
A Study on

a Multitasking Environment for

Dynamically Reconfigurable Processors

VU MANH TUAN

A dissertation submitted in partial fulfillment of

the requirements for the degree of

D  P

School of Science for Open and Environmental Systems

Graduate School of Science and Technology

Keio University

2009

Preface

This thesis presents fundamental work in the area of multitasking on dynamically reconfigurable

processors. The main objective is to investigate necessary mechanisms in order to build a true multi-

tasking execution environment on such devices.

Reconfigurable devices promise to be a valuable alternative to conventional computing devices

such as general-purpose processors and application specific integrated circuits. The hardware circuit

of reconfigurable architectures is not static but adapted to the target applications at the run time.

Through dynamic hardware customization, reconfigurable architectures potentially achieve a better

performance than microprocessors while maintaining a higher level of flexibility than application

specific integrated circuits.

Due to the increase of logic capacity of modern fields-programmable gate arrays expanding be-

yond millions of system gates, and through the broad use of coarse-grained dynamic reconfiguration,

it has become feasible for several applications to share a single high density device. In other words,

reconfigurable hardware devices can now execute several hardware tasks in parallel. However, devel-

oping applications that share a device is difficult as the current design flow assumes the exclusive use

of the underlying reconfigurable resources, and critical mechanisms for a multitasking environment

on such devices are still immature.

The use and implementation of similar mechanisms modeled on a microprocessor-based software

operating system would allow the full benefits of multitasking on dynamic reconfiguration systems

to be realized. In this thesis, based on equivalent concepts found in the software domain with specific

characteristics of hardware implementation, several necessary mechanisms to support a multitasking

environment on dynamically reconfigurable processors are presented.

Specifically, I consider following issues: (1) how to improve the throughput in data flow driven

applications by using an appropriate application model and a mapping algorithm to map a target

application onto a underlying coarse-grained reconfigurable device consisting of multiple hardware

execution units, (2) how to implement a preemption mechanism for hardware tasks, (3) how to extend

the multi-thread execution model in a tile-based architecture into a multicore architecture, and the

impact of the core size on performance and internal fragmentation in a multicore reconfigurable

architecture.

Efficiently mapping applications partitioned into multiple threads of control or tasks onto a

coarse-grained dynamically reconfigurable processing array is crucial for further exploiting the par-

Preface ii

allelism of applications. Basically, a certain speedup of reconfigurable devices over traditional mi-

croprocessors can be achieved by exploiting the inherent parallelism of a target application at a larger

scale apart from instruction-level parallelism. However, in many cases, the parallelism of an appli-

cation is not enough for the reconfigurable array to be utilized efficiently. In such a condition, one of

the methods to improve performance is to make the best use of stream-level pipelined execution; or

in other words, to exploit the task-level parallelism. That is, a total process is partitioned into small

independent sequential processes, which are separately mapped onto a coarse-grained underlying re-

configurable array architecture comprising of multiple hardware execution units. By investigating the

trade-off between the size of a tile group and delay as well as execution time, an optimized mapping

algorithm is proposed and evaluated compared with the single-process execution model and other

mapping versions.

Effectively implementing a hardware task preemption scheme, which is a critical mechanism in

multitasking operating systems where an executing task is temporarily suspended, and a new task is

executed or a previously interrupted task is resumed, on coarse-grained dynamically reconfigurable

processors is another mechanism toward a multitasking environment. Different from well-known

task preemption in software operating systems based on microprocessors, hardware task preemption

accompanies problems on how to suspend and resume hardware execution, how to save and restore

context data within a certain overhead. Based on the resource requirement and the state transition

graph of a target application, the concept of preemption points is introduced and a static preemption

approach is proposed. Basically, an application can only be preempted at certain computation states

where resource usage is small. Moreover, the steps of the proposed method are integrated into the

design flow in order to help developers at the design time.

The development of multicore architectures in microprocessors has recently become prevalent

and achieved advantages over traditional single-core devices. Multicore architectures have proved to

be a suitable platform for a true multitasking environment at the task level where tasks can execute

in parallel. I introduce a multicore reconfigurable architecture in which cores have a certain size

and are connected by an interconnection network composed of routers. Mapping multiple hardware

tasks onto the proposed architecture and designing an efficient inter-task communication mechanism

become important research problems. The proposed on-chip network will act not only as an efficient

communication mechanism between tasks (both hardware and software tasks), but also as a support

method for mapping processes onto the underlying reconfigurable array. First of all, a tile-based

architecture and the proposed multicore architecture are examined to see how each of those affects

on the performance of target applications. The channel bit width to transfer data in the intercon-

nection network of the multicore architecture is taken into account. Next, the size of core in the

proposed multicore reconfigurable architecture is an important factor in balancing performance and

resource utilization. Therefore, this is evaluated by implementing real applications on the proposed

architecture and measuring correspondent parameters.

Acknowledgments

First and foremost, I would like to express my deepest gratitude to Professor Hideharu Amano, my

supervisor at Keio University for his guidance, encouragement, support, and vision throughout my

Ph.D. program. In addition to academic guidance, he has been a main motivating force in the devel-

opment of my professional skills and perspective of research. In the long road to my dissertation, he

provided me with extraordinary opportunities to learn professional knowledge and achieve research

experience. I am indebted to him for showing me how to look forward and think without limitations.

I also learned how to bring out research issues, think in a systematic ways, use different tools to

assist research processes, and write scholarly papers in a professional manner. Doing research is a

difficult job, especially at the beginning when you are not sure where to start from. More impor-

tantly, the difficulty could be double or more when you do not have enough background in the field

of reconfigurable computing, which is a new and still immature area with limited documents. Apart

from an excellent researcher, Professor Amano has a systematic way to organize his Lab and guide

his students to overcome research problems. When joining Amano Laboratory, I had almost little

knowledge and experience in computer architecture, particularly in reconfigurable computing. From

very first exercise using Musketeer to design and develop stream applications on DRP architecture,

Professor Amano gave me many useful advices and guided me to write research papers from simple

issues, whose content seemed not to be important at the first sight. In addition, whenever problems

appearing in daily life during the period of time I live in Japan, he has been very kind to spend his

time and effort to help me solve such problems.

I am grateful to the committee members of doctoral evaluation, Professor Yoshikazu Yamamoto,

Professor Takahiro Yakoh, and Professor Kenji Kono for their valuable reviews and comments.

A special thank to Japanese government for funding and giving me a great opportunity to come to

Japan, to study in one of the most excellent places, Keio University, and to pursue a Ph.D. Degree in

computer architecture. Receiving Monbukagakusho scholarship would be one of the most important

turning points in my life to start a long way with challenges toward the dissertation and further. I

also want to thank Keio Leading-edge Laboratory of Science and Technology (KLL) for providing

financial support to my research during the last two years of my course.

It has been a wonderful experience to participate in collaborative research efforts with my fellow

graduate students in WASMII group during my Ph.D. course. Masayasu Suzuki, who is now working

in Sony corporation, was very kindly to help me start first lessons and experiences on Verilog. He

Acknowledgments iv

organized and attended seminars even after graduated and went to Sony for working to let me touch

first knowledge on the field of reconfigurable computing, and to show me a correct way to carry out

research. I also received a great deal of support from Dr. Yohei Hasegawa. He often read my research

papers and gave me useful comments before papers were submitted. Dr. Hiroki Matsutaini provided

me with his tools for building a network on chip, which I used in my research.

Additional thanks goes to NEC Corporation and Japan Science and Technology Agency (JST)

for providing support to this research. The DRP-1 device and design tools were provided by NEC

Electronics Corporation and NEC Corporation. Since my research closely relates to DRP architec-

ture, without such an excellent device, I would not be able to achieve crucial results and complete

the thesis.

Keio University has supported me in this work by providing excellent research facilities and

working environment. I want to thank the management and many people especially those at the

International Center of Yagami campus.

From bottom of my heart, I would like to send a special thank you to my parents for all their love,

support, and psychological assistance they have given me over a long period. They always care for

me, give me constant encouragement throughout my life, and have faith in me. My younger sister,

Vu Thanh Trang, assisted me from the first Japanese lesson before I went to Japan. She did not send

me a lot of emails, but I know she always hopes me to complete my work successfully.

I am grateful to my wife, Le Minh Phuong, for her patience especially for the long years of

waiting for the completion of this work. My second son was born when I was already in Japan, and

my wife has looked after him alone for such a long duration. Although staying in Vietnam, they

were my inspiration to work hard with a hope that the faster I could finish the course, the earlier I

would be able to return, to see their faces and smiles, and to talk to them face-to-face. My first son,

Vu Tuan Minh, who has stayed with me in Japan for almost three years, also receive my heart-felt

thanks for being a special encouragement for me to study Japanese language and live with joy and

love in Japan.

Last but not least, my friends who used to be with me in Soshigaya International House played an

important role in the duration I attended the Ph.D. course. Some of them have returned to Vietnam,

others are still in Japan, but their help and encouragement add more strength to me to complete the

work.

Vu Manh Tuan

Yokohama, Japan

October 2008

Contents

Preface i

Acknowledgments iii

1 Introduction 1
1.1 Motivation . 4

1.2 Contribution of the Thesis . 5

1.3 Thesis Organization . 5

2 Methodology and System Architecture 7
2.1 Methodology . 7

2.2 Concepts . 9

2.2.1 Application . 9

2.2.2 Hardware task . 10

2.2.3 Computational core . 12

2.2.4 Inter-task communication . 14

2.3 System Architecture . 14

2.4 Multitasking Execution Model . 16

2.4.1 Time-sharing, non-space partitioning . 17

2.4.2 Non-time sharing, static partitioning . 17

2.4.3 Time-sharing, two-dimensional partitioning 18

2.4.4 Time-sharing, multicore partitioning . 19

3 Coarse-grained Dynamically Reconfigurable Processing Arrays 21
3.1 DRPA Architecture Overview . 21

3.1.1 Coarse-grained processing array . 21

3.1.2 Interconnection structure . 22

3.1.3 Dynamic reconfiguration method . 23

3.1.4 Coupling between CPU and DRPA . 25

3.1.5 C-based programming methodology . 26

3.2 Review of DRPAs . 27

Contents vi

3.2.1 Chameleon CS2112 . 27

3.2.2 PACT XPP-III . 29

3.2.3 NEC Electronics DRP-1 . 30

3.2.4 IPFlex DAPDNA-2 . 32

3.2.5 Hitachi FE-GA . 34

3.2.6 Elixent D-Fabrix . 36

3.2.7 Rapport Kilocore . 38

3.2.8 IMEC ADRES . 39

3.2.9 Stretch S5/S6 SCP Engine . 41

3.2.10 Fujitsu Cluster Architecture . 43

3.2.11 MuCCRA platform . 44

3.3 Summary . 47

4 Hardware Task Mapping 50
4.1 Problem . 50

4.2 Related Work . 51

4.3 Target Architecture and Application Model . 52

4.3.1 Target architecture . 52

4.3.2 Target application model . 53

4.3.3 Goal of mapping . 53

4.4 Mapping Algorithm . 54

4.4.1 Target task graphs . 54

4.4.2 Target architecture and task mapping . 55

4.4.3 Mapping algorithm . 56

4.5 Target Device . 59

4.5.1 Device . 59

4.5.2 Mapping applications onto DRP-1 . 59

4.6 Evaluation . 60

4.6.1 Target applications . 60

4.6.2 Mapping versions . 62

4.6.3 Implementation results . 63

4.6.4 Throughput . 63

4.6.5 Execution time . 64

4.6.6 Area utilization . 65

4.6.7 Two methods for topological mapping . 65

4.7 Conclusion . 66

Contents vii

5 Hardware Task Preemption 67
5.1 Problem . 67

5.2 Related Work and Research Contribution . 68

5.2.1 Related work . 68

5.2.2 Research contribution . 68

5.3 Preemption Analysis . 69

5.3.1 Task switching . 69

5.3.2 Approach . 70

5.3.3 State transition graph . 72

5.4 Preemption Algorithms . 72

5.4.1 System design flow . 72

5.4.2 Preemption algorithm . 74

5.4.3 Illustrative example . 78

5.5 Target Device . 80

5.6 Evaluation . 80

5.6.1 Target applications . 80

5.6.2 Hardware overhead . 81

5.6.3 Preemption latency . 83

5.6.4 Hardware overhead vs. preemption latency 83

5.7 Conclusion . 84

6 Multicore Reconfigurable Architecture 86
6.1 Problem . 86

6.2 Related Work . 88

6.3 Evaluated Architectures . 88

6.3.1 Target Device . 88

6.3.2 Tile-based architecture . 89

6.3.3 Multicore architecture . 90

6.3.4 Application model . 92

6.4 Evaluation . 92

6.4.1 Simulation environment . 92

6.4.2 Two architectures . 92

6.4.3 Evaluation with different core sizes . 94

6.4.4 Internal fragmentation . 97

6.5 Conclusion . 98

7 Conclusion and Future Work 99
7.1 Thesis Summary . 99

Contents viii

7.2 Suggestions for Future Research . 101

Abbreviation and Acronyms 103

Bibliography 105

Publications 114

List of Tables

2.1 Research methodology . 8

2.2 A common plan . 8

2.3 Methodology paths used in the thesis . 9

3.1 Types of DAPDNA-2 PE . 34

3.2 Summary features of surveyed Dynamically Reconfigurable Processors 48

4.1 Example of possible target architectures . 53

4.2 Implementation results of target applications . 61

4.3 Time for topological mapping . 66

5.1 Target applications and evaluation results . 82

6.1 Router implementation . 91

6.2 Throughput of two evaluated architecture . 94

6.3 Implementation results of target applications . 96

List of Figures

2.1 Application’s task graph . 10

2.2 Hardware task model . 11

2.3 A heterogeneous SoC . 12

2.4 Multicore architecture studied in this thesis . 13

2.5 System architecture . 15

2.6 Time-sharing, non-space partitioning model . 17

2.7 Non-time sharing, static partitioning model . 18

2.8 Time-sharing, two-dimensional partitioning model 19

2.9 Time-sharing, multicore partitioning model . 20

3.1 PE array of PACT-XPP . 22

3.2 Example of a PE (RC of Morphosys) . 22

3.3 Island-style . 23

3.4 Direct interconnection . 23

3.5 Switch matrix . 23

3.6 Configuration Delivery Scheme . 24

3.7 Multicontext Scheme . 24

3.8 Coupling of Reconfigurable Fabric and Microprocessor 26

3.9 CS2112 reconfigurable fabric . 27

3.10 CS2112 datapath unit (DPU) . 27

3.11 XPP-III Core Architecture Sample . 28

3.12 XPP-III ALU-PAE Architecture . 30

3.13 DRP Tile Architecture . 31

3.14 DRP PE Architecture . 31

3.15 DRP-1 Architecture . 32

3.16 Programming Flow of DRP . 32

3.17 DAPDNA-2 Architecture . 33

3.18 FE-GA Architecture . 35

3.19 FE-GA ALU Cell Architecture . 36

3.20 FE-GA LS Cell Operation . 36

List of Figures xi

3.21 Chessboard-style ALU Array . 37

3.22 D-Fabrix ALU and Switchbox . 37

3.23 ET1 Architecture with MeP core and D-Fabrix . 38

3.24 Virtual Pipeline Model . 39

3.25 Kilocore KC256 Architecture . 39

3.26 Kilocore KC256 PE Architecture . 40

3.27 ADRES Core Architecture . 41

3.28 ADRES Reconfigurable Cell . 42

3.29 S6000 Architecture . 43

3.30 S6 SCP Engine . 43

3.31 Fujitsu Cluster Architecture . 44

3.32 Fujitsu Cluster Group . 45

3.33 MuCCRA-1 Architecture . 46

3.34 PE architecture of MuCCRA-1 . 46

3.35 MuCCRA-2 Architecture . 46

3.36 MuCCRA-D Architecture . 46

3.37 PE architecture of MuCCRA-D . 47

4.1 General design flow . 52

4.2 Target DRPA . 52

4.3 Task mapping for JPEG encoder . 54

4.4 Target task graph . 55

4.5 Delay and execution time vs. number of Tiles . 55

4.6 Tile connection patterns for a TG . 56

4.7 Tile assignment . 58

4.8 Example of APME approach . 58

4.9 PKN models of target applications . 60

4.10 Execution time vs. Number of data blocks . 64

5.1 Task switching . 69

5.2 Memory and Register usages vs. Computation steps 71

5.3 System design flow . 73

5.4 Input and output information for proposed method 74

5.5 Proposed solution . 79

5.6 Example code . 79

5.7 Hardware overhead . 83

5.8 Maximum preemption latency . 84

5.9 Hardware overhead vs. Preemption latency . 84

List of Figures xii

6.1 Tile-based architecture . 90

6.2 Multicore architecture . 90

6.3 Router architecture . 91

6.4 Representation of JPEG encoder . 91

6.5 Simulation environment . 93

6.6 Implementation variants . 95

Chapter 1

Introduction

The aim of this thesis is to investigate a suitable architecture based on feasible mechanisms for de-

veloping a true multitasking environment on dynamically reconfigurable processing arrays (DRPAs).

Recent years, a lot of effort in research and development has been dedicated to computer and

processor architectures to satisfy ever-growing demands for higher performance, better power con-

sumption and lower cost. One of the fundamental trade-offs in the design of computing systems

involves the balance between flexibility and performance. On one hand, general-purpose processors

(GPPs) and digital signal processors (DSPs), which are built around an instruction-set architecture,

provide the possibility of processing arbitrary computations due to their general architectural concept.

However, these types of processors are rather inefficient regarding performance and power consump-

tion. On the other hand, application-specific integrated circuits (ASICs), which contain dedicated

circuits specialized to a particular set of tasks, represent a kind of architecture that is optimized for a

predetermined set of tasks. Nonetheless, while being very efficient regarding performance and power

consumption, but ASICs lack flexibility as no programmable resources are provided.

The increasingly higher integration of transistors at an increasingly lower cost per transistor has

resulted in a capability of putting over billion transistors on a single chip. This progress has led

for designers to a System-on-Chip (SoC) design methodology in a wide variety of application areas.

Recently, SoCs have been in widespread use as the total solution for single-chip system integration.

The components in such SoCs may include embedded microprocessors, memory blocks, external

interfaces, peripherals, and application-specific customized functional blocks.

Reconfigurable computing has been intended to be an alternative to possibly bridge the gap be-

tween above traditional approaches [1]. Reconfigurable systems are implemented with programmable

logic in order to alter the hardware circuits on demand to achieve potentially much higher perfor-

mance than software, while maintaining a higher level of flexibility than hardware. Reconfigurable

computing came to realization through the introduction of FPGAs [2,3] in mid eighties. Like ASICs,

FPGAs are distinguished by their ability to directly implement specialized circuitry in hardware. Ad-

ditionally, like GPPs, they contain programmable resources that may be easily modified after field

deployment in response to changing operational parameters, functions or data sets.

1. Introduction
2

Implementing applications on a reconfigurable fabric allows to improve performance while min-

imizing power consumption especially for stream applications. Such types of applications have spe-

cial characteristics that the instruction stream does not change fast, but the data stream changes

constantly. For example, a video encoder/decoder, often handles a very large amount of data, but

the groups of instructions that execute on these large data streams are usually small. In compar-

ing with traditional applications like a word processor running on a GPPs, many different pieces

of code for performing variety of functionalities such as menus, spell checkers and formats operate

on a single document file. In this application, the data stream does not change very much; but, the

instruction stream is changing very often. GPPs are usually designed with such a type of applica-

tions in mind. Another difference between traditional applications and stream applications is their

bandwidth requirements. Since a traditional application can fill up its cache with all instructions and

data without concerning to fetch more very soon, GPPs designed for such applications usually have

large caches connected by relatively low bandwidth buses. On the other hand, stream applications

can be designed with smaller caches, but since they transfer so much data they need much more

bandwidth. A reconfigurable platform consists of a large number of logic blocks or reconfigurable

functional units, which are well-matched to the high-sample rates and distributed computation often

required by stream applications. In other words, the characteristics of stream applications that have

the deep impact on performance and be appropriate to implement on reconfigurable platforms are

data parallelism, amenability to pipelining, arithmetic complexity and simple control requirements.

Early reconfigurable computing platforms proposed and built based on low density FPGAs with

small amounts of on-board memory [4, 5, 6] could only accommodate one application, resulting in

a single task environment due to limited resources. With the fast pace development of semiconduc-

tor technology predicted by the International Technology Roadmap for Semiconductors [7] for the

CMOS process technology to be able to scaled down to 25nm and further to 22nm within the next

seven years, the number of processing cores integrated on an SoC has been steadily increased. For

example, as many as 1,024 functional blocks, each of which consists of a MIPS-like processor and

a cache memory, will be realized on a single chip with a 35nm technology [8]. Modern FPGAs

containing millions of system-gates [9, 10] or hundreds of thousands of logic cells [11, 12, 13] and

large course-grained dynamically reconfigurable processors [14] realize the possibility of sharing a

piece of reconfigurable hardware among multiple concurrently executing applications. This could

potentially increase the resource utilization of such reconfigurable devices and decrease response

times. In addition, reconfigurable systems that are composed of multiple FPGA chips interconnected

on a single processing board have been introduced for research and commerce. This is to provide for

applications that are too large to be implemented within a single FPGA, but may be partitioned over

the multiple FPGAs. For multi-FPGA systems, because of the need for efficient communication be-

tween the FPGAs, determining the inter-chip routing topology is a very important step in the design

process. Furthermore, it is important to efficiently partition a design into different FPGA chips.

The research, development and implementation of a multitasking environment on GPPs have

1. Introduction
3

come a long way from simple time sharing and cooperative multitasking systems to preemptive

multitasking, real-time multitasking and recently multitasking on multi-processor and multicore ar-

chitectures. Nonetheless, multitasking is still immature since it is a large and diverse field. The

newest trend in the processor architecture is a multicore structure, which now dominates the chip

making industry [15]. In spite of that, there is still a problem for current software models because

today’s operating systems that use threads and cache coherency snooping will not scale well to such

multicore devices.

The concept of multitasking on dynamically reconfigurable processors, in combination with an

appropriate operating system support, enables efficient sharing of resources due to adequate task

scheduling, allows dynamic changes of the application due to introduction of new tasks during run-

time and greatly simplifies application development since tasks can be developed quite independent

from each other. Specifically, Multitasking aims at providing an appropriate mechanism to allow

multiple applications to efficiently share a piece of reconfigurable hardware. Nonetheless, building

such an environment on hardware has unique characteristics, which make this be different from and

more difficult than that on GPPs. Some problems involving multitasking on dynamically reconfig-

urable hardware are as follows:

• How to suspend a running hardware task, and some times later to resume it?

• How to capture the state data of a hardware task that is suspended, and to restore the state data

when the task is restarted?

• How to map the tasks of a target application onto hardware execution units?

• What is the most suitable model of target applications for dynamically reconfigurable devices

in order to efficiently exploit multiple execution units on such devices?

• How can hardware tasks communicate to one another and to software tasks?

• How to relocate hardware tasks to different execution units?

• What is the most relevant architecture for dynamically reconfigurable processors to support a

multitasking environment?

• How does an inter-task communication mechanism affect on the performance of target appli-

cations?

• How to select the most relevant core size in a multicore architecture?

Addressing the design of such problems for coarse-grained DRPA platforms is the aim of this thesis.

1. Introduction
1.1. Motivation 4

1.1 Motivation

Multitasking is useful if the application is composed of several well separated computational tasks

that should be processed quasi simultaneously on limited hardware resources. The concept of mul-

titasking, in combination with the corresponding operating system (OS) support, enables efficient

sharing of resources with adequate task scheduling, allows dynamic changes of applications with the

introduction of new tasks at run-time, and greatly simplifies application development because tasks

can be developed quite independent from each other.

Challenges
When designing a system with reconfigurable hardware, a key challenge is to implement all nec-

essary functionalities to meet the required performance, but at reasonable cost. Therefore, the system

resources have to be used efficiently. For processor-based systems, multitasking is a method to share

resources. With the use of reconfigurable architectures in SoCs to accelerate certain computations

formerly implemented on GPPs or in ASICs, it is critical to develop appropriate techniques to DRPAs

in order to use their resources efficiently. DRPAs pose certain challenges as follows:

1. Design of novel reconfigurable architectures for multitasking: most of available commercial

reconfigurable architectures do not provide native support for identifying, capturing and restor-

ing the state data of a hardware task before and after interruption, which are basic requirements

for preemptive multitasking. Although partial reconfiguration on FPGAs, which allows to load

a new task into a part of the device while other tasks keep running on other parts, has been in-

troduced and employed, it has only limited support.

2. Task partitioning and mapping: task partitioning is often used to split an application into

parts; and, task mapping is to map such parts into different hardware execution units of a

target device. As the number of parts an application can be divided into and the number

of hardware execution units for a certain device are greatly varying, a mapping method to

improve performance and device utilization is crucial.

3. Inter-task communication: a DRPA can be considered as a multicore architecture with hard-

ware execution units functioned as cores. As the run-time, tasks are assigned to cores for

execution. Here, the question of how large the size of cores is and how cores should be con-

nected in order for tasks to exchange data becomes the key for efficiently exploiting DRPA

resources.

