
 

SYSTEMS BIOLOGICAL APPROACHES FOR 
UNDERSTANDING SPORULATION MECHANISMS OF 

BACILLUS SUBTILIS 
 

A DISSERTATION 

SUBMITTED TO THE SCHOOL OF FUNDAMENTAL SCIENCE AND 

TECHNOLOGY OF KEIO UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

MINEO MOROHASHI 

2007 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Mineo Morohashi 2007 

All Rights Reserved 

 

 



 

 

 
ACKNOWLEDGMENTS 

First and foremost, I would like to thank my parents, to whom I dedicate this thesis, 

for bringing me up the way they did, and for having faith in the choices I have made. 

Without their support, I could not carry out this thesis project. I also really thank my 

brother Tomo, my sister Mari, and their family for their continuous support and help. 

I am fortunate to have had chance to carry out my project under the supervision of 

Prof. Kotaro Oka, and as a principal advisor of this thesis. His optimistic and 

encourage motivated me whenever I was struggling to proceed. Prof. Hiroshi 

Yanagawa, Prof. Yasubumi Sakakibara, Dr. Rintaro Saito also help me a lot with 

fruitful discussions and helpful suggestions, and critical reading on my thesis. 

I am most grateful to Prof. Yuichiro Anzai’s generosity, by which I could start 

working on systems biology field, while other lab members were working on robotics. 

Dr. Hiroaki Kitano, who invited me to the world of systems biology, is for sure one of 

fantastic scientists I have ever met. He generously offered me great working 

environment when I was working at ERATO Kitano Symbiotic Systems Project. He 

provided me invaluable support at every step along the way. In addition, his sense of 

design made me sensible to those areas as well. I thank Ms. Yukiko Matsuoka, Ms. 

Chie Ushiwata, Ms. Mine Shioiri, who have provided me relaxed time while working. 

I am greatly indebted to Dr. Yoshiaki Ohashi, a colleague in Human Metabolome 

Technologies. His visionary mind and attractive characters inspired me in many ways. 

His hard commit to work, yet attractive, made my paper accomplished in great 

manner.  

I would also like to thank co-authors of my paper; Dr. Hamid Bolouri, Prof. John 

Doyle, Dr. Mark Borisuk, Dr. Amanda Winn, Ms. Kaori Shimizu, Dr. Junji Abe, Prof. 

Hirotada Mori, Ms. Saeka Tani, Mr. Kotaro Ishii, Prof. Mitsuhiro Itaya, Dr. Hideaki 

Nanamiya, and Prof. Fujio Kawamura. 



 

 

Prof. Tomoyoshi Soga and Prof. Masaru Tomita provided me wonderful chance to 

work in a state-of-art field – metabolomics. While I work in Human Metabolome 

Technologies, their perspective and support helped me to go forward my project. 

Along this long, long, long thesis project (almost seven years), I have been supported 

by many friends and colleagues; Ms. Nanae Mimura, Drs. Akira Funahashi, Noriko 

Hiroi, Tomomi Kimura, Theo Sabisch, Mike Hucka, Koji Kyoda, Shugo Hamahashi, 

Hiroki Ueda, Yasushi Hiraoka, Ayumu Yamamoto, Ding Da-Qiao, Martin Robert, 

Richard Baran, Masahiro Sugimoto, and Prof. Masatoshi Hagiwara. Their intelligence 

and kind support broadened my outlook to continue my thesis project.  

My colleagues in Anzai Lab are also special to me; Drs. Sotaro Shimada, Nobuyuki 

Matsushita, Naohiko Kohtake, and Mr. Mitsuhiko Ohta. Sotaro was the only person 

who stayed in graduate school to get Ph.D., while all other members have left to get 

job. After few years, other two members have obtained their Ph.D. by chance – I am 

the next one following them. 

Many thanks are also due to people by whom I have been supported at Human 

Metabolome Technologies. Mr. Takamasa Ishikawa, Mr. Hitoshi Sagawa, Mr. Seira 

Nakamura, Ms. Gin Maeta, Mr. Kosaku Shinoda, Mr. Atsushi Nagashima, Mr. 

Hajime Sato, Ms. Yuki Ueno, Ms. Mutsuko Sato, Ms. Miho Ikeda, Mr. Yuji 

Sakakibara, Mr. Masatomo Hirabayashi, Ms. Sumiko Kumaki, Ms. Aya Shinoda, Mr. 

Akiyoshi Hirayama, Mr. Kazunori Sasaki, Ms. Jun Imoto, Mr. Hideaki Murakami, 

Drs. Yoshihiro Ohtaki, Haruyuki Ohkishi, and Shizuo Ao. 

 



 

 

PUBLICATIONS LIST 

 

• Morohashi, M., Ohashi, Y., Tani, S., Ishii, K., Itaya, M., Nanamiya, H., 

Kawamura, F., Tomita, M., and Soga, T.  

Model based definition of population heterogeneity and its effects on metabolism 

in sporulating Bacillus subtilis.  

J. Biochem. 2007. (In press) 

• Morohashi, M., Shimizu, K., Ohashi, Y., Abe, J., Mori, H., Tomita, M., and 

Soga, T.  

P-BOSS: A new filtering method for treasure hunting in metabolomics.  

J. Chromatography A. 2007. (In press) 

• Funahashi, A., Tanimura, N., Morohashi, M., and Kitano, H.  

CellDesigner: a process diagram editor for gene-regulatory and biochemical 

networks.  

BioSilico, 1:159-162, 2003. 

• Morohashi, M., Winn, A. E., Borisuk, M. T., Doyle, J., Bolouri, H., and 

Kitano, H.  

Robustness as a measure of plausibility in models of biochemical networks.  

J. Theor. Biol. 216:19-30, 2002. 



 

 

DEFINITIONS 

 

AIC Akaike’s Information Criterion 

ANOVA Analysis of variance 

ATP Adenosine 5’triphosphate 

AUTO A software tool for bifurcation analysis 

CE Capillary Electrophoresis 

CellDesigner A modeling tool for gene-regulatory and biochemical networks 

IE Intermediate enzyme 

Java An object oriented programming language 

JWS Java Web Start 

KEGG Kyoto Encyclopedia of Genes and Genomes 

MATLAB A software tool for numerical analysis 

MPF Maturation promoting factor 

MS Mass spectrometry 

ODE Ordinary differential equation 

PCA Principal component analysis 

PCR polymerase chain reaction 

P-BOSS Peak filter based on orphan survival strategy 

SBML Systems Biology Markup Language 

SBGN Systems Biology Graphical Notation 

SBW Systems Biology Workbench 

TOFMS Time-of-flight mass spectrometry 

UI User interface 

XML Extensible Markup Language 



 

 

 

TABLE OF CONTENTS 

List of Tables ..................................................................................................................... iii 

List of Figures .................................................................................................................... iv 

Introduction..........................................................................................................................1 

Structure.........................................................................................................................5 

Chapter 1: Systems Biology and computational approach ..................................................6 

Conclusion ...................................................................................................................15 

Chapter 2: CellDesigner: Development of Genetic/Biochemical Network Editor............16 

Introduction..................................................................................................................17 

Design principles .........................................................................................................17 

How does it work? .......................................................................................................26 

What distinguishes CellDesigner's technology from others currently available?........27 

Future work..................................................................................................................28 

Conclusion ...................................................................................................................30 

Chapter 3: Simulation Analysis of Cell Cycle Model of Xenopus ....................................31 

Introduction..................................................................................................................32 

Materials and methods .................................................................................................33 

Results..........................................................................................................................34 

Discussion and Conclusions ........................................................................................55 

Chapter 4: Development of Filtering Method for CE-MS based Metabolomics...............56 

Introduction..................................................................................................................57 

Materials and methods .................................................................................................58 

Results and discussion .................................................................................................60 

Conclusion ...................................................................................................................74 

Chapter 5: Metabolomics and Simulations upon Bacillus subtilis ....................................75 

Introduction..................................................................................................................76 

Molecular and biochemical features of sporulation in Bacillus subtilis ......................78 

Materials and methods .................................................................................................83 

Results and Discussion ................................................................................................86 



 

 

 
 

ii 
 
 

Conclusion .................................................................................................................106 

Chapter 6: Conclusion......................................................................................................107 

Summary of results ....................................................................................................108 

Development of analysis tools and methods........................................................108 

Application to biological models .........................................................................109 

Future directions ........................................................................................................110 

Issues in systems biology.....................................................................................110 

Systems biology in industries ..............................................................................111 

Final remarks .......................................................................................................113 

Bibliography ....................................................................................................................114 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

iii 
 
 

LIST OF TABLES 

Number Page 

Table 1: Identified standard compound peaks. ..................................................................68 

Table 2: Threshold values determined according to the max value of f(x). ......................69 

Table 3: Results between before and after applying P-BOSS ...........................................70 

Table 4: Matching ratio of peaks (orphan0 and orphan4 categories only) ........................71 

Table 5: Removal of ambiguous peaks adjacent to objective peaks..................................73 

Table 6: Parameter values used in this study. ....................................................................89 

Table 7: Bacterial strains used in this study.......................................................................95 

Table 8: Clustering of amino acids. .................................................................................105 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

iv 
 
 

LIST OF FIGURES 

Number Page 

Figure 1: Structure of this thesis. .........................................................................................4 

Figure 2: Hypothesis driven research in systems biology. ..................................................7 

Figure 3: A process diagram representation of MPF cycle................................................21 

Figure 4: Proposed set of symbols for representing biological networks..........................22 

Figure 5: Screenshot of CellDesigner. ...............................................................................23 

Figure 6: Schematic representation of two example behavior loci....................................38 

Figure 7: Schematic representation of major events in Xenopus eggs and embryos. ........41 

Figure 8: Schematic representations of two models of the Xenopus cell cycle. ................43 

Figure 9: Overview of the reduced, two-equation version of the 1991 model. .................44 

Figure 10: Two-parameter plots showing the regions in parameter space. .......................45 

Figure 11: The effect of k1 on the shape of the model behavior in parameter space. .......47 

Figure 12: Contour plot of the frequency of oscillations in the 1991 model. ....................48 

Figure 13: The effect of k1 on the size/shape of the regions in the 1998 model. ..............50 

Figure 14: Cleavage frequency contour plot......................................................................51 

Figure 15: Details of the additional reactions included in the 1998 model. ......................52 

Figure 16: The 1998 model optimized to give in vitro like oscillations............................53 

Figure 17: The 1998 model optimized to give in vivo like oscillations.............................54 

Figure 18: Schematic representation of basic strategy for biomarker search. ...................62 

Figure 19: Definition of "orphan" categories.....................................................................63 

Figure 20: Percentile rank of four parameters in CE-TOFMS signals. .............................64 

Figure 21: Schematic representation of filtering process with P-BOSS/AIC....................66 

Figure 22: Transition of f(x) according to each parameter. ...............................................69 

Figure 23: The morphological stages of sporulation. ........................................................79 

Figure 24: The sporulation cascade in Bacillus subtilis and selected clostridia. ...............82 

Figure 25: Schematic representation of the phosphorelay network in B. subtilis..............87 

Figure 26: Dependency of sporulation rate upon the feedback coefficients......................89 

Figure 27: Behavior of the sporulation-decision system upon simulation. .......................90 

Figure 28: Effects of phosphorelay-associated mutations at sporulation onset.................92 



 

 

 
 

v 
 
 

Figure 29: Effects of phosphorelay-associated mutations at sporulation onset.................94 

Figure 30: Growth curve of examined strains....................................................................98 

Figure 31: The metabolic state of sporulating B. subtilis. .................................................99 

Figure 32: Metabolic profiles of nucleotides. ..................................................................102 

Figure 33. Metabolic profiling of B. subtilis....................................................................104 

 



 

 

 
INTRODUCTION 

 

 

Science is organized knowledge. Wisdom is organized life. 

 — Immanuel Kant 

 

 

Recent biology is filled with complexity and flood of data. Since the discovery of 

molecular structure of DNA by Watson and Crick (Watson and Crick 1953), 

molecular biology has emerged as a methodology to understand biological systems 

from molecular viewpoint. Those approaches have enabled us to manipulate 

molecules in a way we would like to retrieve information out of them. Such 

approaches aimed primarily to know functions of each component (e.g., genes or 

proteins), and thus could have broaden our outlook in each. Their ‘reductionist’ 

approach is significant in listing all the parts of cells with detail function. 

With the appearance of powerful computer processors and extensive data describing 

the mechanistic details of biological systems, there has been a shift toward 

‘integrated’ approach – the focus is on understanding structure and dynamics (Kitano 

2002). Besides, the advent of data-processing enabled high throughput data analyses, 

which resulted in completion of human genome sequence in 2001 (Venter et al. 2001). 

While those accomplishments are just a beginning toward system-level understanding 

of life, they are definitely significant milestones as a first step from systems biology 

perspectives. 
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What is next then? 

Now that genomes over 500 species have already sequenced (e.g., human, mouse, 

Drosophila, E. coli, and B. subtilis), other -ome technologies have emerged. The 

primary fields of them are transcriptomics, proteomics, and metabolomics. 

Transcriptome is complement of mRNAs transcribed from genome, and 

transcriptomics refers to the study of the transcriptome using technologies of large-

scale generation of mRNA expression profiles (Velculescu et al. 1997). Likewise, 

proteomics refers to the study of proteome (collection of proteins in the cells), and 

metabolomics to the study of metabolome (collection of metabolites in the cells (Soga 

et al. 2003; Morohashi et al. 2007)). 

On one hand, systems biology is to infer knowledge from those various types of 

omics technologies, as mentioned above, which is literally ‘integrated’ approach – 

here we refer as “bottom up” approach. On the other hand, there is an utterly different 

approach, which we call as “top down” approach. The problems in biology are 

exacerbated by an increase in information complexity – no longer can systems be 

represented as isolated linear or hierarchical structures, instead we find complex 

interrelationships. Computer simulations can be used to study such systems, with the 

result that proposed models and hypothesis can be either validated or rejected. These 

methods can also complement experimental investigation, by testing experimentally 

measured data and highlighting future strategies of research. Although they 

complement each other, the top-down approach tends to focus on specific phenomena 

to understand mechanisms behind them. From the perspective, omics data is not 

necessary, yet only fraction of them is sufficient. 

As mentioned above (see detail in next chapter as well), systems biology is diverse 

discipline, and one can take thousands of methodologies depending on what she/he 

would like to look into. As a common and significant fact, any approaches need to 

comprehensively utilize cutting edge measurement technologies and software 

infrastructure. Those technologies should be appropriately developed and well 

established, and also should be well linked toward efficient analyses thereafter. Such 
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efforts have been already underway in the world. One of them is Alliance for Cellular 

Signaling (AfCS, http://afcs.org), which is aiming at making large-scale 

measurements with the ultimate goal of creating an in-depth simulation model of cells. 

Although we could now obtain large-scale and wide spectrum of data, we are still 

missing huge amount of components in analysis platform. We thus started to ask 

ourselves following three questions: 

1. Can we perform more efficient analyses than before? 

• In order to facilitate systems biology research, various techniques must be 

employed, thus involving large amount of individual processing. We may 

need to convert data each time we proceed to next analyses manually. Such 

obstacles annoy ones to proceed in fast and cost effective manner, and also 

causing to speed down of research itself. We must keep in mind that any 

development should contribute to efficiency in research. 

2. Can we obtain in-depth understanding of biological systems by employing both 

top-down and bottom-up approach? 

• As mentioned above, both approaches should be well linked to investigate 

biological systems. Those approaches will be seamlessly combined in future 

along systems biology research cycle (see next chapter), but we would like to 

know first that what is the outcome by employing both approach. 

3. Can we apply our methods/tools to real cases? 

• Development of various tools/methods will speed up and facilitate our 

research, but at the same time we need to take care of its wide applicability to 

real cases. One of our aims is to provide the outcome to real cases as a 

“useful” one.  
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Those questions are simple, yet important starting point for examining systems 

biology research. To answer the questions, we undergo two steps of research: 

1. To develop analysis platform 

2. To utilize the platform upon test cases 

Step 1 could enable us to evaluate question 1, whereas step 2 to evaluate questions 2 

and 3. By taking on developing part of systems biology cycle, we believe that we 

could contribute to further analyses on systems biology field. Ultimately, using 

sporulation in B. subtilis as a case, our aim is to understand the basis for the bistable 

mechanisms utilizing above methods. Figure 1 illustrates the structure of this thesis. 

 

 

 

 

 

 

 

 

 

Figure 1: Structure of this thesis. 
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STRUCTURE  

 

This thesis consists of 6 chapters detailing my work. It begins with an introductory 

chapter that describes the motivation of research together with background 

information on systems biology and, in particular, simulation and metabolomics 

approach. Chapter 2 focuses to the development of modeling platform, which we call 

“CellDesigner.” Chapter 3 attempts to examine simulation analysis by comparing two 

models of Xenopus using robustness as its plausibility measure. Chapter 4 shifts our 

focus to bottom-up approach, and describes how metabolome data processing method 

is developed for CE-MS based data. Chapter 5 applies above methods to examine 

mechanisms of sporulation in B. subtilis, and combines omics and model driven 

approach together. Chapter 6 summarizes the results of the work in previous chapters, 

and presents a vision for future research in systems biology field. 



 

 

 
CHAPTER 1: SYSTEMS BIOLOGY AND COMPUTATIONAL APPROACH 

 

 

The most incomprehensible thing about the world is that it is at all 

comprehensible. 

— Albert Einstein 

 

Systems biology is defined as an approach to elucidate biological systems, such as 

cells, for “system-level” understanding (Kitano 2002, 2002; Hood et al. 2004). 

Progress in molecular and cell biology has led to the identification of complex 

biochemical networks involved in the normal functioning of cells, tissues and organs 

and even defects associated with many diseases. While those provide a complete list 

of factors, a building block, and relationship among each other, it is not enough to 

understand the system. Building them all together may lead to unexpected phenomena, 

because of its system characterstics – this cannot be identified by only knowing 

function of each factor. For instance, system may possibly cause to catastrophic status 

upon prescription of drug, which is because complete dynamics/kinetics of system is 

not understood. Those side effects are critical particularly in medical/pharmaceutical 

field, and thus we must examine how the individual components dynamically interact, 

and predict their outcome. Here comes the systems biology approach. 
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Figure 2 illustrates the basic research cycle of systems biology, proposed by Kitano 

(Kitano 2002). Although the cycle resembles that of other science field, even of 

biology, it is different in a way that comprises both “dry (computational)” and “wet 

(experimental)” experiments. It is apparent that wide spectrum of technologies is 

necessary to efficiently conduct the research cycle. We believe following three 

technologies are inevitable to go for the work: 

• Experimental technologies 

• Analysis technologies 

• Computer technologies 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Hypothesis driven research in systems biology. 

The image is altered from (Kitano 2002).  
 
Here we will review each technology and discuss what is needed for further research. 

