure 4.17: Cepstral distances, following the pre-whitening filter, in the case of shake table 
test and removing the central columns. 
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Figure 4.18: Itakura distances, following the pre-whitening filter, in the case of shake table 
test and removing the central columns. 
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4.4.2 Removing of braces 

In the second stage, the braces on both long sides of the building model were further 
removed. Three damage scenarios have been considered: the braces on the first, third 
and fifth storey was removed respectively, as shown in Figure 4.19 (a), (b) and (c). In 
this case, the structure with full braces, as shown in Figure 4.20, is referred as the 
baseline state. The unknown states are referred to the three damage scenarios by 
removing the brace on different storeys.  

 
Figure 4.19: Damage scenarios by removing the braces along the both long-sides on the    

(a) first; (b) third; and (c) fifth storey. 

 

 
Figure 4.20: Baseline state of structure in the case of damage scenarios by removing the 

braces on the both long-sides. 

(a) (b) (c)
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Figure 4.21: Cepstral distances, without the pre-whitening filter, in the case of shake table test 
and removing the braces. 
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Figure 4.22: Itakura distances, without the pre-whitening filter, in the case of shake table test 
and removing the braces. 
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Figure 4.23: Cepstral distances, following the pre-whitening filter, in the case of shake table 
test and removing the braces. 
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Figure 4.24: Itakura distances, following the pre-whitening filter, in the case of shake table 
test and removing the braces. 
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Similarly, the damage detec  Figure 4.1 was applied to 

on damage detection using various AR 

sures without using 

.3 Summary 

his chapter has discussed the effect of the pre-whitening filter on distance measure 

res introduced in Chapter 3 with the pre-whitening 

evaluate the proposed methodology. Each evaluation compared the results of distance 

tion procedure depicted in
obtain the distance measures between the baseline state and the three damage 
scenarios. Two distance measures, Itakura distance measure and cepstral distance 
measure were also both evaluated. 

When evaluating the distance measures 
parameter orders, the discrepancy of order selection between AR modeling and 
distance measure also occurs. It is found again that, the optimal order of AR modeling, 
5 obtained by four order selection criteria, does not yield reasonable damage 
detection results, while the order of 2 or 3 can yield ideal results. 

Figure 4.21 and Figure 4.22 plot the results for both distance mea
the pre-whitening filters, and Figure 4.23 and Figure 4.24 plot the results following 
the pre-whitening filters. From the results as shown in the figures, it can be concluded 
that both the distance measures are qualified for damage localization with the benefits 
of pre-whitening filters. 

 

 

4

 

T
for damage detection. In civil engineering applications, the multiple excitations acting 
on the structure are mutually correlated, thus result in correlations among the multiple 
outputs. The performance of the damage indicators, defined as the distance measures 
either the cepstral distance or the Itakura distance, however, are deteriorated evidently 
when the structure is subjected to mutually correlated excitations. Therefore, it is 
crucial to remove the correlations for application of the distance measures. For this 
purpose, the pre-whitening filter is required to make the multiple outputs mutually 
uncorrelated with each other.  

Combining the distance measu
filter introduced in this chapter, a damage detection methodology has been proposed 
in Section 4.2. Both numerical and experimental evaluations have been given to 

 
 
 
 

- 84 -



 
 
 
 
 

Chapter 4 —— Pre-whitening Filter 

measures by using and without using the pre-whitening filters. It can be concluded 
that the pre-whitening filter is crucial for the distance measures to carry out damage 
detection, especially for damage localization. 

When estimating the AR models, the three parameter estimation methods introduced 
in Chapter 2 are all qualified for the large length data samples. The performances of 
three methods only diverge for the small data samples. In all the simulations of this 
chapter, the Burg’s method is selected because of its accuracy and stability. Another 
important issue of distance measure using AR parameters is the order selection. In 
most of the numerical verifications, the order selection criteria for AR model 
estimation are also applicable to distance measures. However, when evaluating the 
experimental data of the shake table test, using the optimal order for the AR modeling, 
the distance measures does not yield the reasonable damage detection results. A little 
lower order than the optimal order for AR modeling seems more reasonable for 
distance measure. Therefore, the order selection for distance measure, especially for 
real measurements, should be further carefully investigated. 
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Chapter 5 

Conclusion and Perspective 

 

 

 

5.1  Conclusion 

In this thesis, we have proposed the damage detection method using AR model and its 
distance measures and the pre-whitening filters.  