4. A runtime environment for multitasking: multitasking on reconfigurable systems requires cer-

tain support from a run-time environment or an OS. Such an OS needs to manage resources

and controls the execution of hardware at the run-time. Furthermore, the OS has to provide

application programming interfaces for designers to abstract the details of the underlying hard-

ware.

1. Introduction
1.2. Contribution of the Thesis 5

1.2 Contribution of the Thesis

The main contribution of the thesis is to try to solve the first three challenges mentioned above toward

coarse-grained dynamically reconfiguration processors. By introducing, evaluating and discussing

crucial architectural components for, the thesis tries to give an outline of a realizable coarse-grained

dynamically reconfigurable platform that supports the multitasking capability.

• A systematic method for mapping a target application modeled as a Kahn Process Network

onto a coarse-grained DRPA to exploit a task-level pipeline technique toward improving through-

put is proposed and evaluated [16]. Besides exploiting parallelism within an application to

achieve high throughput in data-flow driven applications, the proposed method tries to apply

the computation model of processing multiple computations in parallel without decreasing

performance by making the best use of the stream-level pipeline execution.

• A preemption algorithm for inserting preemption points into the scheduled task graph of a

target application subject to preemption latency constraints in order to minimize the hardware

overhead is developed and investigated [17]. Important factors when implementing a pre-

emption mechanism for hardware tasks such as preemption latency, hardware overhead and

performance degradation are taken into account and quantitatively evaluated.

• A multicore reconfigurable architecture consisting of multiple small computational cores con-

nected by an interconnection network is introduced. At first, the thesis proposes a general

system architecture and related matters, then a simulation environment where experiments and

evaluations of the proposed system may be carried out is described. Next, a comparison of a

tile-based architecture and a multicore architecture in terms of performance is examined. Last,

based on the proposed architecture, an evaluation with different core sizes is implemented in

order to find out how the size of cores in a homogeneous system influences on the performance

and the internal fragmentation of target applications.

1.3 Thesis Organization

Chapter 2 Methodology and System Architecture presents the methodology and system architecture

proposed in this thesis. First, the methodology is outlined, and the organization of the thesis is shown

according to recommendations from the methodology. Next, several concepts and definitions are

described since they might cause confused for their similarities in the microprocessor field. Then,

an outline of the system architecture is described. Several multitasking models based on resource

sharing are also introduced.

Chapter 3 Coarse-grained Dynamically Reconfigurable Processing Arrays provides background

to research carried out in this thesis and related work. A general architecture of DRPAs that subject

to be the target devices of the thesis is discussed. A brief introductions of currently available devices

1. Introduction
1.3. Thesis Organization 6

is also mentioned and categorized according to certain criteria. The target architecture using in

Chapter 4, Chapter 5 and Chapter 6, which is NEC Electronics DRP, is also described in this chapter.

Chapter 4 Hardware Task Mapping proposes and investigates a systematic method for mapping

an application modeled as a Kahn Process Network onto a target DRPA in order to enhance through-

put by trying to exploit more inherent parallelism of target applications. The proposed mapping

algorithm is evaluated with several real applications to show the impact of different versions mapped

onto the target device on performance.

Chapter 5 Hardware Task Preemption aims at studying a general method for capturing the state

data of hardware tasks targeting coarse-grained DRPAs. By forming the state transition graph of a

target application and using the report on resource usages, the proposed algorithm tries to generate a

list of preemption points, where the application is allowed to be preempted, subject to user-specified

preemption latency.

Chapter 6 Multicore Reconfigurable Architecture extends the task-level pipelined execution model

examined in Chapter 4 by introducing a multicore reconfigurable architecture composed of multiple

computational cores connected by an interconnection network. Two architecture, a tile-based ar-

chitecture and a multicore architecture, are compared in terms of performance to see the effect of

inter-task communication methods. Then, the problem of how the size of cores in a multicore recon-

figurable architecture influences on the performance and the resource utilization of target applications

is investigated.

Chapter 7 Conclusion and Future Work finalizes the thesis with a summary, draws conclusions

and presents suggestions for future exploration.

Chapter 2

Methodology and System Architecture

2.1 Methodology

This chapter introduces and exploits a type of system engineering methodology to guide studies in the

thesis. The methodology is based on a research of software engineering presented in [18], in which

a methodology for solving problems in the field of software engineering is proposed. It consists of

three stages:

• Following a certain path for categorizing research questions or issues into different types in

order to clarify problems to be solved,

• Selecting a strategy for addressing questions raised in the previous stage. The chosen strategy

can be implemented as building a model, performing experiments, or proposing a technique in

order to understand the problem and obtain results.

• And applying a validation technique to verify the result obtained. Not only does the valida-

tion result confirm whether the selected strategy is correct, it may recommend a new research

direction or another strategy to better answer the research issue.

For each stage, five different types of research questions, which are presented in Table 2.1, are

suggested. For example, a question relating to feasibility may be asked like "does X exist and what

is it?". To provide the answer to the question, several strategies such as building a qualitative model,

reporting observations, or generalizing from examples can be selected. Then, to verify the answers

obtained from the strategy, a validation technique can be selected such as evaluation or experience.

According to the methodology, a validation technique depends on the strategy used. An example to

build a common plan is as follows. The research question is "Can X be done better?"; the strategy

selected to address the question may be "To build a Y"; then, a validation method is to measure Y

and compare to X. If Y is better, a correct answer for solving a research problem is found, otherwise,

another Y1, or Y2... could be suggested as alternatives to examine the question. This is shown on

Table 2.2

2. Methodology and System Architecture
2.1. Methodology 8

Table 2.1: Research methodology

Question Strategy/Result Validation
Feasibility
Does X exist and what is it?
Is it possible to do X at all?

Qualitative model
Report observations
Generalize from examples
Structure a problem area

Persuasion

Characterization
What are the characteristics of X?
What exactly do we mean by X?
What are the varieties of X and
how are they related?

Technique
Invent new ways to do some tasks, in-
cluding implementation techniques
Develop ways to select from alternatives

Implementation

Method/Means
How can we do X?
What is a better way to do X?
How can we automate doing X?

System
Embody result in a system using the sys-
tem both for insight and as a carrier of
results

Evaluation

Generalization
Is X always true of Y?
Given X, what will Y be?

Empirical model
Develop empirical predictive models
from observed data

Analysis

Selection
How do I decide whether X or Y?

Analytic model
Develop structural models that permit
formal analysis

Experience

Table 2.2: A common plan

Question Strategy/Result Validation
Feasibility Qualitative model Persuasion
Characterization Technique Implementation
Can X be done better? Build a Y Measure Y, compare to X
Generalization Empirical model Analysis
Selection Analytic model Experience

In this thesis, each chapter tries to address relevant research questions drawn from Table 2.1.

Each chapter concentrates on a specific and separate research problem toward a common target,

that is to build a multitasking environment on coarse-grained DRPAs. To do that, first, problems

are clearly specified. Then, previous work related to the problems is reviewed, and the solutions

are proposed. An outline of the whole system proposed to solve the problems is introduced. Next,

after describing approaches, they are carefully examined by a thorough evaluation to obtain relevant

results. Based on the results, relevant discussion and conclusion can be drawn. The organization of

the thesis related to the methodology is show in Table 2.3.

2. Methodology and System Architecture
2.2. Concepts 9

Table 2.3: Methodology paths used in the thesis

Methodology Path
Thesis organization Question Strategy Validation
Chapter 2
Methodology and system architec-
ture

Feasibility Qualitative model Persuasion

Chapter 3
Coarse-grained dynamically recon-
figurable processing arrays

Feasibility
DRPA background and
architectural analysis

Persuasion

Chapter 4
Hardware task mapping

Method Technique
Implementation
and Evaluation

Chapter 5
Hardware task preemption

Method Technique
Implementation
and Evaluation

Chapter 6
Multicore reconfigurable architec-
ture

Method Technique
Implementation
and Evaluation

2.2 Concepts

Before going into the detail of studies in this thesis, several concepts relating to multitasking on

DRPAs need to be defined by drawing an analogy from the software operating system domain and

examining unique features when such concepts are applied in reconfigurable computing. Concepts

being mentioned are: application, hardware task, computational core, and inter-task communication.

2.2.1 Application

An application mentioned in the thesis is a computation program designed to help people to perform

a certain type of work. This should be contrasted with system software often involved in services of

an operating system. In this context the term application refers to both the application software and

its implementation.

As a general understanding, target applications for reconfigurable computing are often those,

from which massive amounts of parallelism can be exploited, and which have simple control require-

ments. Applications having large datasets with few or no data dependencies are ideal targets for im-

plementing on reconfigurable platforms [19]. They include image and video processing algorithms,

multimedia, network and communication systems, data processing applications and industrial mea-

surement systems, and many military and aerospace systems [19, 20]. All these applications share

some common key characteristics:

• They contain computations which are mostly regular and data flow oriented. This can be

efficiently computed on reconfigurable devices.

2. Methodology and System Architecture
2.2. Concepts 10

Fig. 2.1: Application’s task graph

• They may consist of several different computational tasks, which could allow a task-level

pipelined technique to be implemented.

In this thesis, those application are considered as stream applications. That is, data blocks to be

processed are iteratively received in a certain interval. The execution of stream applications is often

deterministic, or in other words, for a determined input, the same output is always produced. In

addition, a partial result at the output of an execution can be obtained from a partial information at the

input. This feature is very important since it allows to exploit parallelism and pipelined processing.

An application can be partitioned into multiple tasks, which can be modeled as a set of task

graphs, in which nodes represent tasks, and edges show transitions and data dependencies between

tasks. Fig. 2.2.1 shows an example of a task graph consisting of five sub-tasks T1,T2,T3,T4 and T5.

2.2.2 Hardware task

Generally speaking, hardware tasks are the parts of an application implemented in reconfigurable

logic. In this thesis, since I target coarse-grained DRPAs, a hardware task can be considered as the

representative of a part of an application mapped onto on a DRPA for execution. The behavior of a

hardware task could be represented in the form of a state transition graph, in which nodes represent

computation states, and edges shows the transition and data dependence between computation states,

as shown in Fig. 2.2(a)). There are a start node with no incoming edges, and an end node with

no outgoing edges. Tasks can also be modeled as a finite-state machine (FSM) to represent their

executing states (Fig. 2.2).

Hardware tasks may be realized as various implementation variants with the trade-off between

performance and reconfigurable resource utilization. Such various implementations can be achieved

by considering different circuit architectures. For example, in Chapter 4, it is shown that using a

larger tile group for a task could improve throughput and reduce execution time because more par-

allelism could be exploited. A hardware task requires a specific amount of reconfigurable resource.

For FPGA devices, designs often provides information on how many slices are required. For coarse-

grained dynamically reconfigurable processors, the number of ALUs, flip-flops and register files a

design consumes are usually reported. Additional resources such as different types of memories and

multipliers may also be reported.

2. Methodology and System Architecture
2.2. Concepts 11

(a) State transition graph (b) Task finite state machine

Fig. 2.2: Hardware task model

Before hardware tasks can start execution, they must be placed somewhere inside the reconfig-

urable array. Therefore, they can be characterized by their sizes and shapes. The size of a task can

be computed as the number of logic elements the task needs to implement its computation. It can be

represented in terms of slices or configurable logic blocks for fine-grained FPGAs, and in terms of

processing elements (PEs) for coarse-grained reconfigurable devices.

Apart from the size, which shows a certain area requirement, a task implemented on a reconfig-

urable device can be characterized by its shape, which is the smallest enclosing geometry shape that

contains all processing elements and routing resources used by the task. The shape of a task can be

rectangular or polygonal. No matter which shape a task is, external fragmentation caused by dynamic

addition and deletion of tasks in a multitasking environment always occurs. While non-rectangular

task shapes can use a reconfigurable array more effectively with almost no internal fragmentation

in theory, they make allocation, mapping process and defragmentation more difficult. In contrast,

although causing internal fragmentation to a certain degree, rectangular task shapes simplifies al-

location; and, especially, defragmentation could be performed much faster. As a result, most of

research relating to the problem of task allocation, transformation, placement and area defragmen-

tation assume tasks to be rectangular in shape [21, 22, 23, 24]. More importantly, coarse-grained

DRPAs often have their reconfigurable array partitioned into larger areas often called tiles, slices or

stripes, each of which has a certain amount of PEs, to simplify the routing architecture and to easy

the mapping process. Those areas are usually rectangular naturally. In this section and in the thesis,

I only take rectangular task shapes into consideration.

The concept of hardware task could be considered to be equivalent to that of software process

in the microprocessor computer domain. However, several unique characteristics in reconfigurable

computing cause the differences between these two concepts.

• The program code of a software process is a set of sequential instructions that can arbitrarily be

divided into equal sized parts. However, in reconfigurable computing, a hardware task consists

2. Methodology and System Architecture
2.2. Concepts 12

Fig. 2.3: A heterogeneous SoC

of a two-dimensional logic circuit that is loaded in a reconfigurable array for execution. Par-

titioning hardware is far more complicated than partitioning the sequential codes of software

process.

• Maintaining the state of a hardware task is much more complex than that of a software process.

When a software process is preempted, the operating system performs a context switch to save

the current state of the process. This involves saving the values of a fixed number of registers.

However, when a hardware task is preempted, all state information distributed in different

storage elements such as embedded memories, register files and flip-flops must be saved. At

each computation state, the amount of state data is considerably varying.

• The program data of a software process are contained in a separate part within the process.

However, in a hardware task, instructions are circuits and the division between data and com-

putational elements is less clear.

2.2.3 Computational core

A computational core in an SoC is a hardware execution unit or a processor-like hardware block, in

which suitable applications can be mapped to for execution. For example, each component repre-

sented as a rounded rectangle in Fig. 2.3 is a core with different characteristics and functionalities.

Cores are different in structures, granularities and functionalities; so, the system is heterogeneous. A

core may be a fine-grained reconfigurable device like an FPGA, a coarse-grain reconfigurable unit

such as a DRPA, a general-purpose programmable core, for example, a microprocessor core, or a

digital signal processing device.

In a homogeneous system, cores are identical in architecture. For example, a multi-FPGA system

containing multiple FPGA chips can be seen as a multicore system, where each core corresponds

to an FPGA [25, 26]. In a reconfigurable system where the reconfigurable array can be divided

into hardware parts, each of which can be assigned to a task for execution, and all parts can be

reconfigured and executed independently, cores can be considered as equivalent to such parts. As

an example, when an FPGA can be divided into slots of equal sizes, each slot can be viewed as a

2. Methodology and System Architecture
2.2. Concepts 13

 R

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

DRPA
Core

 R R R

 R

 R

 R

 R R R

 R R R

 R R R

Fig. 2.4: Multicore architecture studied in this thesis

core; or, in a tile-based dynamically reconfigurable architecture like NEC’s DRP (Section 3.2.3), tiles

could be assumed to be cores, and a 8-tile architecture of DRP-1 is equivalent to a 8-core system.

Apart from being able to execute tasks mapped to, cores might be allowed to join together to form

core groups.

Many currently available dynamically reconfigurable processors are designed to easily become

intellectual property (IP) cores in embedded SoCs such as NEC’s DRP (Section 3.2.3), PACT XPP

(Section 3.2.2) and MuCCRA (Section 3.2.11). The dynamically reconfigurable processor itself is

user-programmable for target applications after the SoC fabrication. In this thesis, the proposed

multicore reconfigurable architecture (Chapter 6) has coarse-grained DRPA cores connected through

an interconnection network as shown in Fig. 2.4. This structure is homogeneous since each core is

assumed to be identical.

Apart from the architecture, cores are characterized by their size. The size of a reconfigurable

core can be computed differently. For fine-grained reconfigurable devices, size can be viewed as

the number of logic elements or logic array blocks as in Altera Stratic FPGA [27], or the number

of configurable logic blocks as in Xilinx Virtex FPGA families. For coarse-grained reconfigurable

devices, size can be considered as the number of tiles in each slice as in Chameleon CS2112 (Section

3.2.1), the number of processing array elements as in PACT XPP (Section 3.2.2), the number of PEs

or tiles as in NEC’s DRP (Section 3.2.3), and the number of cells (ALU and MLT) as in Hitachi

FE-GA (Section 3.2.5). In this thesis, since I use NEC’s DRP as the target device for research, the

2. Methodology and System Architecture
2.3. System Architecture 14

size of a core is calculated as the number of tiles or equivalent processing elements the core has.

Specifically, when mentioning the size of a core is n tiles, or n− tile core, a core is considered to have

n(tiles) × 64(PEs/tile) processing elements.

2.2.4 Inter-task communication

In the microprocessor domain, inter-process communication provides mechanisms to allow processes

to communicate and to synchronize their actions without necessarily sharing some parts of the ad-

dress space. These mechanisms are divided into methods for message passing, synchronization,

shared memory, and remote procedure call. Applications executing on a reconfigurable system also

need to be able to communicate with one another that do not share the same address space. When an

application is partitioned into parts, each of which becomes a new hardware task that do not share

the address space with other tasks, so an inter-task communication mechanism is needed. In a re-

configurable system, several communication mechanisms can be exploited to transfer data between

tasks such as memory, non-shared direct hardware channels, or an interconnection network.

One of the simplest methods to transfer data between two hardware tasks is to use embedded

memory modules with a suitable arbitrator. For example, in Chapter 4, vertical memories organized

as FIFOs are employed to send and receive processing data between tasks. These FIFOs use a simple

handshake mechanism in order for two tasks involving in communication to determine if a FIFO

is full or empty. If there is no data in the input FIFO, or the output FIFO is full, the execution of

receiving and sending tasks, respectively, is stalled.

Another mechanism for supporting inter-task communication in reconfigurable computing is the

use of an interconnection network as illustrated in Fig. 2.4. This involves configuring a commu-

nication network architecture independent from all task to connect hardware execution units. The

advantage of using an interconnection network over an on-chip wiring architecture is structure, mod-

ularity and performance [28]. Moreover, using networks allow more flexibility in where tasks can be

allocated. This mechanism will be used to form a multicore reconfigurable architecture in Chapter 6.

2.3 System Architecture

The architecture shown in Fig. 2.5 consists of several components responsible for user interface,

OS service provider, hardware abstraction, interconnection network, and underlying reconfigurable

device. Outside dashed rectangles show services and mechanisms that will be addressed in following

chapters of the thesis. Each component will be described separately in more detail.

User application and interface
This component is similar to the same concept found in software operating systems based on mi-

croprocessors. It aims at providing an interface between the users, the OS and the hardware. Users

can input commands and execute applications via the interface. The OS service provider is then re-

2. Methodology and System Architecture
2.3. System Architecture 15

Fig. 2.5: System architecture

sponsible for converting them into appropriate calls to the application programming interface (API).

The OS service provider also reports back to the user interface about the status of the requested

operations.

Operating system
The OS service provider is responsible for interpreting user commands from the interface, modifying

to suit APIs, and then passing them directly to the hardware abstraction layer. The services provided

include embedded memory reading and writing, and platform specific configuration information.

Using the OS allows to cope with the change of the hardware abstraction layer since in this case,

only the services provided by the OS must be changed, and the user interface is still the same.

Hardware abstraction layer
Similar to equivalent concept in the GPP field, a hardware abstraction layer allows an operating

system to interact with a hardware device at a more abstract level. However, the biggest challenge in

reconfigurable computing is that there is no agreed standard interface for reconfigurable devices. This

is different from devices in the GPP world such as hard disks, monitors or memories. Manufacturer

have their own APIs, which require users to have a good understanding of the platform. As a result,

the hardware abstraction layer mentioned here should provide a standard API that abstracts away the

detail of underlying reconfigurable hardware. It should provide an API to connect to the platform,

configure the device, control the clock rate and access embedded memory.

Network manager
The network manager plays an important role in supporting inter-task communication and input/output

operations. In this thesis, I encourage to use an interconnection network to connect cores and form

2. Methodology and System Architecture
2.4. Multitasking Execution Model 16

a multicore reconfigurable architecture. Although the network itself is fixed, tasks are dynamically

mapped onto any core, and once the mapping process has been done, information about where tasks

are located is updated to the network manager in order to allow related tasks to communicate to one

another.

Coarse-grained dynamically reconfigurable processor
This is the target hardware platform in which tasks can execute to perform their functionalities.

Generally speaking, it is a multicore architecture where each core is a separate coarse-grained multi-

context dynamically reconfigurable processor with a certain size. Cores are connected by a network-

on-chip. The device should have the capability of partial reconfiguration in order to support the

dynamic addition and deletion of tasks. A task can be mapped to any core for execution; however, in

order to improve throughput and reduce fragmentation, an appropriate mapping approach should be

introduced.

GPP
As being mentioned in many research, reconfigurable platforms are not efficient for control and

load/store operations; instead, they are often used for accelerating certain parts of an application

like data-flow kernels. Accordingly, a reconfigurable device is usually coupled with a certain type

of a microprocessor. The coupling between a GPP and a reconfigurable fabric will be discussed

in refsec:coupling. A GPP part in Fig. 2.5 represents such a processor for handling operations

unsuitable being executed on the coarse-grained dynamically reconfigurable processor. Moreover, a

GPP is needed to perform specific management jobs for the reconfigurable hardware.

Multitasking-support mechanisms
Several shaded small rectangles outside above mentioned components represent mechanisms to sup-

port multitasking on DRPAs studied in this thesis. The position of such rectangles shows appropriate

layers where the mechanisms should be integrated. Some mechanisms appearing in more than one

layer mean their implementations need support from these layers. For example, in order to imple-

ment a preemption scheme for hardware tasks, not only does the target coarse-grained DRPA need

to provide a preemption interrupt and a method to recognize preemption points1, the scheduler in

the OS must be aware of the interrupt and the state data of preempted tasks in order to correctly

schedule tasks. As a result, Preemption support appears both at the OS layer and the coarse-grained

dynamically reconfigurable processor layer.

2.4 Multitasking Execution Model

There are several models of multitasking execution in reconfigurable computing based on different

characteristics. This section introduces the multitasking execution model based on resource sharing,

which is the most relevant to studies in this thesis. Several approaches attempt to determine how

1The concept of preemption points will be introduced in Chapter 5

2. Methodology and System Architecture
2.4. Multitasking Execution Model 17

Fig. 2.6: Time-sharing, non-space partitioning model

a reconfigurable system allows multiple tasks to share its resources, especially the reconfigurable

processing array. Since the purpose of reconfigurable devices is to extract as much parallelism both

instruction-level and task-level parallelism from a target application as possible in order to achieve a

certain speedup over microprocessor platforms, a resource sharing model is the way to allow multiple

hardware tasks to use the resources of a reconfigurable device more efficiently; or in other words, this

exploits task-level parallelism to further improve performance, especially when a target application

does not have enough degree of instruction-level parallelism.

2.4.1 Time-sharing, non-space partitioning

The simplest method to realize multitasking is a time sharing approach without partitioning the area

of a reconfigurable device, as shown in Fig. 2.6. That is the entire device resources are assigned

to only one task at a time. Each task can run until completion (non-preemptive multitasking), or

tasks can be preempted and resumed later to free resources for other tasks (preemptive multitasking).

Switching from one task to another is carried out by fully reconfiguring the whole device. Since

only one task is executed at a time, this model incurs the problem of the overhead in loading a

configuration and the the limited availability of on-chip memory for caching. Moreover, not only

does device utilization become inefficient since the sizes of tasks are varying and no matter how

large a task is, it is always allocated the whole reconfigurable array for execution, but no parallelism

between tasks can be exploited. Several systems use this approach [29, 30, 31, 32]. For example,

Fig. 2.6 indicates that, at first, task T1 is loaded for execution, then when T1 is stopped either

because it has completed or because it is preempted, task T2 is loaded to replace T1. Then, upon

finishing, task T3 will replace task T2. Whenever a task is allocated for execution, it always takes

over the whole reconfigurable array though its size might be much smaller than the size of the array;

and, the whole device needs to be reconfigured.

2.4.2 Non-time sharing, static partitioning

Using the static partitioning approach, all tasks are allocated to different areas in the reconfigurable

array providing that the total size of tasks does not exceed the size of the array (Fig. 2.7). Normally,

2. Methodology and System Architecture
2.4. Multitasking Execution Model 18

Fig. 2.7: Non-time sharing, static partitioning model

all tasks are configured once and stay active until the system shuts down, or until another set of tasks

requires to load in for execution. This method makes a reconfigurable device behave similar to an

ASIC and it is suitable to systems where a set of tasks can be determined in advanced. Since tasks do

not need to be allocated and freed often, mechanisms for scheduling and resource management are

not necessary, or they are quite simple if such mechanisms requires. This approach is efficient when

tasks are predetermined and they often execute for most of the time. It is not suitable if some tasks

need to be executed just once or only occasionally since all tasks get resources allocated. Fig. 2.7

shows an example where all four tasks T1, T2, T3 and T4 are present in the reconfigurable array

at the same time. No matter if any of these tasks is executing or not, they all occupy a part of the

reconfigurable array.