Biological 
knowledge and
contradictory 
issues 

Data- and 
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driven 
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System analysis
and theory 
formation 

Predictions

Experiment 
design and 
experimental 
device 
development 

“Wet” experiments 

Experiment 
data analysis 
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EXPERIMENTAL TECHNOLOGIES 

 

Since the discovery of DNA structure by Watson and Crick (Watson and Crick 1953), 

following decades have been evolution of molecular biology field. Based on 

reductionism (original idea has been proposed by Dekart, a philosopher), cells were 

investigated by decomposing into fundamental components, particularly genes. One 

of traditional methods is to delete each component, and see phenotype of the mutants, 

comparing with wild type. Baba and colleagues have constructed whole knockout 

mutants of E. coli (Baba 2006), which could allow us to investigate the functions of 

components, and mechanisms of intra-cellular networks in detail. This method is 

plausible to construct, yet phenotype must be distinctly different from that of wild 

type. Silent mutations, DNA mutations that do not result in a change to the amino acid 

sequence of a protein, are representative phenomena.  

After a half century of evolutionary progress in molecular biology, counterpart 

approach has appeared – holism. While approach of reductionism is aimed to 

investigate functions of parts of a system (a cell, in this context), holism is aimed to 

perform comprehensive analysis of intracellular components, or mathematical 

analysis to overview the mechanisms as a whole. One of the landmark projects is 

human genome project (Venter et al. 2001). This project has completed sequencing of 

human genome in few years, revealing 22,000 genes, which opened a gate to perform 

“omics” analysis in biological and medical fields. Currently genomes have been 

sequenced in more than 100 organisms. In addition to the genome, other -ome 

technologies have also emerged since then, e.g., transcriptome (mRNAs), proteome 

(proteins), and metabolome (metabolites).  

One of the big differences between approach of reductionism and holism (omics 

analysis) is that former approach is hypothesis driven, while the latter approach is data 

driven. Similar to the cycle shown in Figure 2, analysis starts from biological 

knowledge, or observation of phenomena. Hypotheses are proposed based on the facts, 

and experiments are designed to verify the hypotheses. Analyses are performed, from 
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which hypotheses are either accepted/rejected. In case they are rejected, the data are 

accumulated as a feedback to design next experiments. New hypotheses are then 

proposed again, and research cycles are repeated until hypotheses are accepted. On 

the other hand, omics approach starts from measurement of data. Since omics data are 

quite large scale, ranging in order of thousands to ten thousands, data analysis is 

essential part in the analysis. Detail analysis will give an idea of hypothesis, from 

which additional experiments are designed. The rest of the cycles will be similar to 

those of former one. The key idea of omics approach is to overview the data from 

macro viewpoint. Without the data, appropriate hypotheses cannot be proposed, from 

micro viewpoint, unless many facts are accumulated upon certain targets. Recently, 

Ishii and colleagues have carried out variable omics analysis, which, in turn, were 

then combined, revealing robustness of E. coli in broad sense (Ishii et al. 2007). This 

kind of omics technologies must be taken carefully, because it contains massive data, 

and thus could easily lead to misunderstanding of the results (as an example, see 

Chapter 5). 

 

ANALYSIS TECHNOLOGIES 

 

Systems biology is tightly coupled with mathematical analyses. In order to elucidate 

the complex mechanisms of cells, various computational and mathematical analyses 

are indispensable. In particular, control theory is expected to boost revealing 

fundamental mechanism of intracellular dynamics (Kitano 2004). There are lots of 

feedback loops exist in cellular networks, which seem to control stability of a 

biological system – in other words, robustness or homeostasis. Employing idea of 

control theory from engineering field, a number of applications have been 

investigated (Barkai and Leibler 1997; Becskei and Serrano 2000; Yi et al. 2000; 

Csete and Doyle 2002; El-Samad et al. 2005). 
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Bifurcation analysis is another tool to investigate the dynamics of a system in detail. 

Because of an intertwined network, complicated dynamics could emerge in most 

cases. Bifurcation analysis enables us to unravel the complication by decomposing 

huge parameter space to small spaces. Borisuk and colleagues have performed a detail 

investigation on Xenopus cell cycle model (Borisuk 1997; Borisuk and Tyson 1998), 

from which we extended the analysis to the comparison of two cell cycle models (this 

thesis). It only allows to perturb limited number of parameters at the same time 

(generally two at most), yet still useful to figure out the system dynamics. Sensitivity 

analysis might be another tool to be used for similar purpose (for example see (Ma 

and Iglesias 2002)). 

Other than applying control theory to biological systems, which is focusing on 

dynamics aspect of the systems, topological analysis of networks have been well 

investigated. A scale-free network is a representative term describing tendency of 

topology in the Web, which was initially proposed by Barabasi (Barabasi and Albert 

1999). In their study, some network nodes had many more connections than the 

average – Barabasi and colleagues called such highly connected nodes "hubs." In 

physics, such right-skewed or heavy-tailed distributions often have the form of a 

power law, i.e., the probability P(k) that a node in the network connects with k other 

nodes was roughly proportional to k−γ, and this function gave a roughly good fit to 

their observed data. The idea has then been applied to intracellular networks, such as 

metabolic pathways (Jeong et al. 2000; Barabasi and Oltvai 2004). The works have 

been extensively investigated, some of which can be found in (Tanaka et al. 2005; 

Tanaka et al. 2005). The application to metabolic pathways, however, should be 

treated carefully, because definition of network connectivity could easily alter the 

results and explanation (Arita 2004, 2005). 
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COMPUTATIONAL TECHNOLOGIES 

 

Computer science plays a fundamental role in various aspects of systems biology 

research. It has wide spectrum of application area, from modeling to simulations, 

reverse engineering, visualization, parameter optimization, and database development.  

Processing of computational/mathematical analyses needs extensive computing power. 

Development of high performance computing is thus necessary to proceed the 

systems biology research. Parallel computing such as “grid computing” is a solution 

to provide large-scale number of PCs to exhibit extraordinary performance.  

• Folding@home (http://folding.stanford.edu) 

• SETI@home (http://setiathome.berkeley.edu)  

Above two are the examples, in which more than 1 million PCs join the project in 

former one. Other than that, ordinary super computers (e.g., Blue Gene in IBM) may 

play a significant role in extensive data processing. 

Modeling and simulations are one of the hot topics in systems biology research. While 

those activities have been up for more than a decade, recent advances in development 

of software technologies and platform allow us to work in the field more extensively. 

An example is development of model exchange format, as represented by Systems 

Biology Markup Language (SBML, http://sbml.org) (Hucka et al. 2003), or BioPAX 

(http://biopax.org). Those formats have been designed to exchange computer models 

among various type of software tools, including simulators, databases. There are two 

possible approaches to develop software tools; one for integrating all functions and 

capabilities to handle by itself, and the other for communicating among various tools. 

The formats are for the latter purpose, and the approach seems to work well so far, 

being supported by over 100 tools. A reason why the former approach is not common 

(or even popular) is that there are still yet to overcome various issues, such as 

establishment of modeling theory for intracellular networks. While many attempts 
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have accomplished great results, which have also been verified experimentally, it can 

be applied to small range of areas, and still difficult to establish general theories (such 

as establishing theory of dynamics of gene expression). Without establishing those 

theories, various tactics or methodology must be tried – it would then be feasible to 

have a huge software platform which has all possible functions to handle data, and to 

perform simulations and various analyses. 

Note that although simulations have been employed in many biological studies 

recently, they do not hold the all answers. Often, when a complex system is simulated, 

the results are equally difficult to interpret, depending on what question we are trying 

to answer. We may be able to demonstrate that a given model reproduces the 

experimentally observed behavior, but we may not understand why – in other word, 

what features of the model are responsible for the behavior of the system. For this 

reason, conventional methods of mathematical analysis may, at times, be more 

appropriate. 

The term “reverse engineering” is the process of discovering the technological 

principles of a device or object or system through analysis of its structure, function 

and operation. It often involves taking something (e.g., a mechanical device, an 

electronic component, a software program) apart and analyzing its workings in detail, 

usually to try to make a new device or program that does the same thing without 

copying anything from the original. Employing the idea, biological systems are 

needed to be reverse engineered so that each unit (or module in other words) is to be 

investigated. At least unless relationship of wiring information being obtained, no 

further analysis can be carried out –input/output information only can tell nothing, but 

a just black box of the system. This approach can be readily applied to omics-based 

data, because omics data exhibit one aspect of a system in comprehensive manner. 

Since its progress in DNA chip, or microarray technologies (known as 

transcriptomics), there have been vast demand on reverse engineering. While there are 

primarily two type of data, time-series data, or steady-state data, some approaches can 

be found in following paper (Liang et al. 1998; Morohashi and Kitano 1999; Ideker et 

al. 2000; Kyoda et al. 2000; Kyoda et al. 2004).  
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It is indispensable to have sophisticated database for searching information on 

specific species (e.g., genes, proteins, and metabolites). Depending upon type of 

species and organisms, there are large numbers of database publicly available, some 

of which are as follows: 

• The GDB Human Genome Database (http://www.gdb.org) 

• Saccharomyces Genome Database (http://www.yeastgenome.org) 

• Human Protein Reference Database (http://www.hprd.org) 

• Reactome (http://www.reactome.org, reaction database) 

• Brenda (http://www.brenda.uni-koeln.de, enzyme database) 

• PubChem (http://pubchem.ncbi.nlm.nih.gov, small molecules database) 

• KEGG (http://www.genome.jp/kegg) 

• BioCyc (http://www.biocyc.org) 

Yet, those databases are not fully curated, because of lack of data, or lack of coverage. 

KEGG, one of most comprehensive database in the world, has advantages in covering 

various type of information, from genes to metabolites to proteins, but still lacking in 

data – only half of metabolites have been assigned for E. coli (Ohashi, personal 

communication). 

Bio-IT companies are interested in providing more sophisticated and more curated 

database. To cite some of them, 

• MetaCyc (GeneGo, http://www.genego.com) 

• Ingenuity Pathway Analysis (Ingenuity Systems, http://www.ingenuity.com) 

• PathArt (Jubilant Biosys, http://www.jubilantbiosys.com) 

• PathwayStudio (Ariadne Genomics, http://www.ariadnegenomics.com) 
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The former 3 products are based on manually curated database, while the latter one 

employs machine learning based text mining approach to gather publication 

information. They have advantages in terms of providing valuable information, and 

way to extract information out of database (for example, combining pathway 

information or experimental data into database, so that more broad view of 

intracellular mechanisms can be obtained).  

 

APPLICATIONS OF SYSTEMS BIOLOGY 

 
What would be the applications in systems biology? A big impact would be to 

contribute in medical and pharmaceutical field (Kitano 2007). While genome-based 

drug discovery has been paid huge attention as a next generation in pharmaceutical 

field, no other approaches seem to have been employed successfully so far. This could 

be because systems biology approach is still a new approach, and takes time to be 

validated in the field (one pipeline takes over ten years in average). The other reason 

might be that the field is still too immature to be applied to those fields, although 

some omics approach have for sure been applied already. Some of industrial activities 

are introduced in final chapter.  

More feasible applications are for basic and fundamental research field. As Kitano 

proposed in (Kitano 2002), there are diverse fields to aggregate, most of which are 

still in mature. This is more like interdisciplinary field, and needs wide variety of 

knowledge and technologies to put in, not only biology (such as molecular biology, 

genetics, cell biology), but also computer science, mathematics, physics, chemistry, 

and engineering. To be able to advance systems biology research, each field must be 

well established to successfully apply to systems biology field. Although this may 

take enormously long time to establish, it should allow us to investigate in much more 

fast and accurate manner, leading to principle of biological systems – ultimately to 

control them. 
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CONCLUSION 

 

We have introduced various technologies and methodologies, as a part of systems 

biology research. While there are huge efforts being performed, we are still underway 

to fully utilize or establish methodology of systems biology. As each individual 

relevant technology advances, we believe to be able to perform comprehensive 

analysis and application toward various fields, such as medical and pharmaceutical 

fields. Our work should be a big step for the systems biology approach from both 

computational and analytical viewpoint. 



 

 

 
CHAPTER 2: CELLDESIGNER: DEVELOPMENT OF GENETIC/BIOCHEMICAL 

NETWORK EDITOR 

 

 

If you want to understand life, 

 don’t think about vibrant, throbbing gels and oozes,  

think about information technology. 

— Richard Dawkins 

 

 

Understanding of logic and dynamics of gene-regulatory and biochemical networks is 

a major challenge of systems biology. To facilitate this research topic, we developed 

CellDesigner, a modeling tool of gene-regulatory and biochemical networks. 

CellDesigner supports users to easily create such networks using solidly defined and 

comprehensive graphical representation (SBGN: Systems Biology Graphical 

Notation). CellDesigner is SBML compliant, and SBW-enabled software so that it 

could import/export SBML described documents, and could integrate with other 

SBW-enabled simulation/analysis software packages. CellDesigner is implemented in 

Java, thus it runs on various platforms such as Windows, Linux, and MacOS X.  
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INTRODUCTION 

 

While software infrastructure is one of the most crucial components of systems 

biology research, there has been no common infrastructure or standard to enable 

integration of computational resources. To solve this problem, the Systems Biology 

Markup Language (SBML, http://sbml.org) (Hucka et al. 2003) and the Systems 

Biology Workbench (SBW, http://sbw.kgi.edu) have been developed (Sauro et al. 

2003). SBML is an open, XML-based format for representing biochemical reaction 

networks, and SBW is a modular, broker-based, message-passing framework for 

simplified intercommunication between applications. More than 110 (as of Jan 2007) 

simulation and analysis software packages already support SBML, or are in the 

process to support them. 

 

Identification of logic and dynamics of gene-regulatory and biochemical networks is a 

major challenge of systems biology. We believe that the standardized technologies, 

such as SBML, SBW and SBGN, play an important role in the software platform of 

systems biology. As one such approach, we have developed CellDesigner (Funahashi 

et al. 2003), a process diagram editor for gene-regulatory and biochemical networks. 

 

DESIGN PRINCIPLES 

 

Broadly classified, CellDesigner was designed according to following requirements: 

 

・ Representation of biochemical semantics 

・ Detailed description of state transition of proteins 
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・ SBML compliant (SBML Level-1 and Level-2) 

・ Integration with SBW-enabled simulation/analysis modules 

・ Extreme portability as a Java application 

 

Our aim in developing CellDesigner is to supply a process diagram editor with the 

standardized technology (SBML in this case) for every computing platform, so that it 

could confer benefits as many users as possible. By using the standardized technology, 

the model could be easily used with other applications, thereby reducing the cost to 

create a specific model from scratch. The main standardized features that 

CellDesigner supports could be summarized as "graphical notation", "model 

description", and "application integration environment." The standard for graphical 

notation plays an important role for efficient and accurate dissemination of knowledge 

(Kitano et al. 2005), and the standard for model description will enhance the 

portability of models between software tools. Similarly, the standard for application 

integration environment will help software developers to provide the ability for their 

applications to communicate with other tools. 

 

SYMBOLS AND EXPRESSIONS 

 

CellDesigner supports graphical notation and listing of symbols based on a proposal 

by Kitano and colleagues (Kitano et al. 2005). The definition of graphical notation has 

now been developed as international community based activities called ‘Systems 

Biology Graphical Notation (SBGN, http://sbgn.org). Although several graphical 

notation systems have been already proposed (Pirson et al. 2000; Cook et al. 2001; 

Kohn 2001; Maimon and Browing 2001; Kohn et al. 2006), each has obstacles to 

become a standard. SBGN is proposed for biological networks designed to express 
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sufficient information in clearly visible and unambiguous way (Kitano et al. 2005). 

We expect that these features will become part of the standardized technology for 

systems biology. The key components of SBGN, which we propose, are as follows: 

 

1. To allow representation of diverse biological objects and interactions 

2. To be semantically and visually unambiguous 

3. To be able to incorporate notations 

4. To allow software tools to convert a graphically represented model into 

mathematical formulas for analysis and simulation 

5. To have software support to draw diagrams 

6. The notation scheme to be freely available 

 

To accomplish above requirements for the notation, Kitano (Kitano et al. 2005) firstly 

decided to define a notation by using process diagram, which graphically represents 

state transitions of the molecules involved. In the process diagram representation, 

each node represents state of molecule and complex, and each arrow represents state 

transition among states of a molecule. In the conventional entity-relationship 

diagrams, arrow generally means “activation” of the molecule. However, it confuses 

semantic of the diagram as well as limiting possible molecular processes that could be 

represented. Process diagram is more intuitively understandable definition than the 

entity-relationship diagram – one of the reasons is that the process diagram could be 

explicitly represented as a temporal sequence of events which entity-relationship 

cannot. For example, a process of MPF factor activation in cell cycle, kinase such as 

Wee1 phosphorylates residues of Cdc2 that is one of the components of MPF (Figure 

3: A process diagram representation of MPF cycle.). However, MPF is not yet 

activated by this phosphorylation. If we use an arrow for activation, we cannot 

properly represent the case. In the process diagram, on the other hand, whether a 
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molecule is “active” or not is represented as a state of the node, instead of “arrow” 

symbol for activation. Promoting and inhibition of catalysis are represented as a 

modifier of state transition using a circle-headed line and a bar-headed line, 

respectively.  

 

While process diagram is suitable for representing temporal sequence, either process 

diagram or entity-relationship approach could be used, depending upon the purpose of 

the diagram. Both notations could actually maintain compatible information internally, 

but differ in visualization (Kitano et al. 2005). We propose, as a basis of SBGN, a set 

of notation that enhances the formality and richness of the information represented. 

The symbols used to represent molecules and interactions are shown in Figure 4. 

 

The goal of SBGN is to define a comprehensive system of notation for visually 

describing biological networks and processes, thereby contributing to the eventual 

formation of a standard notation. For such a graphical notation to be practical and to 

be accepted by the community, it is essential that software tools and data resources to 

be made available. Even if the proposed notation system satisfies the requirements of 

biologists, lack of software support will drastically decrease its advantages. 

CellDesigner currently supports most of the process diagram notation proposed, and 

will fully implement the notation in the near future. 
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Figure 3: A process diagram representation of MPF cycle. 
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Figure 4: Proposed set of symbols for representing biological networks. 
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Figure 5: Screenshot of CellDesigner.  

Main panel includes various panes, such as species list (left-sided), pathway (center), 
block diagram (Cdc2 in this case), and notes (right-sided).  

 

SBML COMPLIANT 

 

CellDesigner is an SBML-compliant application – it supports SBML reading and 

writing capabilities.  SBML is a tool-neutral, computer-readable format for 

representing models of biochemical reaction networks, applicable to metabolic 

networks, cell-signaling pathways, gene regulatory networks, and other modeling 

problems in systems biology. SBML is based on XML (eXtensible Markup 
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Language), a simple, flexible text format for exchanging a wide variety of data. The 

initial version of the specification was released on March 2001 as SBML Level-1. The 

most recent released version of SBML is Level-2 Version 2. Currently, SBML is 

supported by over 110 software systems and widely used. CellDesigner uses SBML 

as its native model description language, and thus once a user create a model by 

CellDesigner, all information inside the model will be stored in SBML and the model 

could be used by other software systems without any conversion of the model. As 

mentioned, CellDesigner draws a pathway with its specialized graphical notation. 

Since such layout information has not been supported by SBML, CellDesigner stores 

its layout information under “annotation” tag, which does not conflict with current 

SBML specification. There is a working group of layout extension for SBML, and 

will be incorporated to SBML Level-3. We are currently underway to implement a 

conversion module to export SBML layout extension from CellDesigner. 