Three parameter estimation methods and order selection criteria of AR modeling have 
been evaluated on the acceleration measurements from a shake table test. Results 
indicate that, in the case of the short data length, the Yule-Walker method does not 
perform as good as the Burg’ method and the least squares method. They are all 
qualified for AR modeling when deal with the data samples with large length. By 
comparison, the Burg’s method behaves well on both correctness and stability. 
Therefore, in the following chapters, the Burg’s method was used as the default 
method. In addition, four model selection criteria, such as FPE, AIC, BIC and SBC 
have also been evaluated. Although the nearly same results were obtained by four 
criteria in the case of Chapter 2, the disagreements on optimal order selection 
occurred in the later chapters. Relatively, the FPE and AIC gave more correct orders 
than the BIC and SBC. 

The distance measures, either the cepstral distance or the Itakura distance, were 
introduced in Chapter 3. The proposed damage detection method used the distance 
measures of AR models as the damage indicators. The performance of the proposed 
damage indicators have been tested on some numerical simulations. It was found that 
the model order selection criteria, introduced in Chapter 2, yielded optimal orders not 
only for AR modeling but also distance measures. Dealing with the AR parameters 
with selected orders, the damage indicators were obtained by either distance measure. 
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Results indicated that both distance measures are qualified for damage detection 
including exact damage localization in the case of mutually uncorrelated excitations. 
Results also indicated that in the case of mutually correlated excitations, the distance 
measures failed in damage localization. This probably results from that the 
correlations among the multiple outputs affect the damage indicators on damage 
localization. The cancellation of the mutual correlations is therefore required. 

We proposed using the pre-whitening filter for removing the correlations in Chapter 4. 
Combining the distance measures with the pre-whitening filter, a damage detection 
methodology was proposed then. To evaluating the proposed methodology, numerical 
and experimental data have been both tested. Results indicated that the pre-whitening 
filter is crucial for the distance measures to carry out damage detection, especially for 
damage localization. From the evaluations, it was found that for the large length data 
samples the three parameter estimation methods introduced in Chapter 2 are all 
qualified for AR modeling. Relatively, we preferred the Burg’s method because of its 
accuracy and stability. The AIC and FPE criteria also performed better and stable than 
the BIC and SBC. However, it should be noted that when dealing with the 
experimental data from the shake table test, the order selected by the above criteria 
could not yield the reasonable results, while a relatively little lower order gave clear 
information of damage locations. 

 

 

5.2  Perspective 

We here discuss some limitations and unresolved problems of the proposed method. 

The various current damage detection methods are hard to estimate the damage 
severity. The method in this work is not exception. Although the evaluation examples 
have shown that the distance measures increase monotonically with damage severity, 
which provides the potential to damage quantification, it’s early to say it can 
estimated the severity of damage. The accurate relationship between the damage 
indicator and damage severity should be further investigated carefully. 

In essence, the distance measures used in this work are related to the SISO model. 
Although we have treated the correlations associated with the MIMO model by 
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introducing the pre-whitening filter, the best solution is expected to utilize the 
distance measures of the MIMO model. Recently, a definition of distance for multiple 
Gaussian processes has been presented by Boets et al. (2007). 

The optimal order selection is still a difficult problem. The order selection for the AR 
modeling and the distance measures seems not to be the same topic. We guess that the 
uncertainty in excitations or the measurement noise results in the divergence between 
order selection for AR modeling and distance measures. Although the order selection 
criteria for AR modeling can be a reference to distance measure, the use of the 
selected order should be very careful.  

In addition, either the numerical simulation or the shake table test was performed on 
the simple models, which in practice is far away from the reality. In reality, the facts 
of measurement noise and nonstationary input should be considered. The basis of this 
method should include an accurate baseline AR model of original and safe structure, 
which is also a hard task for a complex structure. Hence, to fully evaluate the 
proposed method, more investigations on the complex structure and field experiments 
should be conducted.  

 
 
 
 

- 88 -



 

Reference 

 

 

 

1. Akaike, H., 1969, Fitting autoregressive models for prediction, Annals of the 
Institute of Statistical Mathematics, 21, 243–247. 

2. Akaike, H., 1974, A new look at the statistical model identification, IEEE 
Transaction on Automatic Control, 19, 716-723. 