The mapping method proposed in Chapter 4 exploits this approach. According to the method,

an application is partitioned into multiple tasks, each of which is assigned to a tile or a group of

tiles of a underlying DRPA, and all of them are present at the same when being executed. Tasks can

communicate using a FIFO model based on embedded memories. This approach allows to exploit

task-level pipelined model by arranging tasks involving in a computation stream into a pipelined

chain to take advantages of a pipelined model toward improving throughput. Also, for reconfigurable

devices without partial reconfiguration capability, non-time sharing and static partitioning method is

the best way to exploit task-level parallelism.

2.4.3 Time-sharing, two-dimensional partitioning

In this approach, tasks, which are represented as rectangles, can be dynamically allocated to any

area in the reconfigurable array for execution providing that enough free space is available at the

assigned area, and then removed upon completion, as shown on Fig. 2.8. When a task completes or

is preempted, the area it occupies is freed, and a new task may take over that area; so, when that

task is resumed for continuing execution, it is likely to be assigned to a new area. This approach

enables a more flexible and efficient multitasking environment since tasks can be dynamically allo-

cated resourses for execution and freed upon completion. This is similar to the memory allocation

mechanism in microprocessor-based OS. On the down side, this method could make the problem

of scheduling and fragmentation more complicated. More importantly, it requires the capability of

2. Methodology and System Architecture
2.4. Multitasking Execution Model 19

Fig. 2.8: Time-sharing, two-dimensional partitioning model

partial reconfiguration on a two-dimensional reconfigurable array. Several studies have addressed

different aspects of this approach [33, 34, 35].

As an example from Fig. 2.8, at the beginning, four tasks T1, T2, T3 and T4 are allocated for

execution. After some times, task T1 is preempted and removed, task T5 comes and takes over a

part of area that was occupied by T1 previously. Then, when tasks T2 and T4 complete, task T6 is

scheduled and T1 is resumed. This time, task T1 is allocated to a new area. As shown, the external

fragmentation, which is fragmentation of area outside the rectangular boundary of all tasks, changes

from time to time. That is the reason why a defragmentaion mechanism is necessary; otherwise, a

task might be denied to place on the reconfigurable array for execution since sufficient contiguous

area is not available though total empty area may be greater than the area required by the task.

2.4.4 Time-sharing, multicore partitioning

This approach is based on a multicore architecture, where independent computational cores are con-

nected by a certain network. Cores may be identical and have equal sizes, so I have a homogeneous

architecture. Cores could also be different in size, granularity or structure as shown in Fig. 2.3; in

this case, a heterogeneous architecture is represented. Generally speaking, a task can be mapped to

any core for execution; however, for a heterogeneous system, tasks are allocated to a certain core

based on their sizes or functionalities in order to make the best use of advantages of cores.

Fig. 2.9 shows a heterogeneous model where cores are identical in structrure but different in size.

Cores could be connected by different types of network. For example, in Fig. 2.9, if connection

elements are switches, a system with an island-style network is established; in case when connec-

tion elements are routers, a different system with a network-on-chip is formed. A mapping process

decides which tasks are assigned to which cores based on the size of tasks in order to optimize the us-

age of cores’ resources. When a task completes, the core it occupies is freed and another task can be

assigned to the core. This architecture assumes that each task must be able to fit in a core. If a task is

too large for any core in the system, it should be partitioned into smaller tasks. This approach is the

extension of the above mentioned time-sharing, two-dimensional partitioning architecture. There-

fore, the approach encounters the same problems as the above solution such as scheduling, internal

and external fragmentation. However, by using multiple cores, the process of partial reconfiguration

2. Methodology and System Architecture
2.4. Multitasking Execution Model 20

Fig. 2.9: Time-sharing, multicore partitioning model

becomes much easier since cores are independent.

As an example from Fig. 2.9, at the beginning, four tasks T1, T2, T3 and T4 are allocated for

execution according to their sizes. When tasks T1 and T4 finish or are preempted, their correspondent

cores are freed and task T5 and T6 are assigned to these cores. As being shown, a task always takes

over a core though its size might be smaller than the core size. This causes internal fragmentation.

Chapter 3

Coarse-grained Dynamically Reconfigurable
Processing Arrays

This chapter describes coarse-grained DRPAs that are the potential target devices of research in this

thesis. First, the background and the architectural overview of DRPAs are introduced, then several

dynamically reconfigurable processor architectures including both commercially available devices

and new prototypes released and developed recently are described. Devices mentioned in this chapter

is summarized in a table, in which devices are categorized according to certain criteria introduced in

Section 3.1.

3.1 DRPA Architecture Overview

A large number of coarse-grained reconfigurable architectures have been developed over the years by

researchers and the industry. Reconfigurable architectures can be classified based on several different

parameters. In following sections, system-level architectures for coarse-grained are described by

presenting various flavors of reconfigurable fabric.

3.1.1 Coarse-grained processing array

A typical DRPA often consists of a two-dimensional array of coarse-grained PEs, distributed mem-

ory modules, multipliers, state transition controllers, and I/O elements. Compared with fine-grained

FPGAs, the advantage of a DRPA in terms of area efficiency comes from the capability to provide

multiple-bit wide datapaths and word-level operators instead of bit-level reconfigurability. Wide dat-

apaths allow the efficient implementation of complex operators in hardware. Thus, routing overhead

caused by composing complex operators with bit-level processing units is avoided. Fig. 3.1 shows a

PE array of PACT XPP-64 [36] with a 8x8 computational PE (ALU-PAE) array and a set of memory

modules (RAM-PAEs) at both sides.

In general, each PE has a 4-bit to 32-bit ALU for numerical and logical calculations, logics for

shift/mask operations, registers or register files, and multiplexers for switching the dataflow between

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.1. DRPA Architecture Overview 22

Fig. 3.1: PE array of PACT-XPP Fig. 3.2: Example of a PE (RC of Morphosys)

such components. An example of a typical PE, which is a Reconfigurable Cell (RC) of Mophosys,

is presented on Fig. 3.2 [37]. As shown on the figure, an RC consists of an ALU-multiplier (ALU −

MULT), a shift unit (S HIFT), two multiplexers (MUXA and MUXB), a register file and an output

register (O/PREG). Context data stored in ContextRegister determine the functionalities of the

whole RC.

The operation of ALUs, shift/mask logics, and data paths between components are controlled

with configuration data stored in configuration memories. The array of multiple PEs connected with

programmable routing resources provides various kinds of parallel datapaths such as single instruc-

tion streams and multiple data streama, multiple nstruction streams and multiple data streams, and

pipelining. Although a coarse-grained PE array has low flexibility compared to a fine-grained re-

configurable fabric, it can provide high performance and high area-efficiency for parallel multimedia

applications. The PE with a small granularity such as 4-bit or 8-bit can generally improve flexibility

with low datapath speed. In contrast, a larger granularity can provide high area-efficiency and reduce

configuration data only if the granularity suites to a target application.

3.1.2 Interconnection structure

Interconnection networks [38] used to connect PEs in an array are varying, but they could be catego-

rized into three groups: an island-style interconnection, a direct interconnection, and a switch matrix

interconnection.

Island-style interconnection Fig. 3.3 depicts an PE array with an island-style interconnection

structure, which is very similar to that of FPGAs. Switches denoted as grayed squares with S char-

acter inside are provided at the intersection of horizontal and vertical data channels. Switches can

be changed by dynamic reconfiguration, especially, in every clock cycle for multicontext devices to

realize different connections among PEs. Although being flexible on PE-to-PE connections, an is-

land style encounters two major problems: (1) the area for routing and switches is large, and (2) the

maximum operating frequency is degraded by a long critical path.

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.1. DRPA Architecture Overview 23

Fig. 3.3: Island-style Fig. 3.4: Direct interconnection Fig. 3.5: Switch matrix

Direct interconnection Fig. 3.4 shows a typical direct interconnection structure in a PE array.

In this style, each PE is directly connected to its nearest neighbors. In order to reduce the delay

for communicating with remote PEs, additional long connections to other PEs in the same row and

column are provided in some architectures [39]. A direct interconnection could be a solution for two

problems existing with an island-style interconnection. However, it suffers a long delay to transfer

data between remote PEs.

Switch matrix interconnection A large switching matrix can be used to connect a number of PEs

as shown in Fig. 3.5. Since the number of PEs connected with a single switch is limited, various

types indirect interconnection may be used. For example, in D-Fabrix architecture, a chess-board

like interconnection between PEs and switches is applied by having three-stage indirect switching

network to connect all PEs in a cluster. In FE-GA, PEs are connected to distributed memory modules

through a switch, which allows to transfer data stored in memory modules to any PEs located at the

edge of the PE array.

3.1.3 Dynamic reconfiguration method

Although the coarse-grained PE arrays actually provide high area-efficiency compared to fine-grained

FPGAs, they are still inefficient compared to logically equivalent ASICs because of the programma-

bility. A dynamic reconfiguration scheme is a primary technique to improve area- and power-

efficiency of field-programmable logic devices like the coarse-grained PE arrays. A large amount

of configuration data can be stored into on-chip and/or off-chip memories, and the coarse-grained PE

array can be dynamically reconfigured by reading out a desired configuration data from the memo-

ries. The dynamic reconfiguration offers a great advantage with respect to area- and power-efficiency

because the PE array can be reconfigured so as to be optimized for various kinds of functions.

In the last few decades, fine-grained FPGA-based dynamically reconfigurable devices have been

released. They include partially run-time reconfigurable FPGAs [40] and multicontext FPGAs [41,

42]. Fine-grained dynamically reconfigurable devices require a large amount of configuration data,

and this implies millisecond-order reconfiguration time. Therefore, dynamically reconfigurable FP-

GAs have been used for only restricted purposes such as a logic emulation system. Fortunately,

coarse-grained PE arrays can drastically reduce the need for configuration data, and they provide less

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.1. DRPA Architecture Overview 24

Configuration Register

PE PE PE

PE PE PE

PE PE PE

Configuration Bus (Data + Address)

Configuration
Data Memory

Configuration
Data Memory

Configuration
Data Memory

Fig. 3.6: Configuration Delivery Scheme

Context
Controller

Context
Pointer

Context
Memory

PE PE

PE PE

Fig. 3.7: Multicontext Scheme

than microsecond-order and practical dynamic reconfigurability.

In this thesis, dynamic reconfiguration schemes are classified into two categories: a configuration

delivery scheme and a multicontext scheme.

Configuration Delivery Scheme
The configuration delivery scheme is used for the systems in which the dynamic reconfiguration

is not performed frequently. In this method, as shown in Fig. 3.6, the configuration data for each

reconfigurable element including PEs and switching resources are stored in on-chip configuration

data memory modules. The configuration data is delivered to corresponding elements in sequence

via a dedicated configuration bus. Since configuration data memory modules are centralized on the

chip, the configuration delivery scheme has an advantage of area-efficiency, and communication with

outside of the chip is readily feasible. The reconfiguration time for the configuration delivery scheme

is almost microsecond order. This is preferable to FPGAs with millisecond-order reconfiguration

time, but operations of the PE array have to be suspended during the reconfiguration in most cases.

Multicontext Scheme
The other dynamic reconfiguration method, the multicontext scheme, is supported in recent dynam-

ically reconfigurable processors. In this method, as shown in Fig. 3.7, each reconfigurable element

provides its configuration data memory called a context memory which stores configuration data sets

for operational instructions of each PE and intra/inter-PE connection instructions. A context number

is delivered to all of the reconfigurable elements and used as a pointer to the context memories. By

changing the context number and reading the context memory simultaneously, all the reconfigurable

elements can switch the context in parallel with only one clock cycle. This method implies that the

configuration data corresponding to a context is distributed to each reconfigurable element, and a

context is switched by reading out the configuration from each of the context memories.

There are different context switching control methods for the multicontext dynamically reconfig-

urable devices. The three methods supported by recent architectures include a data-driven control,

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.1. DRPA Architecture Overview 25

state transition control, and program counter-based control. At first, Ling and Amano [43] proposed

the data-driven control method in their architecture WASMII. In the WASMII, a context is activated

when all input data are present. Secondly, in the state transition control method, a simple controller

has a state transition table which describes statically defined context switching patterns. Finally, the

program counter-based control is the simplest method based on an incrementing counter. As simi-

lar to commonly used microprocessors, the controller has a counter for the context number and the

context indicated by the counter is activated.

Although the data-driven method provides dynamic and flexible context switching controls, it has

a design difficulty because of the hardware overhead for detecting an activated context [44]. There-

fore, the simpler methods including the state transition control and the program counter-based control

mechanisms are commonly used in the recent multicontext dynamically reconfigurable processors.

Since the proposal of WASMII in 1992, our project has investigated the multicontext dynamically re-

configurable processor architectures, and I focus on them also in this thesis. And, I suppose the state

transition control and the program counter-based control methods for the context switching control

because of their generality.

3.1.4 Coupling between CPU and DRPA

A DRPA is often used as an accelerator for a host processor. A system consisting of a microprocessor

and a DRPA could achieve both the high performance with hardware-accelerated execution on the

reconfigurable array and the flexibility with software execution on the GPP. From the viewpoint of

the coupling between a microprocessor and a reconfigurable fabric, reconfigurable system can be

classified into three groups [45], as shown on Fig. 3.8.

• an attached reconfigurable processing unit,

• a tightly coupled coprocessor, and

• a reconfigurable functional unit (RCFU).

Attached Reconfigurable Processing Unit
Attached reconfigurable processing units are integrated into a system on a memory or I/O bus. Sys-

tems with attached reconfigurable processing units, for example, Splash 2 [46, 47], RASH [48], and

Teramac [49], have no direct access to the processor. The primary feature of attached reconfigurable

processing units is that they are easy to add to existing computer systems. However, due to the band-

width and latency constraints imposed by memory or I/O buses, they do not suit to communication-

intensive applications.

Tightly Coupled Coprocessor
A coprocessor system consists of a microprocessor and one or several reconfigurable fabrics that play

a role of a coprocessor. In general, the coprocessor handles computation-intensive parts of a program,

and the other parts are executed by the microprocessor. In such a system, the reconfigurable fabric

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.1. DRPA Architecture Overview 26

RCFU

Coprocessor

Microprocessor
Core

Caches or
Memory

Attached
Reconfigurable
Processing Unit

Memory

System Bus

Memory or I/O Bus

Processor = Reconfigurable Fabric

Fig. 3.8: Coupling of Reconfigurable Fabric and Microprocessor

can access to the same memory hierarchy as to the microprocessor including several levels of caches,

on-chip memories, and external memories. As a result, there is a low-latency and high-bandwidth

connection between the microprocessor and the reconfigurable fabric. The examples of such systems

include Garp [6, 50], Napa 1000 [51], PRISM [52, 53], and ArMen [54].

Reconfigurable Functional Unit (RCFU)
The tightest coupling between a microprocessor and a reconfigurable fabric occurs when the reconfig-

urable fabric is on the microprocessor’s datapath, as in functional unit architectures like PRISC [55],

Chimaera [56], and OneChip [57, 58]. All of these allow custom instructions to be executed. The

reconfigurable fabric is on the processor datapath and has access to registers. However, these imple-

mentations restrict the applicability of the reconfigurable fabric by disallowing state to be stored in

the fabric and in some cases by disallowing direct access to a memory, essentially eliminating their

usefulness for stream-based processing.

3.1.5 C-based programming methodology

Due to their field-programmability, dynamically reconfigurable processors can execute various kinds

of parallel algorithms. For a stream-based processing like an image processing, streaming data are

distributed into memory modules and executed by the PE array in data-parallel and SIMD fashion.

Moreover, since the PE array has a lot of independent operators such as shifters, ALUs, and registers,

and switches a context in a cycle-by-cycle manner, it can perform as like a Very Long Instruction

Word (VLIW) processor exploiting instruction-level parallelism (ILP).

For dynamically reconfigurable processors, a C/C++-based programming methodology is com-

monly accepted [59]. Although basic C language is suitable to describe algorithmic behaviors, it’s

not suitable for data flow or continuous computation [60]. In order to apply C language to describe

a hardware behavior of ASICs and FPGAs, several C-based hardware description languages and

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 27

Tile 0

Tile 1

Tile 2

Slice 0

Tile 0

Tile 1

Tile 2

Slice 1

Tile 0

Tile 1

Tile 2

Slice 2

Tile 0

Tile 1

Tile 2

Slice 3

LSM
32bit x 128

LSM
32bit x 128

LSM
32bit x 128

LSM
32bit x 128

32-bit DPU

32-bit DPU

32-bit DPU

32-bit DPU

32-bit DPU

32-bit DPU

32-bit DPU

Multiplier Multiplier

CLU

Fig. 3.9: CS2112 reconfigurable fabric

Routing
MUX

Routing
MUX

Register
&

Mask

Register
&

Mask

Barrel
Shifter

Register

Register

OP

Instruction Memory

Fig. 3.10: CS2112 datapath unit (DPU)

high-level synthesis techniques have been proposed. They support extended features such as timing

and communications. Fortunately, since the coarse-grained PE array consists of ALUs, shifters, and

register files, an arbitrary data flow graph described in a C-based language can be efficiently mapped

onto the PE array.

3.2 Review of DRPAs

This section reviews several dynamically reconfigurable processor architectures released by consumer-

electronics makers in the last decade. They include not only commercially available products but also

new devices under research and development.

3.2.1 Chameleon CS2112

The Chameleon’s Reconfigurable Communication Processor (RCP) [61] called CS2112 1, comprises

a Reconfigurable Processing Fabric (RPF), programmable input and output banks, and an embedded

microprocessor. Chameleon is a licensee of the ARC processor, which it uses as an executive con-

troller overseeing the 128-bit internal RoadRunner split-transaction bus. RPF uses RoadRunner to

communicate with the ARC core, as well as with external devices on the PCI bus.

As shown in Fig. 3.9, the device’s fabric is made up of four programming slices, each of which

has three tiles. Inside each tile is a control logic unit (CLU), which is a programmable logic array that

controls the tile’s registers; four separate local store memories (LSM) measuring 32 bits x 128 entries

deep; dual 16 x 24 multipliers (MPU); and a total of seven 32-bit datapath units (DPU), similar in

function to an arithmetic logic unit. One CS2112 chip thus has 84 datapath units, 24 multipliers and

48 local store memories, with an aggregate memory of 24 kbytes.

The DPU shown in Fig. 3.10 is a fundamental computational element in the fabric. It has a

basic word length of 32 bits but has special operations that allow it to operate in SIMD fashion on

1The technologies of Chameleon’s reconfigurable processors is now licensed by Intel Corporation.

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 28

I/O

RAM/IO
PAEs

ALU
PAEs

RAM/IO
PAEs

FNC0

I/O

I/O

I/O

FNC1

FNC2

FNC3

FNC4

FNC5

FNC I/O-Bus

To
 M

em
or

y
H

ie
ra

rc
hy

FNC
PAEs

Dataflow Array
Configuration

Fig. 3.11: XPP-III Core Architecture Sample

four 8-bit data streams or two 16-bit data streams. The core of the DPU is the 32-bit Operator (OP)

that performs arithmetic and logical operations. The MPUs can perform 16 x 24-bit or 16 x 16-bit

single-cycle multiplications. The LSM is a multi-ported 32-bit x 128-word RAM. Each DPU is pro-

grammed with eight user-definable instructions stored in its instruction memory (context memory).

Each instruction specifies a complete configuration for the DPU. The CLU directly implements a

FSM to select the DPU and MPU instructions stored in the instruction memory. Nearby DPUs are

connected to each other in a full crossbar connection. More distant DPUs are connected with routing

with a one-clock pipeline delay.

Each tile of the RCP has a background configuration plane and active configuration plane. In-

structions for the architecture are dynamically programmable, since instructions load in the back-

ground plane during one clock cycle, then swap functions with an active plane. To program all four

slices, a new configuration data can be loaded in less than 3 µsec. The entire system can be reconfig-

ured in one clock cycle by switching the configuration data from the background plane to the active

plane. That means multivariate problems are handled in an all-or-nothing fashion in the Chameleon

design. In a cdma2000 chip-rate application, for example, tasks such as pseudrandom number gen-

eration and rake finger searches are not parceled out to various pipelined subprocessors. Instead,

an entire tile is dedicated first to pseudorandoms, then to demodulation, then to finger searches and

finally to access searches, with the task reassigned in a single clock cycle.

Applications are developed in a mixed environment, where routines compiled in C are developed

for the ARC executive controller, while Verilog source code is created and synthesized for the re-

configurable fabric. The resulting fabric bit stream is sent to the ARC linker in the final object-code

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 29

steps and then to Chameleon’s proprietary execution engine for final simulation.

The RCP has been implemented at a 0.25 µm CMOS technology with a 125-MHz clock. From

the performance evaluation results to handle digital processing algorithms, CS2112 can handle a

1,024-point fast Fourier transform in 10 microseconds, while a 48-tap symmetric FIR filter has a

125-Msample/second capability. As baseband processing in 3G digital cellular markets branches out

to include some IF filtering functions.

3.2.2 PACT XPP-III

eXtreme Processing Platform (XPP) [36] is a reconfigurable processor architecture based on a hier-

archical array of PEs called Processing Array Elements (PAEs). An XPP Core contains a rectangular

array of three types of PAEs. Those in the center of the array are ALU-PAEs. To the left and right

side of the ALU-PAEs are RAM-PAEs with I/Os. Finally, at the right side of the array, there is a

column of FNC-PAEs. Fig. 3.11 shows a sample array with 30 ALU-PAEs, 12 RAM-PAEs, and 6

FNC-PAEs. The PAEs can be configured while neighboring PAEs are processing data. Reconfigu-

ration is triggered by a controlling FNC-PAE or by special event signals originating within the PE

array.

The FNC-PAE comprises a 2 x 4 array of 16-bit ALUs, a Special Function Unit (SFU), a 16-

bit register file, a 32-bit address generator, a local instruction cache, a tightly coupled memory,

and I/O ports. The eight ALUs are designed to be small and fast because they are arranged in

two non-pipelined columns of four ALUs each. SFUs operate in parallel to the ALU datapath.

They support up to two 16x16-bit multiplications and functions such as a bit-field extraction. By

combining the SFU multiplications with the adders of the ALU array, it is possible to execute two

pipelined multiply-accumulate (MAC) operations each cycle.

As shown in Fig. 3.12, the ALU-PAE contains three XPP objects: FREG, ALU, and BREG

object. All the objects have input registers which store the data or event packets for one cycle. The

ALU object in the center of the PAE provides basic logical and arithmetic operations, and special

arithmetic operations such as multiplication. The Forward Register (FREG) object on the left side

and the Backward Register (BREG) object on the right side of the ALU-PAE are very similar. The

main difference is the processing direction: top-down for the FREG and bottom-up for the BREG

object. Both objects provide routing of data, dataflow operators such as multiplexing, basic arithmetic

operations and look-up table for boolean operations.

The RAM-PAE consists of the FREG and BREG objects which are identical to the ones in the

ALU-PAEs, a RAM object, an additional I/O object. The RAM object contains a small bank of

two-ported SRAM. The RAM operates either in internal RAM (IRAM) or in a FIFO mode. The

content of RAMs is preserved during reconfiguration of the array. The I/O object is integrated into

the RAM-PAE, providing access to external data.

The XPP objects communicate through a packet-oriented network. An operation is performed as

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 30

LUT

DF-Register

1-stage FIFO

Register

1-stage FIFO

Register

DF-Register

DF-Register

LUT

1-stage FIFO

Register

RECONF

n-bit Data

1-bit Event

Left Switch
Object

FREG Object ALU Object BREG Object Right Switch
Object

Fig. 3.12: XPP-III ALU-PAE Architecture

soon as all necessary data input packets are available. The results are forwarded as soon as they are

available, provided the previous results have been consumed. Thus it is possible to map a dataflow

graph directly to ALU objects and to pipeline input data streams through it. The communication

system is designed to transmit one packet per cycle. Hardware protocols ensure that no packets are

lost, even in the case of pipeline stalls or during a configuration process.

In [62], it is described that a video decoder on the XPP-III, in which various video sequences

including MPEG-2, MPEG-4, H.264, and VC-1 (WMV9), are supported. The evaluation result

shows that the XPP-III version of 40 FNC-PAEs, 16 ALU-PAEs, and 8 RAM-PAEs can perform

real-time decoding of H.264 frames with VGA size at 92MHz and HD resolution (1280x720) at

174MHz.

3.2.3 NEC Electronics DRP-1

Dynamically Reconfigurable Processor (DRP) is a coarse-grained reconfigurable processor that was

released by NEC Electronics in 2002 [63]. The basic building unit of the DRP architecture is a Tile

shown in Fig. 3.13. Each Tile consists of 64 PEs, 8 vertical memory modules (VMEMs) with 2

controller (VMCTRs), 4 horizontal memory modules (HMEMs) with one controller (HMCTR), and

a state transition controller (STC). By combining multiple Tiles, designers can construct a DRP core

with a desirable size.