CellDesigner has an auto layout function so that it could read all SBML Level-1 and 

Level-2 documents whether the model contains layout information or not. By using 

this function, users could use existing SBML models such as KEGG, BioModels 

database, and so forth. We have converted more than 12,000 metabolic pathways of 

KEGG to SBML (the pathways are available from http://systems-biology.org/). Other 

SBML models are available from the BioModels Database 

(http://www.ebi.ac.uk/biomodels/). We could also use our own SBML models created 

by CellDesigner on other SBML compliant applications (http://systems-

biology.org/001/). 
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SUPPORTED ENVIRONMENT 

 

CellDesigner is implemented in Java, and could run on many platforms that support 

JRE (Java Runtime Environment).  Currently CellDesigner runs on the following 

platforms: 

 

・ Windows (98SE or later) 

・ MacOS X (10.3 or later) 

・ Linux (Fedora Core 4 or later) 

 

The current version of CellDesigner requires JRE1.4.2 or higher, and X Window 

System for UNIX platforms. 

 

EXPORTING CAPABILITY 

 

Since CellDesigner is supposed to be a “design tool” for representing gene regulatory 

and biochemical networks, the pathways described by CellDesigner should be easily 

used in various situations. CellDesigner could thus export the pathways in various 

formats – currently in JPEG, PNG and SVG format. 
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HOW DOES IT WORK? 

 

Building models with CellDesigner is quite straightforward. To create a model, the 

user selects "New" from "File" menu, inputs the name of an SBML document – a new 

canvas will then appear. The user could then place a species, such as a protein, gene, 

RNA, ion, simple molecule and so forth. A new window will appear asking the name 

of the species. The size of each species could be changed by clicking and dragging the 

corner of species. The user could also define the default size of each species from 

"Show Palette option" from the “Window” menu. Species could be moved by 

dragging and dropping 

 

To draw reactions, a type of reaction should first be selected from the UI buttons, and 

a reactant species then clicked, followed by a product species. To add more reactants, 

the user could select "Add reactant" button, and then choose species and reaction.  

 

As mentioned above briefly, the modeling process with CellDesigner is 

straightforward steps, which should not cause users any confusion. 

 

CellDesigner could also represent common types of reactions, such as catalysis, 

inhibition activation and so forth. The procedure for representing such reactions is just 

as same as adding reactants or products to an existing reaction; that is, to select a 

species (modifier), followed by a reaction. The user could also easily edit the symbols 

for proteins with modification residues, and hence, could describe detailed state 

transitions between species of an identical protein by adding different modifications. 
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The models are stored in an SBML document, which contains all the necessary 

information referring to species, reactions, modifiers, layout information (geometry), 

state transitions of proteins, modification residues and so forth. These SBML models 

could be used on other SBML-compliant applications. 

 

If users want to run simulation based on the SBML model, select Simulation menu, 

which, in turn, calls SBML ODE Solver directly. The Control Panel appears, enabling 

users to specify the details of parameters, to change amount of specific species, to 

conduct parameter search, and to run simulation interactively. To conduct time 

evolving simulation, users may need to know basics of the SBML specification (See 

http://sbml.org for detail).  

 

If users select SBW menu, on the other hand, CellDesigner passes the SBML data to 

the SBML compliant tools via SBW, while you need to set up SBW before you 

invoke SBW connection. 

 

WHAT DISTINGUISHES CELLDESIGNER'S TECHNOLOGY FROM OTHERS 

CURRENTLY AVAILABLE?  

 

Currently, many other applications exist that include pathway design features. The 

advantages of CellDesigner over other pathway design tools could be summarized as 

follows: 

 

• Based on standard technology (i.e., SBML compliant and SBW enabled), 

• Supports clearly expressive and unambiguous graphical notation systems (SBGN), 

which is aimed at contributing to eventual standard formation 
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• Runs on many platforms (e.g., Windows, MacOS X, Linux) 

 

As described above, the aim of the development of CellDesigner is to supply a 

process diagram editor with standardized technology for every computing platform, 

so that it will benefit as many biological researchers as possible. For instance, tools 

such as E-Cell (Tomita et al. 1999) is SBML-compliant, and tools such as Cytoscape 

(Shannon et al. 2003) runs on multiple platforms 

These tools are powerful in some aspects and they are not intended to support the 

features as CellDesigner. Some of them have the facility to create pathways, and some 

also include a simulation engine or database integration module. CellDesigner does 

include a simulation engine provided by SBML ODE Solver development team, and 

also it could connect to other SBW-enabled applications so that user could switch the 

simulation engine on the fly. Furthermore, we have been converting existing 

databases to SBML (e.g., KEGG), and all SBML-compliant applications could easily 

be browsed, edit the models, and even simulate via CellDesigner. 

 

The overriding advantage of CellDesigner is that it uses open and standard 

technologies. The models created by CellDesigner could be used on many other (over 

110) SBML compliant applications and its graphical notation system will make the 

representation of models in more efficient and accurate manner. 

 

FUTURE WORK 

 

In future release of CellDesigner, we plan to implement further capabilities. 

Improvement of auto layout function is a big issue – the bigger (e.g. > few hundreds 

of nodes) the network diagram becomes, the slower the performance of CellDesigner 
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becomes, which causes our current version not to align each nodes and edges quite 

well. Integration with other modules is also underway, such as other simulation, 

analysis and database modules. Current version of CellDesigner has been 

implemented as a Java application, while we are developing a JWS (Java Web Start) 

version of CellDesigner so that it could be used as a web-based application as well. 

 

To be widely used from biologists to theorists, we believe that it is essential to meet 

the standard. We are thus actively working as SBML and SBGN working group 

members, which aims to establish de facto standards in systems biology field – former 

one seems to have already become de facto as model description language. SBML 

Level-3 (next version) will include layout extension, and we will incorporate the 

functions in our new release of CellDesigner. BioPAX (http://ww.biopax.org) is 

another big activity, which tries to connect widely distributed data resources 

seamlessly. We also plan to connect CellDesigner with BioPAX data format so that 

users could use CellDesigner from BioPAX platform and vice versa. 

 

From software development perspectives, providing API, plug-in interface or open 

source strategy might be a solution to speed up the development, and enable users to 

customize the software depending on users needs. While we have been providing 

binary program of CellDesigner so far, we are now working to extend our 

development scheme in such manner. 

 

We wish CellDesigner to be used by anyone who is working on biology-related field. 

As described throughout this manuscript, CellDesigner is designed to be user-friendly 

as much as possible, thus allowing users to draw pathway diagrams quite easily as 

drawing with other drawing tools, such as Microsoft Visio, or Adobe Illustrator. Since 

our proposed notation itself is rigidly defined, the diagrams could be used for 
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presentation or even for knowledge base – the diagrams could be used as figures in 

manuscript, or pathway representation of databases. Since definition of the pathway 

diagram notation is now getting much attention, which has now resulted to form an 

SBGN working group (http://sbgn.org), we hope the notation will be much refined as 

a de facto standard representation, which will be reflected in the representation 

manner of CellDesigner as well.  

 

Our concept for developing CellDesigner is "easy to create a model, to run simulation 

and to use analysis tools." This will be achieved by extending the development of 

corresponding native libraries or SBW-enabled modules. Improvement of the 

graphical-user interface is also required, including the mathematical equation editor, 

so that the user could easily write equations by selecting and dragging a species. 

 

CONCLUSION 

 

We introduced CellDesigner, a process diagram editor for gene-regulatory and 

biochemical networks based on standardized technologies and with wide 

transportability to other SBML-compliant applications and SBW-enabled modules. 

Since first release of CellDesigner, 12,000 downloads has been already accomplished. 

CellDesigner also aims to support standard graphical notation. Since the 

standardization process is still underway, our technologies are still changing and 

evolving. As we are in partnership with SBML, SBW, and SBGN working groups, we 

will go through with these standardization projects and hence improve the quality of 

CellDesigner.  
  



 

 

 
CHAPTER 3: SIMULATION ANALYSIS OF CELL CYCLE MODEL OF 

XENOPUS 

 

 

 

 

Only those who dare to fail greatly can ever achieve greatly. 

—  John F. Kennedy 

 

 

 

 

 

 

 

Theory, experiment, and observation suggest that biochemical networks which are 

conserved across species are robust to variations in concentrations and kinetic 

parameters. Here, we exploit this expectation to propose an approach to model 

building and selection. We represent a model as a mapping from parameter space to 

behavior space, and utilize bifurcation analysis to study the robustness of each region 

of steady-state behavior to parameter variations. The hypothesis that potential errors 

in models will result in parameter sensitivities is tested by analysis of two models of 

the biochemical oscillator underlying the Xenopus cell cycle. Our analysis 

successfully identifies known weaknesses in the older model and suggests areas for 

further investigation in the more recent, more plausible model. It also correctly 

highlights why the more recent model is more plausible. 
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INTRODUCTION 

 

In recent years, a series of landmark papers have reported the existence of robust 

behaviors in a variety of biochemical networks (Alon et al. 1999; von Dassow et al. 

2000; Yi et al. 2000). Indeed, robustness in metabolism (Fell 1997), the cell cycle 

(Borisuk and Tyson 1998), and inter-cellular signaling (Freeman 2000) is now widely 

accepted. Of course, nothing can be robust to absolutely all variations. Some 

variations may not matter in terms of the functionality of the system in question. For 

example, the process that specifies the geometric relationship between hair follicles 

on human heads need not be very exact or robust. Nor is there any guarantee that all 

biological systems are necessarily optimally organized. A well-known example of this 

is the apparently inverted layered structure of the human retina. In this paper, we are 

interested in robustness to variations in kinetic parameters. That biochemical 

networks will exhibit robustness to variations in their kinetic parameters was 

theoretically predicted long ago (Savageau et al. 1972; Kacser and Burns 1973). 

However, these issues have recently received more widespread attention (Hartwell et 

al. 1999; Dearden and Akam 2000) due to the growing need to understand the large 

volumes of data produced by the emerging biotechnologies.  

 

While we tend to think primarily of functionally distinct cellular processes such as 

metabolism, or the cell cycle, the reality is that all cellular processes are highly 

interrelated and involve not only biochemical interactions, but also mechanical, 

electrophysiological, and other interdependencies across multiple time and space 

scales. Nonetheless, “if we are to comprehend [molecular biology], we must hope that 

it can be dissected into a series of modules or networks which can be studied in 

relative isolation” (Dearden and Akam 2000).  

 

Recent discoveries of modular interspecies conserved networks suggest that such 

hope may not be in vain. The fact that such networks perform homologous functions 
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with similar but differing proteins (hence different reaction rates) and in different 

cellular contexts (hence different total concentrations of chemical species) suggests 

functional robustness to such variations.  

 

The chemical oscillator underlying the control of cleavage-stage cell divisions in 

Xenopus embryos is a well-known example of a robust biochemical module: its 

component proteins can be replaced by proteins from other species (e.g. human) 

without affecting its function, and its oscillatory behavior can be reproduced in vitro 

(Murray and Hunt 1993). In this paper, we compare two models of the Xenopus cell 

cycle oscillator to evaluate the feasibility of using robustness as a means of 

identifying potential weaknesses in models. Our approach extends the use of 

bifurcation analysis for model evaluation by Ringland (Ringland 1991) and Clarke 

(Clarke 1980, 1994) to include observations about the shape, smoothness, and other 

features of behavior regions in parameter space. The results suggest that the approach 

can help with iterative development of increasingly detailed models of cellular 

processes, and selection between alternative explanations (models) of experimentally 

observed phenomena. 

 
 

MATERIALS AND METHODS 

 
The analytical solution of the parameter space for the two-equation version of the 

1991 model was derived using Maple (Maplesoft, Ontario, Canada). All other 

numerical characterizations of the parameter spaces of the two models were 

performed using the AUTO bifurcation analysis package (Ermentrout 2002). The 

frequency contour plots were generated as co-dimension two bifurcation plots on 

which the frequency of oscillation was superimposed post hoc. Oscillation 

frequencies were calculated by sampling the oscillatory region of each plot in a 100x 

100 or a 50x50 grid, grouping the results into bins, and then using the AUTO to trace 

the loci of each frequency bin. Numerical parameter optimizations were carried out 

interactively using Berkeley Madonna (http://www.berkeleymadonna.com/). 
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RESULTS 

 

WHAT SHOULD BIOCHEMICAL NETWORKS BE ROBUST TO? 

 

It would be impractical and undesirable for systems to be equally robust to everything. 

For example, a system should be sensitive to particular types of variation in its inputs, 

otherwise, it would not respond to anything. On the other hand, there is also no reason 

to believe that all cellular processes will be optimally robust to everything. In this 

section, we delineate where one can expect robustness or sensitivity and discuss the 

implications. 

To begin, we define a biochemical model as a mapping from parameter space to 

behavior space. The structure of a network is given by the set of all non-zero elements 

in its stoichiometry matrix (i.e. the set of interactions in the network). The parameters 

define reaction kinetics and total (initial) concentrations of the chemical species 

constituting the modeled network. Two types of parameters may be noted:  

(A) Parameters whose values vary during the lifetime of an individual (e.g. 

temperature, regulated gene activity level, or amount of a protein in a particular state). 

(B) Parameters that are constant for individuals, but variable across 

individuals/species (e.g. reaction rate constants (kcat; km), initial/total concentrations). 

Any “parameter” that does not vary across individuals or across species is considered 

a constant here. Inputs are parameters that control the system state trajectory. The 

inputs to a network can be type A or type B parameters. Sensitivity to type A inputs is 

useful for behavioral adaptation, while sensitivity to type B inputs can generate 

diversity in populations without loss of function. 



 

 

35

Carlson & Doyle (Carlson and Doyle 2000) have proposed that robustness to common 

variations is achieved at the cost of added system complexity. The additional 

complexity will generally incur some new sensitivity. Optimally robust systems are 

those that achieve a useful balance between robustness to frequent variations and 

the concomitant sensitivity to some rare events. A corollary of this view is that natural 

systems tend to be highly robust to frequently occurring variations and, in 

counterbalance, fall catastrophically when some rare variations occur. We exploit this 

observation to say that if a model of a robust system (e.g. a conserved biochemical 

network) exhibits sensitivity to a parameter p; one of the following must hold (see 

also (Alves and Savageau 2000)): 

(1) p is a control input; in that case the model should be sensitive to p: The type of 

sensitivity will depend on the functionality of the modeled network. Systems that 

switch between a finite numbers of states tend to be sensitive to the level of inputs, 

but not the exact value of any input. On the other hand, systems with continuous 

outputs (e.g. an amplifier) tend to be sensitive to the exact value of the input(s). 

(2) p is regulated (held constant) elsewhere in the system. A familiar example from 

engineering is power supply provision in electronic circuits: sub-circuits depend 

critically on receiving a supply voltage held constant by dedicated circuitry. An 

analogous biochemical example may be the provision of metabolic “services” in cells. 

(3) p is not regulated, but the system as a whole is insensitive to p (e.g. soot buildup 

in a heater will tend to affect heater performance, but not room temperature). In that 

case, the modeled network is actually a part of a larger system and should be studied 

in this larger context. 

(4) We have misunderstood the function of the network. For example, suppose a 

system is designed to provide pressure and temperature compensation signals to other 

systems on an aircraft. We might model the network as only a pressure compensator, 

and then discover that it is also sensitive to temperature. In such a case, it is not that 

our model of pressure compensation is wrong, but rather that we have misunderstood 

the full function of the system. 
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(5) The model structure is incorrect (e.g. there may be missing components, or 

incorrect interactions between existing components).  

It is often possible to guess whether a model parameter may be a control input from 

the nature of the processes it controls. For example, the rate of transcription of a gene, 

the rate of synthesis of a protein, and the initial concentration of a maternally 

inherited factor are all parameters which are often controlled by upstream biochemical 

processes and which can usefully control processes such as developmental cell fate 

specification. 

On the other hand, enzyme-mediated reaction rates vary widely among individuals 

and species (Eanes 1999), so any biochemical network whose function is conserved 

across individuals and species may be expected to be highly robust to variations in 

reaction rates. Similarly, variations in total concentrations of locally synthesized 

chemical species should not affect the behavior of a structurally correct model 

dramatically. 

When a biochemical model exhibits sensitivity to some of its parameters, one of 

conditions (1)-(5) above must hold. One may then investigate each possibility in turn. 

However, sensitivity and robustness are not “all or none”, binary characteristics. 

Below, we define quantitative measures that allow more exact characterization of the 

type and extent of sensitivity/robustness exhibited. This greater resolution in turn 

provides greater insight into the potential cause of the observed sensitivity, as 

illustrated by our example analysis of models of the Xenopus cell cycle. 
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MEASURING ROBUSTNESS AND SENSITIVITY 

 

Consider an example system with only two parameters P1 and P2. Suppose the system 

has a steady state which can be characterized by a single variable, say a concentration 

level, or an oscillation frequency. Two-parameter bifurcation plots delineate the range 

of P1 and P2 for which the system exhibits the measurable behavior. Figure 6 shows 

two example behavior loci for such a system. The figure is drawn such that the 

colored regions in (A) and (B) are roughly equal in area. The crosses represent 

example operating points, that is, the mapping from the particular values of P1 and P2 

to a particular value for the measurable system characteristics. The arrows show the 

effect of example variations (noise) in P1 on the location of the operating point. The 

model in (A) has two important features: 

(1) Define the minimum distance between an operating point and the boundary of the 

behavior locus as the stability margin (SM) of the operating point. The optimum 

stability margin (OSM) of the model is then defined as the maximum stability margin 

achievable by judicious placement of the operating point. The OSM is greater for the 

convex locus in (A) than for the concave locus in (B). Moreover, the sum of all 

stability margins is greater for (A) than for (B). Therefore, the model exhibiting 

characteristic (A) has greater overall stability than the model exhibiting characteristic 

(B). 

(2) For the particular drawings in this example, we note that the rate of change of the 

measured characteristic with changes in P2 is lower in (A) than in parts of (B). Which 

of the two models is more plausible depends on the extent of behavioral variability 

observed experimentally. 
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Figure 6: Schematic representation of two example behavior loci.  

The symbol ‘x’ represents example operating points, mapping from the particular 
values of P1 and P2 to a particular value for the measurable characteristics. As the 
operating points shift from the points, quantitative measure of the behavior changes – 
sensitivity to the variation of parameters greatly affect behavior depending on the 
shape of loci. 

 

Where a modeled system exhibits multiple steady state behaviors, there will be one or 

more loci for each behavior in parameter space and it would be necessary to consider 

issues such as (1) and (2) (above) for each locus. Often, the multiple behaviors 

exhibited by a model border each other. Clearly, in such cases convexity of one region 

would imply concavity in the neighboring region(s). In such cases (as for example in 

the cell cycle models below), optimum robustness for all model behaviors requires 

that the boundaries between behavioral regions in parameter space be flat (i.e. neither 

concave nor convex). The boundaries between neighboring behavior regions are 

parameter bifurcation loci and can be computed and plotted in two dimensional slices 

for visual assessment. For examples, see our cell cycle oscillator analysis below. 