3. Akaike, H., 1979, A Bayesian extension of the minimum AIC procedure of 
autoregressive model fitting, Biometrika, 66. 

4. Alvandi, A. and Cremona, C., 2006, Assessment of vibration-based damage 
identification techniques, Journal of Sound and Vibration, 292 (1), 179–202. 

5. Basseville, M., 1989, Distance measures for signal processing and pattern 
recognition, Signal Processing, 18(4), 349–369. 

6. Basseville, M., Abdelghani, M. and Benveniste, A., 2000, Subspace-based fault 
detection algorithms for vibration monitoring, Automatica, 36 101-109. 

7. Berryman, J. G., 1978, Choice of operator length for maximum entropy spectral 
estimation, Geophysics, 43, 1384-1391. 

8. Bissacco, A., Chiuso, A., Ma, Y. and Soatto, S., 2001, Recognition of human gaits, 
Proceeding of the IEEE International Conference on Computer Vision and 
Pattern Recognition, 401-417. 

 
 
 
 

- 89 -

http://www.cs.ucla.edu/~bissacco/gait_rcgntn.pdf


9. Boets, J., De Cock, K., Espinoza, M. and De Moor, B., 2005, Clustering time 
series, subspace identification and cepstral distances, Communications in 
Information and Systems, Special Issue Dedicated to the 70th Birthday of Thomas 
Kailath, Part I, 5(1), 69-96. 

10. Boets, J., De Cock, K. and De Moor, B., 2006, Distances between dynamical 
models for clustering time series, Proceeding of the 14th IFAC Symposium on 
System Identification (SYSID-2006), Newcastle, Australia, 392-397. 

11. Boets, J., De Cock, K. and De Moor, B., 2007, A mutual information based 
distance for multivariate Gaussian processes, Lecture Notes in Control and 
Information Sciences, 364. 15-33.  

12. Bogert, B. P., Healy, M. J. R. and Tukey, J. W., 1963, The quefrency alanysis of 
time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and 
saphe cracking, Proceedings of the Symposium on Time Series Analysis (M. 
Rosenblatt, Ed). Wiley: New York, 1963; 209-243.  

13. Brockwell, P. J. and Davis, A., 1991, Time Series: Theory and Methods. 2nd ed. 
Springer-Verlag, New York, NY. 

14. Building Research Institute of Japan, 2004, Guidelines for Structural Health 
Monitoring of Buildings and its Application, ISSN 0451-6486, 142, 78-83. 

15. Burg, J. P., 1975, Maximum Entropy Spectral Analysis, Ph.D. dissertation, 
Stanford University, Stanford CA. 

16. Carden, E. P. and Fanning, P., 2004, Vibration based condition monitoring: a 
review, Structural Health Monitoring, 3(4), 355-377. 

17. Chang, P.C., Flatau, A. and Liu, S. C., 2003a, Review paper: health monitoring of 
civil infrastructure, Structural Health Monitoring, 2(3), 257-267. 

18. Chang, P.C. and Liu, S. C., 2003b, Recent research in nondestructive evaluation 
of civil infrastructures, Journal of Materials in Civil Engineering, 15(33), 
298-304. 

 
 
 
 

- 90 -

ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/jboets/reports/05-17.pdf
ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/jboets/reports/05-17.pdf
ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/jboets/reports/05-59.pdf
ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/jboets/reports/05-59.pdf


19. Cichocki, A. and Amari, S., 2002, Adaptive Blind Signal and Image Processing, 
John Wiley & Sons: West Sussex, 130-175. 

20. Davis, S. B. and Mermelstein, P., 1980, Comparison of parametric representations 
for monosyllabic word recognition in continuously spoken sentences, IEEE 
Transaction on Acoustics, Speech, and Signal Processing, 28(4), 357–366. 

21. De Cock, K., 2002a, Principal Angles in System Theory, Information theory and 
Signal Processing, PhD thesis, K. U. Leuven, Faculty of Applied Sciences, 
Leuven, Belgium.  

22. De Cock, K. and De Moor, B., 2002b, Subspace angles between ARMA models, 
Systems & Control Letters, 46(4), 265–270. 

23. De Cock, K., Hanzon, B. and De Moor, B., 2003, On a cepstral norm for an 
ARMA model and the polar plot of the logarithm of its transfer function, Signal 
Processing, 83(2), 439–443. 

24. De Cock, K. and De Moor, B., 2004, A conjecture on Lyapunov equations and 
principal angles in subspace identification, Unsolved Problems in Mathematical 
Systems and Control Theory, 287–292. Princeton University Press, Available on 
http://pup.princeton.edu/math/blondel/. 