Fig. 3.14 shows the PE architecture which is composed of an Arithmetic Logic Unit (ALU),

a Data Manipulation Unit (DMU), a Flip-Flop Unit (FFU), and a Register File Unit (RFU). The

ALU performs addition, subtraction and so on. The DMU is a logic operator, and it performs the

combinations of logical AND, OR, and shift. The FFU is an 8-bit wide flip-flop unit, and the RFU is

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 31

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

HMEM HMEM HMEM HMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

HMCTR

VMCTR
VMCTR

State Transition Controller

Fig. 3.13: DRP Tile Architecture

In
st

ru
ct

io
n

M
em

or
y

A
LU

D
M

U

Fl
ip

 F
lo

p

D
at

a
O

ut
pu

t
8b

it

Flag Input

Data Bus

Flag Output

D
at

a
In

pu
t

8b
it

x
2

Flag Bus
Instruction

Pointer

Bus Selector

R
eg

is
te

r F
ile

Fig. 3.14: DRP PE Architecture

an 8-bit wide and 16-entry deep register file.

In a DRP core, memory modules are laid-out in jail-bar like structure. VMEMs separate the tile

columns, and HMEMs take the top and bottom. Each of VMEM modules is an 8-bit x 256-word

memory with one read port and one write port. It can be also configured as a FIFO storage. Each of

HMEM modules is an 8-bit x 8192-word memory with one read or write port. Together with PE’s

FFU and RFU, the DRP supplies an uniform distribution of memory resources.

Each of the reconfigurable elements such as PEs has its instruction memory (context memory),

in which 16 contexts can be stored. According to a context pointer delivered from the STC, all of

the reconfigurable units read the corresponding context and then be reconfigured. The STC is a pro-

grammable sequencer which carried out switching the context based on a simple state transition, and

can store up to 64 states. Each state is associated with the context pointer which indicates a particular

context. The STC can receive event signals from the PE array to take a branch conditionally. The

maximum number of branches that can be specified from the PE array is four.

Fig. 3.15 depicts the prototype chip DRP-1, which is composed of a DRP core with 4 x 2 Tiles. It

has been fabricated with a 0.15-µm CMOS technology. It consists of 8 Tiles, eight 32-bit multipliers,

an external SRAM controller, a PCI interface, and 256-bit I/Os. The maximum operational frequency

is 100MHz. Although the DRP-1 is used as an attached reconfigurable processing unit, the DRP core

can be used as an IP core on SoCs with an embedded processor. In this case, the number of Tiles can

be chosen so as to achieve required performance with minimum area.

An integrated design environment called Musketeer is provided for the DRP-1 [59]. The applica-

tion design flow is shown in Fig. 3.16. It consists of two flows: compilation flow (shown on the left

part of Fig. 3.16) and verification flow (shown on the right part of Fig. 3.16). The compilation flow

is composed of three main stages: behavioral synthesis, technology mapper and place-and-route.

Firstly, the behavioral synthesis tool receives a DRP programs described in a C-based hardware de-

scription language called Behavioral Design Language (BDL) as input, separates the control flow

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 32

CLK To SDRAM/SRAM/CAM CLK

Data

Ctrl

Test

Program

CLK PCI IF CLK

PLL MUL MUL MC MUL MUL PLL

PLLMULMULPCICMULMULPLL

Tile Tile Tile Tile

Tile Tile Tile Tile

CSTC

Fig. 3.15: DRP-1 Architecture

Behavior Description(BDL)

Operation Synthesis

Controller
(FSM)

Data Path

Technology Mapping

Placement and Routing

Code Generation

Configuration Code

BDL
Source Code

RTL Verilog

Test Bench

Block-level
Verilog

Test Bench

C Level Operation
Verification

RTL Function
Verification

Block Level Function
Verification

Hardware Level
Function Verification

On-Chip Verification

Fig. 3.16: Programming Flow of DRP

represented as the finite-state machine and data flow, and produces the output in a Verilog format

that describes the datapath of each computation state. The tool also provides a report containing

the number of states, the number of predicted PEs used in each state, and the predicted delay for

critical paths. The technology mapper uses the Verilog code produced by the behavioral synthesis

tool as input to convert the control part (finite-state machine) to STC code and the datapath part to

instruction code for PEs. The mapper outputs a netlist for the next place-and-route tool and Verilog

testbench code for verification. The place-and-route tool uses the netlist to determine the actual place

of PEs and data transfer between PEs. Finally, the output of the place-and-route stage is converted to

configuration data, which can be loaded into DRP-1 for execution.

The verification flow allows to verify the application being developed at many levels including

C-level verification, RTL functional verification, block-level functional verification, hardware-level

functional verification, and on-chip verification.

3.2.4 IPFlex DAPDNA-2

DAPDNA [64] is a dynamically reconfigurable processor architecture released by IPFlex in 2002. In

DAPDNA, sequential processing and large-scale data processing are distinguished and executed in

parallel. The sequential processing is performed by a 32-bit RISC processor core called Digital Ap-

plication Processor (DAP). And, the large-scale data processing is accelerated by a two-dimensional

PE array called Distributed Network Architecture (DNA) matrix. The DNA matrix can dynamically

reconfigure its datapath and exploit loop- and data-level parallelism.

Fig. 3.17 depicts DAPDNA-2 architecture which is the second generation processor of DAPDNA

architecture. It consists of a DAP core and a DNA-matrix. The DAP core has an independent 8-KB

of instruction cache, and 8-KB of data cache. The DNA matrix has 32-bit processing elements

with multicontext dynamic reconfigurability. The operating frequency of each processor core is up

to 166MHz. The DAP core performs system-control and general-purpose operations. The DNA-

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 33

Debug Interface

DAP

RISC Processor Core

Instruction
Cache

Data
Cache C

on
fig

ur
at

io
n

M
em

or
y

DNA-Matrix
(376 PEs)

Load
Buffer

Store
Buffer

DNA

D
N

A
 D

ire
ct

 I/
O

Switch Bus

PCI
Interface

DDR SDRAM
Interface

DMA
Controller

S
-R

O
M

U
A

R
T

G
P

IO

IN
TC

Peripherals

Fig. 3.17: DAPDNA-2 Architecture

Matrix provides capability for high speed data processing and scalability, with parallel computing

and dynamic reconfigurability, respectively. This tightly coupled dual-core architecture realizes both

flexibility and high performance.

The DNA-Matrix includes several types of processing elements as shown in Table 3.1. To map

an algorithmic data flow graph directly onto the hardware, several types of PEs are placed in a two-

dimensional PE array consisting of 8 x 8 PEs. This 8 x 8 unit is considered to be a segment, and

the DNA-Matrix includes 6 segments, the total number of PEs being 376. There are two major

categories of PEs. The first category is data processing where the combination of EXE/DLE/RAM

has a complete capability to execute various operations on a data stream. The second is data I/O, and

it is possible to generate data streams autonomously.

The DNA-Matrix has rich bus structure to realize various types of algorithms, and the DNA-

Matrix Bus consists of a column-wise vertical bus which includes 8 x 32-bit wires corresponding to

the row number. The DNA-Matrix Bus covers all rows in a segment, and the source PE can output

its signal to all columns in a segment. Therefore, connections between arbitrary PEs are available,

regardless of the relative position between source and destination PEs in a segment. The segment

boundary connections are restricted slightly to realize a fixed operating frequency. The boundary

PEs generate their output at the position of boundary PEs within the neighboring segment.

Configuration data of the DNA-Matrix is in two orders of magnitude smaller than fine-grained

FPGAs. With this configuration size, the DAPDNA processor can hold entire DNA configuration

data within context memories of each PEs. The DAPDNA-2 holds four contexts in the context

memories: one is the foreground and three in the background. The proximity of configuration mem-

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 34

Table 3.1: Types of DAPDNA-2 PE
PE Qty Function

EXE 168 Arithmetic and logical Ops.
DLY 138 Variable delay for data sync.
RAM 32 Temporary memory
C16E 12 Address generator
C32E 12 Address generator
LDB 4 Data Input from processor bus
STB 4 Data Output to processor bus
LDX 4 Data Input from Direct I/O
STX 4 Data Output to Direct I/O

ory enables the DNA-Matrix to switch configuration in one clock cycle. The trigger of a dynamic

reconfiguration event can be generated by two sources: the control signal from DAP core and recon-

figuration signal from the DNA-Matrix itself. The total reconfiguration time using the DAP core is

usually less than 1µs.

The result of performance evaluations shows the DAPDNA-2 performs more than 28,000 million

instructions per second (MIPS) at a clock speed of 166MHz and is capable of more than 9,000

million MACs per second (MMACS) of multiply-accumulate operations with 16-bit inputs and a

32-bit output. And, the DAPDNA-2 can execute image filtering operations such as a Laplacian filter

at 1 giga pixels per second. The same operation on a Pentium 4 (3.06 GHz) is topped at 16 mega

pixels per seconds and this implies the DAPDNA-2 has 63-times performance gain.

In recent years, IPFlex continues to release enriched DAPDNA-2-based architectures. DAPDNA-

3A [65] is based on multicore structure, and consists of 4 DAPs and 4 DNA-Matrices. Each DAP

and DNA-Matrix is connected by a reconfigurable interconnection called AXION. Furthermore, the

DNA-matrix in DAPDNA-IMS and DAPDNA-IMX [66] is enlarged to 955 16-bit PE array for the

special purpose of image processing.

3.2.5 Hitachi FE-GA

Hitachi proposed Flexible Engine/Generic ALU Array (FE-GA) in 2005 [67]. The FE-GA is imple-

mented using TSMC 90-nm Low Power CMOS technology, and it operates at 266MHz with power

consumption of 200mW and with an area of 5mm2.

The FE-GA consists of 24 ALU cells, 8 MLT cells, 10 load/store (LS) cells with a local RAM,

a sequential manager (SEQM), a configuration manager (CFGM), a crossbar switch cell (XB), and a

system bus interface as shown in Fig. 3.18. Each computing cell (ALU and MLT cells) is connected

to its neighboring four cells. Therefore, the length of wires can be extremely short, making for a short

delay that provides a high clock frequency. In addition, each of the LS cells, which are interface cells

for local RAMs, can be connected to any computing cell on the utmost-left or utmost-right sides via

XB connection.

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 35

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALUMLT

Crossbar Network (XB)

Configuration Manager (CFGM)

Sequence Manager (SEQM)

Operation Cell Array
(24 + 8 Cells)

Array Ctrl.

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

CRAM

CRAM

CRAM

CRAM

CRAM

CRAM

CRAM

CRAM

CRAM

CRAM

(10 Cells) (10 Banks)

LS Cells Compiled RAMs

B
us

 In
te

rfa
ce

IO
 P

or
ts

System
Bus

Interrupt/
DMA Request

External IOs

MLT

MLT

MLT

MLT

MLT

MLT

MLT

Fig. 3.18: FE-GA Architecture

The configuration data for each cell is managed by the CFGM and transferred to configuration

registers (i.e., context memories) of each cell in the background. This configuration data is referenced

by a pointer so that it can be compressed to an average of 20% its original size. The context switch of

each cell is controlled by the SEQM, which generates a switching trigger using its built-in counters

or the computation result of counters or comparisons of ALU cells. The SEQM can consider a

conditional branch for the trigger, so the FE-GA can perform run-time context switches flexibly.

Fig. 3.19 shows an ALU architecture of the FE-GA. Each ALU cell consists of a general 16-

bit ALU, a shifter (SFT), a data through logic circuit (THR), and an input delay logic circuit. All

components of the ALU cells can be operated simultaneously. The data through logic circuit transfers

the data from a cell’s output to its neighboring cell’s input without blocking any ALU operation. In

addition, some ALU cells can send their result to the SEQM as a switching trigger that switches the

context of all the cells by the result.

Each MLT cell consists of, as similar to a ALU cell, a general multiplier, a data through logic

circuit, and an input delay logic circuit. All components of the MLT cells can be operated at the

same time as ALU cells. Each LS cell shown in Fig. 3.20 consists of a port (A0/A1) connected to the

XB, a port (B) connected to the bus interface and a port (0/1) connected to a dual-port RAM (local

RAM). Because the LS cells can generate load and store addresses without using the ALU cells, the

ALU cells can be saved for user applications.

Evaluation results based on TSMC 90-nm LP CMOS technology demonstrates that the opera-

tional frequency is 266MHz in worst cases, and the performance is 17.0 GOPS for 16-bit integer

operations. The estimated area of the FE-GA is 5.0mm2 including 40-KB local RAM, and power

consumption is estimated as 210mW. In addition, several signal processing applications such as FIR

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 36

O
ut

pu
t S

w
itc

h
Tr

an
sf

er
 R

eg
is

te
r (

TR
E

G
)

In
pu

t S
w

itc
h

D
el

ay
 A

dj
us

tm
en

t

alu_inc

alu_inda/b

sft_inca/b

sft_inda/b

thr_inca/b

thr_inda/b

alu_outc

alu_outd

sft_outc

sft_outd

thr_outc

thr_outd

Configuration Register Ctrl
Cell State Control

Configuration Register (x4)
Configuration Decoder

From
Upper Cell

From
Lower Cell

From
Left Cell

From
Right Cell

To
Upper Cell

To
Lower Cell

To
Left Cell

To
Right Cell

Cell Ctrl
Bus 1-bit x 4

8-bit x 4
w/ valid bit

ALU
Arithmetic-1

Logical
Flow Control

SFT

Shift

THR

Data Control

Fig. 3.19: FE-GA ALU Cell Architecture

P
or

t A
0

P
or

t B
P

or
t A

1

P
or

t 0
P

or
t 1

P
or

t 0
P

or
t 1

Cell
Ctrl

Addr
Cal 0

Addr
Cal 1

Addr
Arbiter

CRAM
4-16KB
2-Port

LS Cell Local Memory

C
ro

ss
ba

r N
et

w
or

k
(X

B
)

Internal Bus
(x10)

Fig. 3.20: FE-GA LS Cell Operation

filters and DCT have been implemented on the FE-GA, and it can perform at about 10 times fewer

clock cycles than a DSP.

3.2.6 Elixent D-Fabrix

Elixent D-Fabrix2 [68] reconfigurable processor is an evolution of the CHESS architecture [69] de-

veloped by Hewlett-Packard Laboratories.

The goal of the CHESS architecture was to increase both arithmetic computational density and

the bandwidth and capacity of internal memories significantly beyond the capabilities of current

FPGAs, while enhancing flexibility. Toward the goad, the fundamental computational unit is a 4-bit

ALU with a primary set of 16 instructions. This provides efficient arithmetic capabilities suitable

for cascading to useful media operations, or for supporting nibble-serial implementation styles. The

entire user-visible routing structure is also based on 4-bit buses.

Fig. 3.21 shows the CHESS chessboard- or checkerboard-style reconfigurable arithmetic archi-

tecture. Each ALU is adjacent to four switchboxes, and each switchbox is adjacent to four ALUs.

This allows very powerful local connectivity, with each ALU having input and output buses on all

four sides, and being able to send data to or receive data from any of the eight surrounding ALUs as

shown in Fig. 3.21 by the dotted arrows.

At run time, any switchbox in a CHESS array can be used as a 4-bit x 16-word memory. In this

mode, all of the switches in the switchbox are disconnected, although the buses running over the

switchbox can still be used. These memories are distributed through the array, attached to user plane

wiring buses, and typically controlled by surrounding ALUs which generate an address and R/W

control. The above design above provides one block RAM per 16 ALUs3, using about 25% more

2The technologies of the D-Fabrix is now licensed by Matsushita Electric Industrial Co., Ltd.
3As like MeP-combined version described later, in recent D-Fabrix arrays, the basic block called Tile consists of 2

ALUs and 2 Swichboxes, and every 2 x 4 Tile has one 256 bytes block RAM.

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 37

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU

ALU ALU

Fig. 3.21: Chessboard-style ALU Array

A

B

I

Cout

Cin

from
neighbor

ALU

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r

to
neighbor

Fr
om

 R
ou

tin
g

N
et

w
or

k

To
 R

ou
tin

g
N

et
w

or
k

switchbox

ALU

Fig. 3.22: D-Fabrix ALU and Switchbox

area than the basic array without the block RAMs.

Fig. 3.22 illustrates the ALU and Switchbox pair of Elixent D-Fabrix architecture. The architec-

ture is almost the same as the CHESS architecture, for examples, 4-bit ALU array and chessboard-

style interconnections. There is, however, one significant difference between the D-Fabrix and the

CHESS. The multiplexers that select signals from the routing network to pass to the pipeline registers

are statically configured in the CHESS, but the D-Fabrix allows them to be dynamically controlled,

using either an ALU Cout or a signal from the routing network as a multiplexer control signal.

The area of the basic cell (ALU plus switchbox) of the CHESS architecture is 0.045 mm2 in

a process with 0.35µm feature size. The simulation results show that an operational frequency is

200MHz, and the CHESS architecture has a substantial performance advantage over some FPGAs

in an equivalent semiconductor technology. In the D-Fabrix architecture, dynamic switchbox multi-

plexers have resulted in a slight overall increase in the area of a combined ALU and Switchbox. This

increase is due to the addition of the circuits that select control inputs to switchbox multiplexers and

their configuration memories. The area increase is no more than 10%. Compared to the ALU, the

switchbox multiplexer is one-third of the size and it has half the propagation delay and 40% of the

power consumption.

The D-Fabrix ALU array is actually integrated into Toshiba’s Media Embedded Processor (MeP)

[70] and Matsushita’s UniPhier platform [71, 72] as a flexible hardware engine. Toshiba developed

a reconfigurable LSI called ET1, in which the D-Fabrix works as an extension unit of MeP Core.

Fig. 3.23 shows a block diagram of ET1. The D-Fabrix of the ET1 consists of 576 Tiles, which

means 1152 ALUs, and 72 Block RAMs. In [70], it is demonstrated that the area-efficiency of D-

Fabrix compared to an ASIC ranges from 1/2.8 to 1/16.3, and the maximum operational frequency

ranges from 1/1.7 to 1/5.8.

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 38

MeP core

IMEM
32KB

DMEM
32KB

D-Fabrix
24x24 Tiles
(1152 ALUs)

(72 BlockRAMs)

Fr
eq

.
C

on
tro

l

8KB x 2 8KB x 2 8KB x 2

8KB x 2 8KB x 2 8KB x 2

8K
B

 x
 2

8K
B

 x
 2

DMAC

Global Bus I/F

Clk Div.
Clk

Off-Chip Memory

Local Bus

Global Bus

Fig. 3.23: ET1 Architecture with MeP core and D-Fabrix

3.2.7 Rapport Kilocore

Rapport Kilocore [73] architecture is a commercialized reconfigurable processor derived from PipeRench

[74], which has been proposed at Carnegie Mellon University in late 1990’s.

PipeRench is based on an unique virtual hardware model called virtual pipelines described in

Fig. 3.24. Fig. 3.24(a) shows a 5-stage (or stripe) virtual pipeline. Fig. 3.24(b) illustrates the first

7 cycles of reconfiguration of a 3-stage physical hardware pipeline executing the 5-stage virtual

pipeline. Reconfiguration is performed by storing the configuration data of the entire virtual pipeline

in an on-chip configuration data memory, and transferring them from the memory to the physical

fabric every cycle.

Fig. 3.25 depicts a reconfigurable fabric of KC256, which is the first generation of the Kilocore

architecture and virtual pipeline model. In Kilocore architecture, the functionality in each stripe

consists of 16 8-bit PEs. All PEs within a stripe are interconnected within that stripe, which facilitates

easier placement and routing of operations.

Fig. 3.26 is a block diagram of KC256’s 8-bit PE. All selected inputs to multiplexers and shifters

in this figure are connected to configuration bits stored in that PE. Special purpose interconnects

are used to combine adjacent PEs to perform operations more than 8 bits in width. The shifters

are also connected to the corresponding shifters in adjacent PEs to allow for efficient multi-PE shift

operations. Each PE contains a register file with eight registers. The output from the functional unit

can be written to any one register in the register file in that PE. If the value from the functional unit

is not written to a register, the value from the corresponding register in the previous stripe is latched

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 39

1 2 3 4 5 6 7Cycles:
Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

(a) 5-stripe Virtual Hardware Pipeline

1Stage 1

Stage 2

Stage 3

1 1 4 2

1

4 4

2 2 2 55 5

3 3 3 1

Configuring Executing

(b) 4-Stripe Physical Hardware Pipeline

Fig. 3.24: Virtual Pipeline Model

PE15 PE2 PE1 PE0

Interconnect

PE15 PE2 PE1 PE0

Interconnect

PE15 PE2 PE1 PE0

stripe 0

stripe 1

stripe 15

Output Queue

Input Queue

R0 State Store

Configuration Store Register File

Fig. 3.25: Kilocore KC256 Architecture

into that register. The functional unit in each PE consists of eight 3-input LUTs that are identically

configured. The functionality of the PE is specified by 42 configuration bits, which means that each

stripe has 672 bits of configuration.

The process of configuring a stripe takes one cycle, so the pipeline can be configured one cycle

before the first data of the pipeline arrives at that stage. If the virtual pipeline is larger than the real

hardware, physical stripes will eventually be reconfigured with new virtual stripes. The state of the

over-written virtual stripes are preserved by writing the value in R0 into the R0 state store memory.

The state will be restored when the escaped virtual stripe is returned to the fabric. The process

of reconfiguration continues until the last stripe in the virtual pipeline is configured. After that,

reconfiguration of a physical stripe starting with the first virtual stripe will occur, and the computation

proceeds with new inputs.

The KC256 is fabricated in a six-metal layer 0.18 µm CMOS technology. The total die area is

7.3 x 7.6 mm2, and transistor count is 3.65 million. The fabric clock is designed to operate at 120

MHz under worst-case voltage and temperature conditions. At 120 MHz, the KC256 executes a

40-tap 16-bit FIR filter at 41.8 mega samples per second, which means that its performance is in the

same range as Texas Instruments C64x family DSPs. The KC256 performs the IDEA encryption and

decryption at 450 Mbps. By comparison, a 800-MHz Pentium-III processor executes it at a rate of

75.4 Mbps.

3.2.8 IMEC ADRES

IMEC ADRES [75] has two functional views as shown in Fig. 3.27: a VLIW view and an accelerator

view as an array of reconfigurable cells (RCs). While the VLIW processor is optimized for control

and load/store operations, the accelerator is optimized for data-parallel processings. In acceleration

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 40

ShiftB

ShiftA

constconst

7

6

5

4

3

2

1
R0

G
lo

ba
l I

np
ut

 B
us

S
ta

te
 R

es
to

re
 B

us

G
lo

ba
l O

ut
pu

t B
us

S
ta

te
 S

to
re

 B
us

Register
File

To Register File
of Next Stripe

From Register File
of Previous Stripe

Global Busses

To
 &

 F
ro

m
 O

th
er

 P
E

s

Fr
om

 P
E

n-
1

To
 P

E
n+

1
To

 P
E

n+
1

Fr
om

 P
E

n-
1

A B

Functional Unit

7

77

7

3 3

All wires are 8-bits
unless otherwise noted

This vertical bits connects to one horizontal wire,
depending on which PE it is

Fig. 3.26: Kilocore KC256 PE Architecture

mode, the functional units of the VLIW form the first row of the array. Orthogonal buses facilitate

data transport within the array. The VLIW part includes up to eight functional units organized in a

row. The units communicate with each other through a horizontal data bus for data exchange. A part

of the units can communicate vertically with a common register file for data load and store.

The attached array is composed of several rows of RCs organized in a matrix form. The behavior

of each RC is controlled by a locally stored set of several contexts. During the execution phase, a

central controller allows dynamic reconfiguration of the RCs within a cycle. Each RC, as shown in

Fig. 3.28, includes a local context memory (denoted by configuration RAM in the figure), an ALU,

input and output multiplexers, and a register file for local data storage.

The data exchange between RCs is done with orthogonal interconnect-networks. There are two

levels of interconnect for internal data exchange between the units: a global bus for each row or

column spans the entire array. Additionally, the array is subdivided into four segments. Within a

segment, a local interconnect is provided such that an RC can get input data directly from each of its

horizontal or vertical neighbors.

The RC has been implemented with the Infineon Technologies CMOS 130nm 6 metals process

technology. A context memory is designed with an 40-bit x 32-word SRAM. The schematics show

that one RC requires 63266 transistor counts, and the total area is 0.196 mm2. The area breakdown

of the RC components is as follows: 50% for the context memory, 6% for external interfaces for

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 41

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

RF RF RF RF

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

FU

RF

RF RF RF RF

RF

Data Cache
Instruction Fetch

Instruction Dispatch
Instruction Decode

VLIW View

Reconfigurable Array View

Fig. 3.27: ADRES Core Architecture

input and output, 9% for a register file, and 19% for an ALU. About 15% of the area of an RC are

consumed by the interconnect between the components.

The maximum operational frequency of the RC is 60MHz or 16-ns cycle time. At a target fre-

quency of 100 MHz, the power consumption for one RC is about 1.7mW. For performance evalua-

tions, an H.264/AVC video decoder has been implemented on the ADRES architecture. The eval-

uation results show that the decoding cycle for the array view is about 88% faster than the VLIW

view. The required clock frequency is 184MHz in the VLIW view and 98 MHz in the array view.

The average power consumption at 100MHz would be around 46.3mW.