For parameters acting as state switch (control) inputs, once a system has switched 

states, it should be robust to small variations (“noise”) in the input signals, i.e., we 

require large stability margins for each switched state. Finally, we use Ockham’s 

Razor to distinguish between any two models which may match experimental 
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observations equally well: the model with the greatest parameter robustness – as 

defined by the above considerations – is the more plausible. 

In the remainder of this chapter, we explore the above ideas by applying them to two 

well-known models. Where Ringland (Ringland 1991) and Clarke (Clarke 1980, 

1994) used bifurcation analysis to obtain models capable of exhibiting experimentally 

observed steady-state behaviors, we start with models that meet steady-state 

experimental observations in some qualitative manner (in the examples below, both 

models produce two cell cycle arrest states and an oscillatory state whose frequency is 

close to observations). We analyze and compare models on the basis of the size, shape 

and degree of variability within each steady-state behavior region. 

 

CASE STUDY: THE XENOPUS CELL CYCLE OSCILLATOR 

 

To illustrate and demonstrate the above concepts, we use two models of the cell cycle 

oscillator that regulates cleavage in early Xenopus embryos (Tyson 1991; Marlovits et 

al. 1998). Both models were developed by Tyson and colleagues, and replicate the 

wild-type in vivo and in vitro oscillatory behavior and arrest states well. Indeed, at this 

superficial level they are not distinguishable. The earlier model was essentially 

theoretical (Tyson 1991). Its structure is abstract and some interactions within it do 

not correspond to specific chemical reactions. It was written before experimental data 

on the structure and kinetics of the system were available. The later model has 

experimentally validated structure; most of its kinetic parameters have experimentally 

measured values, and correctly predict the phenotypes of a large range of 

experimental interventions (Marlovits et al. 1998). With the benefit of hindsight, the 

limitations of the older model are known. We compare the dynamics of the two 

models to demonstrate the manner in which robustness analysis can highlight 

important systematic differences between structurally correct and incorrect models. 
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WHY USE THE CELL CYCLE AS OUR EXAMPLE CASE STUDY? 

 

The cell cycle oscillator is highly conserved in all eukaryotes (Murray and Hunt 1993), 

so here is good reason to believe it is robust to small mutations. There are several 

additional reasons for our choice.  

(1) The basic dynamics observed in vivo in Xenopus embryos can also be reproduced 

in vitro using cytoplasmic extracts. There is also no growth during cleavage stages, so 

growth directed control of the cell cycle, or other unknown cellular processes are not 

necessary to explain the fundamental features of the Xenopus cell cycle oscillator. 

(2) Xenopus eggs are large and the embryos lend themselves well to experimental 

analysis. There is therefore a wealth of experimental evidence used by Tyson and 

colleagues to ensure the plausibility of the more recent structurally detailed model. 

(3) Known defects in the earlier model have been experimentally pinpointed. 

(4) Analytic solutions of the parameter space are obtainable for the simpler earlier 

model. 

(5) In an extensive study, Borisuk (Borisuk 1997) and Borisuk & Tyson (Borisuk and 

Tyson 1998)  fully characterized the multidimensional parameter space of the later, 

more complex model, thus providing unique insights into its behavior as a mapping 

from parameter space. 

 

OVERVIEW OF THE TWO MODELS 

 

Figure 7 presents an overview of the behavior of cell cycle determinants in Xenopus 

eggs and embryos. The concentration of an active form of a cyclin – CDC2 dimer – 
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known as the maturation promoting factor (MPF) – controls cell division activity. The 

regulation of active MPF concentration is the subject of the two models studied here. 

Prior to fertilization, active MPF levels are arrested at low concentration in immature 

eggs and at high concentration in mature eggs. At fertilization, after an initial delay, a 

series of 12 equal-period, synchronous cell divisions ensue. Thus the system has three 

steady state behaviors: low MPF arrest, high MPF arrest, and oscillations in MPF 

concentration. 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 7: Schematic representation of major events in Xenopus eggs and embryos.  
Note the role of the MAP-kinase-mediated pathway that blocks active MPF 
degradation (and hence oscillations) until after fertilization (see text for further 
description). 
 

 

Figure 8 (A) and (B) are schematic representations of the two models. Both models 

are based on a cyclic set of reactions involving cyclin-CDC2 dimerization, followed 

by phosphorylation/dephosphorylatlon and a positive feedback loop which creates 

hysteretic dynamics. However, the models are otherwise different. In particular, the 

positive feedback on active MPF is modeled phenomenologically in the 1991 model. 
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In the 1998 model, on the other hand, the positive feedback loop is defined in terms of 

a set of specific molecular interactions discussed later and shown in Figure 15. In 

addition, the 1998 model includes another feedback loop through which active MPF 

promotes its own degradation. Both of these added structures turn out to have a 

significant impact on the robustness of the network behavior as discussed below. 

 

CHARACTERSTICS OF THE 1991 MODEL 

 

 

The full 1991 model requires six equations and 10 kinetic parameters. But as Tyson 

showed in 1991, to a good approximation, the model can be reduced to two equations 

and four kinetic parameters. As illustrated in Figure 9, the system has three operating 

regimes corresponding to cell cycle arrests in immature and mature eggs (low and 

high MPF levels, respectively), and an oscillatory regime corresponding to the 

cleavage cycles in early embryos. The bifurcation loci between the three behavioral 

regions can be characterized analytically. Figure 10 (A) and (B) show the variations in 

the shape and size of these three operating regions as a function of the values of the 

four kinetic parameters of the system. The surfaces at the boundaries between these 

regions represent bifurcation loci in parameter space. 
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Figure 8: Schematic representations of two models of the Xenopus cell cycle. 
 
Both models share a basic reaction loop in which cyclin dimerization with CDC2 is 
followed by a series of phosphorylation/dephosphorylation events. (A) The 1991 
model: at that time, details of the (de)phosphorylation events were not known and 
were hypothesized. Moreover, the mechanism underlying the positive feedback of 
active MPF (gray-filled dimer) on its own production was not known and was only 
modeled phenomenologically. k1 is the rate of cyclin synthesis. The rate of active 
MPF formation is modeled as the sum of two components: k4 is the high rate of active 
MPF formation proportional to active MPF concentration. k4

’
 is the low rate of active 

MPF production proportional to inactive MPF concentration. k6 is the rate of dimer 
breakdown. (B) The 1998 model: the dimerization and (de)phosphorylation sequence 
of events have been corrected and the single positive feedback effect of MPF on itself 
has been replaced by three feedback mechanisms (dotted arrows) each of which is 
modeled as a set of detailed molecular interactions (see Figure 15 for details), k1; V25

’’; 
and V2

’’
 correspond to k1; k4 and k6; respectively, in the 1991 model. 

15 

A 

B For details see Figure 15
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Figure 9: Overview of the reduced, two-equation version of the 1991 model.  
(A) The two-equation, four-parameter model. (B) Phase portrait of the two-equation 
model. The v nullcline is a vertical line whose location is given by parameters k1 and 
k6: The u and v nullclines cross only once, giving a single steady state that is either 
stable (cell cycle arrest states to the left and right of the maximum and minimum of 
the u nullcline), or unstable (oscillations corresponding to repeated embryonic cell 
divisions, region between the arrest regions). The loci of the boundaries between these 
three behavioral regions can be derived analytically from the nullcline equations and 
are shown below. This allows exhaustive characterization of the model behavior as a 
function of its four kinetic parameters (see Figure 10, Figure 11 and text). 
 

Because the reduced 1991 model has only four kinetic parameters and is amenable to 

analytic exploration, we were able to exhaustively plot its behavior in parameter space. 

As the example in Figure 10 (A) illustrates, the model’s three regions of steady-state 

A 

B 



 

 

45

behavior in any two-parameter plot are broad regions with approximately flat 

boundaries indicating robustness to parameter variations. This is not true for plots 

involving the rate of cyclin synthesis (k1). For example, the k4–k1 plot in Figure 10 (B) 

shows that the system behavior depends critically on the value of k1. Note how 

changing the value of k4 affects the choice of k1 for which the system is in any one 

particular steady state (seen most readily in the sharp curvature of the boundaries of 

the oscillating region). 

 

 

 

 

 

 
Figure 10: Two-parameter plots showing the regions in parameter space. 
 
(A) The region between the two curves corresponds to repeated cell divisions in 
embryos, the area left of this corresponds to the high active-MPF arrest state of 
mature eggs, and the right hand region to the low active-MPF arrest state of immature 
eggs. (B) The orientation is reversed. Except for k4–k1 plots, as in (B), the 
characteristics in (A) are typical of all other plots: three approximately equal regions 
separated by roughly flat boundaries, as would be expected for optimal robustness to 
parameter variation, (B) demonstrates the nonlinear dependence of system behavior 
on k1: 
 

The observation that the system is sensitive to k1 is not surprising: the oscillatory 

behavior of the system can be shown to depend on the steady-state concentration of 

cyclin, which in turn depends on k1 and k6: In vivo, control of cyclin concentration is 

achieved through a dual control mechanism consisting of (a) the regulation of cyclin 

synthesis and (b) the activity of a MAP-kinase-mediated pathway which acts as a 

binary switch, blocking active-MPF (and hence cyclin) degradation until after 

fertilization (see (Ferrell and Machleder 1998)). Ferrell Jr et al. (Ferrell et al. 1991) 

A B
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and Groisman et al. (Groisman et al. 2000) discuss experimental evidence of the role 

of cyclin synthesis in the control of the cell cycle. Therefore, we focus on sensitivity 

to k1 rather than k6: 

The rate of cyclin synthesis also exerts a strong control on the size of the three regions. 

With high values of k1 – Figure 11(D) – the arrest state for mature eggs dominates. So 

long as k1 is high, the system is highly robust to variations in the values of the other 

three parameters. At the opposite extreme, when k1 is small – Figure 11(A) – the size 

of the regime corresponding to cell cycle arrest in immature eggs is by far the biggest. 

So with k1 very small, the immature egg cell cycle arrest state is very robust to 

variations in the other three kinetic parameters. As the value of k1 is varied from very 

low to very high, we see that the size of the middle region (cleavage oscillations) first 

grows – Figure 11(B) – and then shrinks again – Figure 11(C). Figure 11(B) shows an 

example value for k1 that results in a very wide oscillatory region occupying most of 

the parameter space. So with this value, the cell undergoes cleavage oscillations in a 

manner highly robust to variations in the other three parameters. It is now known that 

the Xenopus egg inherits large amounts of maternal cyclin that enables the two 

meiotic divisions of the egg prior to fertilization. Mitotic oscillations prior to 

fertilization are prevented by a MAP-kinase-mediated biochemical switch (see the 

cartoon illustration in Figure 7 and (Ferrell and Machleder 1998)). The sensitivity of 

the 1991 model’s behavior to k1 reveals the role of k1 as a control input for the mitotic 

oscillator, acting to generate the capacity for oscillations which are later triggered by 

fertilization (the biological case for control of the embryonic cell cycle by cyclin 

synthesis was first put forward by Murray & Kirschner (1989) and Murray et al. 

(Murray and Kirschner 1989). The nonlinear (k4-related) dependence of the system 

behavior on k1 reveals a weakness in the model: the state of the system cannot be 

predicted from the value of the control input (k1) alone. 
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Figure 11: The effect of k1 on the shape of the model behavior in parameter space.  
This suggests that the rate of cyclin synthesis may be a state control input for the cell 
cycle oscillator. (A) For low values of k1; the region to the right of both planes (low 
active-MPF immature-egg arrest) occupies most of the volume of the parameter space. 
So when k1 (rate of cyclin synthesis) is low, immature egg cell cycle arrest is highly 
robust to variations (noise) in the values of the other system parameters (k4; k4

’
 ; k6). 

(B) For intermediate values of k1 (here 0.1), the oscillatory region dominates the 
parameter space and oscillatory behavior is highly robust to changes in the other 
system parameters. (C) As k1 is increased further, the size of the region corresponding 
to high active-MPF mature-egg cell cycle arrest grows. (D) For high values of k1; the 
region corresponding to high active-MPF mature-egg cell cycle arrest dominates the 
parameter space. A cell in this state would be highly robust to variations in the other 
system parameters. 
 

Note that in Figure 11, k4 ranges from 0 to 1000. To be comparable to the 

experimentally measured values of the corresponding parameters used in the 1998 

model, k4 should be limited to <10. However, if we limit the value of k4 to this smaller 

range, the robust model behavior observed in Figure 11 can only be replicated if k1 is 

increased to values beyond its plausible range (here taken as nominal ± one order of 

magnitude). Thus, with the benefit of hindsight, we note that the structural weakness 

of a single (phenomenological) feedback loop in the 1991 model results in a need for 

unfeasibly large parameter ranges in the model. 

A 
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Figure 12 is a plot of the oscillation frequency of the model as a function of 

parameters k1 and k4: As expected, the oscillation frequency is zero in the dark-blue 

regions corresponding to the two cell cycle arrest states discussed above (low- MPF 

immature-egg arrest to the left, high-MPF mature-egg arrest to the right). In the 

region in between these, the value of k1 determines the cleavage oscillation frequency. 

The values of the other parameters are set to those recommended in Tyson (Tyson 

1991). The period of the resulting oscillations ranges from 10 to 50 min: The in vivo 

period for Xenopus cleavage cycles is 30 min (Masui and Wang 1998). The in vitro 

period is around 60 minutes (Murray and Hunt 1993). So the model includes the 

observed in vivo and in vitro behaviors, but its exact oscillation period varies with 

changes in k1: Since k1 — the protein synthesis rate — cannot be controlled very 

tightly in vivo, this sensitivity suggests that the model has structural deficiencies. 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 12: Contour plot of the frequency of oscillations in the 1991 model.  
According to this model, the cleavage period would vary between 10 and 50 min from 
individual to individual, even when all “environmental conditions” are held constant. 
This contradicts experimental observations of a stereotypic cell division period in 
Xenopus embryos. 
 

It is possible to optimize the model parameters to constrain the frequency range of the 

oscillatory region. However, in this case the oscillatory region becomes very narrow 
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and the sensitivity of the model to k1 variations is even more pronounced. As we show 

below, the 1998 model does not suffer from this problem. 

 

CHARACTERISTICS OF THE 1998 MODEL 

 

 

The full 1998 model is represented by nine differential equations and 26 kinetic 

parameters. It is clearly far too complicated to study analytically. We used the 

numerical bifurcation analysis tool AUTO (Doedel 1981) to characterize this model in 

the same manner as the 1991 model. Based on the earlier results of Borisuk & Tyson 

(Borisuk and Tyson 1998), we knew that the model has robustness characteristics 

similar to the 1991 model, and that k1 continues to control system state. Figure 13(A) 

and (B) illustrate this point. In Figure 13(A), k1 is set to a high value (corresponding to 

large amounts of maternal cyclin being present in the egg in which the degradation of 

cyclin is blocked by the MAP kinase pathway) and we see that virtually all of the 

plausible parameter space (the volume to the left of the plotted surface) is taken up by 

the region corresponding to high-MPF cell cycle arrest in mature eggs. In Figure 

13(B), k1 is reduced to 0.01 (corresponding to fertilized eggs, where the MAP kinase 

pathway is disabled and maternal cyclin has been degraded), and we see that now the 

same volume in parameter space represents oscillatory behavior (the volume between 

the two surfaces). Note that the above state control characteristic of k1 is highly robust 

to variations in other kinetic parameters: changes in V25
’’; V25

’; and V2
’’(corresponding 

to k4; k’
4 and k6 in the 1991 model, respectively, see Figure 8) have virtually no effect 

on this behavior.  
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Figure 13: The effect of k1 on the size/shape of the regions in the 1998 model.  
The flat, nearly vertical surfaces separating the regions are close to the ideal for 
optimum robustness to variations in the other system parameters. Compared to the 
corresponding characteristics in the 1991 model (Figure 11), the 1998 regions are also 
much larger, thus offering greater robustness. The values of k1 are (A) 1.0, and (B) 
0.01, respectively.  
 
 
A critical difference between the 1991 and 1998 models is that the period of 

oscillations is much less variable in the 1998 model. In the latter, the value of k1 

determines whether the system oscillates. However, the period of oscillations is fixed 

by the combination of the values of the other parameters in the system. Since these 

parameters would be expected to be constant in any individual, the cleavage period 

would be fixed and not vary with small fluctuations in the regulated value of k1: In a 

sense, k1 control behaves like a multi-level switch. Its value is interpreted in three 

discrete levels: low, medium and high. These in turn determine the mode of operation 

of the cell cycle engine. In comparison with the 1991 model, the 1998 model is not 

only less sensitive to parameters other than k1; but also operates with greater stability 

margins on k1:  

As shown in Figure 14, the parameter values of the 1998 model – which are based on 

in vitro experimental measurements – result in 45-50 min period oscillations similar 

to in vitro preparations. Note, however, the existence of a triangular region of 

frequency instability where k1 is small. Moreover, the range of k1 values for which the 

system oscillates seemed surprisingly small to us. On further investigation, we found 

that the positive feedback loop through which MPF facilitates its own degradation 
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(shown in Figure 15(B)) is not experimentally specified. Moreover, Tyson and 

colleagues did not optimize the parameters of these reactions for any particular 

behavior, but rather used nominal values. As shown in Figure 16, optimizing these 

unknown parameters for oscillation periods in the in vitro range dramatically 

improves the robustness characteristics of the 1998 model. The oscillatory region is 

now much wider than that of the 1991 model. The oscillation period is remarkably 

constant, and k1 control of cell state no longer depends on co-variation with other rates 

(V25
’’

 in the 1998 model corresponds to k4 in the 1991 model). Thus, robustness 

analysis of the 1998 model not only highlighted a potential weakness in the model, 

but also pinpointed where the problem may lie and allowed us to remedy it. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Cleavage frequency contour plot. 
The parameter was set using the Marlovits et al. parameter values for the 1998 model.  
Note that the oscillatory region is very narrow, but has the advantage of a much more 
stable oscillation period range (45-50 min) in most of the oscillatory region. The 
dashed horizontal line indicates the experimentally derived value of V25

’’
 used by 

Marlovits et al. In this region of the parameter space, the oscillation period ranges 
from 50 down to 10 min; thus negating the apparent greater stability of the 1998 
model. 
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Figure 15: Details of the additional reactions included in the 1998 model.  
(A) The push – pull positive feedback mechanisms replacing the simple 
phenomenological feedback of active-MPF on itself in the 1991 model. The CDC25 
path enhances the rate of active-MPF production while the wee1 path reduces the rate 
of return of active-MPF (gray filled dimer) to inactive form. (B) The feedback 
mechanism of active-MPF on its own degradation. APC is the anaphase promoting 
factor, and its role in active MPF degradation has been experimentally verified. But 
intermediate enzyme (IE) has not been experimentally identified and its interactions 
represent only an abstract path. 

 

Although we have shown that the structure of the 1998 model is capable of providing 

highly robust oscillatory behavior in a manner far exceeding the capabilities of the 

1991 model, it cannot be assumed that the 1998 model is a complete representation of 

all the pertinent interactions constituting the Xenopus cell cycle oscillator. The 
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structure of the 1998 model is clearly more plausible than the 1991 model, but it could 

be further optimized. For example, Figure 17 shows that increasing the autocatalytic 

rate of active MPF degradation can enlarge the oscillatory region of the model 

considerably. The structure of the 1998 model ensures that the expanded oscillatory 

region has a very stable period (in Figure 17 optimized to lie in the range 28 to 30 

minutes corresponding to in vivo oscillations). Moreover, there is no co-dependence 

on parameters other than k1: Experimental data only put a lower bound on the value of 

the parameter optimized here (V2
’’

 ). The exact in vivo value is not known. Nor is it 

significant for our purposes. The important observation here is that more detailed 

modeling of this particular part of the model may be illuminating. 