25. De Hoon, M. J. L., Van Der Hagen, T. H. J. J., Schoonewelle, H., Van Dam, H., 
1996, Why Yule–Walker should not be used for autoregressive modeling, Annals 
of Nuclear Energy, 23 (15), 1219–1228. 

26. De Lautour, O.R. and Omenzetter, P. 2006, Detection of seismic damage in 
buildings using time series analysis and pattern recognition, Proceedings of the 
4th World Conference on Structural Control and Monitoring, San Diego, USA, 
July 11-13, 1-8, on CD-ROM. 

27. De Roeck, G., 2003, The state-of-the-art damage detection by vibration 
monitoring: the SIMCES experience, Journal of Structure Control, 10, 127-134. 

 

 
 
 
 

- 91 -



28. Doebling, S. W., Farrar, C. R., Prime, M. B. and Shevitz, D. W., 1998, A summary 
review of vibration-based damage identification methods, Shock and Vibration 
Digest, 30(2), 91-105. 

29. Estrada, E., Nazeran, H., Nava, P., Behbehani, K., Burk, J. and Lucas, E., 2004, 
EEG signal feature extraction for classification of sleep staging, IEEE-EMBS 
2004, San Francisco CA.196-199. 

30. Estrada, E., Nazeran, H., Nava, P., Behbehani, K., Burk, J. and Lucas, E., 2005, 
Itakura distance: a useful similarity measure between EEG and EOG signals in 
computer-aided classification of sleep stages, Proceedings of the 2005 IEEE 
Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 
1189-1192. 

31. Fanning, P., and Carden, E. P., 2001, Auto-regressive and statistical process 
control techniques applied to damage indication in telecommunication masts, Key 
Engineering Materials, 204-205, 251-260. 

32. Farrar, C. R. and Worden, K., 2007, An introduction to structural health 
monitoring, Royal Society of London Transactions Series A, 365(1851), 303-315. 

33. Fassois, S. D. and Sakellariou, J. S., 2007, Time-series methods for fault detection 
and identification in vibration structures, Philosophical Transaction of Royal 
Society A, 365, 411-448. 

34. Gersch, W. and Sharpe, D. R., 1973, Estimation of power spectra with finite order 
autoregressive models, IEEE Transaction on Automatic Control, 18, 367-369. 

35. Gersch, W., Nielsen, N. N., Akaite, H., 1977, Synthesis of multivariate random 
vibration systems: a two-stage least squares AR-MA model approach, Journal of 
Sound and Vibration, 52(4), 553-565. 

36. Gray, Jr., A. H. and Markel, J. D., 1976, Distance measures for speech processing, 
IEEE Transaction on Acoustics, Speech, and Signal Processing, 24(5): 380-391. 

 

 
 
 
 

- 92 -

http://adsabs.harvard.edu/cgi-bin/author_form?author=Worden,+K&fullauthor=Worden,%20Keith&charset=UTF-8&db_key=GEN


37. Haugh, L. D., 1976, Checking the independence of two covariance-stationary 
time series: a univariate residual cross correlation approach, Journal of American 
Statistical Association, 71, 378-85. 

38. He, X. and De Roeck, G., 1997, System identification of mechanical structures by 
a high-order multivariate autoregressive model, Computer & Structure, 64, 
341-351. 

39. Hong, Y, 1996, Testing for independence between two covariance stationary time 
series, Biometrika, 83(3), 615-625. 

40. Huang, C. S., 2001, Structural identification from ambient vibration measurement 
using the multivariate AR model, Journal of Sound and Vibration, 241, 337–359. 

41. Humar, J., Bagchi, A. and Xu. H., 2006, Performance of vibration-based 
techniques for the identification of structural damage, Structural Health 
Monitoring, 5(3), 215-241. 

42. Itakura, F., 1975, Minimum prediction residual principle applied to speech 
recognition, IEEE Transaction on Acoustics, Speech, and Signal Processing, 
23(1), 67-72. 

43. Jones, J. H., 1976, Autoregression order selection, Geophysics, 41, 771-773. 

44. Kadakal, U. and Yuzugullu, O., 1996, A comparative study on the identification 
methods for the autoregressive modelling from the ambient vibration records, Soil 
dynamics and earthquake engineering, 15(1), 45-49. 