3.2.9 Stretch S5/S6 SCP Engine

The S6000 family configurable processors [76] are powered by Stretch S6 Software Configurable

Processor (SCP) Engine. As shown in Fig. 3.29, they incorporate a Tensilica Xtensa LX dual issue

VLIW processor core and a second-generation Instruction Set Extension Fabric (ISEF). The ISEF

is a software-configurable computing fabric that contains 64KB of embedded RAM (IRAM). Using

the ISEF, system designers can extend the processor instruction set and define new instructions using

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 42

pred src1 src2

pred_dst1
pred_dst2

dst1

FU RF

MUX MUX MUX

B
uffer

Configuration
RAM

To different desitinations

From different sources

Configuration
Counter

Fig. 3.28: ADRES Reconfigurable Cell

only their C/C++ code. As a result, developers get the performance of custom hardware with C/C++

development simplicity.

The S6 SCP Engine within the S6000 family, described in Fig. 3.30, contains a Xtensa LX VLIW

core and an ISEF. It is the ISEF that provides the dramatic application acceleration by allowing user

algorithms to be instantiated in hardware and called by the processor as single instructions. The

Stretch ISEF, being tightly coupled to the processor, only needs to host compute-based and logic

functions.

The S6000 ISEF contains 4096 ALU-based PEs that, in addition to traditional ALU functions,

can be configured to perform 2 x 4 multipliers and cascaded for larger data width. In addition, there

are 64 dedicated multipliers capable of 8 x 16 operations that can be cascaded to increase data width.

Distributed state registers provide local storage for intermediate values and coefficients. Connectivity

of the PEs is enhanced with distributed multiplexers, priority encoders, and shifters.

For computation-intensive applications, the S6 ISEF is fed by the same 32 128-bit wide registers

carried over from previous generations of Stretch devices [77]. These registers are used for loading

data into the ISEF, and their presence in the S6000 ensures maximum compatibility and code reuse

from previous software configurable processor designs. The S6000 ISEF also contains 64KB of

embedded ISEF RAM (IRAM) distributed throughout the fabric in 32 banks of 2KB each. The IRAM

is the memory mapped into the S6SCP address space, so can be loaded directly by the processor.

The ISEF supports dynamic reconfiguration based on the configuration delivery scheme. If a

fetched opcode corresponds to an extension instruction that is not resident in the ISEF, an instruction

fault is raised. The operating system will then save the contents of any internal state registers, find the

extension instruction group containing the missing instruction, and initiate an ISEF reconfiguration

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 43

Q
ua

d
D

at
a

P
or

t

High-Speed
Peripherals PCIe eGIB

I2S
G

M
A

C
Low

-S
peed P

eripheral

Encryption

Entropy Encoding

Motion Estimation

HiFi 2
Audio Engine

Programmable
Accelerator

I-C
ache

D
-C

ache

Dual Port
RAM

IRAM

ISEF
Xtensa LX

S6 SCP Engine

North Bridge

DDR 2 Controller

AIM

AIM

A
IM

A
IM

Processor Array
Network Interface

and Switch

Fig. 3.29: S6000 Architecture

32KB
I-Cache

32KB
I-Cache

64KB
Dual Port RAM

Execution Unit

FPU ALU

128-bit Wide Register
32-bit Register32-bit Register

IRAM

ISEF

Xtensa LX Dual-Issue VLIW

Local Memory System

Fig. 3.30: S6 SCP Engine

before resuming the application program. The ISEF can be completely reconfigured in 27µs.

3.2.10 Fujitsu Cluster Architecture

Fujitsu has proposed a coarse-grained multicontext dynamically reconfigurable processors suitable

for wireless communications [78]. The architecture consists of a hierarchical PE array called a

cluster.

Fig. 3.31 shows a block diagram of the cluster. It contains several kinds of PEs, inter-PE net-

works, and a sequencer. To increase the cluster’s area-efficiency, heterogeneous PEs are used in a

cluster. The PE can be a 16-bit ALU, a MAC, a selector, a shifter, an address generator (counter),

a one-port memory, a two-port memory, a register file, and variable delay line. The ALU supports

logical, arithmetic, compare, and shift instructions, similar to DSPs. The “compare” instruction gen-

erates a signal that is used as a select signal by the selector and/or a transition signal by the sequencer.

The MACs support 16 x 16 bit multiplication and accumulation.

The topology of inter-PE networks is a kind of indirect three-cube network and consists of three

selector levels. The number of logical steps is the same in all paths. In the first implementation, the

network corresponding to a 64 x 64 switch that consists of 4 x 4 switches. The sequencer controls

the dynamic reconfiguration of the PE and inter-PE networks. The sequencer consists of a sequence

control program memory, program counter (PC), and branch control unit. The value of the program

counter is identical to the address of context memories in the PEs.

In this architecture, a hierarchical structure of the cluster as the cluster group is adopted to process

larger algorithms that do not fit within a cluster. Fig. 3.32 illustrates the cluster group. Inter-cluster

networks are organized through crossbars. The sequencer in each cluster also controls the context

switch of each crossbar which has five direction inputs/outputs (from/to upper, lower, left, right, and

into/out of the cluster). There are no restrictions on the data transfer direction between the clusters,

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 44

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Program
Memory

Program
Counter

Jump
Register

PC

Transition
Signal

Configuration
Memory I/O PortsInter-PE

Network

Register

Fig. 3.31: Fujitsu Cluster Architecture

so the feedback paths that often appear in wireless communication baseband signal processing can

be used. Each cluster can operate both independently and cooperatively in arbitrary combinations.

Inter-cluster data transfer needs two or three additional cycles.

The shared resources located on the inter-cluster network are used by each cluster. There are

two kinds of shared resources. One is a memory that can be shared by plural clusters. The other is

dedicated hardware to accelerate signal processing.

The Fujitsu cluster architecture has been evaluated with algorithms that appear in the physical

layer of IEEE802.11a and b wireless LAN processing. The evaluation results review that the cluster

architecture provides a short latency compared to the DAPDNA-2 introduced in Section 3.2.4.

3.2.11 MuCCRA platform

The Multi-Core Configurable Reconfigurable Architecture (MuCCRA) project aims at developing

a methodology and a framework to design highly configurable DRPAs toward varieties of target

applications [79]. Because MuCCRA is developed for examining an optimized architecture for a

given set of applications, several prototypes toward different needs have been designed and evaluated.

Namely, prototypes introduced in this section are MuCCRA-1, MuCCRA-2 and MuCCRA-D.

3.2.11.1 MuCCRA-1

MuCCRA-1 is the first prototype chip of MUCCRA project adopting an island-style interconnection

architecture for connect PEs [79, 39]. The MuCCRA-1 architecture shown on Fig. 3.33 consists of

a 4×4 24-bit PE array, four 24-bit dedicated multipliers (MULTs) on the left side and four 24-bit

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 45

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Shared
Resource A

Shared
Resource B

Shared
Resource C

Shared
Resource D

I/O PortsI/O PortsI/O Ports

I/O PortsI/O PortsI/O Ports

Crossbar

Fig. 3.32: Fujitsu Cluster Group

distributed memory modules (MEMs) at the bottom of the PE array. Each MULT unit can multiply

two 24-bit data words. Each MEM is 24-bit × 256-word and 2-ported module.

A PE consists of a shift and mask unit (SMU), an arithmetic logic unit (ALU) and a register file

unit (RFU) as shown on Fig. 3.34. A SMU supports various types of shift and mask operations; and,

an ALU provides basic arithmetic operations, comparisons, and logical operations. Both a SMU and

an ALU can perform half-word operations, in which a 24-bit datum is treated as two 12-bit data. A

RFU is a 24-bit wide and 8-entry deep register file with a read/write port and a read-only port. For

avoiding combinatorial loops, an output of the ALU can be connected to an input of the SMU, but

the opposite connection is not allowed. On the other hand, each RFU can connect with all of inputs

and outputs of the ALU and the SMU.

Each PE has a 64-entry context memory to provide multiple sets of configuration data for con-

figuring SMA, ALU, RFU and interconnection. Being a multicontext device, context pointers are

provided to every PE to control context switching. In every clock cycle, a configuration data pointed

to by a context pointer is read out from the context memory. Doing this allows hardware context to

be changed in a clock cycle.

MuCCRA-1 uses an island-style interconnection network. The input and output of each PE

are connected to a near channel via a connection block. Switching Elements (SEs) are placed at the

intersections of channels to route data to different directions according to configuration data provided.

3.2.11.2 MuCCRA-2

In order to reduce the size of the chip, MuCCRA-2 has the bit width and the context size smaller than

correspondent parameters in MuCCRA-1 [79, 80]. Specifically, MuCCRA-2 uses a 16-bit architec-

ture and allows only 16 contexts for context memories. In addition, instead of providing separated

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.2. Review of DRPAs 46

SE
30

SE
20

SE
10

SE
00

SE
41

SE
31

SE
21

SE
11

SE
01

SE
42

SE
32

SE
22

SE
12

SE
02

SE
43

SE
33

SE
23

SE
13

SE
03

SE
44

SE
34

SE
24

SE
14

SE
04

MULT3

channel d0/d1
(26bit x 2)

PE
30

PE
31

PE
32

PE
33

PE
20

PE
21

PE
22

PE
23

PE
10

PE
11

PE
12

PE
13

PE
00

PE
01

PE
02

PE
03

MEM0 MEM1 MEM2 MEM3

MULT2

MULT1

MULT0

SE
40

Fig. 3.33: MuCCRA-1 Architecture

24-bit ALU

24-bit SMU

Register File
(8 entries)

24-bit data +
 2-bit carry

portAportB

MUXMUX

MUXMUX

MUX

MUX

M
U

X

24 bit data

2 bit carry

2b’11

00

0

2b’00

data from
right connection
block

data from
left connection
block

}

}

data to output
connection block

Fig. 3.34: PE architecture of MuCCRA-1

SE
40

SE
30

SE
20

SE
10

SE
00

SE
41

SE
31

SE
21

SE
11

SE
01

SE
42

SE
32

SE
22

SE
12

SE
02

SE
43

SE
33

SE
23

SE
13

SE
03

SE
44

SE
34

SE
24

SE
14

SE
04

channel
(16bit x 2)

PE
30

PE
31

PE
32

PE
33

PE
20

PE
21

PE
22

PE
23

PE
10

PE
11

PE
12

PE
13

PE
00

PE
01

PE
02

PE
03

MEM0 MEM1 MEM2 MEM3

Fig. 3.35: MuCCRA-2 Architecture

PE

PE

PE PE

PE PE PE

PE PE

PE

PE

PE

PE PE PE PE

MEM2 MEM3

MEM0 MEM1

26bit channel x 326bit channel x 1

Fig. 3.36: MuCCRA-D Architecture

multipliers as in MuCCRA-1, multiply operations can be performed in every PE. Apart from that, the

architecture of a PE in MuCCRA-2 is the same that in MuCCRA-1. The architecture of MuCCRA-2

is described in Fig. 3.35.

Similar to MuCCRA-1, an island-style interconnection network is exploited in MuCCRA-2 to

connect PEs. However three routing channels are available on MuCCRA-2 instead of two routing

channels on MuCCRA-1.

3.2.11.3 MuCCRA-D

Using an island-style interconnection network in the PE array of MuCCRA-1 and MuCCRA-2 causes

two problems: the area overhead for routing wires and switches is large, and the operating frequency

is reduced because of long delay caused by switches. To solve these issues, a direct interconnection

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.3. Summary 47

24-bit ALU

24-bit SMU

Register File
(8 entries)

24-bit data +
 2-bit carry

portAportB

MUXMUX

MUXMUX

MUX

MUX

M
U

X

register register register

Inner-PE Switch

}

carry-in from
neighbor PEs
and 1-hop PEs

}

output from
neighbor PEs

}

output from
neighbor PEs

output from
neighbor PEs

output to
North PE’s unit

output to
East PE’s unit

output to
West PE’s unit

output to
South PE’s unit

output to
1-hop PEs

24 bit data

2 bit carry

carry-in from
neighbor PEs
and 1-hop PEs

}

}

output from
1-hop PEs

Fig. 3.37: PE architecture of MuCCRA-D

is applied in MuCCRA-D [39].

The architecture of MuCCRA-D is presented on Fig. 3.36. It composes of a 4 ×4 PE-array and

4 distributed memory modules on the top and bottom of the array. Distributed memory modules are

the same as those in MuCCRA-1. Each PE is directly connected to the nearest neighboring PEs.

Moreover, connections to the other PEs in the same row and column are also provided to reduce

the delay for transferring data to remote PEs. Three independent channels are provided for the the

nearest neighboring PEs while there is only one channel for one-hop distant PE.

Each PE of MuCCRA-D consists of a PE core, a 64-entry context memory and an inner-PE

switch for selecting the destination of output data. Similar to MuCCRA-2, PEs in MuCCRA-D are

equipped with multiply capability. The architecture of a PE is presented on Fig. 3.37.

3.3 Summary

Table 3.2 summarizes the characteristics of the coarse-grained dynamically reconfigurable architec-

tures described in this chapter. As shown in this table, a wide variety of architectures have been

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.3. Summary 48

Table 3.2: Summary features of surveyed Dynamically Reconfigurable Processors
Number Device Vendor Ref. G PE R CX I

1 CS2112 Chameleon [61] 16/32 108 M 8 Tiled, 2D Bus
2 XPP-III PACT [36] 16 64 C - 2D Bus, Direct
3 DRP-1 NEC/NECEL [63] 8 512 M 16 Tiled, 2D Bus
4 DAPDNA-2 IPFlex [64] 32 376 M 4 Tiled, 2D Bus
5 DAPDNA-IMX IPFlex [66] 16 955 M 4 Tiled, 2D Bus
6 FE-GA Hitachi [67] 16 32 M 4 2D-mesh Direct
7 D-Fabrix Elixent [68] 4 576 C - Chessboard
8 KC256 Rapport [73] 8 256 C - Crossbar for Rows
9 ADRES IMEC [75] 16 64 M 32 2D-mesh Direct

10 S6 SCP Engine Stretch [76] 4/8 4096 C - -
11 Cluster machine Fujitsu [78] 16 15/Cluster M - 3-Stage Switch
12 MuCCRA-1 Keio University [79, 39] 24 16 M 64 Island style
13 MuCCRA-2 Keio University [79, 80] 16 16 M 16 Island style
14 MuCCRA-D Keio University [39] 24 16 M 64 Direct

G = Granularity [bits],
PE = PE-Array Size (number of PEs),
R = Reconfiguration Method,
CX = Number of Contexts,
M =Multicontext Scheme,
C = Configuration Delivery Scheme,
I = Inter-PE Connection Network

proposed and designed, but they seem to be designed for a particular purpose such as digital signal

processing devices, multimedia or wireless communications. The main reason is that the dynami-

cally reconfigurable processors are expected to provide high area- and power-efficiency for the target

application even with decreasing flexibility or programmability compared to FPGAs. Consequently,

I can find various kinds of architectures, and the straightforward architectural classification has be-

come complicated [14].

Dynamically reconfigurable processors have a very wide design space including PE structures,

channel bit widths, intra/inter-PE connection networks, the number of available multipliers and dis-

tributed memory modules, dynamic reconfiguration schemes, context memory capacity, PE array

sizes, and so on. Thus, unlike conventional FPGAs [3,81], it is difficult to explore a general-purpose

and preferable architecture among the dynamically reconfigurable processors. Although they are

just being in practical use, designers need to perform a time-consuming and inefficient architectural

exploration for its target application at design time. The configurable processors, in which several

optimizations or customizations including instruction set extensions and memory size scaling can be

performed, are fully exploited for embedded microprocessor designs. Also for dynamically recon-

figurable processors, a configurable architecture design methodology is needed in order to provide

an efficient design space exploration to SoC designers.

The variety of architectures for DRPAs also leads to a challenge in developing computer-aided

designs and compilation tools that can map an application to a target reconfigurable device. This in-

volves determining which parts of the application should be mapped to the reconfigurable array and

which should be mapped to the attached processor, determining when and how often the reconfig-

urable device should be reconfigured, which changes the functional units implemented in hardware,

3. Coarse-grained Dynamically Reconfigurable Processing Arrays
3.3. Summary 49

as well as the specification of algorithms for efficient mappings to the reconfigurable system. To

date, a standard interface to DRPAs has not yet been solved, and each company still has its own set

of tools tailored to its device.

Chapter 4

Hardware Task Mapping

4.1 Problem

To date, a large number of researches in the area of reconfigurable computing have resulted in a

number of academic and commercial DRPAs. These devices play an important role in balancing

high performance demands and low power consumptions, especially in embedded devices. One of

the trends in developing reconfigurable devices is the dynamic reconfigurability based on a multicon-

text mechanism such as DRP, DAPDNA-2, FE-GA and ADRES introduced in Chapter 3 in order to

minimize the reconfiguration overhead and greatly improve the performance of reconfigurable sys-

tems. The datapath mapped to a piece of physical hardware is called a context. A target application

is divided into a set of different contexts, and a multicontext DRPA executes them by changing con-

texts with each clock cycle. Basically, with such multicontext DRPAs, an application is designed and

mapped into hardware as a single thread of control. At any time, only one required context is acti-

vated and executed. In order to increase the throughput, some techniques such as software pipelining

and loop unrolling can be applied to exploit more parallelism.

For a particular hardware architecture, the performance improvement depends on the inherent

parallelism of a target application. According to Hasegawa [82], the optimal size of the PE array

in a DRPA is fixed related to the target application, and PEs exceeding the optimal number are not

efficiently used. In many cases, the parallelism of an application is smaller than the number of PE

array in a context. Accordingly, a large number of PEs is not used efficiently.

One of the methods to improve the performance in such a condition is making the best use of

stream-level pipelined execution. Most target applications of such devices are stream processing, that

is, data blocks to be processed are iteratively received in a certain interval. By dividing an application

into small independent sequential tasks, and executing in a pipelined manner, a large number of PEs

can be used efficiently.

Beside the popular single-process execution, where an application is designed and implemented

as the only one thread of control for being assigned and executed on a reconfigurable array, some

architectures like DRP-1 [63] by NEC Electronics support the "multi-process execution", which

4. Hardware Task Mapping
4.2. Related Work 51

allows multiple threads of control to run concurrently. An application is divided into several tasks; a

large reconfigurable array is partitioned into some small arrays, each of which is called Tile; and each

task is assigned to different Tiles of DRPAs, and executed in parallel. An inter-task communication

mechanism using internal memories is defined for exchanging data between tasks. Each Tile, to

which a task is assigned, is independently controlled for executing and exchanging configuration

data.

Although the introduction of the multi-process execution may lead to an effective way of par-

titioning applications in order to improve throughput and energy efficiency, systematic method for

efficiently mapping tasks into hardware execution units has not been well researched. This chapter

proposes a systematic mapping method to map target tasks into Tiles, and shows examples applying

it for DRP-1.

4.2 Related Work

There are a lot of research efforts aimed at models of computation such as Synchronous Dataflow

(SDF) [83], Dataflow Process Networks [84], and Kahn Process Networks [85]. In the Ptolemy

project [86], several models have been combined together to create a structure for the Ptolemy frame-

work. However, this framework mainly focuses on application modeling and simulation without

supporting the real mapping of application models onto models of architectures.

Partitioning applications is a well-known technique that has been thoroughly researched. Hard-

ware/Software partitioning specifies which parts of an application should be mapped to hardware

or software components [87]. Partitioning applications between reconfigurable hardware blocks of

different granularity tries to map some parts of an application into fine-grain reconfigurable units and

others into coarse-grain reconfigurable arrays for exploiting the advantages of various granularity

reconfigurable modules [88]. In a multiprocessor environment, partitioning applications into mul-

tiple tasks and threads, each of which could be mapped to an execution unit for running, is a well

researched topic.

There are also a number of researches for job mapping and scheduling into the partitioned area

of FPGAs with partial reconfigurable capabilities. In these studies, the area and execution time

requiring for a job are fixed, and scheduling algorithms decide the order and place where multiple

jobs should be mapped. Since a three-dimensional (x, y, and temporal) placement problem must be

solved for efficient placement, a number of theoretical researches have been done [89] [90] [91].

However, my target problem has the following differences, which prevent previous researches

from being directly applied.

• In the multi-process execution treated here, each task being a part of a single job works in a

pipelined manner, and handles a large number of streaming data arriving continuously. Thus,

the throughput of a single job with multiple tasks is a target for optimization.

4. Hardware Task Mapping
4.3. Target Architecture and Application Model 52

Fig. 4.1: General design flow Fig. 4.2: Target DRPA

• By a multicontext execution, a Tile can execute multiple tasks sequentially as far as the number

of contexts is sufficient.

• Multiple Tiles can be assigned to a single task for enhancing the execution speed by using

parallel execution with a large number of PEs.

4.3 Target Architecture and Application Model

Fig. 4.1 shows a general design flow for a target DRPA. By explicitly specifying a mapping step,

multiple target applications could be mapped onto a candidate architecture for evaluation. Typically,

a set of applications is proposed for a certain architecture, then, they are mapped onto such an archi-

tecture. Through the performance analysis of each application-architecture-mapping combination,

some improvements could be made for application implementation or mapping algorithm.

This paper will focus on a method for efficiently mapping an application modeled as a Kahn

Process Network onto shown below target reconfigurable architectures.

4.3.1 Target architecture

In this paper, a two-dimensional tile-based DRPA consisting of identical M × N hardware execution

units is assumed to be the target architecture. This type of target architectures can be considered as a

homogeneous structure, which allows more flexible in mapping.

As an example, a target DRPA (4 × 4) shown in Fig. 4.2 consists of a number of PE array units,

each of which is called a Tile. A Tile has a certain size, distributed shared memory modules and its

own controller for dynamic reconfiguration. The total number of Tiles in the target DRPA is referred

as Nall. Here, a multicontext DRPA is assumed, that is, each Tile has a certain size of context memory

and changes its hardware context according to a context pointer. The number of contexts that can be

stored in the context memory (Cmax) is limited in a certain number. Some examples of a candidate

DRPA with correspondent parameters can be seen in Table 4.1, where PEs and Tiles show the total

number of PEs and Tiles in each DRPA respectively; PEs/Tile denotes the number of PEs per a Tile;

and Contexts is the maximum number of contexts that can be stored in a PE.

4. Hardware Task Mapping
4.3. Target Architecture and Application Model 53

Table 4.1: Example of possible target architectures
Parameter DAPDNA-2 [92] ADRES [75] DRP-1 [63]
PEs 376 64 512
Tiles 6 4 8
PEs/Tile 56 16 64
Contexts 4 32 16

Multiple neighboring Tiles can be joined to form a Tile group for executing a single task together.

In this case, joined Tiles work synchronized with a single controller, and the number of available PEs

becomes the sum of Tiles in the Tile group. Neighboring Tile groups can be communicated with

each other through FIFOs formed with the distributed memory modules. That is, streaming data can

be transferred between Tiles with a simple handshake mechanism.

4.3.2 Target application model

I assume that a target application can be represented with a Kahn Process Network (KPN), which is

similar to a model proposed for streaming processors [93]. In this model, a total job is represented

with multiple processes tasks that can be executed in a pipelined manner. That is, data streams

continuously arrive at a certain interval, and the results of a task are transferred to adjacent tasks. A

KPN has following characteristics:

• The execution of a KPN is deterministic, or in other words, for a given input, the same output

is always produced. This model is suitable for stream-based multimedia and signal processing

applications since it allows to model such types of applications, and guarantees that no data is

lost.

• According to the model, tasks are monotonic, that is, they require only a partial information

from input for generating a partial result to output. Therefore, the model allows parallelism

and pipelined processing, which are suitable to be implemented on reconfigurable arrays.

• The model makes it easier to partition an application into a set of parallel communicating tasks.

For example, the upper part of Fig. 4.3 shows the KPN graph of a JPEG encoder. In this case,

the graph becomes a linear structure. Media processing programs could be easily translated into

KPNs [93], and here, I assume that the KPN corresponding to a target application has been already

formed.

4.3.3 Goal of mapping

Each task of a target KPN (pi) can be mapped into a Tile Group TG j of the target DRPA, and

executed in a pipelined manner. The lower part of Fig. 4.3 shows an example of mapping for a JPEG

4. Hardware Task Mapping
4.4. Mapping Algorithm 54

Fig. 4.3: Task mapping for JPEG encoder

encoder, in which, tasks mapped into each Tile Group get data stream from the input FIFO, execute

their own computation, and produce results to the output FIFO. If there is no data in the input FIFO

or the output FIFO is full, the task execution is stalled. The data stream is assumed to arrive in a

certain interval corresponding to the total throughput of the DRPA.

In order to improve the total throughput and the execution time of an application, it is critical to

balance computation stages in the interrelation with other tasks in a pipelined chain. In a pipelined

processing model, the total throughput is bottlenecked with the most time consuming task. Here,

by increasing the size of TG js, the throughput can be enhanced by parallel processing with more

number of processing elements. If, for example, the task DCT is the bottleneck of the JPEG encoder

in Fig. 4.3, the total throughput can be improved by mapping DCT into a TG with a large size

because the number of execution clock cycles of the bottleneck task (DCT) could be reduced.

The goal of mapping is to find the best combination of tasks and Tile Groups in order to improve

the throughput and to reduce the execution time of each pipeline stage while preserving system

limitations: (1) the total number of Tiles used in TG j must be smaller than or equal to the number of

Tiles supported in the target DRPA, and (2) the sum of contexts required for tasks mapped in a TG

must be smaller than or equal to the number of contexts supported in the target DRPA.

