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ABSTRACT 

 

Structural Health Monitoring (SHM), a field inaugurated in aerospace engineering in the late 

20th century through mechanical engineering towards civil engineering communities. As the 

process of implementing a damage detection strategy, SHM has received increasingly attention 

and interest in the civil engineering with prominent technology development and promising 

economic attraction. Even as research on SHM chugs along, challenges remain before they can be 

applied to civil engineering structures.  

This dissertation includes damage identification of structures using pattern classification and 

direct identification of structural parameters from dynamic responses, though the latter would be 

stressed. 

In the case of structural identification, damage is usually described as the decrease in 

structural parameters such as the stiffness of structural members. Effective pattern classification or 

interpretation of the changes in structural response or dynamic properties due to damage is a 

critical task. 

The fundamental idea of the pattern classification approach is to use training data to determine 

the classifier referred to as training the classifier and according to the classifier to evaluate the 

category of the test data. However, a very large database is required to store training data for as 

many damage cases as one may wish to consider. In general, damage cases of single-damage and 

multiple-damage with different and/or the same damage extents should be considered.  

This research presents a possible solution for damage identification of structures using pattern 

classification methods. The damage identification process is divided into two steps. The damage 

location is identified in the first step using Parzen-window approach, while the corresponding 

damage degree is estimated in the second step using feed-forward back-propagation neural 

network.  

In order to implement the theory in practical applications, a series of vibration experiments for 
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a 5-story shear frame structure were performed to verify the performance of the approach. The 

results show that for shear buildings, damage degree and extent can be determined through 

measuring the frequency change. 

The backbone of this dissertation is the direct identification of structural parameters from 

dynamic responses. An evaluation approach for building structures under earthquakes is proposed 

to provide damage alarm and detailed damage information. It is a time-domain evaluation 

procedure capable of alarming, localizing and quantifying damage using limited acceleration 

measurements. The technique is a combination of the damage detection based on 

acceleration-based emulator neural network (AENN) and the system identification using the 

particle swarm optimization (PSO).  

To implement the concept, a two-phase approach is proposed.  

In the first phase, the AENN used for emulating the structural response is tuned to properly 

model the hysteretic nature of building response. To facilitate the most realistic monitoring system 

using accelerometers, the acceleration streams at the same location but at different time steps are 

utilized. The prediction accuracy can be raised by the increment of number of acceleration streams 

at different time steps. Damage occurrence alarm can be obtained practically and economically 

only using readily available acceleration time histories in this phase.  

After knowing the damage occurrence, the next phase is necessary to be performed to 

determine the damage location and quantity. Most currently available damage localization 

approaches are mostly based on pattern recognition methods to classify the different damage 

location. However, such approaches need analytical data for all damage case situations, which can 

be computationally expensive and even impossible. Therefore, the system identification is utilized 

for damage determination. In this paper the system identification problem is formulated as an 

optimization problem using the PSO. 

A series of experiments was conducted using two experimental structures. A five-story 

structure was initially healthy with all original columns intact. Two columns of one floor were 

then replaced by weak columns (of the same material and integrity with healthy columns, but with 
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smaller cross-sectional area) to simulate single-damage case. The double-damage case was 

simulated by replacing the columns of two different floors. Under the basement of the structure, 

there were some bearings so that the structure could have a ground motion. Another steel structure 

on shake-table was utilized to verify the proposed method. It was also a five-story frame structure, 

with height 5m and floor plate 3m x 2m. The damages were introduced by re moving the splices at 

different location, loosing the bolts and damaging the beams. The verification of the proposed 

approach is provided as well by application to a real building. 
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Introduction 

 

 

 

1.1  Perspective 

This research falls into the family of Structural Health Monitoring (SHM), a field inaugurated 

in aerospace engineering in the late 20th century through mechanical engineering towards civil 

engineering communities. As the process of implementing a damage detection strategy, SHM has 

received increasingly attention and interest in the civil engineering with prominent technological 

development and promising economic attraction. A new area has been taking shape before our 

eyes in the few decades beyond academia to industry.  

SHM passes damage information masked by outward appearance on to human’s cognition 

with a deep pool of mixed knowledge: economic analysis, statistical theory, intelligent 

optimization, etc. for operational evaluation; excitation methods, MEMS technology, material 

science and technology, data transmission, etc. for data acquisition and signal processing; 

structural mechanics, control theories, system identification, etc. for feature extraction; and 

information condensation, pattern classification, intelligence diagnosis, statistical learning theories, 

etc. for statistical discrimination of features for damage detection.  

A great deal of energy and production are devoted to sensor network progress constructively 

and pragmatically because sensor is a vital driveshaft of the SHM system, transmitting the state of 

structural health into storable and operable signal. Along with the sensor/sensor network 

technology development rising to stratospheric levels, damage identification algorithm attracts 
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plenty of efforts, turning abstract signal into substantial damage information.  

SHM system handles much more active terms about its strategy summing up all components to 

ultimately reduce life cycle cost. 

 

1.2  Damage in civil engineering structures 

Compared with the damage in the aerospace and mechanics engineering, the damage in civil 

engineering structures occurs in more ambiguous and intractable ways.  

In the most general terms, damage can be defined as changes introduced into a system that 

adversely affects its performance (Farrar et al. 1995). As for civil engineering structures, changes 

in materials, connections, boundary conditions, etc., which result in deteriorated performance of 

the structure, can be defined as damage. It can be caused in various ways. Corrosion, aging, and 

daily activities cause damage to buildings. Bridges can be damaged due to traffic, wind loads and 

collisions by boats. These loads also torture offshore structures, plus wave loading and corrosion 

due to seawater. Moreover, there are damage sources emerging not frequently but consequentially 

catastrophic, like tornados, hurricanes, and earthquakes, which can potentially cause terrible 

damage in civil engineering structures.  

The importance of SHM has been especially underlined and exposed to the public by many 

recent occurrences of structural failure. In July 2007 alone, Japan was struck by a major 

earthquake in the Niigata region that destroyed wooden structures and caused fire in a nuclear 

power plant, New York suffered from the explosion of an 83-year-old steam pipe, and Americans 

were horrified to see a bridge filled with commuter traffic collapse across the Mississippi River. 

Detecting the damage in civil engineering structures faces an interlocking set of existential 

questions from which all its once and future challenges flow: Is there damage in the structure? 

Where is the damage in the structure? What kind of damage is present? How severe is the damage? 

How much useful life remains? 

 

 



CHAPTER 1  Introduction 

 3

1.3  Challenge 

Even as SHM chugs along, challenges remain before they can be applied to civil engineering 

structures. Most currently available damage detection methods are global in nature, i.e., the 

dynamic properties (natural frequencies and mode shapes) are obtained for the entire structure 

from the input–output data using global structural analyses e.g., (Doebling, et al. 1996). However, 

natural frequencies and mode shapes are not sensitive to minor damage and local damage.  

The techniques using time-domain dynamic responses are appealing and promising. 

Furthermore, the dynamic responses of structures under environmental excitation or small-scale 

earthquakes are very economical information for structural identification and health monitoring, 

especially in the place where small-scale earthquakes occur frequently. Some information about 

structural parameters and dynamic properties can be identified by the direct use of these 

time-domain response. Krishnan et al. (2006) proposed a damage detection and localization 

algorithm based on time series modeling. And there is an approach by using dynamic responses 

directly in time series without extraction of dynamic properties proposed by Xu et al. (2003), 

where acceleration, velocity and displacement time histories were used as the input to the emulator 

neural network. These methods are effective for damage detection determining damage existence; 

however, there are various problems in damage localization and quantification. Most currently 

available damage localization approaches are mostly based on pattern recognition methods to 

classify the different damage location. However, such approaches need analytical data for all 

damage case situations, which can be computationally expensive and even impossible. 

 

1.4  Contents 

This dissertation includes damage identification of structures using pattern classification and 

direct identification of structural parameters from dynamic responses, though the latter would be 

stressed. 
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1.4.1 Damage identification of structures using pattern classification 

In general, damage identification for health monitoring involves the comparison of the 

changes in structural properties or response, and it can be viewed as a pattern classification 

problem. In the case of structural identification, damage is usually described as the decrease in 

structural parameters such as the stiffness of structural members. Effective pattern classification or 

interpretation of the changes in structural response or dynamic properties due to damage is a 

critical task. 

The fundamental idea of the pattern classification approach is to use training data to determine 

the classifier referred to as training the classifier and according to the classifier to evaluate the 

category of the test data. However, a very large database is required to store training data for as 

many damage cases as one may wish to consider. In general, damage cases of single-damage and 

multiple-damage with different and/or the same damage extents should be considered.  

This research presents a possible solution for damage identification of structures using pattern 

classification methods (Qian et al. 2007). The damage identification process is divided into two 

steps. The damage location is identified in the first step using Parzen-window approach, while the 

corresponding damage degree is estimated in the second step using feed-forward back-propagation 

neural network.  

A series of numerical simulations are performed to verify the performance of our proposed 

approach. The measured structural vibration response data always contain noise. The output 

inevitably has some errors when the data with noise is input into the classifiers network. The 

approach was thus enhanced to have stability against such noise by considering variations in 

signals. The results of numerical simulations show that by the approach the structural damage can 

be identified and identification accuracy can be improved by randomness injected. An appropriate 

range of random ratio is proposed corresponding to modal parameters with various noise ratios.  

In order to implement the theory in practical applications, a series of vibration experiments for 

5-story shear frame structure were performed to verify the performance of the approach. The 

results show that for shear buildings, damage degree and extent can be determined through 
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measuring the frequency change.  

 

1.4.2 Direct identification of structural parameters from dynamic responses 

The backbone of this dissertation is the direct identification of structural parameters from 

dynamic responses. An evaluation approach for building structures under earthquakes is proposed 

to provide damage alarm and detailed damage information. It is a time-domain evaluation 

procedure capable of alarming, localizing and quantifying damage using limited acceleration 

measurements. The technique is a combination of the damage detection based on 

acceleration-based emulator neural network (AENN) and the system identification using the 

particle swarm optimization (PSO).  

To implement the concept, a two-phase approach is used.  

In the first phase, the AENN used for emulating the structural response is tuned to properly 

model the hysteretic nature of building response. To facilitate the most realistic monitoring system 

using accelerometers, the acceleration streams at the same location but at different time steps are 

utilized. The prediction accuracy can be raised by the increment of number of acceleration streams 

at different time steps. Damage occurrence alarm can be obtained practically and economically 

only using readily available acceleration time histories in this phase.  

After knowing the damage occurrence, the next phase is necessary to be performed to 

determine the damage location and quantity. Most currently available damage localization 

approaches are mostly based on pattern recognition methods to classify the different damage 

location. However, such approaches need analytical data for all damage case situations, which can 

be computationally expensive and even impossible. Therefore, the system identification scheme is 

utilized for damage determination. In this paper the system identification problem is formulated as 

an optimization problem in terms of the PSO.  

The proposed approach is briefly described in Fig. 1.1. 
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Figure 1.1 Two-phase damage evaluation approach 

 

1.4.3 Overview of dissertation 

Chapter 1 exhibits the big picture of field of SHM and research of this dissertation. 

Chapter 2 reviews previous research on statistical discrimination of features for damage 

detection and time series-based damage identification techniques. 

Chapter 3 presents acceleration-based damage occurrence alarm for building structures using 

AENN. The progress improving AENN using displacement, velocity and acceleration as inputs to 

AENN using acceleration alone is explained in detail. The approach is further modified by using 

the acceleration at later time steps as the output of the neural network to obtain the better damage 

occurrence index, followed by searching for necessary number of acceleration stream and 

appropriate time delay of ground acceleration. Discussion on multi-input AENN is considered 

with the goal of higher flexibility with the approach. 

Chapter 4 presents acceleration-based damage localization and quantification of structures. 

The identification problem is understood as an optimization problem in which the error between 

the actual physical measured response of a structure and the simulated response of a numerical 

model is viewed as objective fit function to be minimized. The PSO is introduced to perform 

optimization where the result is compared with the ones from Genetic Analysis (GA) and 

Damage Alarm  

Damage Location 
and Severity 

response of structure 
to be detected 

minimal one floor response 
of healthy structure

minimal one floor response 
of structure to be detected

structural model
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Simulated Annealing (SA). Both cases for full output information and partial output information 

are considered in this chapter. 

Chapter 5 presents experimental verifications. A five-story structure was initially healthy with 

all original columns intact. Two columns of one floor were then replaced by weak columns (of the 

same material and integrity with healthy columns, but with smaller cross-sectional area) to 

simulate single-damage case. The double-damage case was simulated by replacing the columns of 

two different floors. Under the basement of the structure, there were some bearings so that the 

structure could have a ground motion. Another steel structure on shake-table was used to verify 

the proposed method. It was also a five-story frame structure, with height 5m and floor plate 3m x 

2m. The damages were introduced by re-moving the splices at different location, loosing the bolts 

and damaging the beams. The verification of the proposed approach is provided as well by 

application to a real building. 

Finally, Chapter 6 summarizes in this dissertation and its contribution, and presents possible 

directions for future research. 
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CHAPTER 2 

Review of Existing Methods 

 

 

 

This chapter provides a review of a typical damage localization and quantification approach 

using pattern classification methods. In addition, a brief review of some of the existing direct 

identification of structural parameters from dynamic responses is presented. 

 

2.1  Statistical discrimination of features for damage detection 

In general, structural identification for health monitoring involves the comparison of the 

changes in structural properties or response, and it can be viewed as a pattern classification 

problem. In the case of structural identification, damage is usually described as the decrease in 

structural parameters such as the stiffness of structural members. Effective pattern classification or 

interpretation of the changes in structural response or dynamic properties due to damage is a 

critical task. The fundamental idea of the pattern classification approach is to use training data 

obtained from simulation calculation to determine the classifier referred to as training the classifier 

and according to the classifier to evaluate the category of the test data. However, a very large 

database is required to store training data for as many damage cases as one may wish to consider. 

In general, damage cases of single-damage and multiple-damage with different and/or the same 

damage extents should be considered. 