 

 

 

 

 

 

 

Figure 16: The 1998 model optimized to give in vitro like oscillations.  
The period is highly stable across the whole region, ranging between 45 and 65 min: 
Note also the nearly vertical boundaries of the oscillatory region: k1 can control state 
transition without codependence on other parameters (V25

’’
 plotted, but similar for 

others). The width of the oscillatory region (and hence the operational stability 
margin) is also considerably wider than for the 1991 model. The IE-related 
parameters for which experimental data were not available and have been optimized 
here are: kle = 1.2; kmie = 0.006; kier = 0.7; kmier = 0.001; kmap = 1; kapr = 0.11; kmapr = 4 
(symbols correspond to the notation of (Marlovits et al. 1998)). The inset represents 
1998 model using original paramter values. 
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Figure 17: The 1998 model optimized to give in vivo like oscillations.  
This particular plot was obtained by simply increasing V2

’’— the fast rate of 
degradation of active-MPF by APC – to 1.5 min-1: V2

’’
 corresponds to k6 in the 1991 

model. As shown in Figure 9(D), increasing k6 has a similar effect on the 1991 model. 
But whereas in the 1991 model the period of oscillations varies widely across the 
region, in the optimized 1998 model the period is highly stable in the range 28–30 
min: Note that the Marlovits et al. choice of V2

’’. 0.25 min-1
 was based on 

experimental evidence that suggests a lower limit on V2
’’

 but no specific upper limit. 
The inset represents the 1998 model using paramter values in Figure 16 (x-axis is 
adjusted). 
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DISCUSSION AND CONCLUSIONS 

 

Model building necessarily involves making choices between alternative explanations 

with apparently equivalent behaviors. We put forward an argument from first 

principles suggesting that robustness analysis can help distinguish between more and 

less plausible models, and pinpoint structural weaknesses in models. The proposal is 

predicated on the expectation that essential cellular processes that are conserved 

across multiple species must be functionally robust to mutational variations. Our 

analysis of two models of the Xenopus cell cycle oscillator confirms this theoretical 

expectation, but further examples are needed. 

Our choice of models for this paper was highly serendipitous. The parameter space of 

the more complex 1998 model had already been mapped in great detail by Borisuk 

(Borisuk 1997). We could thus concentrate on comparing the two models rather than 

characterizing each in detail first. Efficient characterization of the parameter space of 

models with tens of parameters is a significant remaining challenge. Recently, fairly 

general relaxation methods that exploit linear matrix inequalities to simplify the 

searching of multi-dimensional spaces have been developed (Parrilo 2000). We hope 

to exploit these developments to facilitate characterization and parameter searching in 

future applications of our approach to model building and validation. 
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CHAPTER 4: DEVELOPMENT OF FILTERING METHOD FOR CE-MS BASED 

METABOLOMICS 

 

 

 

Man errs so long as he strives. 

— Johann Wolfgang von Goethe 

 

 

 

Metabolomics is expected to boost data driven research. In biomarker discovery, 

powerful filtering methods to remove noise and outliers are essential for screening 

significant candidates from the huge volume of omic data. In this chapter, we propose 

a post-measurement peak filtering method (named P-BOSS) for CE electrospray 

ionization time-of-flight MS (CE-TOFMS) data, where we leave as many peaks as 

possible. Combining outlier detection method functions in parallel, we applied P-

BOSS to the data using Escherichia coli knockout mutants of the tryptophan and 

purine biosynthesis pathways. As the result, P-BOSS showed remarkably superior 

performance, reducing 65% of all peaks, while leaving significant peaks. 
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INTRODUCTION 

 

Metabolomics is a relatively new discipline for high-throughput metabolic profiling 

(Fiehn 2002). One of the major challenges in metabolomics is to quantitatively 

characterize metabolome data simultaneously for system-level understanding of 

biological systems. Recently a wide variety of metabolome analysis technologies have 

emerged, including GC-MS (Fiehn et al. 2000; Fiehn et al. 2000), NMR (Reo 2002), 

FT IR spectroscopy (Harrigan et al. 2004), and CE-MS (Soga et al. 2002; Soga et al. 

2002; Soga et al. 2003; Soga et al. 2006). CE-MS has recently been demonstrated as a 

powerful tool for the analysis of charged species. Its major advantages are that it 

exhibits extremely high resolution and almost any charged species can be infused into 

the mass spectrometer. We have shown that CE-MS techniques are quite useful for 

the global analysis of charged metabolites (Soga et al. 2002; Soga et al. 2002).  

Most intracellular metabolites have a charge, and thus CE-MS is particularly useful 

for revealing those metabolites. Consequently, CE-MS enables us to obtain a large 

amount of information on metabolites, which can be helpful for profiling the 

dynamics of metabolic pathways or for biomarker discovery. The data obtained by 

CE-MS have large numbers of peaks in each sample — typically > 2,000 peaks with 

CE time-of-flight MS (CE-TOFMS) — as well as other omic data. Therefore, how to 

obtain useful and significant peaks remains a major challenge (Kell 2004; Jarvis and 

Goodacre 2005; Broadhurst 2006). Screening large numbers of peaks in advance 

should allow us to focus on succeeding data analyses. Though many statistical 

methods have been proposed (Raamsdonk et al. 2001; Taylor et al. 2002; Hirai et al. 

2004; Weckwerth and Morgenthal 2005), they are likely to be sensitive to data 

containing noise, resulting in significant compounds being overlooked.  

Thousands of peaks can be detected by CE-MS and data analyses are processed either 

manually or automatically. Regarding the peaks in metabolome analyses, the peaks 

can scarcely be identified due to lack of metabolite standard data. They have 
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significantly different characteristics from those of transcriptome or genome. 

Moreover, due to the data characteristics of CE-MS, the peak shapes of many 

compounds are aberrant or are relatively small, and thus they can hardly be 

distinguished from noise peaks, which easily leads to false-positive peaks.  

In the present study, we propose a powerful filtering method by which potentially 

false-positive peaks are removed, and reproducible peaks are retained. Our filtering 

method consists of two filters functioning in parallel. One of the filters automatically 

determines the threshold values of parameters. It tends to remove non-reproducible 

peaks, potentially noise peaks, while leaving reproducible peaks. The other filter is 

applied to reproducible peaks to detect and remove outliers. We performed 

preprocessing after extracting peaks from each data, thereby reducing the data size 

and calculation cost enormously.  

To verify our method, experiments were conducted using tryptophan and purine 

biosynthesis-relevant knockout mutant data from Escherichia coli. Using the obtained 

data, we confirmed that our method has powerful filtering functions which are widely 

applicable to peak screening. 

 

MATERIALS AND METHODS 

 

BACTERIAL STRAINS, GROWTH CONDITIONS, AND METABOLITE EXTRACTION  

 

The E. coli strains JWK1253 (ΔtrpB), JWK2461 (ΔpurC), JWK0512 (ΔpurE), 

JWK3970 (ΔpurH), JWK2541 (ΔpurL), and JWK2484 (ΔpurM) were used (Baba 

2006). The strains are derivatives of BW25113 (Datsenko and Wanner 2000). Cells 

grown on LB plates were inoculated in a M9 minimal medium supplemented with 5 
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mg/ml of L-tryptophane (adenine and guanine for purine-related mutants) and 

incubated at 37°C with shaking. Growth was monitored by measuring optical density 

at 600 nm (OD600). When cell density reached OD600= approx. 0.8, cells were 

collected by brief centrifugation and re-suspended in the same volume of M9 medium 

without L-tryptophan. The cells were collected at T0, T15, T30, and T60 (Tx indicates 

the time x in minutes after amino acid shift-down). The metabolites were extracted 

immediately at each time point as previously described (Soga et al. 2003).  

INSTRUMENTATION  

 

All CE-TOFMS experiments were performed using an Agilent CE Capillary 

Electrophoresis System G1600A (Agilent Technologies, CA, USA), and an Agilent 

TOFMS System G1969A. For system control and data acquisition, we used the 

G2201AA Agilent ChemStation software for CE and the Analyst QS for Agilent 

TOFMS software.   

 

CE-TOFMS CONDITIONS FOR CATIONIC METABOLITES 

 

Separations were carried out on a fused silica capillary (50 μm i.d. x 100 cm total 

length) using 1M formic acid for cationic metabolites. Sample was injected with a 

pressure injection of 50 mbar for 3 sec. The applied voltage was set at +30 kV. Sheath 

liquid was prepared as 50% MeOH/Water. For TOFMS, ions were examined 

successively to cover the whole range of m/z values from 50 through 1000. 

Fragmentor voltage was set to 75 V. Skimmer voltage was set to 50 V. Oct RFV was 

set to 125 V. Capillary voltage was set to 4000 V.  
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CE-TOFMS CONDITIONS FOR ANIONIC METABOLITES 

 

Separations were carried out on SMILE(+) using 50 mM ammonium acetate (pH 8.5). 

Sample was injected with a pressure injection of 50 mbar for 30 sec. The applied 

voltage was set at -30 kV. Sheath liquid was prepared as 5 mM ammonium acetate 

50% MeOH/Water. For TOFMS, ions were examined successively to cover the whole 

range of m/z values from 50 through 1000. Fragmentor voltage was set to 100 V. 

Skimmer voltage was set to 50 V. Oct RFV was set to 200 V. Capillary voltage was 

set to 3500 V.  

 

DATA PROCESSING  

 

Peak extraction was carried out using Human Metabolome Technologies’ proprietary 

software. Statistical analyses were performed using MATLAB R2006b (Mathworks, 

MA, USA). All other data processing was carried out using Excel 2003 (Microsoft, 

WA, USA), and Perl script. 

 

 

RESULTS AND DISCUSSION 

 

STRATEGY AND TACTICS FOR EXTRACTING SIGNIFICANT PEAKS  

 

A simple schematic representation of the CE-TOFMS-based analytical workflow, 

particularly applicable to biomarker discovery, is illustrated in Figure 18(A). Sample 
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was appropriately prepared to infuse into CE-TOFMS. After measurement by CE-

TOFMS, total ion chromatography was performed with a large amount of noise. The 

noise could be attributed to isotopic compounds, ringing, spikes, and so forth. The 

peak data set was then compared across sample profiles (or repetitive experiments) 

and aligned, according to various indices (e.g., m/z, migration time). Statistical 

analyses were then performed to elicit significant peaks (considered as potential 

biomarkers). In this study, we focus on improving the performance of peak filtering 

(shadowed box) in Figure 18(A), where detail is shown in Figure 18(B). Basically, 

noise removal, outlier removal, and missing value imputation should be carried out. 

This part of the process is very important, because unless noise peaks are removed in 

this process, the following statistical analyses may suffer critical damage, producing 

different outcomes due to the noisy peak data. For noise removal, we developed a 

filtering method that we have named “P-BOSS”. For outlier removal, we employed 

AIC. As shown in Figure 18(B), our strategy employs each function in parallel, in 

which the procedure is selected according to the number of missing values, thereby 

avoiding elimination of significant peaks. 
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Figure 18: Schematic representation of basic strategy for biomarker search. 
(A) Workflow of metabolome analysis from sample preparation to biomarker 
discovery; (B) Detailed representation of peak filtering in (A). 

 

THRESHOLD COULD NOT BE DETERMINED FOR NOISE REMOVAL   

 

Since the data from the CE-TOFMS analysis include a huge number of noise signals, 

as well as compound corresponding peaks, the number of peaks increases 

unexpectedly. The noise could be attributed to isotopic peaks, ringing, or spike peaks. 

In order to appropriately extract plausible signals, we first characterized the peak data 

according to the number of missing values across repetitive analysis data. We 

designated the subset "orphanX" based on the number of missing values as depicted 

in Figure 19. For example, orphan0 is a subset of peaks detected across every 

experiment. Next, we categorized those peaks, which are detected in more than half of 
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experiments, as "non-orphan peaks", indicated as ‘a’ in Figure 19.  Thus, "orphan 

peaks" indicate minority peaks across multiple experiments (indicated as ‘b’ in Figure 

19). 

 

 

 
 
 
 
 
 
 
Figure 19: Definition of "orphan" categories.  
Suffix depends only on the number of missing values, and not on position. ‘m’ 
indicates the missing datum. Peak subsets including ‘a’ and ‘b’ are categorized as 
"non-orphan peak" and "orphan peak", respectively.  
 

The percentile rank for four parameters in CE-TOFMS signals was analyzed using the 

data set for JWK1253 (ΔtrpB mutant). The data are shown in Figure 20 as a percentile 

rank graph. In traditional filtering methods, threshold values are determined such that 

aberrant peaks are removed before succeeding processes. However, we could not find 

a threshold value that removes noise peaks without affecting orphan0. Empirical 

threshold values resulted in the removal of approximately 30% of orphan0 category 

peaks (data not shown). We assumed that any peak that is dominantly detected over 

repetitive experiments corresponds to a compound (and not a noise peak). Given this 

fact, simply determining the threshold values is not appropriate, because it also 

removes significant peaks.  
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Figure 20: Percentile rank of four parameters in CE-TOFMS signals.  
Since repetitive experiments were conducted five times in this analysis, orphan0 is a 
peak subset detected at all times throughout the experiments. Panels (A) to (D) 
indicate the percentile rank of analytical parameters of peak area, peak height, area to 
height ratio, and signal to noise ratio, respectively.  

 

P-BOSS FILTERING METHOD  

 

Instead of dispensable peak filtering, we developed a powerful filtering method as the 

procedure summarized in Figure 21. Peaks detected in more than half of the 

repetitive experiments are excluded from the filtering process, which are then, in turn, 

processed for outlier detection to flatten peak data across repetitive experiments. 

Other peaks are regarded as potential noise peaks, and thus the filtering method is 

being processed. We refer to the filtering method as P-BOSS (Peak filter Based on 

non-Orphan Survival Strategy). 
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P-BOSS is superior to the traditional filtering method from two perspectives: (1) it 

non-heuristically determines a threshold value according to data characteristics, and 

(2) it applies a filtering process not to all peak data but only to peaks that are probably 

noise peaks, thus avoiding removal of dispensable peaks. False discovery of peaks is 

avoided by this filtering process.  

Recently, Kadota and colleagues proposed an algorithm to determine threshold values 

of microarray-based profiles (Kadota et al. 2001). According to their algorithm, two 

criteria were used to determine appropriate threshold conditions, and their strategy of 

using two conflicting but important criteria to determine moderate values of filtering 

parameters is reasonable.  

In our study, threshold values of the parameters were inevitably determined according 

to following procedure. Two indices were employed to determine the values, Ro and 

Rn. Ro represents the proportion of remaining orphan peaks; reduced Ro means that the 

noise peaks are removed efficiently. Rn, on the other hand, represents the proportion 

of remaining non-orphan peaks. The more Rn increases, the more peaks (which 

plausibly correspond to compounds) are retained. These two indices are in a trade-off 

relationship; both are significant to filter peaks. We thus decided to leave Rn as large 

as possible and Ro as small as possible, by obtaining the product of the two values as 

an objective function. The objective function f(x) for each parameter can be 

formulated as follows:  

)()()( maximize xxx nRoRf ⋅=    (1) 

where x represents the vector of areas of peak data. 
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Figure 21: Schematic representation of filtering process with P-BOSS/AIC. 
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P-BOSS APPROPRIATELY REMOVES NOISE PEAKS WHILE LEAVING SIGNIFICANT PEAKS 

 

In this experiment, we employed four parameters; area, height, area to height ratio, 

and signal to noise ratio of peaks. Ro was determined as the ratio of removed peaks in 

the orphan4 category, whereas Rn was determined as the ratio of left peaks in the 

orphan0 category. The transition of f(x) over the values of the four parameters is 

shown in Figure 22. According to the analysis, appropriate threshold values were one-

sidedly determined for each parameter, because the shape of f(x) was shown to be 

parabolic. Absolute values to maximize f(x) are summarized in Table 2. These 

values are approximately identical to our empirical knowledge, but provide objective 

evidence to determine the threshold values. To confirm that no significant peaks are 

removed by the P-BOSS filter, 44 identified peaks corresponding to standard 

compounds (Table 1, commercially available reagents) were investigated. No peak 

was removed by the filter, suggesting that P-BOSS functions efficiently to remove 

noisy peaks only, without removing significant (compound) peaks. Even if peaks 

were non-orphan (no missing values), they varied in area (mean coefficient of 

variation was 32%). This implied that outliers are exactly contained in the 

experimental data, which cause a large variance of scattering data. Tiny and/or 

deformed peaks are most likely to yield a variance. Eliminating the variance should 

yield a difference of biomarkers in the chaotic raw data obtained by metabolome 

analysis.  
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Table 1: Identified standard compound peaks. 

Adenine 
Adenosine 
Anthranilate 
Arg 
Asn 
Asp 
Carnosine 
Citrulline 
Cys 
Cytidine 
Cytosine 
DOPA 
GABA 
Gln 
Glu 
Glutathione (ox) 
Glutathione (red) 
Gly 
Guanine 
Guanosine 
His 
Homoserine 
Hydroxyproline 
Hypoxanthine 
Ile; Leu 
Inosine 
Lys 
Met 
Ornithine 
Phe 
Pro 
SAM 
Ser 
Spermidine 
Spermine 
Trp 
Tyr 
Tyramine 
Uridine 
Val 
β-Ala 
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Table 2: Threshold values determined according to the max value of f(x). 

Parameter Threshold f(x) 

Areaa 1000 0.673

Heighta 200 0.508

Area/height 2 0.403

S/N ratio 7 0.527

     
a: arbitrary units   
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 22: Transition of f(x) according to each parameter.  
Panels A to D indicate the f(x) values for the analytical parameters of peak area, peak 
height, area to height ratio, and signal to noise ratio, respectively. 
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INTRODUCTION OF AKAIKE'S INFORMATION CRITERION TO P-BOSS  

 

In order to smooth the values (i.e., detecting outliers), we employed a method based 

on Akaike’s Information Criterion (AIC). The main advantage of the method is 

objectiveness of decision, because the procedure is independent of a level of 

significance (i.e., p values). In addition, the method can detect multiple outliers 

without setting the number of outliers; that is, the number of outliers varies depending 

upon the data set. AIC was used to evaluate mouse DNA microarray expression 

profiles, and proved its efficiency (Kadota et al. 2003). We applied the method to the 

data above in parallel with the noise filter. The data set was first categorized into two 

groups (i.e., orphan peaks and non-orphan peaks), according to the number of missing 

values. P-BOSS was applied to the orphan peaks, while AIC was applied to the non-

orphan peaks. For calculating f(x), orphan4 was used to determine Ro, and orphan0 to 

determine Rn. The results are shown in Table 3. The data showed that upon applying 

P-BOSS/AIC, the number of peaks in the raw data (JWK1253 at T0, n=5) was reduced 

to 54% (due to P-BOSS), and the coefficient of variation to 1/4 (due to AIC). These 

results reveal that the combination of AIC and P-BOSS successfully eliminates the 

noise peaks and leaves the significant peaks in variable repetitive data.  