4.4 Mapping Algorithm

4.4.1 Target task graphs

In this research, target task graphs are limited in a simple unidirectional linear graph with a fork-

join structure. As shown in Fig. 4.4, a task can send a data stream to multiple tasks (fork) and

the results are gathered in the next task (join). Each task is connected with a FIFO, and can work

independently. Stream data arrive in a certain interval to the starting task, and the total tasks can be

executed in a pipelined manner. Although complicated graphs cannot be represented because of the

above limitations, most graphs of streaming processing are rather simple and fall into this limitation.

4. Hardware Task Mapping
4.4. Mapping Algorithm 55

0 1

2

3

4

5

TG0 TG1

TG2

TG3 TG4

Fig. 4.4: Target task graph Fig. 4.5: Delay and execution time vs. number of Tiles

Here, task number pi is assigned into each task from the starting task to the terminal one. Parallel

execution tasks (tasks 2, 3, and 4 in Fig. 4.4) can be assigned in any order.

4.4.2 Target architecture and task mapping

With the target architecture introduced in Section 4.3.1, neighboring Tiles can form a Tile Group

TG j, and neighboring TGs can communicate via FIFOs provided on the edge of a Tile. The number

of Tiles in a TG j is denoted with S ize(TG j).

When a task pi is mapped on a TG j, different assignment strategies could affect the quality

of an implementation. Namely, mapping depends on three following factors: 1) The number of

Tiles allocated to each task. 2) Absolute position of Tiles. 3) And, absolute position of FIFOs for

exchanging data between tasks. Of which, the most important factor is the number of Tiles assigned

to a task. In general, the execution time represented with FT (pi, S ize(TG j)) is reduced when the

task is executed with TG formed by a large number of Tiles. However, the relationship between the

execution time and the number of Tiles is not simple. For example, Fig. 4.5 shows the relationship

between the number of execution clock cycles and the delay with various numbers of Tiles when two

main computation steps of two dimensional Discrete Cosine Transform (DCT), "Row direction" and

"Column direction", are separately implemented on NEC Electronics DRP-1. While the number of

execution clock cycles is decreased with a large number of Tiles, the delay tends to be stretched. So,

the total execution time is reduced but not relational to the size of TGs. Moreover, if a task does not

have enough degree of parallelism, the execution time is not improved at all by using Tiles larger

than a certain size.

Fortunately, by using design tools like Musketeer for DRP-1 [59], the relationship between

the size of TGs and the execution time can be evaluated in advance. Here, I assume that the

execution time with the various size of TG has been evaluated and the result represented with

FT (pi, S ize(TG j)) can be obtained by table reference. Exactly speaking, FT (pi, S ize(TG j)) de-

pends not only on the size but also on the connected shape of Tiles. For example, when four Tiles

are connected, the execution time slightly differs depending on the patterns shown in Fig. 4.6. How-

ever, implementation experience on DRP-1 shows that the difference is small when the number of

4. Hardware Task Mapping
4.4. Mapping Algorithm 56

Fig. 4.6: Tile connection patterns for a TG

connected Tiles are less than eight. So, I will ignore the difference here.

When multiple tasks pi . . . pi+k are assigned into a TG j, they are executed sequentially, (for

example, task 2 and 3 mapped in TG2 in Fig. 4.4), that is, the total execution time T ik becomes

Tik =
∑i+k

i FT (pi, S ize(TG j)) (k > 0)

Also, the number of contexts required for executing a task is depending on the number of Tiles

in TG j, and represented with FC(pi, S ize(TG j)). It can be also analyzed before scheduling by the

design tools. When multiple tasks are assigned into a TG j, total required contexts becomes Cik =
∑i+k

i FC(pi, S ize(TG j))

Here, a task fork can be included in the graph (e.g. tasks 2, 3 and 4 in Fig. 4.4). Such forked

tasks can be mapped into the same TG even if they have non-neighboring numbers (e.g. tasks 2 and

4 in Fig. 4.4). However, if the graph does not have any fork, mapping tasks with non-neighboring

numbers will increase the communication between two tasks, and this often requires the communi-

cation between non-neighboring Tiles. So, in order to make the algorithm simple, I only map the

neighboring tasks into a TG.

4.4.3 Mapping algorithm

The proposed algorithm consists of three steps: task grouping, adjusting and topological mapping.

4.4.3.1 Task grouping

Task grouping clusters the tasks of an implementation in the specification model to n groups in a way

that the computation amount in each group is balanced. Neighboring numbered tasks are mapped into

a Tile as possible, keeping the limitation represented with
∑i+k

i FC(pi, 1) < Cmax for each Tile. Here,

the number of mapped Tiles is called Nused and so the number of unused Tiles is Nall − Nused . When

there are multiple candidates for mapping, the one with less Nused is selected. If Nused > Nall, the

total job is too large to implement on the target DRPA. In this case, some of light-weight tasks must

be moved to the software executed on the embedded CPU with the DRPA. In the initial mapping,

every mapped Tile Group TG j has only a Tile.

4. Hardware Task Mapping
4.4. Mapping Algorithm 57

4.4.3.2 Adjusting

This step aims at adjusting the size of Tile groups assigned in the previous step toward reduc-

ing the execution time of those taking a large time. First of all, the execution time of each TG j,∑i+k
i FT (pi, S ize(TG j)), is evaluated in order to find TG js whose execution time is the largest. To

improve the execution time of such TG j, unused n Tiles are assigned. Here, the limitation of the

target DRPAs is considered. If the size of TG must be 1 or even numbers (1, 2, 4, 6 and 8), the

assigned number of Tiles must be the smallest one keeping the limitation.

There are three possibilities:

• All tasks in TG j are executed sequentially with a larger size of Tile S ize(TG j)+n. In this case,

the execution time is
∑i+k

i FT (pi, S ize(TG j) + n) if the execution time is smaller than those of

the other two possibilities, add n Tiles to TG j to increase the size.

• The first x tasks pi, . . . pi+x−1 are executed with additional n Tiles and the other tasks are

executed with TG j. In this case, the execution time is FT (pi, n)+· · ·+FT (pi+x−1, n)+FT (pi+x+

S ize(TG j))+ · · ·+FT (pi+k , S ize(TG j)). If the execution time is smaller than those of the other

two possibilities, generate a new Tile Group and move pi, . . . pi+x−1 from TG j.

• The last x tasks pi+k−x, . . . pi+k are executed with separated n Tiles and the other tasks are exe-

cuted with TG j. In this case, the execution time is FT (pi, S ize(TG j))+· · ·+FT (pi+k−x, S ize(TG j))+

FT (pi+k−x+1, n)+ · · ·+ FT (pi+k , n). If the execution time is smaller than those of the other two

possibilities, generate new Tile Group and move pi+k−x , . . . , pi+k from TG j.

After that, increase Nused and iterate the above steps until all Tiles are used; that is Nused is equal to

Nall.

4.4.3.3 Topological mapping

With the previous described steps, tasks are mapped into TG j, and the last step is to fit TG j into the

physical shape of an M × N structure. Two approaches can be applied in this step.

All possible mapping exploration (APME) Since the number of Tiles in a system is limited into

small numbers (for example, eight in DRP as seen in Table 4.1), choosing the best topological map-

ping by this approach is possible in a reasonable amount of time by searching the complete solution

space to retrieve all possible mapping variants.

In order to limit the search space, I decide the best allocation of Tiles for each list (S ize(TG0),

S ize(TG1), . . . , S ize(TGk)), which consists of the sizes of TGs after adjusting where k denotes the

number of used TGs. There are multiple possibilities of Tile assignment for each list. For example,

the allocations in Fig. 4.7 are all corresponding to the list (2,1,1,2,2), since the arbitrary combination

of Tiles can be allowed in DRP-1. However, allocating a TG into separating Tiles increases long wires

4. Hardware Task Mapping
4.4. Mapping Algorithm 58

2

1

1 2 2

2

1 1

2 2

2

1

1 2

2

2

11

2

2

a) b)

c) d)

Fig. 4.7: Tile assignment

1

1

2

4

6

.
.
.
.

1
2.

.
.
.

2
1 1

4

1
2

.
.
.
.

.
.
.
..
.
.
.

2

1

1 4

2
2

1

1 2 2

.
.
.

.
.
.
.
.
.
.

.
.
.

Fig. 4.8: Example of APME approach

which connect distant Tiles, and degrades the operational frequency. Moreover, the communication

between TGs is done through the FIFOs allocating edges of a Tile, and so the neighboring TGs that

need communication should be mapped into neighboring Tiles. Considering them, I selected only

one allocation for all possible patters in each list beforehand. For example, Fig. 4.7 (a) was selected

for the combination (2,1,1,2,2). It is called prepared pattern in this study.

Fig. 4.8 shows an example of the list (2,1,1,4) and another example of (2,1,1,2,2). In this method,

for every branch of the list, a pattern is pre-assigned. Apparently, this method will cause the explosion

of the possible patterns if the number of Tiles becomes large. This approach has been proved to be

NP-complete, and it requires exponential time in order to find an optimal solution. However, for

many up-to-date DPRAs with a realistic size, the number of patterns are reasonable.

Dynamic programming approach In the possible solution space, the same sequence of physical

Tiles for a specific sequence of TG j often appears as a part of many mapping solutions. Instead

of searching the whole solution space, the dynamic programming technique can be utilized to find

the optimal topological mapping for the complete sequence of TG j by using solutions for smaller

subsequences. Once an optimal solution for mapping up to TGi is determined, the execution time

for executing up to TGi+1 can be determined. This step is applied recursively to compute the final

optimal mapping.

Given a sequence of Tile Groups (S ize(TG0), S ize(TG1), . . . , S ize(TGk)), the minimum exe-

cution time for executing up to task i in a TG j, Ei j can be computed using the following recursive

expression.

Ei j = ti j + min(Ei−1)

4. Hardware Task Mapping
4.5. Target Device 59

In the expression, ti j is the execution time of the task i in the physical TG j, and min(Ei−1) is the

total of the minimum execution time of other tasks up to task (i − 1). The expression shows that all

possible ways of mapping task i are examined once the mapping of task (i − 1) has completed.

4.5 Target Device

4.5.1 Device

In this research, for evaluation, I used a real DRPA named DRP-1 from NEC Electronics. The

architecture of DRP-1 has been described in Section 3.2.3. The multi-process execution in DRP-1

is almost the same as the model introduced in Section 4.3. A task is assigned manually to a basic

execution unit called a Tile. Since DRP-1 contains eight Tiles (Fig. 3.15), the maximum number of

tasks that can be concurrently executed is eight. The DRP architecture is flexible enough to allow a

task to be allocated to a group of connected Tiles so as to provide a greater possibility for large tasks,

which cannot be assigned to a single Tile, to be implemented. STCs inside Tiles can be operated and

controlled independently to provide different instruction pointers for each task, so this allows tasks

to run in parallel. A first-in first-out (FIFO) memory mechanism, which employs VMEMs between

Tiles, is used as an inter-task communication method. A FIFO is for one-way communication and

acts like a pipe. Writing to and reading from a FIFO are blocking, that is, a task needs to be stalled

because of the data shortage.

4.5.2 Mapping applications onto DRP-1

After an application is partitioned and modeled as a KPN, it is mapped into the 8-Tile architecture

of DRP-1 according to the mapping algorithm described in Section 4.4 with following constraints

taking into account the specific features of DRP-1.

• The limit number of Tiles that can be allocated to an application no matter how many tasks it

is partitioned into is eight.

• Separate tasks must be mapped into different Tiles, or in other words, the scheduling of two or

more tasks sharing the same Tile is forbidden in this implementation. This is because NEC’s

DRP-1, which is used as the target device for evaluation, does not support different tasks to

execute on the same Tile sequentially. In order to solve this problem using the current design

tool, all possible combinations of merged tasks must be manually prepared in advance. It is not

practical especially when the number of case studies becomes large. With devices providing a

task controll mechanism (for example MuCCRA-1 or MuCCRA-2 [79]), this problem can be

solved easily.

• A task can be mapped to a Tile Group formed in any shape (like the 4-Tile example in Fig. 4.6).

4. Hardware Task Mapping
4.6. Evaluation 60

(a) DCT (b) Viterbi

(c) JPEG (d) MPEG

(e) IMDCT (f) Turbo

(g) G721en (h) G721de

Fig. 4.9: PKN models of target applications

An application is mapped onto the DRP architecture in a way that each task is mapped onto a

Tile or a Tile Group according to the mapping algorithm and each task’s FIFO is mapped one-to-one

onto an DRP’s FIFO. Moreover, tasks that need to communicate are mapped to adjacent Tile Groups.

An example mapping of the JPEG encoder is shown in Fig. 4.3.

4.6 Evaluation

4.6.1 Target applications

Target applications listed in Table 4.2 have been implemented on DRP-1. Column "#" denotes the

number of tasks each application is partitioned into. Column "Variant" shows different mapping

versions for an application. Of which, the first version with the name of the application without

number added is the one generated by the proposed mapping algorithm. Column "Mapping" shows

the number of Tiles each task in a KPN is mapped onto. For example, for the DCT, the column

"Mapping" of the first line contains 1, 3, 3, 1. That means the DCT is modeled with four tasks that

are mapped to groups of 1, 3, 3, and 1 Tile(s) respectively.

Target applications are partitioned into the tasks of KPNs shown in Fig. 4.9 as follows.

• DCT: input, row-direction computation, column-direction computation, and output

• IMDCT: input, long-block computation, short-block computation, and output

4. Hardware Task Mapping
4.6. Evaluation 61

Table 4.2: Implementation results of target applications
Application # Variant Mapping Delay Clock Throughput PEs/ Memories/

(Abbr.) [ns] cycle [Mbps] context context

2D DCT [20]
(DCT)

1 Single 67.3 95 160.2 98.1 11.0

4

DCT 1, 3, 3, 1 46.8 112 341.9 141.3 49.3
DCT1 1, 1, 5, 1 63.7 182 143.5 142.5 48.2
DCT2 1, 1, 3, 1 46.9 184 194.9 115.0 35.7
DCT3 1, 2, 4, 1 59.5 136 195.6 139.1 46.7
DCT4 1, 2, 2, 1 45.1 166 258.0 111.8 45.1
DCT5 1, 1, 1, 1 44.3 238 180.6 93.7 26.4

IMDCT [20]
(IMDCT)

1 Single 140.6 1349 97.2 158.5 36.0

4
IMDCT 1, 3, 3, 1 94.4 1452 182.3 185.9 39.0
IMDCT1 1, 4, 2, 1 97.2 1421 178.6 188.0 40.1
IMDCT2 1, 2, 2, 1 89.5 1592 169.8 178.3 39.0

Viterbi
decoder [20]
(Viterbi)

1 Single 30.4 11 3.0 52.7 0

4

Viterbi 1, 2, 2, 1 25.9 21 4.3 73.0 10.8
Viterbi1 1, 3, 3, 1 33.5 18 3.7 84.0 10.8
Viterbi2 1, 4, 2, 1 37.2 18 3.8 87.7 10.8
Viterbi3 1, 5, 1, 1 48.1 17 3.5 85.2 10.8
Viterbi4 1, 1, 1, 1 25.2 27 2.6 42.1 10.8

JPEG
encoder [94]
(JPEG)

1 Single 56.3 636 42.9 136.3 19.8

5
JPEG 1, 2, 2, 1, 2 53.1 894 106.3 196.4 65.2
JPEG1 1, 1, 2, 1, 2 53.0 956 97.3 178.7 56.3
JPEG2 1, 1, 3, 1, 2 58.6 882 100.8 214.5 65.2

Turbo
encoder [95]
(Turbo)

1 Single 81.3 16065 1.4 32.5 12.4

5

Turbo 1, 1, 2, 2, 2 58.3 17642 4.0 48.8 39.5
Turbo1 1, 1, 1, 3, 2 69.3 17498 3.9 54.2 39.5
Turbo2 1, 1, 1, 2, 1 58.1 18312 3.4 36.9 32.4
Turbo3 1, 1, 2, 2, 1 58.3 17936 3.9 31.1 39.5

MPEG-2
decoder [96]
(MPEG)

1 Single 73.9 1564 3.9 144.9 16.3
5 MPEG 1, 2, 2, 1, 2 62.9 1680 10.4 275.1 45.1
5 MPEG1 1, 2, 1, 1, 3 69.7 1744 7.6 289.0 52.3

G721 encoder
(G721en)

1 Single 91.2 618 16.6 98.9 21.1
5 G721en 1, 1, 2, 2, 2 78.8 754 45.1 126.0 52.1
5 G721en1 1, 1, 3, 1, 2 85.7 766 25.2 115.3 47.2
5 G721en2 1, 1, 2, 3, 1 86.1 812 29.5 119.1 48.2
5 G721en3 1, 2, 2, 1, 2 77.2 784 34.3 131.4 51.3
5 G721en4 1, 2, 2, 2, 1 77.5 788 37.7 132.0 51.1

G721 decoder
(G721de)

1 Single 94.7 669 4.1 74.6 13.5
5 G721de 1, 2, 2, 2, 1 77.8 818 10.3 113.1 37.7
5 G721de1 1, 3, 2, 1, 1 87.0 796 5.9 105.7 32.3
5 G721de2 1, 3, 1, 2, 1 85.1 806 7.3 103.2 34.2
5 G721de3 1, 2, 1, 2, 2 79.3 858 8.1 111.0 38.5
5 G721de4 1, 2, 2, 1, 2 77.4 832 8.7 117.3 38.5

• Viterbi: input, trelis diagram, trace back, and output

• JPEG: input, RGB-YCbCr conversion, two-dimensional DCT, quantization, and entropy cod-

ing

4. Hardware Task Mapping
4.6. Evaluation 62

• MPEG: input, variable length decode (VLD), inverse quantization (IQ), inverse discrete cosine

transform (IDCT), and motion compensation (MC)

• Turbo: input, permutation, interleave, encode, and multiplex

• G721en: input, input data linearization, prediction, quantization, and output

• G721de: input, prediction, signal reconstruction, tandem adjustment, and output

4.6.2 Mapping versions

For comparison, the result of the single-process execution, where applications are not partitioned but

the whole application is mapped into 8 Tiles of the target architecture as only one thread of control,

is provided in Table 4.2 with the line "Single" of column "Variant". Also, in this execution, column

"#" shows the value of 1 to clearly specify that applications are mapped as one task for executing.

For comparison, different mapping versions of applications shown in Table 4.2 with variety num-

ber of Tiles assigned to tasks are also evaluated. They are not the whole possible mapping space,

but typical representatives. For demonstrating efficiency of the proposed algorithm with practical

applications, there exist two problems: (1) there is no standard algorithm to be compared, and, (2)

with simple algorithms (for example, random mapping), it is difficult to successfully complete the

place-and-route phase, so it is impossible to get the designs to evaluate their quality. In order to

address this problem, I stretched the exploration space by relaxing the following conditions.

• Task grouping: Tasks are grouped without taking into account balancing their computation

amount. Other conditions are still kept to get the reasonable design.

• Adjusting: At this step, there are two options related to whether unused Tiles are exploited to

improve the execution time of TG j. In a version, groups TG j are adjusted according to the

proposed step in Section 4.4.3.2 with unused Tiles in order to reduce the execution time of

target groups. In the other version, groups TG j are not adjusted with unused Tiles.

• Topological mapping: this step is performed exactly the same as proposed in Section 4.4.3.3.

These steps were performed almost automatically, and I tried to get as many results as possible. If

the mapping results can successfully pass the place-and-route phase, it is recorded and assigned a tag

number consisting of an application name and a number. On the other hand, if the version fails at the

place-and-route phase, it is not taken into consideration. For some applications, I could get a lot of

mapping results, and Table 4.2 only shows results with good achievement either in the performance

metrics: critical path, clock cycle and throughput. However, other applications like MPEG, only one

version other than the proposed method could pass the place-and-routing phase.

4. Hardware Task Mapping
4.6. Evaluation 63

4.6.3 Implementation results

Table 4.2 presents the performance result of target applications. In column "Variant", Single denotes

the result of applications implemented in the single-process execution. Columns "PEs/context" and

"Memories/context" show the average number of required PEs and used memories (both VMEMs

and HMEMs) in a context.

In some applications like Viterbi, not all Tiles are assigned because the parallelism of these

applications is not high enough. Usually, the execution time could be reduced by increasing the

number of Tiles; but, for applications having low parallelism, only small number of PEs is required,

so it is not expected to reduce execution clock cycles even with a larger number of Tiles. Moreover,

since using larger numbers of Tiles with low usage will increase the leakage and the clock distribution

power, an optimum number of Tiles should be carefully selected for each implementation [82]. In

many cases, this causes the actual number of Tiles is not the largest one as shown in Table 4.2.

4.6.4 Throughput

The throughput of an implementation is represented with the amount of data processed in a second.

Since all tasks are executed in a pipelined manner in the multi-process execution, the throughput of

the total execution is limited by the stage with the largest execution time.

Table 4.2 shows that all implementations in the multi-process execution improve the throughput

in a certain degree over the single-process execution up to nearly three time in JPEG implementation.

In other words, by representing an application as a task network that are mapped into a DRPA as sep-

arate threads of control, the throughput could be improved. As the size of an input data block is the

same, the throughput could be improved by either reducing the critical path or the number of execu-

tion clock cycles. In the multi-process execution, the critical path is usually shorter than that from the

single-process execution. While a target application is mapped into the whole reconfigurable array

in the single-process execution, in the multi-process execution, the critical path of an application is

the longest one among child tasks, each of which is often mapped to one or several Tiles but not the

whole reconfigurable array. For example, in DCT, the implementation in the single-process execu-

tion requires 8 Tiles of NEC’s DRP, but in the multi-process execution, the largest task can only be

mapped to 5 Tiles (version DCT1 in Table 4.2).

Moreover, the calculation of the throughput in the multi-process execution takes into account the

largest number of execution clock cycles among tasks; and, by dividing an application into inde-

pendent tasks, that number is often smaller than that of a big task executing in the single-process

execution though the total number of clock cycles from all tasks is often larger due to task overhead.

Since both the critical path and the number of execution clock cycles in the multi-process execution

could be shorten, the throughput is likely to be improved.

The throughput could also be improved by taking advantages of the pipeline technique where

multiple tasks are arranged to operate in a pipelined manner. In most cases, the output of a com-

4. Hardware Task Mapping
4.6. Evaluation 64

(a) Viterbi (b) JPEG

Fig. 4.10: Execution time vs. Number of data blocks

putation step will be the input of the next step with no data or control hazard, so this is suitable for

pipelining.

Among implementations in the multi-process execution mode, the one with my mapping al-

gorithm achieves the best throughput. According to Hasegawa [82], each implementation has an

optimum context size (the number of Tiles) where the performance becomes optimum. Other con-

text sizes no matter whether they are smaller or larger than the optimum one result in performance

degradation. The implementation according to the mapping algorithm is likely the one where con-

stituent tasks are mapped with the optimum context sizes; therefore, the optimum throughput could

be achieved. More importantly, in a pipelined environment, the throughput is greatly influenced by

the balance of computation stages. The proposed mapping algorithm produces the most appropriate

result in terms of task workload balancing. For example, balancing two tasks, row-direction com-

putation and column-direction computation, in DCT is the most important factor for the throughput

since they occupy the largest part of the total execution time.

Although the proposed mapping algorithm could improve the throughput in a certain degree, the

main limitation is the number of available contexts. Since the number of required contexts becomes

easily more than 16, the possibility of grouping tasks are strictly limited. This is the reason why the

execution time of each task is still unbalanced.

4.6.5 Execution time

The execution time of an implementation for a given set of data can be computed as the product of

the critical path and the number of execution clock cycles.

In the single-process execution, when multiple blocks of data are given, the number of execution

clock cycles will be the multiple of that with one block of data and the number of data blocks.

On the other hand, in the multi-process execution, because of the effect of pipelined processing,

when more data are fetched, the number of execution clock cycles keeps increasing but less than the

correspondence in the single-process execution. This is illustrated in Fig. 4.10, which shows the total

4. Hardware Task Mapping
4.6. Evaluation 65

execution time for Viterbi and JPEG when processing N data blocks (N = 1, 2..., n). In the graph,

the largest number of data blocks n equals to 50. Other target applications show similar behavior.

When a number of data block is small, the execution time in the single-process execution is smaller

because of the overhead in the multi-process execution. However, when there are enough input data,

or in other words, when a number of data block provided is larger than a certain number, to keep the

pipeline stages full, the execution time in the multi-process execution becomes smaller.

From Table 4.2, among implementations in the multi-process execution mode, the one with the

proposed mapping algorithm achieves the smallest execution time since it has either the shortest

critical path or the smallest execution clock cycle.

4.6.6 Area utilization

In order to investigate the mapping quality, I evaluate the area utilization in terms of the number of

active PEs and on-chip memories. The overall area utilization could be presented by the number of

consumed resources in every context. Since the number of contexts varies among applications, the

average resource per a context will be used for examining the area utilization.