45. Kashyap, R.L., 1980, Inconsistency of the AIC rule for estimating the order of AR 
models, IEEE Transaction on Automatic Control, 25 (5), 283-295. 

46. Kong, X., Thakor, N. and Goel, V., 1995, Characterization of the EEG signal 
changes via Itakura distance, IEEE-EMBC and CMEC, 873-874. 

47. Kong, X., 1998, Quantification of injury-related EEG signal changes using 
distance and information measures, Department of Electrical Engineering, 
Northern Illinois University, DeKalb, IL, Technical report. 

 
 
 
 

- 93 -



48. Kong, X. and Brambrink, A., 1999, Quantification of injury-related EEG signal 
changes using distance measures, IEEE Transaction on Biomedical Engineering, 
46(7), 899-901. 

49. Ljung, L., 1995, System Identification: Toolbox — User’s Guide, The Math Works, 
Natick, MA. 

50. Ljung, L., 1999, System Identification: Theory for the users, Prentice Hall, 
Eaglewood Cliffs, NJ. 

51. Lutkepohl, H., 1987, Comparison of criteria for estimating the order of a vector 
autoregressive process, Journal of Time Series analysis, 6, 35–52. 

52. Maple, S. L., 1987, Digital Spectral Analysis with Applications, Englewood Cliffs, 
NJ: Prentice-Hall, Inc. 

53. Mattson, S. G. and Pandit, S. M., 2006, Statistical moments of autoregressive 
model residuals for damage localization, Mechanical Systems and Signal 
Processing, 20(3), 627-745. 

54. Mita, A., 2003, Structural dynamics for health monitoring, Sankeisha: Japan. 

55. Muthuswamy, J. and Thakor, N. V., 1998, Spectral analysis methods for 
neurological signals, Journal of Neuroscience Methods, 83, 1–14. 

56. Nair, K. K, Kiremidjian, A. S and Law, K. H., 2006, Time series-based damage 
detection and localization algorithm with application to the ASCE benchmark 
structure, Journal of Sound and Vibration, 291(1-2), 349-368. 

57. Neumaier, A. and Schneider, T., 2001, Estimation of parameters and eigenmodes 
of multivariate autoregressive models, ACM Transactions on Mathematical 
Software, 27, 27–57. 

58. Nuttall, A. H., 1976, Spectral analysis of a univariate process with bad data points 
via maximum entropy and linear predictive techniques, Technical report 5303, 
Naval Underwater System Center, New London, CT, USA. 

 
 
 
 

- 94 -

http://www.gps.caltech.edu/~tapio/papers/arfit.pdf
http://www.gps.caltech.edu/~tapio/papers/arfit.pdf


59. Oppenheim, A. V. and Schafer, R. W., 1975, Digital Signal Processing, Prentice 
Hall International, London. 

60. Oppenheim, A. V. and Schafer, R. W., 2004, From frequency to quefrency: a 
history of the cepstrum, IEEE Signal Processing Magazine, 21(5), 95-106. 

61. Pardoen, G.C., 1983, Ambient vibration test of the Imperial County Services 
Building, Bulletin of the Seismological Society of America, 73, 1895-1902. 

62. Pandit, S.M. and Wu, S. M., 2001, Time Series and System Analysis with 
Applications, Krieger, Florida, FL. 

63. Pham, T. D. 2006a, LPC cepstral distortion measure for protein sequence 
comparison, IEEE Transaction on Nano Bioscience, 5(2), 83-88. 

64. Pham, T. D., Beck, D. and Yan, H., 2006b, Spectral pattern comparison methods 
for cancer classification based on microarray gene expression data, IEEE 
Transaction on Circuits and Systems, 53(11), 2425-2430. 

65. Pham, T. D. 2007, Spectral distortion measures for biological sequence 
comparisons and database searching, Pattern Recognition, 40, 516-529. 

66. Pi, Y. L. and Mickleborough, N. C., 1989, Modal identification of vibrating 
structures using ARMA model. Journal of Engineering Mechanics, 115(10), 
2232-2249. 

67. Priestley, M. B., 1994, Spectral Analysis and Time Series, Academic Press, 
London. 

68. Proakis, J. G. and Manolakis, D. G., 2007, Digital Signal Processing: Principles, 
Algorithms and Applications, 4th ed., Pearson Prentice Hall. 

69. Pukkila, T. M. and Krishnaiah, P. R., 1988, On the use of autoregressive order 
determination criteria in univariate white noise tests, IEEE Transaction on 
Acoustics, Speech, and Signal Processing, 36(5), 1396-1403. 