A possible solution for this problem dividing the damage identification process into two steps 

is presented. The damage location is identified in the first step using non-parametric probability 
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function estimation, in particular, using Parzen-window approach, while the corresponding 

damage degree is estimated in the second step using feed-forward back-propagation neural 

network. The output inevitably has some errors when the data with noise is inputted into the 

classifiers network. The approach was thus enhanced to have stability against such noise by 

considering variations in signals. A series of numerical simulations are performed to verify the 

performance of our proposed approach 

 

2.1.1 Damage Location Identification Using Parzen-Windows Approach 

Parzen-windows approach belongs to nonparametric techniques (Duda et al. 2001). 

Nonparametric procedures can be used with arbitrary distributions and without the assumption that 

the forms of the underlying densities are known. Because of this property, nonparametric 

techniques are selected to identify the damage location. 

The most fundamental techniques of estimating an unknown probability density function rely 

on the fact that the probability P  that a vector x  will fall in a region ℜ  is given by  

 

( ) xx ′′= ∫
ℜ

dpP                                (2-1) 

 

Thus P  is a smoothed or averaged version of the density function ( )xp , and we can 

estimate this smoothed value of p  by estimating the probability P . Suppose that n  samples 

nxx ,,1 K  are drawn independently and identically distributed (i.i.d.) according to the probability 

law ( )xp . Clearly, the probability that k  of these n  fall in ℜ  is given by the binomial law 

 

( ) knk
k PP

k
n

P −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1                           (2-2) 

 

and the expected value for k  is  
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[ ] nPk =ε                                 (2-3) 

 

Moreover, this binomial distribution for k  peaks very sharply about the mean, so that we 

expect that the ratio nk  will be a very good estimate for the probability P , and hence for the 

smoothed density function. This estimate is especially accurate when n  is very large. If we now 

assume that ( )xp  is continuous and that the region ℜ  is so small that p  does not vary 

appreciably within it, we can write 

 

( ) ( )Vpdp xxx ≅′′∫
ℜ

                           (2-4) 

 

where x  is a point within ℜ  and V  is the volume enclosed by ℜ . Combining Eqs. (2-1), 

(2-3), and (2-4), we arrive at the following obvious estimate for ( )xp , 

 

( )
V

nkp ≅x                                (2-5) 

 

There are several problems that remain---some practical and some theoretical. If we fix the 

volume V  and take more and more training samples, the ratios nk  will converge (in 

probability) as desired, but then we have only obtained an estimate of the space-average value of 

( )xp , 

 

( )

∫
∫

ℜ

ℜ

′

′′
=

x

xx

d

dp

V
P

                              (2-6) 
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If we want to obtain ( )xp  rather than just an average version of it, we must be prepared to 

let V  approach zero. However, if we fix the number n  of samples and let V  approach zero, 

the region will eventually become so small that it will enclose no samples, and our estimate 

( ) 0=xp  will be useless. On the other hand, if by chance one or more of the training samples 

coincide at x , the estimate diverges to infinity, which is equally useless. 

From a practical standpoint, we note that the number of samples is always limited. Thus, the 

volume V  cannot be allowed to become arbitrarily small. If this kind of estimate is to be used, 

one will have to accept a certain amount of variance in the ratio nk  and a certain amount of 

averaging of the density ( )xp . 

From a theoretical standpoint, it is interesting to ask how these limitations can be 

circumvented if an unlimited number of samples is available. Suppose we use the following 

procedure. To estimate the density at x , we form a sequence of regions K,, 21 ℜℜ , containing 

x ---the first region to be used with one sample, the second with two, and so on. Let nV  be the 

volume of nℜ , nk  be the number of samples falling in nℜ , and ( )xnp  be the n th estimate 

for ( )xp : 

 

( )
n

n
n V

nkp =x                               (2-7) 

 

If ( )xnp  is to converge to ( )xp , three conditions appear to be required: 

 

0lim

lim

0lim

=

∞=

=

∞→

∞→

∞→

nk

k

V

nn

nn

nn
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The first condition assures us that the space averaged VP  will converge to ( )xp , provided 

that the regions shrink uniformly and that ( )⋅p  is continuous at x . The second condition, which 

only makes sense if ( ) 0≠xp , assures us that the frequency ratio will converge (in probability) 

to the probability P . The third condition is clearly necessary if ( )xnp  given by Eq. (2-7) is to 

converge at all. It also says that although a huge number of samples will eventually fall within the 

small region nℜ , they will form a negligibly small fraction of the total number of samples. 

There are two common ways of obtaining sequences of regions that satisfy these conditions. 

One is to shrink an initial region by specifying the volume nV  as some function of n , such as 

nVn 1= . It then must be shown that the random variables nk  and nkn  behave properly or, 

more to the point, that ( )xnp  converges to ( )xp . This is basically the Parzen-window 

estimation method. The second method is to specify nk  as some function of n , such as 

nkn = . Here the volume nV  is grown until it encloses nk  neighbors of x . This is the 

nk -nearest-neighbor estimate method. Both of these methods do in fact converge, although it is 

difficult to make meaningful statements about their finite-sample behaviour. 

The Parzen-window approach (Duda et al. 2001) to estimating densities can be introduced by 

temporarily assuming that the region nℜ  is a d -dimensional hypercube. If nh  is the length of 

an edge of that hypercube, then its volume is given by 

 

d
nn hV =                                    (2-8) 

 

We can obtain an analytic expression for nk , the number of samples falling in the hypercube, 

by defining the following window function: 
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( ) dj
otherwise
u j ,,121

0
1

K=
≤

⎩
⎨
⎧

=uϕ                (2-9) 

 

Thus, ( )uϕ  defines a unit hypercube centered at the origin. It follows that ( )( )ni hxx −ϕ  

is equal to unity if ix  falls within the hypercube of volume nV  centered at x , and is zero 

otherwise. The number of samples in this hypercube is therefore given by  

 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i
n h

k
1

xxϕ                               (2-10) 

 

and when we substitute this into Eq. (2-7) we obtain the estimate 

 

( ) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn

p
1

11 xxx ϕ                             (2-11) 

 

This equation suggests a more general approach to estimating density functions. Rather than 

limiting ourselves to the hyper cube window function of Eq. (2-9), suppose we allow a more 

general class of window functions. In such a case, Eq. (2-11) expresses our estimate for ( )xp  as 

an average of functions of x  and the samples ix . In essence, the window function is being used 

for interpolation---each sample contributing to the estimate in accordance with its distance from 

x  shown in Figure 2.1. 
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Figure 2.1. Each Sample Contributing to the Estimate 

 

It is natural to ask that the estimate ( )xnp  be a legitimate density function, that is, that it be 

nonnegative and integrative to one. This can be assured by requiring the window function itself be 

a density function. To be more precise, if we require that  

 

( ) 0≥xϕ                                  (2-12) 

 

and 

 

( )∫ =1uu dϕ                                (2-13) 

 

and if we maintain the relation d
nn hV = , then it follows at once that ( )xnp  also satisfies these 

conditions. 

Most pattern recognition methods can be implemented in a parallel fashion that trades space 

complexity (amount of memory) for time complexity (cost of calculation time). These 

implementations are naturally represented as artificial neural networks. The Parzen-window 
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method can be implemented as a neural network known as a Probabilistic Neural Network (PNN) 

(Duda et al. 2001). 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Probabilistic Neural Network 

 

Suppose we wish to form a Parzen estimate based on n  patterns, each of which is 

d -dimensional, randomly sampled from c  classes. The PNN for this case consists of d  

dimensional input units comprising the input layer, where each unit is connected to each of the n  

pattern units; each pattern unit is, in turn, connected to one and only one of the c  category units. 

The connections from the input to pattern units represent modifiable weights, which will be 

trained. Each category unit computes the sum of the pattern units connected to it. 

The PNN is trained in the following way. First, each pattern x  of the training set is 

normalized to have unit length---that is, is scaled so that 1
1

2 =∑ =

d

i ix . Training step 1, the first 

normalized training pattern is placed on the input units, step 2, the modifiable weights linking the 

input units and the first pattern unit are set such that 11 xw = . (Note that because of the 

normalization of 1x , 1w  is normalized too.) Then, step 3, a single connection from the first 

pattern unit is made to the category unit corresponding to the known class of that pattern. Step 4, 

1x 2x dx

1 2 3 n

cω2ω1ω

input 

pattern 

category 
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the process is repeated with each of the remaining training patterns, setting the weights to the 

successive pattern units such that kk xw =  for nk ,,2,1 K= . After such training we have a 

network that is fully connected between input and pattern units, and sparsely connected from 

pattern to category units.  

The trained network is then used for classification in the following way. A normalized test 

pattern x  is placed at the input units. Each pattern unit computes the inner product to yield the 

net activation or simply net, 

 

xw t
kknet =                                 (2-14) 

 

and emits a nonlinear function of knet ; each output unit sums the contributions from all pattern 

units connected to it. The nonlinear function is ( ) 21 σ−knete , where σ  is a parameter set by the 

user and determines the width of the effective Gaussian window. This activation function or 

transfer function, here must be an exponential to implement the Parzen windows algorithm. To see 

this, consider an (unnormalized) Gaussian window centered on the position of one of the training 

pattern kw . We work backwards from the desired Gaussian window function to infer the 

nonlinear activation function that should be employed by the pattern units. That is, if we let our 

effective width nh  be a constant, the window function is 
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where we have used our normalization conditions 1== k
t
k

t wwxx . Thus each pattern unit 

contributes to its associated category unit a signal equal to the probability the test point was 



CHAPTER 2  Review of Existing Methods 

 17

generated by a Gaussian centered on the associated training point. The sum of these local 

estimates (computed at the corresponding category unit) gives the discriminant function 

( )xig ---the Parzen-window estimate of the underlying distribution. The 

( ) cigii
,,2,1max L=x  operation gives the desired category for the test point. 

One of the benefits of PNNs is their speed of learning, because the learning rule (i.e., setting 

kk xw = ) is simple and requires only a single pass through the training data. Another benefit is 

that new training patterns can be incorporated into a previously trained classifier quite easily; this 

might be important for a particular on-line application. 

Using kn-Nearest-Neighbor Estimation, we could obtain a family of estimates by taking 

nkkn 1=  and choosing different values for 1k . However, in the absence of any additional 

information, one choice is as good as another, and we can be confident only that the results will be 

correct in the infinite data case. 

 

2.1.2 Damage Degree Identification Using Feed-Forward Back-Propagation 

Neural Network 

Neural network learning methods provide a robust approach to approximating real-valued, 

discrete-valued, and vector-valued target functions for certain types of problems, such as learning 

to interpret complex real-world sensor data, artificial neural networks are among the most 

effective learning methods currently known.  

The study of artificial neural network (ANNs) has been inspired in part by the observation that 

biological learning systems are built of very complex webs of interconnected neurons. In rough 

analogy, artificial neural networks are built out of a densely interconnected set of simple units, 

where each unit takes a number of real-valued inputs (possibly the outputs of other units) and 

produces a single real-valued output (which may become the input to many other units). 

While ANNs are lossely motivated by biological neural system, there are many complexities to 

biological neural systems that are not modelled by ANNs, and many features of ANNs we discuss 
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here are known to be inconsistent with biological systems. For example, we consider here ANNs 

whose individual units output a single constant value, whereas biological neurons out put a 

complex time series of spikes. 

ANNs learning is well-suited to problems in which the training data correspond to noisy, 

complex sensor data, such as inputs from cameras and microphones. It is also applicable to 

problems for which more symbolic representations are often used. The back-propagation 

algorithm is the most commonly used ANN learning technique. It is appropriate for problems with 

the following characteristics: 

 Instances are represented by many attribute-value pairs. The target function to be learned is 

defined over instances that can be described by a vector of predefined features. These input 

attributes may be highly correlated or independent of one another. Input values can be any 

real values. 

 The target function output may be discrete-valued, real-valued, or a vector of several real- or 

discrete-valued attributes.  

 The training examples may contain errors. ANN learning methods are quite robust to noise in 

the training data. 

 Long training times are acceptable. Network training algorithms typically require longer 

training times than, say, decision tree learning algorithms. Training times can range from a 

few seconds to many hours, depending on factors such as the number of weights in the 

network, the number of training examples considered, and the setting of various learning 

algorithm parameters. 

 Fast evaluation of the learning target function may be required. Although ANN learning times 

are relatively long, evaluating the learning network, in order to apply it to a subsequent 

instance, is typically very fast.  

 The ability of humans to understand the learned target function is not important. The weights 

learned by neural networks are often difficult for humans to interpret. Learned neural 

networks are less easily communicated to humans than learned rules. 
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Figure 2.3 Exclusive –OR Problem Solved by a Three-layer Network 

 

Figure 2.3 (Duda et al. 2001) shows a simple three-layer neural network. This one consists of 
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an input layer, a hidden layer, and an output layer, interconnected by modifiable weights, 

represented by links between layers. There is, furthermore, a single bias unit that is connected to 

each unit other than the input units. The function of units is loosely based on properties of 

biological neurons, and hence they are sometimes called “neurons”. We are interested in the use of 

such networks for pattern recognition, where the input units represent the components of a feature 

vector and where signals emitted by output units will be the values of the discriminant functions 

used for classification. 

We can clarify our notation and describe the feedforward operation of such a net work on what 

is perhaps the simplest nonlinear problem: the exclusive-OR (XOR) problem (Figure 2.7); a 

three-layer network can indeed solve this problem whereas a linear machine operating directly on 

the features cannot. 

Each two-dimensional input vector is presented to the input layer, and the output of each input 

unit equals the corresponding component in the vector. Each hidden unit computes the weighted 

sum of its inputs to form its scalar net activation which we denote simple as net. That is, the net 

activation is the inner product of the inputs with the weights at the hidden unit. For simplicity we 

augment both the input vector, by appending a feature value 10 =x , as well as the weight vector, 

by appending a value 0w , and we can then write 

 

xw t
j

d

i
jii

d

i
jjiij wxwwxnet ∑∑

==

==+=
01

0                      (2-16) 

 

where the subscript i  indexes units in the input layer, j  in the hidden; jiw  denotes the 

input-to-hidden layer weights at the hidden unit j . In analogy with neurobiology, such weights or 

connections are sometimes called “synapses” and the values of the connections the “synaptic 

weights”. Each hidden unit emits an output that is a nonlinear function of its activation, ( )netf , 

that is, 
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( )jj netfy =                                   (2-17) 

 

Figure 2.3 shows a simple threshold or sign function, 
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netSgnnetf                        (2-18) 

 

but as we shall see, other functions have more desirable properties and are hence more commonly 

used. This ( )⋅f  is sometimes called the activation function or merely “nonlinearity” of a unit.  