In Table 4.2, two columns "PEs/context" and "Memories/context" show the average number of

active PEs and used memories in a context. They are calculated by dividing the total number of

PEs and memories (both VMEMs and HMEMs) respectively for an implementation by the total

number of contexts. From these two columns, it can be seen that, implementations in the multi-

process execution demand more resources than correspondent implementations in the single-process

execution. In terms of used PEs, the number of active PEs in the multi-process execution is often

larger than that in the single-process execution. This is the result of having more than one task

running at the same time.

Similarly, the requirement for active memories in the multi-process execution is also higher. One

of the reasons is the use of FIFOs for inter-task communication. Even when requiring no memory

for storing, an implementation still uses memories for communicating via FIFOs. This is illustrated

in the implementation of a Viterbi decoder; while no memory for storing is demanded in the single-

process execution, the multi-process execution still uses memories for FIFOs.

4.6.7 Two methods for topological mapping

As mentioned in Section 4.4.3.3, there are two methods for topological mapping in the proposed

algorithm: all possible mapping exploration and dynamic programming approach. The difference

between these two methods is the time they take to produce the final result. In order to find the

difference, a program for topological mapping according to both methods is implemented, then the

execution time is computed. The programs are compiled by gcc 3.3.6 with -O3 optimization option

and executed on a Pentium 4 processor 3.2GHz with 512Mb internal RAM.

Table 4.3 shows the time needed for mapping each target application onto the target application

4. Hardware Task Mapping
4.7. Conclusion 66

Table 4.3: Time for topological mapping
Application All possible mapping exploration Dynamic programming
DCT 65.4 2.3
IMDCT 65.3 2.3
Viterbi 65.3 2.3
JPEG 384.2 2.8
Turbo 384.2 2.8
MPEG 384.2 2.8

DRP-1. Columns "All" and "Dynamic" represent the methods of all possible mapping exploration

and dynamic programming respectively.

Table 4.3 shows that the dynamic programming method greatly reduces time for topological

mapping. Since target applications are not modeled with too many tasks, and the target architecture

only has eight Tiles, the topological mapping step does not take too much time to produce the final

result. Nonetheless, when the number of tasks an application is modeled increases, or when the target

architecture has more number of Tiles, time for topological mapping will become a great concern.

For example, taken time for applications modeled with four tasks (DCT, IMDCT and Viterbi) and

applications modeled with five tasks (JPEG, Turbo and MPEG) on the same target architecture is

considerably different when the method of all possible mapping exploration is applied.

Table 4.3 also shows that time for topological mapping depends on the number of tasks each

application is divided into since applications with the same number of tasks take almost the same

time. Moreover, the number of Tiles on the target DRPA influences time for mapping as well.

4.7 Conclusion

A systematic method for mapping an application modeled as a KPN onto a dynamically reconfig-

urable processing array is proposed. Using real applications and a real target architecture DRP-1,

the impact of the proposed method on performance and area utilization is evaluated and analyzed.

Evaluation results show that the throughput of the multi-process execution increases from two to

three times compared with the single-process execution, while more area utilization is realized as a

result of tasks being executed in parallel. In addition, my proposed mapping method results in the

best throughput and execution time.

Chapter 5

Hardware Task Preemption

5.1 Problem

In order to further exploit the flexibility of reconfigurable devices, operating systems for managing

task allocation, scheduling and configuration have been introduced. One of the focus areas of many

studies is to build a multitasking environment to allow different tasks to efficiently share a piece of

reconfigurable hardware. Among problems for realizing such an environment, a task preemption

mechanism, where a higher priority task is allowed to interrupt an executing task, plays an important

role. However, such a mechanism for tasks running on hardware circuits is not trivial involving the

question of how to suspend and resume a hardware execution, and especially, how to capture the state

data of a given task within a certain latency while guaranteeing a reasonable hardware overhead.

A considerable number of coarse-grained DRPAs such as DRP, DAPDNA-2, FE-GA and SAKE

[14], which exploit a multicontext architecture to reduce configuration overhead, have been devel-

oped and commercialized. By providing storage for multiple configurations in each processing ele-

ment, hardware configuration can be changed quickly often in a clock cycle. Compared with fine-

grained FPGAs, since data and time for setting configuration from outside are small, task switching

involving preemption in DRPAs seems to be more realistic than those for FPGAs. Nonetheless, while

scheduling without preemption has been researched [97], and several methods to approach the prob-

lem of task preemption on FPGA-based devices have been proposed, only a few research efforts to

implement such functions into DRPAs have been carried out.

In this chapter, I propose a method for preempting a hardware task and capturing its state data

based on the analysis of resource usage at the design time. By modifying the state transition graph of

applications implemented on dynamically reconfigurable systems at computation steps where the re-

quirement of resources is small, the impact of preemption on performance and cost for task switching

could be reduced.

5. Hardware Task Preemption
5.2. Related Work and Research Contribution 68

5.2 Related Work and Research Contribution

5.2.1 Related work

Hardware multitasking on FPGAs have been a challenging subject for many researches. [29] deals

with the support of concurrent applications in a multi-FPGA system by reconfiguring entire FPGAs.

Storing the state information of a hardware task during interruption is discussed in [31]. The outline

of a multitasking environment, which enables several tasks to run in parallel, is introduced in [98].

A hardware check-pointing approach for reconfigurable devices is proposed in [99] to divide a task

into smaller modules to minimize the lost of computation when failures occur. In order to do so, the

state of a task must be saved frequently at pre-defined checkpoints during execution.

One of the most important features to enable a preemptive multitasking environment is task pre-

emption. In a such environment on reconfigurable devices, several solutions for saving and restoring

the state data of a hardware task have been proposed. However, they mainly target fine-grained

FPGAs.

• Readback: This solution is based on the configuration read-back capability, which allows to

read the content of both registers and internal memory modules [31] [30] [100] [101]. Al-

though demanding no extra hardware, the solution is slow due to a great amount of configura-

tion data, and requires additional computation to filter out useless information. More impor-

tantly, the format of the configuration stream is crucial to extract useful data; so, this makes

the solution depend on specific FPGAs.

• Internal state supervision: By adding extra interfaces to registers and internal memory mod-

ules, it is possible to access these elements when saving and restoring context data. This solu-

tion could be implemented as a scan chain, a memory-mapping structure, or a scan chain with

shadow registers [101] [99] [102] [103]. Although achieving data efficiency as only needed in-

formation is saved, this approach demands extra resources and design efforts to implement in-

terfaces to registers and memories. Additionally, hardware circuits should be modified, which

is almost impossible for already available devices.

[104] proposes a systematic methodology for incorporating preemption constraints in application

specific multi-task VLSI systems. By considering a predetermined set of applications, the method

tries to insert preemption points taking into consideration both dedicated and shared registers in order

to minimize the task switching overhead. This approach is suitable for fixed hardware platform like

ASICs in which registers to be saved can be determined in advance.

5.2.2 Research contribution

The method proposed in this research differs from above-mentioned solutions in the following as-

pects.

5. Hardware Task Preemption
5.3. Preemption Analysis 69

Fig. 5.1: Task switching

• By modifying the source program at high level languages (C and Verilog) during the design

time to insert special states for saving and restoring state data, the method is independent from

the details of the underlying hardware architecture such as which registers and memories are

assigned to variables at the run time.

• The proposal targets coarse-grained DRPA devices, whose system design flow is tightly and

automatically integrated with the necessary steps of the method in order for designers to ex-

amine and justify how the method affects implemented applications.

• The impact of the method on performance, hardware overhead and preemption latency can be

measured at the design time.

The main contribution of this research includes:

• Algorithms to select and optimize the preemption points of a target application subject to given

preemption latency constraints.

• Important steps to integrate the proposed method into the system design flow in order to au-

tomate the process of identifying and optimizing the list of preemption points for a target

application during the design time.

5.3 Preemption Analysis

5.3.1 Task switching

In a preemptive multitasking environment, a typical task switching process can be illustrated on

Fig. 5.1. While Task 1 is running, an interrupt signal, often caused by a system timer, indicating

a possible task switch is generated. Before a new task (Task 2) can be executed, several preparing

stages have to be done. First, an interrupt service is called to decide whether a task switch is necessary

(Stage A). If it is, it might take some more times to wait because Task 1 may not be suspended

immediately (Stage a’). Then, when Task 1 is ready to be stopped, the state data of Task 1 is saved

in Stage B; and, that of Task 2, which had been preserved before, is loaded in Stage C.

(t1) can be considered as interrupt latency; and,
∑4

i=2 ti is context switch latency. In many systems

and depending on certain tasks, there is no Stage a’, or in other words, tasks can be usually suspended

immediately when receiving a preemption request. In such cases, time according to Stage a’ (t2) is

5. Hardware Task Preemption
5.3. Preemption Analysis 70

zero. On the other hand, some systems or certain tasks may not be interrupted right after receiving

a request, for example, when the current running task is in a critical area, or when tasks only allow

to be interrupted at certain points during execution. In this case, t2 has a certain value. Generally

speaking, the sum τ =
∑4

i=1 ti can be considered as preemption latency. Usually, Stage A does not

take a long time for modern processors and operating systems. In this study, I do not take Stage A or

interrupt latency (t1) into consideration, so preemption latency can be computed as follows:

τ =

4∑

i=2

ti (5.1)

However, Stages B and C may take a considerably amount of time since the information representing

the context of of a hardware task is specific for a given task implementation and may scatter on differ-

ent state-holding elements. The amount of data captured when preempting a hardware task is often

considerably large; so, the cost for a hardware task preemption mechanism should be minimized.

5.3.2 Approach

During execution, the amount of variables of a task mapped to internal registers and memories for

storing intermediate results is considerably varying over time. Most target applications for dynam-

ically reconfigurable processors are stream processing, that is, data blocks to be processed are it-

eratively received in a certain interval. Normally, between the processing of two data blocks, the

amount of state data is relatively small. This fact can be applied to build a preemption mechanism

that allows preemption only at predefined steps called preemption points [105] or switchpoints [106]

during execution.

5.3.2.1 Preliminary evaluation

Fig. 5.2 shows requirement for resources in terms of memories and registers in each computation step

when an IMDCT, a JPEG encoder and a Turbo encoder are implemented on NEC’s DRP-1. X-axis

of the figures shows the computation steps, and Y-axis shows the number of registers and memories.

As shown in Fig. 5.2, the number of registers and memories for storing intermediate results and

switching contexts greatly varies from step to step. For example, in IMDCT, steps 0, 1, 2, 3, 4, 6, 13,

19, 22, 29 and 34 do not require too many memories and registers; in addition, steps 10, 11, 23, 24

and 29 do not use a lot of memories though the number of registers is remarkable. Accordingly, by

only allowing preemption at steps corresponding to steps where the requirement for memories and

registers is minimized, the amount of data necessary to be saved can be dramatically reduced.

For a given task, in order to identify which data should be the target for capturing if the task is

preempted at a certain computation step, it is critical to examine what resources are required and

how they are used. The former can be done by source program analysis to identify variables and

their life-time; and, the latter can be determined by an appropriate simulation. In a typical program,

5. Hardware Task Preemption
5.3. Preemption Analysis 71

(a) IMDCT (b) JPEG (c) Turbo

Fig. 5.2: Memory and Register usages vs. Computation steps

there are two types of variables: global and local, which specify the scope of variables. When a task

is preempted, basically, all global variables should be saved; furthermore, local variables relating to

the preempted place should also be captured. In addition, during execution, the use of variables is

varying based on execution time and computation step.

5.3.2.2 Solution

In my approach, it is critical to evaluate the usage of variables in order to specify potential locations

to be preemption points. Specifically, the proposed method is based on the state transition graph and

the resource examination of a target application. This kind of resource evaluation can be done at the

early stage of design by synthesis tools. The solution should be automatically done with a certain

algorithm, since it must be combined into the design tool in the future. That is, the steps of the

proposed method are automatically attached while an application is designed. The following policies

are adopted.

• Steps where preemption is allowed are limited at predetermined points called preemption

points where the demand of registers and memory modules is smaller than a certain limita-

tion.

• At preemption points, special states tailored to current contexts are added for flushing and

restoring state data.

• Performance degradation resulting from preemption is evaluated in order to optimize preemp-

tion points.

• Proposed algorithm is integrated into the system design flow of a target device.

• Algorithms for selecting and inserting preemption points are based on the design tools of a

target architecture.

5. Hardware Task Preemption
5.4. Preemption Algorithms 72

5.3.3 State transition graph

The homogeneous synchronous data flow [107] is used as the computational model for applications.

The model iteratively processes semi-finite data blocks arriving in a certain interval. Stream ap-

plications, which are the main target of DRPAs, are suitable to be represented by this model. The

behavior of a hardware task could be represented in the form of a State Transition Graph (STG)

G(N, E, S T ART, END), where N is the set of nodes representing computation states; E is the set of

edges showing the transition and data dependence between states; S T ART ∈ N is a distinguished

start node without incoming edges; and END ∈ N is a distinguished end node without outgoing

edges. Fig. 5.5 shows the STG of two tasks, where (ai, bi) (i = 0...n) shows numbered states, ar-

rows represent possible transitions from states to states, (a0, b0) and (a9, b6) are start and end states.

Transition can be switched conditionally as in state a2.

5.4 Preemption Algorithms

5.4.1 System design flow

Fig. 5.3(a) shows a typical design flow for DRPAs, in which the compiler or the behavioral synthesis,

the technology mapper, the place-and-route and the code generation tool are assumed to be design

tools available for the target DRPA. First, a source C-based program and an architecture description

are taken as inputs for the behavioral synthesis, which extracts control flows as well as data flows,

allocates operation resources, and produces reports about required resources. Then, the technology

mapper actually produces the code in the form of hardware description language (HDL) for process-

ing elements, and, a functional simulation at the register transfer level (RTL) can be executed. The

place-and-route tool compiles the HDL code into a netlist. Exact reports about resource usage and

critical path can be obtained at this step. Finally, the code generator produces configuration code for

the underlying reconfigurable hardware.

Fig. 5.3(b) presents a modified design flow with the proposed preemption algorithm. Since most

current DRPAs do not support dynamic memory allocation, the resource report produced by the com-

piler could describe quite exactly how variables are allocated and which resources are necessary for

task switch. This is the basic for preliminarily analyzing preemption points and inserting preemp-

tion states at the step preemption insertion. The evaluation step is based on the RTL simulation for

evaluating how added preemption states affect the implementation. The last step is the preemption

refinement where preemption points are modified according to the exact report of resource usages

and the evaluation result. A modified source program will be fed back to the technology mapper for

re-compiling and re-evaluating.

According to the modified design flow, three additional steps are inserted to support the proposed

preemption mechanism. Each step requires different input files and produces correspondent results

as shown on Fig. 5.4.

5. Hardware Task Preemption
5.4. Preemption Algorithms 73

(a) Origin design flow (b) Modified design flow

Fig. 5.3: System design flow

At first (Fig. 5.4(a)), the source files, the STG and the resource report of a target application

are the basis for identifying possible preemption points. While the resource report is produced by

the behavioral synthesis, the STG can be automatically generated by analyzing Verilog source files

to identify computation states and their relationship. The generation of an STG could be integrated

into the compiler/synthesis when the proposed method is applied in the future. The life time and

scope of variables in source programs are analyzed to determine state data necessary to be saved

at each computation state according to the STG. Computation states where resource demand is less

than a certain threshold are marked as potential preemption points, then extra states for capturing and

restoring state data are inserted into source programs at such preemption points.

Next (Fig. 5.4(b)), after the technology mapper step, produced Verilog files, simulation test

bench and input data could be provided to an RTL simulator to evaluate how added states at preemp-

tion points affect the implementation. It is also possible to simulate and analyze how variables are

initialized, used and discarded over each execution clock cycle. Accordingly, a variable report and

an evaluation result report may be produced after the evaluation step.

Finally (Fig. 5.4(c)), based on the user-specified latency τinput , the evaluation result and the place-

and-route resource report, preemption points generated previously are modified in a way that the

maximum preemption latency is satisfied. If the preemption latency cannot be achieved or hardware

overhead is too large, another τinput should be given. This process can be repeated until the list of

generated preemption points can satisfy the following equation:

τmax ≤ τinput

5. Hardware Task Preemption
5.4. Preemption Algorithms 74

(a) Insertion (b) Evaluation (c) Refinement

Fig. 5.4: Input and output information for proposed method

where: τmax denotes the maximum preemption latency, and τinput specifies a constraint value of

maximum preemption latency.

5.4.2 Preemption algorithm

The proposed algorithm achieves the target of minimizing context switch overhead by:

1. allowing preemption only at computation states where used resources are small, and

2. inserting special states for saving and restoring state data. Since including just input/output

instructions, so these added states require a small number of resources, and no extra register

files as well as memory modules.

The algorithm proposed here is consisting of three stages according to modified steps in Fig. 5.3:

inserting preemption states into the original STG (Algorithm 1), evaluating, and refining (Algorithm

2).

5.4.2.1 Inserting preemption states (Algorithm 1)

Using the resource report generated by the behavioral synthesis as an estimation, the insertion algo-

rithm (Algorithm 1) tries to find out potential preemption points.

Variable analysis (lines 2-8): It is necessary to analyze the variables of the target application

from the source program in order to find all global and local variables (both register and memory

variables) to all computation states. Global and static variables are often saved when the task is

preempted unless they are not yet initialized and used. Local variables to a given computation state

will only be saved if the associated state becomes a preemption point. In Algorithm 1, P holds a set

of preemption points; PS is a set of special states where preemption is allowed, but state data do not

need to be saved, as mentioned in the next step; S is a set of computation states, or in other words,

it is a set of nodes in the STG of a target application. After variables are analyzed (line 5), each

computation state is associated with correspondent variables (line 6), that means if state s i becomes

a preemption point, the correspondent set of variables vi(ki) needs to be captured.

5. Hardware Task Preemption
5.4. Preemption Algorithms 75

input : None
output: List of preemption points P

begin1

P← ∅;2

PS ← ∅;3

V ← ∅;4

L← ∅;5

S ← {s1, s2, .., sn};6

V ← Variable_Analysis(S);7

(s1, s2, ..., sn) = (v1(k1), v2(k2), ..., vn(kn));8

/* Look for potential preemption points PS where no data is saved */
foreach si ∈ S do9

if Initial_State(si) ! = 0 then10

PS ← PS ∪ si;11

end12

end13

/* Detect computation loops and sort incrementally */

L← Loop_Detection();14

L← Incremental_S ort(L);15

/* Look for preemption points inside and outside loops */

foreach li ∈ L do16

foreach si ∈ li do17

if si < PS then18

if Required_Resource(si) ≤ θ then19

P← P ∪ si;20

end21

end22

end23

end24

foreach si ∈ (S \ L) do25

if Required_Resource(si) ≤ θ then26

P← P ∪ si;27

end28

end29

/* Insert states for capturing and restoring state data at pi ∈ P */

P← P ∪ PS ;30

foreach pi ∈ P do31

Insert a new state for capturing state data;32

Insert a new state for restoring state data;33

C ← ∅;34

R← {r1, r2, ..., rp};35

while R , ∅ do36

C ← {rk, rk+1, ...};37

R← R − C;38

end39

end40

end41

Algorithm 1: Insertion Algorithm

5. Hardware Task Preemption
5.4. Preemption Algorithms 76

Potential preemption points analysis (lines 9-13): Certain computation states where variables

are initialized may become potential preemption points since they can be easily re-executed without

saving variables. These states can become preemption points with a special handle: instead of saving

variables in states, these states will be simply re-executed when being restores. Such states are often

found at the beginning of programs and at the end of loops. According to Algorithm 1, all states

(s1, s2, ..., sn) are searched to find potential states, which are kept in PS . These states will become

preemption points by being re-executed when the task is resumed.

Loop detection (line 14) At the beginning, Algorithm 1 detects all computation loops L = l1, l2, ..., ln
using the given STG. Each loop li contains a number of states li = si j, si j+1, The detection of com-

putation loops is important since they are likely to take a considerable amount of time. Taking into

account preemption latency, a loop without any preemption points inserted could violate a required

preemption latency. For instance, a simple loop for resetting an array variable to a certain value is

common in programs. Regardless of being unrolled manually or by the compiler, this kind of loop

often contains only one or two states being executed repeatedly for a number of times. If no preemp-

tion is allowed in the loop, the given preemption latency might not be satisfied. Fortunately, instead

of analyzing a complicated source program, it is more convenient to deal with the STG represented

in the form of a flowgraph. Applying a loop detection algorithm [108] [109] on the STG of an imple-

mentation, all loops are identified and marked in order that the insertion algorithm will analyze and

insert at least one preemption point among states constituting a loop.

Sorting (line 15): Using a suitable sort algorithm, loops li are sorted incrementally according to

numbered states, i.e. ∀su ∈ li and sv ∈ lk : su ≤ sv (i < k).

Preemption point finding (lines 16-29): Based on the resource report generated by the behavioral

synthesis, loops are searched for possible preemption points where used resources are within a given

threshold θ (lines 14-22). States that do not belong to any computation loops are also investigated to

find out preemption points using the threshold θ (lines 23-27).

New states insertion (lines 30-40): At preemption points, new states are inserted for transferring

necessary resources to an outside memory. Since the input/output interface of DRPAs often consists

of a certain number of bits, resources are grouped into packets of those bits for output. Depending on

the amount of resources and how memories are allocated, it would take a number of clock cycles for

transferring. This contributes to reduce the preemption latency and affects the overall performance

of the task.

5. Hardware Task Preemption
5.4. Preemption Algorithms 77

5.4.2.2 Refining preemption points (Algorithm 2)

In order to prepare for refining the list of preemption points generated by 1, it is critical to quantita-

tively evaluate how preemption states inserted affect the implemented application. This can be done

by executing simulations on the original and modified implementations of the application. Using de-

sign tools of most DRPAs, the RTL simulation can be performed in order to obtain the critical path,

the execution clock cycles, and the used resources at the technology mapper level. With suitable

computations, other parameters such as the operating frequency, the throughput and the preemption

latency at a given state can be determined.

input : Input preemption latency ψgiven
output: None

begin1

S ← {s1, s2, .., sn};2

k1 ← 0;3

M ← ∅;4

for k2 ← 1 to P do5

while Preemption_Latency(Pk2) > τinput do6

M = M ∪ {(sk1 < si < sk2) where required resource is minimized7

end8

P← P ∪ M;9

k1 ← k2;10

end11

B← ∅;12

for i← 0 to P do13

if Preemption_Latency(Pi) ≤ τinput then14

B← B ∪ Pk;15

else16

if n(B) ≥ 2 then P← P − B;17

B← ∅;18

end19

end20

foreach pi ∈ P do21

R← {r1, r2, ..., rp};22

while R , ∅ do23

C ← {rk, rk+1, ...};24

R← R − C;25

end26

end27

end28

Algorithm 2: Refinement Algorithm

Preemption points generated by the previous step could be improved since Algorithm 1 often

generates more than necessary. Moreover, the estimation of the critical path at the early stage of the

design flow, which is basic for computing the preemption latency, is usually larger than the real one.

5. Hardware Task Preemption
5.4. Preemption Algorithms 78

Therefore, based on the reports of the place-and-route phase and the evaluation results, redundant

preemption points can be eliminated. Different requirements for preemption could become criteria

for removing preemption points from the list generated by Algorithm 1. In the simplest case when the

preemption latency can be tolerated, the refining algorithm just tries to eliminate preemption states

consuming a larger number of clock cycles. In many cases, a user-specified constraint on preemption

latency may be given. The following refining algorithm applies an input preemption latency τ input as

a criterion for optimize preemption points. In other words, τinput is a constraint value for preemption

latency. As a result, Algorithm 2 should generate such a list of preemption points that guarantees

following condition.

τmax ≤ τinput

where: τmax denotes the maximum preemption latency or the maximum time to switch to a new task

once a preemption is requested to the current running task. If such a list of preemption points, which

guarantees above condition, could not be generated, the algorithm will report to designers and let

them select another τinput. This process can be repeated several times until a given τinput is satisfied.

Preemption point scanning (lines 2-12): First of all, the algorithm scans the list of preemption

points P generated at the previous stage to find out if the condition ∀i : τ i ≤ τinput (i = 0, ..., n) is

satisfied. If not, extra preemption points are inserted at states where required resources are small.

Unnecessary preemption point elimination (lines 13-21): The algorithm tries to remove unnec-

essary preemption points using the given preemption latency τinput . Any preemption points in the list

P between two preemption points t1 and t2 that satisfy ∀pi ∈ P : τpi ≤ τinput , will be eliminated.

Preemption state modification (lines 20-26): Next, preemption states for saving and restoring

context data are inserted or modified based on the accurate resource report generated by the place-

and-route tool.

Management information: Necessary information should be defined for correctly managing data

when saving and restoring, and for the outside operating system to control and schedule tasks. There-

fore, while looking for preemption points and inserting preemption states, a data structure containing

information such as the amount and the order of data saved and restored must be defined. By mod-

ifying the design at high levels (C-based and Verilog files), there is no need to know exactly very

detailed information about the hardware architecture like in which PE a specific register variable is

assigned to, or which memory modules hold a memory array variable.