Table 3: Results between before and after applying P-BOSS 

  Number of peaks RSD 
(%) 

Non-treated 5356 32 
P-BOSS 
treated 2918 8 
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DIFFERENTIAL ANALYSIS USING P-BOSS/AIC   

 

Next, we compared two associated metabolome data to investigate the ability of the P-

BOSS/AIC combination. The metabolome data used here are provided from E. coli 

JWK1253 (ΔtrpB) at T0 and T15 (n=5 each). The data were processed through P-

BOSS/AIC as mentioned above, and representative values for all peaks were extracted. 

The values were then matched according to m/z (determined by MS) and migration 

time (determined by CE). Table 4 shows the number of matched/unmatched peaks in 

orphan0 and orphan4 categories between the samples at T0 and T15. The portion of 

matched peaks remained 1.7-fold more than that of unmatched peaks, suggesting that 

the peaks detected in either sample, corresponding to unmatched peaks, are 

aberrant/noise peaks. The remaining orphan peaks after P-BOSS/AIC treatment are 

potential candidates corresponding to substances with altered levels (so-called 

biomarkers). For instance, given two datasets to compare (e.g., wild-type and 

knockout samples), certain compounds might exist in either sample. In the other case, 

when measuring time-series data, certain compounds might be accumulated gradually. 

Regarding biomarker search, as many peaks should be left as possible (even tiny or 

weak peaks). P-BOSS is particularly suitable for these purposes, because our method 

leaves peaks as much as possible while removing the minimum number of possibly 

noisy peaks. This should function as a primary screening method, enabling reliable 

statistical analyses to be performed thereafter. 

Table 4: Matching ratio of peaks (orphan0 and orphan4 categories only) 

  Non-treated P-BOSS treated Remaining proportion (%) 

Matched peaks 3569 2311 64.8 

Unmatched peaks 3983 1510 37.9 

Total 7552 3821 50.6 
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The resolution power of P-BOSS was examined. Metabolite groups in which m/z 

values and migration times are similar (i.e., structural isomers) are sometimes found 

in metabolome samples. For example, L-Leucine and L-isoleucine are structural 

isomers with the same molecular weight and similar migration time (the difference is 

less than 10 sec). Such a situation makes it difficult to identify which of these peaks is 

the candidate, especially unidentified peaks. Actually, we found two candidate peaks 

around the m/z value of L-glutamine, ca. 147.0764, before applying our method, as 

shown in Table 5 (upper). The gray area corresponds to the peaks where eliminated 

by P-BOSS. After applying P-BOSS, however, one of the peaks was eliminated, and 

only one peak successfully remained. In this case, we confirmed that the remaining 

peak corresponds to L-glutamine, by spiking authentic L-glutamine. Another example, 

that of L-tyrosine, is shown in Table 5 (lower). This is also an identified peak, and the 

corresponding peak in the sample at T0 was eliminated (second row in the lower table 

in Table 5 due to a tiny and/or aberrant peak shape. These results indicate that P-

BOSS processing realizes accurate matching of multiple metabolome data and 

provides a rapid differential analysis of metabolome profiles for biomarker discovery. 

When handling data without applying filters such as P-BOSS/AIC, identification of 

peaks is quite difficult, since more than one peak with the same m/z value can 

potentially be detected. Our method demonstrated validity for peak identification by 

removing adjacent peaks.  
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Table 5: Removal of ambiguous peaks adjacent to objective peaks. 

L-glutamine        

Non-treated      P-BOSS treated     

T0   T15  T0  T15  

m/z MT(min)  m/z MT(min) m/z MT(min) m/z MT(min)

147.0755 12.50   147.0752 12.49 147.0755 12.51 147.0752 12.51 

147.0756 11.51  147.0761 11.52         

           
L-tyrosine        

Non-treated      P-BOSS treated     

T0    T15   T0   T15   

m/z MT(min)  m/z MT(min) m/z MT(min) m/z MT(min)

ND ND  182.0664 18.93         

182.0802 15.74  182.0811 15.85     182.0811 15.85 

 
abbreviation: MT; migration time, ND; not detected 
 

ACCURATE FILTERING BY P-BOSS/AIC    

 

We next performed a differential analysis upon multiple metabolome profiles to 

extract significant compounds whose levels are statistically significant (we refer to 

“significant compounds” as those which show similar behavior irrespective of a 

different environment). In this study, five E. coli mutants were examined: JWK2461 

(ΔpurC), JWK0512 (ΔpurE), JWK3970 (ΔpurH), JWK2541 (ΔpurL), and JWK2484 

(ΔpurM). These mutations are located in genes associated with the purine 

biosynthesis pathway. We analyzed metabolome samples prepared from cells at T0, 

T15, T30, and T60 after guanine and adenine shift-down (see Materials and Methods). P-

BOSS/AIC was applied to the data of each mutant. To evaluate the performance of P-

BOSS/AIC, we also examined the original profiles (neither P-BOSS or AIC was 
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applied). For metabolome data on each mutant, P-BOSS/AIC (or none for original 

profiles) was applied, and then the number of extracted candidates was examined by 

differential analysis by matching each peak. To find a significant difference among 

the profiles, ANOVA (analysis of variance) was performed to see which peak shows a 

significant difference among the profiles. The significance level was set within 5%. 

As the result, we found striking difference between the profiles. P-BOSS reduced 

65% of peaks (20651 to 7305 peaks), while leaving all significant compounds (934 

peaks). Further, P-BOSS resulted in adding 5% more significant peaks (48 peaks), 

due to removing ambiguous peaks adjacent to significant ones. This result clearly 

indicates that P-BOSS has outstanding advantages in screening significant peaks. 

While there need to develop additional filtering method for further screening the 

peaks, P-BOSS can be a powerful filter for initial screening. 

 

 

CONCLUSION 

 

We have proposed here a powerful filtering method for the preprocessing of 

metabolome data measured by a CE-TOFMS system. Employing an appropriate 

filtering method, such as P-BOSS/AIC, should thus enable us to narrow down 

potential compound-associated peaks. Our strategy is widely applicable to omics-

based biomarker discovery.   

 

 

 



 

 

 
CHAPTER 5: METABOLOMICS AND SIMULATIONS UPON BACILLUS 

SUBTILIS 

 

The fact of evolution is the backbone of biology, and biology is thus in the 

peculiar position of being a science founded on an improved theory, is it 

then a science or faith? 

— Charles Darwin 

 

When environmental conditions fluctuate unexpectedly, the choice by an organism of 

a pure strategy increases its extinction risk, thus a mixed strategy is the evolutionarily 

stable strategy in natural environments. The time-dependent mixed strategy is seen in 

many insects and higher plants, however, its molecular mechanism is still unclear. 

The soil bacterium Bacillus subtilis forms dormant, robust spores as a strategy to 

ensure its survival under conditions of starvation. Recent studies suggest that 

polyphenism, whether to initiate sporulation or not, are their tactics for their adaptive 

response to starvation. We show here that polyphenism during sporulation is primarily 

modulated by negative feedback circuits in the signaling pathway, resulting in 

generating a bistable response within the sporulating culture. We predict this 

phenomenon by building a simple mathematical model for signal transduction of the 

sporulation cue by wild type and mutants involving both positive and negative 

feedback. We confirmed our models experimentally by using mutants virtually 

inhibiting and activating the negative feedback. Besides, metabolome analysis was 

conducted to see the dynamics of metabolic pathway upon sporulation. As the results, 

we found that metabolism at sporulation starting stage is significantly different, 

depending on spo0E mutants. 
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INTRODUCTION 

 

Survival strategies affect the fate of organisms living in highly fluctuating 

environments. In general, organisms have two or more strategies to assure 

survivorship; they hedge the extinction risk by emerging these strategies 

simultaneously (Cohen 1967; Hopper 1999; Clauss and Venable 2000). For example, 

in annual plants, a delay in seed germination reduces the temporal variance in 

individual fitness and minimizes the risk of extinction (Clauss and Venable 2000). 

This ability is known as the bet-hedging strategy (Hopper 1999) and is thought to be 

programmed elaborately in the genome. However, how clonal cells express the 

strategies simultaneously in response to changes in the environments remains to be 

elucidated.  

Phenotypic heterogeneity in clonal population has been found in bacteria as well 

under some circumstances, e.g., the persister production in antibiotic-treated 

Escherichia coli populations (Balaban et al. 2004), the lactose utilization of E. coli 

(Ozbudak et al. 2004), competence development in Bacillus subtilis (Maamar and 

Dubnau 2005), and sporulation (Chung et al. 1994; Chung and Stephanopoulos 1995). 

However, the ecological, evolutional significance of phenotypic heterogeneity is not 

clear in bacteria. 

Sporulation of the soil bacterium B. subtilis is initiated to ensure survivorship under 

conditions of starvation (Grossman 1995). In cells receiving a sporulation signal, the 

phosphorylation of kinases (such as KinA) is stimulated and the phosphate group is 

transferred to Spo0A through phosphorelay (Burbulys et al. 1991). Phosphorylated 

Spo0A (Spo0A~P) is the master regulator for sporulation; it acts as a transcriptional 

factor for sporulation-associated genes. This signal transduction system is regulated 

by complex mechanism including multiple positive- and negative-feedback loops (de 

Jong et al. 2004). 
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A primary effect of positive feedback on gene expression is amplification of its own 

expression rate. Another function is the generation of a bistable state in the 

population; this results in two distinct cell subpopulations with different gene 

expression levels (Ferrell and Machleder 1998; Becskei et al. 2001; Ozbudak et al. 

2004). It has been suggested that kinA mutation, lack of a positive-feedback loop in 

phosphorelay, affects the bistable state of Spo0A~P in sporulating cells (Chung et al. 

1994). The negative-feedback loop acts as a noise-reduction system of gene 

expression (Becskei and Serrano 2000). Otherwise, dephosphorylation of Spo0A~P 

by Spo0E, or autostimulation of Spo0A~P contributes to bistable state of sporulating 

cells (Veening et al. 2005). Though the behavior of genetic network is considered to 

be effective for cellular functions such as differentiation and adaptation to the 

environment, no direct observation is yet reported.  

Recent theoretical and experimental studies suggested intrinsic characterstics of 

system to generate population heterogeneity (see (Smits et al. 2006) for review). 

Voigt and colleagues investigated dynamics of sin operon with a mathematical model 

(Voigt et al. 2005), and showed that combining genes from a regulatory protein and 

its antagonist within the same operon could lead to diverse regulatory function, such 

as bistability, oscillation, and pulse generator. Iber and colleagues, on the other hand, 

used spoIIA operon as an example to show similar results (Iber 2006; Iber et al. 2006), 

and confirmed by experiments. De Jong and colleagues performed a qualitative 

simulation (de Jong et al. 2004), by which qualitative characterstics, consistent with 

experimental results, could be reproduced, yet the model involves too many factors to 

extract essential functions out of it.  

Here we employed a simple mathematical model to elucidate dynamics of Spo0A~P 

involving both positive and negative feedback. Although experimental data cannot be 

obtained for quantitative simulation, the model allows us to investigate the essential 

functions of sporulation relevant signal transduction pathway. Given variation of 

signal intensity for sporulation, Spo0A~P exhibited unstable dynamics under specific 

condition, corresponding to show either sporulation or non-sporulation subpopulation. 

The results were verified experimentally using wildtype and various mutants of B. 
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subtilis. In addition, metabolome analysis was performed to see the dynamics of 

metabolites during sporulation. The results confirmed that energy metabolism is 

significantly affected by spo0E mutants, suggesting its link to sporulation.  

 

MOLECULAR AND BIOCHEMICAL FEATURES OF SPORULATION IN 

BACILLUS SUBTILIS 

 

The process of sporulation in Bacillus subtilis proceeds through a well-defined series 

of morphological stages that involve the conversion of a growing cell into a two-cell-

chamber sporangium within which a spore is produced (Stragier and Losick 1996). 

While the sporulation process involves over 125 genes, availability of huge database 

of genetic and genomic information and advanced technologies have enabled us to 

investigate and manipulate the organisms quite a detail. Completion of gene 

sequencing of B. subtilis further facilitated understanding role of individual genes 

(Kunst et al. 1997).  

The successive morphological stages of sporulation are shown in Figure 23 (see 

(Stragier and Losick 1996) for detail). There are seven stages, with each stage 

designated by Roman numerals. Entry into sporulation is characterized by the 

formation of axial filament in which two chromosomes from the last round of DNA 

replication become aligned across the long axis of the cell. As a next stage, a septum 

is formed at an extreme polar position.  
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Figure 23: The morphological stages of sporulation. 
Image is reprinted from (Stragier and Losick 1996). 
 
The stages are designated by Roman numerals. The wavy lines are chromosomes. The 
sporangia are surrounded by a cytoplasmic membrane (thin line) and a cell wall (thick 
line). The developing spore (stage IV-VI) is encased in a layer of cortex (light 
stippling) and a coat layer (dark stippling). The four specific sporulation sigma factors 
are shown in the cells where they become active. 

 

Following is the brief description of each stage. 

Stage 0 

This stage represents cells that have not entered the sporulation pathway. Upon 

starvation of nutrition, they slow down their growth rate, and shift to sporulation. 

Stage I 

This stage represents cells that have entered the pathway and formed an axial filament. 

Chromosomes are replicated, and they become aligned along the long axis of the cell 
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in a structure known as the axial filament. Levin and Losick (Levin and Losick 1996) 

found, with Spo0H mutant, that cells stop at the stage where specific asymmetric FtsZ 

ring  is formed. Levin thus proposed to define Stage 1 as when the ring is formed, and 

to change spo0H to spoIH (Levin and Losick 1996). CitC gene (structural gene of 

isocitric acid dehydrogenase, an enzyme of citric acid pathway) has only been 

reported (Jin et al. 1997), which fulfills the definition. 

Stage II 

This stage represents sporangia that have reached the stages of polar septation. 

Septum is formed from one side of asymmetric Z ring. The other Z ring, in turn, 

vanishes (Levin and Losick 1996; Pogliano et al. 1999). This asymmetric separating 

membrane makes cells segregated into two compartments; smaller one is called 

prespore, and becomes spore in future. 

Stage III 

This stage represents sporangia that have reached the stages of engulfment. The 

membrane is invaginated, and forms a forespore surrounded by mother cell. At this 

point, cell membrane is two-fold. 

Stage IV 

In the intermembrane space between the forespore and mother cell, a thin layer of 

peptidoglycan known as the germ cell wall is produced on the surface of the forespore 

membrane. This is followed by the synthesis of a thick layer of peptidoglycan known 

as the cortex, which is thought to be involved in attaining or maintaining the 

dehydrated and heat-resistant state of the spore. 

Stage V 

This stage represents cells in which spore coat deposits on the surface of forespore. 

Most of the constituent part are called spore coat proteins (cot; spore coat), and 

massively expressed in mother cell. In spore cell, on the other hand, various genes 
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such as ssp (Small acid Soluble Protein) are expressed specifically. This gene is to 

give spore resistant to ultra violet, and cells obtain the resistance at this stage. 

Stage VI 

In this stage, spores come to maturity, and obtain resistance to heat.  

Stage VII 

In this stage, spores separate from mother cell. 

 

From molecular viewpoint, on the other hand, there are number of factors involved 

during the stage transition, as summarized in Figure 24. To initiate sporulation, B. 

subtilis uses a phosphorelay system, which involves five sensory histidine kinases 

(KinA – KinE) that respond to various extracellular and intracellular signals (Piggot 

and Hilbert 2004). These kinases phosphorylated the sporulation initiation 

phosphotransferase Spo0F and the single-domain response regulator Spo0B, and the 

phosphoryl group is then passed on to the master regulator Spo0A. Spo0A, in turn, 

regulates large variety of factors, including sigma cascade – regulon of Spo0A was 

extensively investigated (Molle et al. 2003), by which totally 121 genes (organized as 

30 single-gene units and 24 operons) are likely to be under the direct control. 

 

To survive in rapidly changing environmental conditions, bacteria have evolved a 

diverse set of regulatory pathways that govern various adaptive responses (See (Smits 

et al. 2006) for review). Among them, Spo0A plays a key role, which subject to 

several autostimulatory loops, both at the transcriptional level and at the level of 

activation (Piggot and Hilbert 2004).  
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Figure 24: The sporulation cascade in Bacillus subtilis and selected clostridia.  

(image reprinted from (Paredes et al. 2005)) 
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MATERIALS AND METHODS  

 

PLASMIDS AND BACTERIAL STRAINS  

 
Bacterial strains used in this study are summarized in Table 7. The PspoVG-GFPuv 

reporter gene (encoding green fluorescent protein) was constructed as follows. The 

polymerase chain reaction (PCR) product containing the GFPuv structural gene was 

introduced into the EcoRV site of pHASH103 (Ohashi et al. 2003) using the TA-

cloning method; this generated pSHINE2192. Next, the PCR fragment containing the 

promoter sequence of the spoVG gene was amplified with the specific primer pair 

PspoVG-F (5'-GCCCGAAATGAAAGCTTTATGA-3') and PspoVG-R (5'-

GCATTAGTGTATCAATTCCACG-3'). Genomic DNA of B. subtilis 168 (laboratory 

stock) was used as a template. The PCR fragment was introduced into the SmaI site of 

pSHINE2192 by the TA-cloning method (Ohashi et al. 2003). The generated 

pSHINE2172 was introduced into BEST2131 (leuB::pBRTc) (Itaya 1993), generating 

BEST12008. BEST12007 and BEST12005 were constructed by transforming 

UOT1317 (sof1 spo0FΔ) (Hoch et al. 1985) and RIK3 (spo0H::pJ0H7d) (Jaacks et al. 

1989; Ohashi et al. 1999), respectively, using pSHINE2172. BEST12013 was 

constructed as follows. The cat gene of pHASH102 (Ohashi et al. 2003) was PCR-

amplified using the specific primer pair cat-F (5'-

CAGTAATATTGACTTTTAAAAAAGGATTG-3') and cat-R (5'-

GAAACCATTATTATCATGACATTAACC-3'), and introduced into the SmaI site of 

pRIK0Ed (Nanamiya et al. 2000). This yielded plasmid pRIK0Ed-cat, which was 

introduced into the genomic DNA of 168, yielding BEST12013. To obtain 

BEST12014, BEST12013 was transformed using BEST12008 genomic DNA. 

BEST12025 was constructed as follows. The promoter of the spo0E gene was PCR-

amplified with the specific primer pair Pspo0EF (5'-

CCTGGGTATTGTTCTTCTAATCCTATC-3') and Pspo0ER (5’-

GCTAAGAAATAGGAAACAAGTTTGATTGGG-3') and introduced into the SmaI 

site of pHASH103 (Ohashi et al. 2003), generating pST0E1. Next, the spo0E gene 
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was amplified by PCR using primer pair spo0ErandomF (5'-

ATGNNNNNNNNNNNNGGCGGTTCTTCTGAACAAGAAAGATTG-3') and 

spo0ER (5'-GGCCGCTATTTATTTGCATCATATGC-3') to attach the potential 

downstream elements that enhance translation efficiency (Ohashi et al. 2005). The 

fragment was introduced into the EcoRV site of pST0E1 and then introduced directly 

into the genomic DNA of BEST2136 (Itaya 1993). Transformants with various 

sporulation frequencies appeared on plates containing chloramphenicol, erythromycin, 

and tetracycline. A sporulation- defective mutant BEST12026 was isolated, and the 

mutant spo0E gene was designated spo0E102. To generate BEST12022, BEST12006 

was transformed using the genomic DNA of BEST12008.  