Each output unit similarly computes its net activation based on the hidden unit signals as  
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where the subscript k  indexes units in the output layer and Hn  denotes the number of hidden 

units. We have mathematically treated the bias unit as equivalent to one of the hidden units whose 

output is always 10 =y . In this example, there is only one output unit. However, anticipating a 

more general case, we shall refer to its output as kz . An output unit computes the nonlinear 

function of its net, emitting 

 

( )kk netfz =                              (2-20) 

 

where in the figure we assume that this nonlinearity is also a sign function. Clearly, the output kz  

can also be thought of as a function of the input feature vector x . When there are c  output units, 
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we can think of the network as computing c  discriminant functions ( )xkk gz = , and can 

classify the input according to which discriminant function is largest. In a two-category case, it is 

traditional to use a single output unit and label a pattern by the sign of the output z . 

It is easy to verify that the three-layer network with the weight values listed indeed solves the 

XOR problem. The hidden unit computing 1y  and it computes the boundary 05.021 =++ xx ; 

input vectors for which 05.021 ≥++ xx  lead to 11 +=y , and all other inputs lead to 

11 −=y . Likewise the other hidden unit computes the the boundary 05.121 =−+ xx . The 

final output unit emits 11 +=z  if and only if  and 12 +=y . Using the terminology of 

computer logic, the units are behaving like gates, where the first hidden unit is an OR  gate, the 

second hidden unit is an AND  gate, and the output unit implements 

 

( ) ( )
21

212121

 XOR 
 AND  NOT AND  OR  NOT AND 

yy
xxxxyyzk

=
==

       (2-21) 

 

giving rise to the appropriate nonlinear decision region shown in the figure—the XOR problem is 

solved. 

From the above example, it should be clear that nonlinear multilayer networks—that is, ones 

with input units, hidden unit, and output unit—have greater computational or expressive power 

than similar networks that otherwise lack hidden units. That is, they can implement more 

functions. 

Clearly, we can generalize the above discussion to more inputs, other nonlinearities, and 

arbitrary number of output units. For classification, we will have c  output units, one for each of 

the categories, and the signal from each output unit is the discriminant function ( )xkg . We 

gather the results from Equations (2-16), (2-17), (2-19) and (2-20), to express such discriminant 

functions as 
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This, then, is the class of functions that can be implemented by a three-layer neural network. In 

general, the activation function does not have to be a sign function. Indeed, we shall often require 

the activation functions in the output layer to be continuous and differentiable. We can even allow 

the activation functions in the output layer to be different from the activation functions in the 

hidden layer, or indeed have different activation functions for each individual unit.  

The Back-Propagation algorithm learns the weights for a multilayer network, given a network 

with a fixed set of units and interconnections. It employs gradient descent to attempt to minimize 

the squared error between the network output values and the target values for these outputs.  

Because we are considering networks with multiple output units, we need define E  to sum 

the errors over all of the network output units 

 

( ) ( )∑ ∑
∈ ∈

−≡
Dd outputsk

kdkd otwE 2

2
1r

                    (2-23) 

 

where outputs  is the set of output units in the network, and kdt  and kdo  are the target and 

output values associated with the k th output unit and training example d . 

The learning problem faced by Back-Propagation is to search a large hypothesis space defined 

by all possible weight values for all the units in the network. As in the case of training a single unit, 

gradient descent can be used to attempt to find a hypothesis to minimize E . 

Multilayer network is that the error surface can have multiple local minima. Unfortunately, this 

means that gradient descent is guaranteed only to converge toward some local minimum, and not 

necessarily the global minimum error. Despite this obstacle, in practice Back-Propagation has 

been found to produce excellent results in many real world applications. 
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The Back-Propagation algorithm is presented in Table 2.1. The algorithm as described here 

applies to layered feed-forward networks containing two layers of sigmoid units, which units at 

each layer connected to all units from the preceding layer. This is the incremental, or stochastic, 

gradient descent version of Back-Propagation. The notation used here is shown below: 

An index (e.g., an integer) is assigned to each node in the network, where a “node” is either an 

input to the network or the output of some unit in the network. 

jix  denotes the input from node i  to unit j , and jiw  denotes the corresponding weight. 

nδ  denotes the error term associated with unit n . As we shall see later, 
n

n net
E

∂
∂

−=δ . 

Notice the algorithm in Table 2.1. begins by constructing a network with the desired number of 

hidden and output units and initialized all network weights to small random values. Given this 

fixed network structure, the main loop of the algorithm then repeatedly iterates over the training 

examples. For each training example, it applies the network to the example, calculates the error of 

the network output, computes the gradient with respect to the error on this example, then updates 

all weights in the network. This gradient descent step is iterated (often thousands of times, using 

the same training examples multiple times) until the network performs acceptable well. 

 

Table 2.1. The Stochastic Gradient Descent Version of the Back-Propagation Algorithm for 

Feed-Forward Networks 

Back-Propagation (training_examples, hiddenoutin nnn ,,,η ) 

 Each training example is a pair of the form tx
rr, , where xr  is the vector of network input 

values and t
r

 is the vector of target network output values. 

η  is the learning rate (e.g., 0.05). inn  is the number of network inputs, hiddenn  the 

number of units in the hidden layer, and outn  the number of output units. 

The input from unit is denoted jix , and the weight from unit  i  to unit j  is denoted 
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jiw . 

 Create a feed-forward network with inn  inputs, hiddenn  hidden units, and outn  output units. 

 Initialize all network weights to small random numbers (e.g., between -0.05 and 0.05). 

 Until the termination condition is met, Do 

   For each tx
rr,  in training_examples, Do 

   Propagate the input forward throught the network: 

   1. Input the instance xr  to the network an d compute the output uo  od every unit 

u  in the network. 

   Propagate the errors backward throught the network: 

   2. For each network output unit k , calculate its error term kδ  

  ( )( )kkkkk otoo −−← 1δ                        (2-24)

   3. For each hidden unit h , calculate its error tern hδ  

( ) ∑
∈

−←
outputsk

kkhhhh woo δδ 1                     (2-25)

   4. Update each network weight jiw  

jijiji www ∆+←      

where 

jijji xw ηδ=∆                           (2-26)

 

The gradient descent weight –update rule (Eq. (2-26)in Table 2.1.) updates each weight in 

proportion to the learning rate η , the input value jix  to which the weight is applied, and the 

error in the output of the unit. To understand it intuitively, first consider how kδ  is computed for 

each network output unit k  (Eq. (2-24) in the algorithm). kδ  is multiplied by the fact 
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( )kk oo −1 , which is the derivative of the sigmoid squashing function. The hδ  value for each 

hidden unit h  has a similar form (Eq. (2-25) in the algorithm). However, since training examples 

provide target values kt  only for network outputs, no target values are directly available to 

indicate the error of hidden units’ values. Instead, the error term for hidden unit h  is calculated 

by summing the error terms kδ  for each output influenced by h , weighting each of the kδ ’s by 

khw , the weight from hidden unit h  to output unit k . This weight characterizes the degree to 

which hidden unit h  is “responsible for” the error in the output unit k . 

The algorithm in Table 2.1 updates weights incrementally, following the presentation of each 

training example. This corresponds to a stochastic approximation to gradient descent. To obtain 

the true gradient of E  one would sum the jij xδ  values over all training examples before 

altering weight values. 

The weight-update loop in Back-Propagation may be iterated thousands of times in a typical 

application. A variety of termination conditions can be used to halt the procedure. One may choose 

to halt after a fixed number of iterations through the loop, or once the error on the training 

examples falls below some threshold, or once the error on a separate validation set of examples 

meets some criterion. The choice of termination criterion is an important one. 

 

2.1.3 Experimental Verification 

The objective here is to be able to implement the theory in practical applications. The 

following deals with a laboratory experiment, imitating the configuration of 5-story shear building, 

carried out in order to validate the method developed and results derived. However, the 

experiment is a free vibration experiment and excludes damping.  

 

2.1.3.1 Experimental Setup 

The complete experimental setup is shown in Figure 2.4. 
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Figure 2.4 Experimental Setup 

 

This experimental setup imitates a 5-story shear frame buildings. The story mass is decided by 

the aluminium floor slab which is 2.975 kg for the first floor and 3.380 kg for the other four floors. 

The story stiffness is decided by the bronze plate spring which is 0.0025×0.03×0.24 m3. The 

Young’s modulus of bronze is 1×1011 N/m2, so the interfloor stiffness is 1.3563×104 N/m. 

The damage was introduced by replacing columns by weak columns, which are 

0.003×0.006×0.24 m3, shown in Figure 2.5. 
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Figure 2.5 Replace Columns by Weak Columns      Figure 2.6. Impulse Hammer 

 

By replacing two columns for each story, the story stiffness was reduced from 1.3563×104 

N/m to 9.1254×103 N/m and the damage rate was 32.72%. 

The impulse loading is imitated by impact of a hammer shown in Figure 2.6. Make sure that 

the impact of the hammer is quick and sharp. 

 

2.1.3.2 Procedure 

Acceleration sensors were installed at all stories to obtain six acceleration components. Using 

PCA, these 6-dimentional data were condensed to 5-dimensional and at the same time we can 

check whether there was some damage occurred during the measurement period. The modal 

frequencies were calculated from 5-dimentional time histories of the vibration experiment by 

applying Eigensystem Realization Algorithm (ERA) (Juang et al. 1985). The health structure 
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 Hz. 

This five-order natural frequency of the structure. 

Because the training processes would be carried out based on the health structure, it is required 

high precision of health structure’s stiffness matrix. Therefore, the stiffness matrix need to be 

model updated. Equation arrangement (Zhang er al. 1985) which need to measure frequency and 

mode shape is applied. However, it is challenging for the mode shape to be measured precisely. So 

the improved equation arrangement which need frequency only is presented. 

 

GKMK AAtA =Φ−ΛΦ=Φ∆ A                      (2-27) 

 

where, AΦ is mass-normalized eigenvector, tΛ is diagonal matrix of square measured 

frequencies, and subscripts A, t represent calculated value and measured value respectively. 

M and AK  are mass and stiffness matrixes. G represents the expression of 

AAtA KM Φ−ΛΦ . K∆  is stiffness error. 

Equate the both sides of the expression Eq.(2-27), and the equation of K∆ ’s upper triangular 

elements ( ijji kk ∆=∆  is required) which are indeterminate are created: 

 

GK =∆Ψk                                 (2-28) 

 

where, kΨ is shown as below: 
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where, ipϕ  is AΦ ’s element of row i and column p. 

then, 

 

( ) ( ) kGK T
kk

T
k ∀≠Ψ⋅Ψ⋅Ψ⋅Ψ⋅Ψ=∆

−
,0det,

1

kk             (2-30) 

KKK A ∆+=                             (2-31) 

 

K  need to be substituted for AK  into Eq.(2-27) to update several times so as to get higher 

precision. 

The updated stiffness is  
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According to this stiffness, the frequency is  
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The value is very close to measured value, so the update stiffness matrix of health structure is 

appropriated to be used in the following research. 

By replacing two columns for each story, the story stiffness damage rate was 32.72%. The 

frequency of the different damage structure is shown in Table 2.2 

 

Table 2.2 Frequency of Damage Structure   

 damage@1F damage@2F damage@3F damage@4F damage@5F 

Frequency (Hz) 2.059 2.118 2.094 2.192 2.229 

 6.393 6.955 6.648 6.326 6.653 

 10.610 10.533 10.344 10.626 10.203 

 14.163 13.099 14.279 14.105 13.961 

 16.170 16.276 15.993 15.582 16.019 

 

 

2.1.3.3 Damage identification results 

Using Parzen Window method and establishing Probabilistic Neural Networks (PNNs), the 

experimental data in Table 2.2 were inputted into the network trained by the data based on the 

model data, and the damage location can be decided as in Figure 2.7. 
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Figure 2.7. Damage Location Identification 

( For the first test pattern, the first bar is maximal, which means the damage is at the first floor. 

The similar to the other cases) 

 

Figure 2.7 shows that the damage locations of the different damage structures can be decided 

accurately.  

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Mean Squared Error 
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After damage location has been determined, damage on this floor would be quantified by 

neural network with error-back-propagation algorithms. For instance, if the damage location is 

identified to be 3rd-floor, the value of 3rd-floor’s stiffness which equals to 1.0, 0.95, 0.9, 0.8, 0.7, 

0.6, 0.5 and 0.4 times of the health value would be used to train neural network with Gradient 

descent with momentum and adaptive learning rate back-propagation. In this study, for the 

five-story frame structure, the number of neurons of input, hidden and output layer is 5, 5 and 1 

respectively. The mean squared error curve during training is as in Figure 2.8. 

The input is the frequency variety rate and output is stiffness reduction rate of the damage 

floor identified by Parzen-window method. And then based on the trained evaluation neural 

network, the stiffness reduction rate can be identified when experimental frequency variety rate 

shown in Table 2.3 is inputted to the neural network.  

 

Table 2.3 Damage Extent Identification by BP Network 

damage rate 1F 2F 3F 4F 5F 

calculated 0.3560 0.2734 0.3470 0.2507 0.3373 

actual 0.3300 0.3300 0.3300 0.3300 0.3300 

 

In order to observe them easily and intuitively, these values were drawn as a bar graph in 

Figure 2.9. 
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Figure 2.9. Damage Extent Identification by Neural Network 

 

 

The result above shows that there is some error in the identified damage extent that arose from 

various reasons such as environmental disturbance, inaccuracy of measuring device and so on. In 

order to reduce the error and improve the accuracy, we consider injecting randomness into training 

data so that the trained network will be of noise-tolerance within a certain range: 

( )RVV ⋅+= α1 . V  is training data vector. α  is the random ratio. R  is a vector with 

random entries, chosen from a normal distribution with mean zero, variance one and standard 

deviation one. Here the random ratio is 0.02. The improved damage extent identification is shown 

in Table 2.4. 