 

 
 
 
 

- 95 -



70. Rabiner, L. and Juang, B. H., 1993, Fundamentals of Speech Recognition, 
Prentice Hall, ISBN 0-13-015157-2. 

71. Rezek, A. and Roberts, S. J., 1997, Parametric model order estimation: a brief 
review, Model Based Digital Signal Processing Techniques in the Analysis of 
Biomedical Signals (Digest No. 1997/009), IEE Colloquium,16, 3, 1-3. 

72. Rissanen, J., 1978, Modeling by shortest data description, Automatica, 14(5), 
465–471. 

73. Rissanen, J., 1983, A universal prior for integers and estimation by minimum 
description length, Annals of Statistics, 11, 416-431. 

74. Schlogl, A., 2006, A comparison of multivariate autoregressive estimators, Signal 
Processing, 86, 2426–2429. 

75. Schneider, T. and Neumaier, A., 2001, Algorithm 808: Arfit - a Matlab package 
for the estimation of parameters and eigenmodes of multivariate autoregressive 
models, ACM Transactions on Mathematical Software, 27, 58–65. 

76. Schwarz, G., 1978. Estimating the dimension of a model, Annals of Statistics, 6, 
461–464. 

77. Sohn, H. and Farrar, C. R., 2001, Damage diagnosis using time series analysis of 
vibration signals, Smart Materials and Structures, 10, 446-451. 

78. Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W. and 
Nadler, B. R., 2003, A review of structural health monitoring literature: 
1996-2001, Technical reports, Los Alamos National Laboratory (LANL), 
LA-13976-MS. 

79. Stockham, Jr., T. G., 1972, Image processing in the context of a visual model, 
Proceedings of the IEEE, 60(7), 828-842. 

80. Stoica, P. and Moses, R.L., 1997, Introduction to Spectral Analysis, Prentice-Hall, 
Upper Saddle River, NJ. 

 
 
 
 

- 96 -



81. Tohkura, I., 1987, A weighted cepstral distance measure for speech recognition, 
IEEE Transaction on Acoustics, Speech, and Signal Processing, 35(10), 
1414-1422. 

82. Tong, H., 1977, More on Autoregressive Model Fitting with Noisy Data by 
Akaike's Information Criterion, IEEE Transactions on Information Theory, 
409-410. 

83. Ulrych, T. J., 1971, Application of homomorphic deconvolution to seismology, 
Geophysics, 36(4), 650–660. 

84. Ulrych, T. J. and Bishop, T. N., 1975, Maximum entropy spectral analysis and 
autoregressive decomposition. Reviews of Geophysics and Space Physics, 13(1): 
183-200. 

85. Van Overschee, P. and De Moor, B., 1993, Subspace algorithms for the stochastic 
identification problem, Automatica, 29, 649-660. 

86. Walker, G. T., 1931, On periodicity in series of related terms, Proceedings of the 
Royal Society of London. Series A, 131, 518-532. 

87. Wear, K. A., Wagner, R. F. and Gama, B. S., 1995, A comparison of 
autoregressive spectral estimation algorithms and order determination methods in 
ultrasonic tissue characterization, IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, 42( 4), 709-716. 

88. Wei, W. W. S., 1994, Time Series Analysis, Addison-Wesley Publishing Co., Inc., 
Redwood City, CA. 

89. Wismer, J., Gearbox analysis using cepstrum analysis and comb liftering, 
Application note, Bruel & Kjær, Denmark. 

90. Worden, K., Manson, G. and Fieller, N. R. J., 2000, Damage detection using 
outlier analysis, Journal of Sound and Vibration, 229(3), 647-667. 

91. Worden, K. and Dulieu-Barton, J. M. 2004, An overview of intelligent fault 
detection in systems and structures, Structural Health Monitoring, 3(1), 85-98. 

 
 
 
 

- 97 -



92. Yoshimoto, R., and Mita, A., 2002, Parallel identification of structural damages 
using vibration modes and sensor characteristics, JSCE Journal of Structural 
Engineering, 48, 487-92. 

93. Yule, G. U., 1927, On a method of investigating periodicities in disturbed series 
with special reference to Wolfer's sunspot numbers, Philosophical Transactions of 
the Royal Society of London, Series A., 226, 267-298. 

 
 
 
 

- 98 -