 

SPORULATION CONDITION  

 
B. subtilis cells were grown at 37°C in 2X SG medium containing 0.1% (w/v) D-

glucose (Leighton and Doi 1971). To synchronize the growth phase of the cells, the 

culture was diluted 10-fold when optical density at 660 nm (OD660) reached 0.5. The 

end of the logarithmic growth phase (T0) was defined as the point at which the culture 

reached the OD660 of 1.5. The sporulation fraction was defined in terms of colony-

forming units (CFU)/ml.  

MICROSCOPY AND DATA PROCESSING  

 
An aliquot (approximately 20 μl) of the culture at the sporulation phase was briefly 

centrifuged and the supernatant was removed. Cells were washed once in MilliQ 

water and resuspended in 2 μl of component A of SlowFade-Antifade Kits (Molecular 

Probes, Inc., OR). A 1 μl aliquot of the cell suspension was inoculated onto an 

agarose layer on the glass slide and covered with a coverslip. Microscopic analyses 

were done using an AxioskopMOT 2 microscope (Carl Zeiss, Göttingen, Germany) 

and a CoolSNAP fx CCD camera (Roper Scientific, Inc., Arizona, USA). To detect 

the fluorescence of GFPuv, Filter Set 17 (Carl Zeiss) was used. The images were 
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taken 40 seconds after excitation by UV. The fluorescence intensity of individual cells 

was calculated using MetaMorph Ver. 4.6 software (Universal Imaging, Co., PA).  

 

INSTRUMENTATION  

 

All CE-TOFMS experiments were performed using an Agilent CE Capillary 

Electrophoresis System G1600A (Agilent Technologies, CA), and an Agilent TOFMS 

System G1969A. For system control and data acquisition we used the G2201AA 

Agilent ChemStation software for CE and the Analyst QS for Agilent TOFMS 

software.   

 

CE-TOFMS CONDITIONS FOR CATION  

 

Separations were carried out on a fused silica capillary (50 μm i.d. x 100cm total 

length) using 1M formic acids. Sample was injected with a pressure injection of 50 

mbar for 3 sec. The applied voltage was set at +30 kV. Sheath Liquid was prepared as 

50% MeOH/Water. For TOFMS, ions were examined successively to cover the whole 

range of m/z values from 50 through 1000. Fragmentor voltage was set to 75 V. 

Skimmer voltage was set to 50 V. Oct RFV was set to 125 V. Capillary voltage was 

set to 4000 V.  

 

CE-TOFMS CONDITIONS FOR ANION  

 

Separations were carried out on a fused silica capillary (50 μm i.d. x 100cm total 

length) using 50 mM ammonium acetate (pH8.5). Sample was injected with a 

pressure injection of 50 mbar for 30 sec. The applied voltage was set at -30 kV. 
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Sheath Liquid was prepared as 5 mM ammonium acetate 50% MeOH/Water. For 

TOFMS, ions were examined successively to cover the whole range of m/z values 

from 50 through 1000. Fragmentor voltage was set to 100 V. Skimmer voltage was set 

to 50 V. Oct RFV was set to 200 V. Capillary voltage was set to 3500 V.  

 

DATA PROCESSING  

 

Peak extraction was carried out using our proprietary software. Peak preprocessing 

was performed using P-BOSS/AIC (Morohashi et al. 2007), using Excel 2003 

(Microsoft, WA, U.S.A.). Mathematical simulation was conducted using XPP-AUTO 

(Ermentrout 2002). Statistical analyses were performed via MATLAB (Mathworks, 

MA, U.S.A.). 

RESULTS AND DISCUSSION  

 

FEEDBACK COEFFICIENTS MODULATE THRESHOLD OF SPORULATION SWITCH  

 

In cells initiating sporulation, the expression of spo0H encoding sporulation-specific 

σH is induced by a reduction in the AbrB level (Figure 25). The RNA polymerase that 

contains σH (RNAP-σH) stimulates the expression of phosphorelay components, kinA, 

spo0F, and spo0A, which constitute multiple points of positive-feedback loops. 

Negative-feedback regulation is also found in B. subtilis phosphorelay. The 

expression of the spo0E gene encoding the Spo0A~P-specific phosphatase is induced 

by a reduction in the AbrB level at sporulation onset (Perego and Hoch 1991). It has 

been suggested that this is a solo system that negatively regulates phosphorelay as a 

feedback loop (Perego and Hoch 2002).  
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Figure 25: Schematic representation of the phosphorelay network in B. subtilis.  
The diagram is illustrated by CellDesigner 3.5.1 (The Systems Biology Institute, 
http://celldesigner.org, (Funahashi et al. 2003)), and the notation follows that 
proposed by Kitano (Kitano et al. 2005). The networks downstream of AbrB are 
simply categorized into positive and negative feedback loops, where red line represent 
positive feedback regulation, and blue line represents negative feedback regulation.   
 

To see the impact of balance of positive- and negative-feedback loops to the system, 

we built a mathematical model. This process is thought to be driven stochastically and 

activated in cells in which the level of Spo0A~P exceeds the threshold (Chung et al. 

1994; Chung and Stephanopoulos 1995; Maughan and Nicholson 2004; Fujita et al. 

2005). Sporulation stimuli induced by nutrient starvation is substantially unidentified, 

but the amount of stimulus is defined by the level of Spo0A~P. The behavior of the 

bistable memory module is mathematically explained by introducing feedback 

coefficients (Xiong and Ferrell 2003). This introduction allows representation of the 

accumulation of Spo0A~P via the phosphorelay of B. subtilis by the equation:  
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where [A] denotes the concentration of Spo0A~P, φ is the sporulation signal intensity 

that cells can receive from the environment, and fP and fN represent the feedback 

coefficients for positive and negative, respectively. kP and kN are the concentration of 

Spo0A~P for a half-maximum response for the feedbacks. n denotes the Hill 

coefficient for positive feedback, and m is the order of negative feedback. Since the 

magnitude of the negative feedback is represented by the combination of the 

enzymatic activity of Spo0E and the concentration of Spo0E (both terms are 

represented by Michaelian hyperbola), we assumed the order m = 2. kinact is the 

coefficient of spontaneous dephosphorylation of Spo0A~P. The first term of equation 

1 represents the positive-feedback loop of Spo0A~P synthesis that is cued by 

sporulation signal φ. Second and third terms represent the negative-feedback loop of 

the system and spontaneous dephosphorylation of Spo0~P, respectively. 

 

To see the dynamics of the model, we first derived nominal values of each parameter 

based on subpopulation ratio. By assuming that the intensity of the sporulation signal 

reflects a Gaussian distribution, the relationship between r and the expected scale of 

the sporulating subpopulation can be computed. The relationship between the 

sporulation signal intensity and the cell number, Yφ, is computed as Gaussian and is 

represented as  
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where φ is mean, and σ is the standard deviation. The mean intensity of sporulation 

signal is assumed to be 0.5, and σ to vary between 0.1 to 10. For each sigma value, 

transition of subpopulation of non-sporulating was calculated. The results are shown 

in Figure 26, clearly indicating that the feedback coefficient r = fN/fP significantly 

affects the sporulation ratio. This result suggests that subtle feedback regulation may 

be critical to generation of both subpopulations; otherwise either a sporulating or non-

sporulating population only would be generated. From our observation of the fraction 
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of sporulating individuals (53%, see Figure 28(A) and (D)), we suggest that r = 0.5 is 

the nominal value of the feedback coefficient.  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 26: Dependency of sporulation rate upon the feedback coefficients. 
Triangles: r = 0.1, squares: r = 1, diamonds: r = 10. 
 
 

Table 6: Parameter values used in this study. 

Symbol Description Value 

[A]int Initial concentration of Spo0A~P 40 nM

fP Positive feedback coefficient 60 nM/s

fN Negative feedback coefficient 30 nM/s

kP 

Conc. of Spo0A~P required for a half-maximum 

response of positive feedback 20 nM

kN 

Conc. of Spo0A~P required for a half-maximum 

response of negative feedback 1 nM

kinact Spontaneous dephosphorylation of Spo0A~P 0.001 nM

n Hill coefficient of positive feedback 2

m Hill coefficient of negative feedback 5
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Figure 27: Behavior of the sporulation-decision system upon simulation.  

(A) Bifurcation diagram of the concentration of Spo0A~P against the sporulation 
signal. The curve in the middle represents characteristics under nominal parameter 
values, corresponding to the wild-type. The left side curve represents that obtained 
when negative feedback was completely removed; that is, r = 0. The right side curve 
represents that when the negative feedback coefficient was doubled. The circle 
represents the threshold point of signal intensity and the two shaded regions the 
parameter space where cells underwent sporulation (upper region) or non-sporulation 
(lower region), which is dependent on the level of Spo0A~P. Given that the 
sporulation signal intensity is represented by a dotted line in the center, the wild-type 
could yield either a low or high level of Spo0A~P, presumably via stochastic 
fluctuation of the signal (Maughan and Nicholson 2004). Removing negative 
feedback results in a consistently high level of Spo0A~P, whereas doubling the 
feedback results in a consistently lower level, yielding only sporulating/non-
sporulating subpopulations, respectively. (B and C) A bifurcation diagram obtained 
by varying the sporulation signal and either feedback signal. Dotted lines indicate the 
parameter space of nominal values: (B) negative and (C) positive coefficient.  
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The other parameter values are listed in Table 6. The sporulation signal intensity φ is 

changed between 0-1. The dynamics of the model was examined, and the result is 

shown in Figure 27. The amount of stimulus φ required for switching increases as the 

ratio of the strength of the negative- and positive-feedback loops r = fN/fP increases. 

Comparing the system characteristics by varying the feedback coefficients (fN and fP) 

revealed that as the value of fN increased, the bistability region shifted its operating 

region dramatically toward a larger region against the sporulation signal (Figure 

27(B)), while fP did not change its operating region sufficiently (Figure 27(C)). These 

findings indicate that negative feedback, which is achieved by expression of the 

spo0E gene, primarily modulates bistability behavior.  

While our model is simple and rather phenomenological one, it is suggested that the 

whole population of B. subtilis is divided into two subpopulations (i.e., sporulating or 

non-sporulating). Improvement of model structure will enable us to analyze the 

system dynamics further in detail. It is interesting to see that whether adding detail 

mechanisms on feedback system enhances robustness of the system to generate 

bistability, as suggested in previous chapter (Morohashi et al. 2002). In particular, 

Veening and colleagues (Veening et al. 2005) reported that autostimulation of Spo0A 

should be critical to generate bistability of sporulation, elucidating the dynamics by 

embedding the autostimulation loop will provide us further insight into the 

sporulation mechanisms.  
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Figure 28: Effects of phosphorelay-associated mutations at sporulation onset.  
(A to C) Microscopic images of the population distribution of phosphorelay-
associated mutants. Wild-type and mutants harboring the PspoVG-GFPuv reporter 
gene were grown under sporulation conditions and observed under a microscope at T3. 
Green fluorescence and phase-contrast images were inverted and overlaid. (D to F) 
Distribution of sporulating and non-sporulating subpopulations. The fluorescence 
intensity of single cells was measured under a fluorescence microscope. Histograms 
show fluorescence data obtained from more than 300 cells. (A and D) Wild-type 
(BEST12008), (B and E) sof1 spo0FΔ (BEST12007), and (C and F) Pspac-spo0H 
(BEST12005). For BEST12005 only we added 1 mM IPTG to the medium at T0. NS 
and S indicate non-sporulating and sporulating subpopulations, respectively. 
 

 

FORMATION OF PHENOTYPIC HETEROGENEITY IN STARVED B. SUBTILIS POPULATION  

 
Here we demonstrate experimentally that wild-type cells at the sporulation phase are 

distributed into two subpopulations (Figure 28(A), (D)). To detect the sporulating 

subpopulation we employed PspoVG-GFPuv transcriptional fusion read by RNAP-σH at 

the onset of sporulation. Under that condition, approximately 50% of the wild-type 
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cells sporulated at 3 hours after the end of the vegetative phase (T3). The decision to 

sporulate is intrinsic to individuals and not affected by other surrounding cells (Figure 

28(A)). These results indicate that the non-sporulating subpopulation emerged upon 

receiving the fluctuated signal input and then was actively regulated by congenital 

systems. This is known as polyphenism (Nijhout 2003). We also investigated the 

function of the phosphorelay pathway on behavior by using strains that harbor sof1 

spo0FΔ (BEST12007) and Pspac-spo0H (BEST12005). In BEST12005, the expression 

of spo0H is regulated by the Pspac promoter and induced by the addition of isopropyl-

β-D-galactopyranoside (IPTG) to the medium (Jaacks et al. 1989). As expected, a 

monostable, Gaussian-like distribution of the population was observed in cultures of 

BEST12005 (Figure 28(C), (F)). This finding excludes the possibility that the bistable 

behavior of wild-type populations is generated in unsynchronized cultures. In 

BEST12007, the sof1 mutation in spo0A accelerates the phosphorylation of mutated 

Spo0A protein directed by KinC (Quisel et al. 2001) and yields tolerance for 

dephosphorylation by Spo0E (Stephenson and Perego 2002), resulting in a 

curtailment of the phosphorelay pathway. This strain also showed a Gaussian-like 

distribution of the sporulating population (Figure 28(B), (E)), indicating that the 

phosphorelay pathway is the one critical for the bimodal distribution of sporulating 

cell populations, yielding sporulating subpopulation in a genetically identical B. 

subtilis society.  

The function of Spo0E in polyphenism, which is suggested in our mathematical 

model (Figure 27), was demonstrated by using BEST12014 (spo0E::cat) in which the 

negative-feedback loop by spo0E is destroyed (r = 0 in our model). In that strain, 

distribution is excessively biased toward the sporulating subpopulation at T3 (Figure 

29(A), (C)), resulting in sporulation of more than 95% of the cells. This was 

consistent with the sporulation frequency at T24. Next we constructed a strain that can 

highly produce the Spo0E protein. Strain BEST12026 harbors the spo0E102 mutation 

that contains an ideal ribosome-binding site and a strong downstream element (Ohashi 

et al. 2005). In BEST12026, the scale of the sporulating subpopulation at T3 was less 

than 5% (Figure 29(B), (D)). These results were anticipated by our mathematical 
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model for phosphorelay (Figure 27) and indicate that the negative-feedback regulation 

by Spo0E is a gearbox for modulating the sporulating subpopulation.  

 

 

 

 

 

 

 

 

Figure 29: Effects of phosphorelay-associated mutations at sporulation onset.  

 (A and B) Microscopic images of the population-distribution of phosphorelay-
associated mutants. Wild-type and mutants harboring the PspoVG-GFPuv reporter 
gene were grown under sporulation conditions and observed under a microscope at T3. 
Green fluorescence and phase-contrast images were inverted and overlaid. (C and D) 
Distribution of sporulating and non-sporulating subpopulations. The fluorescence 
intensity of single cells was measured under a fluorescence microscope. Histograms 
show fluorescence data obtained from more than 300 cells. (A and C) spo0E::cat 
(BEST12014), (B and D) spo0E102 (BEST12022). NS and S indicate non-sporulating 
and sporulating subpopulations, respectively. 
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Table 7: Bacterial strains used in this study. 

Strain Relevant genotype 
Reference 

and notes 

BEST2131 spo0A+ spo0E+ spo0F+ spo0H+ leuB::pBRTc  
(Soga et al. 

2003) 

BEST12008 spo0A+ spo0E+ spo0F+ spo0H+ leuB::pBR::erm-PspoVG-GFPuv  This study 

BEST12007 sof1 spo0E+ spo0FΔ spo0H+ leuB::pBR::erm-PspoVG-GFPuv  This study 

BEST12005 spo0A+ spo0E+ spo0F+ spo0H::pJ0H7d leuB::pBR::erm-PspoVG-GFPuv  This study 

BEST12013 spo0A+ spo0E::cat spo0F+ spo0H+  This study 

BEST12014 spo0A+ spo0E::cat spo0F+ spo0H+ leuB::pBR::erm-PspoVG-GFPuv  This study 

BEST12022 spo0A+ spo0E+ spo0F+ spo0H+ leuB::pBR::cat-Pspo0E-spo0E102  This study 

BEST12026 
spo0A+ spo0E+ spo0F+ spo0H+ metB::pBR::cat-Pspo0E-spo0E102  

 leuB::pBR::erm-PspoVG-GFPuv proB::pBRBS 

This study 

BEST12033 spo0A+ spo0E::cat spo0F+ spo0H+ leuB::pBRTc  This study 
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DISTINCT METABOLOME PROFILES AMONG SPORULATION STAGES.  

 

To investigate the effects of population heterogeneity on omics data, we demonstrated 

the variation of metabolome data in wild type (spo0E+), spo0E::cat (spo0E-), and 

spo0E102 (spo0E++) strains. The detailed mechanisms and association between 

activities of the metabolic pathway and sporulation remain relatively unknown 

(Dworkin and Losick 2001), compared to genetic and protein level analyses. All 

inactivating mutations in B. subtilis Krebs cycle genes cause a defect, and terminate at 

certain stages during sporulation (see (Sonenshein 2002) for a review). Phosphorelay 

of Spo0A~P is thought to be controlled by the Krebs cycle, but a detailed 

metabolomics approach has yet to be performed. By comparing wild-type and sdpC 

knockout strains, Gonzalez-Pastor et al. reported that ATP synthase is strongly 

expressed during sporulation (Gonzalez-Pastor et al. 2003). This suggests a link 

between energy metabolism and the sporulation signaling pathway. We previously 

conducted metabolome analysis in wild-type B. subtilis, confirming that most 

glycolysis metabolites are markedly decreased in the early stage of sporulation (Soga 

et al. 2003). However, we did not compare the metabolic profiles of sporulation-

deficient strains, thus making it difficult to determine which pathways are critical or 

which metabolites are strongly correlated to sporulation activities. Recently, the 

relationships between branched-chain amino acids and CodY were revealed 

(Ratnayake-Lecamwasam et al. 2001; Shivers and Sonenshein 2004; Sonenshein 

2005). CodY protein controls more than one hundred genes that are induced when 

cells experience nutrient deprivation. GTP and isoleucine independently and 

additively increase the affinity of CodY toward its target sites, resulting in activation 

of its repressor function. To obtain more details on the metabolic profiles during 

sporulation, i.e., to obtain a better understanding of the metabolic pathway as a whole, 

we therefore conducted metabolome analysis based on CE-TOFMS (Soga et al. 2003). 