 

Table 2.4 Improved Damage Extent Identification by Network 

damage rate 1F 2F 3F 4F 5F 

calculated 0.3368 0.3595 0.3298 0.3497 0.3637 

actual 0.3300 0.3300 0.3300 0.3300 0.3300 
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In order to observe them easily and intuitively, these values were drawn as a bar graph in 

Figure 2.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Improved Damage Extent Identification by Neural Network 

 

The result above shows when the random number is injected into the training data, the 

identification accuracy can be improved and the damage extent of different damage structure can 

de decided ideally. 

With the purpose of implementing the theory in practical applications, the laboratory 

experiments were carried out in order to validate the method. A 5-story shear frame building made 

of aluminium and bronze was used. The modal frequencies were calculated by the Eigensystem 

Realization Algorithm. Using the frequency change rate, the structure damage location was 

identified by the Parzen method. Similarly the structure damage extent was identified by the 

Neural network. The identification accuracy can be improved by considering variations in signals. 

The damage extent of different damage structure was indeed identified correctly. 
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2.2  Time series-based damage identification techniques 

Most currently available damage detection methods are global in nature, i.e., the dynamic 

properties (natural frequencies and mode shapes) are obtained for the entire structure from the 

input–output data using global structural analyses e.g., (Doebling, et al. 1996). However, natural 

frequencies and mode shapes are not sensitive to minor damage and local damage. Salawu (1995) 

pointed out that a 5% frequency shift might be required to detect structural damage with 

confidence when using frequencies only. In addition, frequency shifts alone might not necessarily 

indicate that damage has occurred in the structure. As Aktan (1994) reported, significant frequency 

shifts (exceeding 5%) caused by changes in ambient conditions have been measured for bridges in 

a single day. 

The techniques using time series dynamic responses are appealing and promising.  

Ghobarah et al. (1999) presented a new approach for damage assessment providing a measure 

of the physical response characteristics of the structure and is better suited for non-linear structural 

analysis based on the static pushover analysis. An adaptive on-line parametric identification 

algorithm based on the variable trace approach is proposed by Lin et al. (2001) for the 

identification of non-linear hysteretic structures. At each time step, this recursive 

least-square-based algorithm upgrades the diagonal elements of the adaptation gain matrix by 

comparing the values of estimated parameters between two consecutive time steps. Fasel et al. 

(2005) applied an auto-regressive model with exoganous inputs (ARX) in the frequency domain to 

structural health monitoring. Damage sensitive features that explicitly consider non-linear system 

input/output relationships were extracted from the ARX model. Furthermore, because of the 

non-Gaussian nature of the extracted features, Extreme Value Statistics (EVS) is employed to 

develop a robust damage classifier.  

In all these algorithms, technical challenges related to the system’s uniqueness and 

observability are encountered; these are inherent in many structural systems, due to the presence 
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of redundant structural members and to a limited number of sensors (Agbabian et al. 1991). The 

development of procedures to handle these problems has drawn wide attention in the past two 

decades because of the rapid developments in digital instrumentation and computer technologies.  

In the time domain identification arena, various algorithms have been developed. Among those, 

the Eigensystem Realization Algorithm with Data Correlation (ERA/DC) (Juang et al. 1985) 

provides a systematic and formal way for obtaining modal parameter identification of linear 

structural systems. Complementary to ERA/DC, an observer/Kalman filter identification algorithm 

was developed (Juang et al. 1994) by introducing an asymptotically convergent observer. Such an 

approach was extended to the seismic analysis of structures in the work by Lus et al. (1999). 

Some information about structural parameters and dynamic properties can be identified by the 

direct use of these time-domain response. Nair et al. (2006) proposed a damage detection and 

localization algorithm based on time series modeling. The vibration signals obtained from sensors 

are modelled as autoregressive moving average (ARMA) time series. A new damage-sensitive 

feature, DSF, is defined as a function of the first three auto regressive (AR) components. Moreover, 

there is an approach by directly using dynamic responses in time series without extraction of 

dynamic properties proposed by Xu et al. (2003), where acceleration, velocity and displacement 

time histories were used as the input of the emulator neural network. This approach was improved 

by Xu & Chen (2005), where only acceleration time histories were used as the input of the 

emulator neural network. They called it acceleration-based emulator neural network (AENN) for 

free vibration. The AENN will be extended to forced vibration beyond the limitation of free 

vibration in the following chapters. 

 

2.3  Summary 

This chapter reviewed a typical damage localization and quantification approach using pattern 

classification methods, as well as some of the existing direct identification of structural parameters 

from dynamic responses. Vibration-based damage detection methods are important because there 

is no requirement of a prior knowledge of damage location. Direct identification of structural 
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parameters from dynamic responses is highly desired. In the following chapter, we will discuss 

direct damage detection using acceleration response. 
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CHAPTER 3 

Acceleration-Based Damage Occurrence Alarm 

for Building Structures 

 

 

 

3.1  Introduction 

This chapter is the first phase of the approach proposed. Acceleration-based damage 

occurrence alarm for building structures under earthquakes using artificial neural network 

emulators is proposed. The ground acceleration is included into the input layer of neural network 

as forced vibration in addition to the acceleration data at several floors. The method is improved 

by using the acceleration at later time steps as the output of the neural network. The time delay is 

optimized as a tunable band to provide the most sensitive signals. The method uses limited 

number of acceleration time histories only and could be applied to multi-input as well as single 

input systems. The necessary number of acceleration histories at different floors can be effectively 

reduced by increasing the previous time steps of the acceleration. The minimal one sensor needed 

provides the high practicability and flexibility. The applied structures can be under diverse 

excitations even very small impacts.  

Based on the numerical simulation for a five-story shear structure, the appropriate parameters, 

generality and efficacy of the neural network are studied. The damage index, the relative root 

mean square (RRMS) error, is calculated for the single structural damage, followed by double 

damages at different damage locations. Several ground motions are used to certify the generality 
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of this approach. The appropriate parameters for the neural network emulator are proposed 

according to the damage patterns. 

An approach directly using dynamic responses in time series without extraction of dynamic 

properties, which used acceleration, velocity and displacement time histories as the input to an 

emulator neural network was proposed by Xu et al. (2003), and was improved by Xu & Chen 

(2005), through the use of acceleration time histories only as the input to the emulator neural 

network. The method was called an acceleration-based emulator neural network (AENN) for free 

vibration. 

In this research, the AENN is extended to forced vibration beyond the limitation of free 

vibration to be applicable to arbitrary excitation. Minimally, only a single sensor is needed for 

response measurement for the damage alarm. Acceleration time histories, which are readily 

available in real structures, being the only necessity. Thus, this method is feasible for practical 

application. Furthermore, the accuracy of AENN is improved significantly by increasing time 

histories of the response into the input layer. 

 

3.2 Identification of Structural Changes with Neural Network Based 

on Acceleration Measurement 

 

3.2.1 ANN Emulator Using Displacement, Velocity and Acceleration as Inputs 

The basic idea of identification of structural changes using a neural network based on response 

time histories is to establish an emulator neural network that represents the characteristics of the 

structure. Input of the neural network is the response at time step k, and output is the response at 

time step k+1 as in Figure 3.1 (Xu et al. 2003).  

The neural network is to be trained using an existing response time history from a past 

earthquake excitation. Provided the structure has incurred no damage, the trained emulator neural 

network should be applicable to the same structure under subsequent earthquakes. Given this, the 

error between the output of the neural network and the real measurement provides information 
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regarding structural damage. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Neural Network to Represent the Characteristics of Structure 

  

Xu & Chen (2005) improved this approach by using acceleration time histories only as the 

input of the emulator neural network for free vibration. We have extended the study beyond the 

limitation of free vibration by including ground motion in the NN input layer so that the applied 

structure can be under arbitrary excitation, and the number of required response measurements can 

possibly be mineralized. 

 

3.2.2 Proposed ANN Emulator Using Acceleration Only as Inputs 

Neural networks may work as good black-box models even for nonlinear systems. Although 

ARX (Auto-Regressive eXtra input) models represent linear system dynamics, it could offer some 

revelation to application of neural networks. An ARX model (Mita 2003) is given by 

 

( ) ( ) ( ) ( ) ( )tetuqBtyqA +=                        (3-1) 

displacement 
response 

velocity 
response 

acceleration 
response 

predicted displacement 
response 
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where q  is the shift operator, ( ) ( )1+= tytqy . Auto-Regression model ( )qA  in terms of q  

is defined by  

 

 ( ) a

a

n
n qaqaqA −− +++= L1

11                      (3-2) 

 

Moving average part is defined by  

 

( ) b

b

n
n qbqbqB −− ++= L1

1                         (3-3) 

 

A pragmatic and useful way to see Eq. (3-1) is to view it as a way of determining the next 

output value given previous observations: 

 

( ) ( ) ( ) ( ) ( ) ( )tentubtubntyatyaty bnan ba
+−++−+−−−−−= LL 11 11     (3-4) 

 

This representation indicates that the prediction of the response requires several previous time 

steps for response as well as inputs. Neural networks can be used as an alternative to the ARX 

model, to represent the relationship determining the next output value given previous observations 

and extra input. The advantage of neural networks is applicability to nonlinear systems, as well as 

linear systems.  

An acceleration-based emulator neural network (AENN) trained to represent the mapping 

between acceleration at different time steps can be established as in Figure 3.2. Here we use 

acceleration time histories as observations. Since they are readily available in real structures, using 

accelerations provides much convenience. The acceleration of ground is beyond the consideration 

of the neural network’s target, so it is included as Tk , into the NN input layer. Tk is the kth time 

step. And Tk-1,…. Tk-n are previous time steps. 
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Figure 3.2 Acceleration-based emulator neural network 

 

Here, one floor means a certain floor. 

The trained AENN is a non-parametric model for the structure and can be used to forecast the 

acceleration response under later earthquake. 

Relative root mean square (RRMS) error e  is defined by  
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sampling step m ; mx&&  the acceleration corresponding which is the real dynamic response under 

earthquake excitations at sampling step m . 

RRMS shows the change between the output of the neural network and the real dynamic 

response and provides the information regarding structural damage. If this value is quite large, it 

would be thought that the structure is not healthy. 

 

3.2.3 Modified ANN Emulator 

Using acceleration at time steps k-2 and k-1 to forecast the acceleration at time step k, RRMS 

error is frequently too small to be regarded as an index of damage occurrence alarm. Considering 

this, the approach was improved by using the acceleration at later time steps, including k-2 and 

k-1 as the output of the neural network  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Improved AENN 
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The accelerations of the ground floor is not synchronous with the accelerations of the 

above-ground floors in the input layer, as shown in Figure 3.3. The acceleration of ground has a 

time delay of tm ∆×  such that the emulator neural network can forecast the acceleration of each 

floor at later time steps. The delay tm ∆×  is considered as a tunable band corresponding to 

different structures.  

 

3.3  Parameters Determination Based on Simulation 

Acceleration stream number, n and time delay of ground acceleration, tm ∆×  in Figure 3.3, 

are chosen parameters. t∆  is sampling time. The number of acceleration streams, n, should be 

large enough to make the RRMS error for healthy structures a stably small value, while the 

appropriate time delay of ground acceleration tm ∆×  should make RRMS error difference 

between healthy structures and damaged structures a comparatively large value. The search for 

appropriate values for these two parameters was based on numerical simulation and will be 

discussed in this section.  

 

 

 

  

 

 

 

 

Figure 3.4. Five stories frame structure and its limped mass model 
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Table 3.1. Structural parameters of the object structure 

DOF 1 2 3 4 5 

Mass (kg) 4000 3000 2000 1000 800 

Stiffness (kN/m) 2000 2000 2000 2000 2000 

 

Table 3.2. Modal parameters of the object structure 

DOF 1 2 3 4 5 

Frequency (Hz) 1.65 4.11 6.16 8.11 12.3 

Damping Ratio 0.005 0.013 0.019 0.026 0.039 

 

Because the goal of this section is to search for appropriate parameters for an AENN that is 

generally applicable, a basic structure is used to for simplicity and generality. We used a 5-story 

shear frame structure as the object structure, and modelled it as a 5 degree-of-freedom lumped 

mass system, depicted in Figure 3.4, with structural parameter values as shown in Table 3.1. 

The modal frequencies of the frame structure are 1.65 Hz, 4.11 Hz, 6.16 Hz, 8.11 Hz, and 12.29 

Hz, as shown in Table 3.2. The damping matrix is assumed to be Rayleigh damping which can be 

expressed in the following form,  

 

KMC ba +=                          (3-6) 

 

Where, KMC ,,  are damping, mass and stiffness matrixes respectively. a  and b  are 

selected to have damping ratios 0.005 for the first mode and 0.013 for the second mode. 

The AENN is trained using a network training function that updates weight and bias values 

according to Levenberg-Marquardt optimization. The output layer includes 1 neuron. In this 

structure, the acceleration at the fifth floor is measured. The neuron number of input layer is 

decided by n and tm ∆×  in Figure 3.3, and the neuron number of hidden layer is twice of that of 
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input layer. The neuron number was decided according to experience of previous research. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Earthquake records, Hachinohe and Northridge 

 

Acceleration time histories obtained from the top floor of the 5-story shear structure under the 

Hachinohe earthquake (16th May, 1968, Hachinohe City) ground motion were used as training 

data sets. Test data sets were under the Northridge earthquake (17th January, 1994, Northridge, 

California) ground motion. These two earthquake records are shown in Figure 3.5. The sampling 

time is 0.02 second, and all time histories were normalized.  

During the numerical simulation, acceleration stream number, n, was incrementally changed 

from 1 to 15. The delay, tm ∆×  was changed from 0.02 to 0.2 second, say, 1~10 times the 

sampling time. The two values, RRMS error for healthy structure and difference of RRMS errors 

between healthy structure and damaged structure, are shown in Figure 3.6 and Figure 3.7, to reach 

a stably small value for the former RRMS and comparatively large value for the latter RRMS. The 

difference of RRMS errors was defined by 

 

healthdamage eee −=∆                         (3-7) 
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Figure 3.6. Error for health structure changed  

by acceleration stream number and delay 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Error difference between health and damage structures 
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With the goal of more easily deciding the proper AENN parameters, severe damage, stiffness 

reduction of 20% at each floor, was utilized. 

Prediction accuracy is raised by incrementing the number of acceleration streams at different 

time steps to an appropriate value. The value of RRMS error decreases to a stable value when the 

number of acceleration streams achieves the appropriate value. The information in Figure 3.6 

showing error for healthy structure vs acceleration stream number and delay was used to decide an 

appropriate acceleration stream number. In Figure 3.6, it could be seen that error for healthy 

structure is stably small for acceleration stream numbers 10 or above. Therefore, the necessary 

acceleration stream number for the 5-story shear structure should be 10, which is understandable 

and reasonable considering this method analogy with ARX Models. As for the other structures, the 

necessary acceleration stream number should be twice of the number of freedom. For example, a 

10-story shear structure, the necessary acceleration stream number would turn out to be 20. 

The error difference between healthy and damaged structures in Figure 3.7 was used to decide 

an appropriate time delay of ground acceleration. In Figure 3.7, it can be seen that the error 

difference corresponding to n=10 is comparatively large with time delay of ground acceleration 

seven times of sampling time, say, 0.14 second. So the appropriate time delay of ground 

acceleration is 0.14 second for this structure. The first order natural frequency of this structure is 

1.65 Hz. We suggest that time delay of ground acceleration of approximately 1/4 of structural 

periodic time is appropriate.  

 

3.4  Consideration of Noise Effect 

Damage is introduced to the structure as shown in Figure 3.4 with the intent of demonstrating 

whether the RRMS errors can provide an effective damage alarm. To evaluate the effect of 

measurement noise on the accuracy of damage detection, the accelerations are corrupted with 2% 

and 5% RMS Gaussian white noise. The structural parameters and the earthquake excitations are 

the same as in the previous section. Only minimal output, the acceleration at floor 5, is used. 
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Damage detection results for clean, 2% RMS corrupted, and 5% RMS corrupted signals are shown 

in Figure 3.8, Figure 3.9, and Figure 3.10 respectively. Figure 3.8 shows that in the no noise case 

the value of RRMS error is 0.0540, 0.0995, and 0.2133 for the healthy structure, for the structure 

with 10% damage at the second floor, and for the structure with 20% damage at the second floor. 

In the 2% noise case, i.e. in Figure 3.9, the of RRMS errors were 0.0724, 0.1187, and 0.2288, 

again for the healthy structure, for the structure with 10% damage at the second floor, and for the 

structure with 20% damage at the second floor. And finally, in the 5% noise case, i.e. in Figure 

3.10, the analogous values of RRMS error were 0.0947, 0.1504, and 0.2405. For these three cases, 

the differences between no damage and 10% damage were 0.0455, 0.0463 and 0.0557. The 

differences between no damage and 20% damage were 0.1593, 0.1564 and 0.1458. There are 

consistent and detectable differences between the healthy and damaged structure. 

For SHM, the objective is not to identify exact index values but to detect variations in a 

relative sense, and/or changes in magnitude in the absolute sense. The results of the damage 

detection simulation with clean signals and corrupted signals showed the relative values of RRMS 

errors for damage scenarios to be detectable. Thus, a damage alarm is provided by the observation 

of RRMS error, regardless, within reason, of signal corruption level.  

 

 

 

 

 

 

 

 

 

Figure 3.8 Damage detection with clean signals 
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Figure 3.9 Damage detection with 2% noise signals 

 

 

 

 

 

 

 

 

 

Figure 3.10 Damage detection with 5% noise signals 
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consider using more accelerations at different floors in a multi-output NN as shown in Figure 3.11.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 AENN with multi-output 

 

Utilizing acceleration at more multiple floors in this manner decreases the necessary number 

of acceleration streams at different time steps, denoted by n in Figure 3.11.  

Still using the 5-story shear structure depicted in Figure 3.4, the acceleration time histories for 

excitation under Hachinohe earthquake (16th May, 1968, Hachinohe City) (Figure 3.5) ground 

motion were used as training data sets, and those under the ground motion of the Northridge 

earthquake (17th January, 1994, Northridge, California) (Figure 3.5) were used as test data sets. 

Consideration was given to the acceleration of the 3rd and 5th floors, followed by consideration of 

the 2nd, 4th and 1st floor.  
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Figure 3.12 Error changed by n with accelerations of the 3&5th floors 

 

 

 

 

 

 

 

 

 

Figure 3.13 Error changed by n with accelerations of the 2,3&5th floors 

 

 

 

 

 

 

 

Figure 3.14 Error changed by n with accelerations of the 2,3,4&5th floors 
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Figure 3.15 Error changed by n with accelerations of the 1,2,3,4&5th floors 

 

From Figures 3.12-3.15 it is seen that increased utilization of acceleration at multiple floors 

decreases the necessary number of acceleration streams at different time steps, n, needed for 

ensuring stably small values of error.  

According to the simulation results, when the accelerations of two floors (Figures 3.12) are 

included in the neural networks n should be 5. When the accelerations of more than two floors are 

included (Figures 3.13-3.15), this number is reduced to only 2 only.  

Using multiple outputs provides higher reliability, and increasingly low cost 

microelectromechanical (MEMS) sensors and wireless solutions for structural measurement which 

allow for a dense network of sensors to be deployed in structures make this option not unrealistic. 

However, the proposed method does not require the use of accelerations from multiple floors. The 

minimum is only one, and using just one floor acceleration provides high convenience and 

practicability, though longer time series periods are needed. Our approach is flexible, and on either 

end, using a single output or multi-outputs, shows practicality. 
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described in Figure 3.4 was performed with acceleration of each floor. The input, hidden, and 

output layers of the AENN include 17, 34 and 5 neurons, respectively.  

For the healthy structure, the comparison between the output of the neural network and the real 

value decided through dynamic analysis is shown in Figure 3.16. Since the value is normalized, 

there is no unit for acceleration here. It is seen that identification using the neural network can be 

carried out with high accuracy. The improved AENN can be trained to achieve a desired accuracy 

for modelling the dynamic behaviour of the healthy structure 

 

 

 

 

 

 

 

 

Figure 3.16. Comparison between the output of neural network and the real value 

 

Further study was carried out considering the existence of structural damage, firstly instituting 

single damage of 20% stiffness reduction on the third floor. As before, the acceleration of the 

damaged structure under the Northridge earthquake was used as the test data. Using the output of 

the neural network, RRMS error was calculated according to Eq. (3-5). Consideration was then 

extended to double-damage: 20% stiffness reduction on the third and fifth floors. Similarly, RRMS 

error was calculated as before. Figure 3.17 shows the different values of RRMS errors of healthy, 

single-damage, and double-damage structures. RRMS error shows the change between the output 

of the neural network and the real dynamic response, providing information regarding structural 

damage. If this value is quite large, it is thought that the structure is not healthy. Therefore, the 

RRMS error can be used as a damage occurrence alarm index.  
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Figure 3.17. RRMS errors of healthy and damaged structures 

 

To verify the generality of the proposed AENN, the results under different ground motions 

were observed for a healthy structure, to show that the trained AENN can achieve desired 

accuracy not just for a specific ground motion.  Ground motions of the previously used 

Northridge earthquake, the Kobe earthquake (Jan. 17, 1995, Kobe Japanese), and white-noise were 

used as the test data sets for this purpose. These three RRMS error values are shown in Figure 

3.18.  

 

 

 

 

 

 

 

 

 

Figure 3.18. RRMS errors under different ground motions 

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Relative Root Mean Square Error

number of floor

er
ro

r v
al

ue

northridge
kobe
white-noise

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Relative Root Mean Square Error

number of floor

er
ro

r v
al

ue

no damage
single-damage
double-damage



CHAPTER 3  Acceleration-Based Damage Occurrence Alarm for Building Structures 

 57

 

From Figure 3.18, it is seen that under the different ground motions, the trained neural network 

achieves similar accuracy, certifying the generality of the proposed AENN. Similarity of damage 

errors under the different earthquake excitations also shows the stability and reliability of the 

proposed method. 

 

3.7  Acceleration-Based Damage Evaluation Synthesis 

The key features of our Acceleration-Based Damage Evaluation of Building Structures with 

Neural Networks are summarized as follows: 

 The damage evaluation approach uses only acceleration time histories, and only 

with consideration of similarity to ARX models. 

 A time delay was introduced to the ground acceleration in order that the emulator 

neural network could forecast the acceleration of the each floor at later time steps.  

 For a 5-story structure, the necessary number of acceleration streams at different 

time steps for the single-input network is 10. We suggest the time delay of ground 

acceleration, which is 1/4 of structural periodic time.  

 It is proposed that more acceleration histories at different floors are used for the 

multi-output emulator neural network in order to decrease multi-output. The 

necessary number of acceleration streams at different time steps could be decreased. 
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CHAPTER 4 

Acceleration-Based Damage Localization 

and Quantification of Structures 

 

 

 

4.1  Introduction 

This chapter is the second phase of the proposed approach. After knowing the damage 

occurrence, the next phase is necessary to be performed for the goal of determining the damage 

location and quantity. Most currently available damage localization approaches are mostly based 

on pattern recognition methods to classify the different damage location. However, such 

approaches need analytical data for all damage case situations, which can be computationally 

expensive and even impossible. Therefore, the system identification is utilized for damage 

determination. In this research the system identification problem is formulated as an optimization 

problem using the Particle Swarm Optimization (PSO). 

Based on the numerical simulations for a five-story shear structure, the performance of this 

method is studied for both full output information and partial output information. Moreover the 

advantage of this method is verified by comparison with the other global search methods, e.g. 

Simulated Annealing (SA) and Genetic Algorithm (GA).  
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4.2 System Identification as an Optimization Problem 

The identification problem can be understood as an optimization problem in which the error 

between the actual physical measured response of a structure and the simulated response of a 

numerical model is minimized (Franco et al. 2004). In order to show this in more detail, let us 

consider a physical system as shown in Figure 3.4 with q  outputs of acceleration responses M
jy  

for qj ,,2,1 L= . Let M
jy  for qj ,,2,1 L=  denotes the value of the acceleration responses 

of the actual system.  

Suppose that a model that is able to capture the behaviour of the physical system is developed 

and that this model depends upon a set of n parameters, contained in a vector { }ix=x  for 

ni ,,2,1 L= . Call the newly formed model of the system and its parameters the identified system 

or candidate system, and let jy for qj ,,2,1 L=  denotes the value of the acceleration 

responses of the identified system. T is time step. At this point, let us now build the vectors M
jy  

and jy  as 

 

( ) ( ) ( ) qjTyyy M
j

M
j

M
j

M
j ,,2,1]10[ LL ==y                    (4-1) 

 

( ) ( ) ( )]10[ Tyyy jjjj L=y                      (4-2) 

 

containing all sampled values of the jth output of the actual and identified systems, respectively. 

Now consider the vectors M
jy  and jy , as the stacked vectors of all available output records for 

each system, which can be written as 

 

( ) ( ) ( ) ( ) ( ) ( )]0010[ 1111 TyyyTyyy M
q

M
q

MMMMM LLLL=y           (4-3) 
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( ) ( ) ( ) ( ) ( ) ( )]0010[ 1111 TyyyTyyy qq LLLL=y            (4-4) 

 

and compute the error norm of all the simulated outputs of the identified system with respect to 

those measured from the actual system, defined as: 

 

( ) ( )( )TMM yyyyx −−=F                        (4-5) 

 

In order to obtain a successful identification, the candidate system must be able to accurately 

reproduce the output of the physical system for any given input. Therefore, our interest lies in 

minimizing the error norm of the outputs. Formally, the optimization problem requires finding a 

vector S∈x , where S  is the search space, so that a certain quality criterion is satisfied, namely 

that the error norm RS →:F  is minimized. The function F is commonly called a cost 

function or objective function. In evolutionary computation, typically a fitness function is used 

which reflects the goodness of the solution. The better the solution, the fitter it is for survival. As 

our problem is a minimization problem, a fitter solution will be characterized with a lower value 

of the cost function. Therefore, the fitness function can be defined as the negative of the cost 

function, i.e., F− . Minimization of F  is then equivalent to maximize the fitness F− . Vector 

∗x  will be called a solution to the minimization problem if ( )∗xF  is the global minimum of F  

in S , or 

 

( ) ( ) SS ∈∀≤∈ ∗∗ xxxx FF                    (4-6) 

 

The search space S  is defined by a set of maximum and minimum values for each parameter. 

It is conceived as an n-dimensional domain delimited by vectors maxx  and minx  containing the 
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upper bounds of the n parameters and the lower bounds respectively or 

 

{ }nixxxRxS iii
n ,,2,1space  max,min, L=∀≤≤∈=           (4-7) 

 

The problem of identification is thus treated as a linearly constrained (due to the delimited 

n-dimensional search space) nonlinear (due to the nonlinear cost function) optimization problem. 

 

4.3  Particle Swarm Optimization (PSO) 

Particle swarm adaptation has been shown to successfully optimize a wide range of continuous 

functions (Angeline 1998).  The algorithm, which is based on a metaphor of social interaction, 

searches a space by adjusting the trajectories of individual vectors, called “particles” as they are 

conceptualized as moving points in multidimensional space. The individual particles are drawn 

stochastically toward the positions of their own previous best performance and the best previous 

performance of their neighbours. 

A population of particles is initialized with random positions xi
r  and velocities vi

r , and a 

function, f, is evaluated, using the particle’s positional coordinates as input values. Positions and 

velocities are adjusted, and the function evaluated with the new coordinates at each time-step. 