We employed three strains carrying various spo0E alleles in their genomes: 

BEST2131 (wildtype), BEST12022 (spo0E102), and BEST12033 (spo0E::cat). The 

genetic background of these strains is trpC2 and leuB::pBR, resulting in L-tryptophan 
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and L-leucine auxotrophy. The growth characteristics of the strains were equivalent in 

2x SG sporulation medium including 0.1% (w/v) of D-glucose (Figure 30). Each 

strain was sampled at four time points, T-0.5, T0, T1.5, and T3, relative to the end of the 

logarithmic growth phase. These time points approximately correspond to the middle-

logarithmic phase, transition phase, the time when the final symmetric septation 

is completed, and the time when sporulation-specific asymmetric septation is 

completed in wild-type cells, respectively. We prepared metabolome extracts 

and performed CE-TOFMS analysis (see Materials and Methods). 

To demonstrate whether each strain can be characterized independently by its 

metabolic profile, we performed PCA using the metabolome data, as is frequently 

conducted against omic data (Raamsdonk et al. 2001). We first selected the signals 

that were significantly different among the three strains by employing one-way 

ANOVA under a 5% significant level; it resulted in extracting 94 metabolites, which 

were then used for PCA. Due to aberrant peak shape, in some cases, our software 

cannot detect peaks, causing to have missing values. In order to avoid contamination 

of the missing peaks, the 94 peaks were extracted from the peaks which are 

automatically detected over all experiments, resulting in selection of peaks in very 

strict manner. Improvement of software and measurement technology will have 

higher accuracy of peak extraction, and will lead to characterize metabolic profiles in 

more detail. As shown in Figure 31(A), the phase transitions could be clearly traced 

within the three-dimensional principal component spaces. Intriguingly, we found that 

BEST12033 (spo0E-) at T-0.5 was not explicitly discriminated from that at T0. This 

result indicates that the metabolic state during the logarithmic growth phase is similar 

to that at transition phase in BEST12033 (spo0E-). This may be due to the function of 

Spo0E phosphatase not only at sporulation onset, but also in the logarithmic phase, 

i.e., Spo0A~P, which is slightly generated during the vegetative phase, is canceled by 

the positively-regulated spo0E product, inhibiting the initiation of sporulation. 

However, at present this hypothesis is no more than speculation. Because the 

cumulative contribution up to the third principal component was approx. 70%, up to 

the third principal component may not be still enough to capture the full 

characteristics of the sample. However, all other samples except BEST12033 (spo0E-) 



 

 

98

exhibited distinct results at T-0.5. As depicted in Figure 31 (B) and (C), the three 

samples were clearly discriminated at T1.5 and T3, indicating that their metabolic states 

are clearly different at the onset of sporulation. We concluded that this was due to the 

population heterogeneity of sporulating wild-type cells; the metabolic profiles of 

wild-type cells may mislead our interpretation. To investigate the sporulating/non-

sporulating subpopulations in a more distinct manner, we compare extreme cases 

hereafter (i.e., BEST12022 and BEST12033).  

 

 

 

 

 

Figure 30: Growth curve of examined strains.  

Representative data from 3 samples is shown. spo0E+ (closed circles), spo0E::cat 
(open squares), and spo0E102 (open triangles). Sampling points (T-0.5, T0, T1.5, and T3) 
are indicated by arrows. 
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Figure 31: The metabolic state of sporulating B. subtilis.  

(A) A three-dimensional principal component plot of the metabolome profiles of the 
sporulating spo0E variants (n = 3). Transition of the metabolic profiles of the three 
examined strains is indicated by arrows. (B and C) Two-dimensional principal 
component plots at T1.5 (B) and T3 (C). Dark blue, BEST2131 (spo0E+); light blue, 
BEST12033 (spo0E::cat); orange, BEST12022 (spo0E102). 
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ENERGY METABOLISM EXHIBITS DISTINCT FEATURES UPON SPORULATION 

 

Sporulation is initiated by deprivation of nutrients such as carbon, nitrogen, and 

phosphate sources. Further, under our experimental conditions, the glucose level in 

the medium was considered an important factor controlling the initiation of 

sporulation, since the addition of more than 0.5% (w/v) D-glucose efficiently inhibited 

sporulation (data not shown). We therefore expected glucose utilization pathways 

including glycolysis, the Krebs cycle, and the pentose phosphate pathway 

to drastically fluctuate at sporulation onset. The overall metabolome profiles are 

depicted in Figure 33. Intracellular levels of metabolic intermediates, especially 

fructose-1,6-bisphosphate (F1,6P) and acetyl CoA, were reduced upon sporulation 

onset (Figure 33). This suggests that the glycolysis pathway is activated during 

growth phase by the aggressive use of glucose. This is consistent with the data 

obtained in our previous report (Soga et al. 2003). Significant differences were 

observed in lactic acid levels between the two spo0E variants. In BEST12033  

(spo0E-), the intracellular level was higher than that in BEST12022 (spo0E++) 

throughout cultivation, suggesting that trace amounts of Spo0A~P accumulated in 

vegetative BEST12033 (spo0E-) cells likely activate the glycolysis pathway. In the 

Krebs cycle, on the other hand, different profiles were obtained for intermediate 

metabolites (Figure 33). In particular, the metabolism pathway seemed significantly 

altered after the initiation of sporulation. In both spo0E variants, citrate levels were 

drastically increased after T0, but not generated until T0. This observation suggests 

that the Krebs pathway, which is dormant during the logarithmic growth phase, is 

activated at stationary phase when environmental glucose is spent. Behavior of the 

downstream pathway of citrate was also different between the two strains; 2-

oxoglutararic acid was highly accumulated in sporulating BEST12033 (spo0E-). This 

result suggests that metabolism, at least that involving 2-oxoglutaric acid in the 

Krebs cycle, is required for metabolic differentiation towards sporulation. Inactivation 

of citrate synthase and aconitase, which catalyze this metabolism, results in a 

sporulation-deficient phenotype at early stages of sporulation (Sonenshein 
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2002). Nitrogen metabolism is also considered a key factor in sporulation, because the 

pathway from 2-oxoglutaric acid to glutamine via glutamic acid is the solo acceptor of 

ammonium ions. Metabolite levels of glutamine, as well as that of purines, were also 

shown to increase after T1.5. The downstream metabolites of 2-oxoglutaric acid, 

succinic acid, fumaric acid, and malic acid, were highly accumulated 

in stationary BEST12022 (spo0E++). This observation suggests that the latter pathway 

of the Krebs cycle is blocked or rapidly circulated in sporulating BEST12033  

(spo0E-).  

 

CHANGES IN THE ENERGY CHARGE STATE DURING SPORULATION 

 

In sporulating BEST12033 (spo0E-), we could not decide whether or not the latter 

steps of the Krebs cycle were activated. If activated, ATP should be generated by an 

electron transfer system using NAD(P)H. We therefore determined the levels of 

phosphorylated adenosine (AXP) during sporulation (Figure 32). Unexpectedly, 

sporulating cells (BEST12033, spo0E-) exhibited a dramatic increase in ATP levels, 

while non-sporulating cells (BEST12022, spo0E++) decreased its level after T1.5. 

These results strongly support the data of Gonzalez-Pastor et al. (Gonzalez-Pastor et 

al. 2003) who showed, from a metabolite viewpoint, that ATP synthase is strongly 

expressed upon sporulation. It was previously reported that ATP remains 

approximately constant during the sporulation process; however, this conclusion was 

based on the outcomes of observations using a wild-type strain, which generates 

heterologous culture of both sporulating and non-sporulating cells. If these distinct 

features discriminate between sporulating/non-sporulating cells, our results suggest 

that this past study presented the average results of both subpopulations, thus 

canceling out the sporulation/non-sporulation effect.  
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Levels of phosphorylated guanosines (GXP) were also determined (Figure 32) since a 

decrease in GTP is thought to trigger sporulation (Beaman et al. 1983). We observed a 

decrease in GTP at T0, as well as a decrease in inosine-5'-phosphate (IMP) at the same 

time. The GTP level increased at T3 only in BEST12033 (spo0E-), supporting 

ATP production at the onset of sporulation. This result indicates that sporulating cells 

accumulate energy to prepare for the energy-consuming process of spore formation. 

Intriguingly, several nucleotides (AMP, ADP, GMP, and GDP) increased transiently 

at T0 in both strains. It would therefore be interesting to examine whether their 

transient activities, in addition to that of GTP, are linked to the initiation of 

sporulation.  

 

 

 

 

 

 

Figure 32: Metabolic profiles of nucleotides.  

White bars, BEST12033. Grey bars, BEST12022. 
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MOST AMINO ACIDS ARE INDEPENDENT OF THE SPORULATION PROCESS 

 

All amino acids except for cysteine, which was under the detection limit, were 

categorized according to their transition characteristics. The results are summarized in 

Table 8. Most amino acids exhibited similar characteristics when comparing the two 

strains. An association between branched-chain amino acids (e.g., isoleucine, leucine 

and valine) and CodY, a GTP-binding protein, has been shown (Molle et al. 2003). In 

BEST12033 (spo0E-), valine (but not isoleucine) exhibited distinct characteristics 

compared with BEST12022 (spo0E++). That is, its level increased transiently at T0 

then dropped again, which is consistent with the finding that CodY directly targets its 

biosynthesis (Ratnayake-Lecamwasam et al. 2001; Shivers and Sonenshein 2004; 

Sonenshein 2005). Asparagine and glutamine are nitrogen-rich amino acids and 

central components of nucleic acid production. It is suggested that in combination 

with the nucleotide results, i.e., the massive generation and thus accumulation, the 

increased levels of these amino acids may be attributed to sporulation preparation. 

 

 

 

 

 

 

 

 

 



 

 

104

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Metabolic profiling of B. subtilis.  

Average (+ standard deviation) were represented. Red; spo0E::cat. Blue; spo0E102. 
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Table 8: Clustering of amino acids.  

Each amino acid is categorized into 5 classes, depending on tendency of time series 
profiles. I: Increase during sporulation transition and decrease; II: Decrease; III: 
Decrease during sporulation transition and increase; IV: Increase; and V: No change. 
Amino acids exhibiting different profiles were highlighted as grey area. 
 
        

Amino acid Spo0Ed SpoEh Pathway 

Ser I V Glycolysis 

Val I IV Glycolysis 

Ala II II Glycolysis 

Gly IV IV Glycolysis 

Leu II II Glycolysis 

Trp III III Pentose 

His I I Pentose 

Phe IV IV Pentose 

Tyr IV IV Pentose 

Asp IV I Krebs 

Gln IV I Krebs 

Pro IV V Krebs 

Arg III III Krebs 

Asn I I Krebs 

Ile II II Krebs 

Lys IV IV Krebs 

Met IV IV Krebs 

Thr II II Krebs 

Glu V V Krebs 
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CONCLUSION 

 

We investigated the mechanism of heterogeneity during sporulation in wild-type B. 

subtilis. Using simulation and modeling techniques, we found that negative feedback 

is a primary modulating factor in the bistability of sporulation, which is directly 

affected by the spo0E gene. We then confirmed these results experimentally by 

deleting/overexpressing spo0E. The findings mathematically support the proposals 

suggested in previous reports (Veening et al. 2005), and suggest that population 

heterogeneity should be considered in omics studies including transcriptomics, 

proteomics, and metabolomics. 

In addition, we also examined the sporulation stages by metabolome analysis. To 

investigate the sporulating and non-sporulating stages in a distinct manner, we used 

the mutants mentioned above (i.e., BEST12033 and BEST12022) and compared 

transition of metabolite levels. As a result, we found that metabolism was 

significantly different among each stage regardless of whether the population was 

sporulating or non-sporulating. Although we need to further investigate each 

metabolite in detail, this study provides enormous information suggesting links 

between metabolome activities and spore formation. The inclusion of additional 

mutants (such as spo0A) will provide further insight into the molecular mechanisms 

of sporulation as well as cell differentiation.  

 



 

 

CHAPTER 6: CONCLUSION 

 

 

 

We ourselves feel that what we are doing is just a drop in the ocean. But 

the ocean would be less because of that missing drop. 

—  Mother Teresa 

 

 

 

 

In this thesis, we developed methods for various analyses toward system level 

understanding of life. Owing to recent advances of numbers of measurement 

technologies, we are now encountering unexpected and astounding results from 

biological systems. To fully utilize those cutting edge technologies, however, analysis 

workflow and infrastructure must be appropriately developed. We developed methods 

and tools, and applied to simulation analyses. Furthermore, combination of omics 

approach and simulation approach enabled us to get further insight into biological 

mechanisms. 
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SUMMARY OF RESULTS 

 

DEVELOPMENT OF ANALYSIS TOOLS AND METHODS 

 

In order to utilize top-down/bottom-up approaches in efficient manner, various 

methods and tools were developed. 

First, CellDesigner was designed and developed for modeling and simulation purpose. 

As general purpose drawing tools (such as Adobe Illustrator) achieved, basic 

biological models could be drawn easily without having any mathematical knowledge. 

Further enhancement of the models is possible by embedding reaction rules, 

mathematical equations, which are then saved as a file in SBML format. SBML files 

can be imported to over 110 software tools for further analyses, but CellDesigner has 

now capability to directly invoke simulation tools. CellDesigner thus could be a 

suitable medium to work on simulation and other analyses. In addition, the employed 

notation in CellDesigner is rigidly defined ((Kitano et al. 2005), now underway to be 

defined as SBGN (Systems Biology Graphical Notation)), models themselves could 

be used as presentation materials or visual models as well. 

Second, to efficiently process metabolome data, a filtering method P-BOSS was 

developed. The method was developed to minimize unnecessary filtering so that as 

much as peaks can be left for further analyses. Combining with outlier detection 

method, P-BOSS showed superior performance to traditional method. The method is 

now used as a default method along analysis workflow in Human Metabolome 

Technologies.  
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APPLICATION TO BIOLOGICAL MODELS 

 

The above methods and tools were applied to investigate two models; that is, 1) cell 

cycle model in Xenopus, and 2) sporulation mechanisms in B. subtilis.  

The former research compared two models, representing cell cycle of Xenopus. On 

the assumption that biological models have gained their evolvability toward getting 

robustness against various environmental stimuli, robustness was used as a measure to 

validate plausibility between models. The two models were different in their 

abstraction level, feedback mechanisms were phenomenologically modeled at one 

hand, and detail molecular level mechanisms were embedded at the other hand. As the 

results, the latter model showed more robustness against various kinetic parameters, 

suggesting that as the model is refined as more detail of molecular mechanisms are 

known, which leads to obtain robustness, which is analogous to how biological 

systems evolved.  

On the other hand, the latter approach analyzed sporulation mechanism in B. subtilis 

by building a mathematical model and experimentally verified. Besides, metabolome 

analyses were performed to see the mechanism from omics standpoint. As the results, 

energy metabolism exhibited significant difference between sporulating and non-

sporulating cells, suggesting close link between metabolism and sporulation. This 

approach enabled us to capture fundamental mechanism of sporulation, as well as 

showing dynamics of metabolic pathway to see phenomena from other direction. The 

omics data could thus be used not only from information retrieval viewpoint, but also 

from complement understanding of phenomena from systems biology perspectives.  

The former analysis, using cell cycle model in Xenopus, is rather methodology 

research, and thus could be applied to the latter model, although we have not 

performed the analysis due to lack of detail data.  
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FUTURE DIRECTIONS 

 

ISSUES IN SYSTEMS BIOLOGY 

 

As Kitano mentioned in (Kitano 2002), a system-level understanding of a biological 

system can be derived from insight into four key properties. To quote them, 

1. System structures. These include the network of gene interactions and 

biochemical pathways, as well as the mechanisms by which such interactions 

modulate the physical properties of intracellular and multicellular structures. 

2. System dynamics. How a system behaves over time under various conditions can 

be understood through metabolic analysis, sensitivity analysis, dynamic analysis 

methods such as portrait and bifurcation analysis, and by identifying essential 

mechanisms underlying specific behaviors. Bifurcation analysis traces time-

varying change(s) in the state of the system in a multidimensional space where 

each dimension represents a particular concentration of the biochemical factor 

involved. 

3. The control method. Mechanisms that systematically control the state of the cell 

can be modulated to minimize malfunctions and provide potential therapeutic 

targets for treatment of disease. 

4. The design method. Strategies to modify and construct biological systems having 

desired properties can be devised based on definite design principles and 

simulations, instead of blind trial-and-error. 

Our approach in this thesis is to focus on 1 and 2 among four properties. Even 

microorganisms, such as E. coli and B. subtilis, have still huge numbers of black box 
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in regulation mechanisms, although they have been extensively investigated from 

molecular to physiology level.  

The questions in our research, for example in sporulation mechanism, are followings: 

1. Which factors are the keys to determine if they should proceed to sporulate or 

not? 

2. Which network is the significant module to generate bistability? 

3. How did the bistability evolve? Do we human have similar strategy to survive? 

4. How can we control the system to tightly and quantitatively determine the 

sporulation ratio (e.g., decrease sporulation rate to 7.5%)? 

5. How can we design a system, having robust bistable characteristics? 

The questions above are just few examples of what has come to our mind at the 

moment. As the network and relevant components are revealed, we may be able to 

answer the questions completely. It should be matter of time. 

 

SYSTEMS BIOLOGY IN INDUSTRIES 

 

Systems biology approach is getting paid attention from wide spectrum of fields, 

including pharmaceutical and medical fields. For example, simulation approach has 

now reflected by founding companies, particularly in the United States region. To cite 

few of them: 

• Gene Network Sciences, Inc. (http://gnsbiotech.com) 

• Entelos, Inc. (http://entelos.com) 

• Genomatica, Inc. (http://genomatica.com) 
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All companies above are working on simulation based approach (although Gene 

Network Sciences is now shifting toward knowledge inferring methodology from 

large scale data). They have already started collaborating research with various 

pharmaceutical companies, or food production, fermentation-based companies. It 

should be note that there are demands from such industries, suggesting that they are 

looking for another approach other than traditional approaches.  

Among them, Genomatica is focusing on metabolomics research. Their basic business 

model is to apply metabolic analysis (e.g., flux balance analysis (see (Schilling et al. 

1999; Schilling et al. 2000) for example). Although their premise is limited at some 

point, theory itself is rigidly established and have a long history in the field, thus their 

business may interests companies utilizing metabolome data.  

While simulation based approach has emerged recently, and still at the dawn of 

systems biology, omics approach is now widely applied not only in academic field, 

but also in medical, or pharmaceutical fields. Genome based drug discovery is the 

perfect example. In contrast to past traditional methodology, with almost random and 

extensive screening of potential targets, or looking various receptors drug discovery 

starts from looking into genome. The functions in the genome can be obtained from 

other omics data such as transcriptome, proteome, and metabolome data. Once 

potential functions of targets are found, next stage comes up using combinatorial 

chemistry, or high throughput screening. These processes enable researches to be 

rationale and cost effective, and are expected to boost personalized medicine.  
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FINAL REMARKS 

 

It is said for many years recently that “understanding life” is a grand challenge (or 

could be ultimate goal!) for us human, and cannot be achieved without involving wide 

variety of background professionals; those could be biologist, mathematicians, 

computer scientist, electrical engineers, analytical chemists, and so forth.  

We believe that this work significantly contributes to the research in system biology 

field, enabling researchers to handle data and analyze in efficient manner, or even 

provide insight into analyzing approach. 
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