When a particle discovers a pattern that is better than any it has found previously, it stores the 

coordinates in a vector pi
r

. The difference between pi
r

 (the best point found by i so far) and the 

individual’s current position is stochastically added to the current velocity, causing the trajectory 

to oscillate around that point. Further, each particle is defined within the context of a topological 

neighborhood comprising itself and some other particles in the population.  The stochastically 

weighted difference between the neighborhood’s best position pg
r

 and the individual’s current 

position is also added to its velocity, adjusting it for the next time-step.  These adjustments to the 

particle’s movement through the space cause it to search around the two best positions. 
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The algorithm in pseudocode follows: 

 

Initialize population 

Do 

For i= 1 to Population Size 

if f( xi
r ) < f( pi

r
) then pi

r
= xi
r  

pg

r
=min( pneighbors

r
) 

For d = 1 to Dimension 

( ) ( )idgdidididid xpxpvv −+−+= 21 ϕϕ  

))),(absmin()(sign maxVvvv ididid ⋅=  

ididid vxx +=  

Next d 

Next i 

Until termination criterion is met 

 

The variables ϕ1  and ϕ2  are random positive numbers, drawn from a uniform distribution 

and defined by an upper limit ϕmax  which is a parameter of the system.  In this version, the 

term variable vid  is limited to the range maxV± , for reasons which will be explained below. The 

values of the elements in pg
r

 are determined by comparing the best performances of all the 

members of i’s topological neighborhood, defined by indexes of some other population members, 

and assigning the best performer’s index to the variable g.  Thus pg
r

 represents the best position 

found by any member of the neighborhood. 

The random weighting of the control parameters in the algorithm results in a kind of explosion 

or a “drunkard's walk” as particles’ velocities and positional coordinates careen toward infinity. 

The explosion has traditionally been contained through implementation of a Vmax parameter, which 
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limits step-size, or velocity.  The current paper however demonstrates that the implementation of 

properly defined constriction coefficients can prevent explosion; further, these coefficients can 

induce particles to converge on optima. 

An important source of the swarm’s search capability is the interactions among particles as 

they react to one another’s findings.  Analysis of interparticle effects is beyond the scope of this 

paper, which focuses on the trajectories of single particles. 

The algorithm is stripped down to a most simple form.  The particle swarm formula adjusts 

the velocity vi
r  by adding two terms to it.  The two terms are of the same form, that is, 

( )ixp rr
−ϕ , where pr is the best position found so far, by the individual particle in the first term, 

or by any neighbor in the second term.  The formula can be shortened by redefining idp  as 

follows: 

 

 
21

21

ϕϕ

ϕϕ

+

+
←

pgdid
id

p
p                           (4-8) 

 

Thus we can simplify our initial investigation by looking at the behavior of a particle whose 

velocity is adjusted by only one term: 

 

( ) ( ) ( )( )txptvtv idididid −+=+ ϕ1                    (4-9) 

 

where ϕϕϕ 21 += .  This is algebraically identical to the standard two-term form. 

When the particle swarm operates on an optimization problem, the value of pi
r

 is constantly 

updated, as the system evolves toward an optimum. In order to further simplify the system and 

make it understandable, we set pi
r

 to a constant value in the following analysis.  The system 

will also be more understandable if we make ϕ a constant as well; where normally it is defined as 

a random number between zero and a constant upper limit, we will remove the stochastic 
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component initially and reintroduce it in later sections. The effect of ϕ on the system is very 

important, and much of the present paper is involved in analyzing its effect on the trajectory of a 

particle. 

The system can be simplified even further by considering a 1-dimensional problem space, and 

again further by reducing the population to one particle.  Thus we will begin by looking at a 

stripped-down particle by itself, e.g., a population of one, one-dimensional, deterministic particle, 

with a constant p. 

Thus we begin by considering the reduced system: 

 

( )( )
)1()()1(

)()1(

⎩
⎨
⎧

++=+
−+=+

tvtxtx
txptvtv ϕ

       (4-10) 

 

where p and ϕ are constants.  No vector notation is necessary, and there is no randomness. 

 

4.4  Acceleration-Based System Identification with PSO for Full 

Output Information 

Suppose that a structure that is able to capture the behavior of the physical system is developed 

and that this structure depends upon a set of n parameters, contained in a vector { }ix=x  for 

ni ,,2,1 L= . This vector may include mass, stiffness, damping ratio et al. Call the newly formed 

structure of the system and its parameters the identified system or candidate system, and let ja for 

qj ,,2,1 L=  denotes the value of the acceleration responses of the identified system. At this 

point, let us now build the vectors M
ja  and ja  as 

 

( ) ( ) ( )]10[ Taaa M
j

M
j

M
j

M
j L=a                    (4-11) 
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( ) ( ) ( )]10[ Taaa jjjj L=a                      (4-12) 

 

containing all sampled values of the jth output of the actual and identified systems, respectively. 

Now consider the vectors M
ja  and ja , as the stacked vectors of full output records for each 

system, which can be written as 

 

( ) ( ) ( ) ( ) ( ) ]0010[ 1111 LLLL M
q

MMMMM aaTaaa=a           (4-13) 

 

( ) ( ) ( ) ( ) ( ) ]0010[ 1111 LLLL qaaTaaa=a            (4-14) 

 

and compute the error norm of all the simulated outputs of the identified system with respect to 

those measured from the actual system, defined as: 

 

( ) ( )( )TMM aaaax −−=F                        (4-15) 

 

In order to obtain a successful identification, the candidate system must be able to accurately 

reproduce the output of the physical system for any given input. Therefore, our interest lies in 

minimizing the error norm of the outputs. Formally, the optimization problem requires finding a 

vector S∈x , where S  is the search space, so that a certain quality criterion is satisfied, namely 

that the error norm RS →:F  is minimized. If we suppose that the structural damage only 

causes the change to the story stiffness, { } { }ii kx ==x . Vector { } ** kx ==∗
ik  will be called a 

solution to the minimization problem if ( )∗kF  is the global minimum of F  in S , or 

 

( ) ( ) SS ∈∀≤∈ ∗∗ xkkk FF                    (4-16) 
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The search space S  is defined by a set of maximum and minimum values for each story 

stiffness. It is conceived as an n-dimensional domain delimited by vectors maxx  and minx  

containing the upper bounds of the n parameters and the lower bounds respectively or 

 

{ }nikkkRkS iii
n ,,2,1max,min, L=∀≤≤∈=           (4-17) 

 

The problem of structural identification is thus treated as an optimization problem. 

The PSO is used to optimize ( )kF  by the algorithm in pseudocode follows: 

Initialize population 

Do 

For i= 1 to Population Size 

if ( ) ( )ii pFkF rr
<  then pi

r
= k i

r
 

pg

r
=min( pneighbors

r
) 

For d = 1 to Dimension 

( ) ( )idgdidididid kpkpvv −+−+= 21 ϕϕ  

))),(absmin()(sign maxVvvv ididid ⋅=  

ididid vkk +=  

Next d 

Next i 

Until termination criterion is met 
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4.5  Numerical Simulations for full output information 

4.5.1 Numerical Verification 

In order to verify the performance of the proposed methods, let us analyze the structure 

described in former sections represented in Figure 4.1, Table 4.1 and 4.2. 

 

 

 

 

 

 

 

 

 

Figure 4.1. Five stories frame structure 

 

Table 4.1. Structural parameters of the object structure 

DOF 1 2 3 4 5 

Mass (kg) 4000 3000 2000 1000 800 

Stiffness (kN/m) 2000 2000 2000 2000 2000 

 

 

Table 4.2. Modal parameters of the object structure 

DOF 1 2 3 4 5 

Frequency (Hz) 1.65 4.11 6.16 8.11 12.3 

Damping Ratio 0.005 0.013 0.019 0.026 0.039 

 

The full output information is used. The simulated output data of noise-free, and with 5% 
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noise, 10% noise, 20% noise are considered. The results are show in Table 4.3. 

 

Table 4.3 Results of numerical simulation for full output information 

Calculated Value 
 True Value 

no noise 5% noise  10% noise 20% noise 

k1 20 20 20.020 20.002 19.516 

k2 20 20 19.853 20.071 20.567 

k3 20 20 20.448 20.017 20.636 

k4 20 20 18.722 20.973 21.138 

k5 20 20 22.207 17.024 15.003 

Error  0.00% 4.10% 4.04% 7.82% 

 

Here, the error is RMS error. 

Table 4.3 shows that using PSO the structure can be identified both for the noise-free output 

data and noise-polluted output data. 

 

4.5.2 Comparison with Genetic Analysis (GA) and Simulated Annealing (SA) 

Results 

To verify the performance and compare it with other global search methods, the results 

obtained with the usage of the Simulated Annealing (SA) and Genetic Algorithm (GA) are 

presented in Tables 4.4, along with the results obtained with the PSO for the sake of comparison. 

The unit of the stiffness value is 100 kN/m. 
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Table 4.4. Comparison Results of numerical simulation for full output information 

 

 

 

 

 

 

 

For square competition, these three methods are with the same termination criterion, 1,000 

maximum generations; the same upper bound of the search space, twice the actual value of the 

parameters, lower bound, one tenth of their actual values; and the same random values added as 

noise. 

The analysis of the results contained in Tables 4.4 leads to the following observations: 

In general, in the full output information scenario, the PSO performed similarly to the SA and 

GA in the noise-free case. Also, the PSO performed similarly to the SA and GA at all levels of 

noise tested. This time full output information was utilized, and the situation with larger meaning 

using partial output information is studied and described below. 

 

 

4.6  Acceleration-Based System Identification with PSO for Partial 

Output Information 

Suppose that a structure that is able to capture the behavior of the physical system is developed 

and that this structure depends upon a set of n parameters, contained in a vector { }ix=x  for 

ni ,,2,1 L= . This vector may conclude mass, stiffness, damping ratio et al. Partial output 

information only can be measured, extremely only one floor acceleration available.  

 

  no noise 5% noise 10% noise 20% noise 
 Value PSO SA GA PSO SA GA PSO SA GA PSO SA GA

k1 20 20 20.000 20.007 20.020 20.020 20.017 20.002 20.002 20.009 19.516 19.516 19.511
k2 20 20 20.000 19.997 19.853 19.853 19.852 20.071 20.071 20.052 20.567 20.567 20.570
k3 20 20 20.000 19.958 20.448 20.448 20.479 20.017 20.017 20.076 20.636 20.636 20.660
k4 20 20 20.000 20.132 18.722 18.722 18.598 20.973 20.972 20.638 21.138 21.138 21.078
k5 20 20 20.000 19.735 22.207 22.207 22.692 17.024 17.024 17.550 15.003 15.003 15.047
Err  0.00% 0.00% 0.45% 4.10% 4.10% 4.74% 4.04% 4.04% 3.22% 7.82% 7.82% 7.75%
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( ) ( ) ( )]10[ Taaa MMMM L=a                    (4-18) 

 

( ) ( ) ( )]10[ Taaa L=a                      (4-19) 

 

Compute the error norm of all the simulated outputs of the identified system with respect to those 

measured from the actual system, defined as: 

 

( ) ( )( )TMM aaaax −−=F                        (4-20) 

 

In order to obtain a successful identification, the candidate system must be able to accurately 

reproduce the output of the physical system for any given input. Therefore, our interest lies in 

minimizing the error norm of the outputs. Formally, the optimization problem requires finding a 

vector S∈x , where S  is the search space, so that a certain quality criterion is satisfied, namely 

that the error norm RS →:F  is minimized. If we suppose that the structural damage only 

causes the change to the story stiffness, { } { }ii kx ==x . Vector { } ** kx ==∗
ik  will be called a 

solution to the minimization problem if ( )∗kF  is the global minimum of F  in S , or 

 

( ) ( ) SS ∈∀≤∈ ∗∗ xkkk FF                    (4-21) 

 

The search space S  is defined by a set of maximum and minimum values for each story 

stiffness. It is conceived as an n-dimensional domain delimited by vectors maxx  and minx  

containing the upper bounds of the n parameters and the lower bounds respectively or 

 

{ }nikkkRkS iii
n ,,2,1max,min, L=∀≤≤∈=           (4-22) 
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The problem of structural identification is thus treated as an optimization problem. 

The PSO is used to optimize ( )kF  by the algorithm in pseudocode follows: 

Initialize population 

Do 

For i= 1 to Population Size 

if ( ) ( )ii pFkF rr
<  then pi

r
= k i

r
 

pg

r
=min( pneighbors

r
) 

For d = 1 to Dimension 

( ) ( )idgdidididid kpkpvv −+−+= 21 ϕϕ  

))),(absmin()(sign maxVvvv ididid ⋅=  

ididid vkk +=  

Next d 

Next i 

Until termination criterion is met 

 

4.7  Numerical Simulations for Partial output information 

4.7.1 Numerical Verification 

In order to verify the performance of the proposed methods, let us analyze the structure 

described in former sections represented in Figure 4.1, Table 4.1 and 4.2. During this simulation, 

the partial output information is used. The acceleration at the fifth floor is only used. The 

simulated output data of noise-free, and with 5% noise, 10% noise, 20% noise are considered. The 

results are show in Table 4.5. 
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Table 4.5. Results of numerical simulation for partial output information 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 20% noise 

k1 20 20.555 19.153 17.950 22.008 

k2 20 19.457 21.223 22.740 18.576 

k3 20 19.090 20.833 25.899 16.034 

k4 20 20.513 20.853 16.138 30.413 

k5 20 21.018 17.325 22.518 17.936 

Error  3.54% 6.43% 17.07% 19.88% 

 

The results contained in Tables 4.4 leads to the following observations: 

Even though only the acceleration at one floor is measure, the structure can still be identified 

both for the noise-free output data and noise-polluted output data. This point is of great advantage 

because for a building structure it is expensive and almost impossible to measure full output 

information. Therefore, it helps that the structure can be identified with partial output information. 

 

4.7.2 Comparison with Genetic Analysis (GA) and Simulated Annealing (SA) 

Results 

To verify the performance and compare it with other global search methods, the results 

obtained with the usage of the Simulated Annealing (SA) and Genetic Algorithm (GA) are 

presented in Tables 4.6 for partial output information, along with the results obtained with the PSO 

for the sake of comparison. The unit of the stiffness value is 100kN/m. 
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Table 4.6 Comparison Results of numerical simulation  

for partial output information 

  no noise 5% noise 10% noise 20% noise 

 Value PSO SA GA PSO SA GA PSO SA GA PSO SA GA 

k1 20 20.555 19.513 20.522 19.153 17.051 21.576 17.950 17.086 17.201 22.008 16.955 16.845

k2 20 19.457 20.555 19.485 21.223 25.541 18.807 22.740 24.463 24.298 18.576 29.465 27.960

k3 20 19.090 20.880 19.183 20.833 26.421 17.058 25.899 30.824 29.245 16.034 18.110 20.581

k4 20 20.513 19.622 20.292 20.853 19.595 24.663 16.138 15.499 16.082 30.413 37.935 37.319

k5 20 21.018 18.909 21.403 17.325 12.506 19.867 22.518 17.610 17.079 17.936 15.418 10.028

Error  3.54% 3.39% 3.55% 6.43% 22.81% 10.51% 17.07% 25.09% 23.18% 19.88% 36.92% 38.99%

 

For square competition, these three methods are with the same termination criterion, 1,000 

maximum generations; the same upper bound of the search space, twice the actual value of the 

parameters, lower bound, one tenth of their actual values; and the same random values added as 

noise. 

The analysis of the results contained in Tables 4.6 leads to the following observations: 

In general, in the minimal output information scenario, the PSO performed similarly to the SA 

and GA in the noise-free case. However, the PSO performed better than the SA and GA at all 

levels of noise tested. It can be seen that the system identification based on PSO is feasible and 

advantageous for damage localization and quantification with possibly few response output. 

 

4.7.3 Damage localization and quantification using PSO 

The structure described in former sections represented in Figure 4.1, Table 4.1 and 4.2 is used 

to study the performance of PSO used for damage localization and quantification with partial 

output information. Both single damage cases and multi damage cases are considered. The various 

damage severities are also considered. For damage identification, the stiffness of the structure will 

only decrease from the healthy structure to the damaged structure. Therefore, the upper bound of 
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the stiffness of the candidate damaged structure can be set as the stiffness of the healthy structure. 

The down bound will be set as 10% of the stiffness of the healthy structure. 

 

Table 4.7 Damage Identification for Single-Damage at the 2nd floor 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 20 20.000 20.000 19.995 

k2 18 18.000 18.057 18.100 

k3 20 20.000 20.000 19.996 

k4 20 20.000 20.000 20.000 

k5 20 20.000 20.0000 20.000 

Error  0 0.058％ 0.11% 

 

Table 4.8 Damage Identification for Single-Damage at the 4nd floor 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 20 20.000 20.000 20.000 

k2 20 20.000 20.000 19.831 

k3 20 20.000 19.713 20.000 

k4 16 16.000 16.139 16.676 

k5 20 20.000 20.000 18.902 

Error  0 0.44% 2.02% 
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Figure 4.2 Damage identification for single-damage cases 

 

Firstly, the single-damage cases are studied. Both noise-free and noise-polluted output 

information are used. The results of single damage cases with 10% stiffness reduction at the 

second floor and 20% at the fourth floor are in Table 4.7 and 4.8 illustrated in Figure 4.2. It is 

observed that there is influence in a whole on the estimates by noise presence even though there is 

no influence for some certain values 

 

Table 4.9 Damage Identification for Double-Damage at the 3rd and 5th floors 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 20 20.000 20.000 20.000 

k2 20 20.000 20.000 20.000 

k3 18 17.972 17.992 18.373 

k4 20 20.000 19.904 20.000 

k5 19 19.370 19.131 17.512 

Error  0.41% 0.24％ 1.92% 
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Table 4.10 Damage Identification for Double-Damage at the 2nd and 4th floors 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 20 20.000 20.000 20.000 

k2 19 19.000 18.975 19.002 

k3 20 20.000 19.691 20.000 

k4 17 17.000 17.440 16.545 

k5 20 20.000 20.000 20.000 

Error  0.00% 0.81％ 0.48% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Damage identification for double-damage cases 
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Secondly, the double-damage cases are studied. The result of double-damage case with both 

10% stiffness reduction at the third floor and 5% at the fifth floor is in Table 4.9. The result of 

double-damage case with both 5% stiffness reduction at the second floor and 15% at the fourth 

floor is in Table 4.10. These two tables are illustrated in Figure 4.3. 

 

Table 4.11 Damage Identification for Multi-Damage at 2, 3&5F 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 20 20.000 20.000 20.000 

k2 17 17.038 16.895 16.943 

k3 18 17.958 18.315 18.142 

k4 20 20.000 20.000 20.000 

k5 19 19.074 17.121 19.575 

Error  0.16% 2.45％ 0.82% 

 

Table 4.12 Damage Identification for Multi-Damage at 1, 3&4F 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 18 18.000 18.032 17.887 

k2 20 20.000 20.000 20.000 

k3 17 17.000 16.873 17.763 

k4 19 19.000 19.177 17.868 

k5 20 20.000 20.000 20.000 

Error  0.00% 0.36％ 2.14% 
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Figure 4.4 Damage identification for triple-damage cases 

 

 

Table 4.13 Damage Identification for Multi-Damage at 1, 3, 4&5F 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 18 18.000 18.174 17.967 

k2 20 20.000 20.000 20.000 

k3 17 17.000 16.635 17.057 

k4 19 19.000 19.556 19.279 

k5 16 16.000 15.571 16.000 

Error  0.00% 1.69％ 0.41% 
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Table 4.14 Damage Identification for Multi-Damage at 1, 2, 3&5F 

Calculated Value 
 True Value 

no noise 5% noise 10% noise 

k1 18 18.298 18.385 17.526 

k2 19 18.651 18.693 19.469 

k3 17 16.630 16.444 18.412 

k4 20 20.000 19.362 20.000 

k5 16 16.000 18.329 13.185 

Error  2.06% 4.68％ 5.74% 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Damage identification for multi-damage cases 

 

Finally, the multi-damage cases are studied. The result of multi-damage case with 15% 

stiffness reduction at the second floor, 10% at the third floor and 5% at the fifth floor is in Table 

4.11. The result of multi-damage case with 10% stiffness reduction at the first floor, 15% at the 
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third floor and 5% at the fourth floor is in Table 4.12. These two tables are illustrated in Figure 4.4. 

The result of multi-damage case with 10% stiffness reduction at the first floor, 15% at the third 

floor, 5% at the fourth floor and 20% at the fifth floor is in Table 4.13. The result of multi-damage 

case with 10% stiffness reduction at the first floor, 5% at the second floor, 15% at the third floor 

and 20% at the fifth floor is in Table 4.12. These two tables are illustrated in Figure 4.5. 

The analysis of the results contained in Tables 4.7-4.14 and Figures 4.2-4.5 leads to the 

following observations: 

Even though only the acceleration at one floor is measure, the structural damage can be 

localized and quantified both for the noise-free output data and noise-polluted output data. This 

point is of great advantage because for a building structure it is expensive and almost impossible 

to measure full output information. Therefore, it helps that the structural damage can be identified 

with minimal output information. 

 

4.8  Summary 

The method named as Acceleration-Based Damage localization and quantification of Building 

Structures with Partial Swarm Optimization is summarized as follows: 

 The damage localization and quantification for building structures is through the 

identification of structural stiffness.  

 The system identification is realized by transferring to optimization problem..  

 The Partial Swarm Optimization (PSO) is utilized to obtain the minimize the error 

between the actual physical measured response of a structure and the simulated 

response of a numerical model.  

 The minimal output information, extremely only acceleration at one floor, is needed 

for damage identification. 

 The healthy structure is firstly identified by PSO given the full output information 

or partial output information. 

 With very limited response measurement, the structural damage can be identified for 
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both single-damage cases and multi-damage cases by setting the stiffness upper 

bound of search as the stiffness of the healthy structure. The damage can be 

localized and quantified for different damage severities. 
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CHAPTER 5 

Experimental Verification and Application 

 

 

 

5.1  Introduction 

To better assess the performance of the distributed computing SHM strategy proposed above, 

experimental validation of the proposed approach has been conducted. Following the detailed 

description of the experimental setups, experimental results employing the distributed computing 

SHM strategy are provided which show the proposed approach to be very promising. Two 

different structural models, small model and large steel model, are utilized to verify the proposed 

approach. A five-story structure was initially healthy with all original columns intact. Two 

columns of one floor were then replaced by weak columns (of the same material and integrity as 

healthy columns, but with smaller cross-sectional area) to simulate single-damage case. The 

double-damage case was simulated by replacing the columns of two different floors. Under the 

basement of the structure, there were some bearings so that the structure could have a ground 

motion. Another steel structure on shake-table was used to verify the proposed method. It was also 

a five-story frame structure, with height 5 m and floor plate 3 m x 2 m. The damages were 

introduced by re-moving the splices at different location, loosing the bolts and damaging the 

beams. 
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5.2 Small model 

5.2.1 Experimental Setup 

A series of experiments were performed to verify the performance of our proposed approach.  

The small model structure is depicted in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Experimental Setup of Small Model 

 

This experimental setup imitates a five-story shear frame buildings. The story mass is decided 

by the aluminium floor slab which is 2.43 kg for each floor. The story stiffness is decided by the 

bronze plate spring which is 0.0025×0.03×0.24 m3. The Young’s modulus of bronze is 1×1011 

N/m2, so the interfloor stiffness is 1.3563×104 N/m. The structure was initially healthy with all 

original columns intact. 
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Figure 5.2 Healthy and Damage Columns  

 

The damage was introduced by replacing columns by weak columns, which are 

0.003×0.006×0.24 m3, shown in Figure 5.2. By replacing two columns in the story, the story 

stiffness was reduced by 33%.  

 

 

 

 

 

 

 

 

 

Figure 5.3 Bearings & Shaker 

 

Under the basement of the structure, there were some bearings so that the structure could have 

a ground motion. The force input to the structure is provided with an electrodynamic shaker as 
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shown in Figure 5.3. One acceleration sensor was installed on the basement to measure the ground 

motion. The sensor installed on each floor plate was used to measure the acceleration response of 

each floor. 

 

5.2.2 Procedure 

The five-story structure was firstly healthy with all original columns. The force input to the 

structure was provided by the shaker to obtain the acceleration data of the healthy structure. Two 

acceleration sets were recorded, one of which was used as training data to establish the AENN. 

The other set was healthy test data used for comparison with damage data. 

 Then, two columns of one floor were replaced by weak columns to simulate single-damage 

case. The shaker provided excitation again so that the accelerometers could measure the 

acceleration data of the single-damage structure.  

Finally, double-damage case was simulated by replacing the columns of two different floors. 

The structure was excited by the shaker again to acquire the acceleration data of the 

double-damage structure. One typical acceleration signal measured is as in Fig 5.4 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 One typical acceleration signal 
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5.2.3 Damage Identification Results 

 The first phase, damage occurrence alarm by AENN (Figure5.5), was performed using 

full-floor-acceleration, followed by using the fifth floor acceleration alone (Figure 5.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Multi-output AENN for experimental data 
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Figure 5.6 Single-output AENN for experimental data 

 

 

Figure 5.7 is the prediction of the test data for the healthy structure using the trained multi-output 
AENN emulator. Since the value is normalized, there is no unit for acceleration here. 

 

 

 

 

 

 

 

 

 

 

Measured Acceleration of 5th floor at Tk-1

Measured Acceleration of 5th floor at Tk-2

Measured 

Acceleration of  

5th floor at Tk+m 

Measured Acceleration of ground delayed at Tk-1

Tk+m

Measured Acceleration of excitation at  
Tk+1

Tk

M
 

Measured Acceleration of 5th floor at Tk-n

Measured Acceleration of ground delayed at Tk-n+1

M  

M  



CHAPTER 5  Experimental Verification and Application 

 88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Prediction of test data for healthy structure using full accelerations 
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Figure 5.8 is the prediction of the test data for the healthy structure using the trained single-output 
AENN emulator. Since the value is normalized, there is no unit for acceleration here. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Prediction of test data for healthy structure using acceleration at 5F 

 

Figure 5.9 shows RRMS errors of healthy, single-damage, double-damage and triple-damage 
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The result of RRMS errors of healthy, single-damage, double-damage structures using 

multi-output AENN is shown in Figure 5.9 (a), and the result using single-output AENN is shown 

in Figure 5.9 (b). These RRMS errors represent the difference between the output of the neural 

network and the real dynamic response, thus providing an indication of structural damage. The 

magnitude of the RRMS error corresponds to the severity of damage, and therefore can be looked 

at as a damage occurrence alarm index. Using one floor acceleration is effective, as well as 

multi-floor acceleration. This shows high flexibility with this method. 
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(a) Multi-input AENN 

 

 

 

 

 

 

 

 

 

 

 

                        (b) Single-input AENN 

Figure 5.9. Damage alarm: results of first phase 
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(a) Full acceleration information 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Partial acceleration information 

Figure 5.10. System ID by PSO: results of second phase 
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The second phase was performed after knowing there was some damage in the structure. All 

cases of single-damage cases and double-damage cases were considered and depicted in Figure 

5.8. This phase was also studied using full-floor-acceleration, followed by using the fifth floor 

acceleration only. Figure 5.10 (a) is the result with full acceleration information, and Figure 5.10 

(b) is the result with partial acceleration information. Figure 5.8 shows, in general, the damage 

localization and quantification can be determined by the phase. Naturally the result using full 

information is slightly better than using partial information. 

 

5.3 Experiment Using Large Steel Model 

5.3.1 Experimental Setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Shake-table Experimental setup 
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A series of experiments were performed for a different 5-story steel structure using a shake 

table (Figure 5.11) to further verify the proposed method. 

This 5-story steel frame structure had a height of 5 m and a floor plate 3 m×2 m. The section 

of column is H148×100×6/9(SS400), beam H148×100×6/9(SS400), middle column 

H100×50×5/7(SS400). The weight of each floor is 2.57 ton.  

The sensors are 1G accelerometer made by Kyowa Electronic Instruments Co., Ltd. Japan. The 

model is AS-1GB. The frequency response (at 23 ºC) is DC to 40 Hz, ±5%. The resonance 

frequency (App.) is 70 Hz. 

The shake table is in the Building Research Institute (BRI), Ministry of Construction, Japan. 

The maximal bearing capacity is 20 ton. The maximal amplitude of shake is ±150 mm. The 

maximal acceleration is ±1 G. The maximal input force is 30 ton. The range of frequency is 0-50 

Hz. 

 

5.3.2 Procedure 

First of all, the white noise force input to the structure was provided by the shake table to 

obtain the acceleration data of the healthy structure. 

Damage was introduced by removing splice, loosening bolts and damaging beams at different 

locations. In every damage case, the white noise force input to the structure was provided by the 

shake table to obtain the acceleration data of the damaged structure. 

Considering the damage would cause the stiffness reduction at the horizontal direction in 

Figure 5.11, the input provided by shake table was at the same direction so the acceleration at the 

direction of sensor number 6 in Figure 5.11 was utilized. Moreover the acceleration at the 

direction of sensor number 14 in Figure 5.11 was checked to be small enough to be ignored. The 

PGA of the white noise force input is 0.1 G. 

One typical acceleration signal measured is as in Figure 5.12 
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Figure 5.12 One typical acceleration signal 

 

5.3.3 Damage Identification Results 

The first phase, damage occurrence alarm by AENN, was performed. The detection results for this 

redundant experiment are shown in Figure 5.13. 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 RRMS errors of healthy and damaged structure cases 
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The analysis of the results contained in Figure 5.13 leads to observations in concordance with 

the first experiment: The value of RRMS error can be considered as a damage occurrence alarm 

index. The value of the RRMS error is up along with the damage severity increases. We can obtain 

the structural damage alarm by observing this index. As the acceleration information of the 

structure is needed only here with the necessity of structural modal information, we may conclude 

that the AENN-based damage alarm method can indeed provide damage alarm to realistic 

problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Damage Localization Results of Shake-table experiment 
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5.4 Application to real building 

5.4.1 Description of the real building 

 

This study proposed the first application of AENN to real buildings.  

 

Table 5.1. Data used for structural evaluation 

Maximal value of acceleration in Y direction 

(cm/s2)  Date 

1F 5F 10F 14F 

Training data Oct. 15, 2003 22.1 26.4 22.3 18.4 

Test data 1 Nov. 12, 2003 11.9 20.4 19.7 12.4 

Test data2 Jul. 23, 2005 35.1 34.3 39.7 41.0 

 

 

The applied building, Nikken Sekkei Tokyo Building located in Iidabashi of Tokyo, was 

constructed in March, 2003. It is 60 meters high, with one-story underground and 14-story 

overground. The accelerators were installed on the B1F, 1F, 5F, 10F and 14F to measure the 

acceleration time histories of horizontal two directions and vertical direction. Three sets of 

acceleration time histories shown in Table 5.1 would be used for evaluation. The first two 

identified natural frequencies of this building in horizontal Y direction are about 0.7 Hz and 2.3 

Hz. 

 

5.4.2 Evaluation of Structure by AENN with the Performance of Filter 

 

The proposed AENN was established for structural evaluation of this real building.  

Here, the acceleration time histories of the first floor was considered as the acceleration of 
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ground which would be inputted into the AENN delayed by time T, and the acceleration of the 5, 

10, 14th floor was considered as the normal floor, as in Figure 5.15. 

 

 

 

 

 

 

 

 

 

 

Figure 5.15. AENN Applied to the Real Building 

 

 

For a real building, the measured response is unavoidably polluted by noise, which would 

decrease the accuracy of the structural evaluation. In order to handle this problem, filtering was 

performed to the measured accelerations. Firstly, lowpass Butterworth filter whose cutoff 

frequency was 0.8 Hz was applied to obtain the signal near the first-order natural frequency of 

structure. Then, bandpass Butterworth filter whose passband frequency was [1.8, 3] Hz was 

applied to obtain the signal near the second-order natural frequency of structure. At last, the results 

of evaluation through these two filters were combined linearly to obtain the final structural 

evaluation, as in Figure5.16. Since the value is normalized, there is no unit for acceleration here. 
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(a) test data1 on Nov. 12, 2003 

 

 

 

 

 

 

 

 

 

 

 

(b) test data2 on Jul. 23, 2005 

Figure 5.16. Comparison between the output of neural network and the measured value 
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Figure 5.17. RRMS errors for test data1 and test data2 

 

The RRMS error values were calculated for test data1 and test data2, respectively (Figure 

5.17). Due to only one-month interval between the dates of the training data and test data1, it is 

reasonable to suppose there would not be much deterioration of this building structure, which 

means the RRMS error for test data1 would be a small value. However, after almost two years 

passed, when the test data2 was measured, the thought of some deterioration and change occurring 

to the building structure could be acceptable and of high possibility, which means the RRMS error 

for test data2 would be a larger value than before. Therefore, the error value of test data2 should 

be quite larger than that of test data2. These are consistent with the result shown in Figure 5.17. 

It is verified that the proposed acceleration-based approach could implement structural 

evaluation effectively and economically. This characteristic makes the approach very useful for 

practical application. Such far this building has not apparent localized damage, so only the first 

phase of the proposed approach was implemented here. 
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5.5 Summary 

In this chapter, the computing strategy for SHM was experimentally verified using two 

structural models, small model and large steel model. A five-story structure was initially healthy 

with all original columns intact. Two columns of one floor were then replaced by weak columns 

(of the same material and integrity ad healthy columns, but with smaller cross-sectional area) to 

simulate single-damage case. The double-damage case was simulated by replacing the columns of 

two different floors. Under the basement of the structure, there were some bearings so that the 

structure could have a ground motion. Another steel structure on shake-table was used to verify 

the proposed method. It was also a five-story frame structure, with height 5m and floor plate 3m x 

2m. The damages were introduced by re-moving the splices at different location, loosing the bolts 

and damaging the beams. Both single and multiple damage scenarios were studied.  

The experimental results have shown that the proposed approach can successfully monitor 

structural health only utilizing measured acceleration information for various damage scenarios 

under different excitation conditions. The proposed approach was shown promising for application 

of SHM on buildings. 

This study proposed the first application of AENN to real buildings. The applied building, 

Nikken Sekkei Tokyo Building located in Iidabashi of Tokyo, 60 meters high, with one-story 

underground and 14-story overground. It is verified that the AENN could implement structural 

evaluation effectively and economically. This characteristic makes the approach very useful for 

practical application.  

At the first phase, the index RRMS error can provide the damage alarm even for small damage 

based on the verification results. During the steel structure experiment, loosing bolt only caused 

less than 5% stiffness reduction. In that case by observing RRMS error damage alarm can be 

obtained. However, the localization and quantification of the damage are meant to be decided at 

the second phase, which was verified by the two experiments described in this chapter. 
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CHAPTER 6 

Conclusions and Future Studies 

 

 

 

6.1  Conclusions 

Damage identification of structures using pattern classification and direct identification of 

structural parameters from dynamic responses were addressed in this dissertation. The emphasis 

was placed on direct identification of structural parameters from dynamic responses. 

This research presented a possible solution for damage identification of structures using 

pattern classification methods with the goal of using possibly least data. Two steps were included 

in the damage identification process. The damage location was identified in the first step using 

Parzen-window approach, while the corresponding damage degree was estimated in the second 

step using feed-forward back-propagation neural network. A series of numerical simulations were 

conducted to verify the performance of our proposed approach. The measured structural vibration 

responses data always contain noise. The output inevitably has some errors when the data with 

noise was input into the classifiers network. The approach was thus enhanced to have stability 

against such noise by considering variations in signals. The results of numerical simulations 

showed that by the approach the structural damage could be identified and identification accuracy 

could be improved by randomness injected. An appropriate range of random ratio was proposed 

corresponding to modal parameters with various noise ratios. In order to implement the theory in 

practical applications, a series of vibration experiments for five-story shear frame structure were 

conducted to verify the performance of the approach. The results show that for shear buildings, 
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damage degree and extent can be determined through measuring the frequency change.  

The backbone of this dissertation is the direct identification of structural parameters from 

dynamic responses. An evaluation approach for building structures under earthquakes was 

proposed to provide damage alarm and detailed damage information. It is a time-domain 

evaluation procedure capable of alarming, localizing and quantifying damage using limited 

acceleration measurements. The technique is a combination of the damage detection based on 

acceleration-based emulator neural network (AENN) and the system identification using the 

particle swarm optimization (PSO).  

To implement the concept, a two-phase approach is used.  

In the first phase, the AENN used for emulating the structural response was tuned to properly 

model the hysteretic nature of building response. This approach takes into account ground 

acceleration by including it in the input layer up to the most recent time step. It requires only a 

limited number of acceleration time histories and can be applied to single or multi-output systems. 

Furthermore, we found that increasing the previous time steps of the acceleration can effectively 

reduce the necessary number of acceleration histories at different floors. This, and the minimal 

requirement of only a single sensor, gives the method high practicability and flexibility. Input 

excitations are not limited, i.e., the structures can be under diverse excitations, even very small 

impacts. Based on numerical simulation of a five-story shear structure, appropriate parameters of 

the neural network emulators were suggested. The efficacy of the approach was studied by 

comparing healthy and damaged structures. Its generality was verified by considering different 

earthquake accelerations. Experiments using two five-story shear structure models were performed, 

and the effectiveness of the proposed approach was well verified. In our proposed evaluation 

approach, alarms of damage occurrence can be obtained practically and economically using 

readily available acceleration time histories only.  

After knowing the damage occurrence, the next phase was necessary to be performed to 

determine the damage location and quantity. Most currently available damage localization 

approaches were mostly based on pattern recognition methods to classify the different damage 
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location. However, such approaches need analytical data for all damage case situations, which can 

be computationally expensive and even impossible. Therefore, the system identification is utilized 

for damage determination. In this paper the system identification problem was formulated as an 

optimization problem using the PSO.  

A series of numerical simulations were carried out to evaluate the performance of this 

two-phase approach. The damage alarm can be accurately obtained only using the acceleration 

information of the healthy and damaged structures without the necessary of structural model 

information. Also the damage localization and quantification can be obtained in the following 

phase. 

In order to prove that the method is indeed applicable to realistic problems, the computing 

strategy for SHM was experimentally verified. Two different structural models, small model and 

large steel model, are utilized to verify the proposed approach. A five-story structure was initially 

healthy with all original columns intact. Two columns of one floor were then replaced by weak 

columns (of the same material and integrity ad healthy columns, but with smaller cross-sectional 

area) to simulate single-damage case. The double-damage case was simulated by replacing the 

columns of two different floors. Under the basement of the structure, there were some bearings so 

that the structure could have a ground motion. Another steel structure on shake-table was used to 

verify the proposed method. It was also a five-story frame structure, with height 5m and floor 

plate 3m x 2m. The damages were introduced by re-moving the splices at different location, 

loosing the bolts and damaging the beams. Both single and multiple damage scenarios were 

studied. The experimental results have shown that the proposed approach can successfully monitor 

structural health only utilizing measured acceleration information for various damage scenarios 

under different excitation conditions. The proposed approach was shown promising for application 

of SHM on buildings. 

This study proposed the first application of AENN to real buildings. The applied building, 

Nikken Sekkei Tokyo Building located in Iidabashi of Tokyo, 60 meters high, with one-story 

underground and 14-story overground. It is verified that the AENN could implement structural 
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evaluation effectively and economically. This characteristic makes the approach very useful for 

practical application.  

 

6.2  Future Studies  

Although this research has successfully addressed some of the challenges for application of 

damage identification algorithms to buildings, several questions remain. A few directions for 

further research in the future are presented in this section. 

 

6.2.1 Extension of the two-phase approach to more complicated structures 

It is important to extend the proposed two-phase approach to more complicated structures. 

The proposed approach has been shown to work well for shear structures. However, real world 

consists of different types of structures. It is desirable to extend the proposed approach to handle 

more complicated structures. It would be of special meaning if the proposed approach can apply 

on such structures as bridges, TV towers and so on.  

The essence of the extension is how to apply the second phase to more complicated structures. 

As the first phase do not need any structural model information, it will be convenient to 

implement this phase to various structures. However, for the second phase, the problem on that 

calculation cost will arise since the measured responses need to find the matching responses 

provided by calculated model. Therefore, how to simplify the procedure and save calculation cost 

will be the key point to implement the extension of the proposed two-phase approach to more 

complicated structures. 

 

6.2.2 Reliability Analysis 

Reliability analysis should be performed to better assess the efficacy of the proposed approach 

in practice. Many uncertainties exist when detecting damage under real conditions. Excitations of 

real structures can be quite different from the simulated ones in numerical examples and 
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experiments. Environmental conditions (e.g. temperature, humidity contents, etc.) can change 

from time to time. Development of analytical model for real structures is certainly more difficult 

than modelling relatively simpler structures in laboratory. Therefore, modelling errors are 

inevitable. All these factors create uncertainties which affect the performance the proposed 

approach. Modeling these uncertainties and evaluating their effects on the performance of the 

proposed approach using numerical methods, e.g. Monte Carlo simulation, is certainly desired and 

very useful for better understanding this approach.  

 

6.2.3 Implementation of the two-phase approach on smart sensor networks 

In the field of structural health monitoring, sensors and sensor networks research and 

designing are attracting a keen attention. Embedding the damage identification algorithm into 

sensors or sensor networks is of great meaning.  

For the proposed time domain damage identification technique, it would be of advantage and 

convenience that the approach utilizes the acceleration directly. However, it would have some 

challenges for application of the second phase because at in this stage the structural model is 

needed. The simplification work will be needed to ensure the computational cost and time remain 

at a reasonable level. 

 

6.2.4 Performance-based SHM strategy using long-term monitoring data  

There are still many challenges in the field of SHM, especially in civil engineering. We can 

get the good results from simulation, and maybe we can also obtain good results from experiments. 

However how about the real structure, in which there are so many uncertainties? Just in one day, 

the signal measured from real structures can change much. And for many large structures, even 

through we can know there is damage in one of members, who cares if there is damage in only one 

of trusses? We already did much on modal analysis or system identification which is from the 

angle of structures. Are there any other angles we can get on SHM, like performance-based 

monitoring, just form the data themselves, considering there are already a lot of system installed 
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and huge long-term performance data are readily available? 

And what is the appropriate definition of damage? Of course crack is damage. Structural 

deterioration is damage. Can we also call the structure reliability change damage? Can we assure 

the structural reliability from the analysis of performance data to see the reliability reduction even 

through no apparent damage occurs so that it will be much easier to let people see the real 

meaning and real role of the SHM system? Therefore, there will be more apparent economic 

significance of the SHM field research and development. 
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