5.4.3 Illustrative example

The example code in Fig. 5.6 is implemented on the NEC‘s DRP architecture to show how the

proposed method works with the STGs of Task 1 and Task 2 (Fig. 5.5). The algorithm traverses

5. Hardware Task Preemption
5.4. Preemption Algorithms 79

Fig. 5.5: Proposed solution

Fig. 5.6: Example code

STGs to find out the states where used resources are smaller than a certain limit; for example, states

(a1, a4, a6, a8) of Task 1 and (b2, b4, b5) of Task 2 with gray circles are such states. These states are

marked as preemption points, and preemption states for saving (states sai, sb j) and restoring (states

rai, rb j) data are inserted, and correspondent STGs are modified. These inserted states are assumed

to be executed only when their coupled states are preempted. For example, when Task 1 is executing

at state a0, a preemption request occurs. Since a0 is not a preemption point, Task 1 is not interrupted

but continues to run until a1, a nearest preemption point. Task 1 is stopped after a1, and the execution

is transferred to the correspondent state for saving the state information of a1 (sa1). After rb2, which

restores the state data of b2, is executed, the execution is moved to Task 2, and Task 2 starts to run

from b3 (assume that Task 2 was preempted before at b2). Switching from Task 2 back to Task 1 is

handled in the similar way, for instance, when Task 2 is preempted at b4.

The example code also illustrates how state data can be saved and restored by states sk and rk.

The example is described in NEC’s BDL [59], a C-based language. r, li (i = 0, 1, 2, 3) are arrays of

register and memory types with 16-bit width. Symbol :: shows a concatenation operator, which links

variables together to form a larger bit width result. For example, the statement r[3]::r[2]::r[1]::r[0]

concatenates four 16-bit elements of array r to create a 64-bit output. DataOut and DataIn are

output and input functions working with 64-bit output/input interfaces via 64-bit variables dout and

din. Symbol $ presents a timing descriptor to manually divide the codes into different states.

In the example, when all register and memory variables r, li (i = 0, 1, 2, 3) need to be saved,

it takes 17 clock cycles to transfer outside. However, the outside controller does not need to know

about where saved data come from (registers or memories), and if saved values are 8, 16 or 32 bits.

What the controller has to do is to allocate 64-bit buffers to hold data, to maintain the order of saving

data, and to send in exactly the same amount in the type of 64-bit packets and order of data when

data are restored.

The example shows that by modifying source programs at high level to insert preemption states,

5. Hardware Task Preemption
5.5. Target Device 80

it is possible to avoid the details of the underlying hardware architecture like the exact place of a

register variable.

5.5 Target Device

Although the preemption algorithms proposed here can be extended to apply on other reconfigurable

devices, in this research, I focus on DRP-1 from NEC Electronics as the target model. This device and

the architecture of DRP-1 have been mentioned in Section 3.2.3. As mentioned before, applications

designed for DRP platform can be described in the C-based hardware description language called

BDL. Although BDL supports pointers, dynamically memory allocation is not allowed. All memory

and register assignment are done at the compile time. Also, state registers allowing the DRP to

transition from one state to another are determined at that time. The input/output interface of the

DRP-1 is performed via two 64-bit separated channels. One input and one output operation can be

executed concurrently in a clock cycle.

Currently, the DRP has no multitasking capability. At one time, only one application can be

configured and executed on the whole 8-tile reconfigurable array. The basic operation model on

the DRP is time-division execution, where an application is divided into multiple contexts, and one

context at a time is activated and executed. The other operation model the DRP supports is multi-

process execution, where an application is divided into several processes, each of which could be

mapped into a group of Tiles and executed in parallel. Although the multi-process execution allows

several threads of control (processes) to be present at the same time and run concurrently, it is not a

true multitasking execution since processes belong to one application and no preemption is allowed.

5.6 Evaluation

5.6.1 Target applications

The proposed algorithm in this paper was evaluated on a number of real applications shown in Table

5.1. For each application, different cases are implemented and shown in column Version. Cases

include implementations when no preemption points are inserted A0; when preemption points are

inserted without any constraint on preemption latency A1 (only Algorithm 1 (Section 5.4.2.1) is

applied); when the latency is specified Aτ1 and Aτ2 (both Algorithm 1 (Section 5.4.2.1) and Algorithm

2 (Section 5.4.2.2) with different input preemption latencies are applied); and when preemption is

allowed at every state (An). (A represents the name of target applications). Columns 4 and 5 show the

number of nodes and edges in the STG of each application. Columns 6-9 denote the input preemption

latency (τinput) (input parameter for Algorithm 2, Section 5.4.2.2), the critical path (Delay), the

maximum preemption latency of each implementation (τmax), and the total number of required PEs

(Used PEs) respectively.

5. Hardware Task Preemption
5.6. Evaluation 81

In Table 5.1, Used PEs shows the total number of required PEs in every state. τinput specifies a

constraint value of maximum preemption latency. If the proposed algorithm cannot generate a list of

preemption points satisfying a certain τinput, another value of τ should be given. It is repeated until

the given τinput is satisfied. τmax specifies the longest response capability to switch to a new task from

a currently running task. In the case of A0, τmax can be considered to be equal to execution time since

when an application cannot be interrupted while running, switching to another application may only

be possible when the application terminates.

Taking into account the delay from a moment a preemption request arriving to the moment the

execution reaching the nearest preemption point, the calculation of preemption latency according to

Fig. 5.1 and equation 5.1 becomes as follows:

τ = Tp + Ts + Tr

where: Tp, Ts and Tr are time to reach the closest preemption point from the moment a preemption

request is issued, time to save the state data of the preempted task, and time to restore the previously

captured data of the preempting task respectively. T p, Ts and Tr correspond to t2, t3 and t4 in equation

5.1.

In a multitasking environment, the calculation of preemption latency depends on the combina-

tion of applications, and the combination of saving/restoring states of preempted and preempting

applications. The former is difficult to determine and depends on specific scenarios; and, the latter

causes preemption latency to vary even if there are only two applications executing in a system. In

this paper, the calculation of preemption latency is performed at every state on the STG of a single

application with the assumption that the same set of resources is applied for both saving and restor-

ing. Though not being the exact situation in a real system, this gives us a relative overview on how

preemption latency may vary.

All implementations do not pack multiple states into a single context (in the current DRP-1,

maximum four states can be assigned to a context) in order to see the impact of inserted states on the

performance. Therefore, the number of states is also the number of contexts after synthesizing. Al-

though this prevents implementations with more than 16 contexts from executing on the real chip, it

is still possible to complete the place-and-route phase, to execute simulations and to achieve suitable

reports. The delay shown in Table 5.1 is the critical path of implementations. Since the option to

pack multiple states into a context is not used, added states containing only input/output instructions

for capturing and restoring state data do not have any influence on the critical path mainly formed by

other main computation states.

5.6.2 Hardware overhead

Hardware overhead or context switch overhead H specifies the amount of additional resources re-

quired by added preemption states. If HPE and H∗PE denote the number of required PEs in the original

and modified implementations respectively, H can be represented by: H = H ∗PE − HPE.

5. Hardware Task Preemption
5.6. Evaluation 82

Table 5.1: Target applications and evaluation results

Applications Abbr. Version Number Number τinput Delay Max. latency Used
of nodes of edges [ns] [ns] τmax[ns] PEs

Discrete Cosine
Transform [20] DCT

DCT0 28 32 - 67.3 6393.5 1105
DCT1 - - - - 431.2 1197
DCTτ1 - - 250 - 247.3 1274
DCTτ2 - - 300 - 296.6 1218
DCTn - - - - 180.0 1459

Inverse Modified
DCT [20] IMDCT

IMDCT0 40 48 - 129.5 174695.5 2582
IMDCT1 - - - - 827.5 2854
IMDCTτ1 - - 750 - 748.5 2820
IMDCTτ2 - - 820 - 815.0 2943
IMDCTn - - - - 810.0 3714

Viterbi
decoder [20] Viterbi

Viterbi0 10 10 - 30.4 334.4 843
Viterbi1 - - - - 273.6 903
Viterbiτ1 - - 200 - 194.8 959
Viterbiτ2 - - 230 - 217.2 938
Viterbin - - - - 828.0 1431

JPEG
encoder [94] JPEG

JPEG0 62 76 - 54.7 34689.2 1851
JPEG1 - - - - 436.9 2078
JPEGτ1 - - 300 - 289.4 2113
JPEGτ2 - - 350 - 344.1 2052
JPEGn - - - - 378.0 2742

Turbo
encoder [95] Turbo

Turbo0 35 41 - 77.8 1249857.0 3008
Turbo1 - - - - 712.4 3169
Turboτ1 - - 400 - 389.6 3387
Turboτ2 - - 450 - 413.4 3287
Turbon - - - - 324.0 4232

MPEG-2
decoder [96] MPEG

MPEG0 89 101 - 67.9 106195.6 2787
MPEG1 - - - - 751.0 3200
MPEGτ1 - - 380 - 351.8 3311
MPEGτ2 - - 450 - 419.7 3141
MPEGn - - - - 288.0 4445

G721 encoder G721

GS M0 12 17 - 93.6 50169.6 1085
GS M1 - - - - 392.4 1126
GS Mτ1 - - 250 - 237.6 1206
GS Mτ2 - - 300 - 295.2 1150
GS Mn - - - - 252.0 1376

Although containing only input/output instructions, additional states inserted into the STG of

an application for capturing state data still require a number of PEs for concatenating data into n-bit

packets. This causes a certain hardware overhead. Column Used PEs in Table 5.1 shows the required

hardware resource in term of PEs for my implementations. Using implementations without preemp-

tion points (A0) as the basic, Fig. 5.7 presents how the hardware overhead varies when preemption

points are inserted. In Fig. 5.7, symbols A1, Aτ1, Aτ2 and An denote implementations corresponding

to Table 5.1 where A is the name of applications. The hardware overhead varies from 4% to 15% for

the A1 case, from 11% to 15% for the Aτ1 case, from 6% to 13% for the Aτ2 case, and from 27% to

5. Hardware Task Preemption
5.6. Evaluation 83

Fig. 5.7: Hardware overhead

70% for the An case.

The hardware overhead of implementations according to the proposed algorithm is not large.

More importantly, they are even smaller than the A1 implementation in some cases (Aτ2 vs. A1 for

IMDCT, JPEG and MPEG). This results from the optimization performed by the refining algorithm to

eliminate redundant preemption points using a given preemption latency as a criteria. Although some

additional preemption points need to be inserted in order to satisfy the given preemption latency,

other unnecessary preemption points could be removed. As a result, the hardware overhead could be

reduced.

5.6.3 Preemption latency

Preemption latency τ can be defined as the time from a preemption request until a preempting task is

ready to run, and it can be computed according to equation 5.6.1.

Fig. 5.8 shows the maximum preemption latency for each implementation. Basically, τ input is

used as a constraint for optimizing generated preemption points in Algorithm 2 (Section 5.4.2.2).

Such implementations (Aτ1 and Aτ2) have better preemption latency over correspondent versions

without such constraints (A0). In some implementations (IMDCT, Viterbi, JPEC and GSM) the

preemption latency of the Aτ versions is even smaller than that of the correspondent An although

the latter has no delay for reaching a preemption point (An versions can be preempted at any state).

This means in those cases, time to save and restore state data at some points dominates the total

preemption latency.

5.6.4 Hardware overhead vs. preemption latency

At the first sight, hardware overhead seems to be reduced when the number of preemption points

is eliminated; or, in other words, preemption latency is increased. In order to see the trade-off

between these two parameters, different preemption latencies are provided as the input parameter

to the refinement algorithm (Algorithm 2, Section 5.4.2.2) and results are presented on Fig. 5.6.4,

where preemption latency is on X-axis and hardware overhead in the number of PEs is on Y-axis.

5. Hardware Task Preemption
5.7. Conclusion 84

Fig. 5.8: Maximum preemption latency

Fig. 5.9: Hardware overhead vs. Preemption latency

When preemption latency becomes larger, hardware overhead tends to reduced. Nonetheless,

some implementations show more complicated relationship when preemption latency increases, hard-

ware overhead also increases at some points. Looking into more details, these points correspond to

the situation where preemption is allowed at every state (An version). In this case, both preemption

latency and hardware overhead are influenced by the amount of state data necessary to save. When

this amount is large, both these parameters also grow. Therefore, it may not be a good solution

to allow preemption at every state, and my proposed method achieves its merit, which satisfies a

constraint on preemption latency with reasonable hardware overhead.

5.7 Conclusion

A method for identifying preemption points and inserting extra states to capture and restore state

data of applications implemented on coarse-grained dynamically reconfigurable devices based on

resource requirements is proposed to enable a preemptive multitasking environment where a running

task can be preempted. Evaluation results on the DRP architecture show that the proposed method

may satisfy a user-specified preemption latency within a reasonable amount of hardware overhead.

Moreover, the steps of the proposed method are integrated into the system design flow to assist

5. Hardware Task Preemption
5.7. Conclusion 85

designers in developing applications on dynamically reconfigurable devices. Also, the trade-off be-

tween preemption latency and hardware overhead is also presented and discussed.

Chapter 6

Multicore Reconfigurable Architecture

6.1 Problem

Recently, multicore processors have emerged as a dominant trend in the chip making industry due to

their advantages over the single-core architecture [15] [110] including: (1) to overcome the limitation

of single-core architecture relating to CMOS process, wiring delay and power consumption; (2) to

improve performance based on thread-level parallelism in addition to ILP, which has been exploited

for improving the performance of the single-core architecture for the last two decades; (3) and,

to bridge the gap of memory wall. In embedded devices, in which low power coupled with high

performance is quite critical, a trend to shift to multicore can be observed as well [111].

Recently, dynamically reconfigurable accelerators [14] that use an array of simple coarse-grained

PEs, have been popularly used, and some of them are embedded in SoCs toward electronic appliances

[112], [113] and [114]. A PE is often composed of a simple shift and mask unit, an arithmetic and

logic unit, and a register file. Each PE has a memory component to hold multiple circuit configuration

data referred as contexts, each of which is constructed by operational instructions for the PE and

connection instructions for routing resources. By rapidly switching contexts, the PE operations and

intra/inter-PE connections can be dynamically reconfigured every one or few clock cycles.

For efficient use of such accelerators, since a single hardware task often lacks enough degree of

parallelism, executing multiple tasks is advantageous. In Chapter 4, a task-level parallelism mech-

anism has been investigated by mapping the tasks of an application into a reconfigurable array that

is partitioned into clusters of hardware execution units (tiles or tile groups). However, because of

the limitation of the number of tiles and tile groups in a currently available DRPA, only a limited

number of tasks can be implemented. Big applications composed of many tasks, or tasks whose

sizes are large, or multiple applications each of which consists of a number of tasks are difficult and

almost impossible to be implemented. Furthermore, it is hard to enlarge the reconfigurable array of

a chip because of matters such as the size of the chip, power consumption, clock control and chip

complexity. To further exploit a task-level parallelism, toward an efficient multitasking environment

on DRPAs, it is necessary to investigate a reconfigurable multicore structure.

6. Multicore Reconfigurable Architecture
6.1. Problem 87

In Chapter 5, a mechanism for preempting a task executing on a DRPA has been proposed and

examined. However, evaluation results obtained come from a simulation environment that allows to

execute one task at a time. As being mentioned in such a situation, preemption latency is not the one

in real systems but the worst case. In order to provide an environment where multiple applications

can be assigned and executed in parallel, a multicore architecture is a good platform to experience

and to further extend the proposed preemption algorithm.

In conventional FPGAs, multi-task systems with their partial reconfigurability have been pro-

posed. The architecture of FPGAs allows to divide the reconfigurable array into one-dimensional

(column oriented) slots, each of which can hold and execute a task; more importantly, that helps the

partial reconfiguration mechanism be implemented [115] [116]. Using partial reconfiguration capa-

bility on such FPGAs, while many tasks are executing, it is possible to stop a certain task, free the slot

occupied by the task, load a new task into this slot, and execute the new task [115] [117] [118]. Slots

may either be equal in size, as used in [119,103], or have variable sizes, as proposed in [120,121,122].

Another example comes from the architecture of NEC Electronics’ DRP-1, in which the recon-

figurable array is divided into eight tiles, which can work independently and communicate with each

other [63]. Multiple hardware tasks can be implemented on one or several numbers of tiles, and

executed in parallel or pipelined manner.

Using a Network-on-Chip (NoC) for inter-task communications in reconfigurable platforms has

been proposed. In an NoC, source nodes generate packets that consist of a header and a payload data,

which are transferred by on-chip routers through connected links, and decomposed by destination

nodes. Since different packets can be simultaneously transferred on multiple links, the bandwidth of

NoCs is much larger than that of buses. In addition, the wire-delay problem is resolved, since each

flit of a packet is transferred on limited length point-to-point links, and buffered in every router along

the routing path. By introducing error detection and re-transmission protocols, dynamic transmission

errors caused by crosstalk, which will come up in future smaller process technologies, can be also

solved [123].

In this work, I propose a mutlicore reconfigurable architecture in which each core can be assigned

a task for execution. Many multiprocessor systems equip an on-chip bus for inter-core communica-

tion because of the relatively small number of cores. Nonetheless, in the proposed architecture, a

regular NoC is introduced in order to ensure each core scalability and modularity. Different from

the tile-based architecture introduced in Chapter 4 in which tiles are directly connected and hard-

ware tasks assigned to tiles for execution can communicate to one another using embedded memory

modules arranged as FIFOs, the proposed multicore architecture is equipped an NoC to connect

computational cores. These two architectures have not been well evaluated and compared with real

application programs. In this section, I build correspondent architectures based on NEC’s DRP-1

and implement applications on each architecture in order to see how these architectures affect per-

formance and resource usage.

6. Multicore Reconfigurable Architecture
6.2. Related Work 88

6.2 Related Work

Techniques on mapping multiple tasks into a single FPGA has been widely researched. The archi-

tecture of many FPGAs permits to execute multiple tasks based on the one-dimensional partitioning

model where an FPGA’s reconfigurable area is partitioned into the stripes of full array height or slots.

Slots are placed side by side and may be equal in size [103] [119] or have variable widths [121] [120].

By exploiting the partial reconfiguration capability, slots can be individually reconfigured. In these

systems, however, tasks communicate by means of programmable routing resources of the FPGA.

Concerning resource management, the one-dimensional partitioning model is equivalent to a homo-

geneous multi-processor model.

The reconfigurable surface can also be divided into predefined slots, which are allocated to tasks

for execution according to a scheduling algorithm. Due to the fragmentation problem, many solutions

have been proposed. [21] tries to rearrange tasks executing on a partially reconfigurable FPGA by

local repacking and ordered compaction. Exploiting the technique of task relocations and transforms

to reduce fragmentation is discussed in [40]. [121] investigates different placement techniques for

coarse-grained, non-rectangular tasks on partially reconfigurable FPGAs.

Unlike FPGAs, a DRPA supports a high speed dynamic reconfiguration mechanism during ex-

ecution. In order to map multiple tasks into such devices, special architectural support is required.

NEC’s DRP-1 [63] is consisting of eight tiles each of which can control dynamic reconfiguration

independently. Several tasks can be assigned into one or a number of tiles, and executed in paral-

lel communicating with each other. Hitach’s FE-GA [67], SANYO’s car turner DRPA [114], and

Toshiba’s SAKE [113] uses a multi-core structure consisting of relatively small DRPAs for special

mapping of multiple tasks. Such types of DRPAs are designed based on an observation that a group

of relatively small sized arrays is efficient in various applications [82].

Using an NoC in a reconfigurable fabric has been proposed by [28] in order to improve the in-

terconnection network in terms of structure, performance and modularity. [118] [124] [106] [125]

have proposed an FPGA-based multi-task system in which an NoC is used for inter-task commu-

nications. In [118], a two-dimensional torus is introduced as a network topology. Each router for

inter-task communications has two virtual channels, and provides wormhole packet switching and

dimension-order routing, which is one of the deterministic routing algorithms. This system has been

implemented on the Xilinx Virtex-II FPGA (XC2V6000).

6.3 Evaluated Architectures

6.3.1 Target Device

In order to evaluate and compare both architectures, DRP architecture from NEC Electronics is

selected as the target device for this study. The detail of DRP can be referred from Section 3.2.3.

In this research, a tile of DRP is used as a basic unit to compute the size of computational cores.

6. Multicore Reconfigurable Architecture
6.3. Evaluated Architectures 89

Therefore, one DRP tile equivalent to 64 PEs is the smallest size a core could be. To describe different

core sizes, different number of tiles arranged in a certain shape is used. Generally speaking, the size

of a core is expressed as follows:

S core = n × PEs/tile (6.1)

1 ≤n ≤ 8 (6.2)

where: S core denotes the size of a core. n shows the number of tiles, and PEs/tile is the number of

PEs in a DRP tile. Since there are eight tiles in a DRP-1 chip, so the maximum core size is eight tiles.

Fig. 6.6(a) - Fig. 6.6(d) show examples for the proposed architecture with different core sizes from

one to four tiles. In the multi-process execution, there is a way to specify how tiles are joined together

to form a certain shape, which is assigned to a task. I adopt this method to correctly specify the size

of cores in implemented variants for a target application as show on Fig. 6.6. A target application

is partitioned into tasks, whose sizes are small enough to be able to fit into cores. As a result, the

smaller the core size is, the more tasks an application should be divided into.

6.3.2 Tile-based architecture

The tile-based architecture studied in this section is assumed to be a two-dimensional (2D) multicon-

text coarse-grained DRPA consisting of M × N hardware execution units, each of which is called a

tile. A tile consists of a certain number of PEs and may also have other components such as memory

modules, multipliers, register files and flip-flops. The size of a tile is computed as the number of PEs

it contains. Generally speaking, tiles could have different sizes, but in order to simplify the mapping

process, which is not the object of this study, in the thesis, tiles are supposed to be identical, or

have equal sizes. This assumption creates a homogeneous architecture, which allows more flexible

in mapping.

A hardware tasks can be mapped to a tile for execution providing that the size of the task is equal

or smaller than that of a tile. Furthermore, several neighboring tiles can be joined together to form

a tile group, where a task whose size is larger that the size of a tile can be mapped into. Embedded

memory modules within the reconfigurable array are used to form a communication mechanism

between tasks assigned to two tiles, a tile and a tile group, or two tile groups. When two tasks

implemented on two different tiles want to exchange data, they can declare a shared memory module

arranged as a FIFO to use as an inter-task communication method. FIFOs use a simple handshake

mechanism in order for two tasks involving in communication to determine if an FIFO is full or

empty. If there is no data in the input FIFO, or the output FIFO is full, the execution of receiving and

sending tasks, respectively, is stalled.

Fig. 6.1 shows an example of a tile-based architecture using the target device of NEC’s DRP-1

with 4 × 2 tiles. Tile groups can be formed by combining close tiles together; so, they may have

different shapes. TG1 and TG2 are created by the different number of tiles with different shapes.

6. Multicore Reconfigurable Architecture
6.3. Evaluated Architectures 90

Fig. 6.1: Tile-based architecture Fig. 6.2: Multicore architecture

FIFO12 can be used to exchange data between tasks mapped to TG1 and TG2; and, FIFO16 is for

communicating between TG1 and Tile6;

For DRP-1, applications are manually partitioned and assigned to tiles or tile groups. Since

having eight tiles, the maximum number of tasks that can be concurrently executed is eight. However,

in most cases, the number of tasks a target application is partitioned into is less than eight since

tile groups are often formed to accommodate tasks that are larger than the size of a tile. A FIFO

mechanism, which employs VMEMs between tiles, is used as a inter-task communication method.

A FIFO is for one-way communication and acts like a pipe. Writing to and reading from a FIFO are

blocking, that is, a task needs to be stalled because of the data shortage.

6.3.3 Multicore architecture

NEC’s DRP-1 is used as computational cores for the multicore architecture proposed in this section.

Cores are connected by an NoC composing of routers. In order to compare with the tile-based

architecture, only 4 × 2 cores with a two-dimensional mesh topology are used in the study as shown

on Fig. 6.2.

The network uses the wormhole switching technique with dimension-order routing. A wormhole

routing allows data packets to be pipelined through the network and requires only a small buffer in a

router to store a part of a packet (flits). Dimension-order routing, which uses Y-dimension channels

after X-dimension channels in a 2D mesh and torus, can be implemented with simple combination

logic on a router and does not demand to store routing information in a routing table. In the network,

a data packet is broken into flits, which belong to one of three types: header flits, body flits and tail

flits. In order to avoid deadlocks, virtual channels are employed.

Fig. 6.3 shows the router architecture used in this study. A router consists of a crossbar switch,

an arbitration unit (ARB), input and output physical channels. Each physical channel has two vir-

tual channels, each of which has a FIFO buffer for storing four flits. The router architecture is fully

pipelined, and allows to transfer a header flit through three pipeline stages that include routing com-

putation, virtual channel and switch allocation, and switch traversal.

6. Multicore Reconfigurable Architecture
6.3. Evaluated Architectures 91

Fig. 6.3: Router architecture

Fig. 6.4: Representation of JPEG encoder

Table 6.1 shows the implementation of a router. A router is synthesized, placed, and routed with

a 90nm standard cell library.

Table 6.1: Router implementation
Parameters Value
Process ASPLA 90nm
Operating frequency Maximum up to 500 MHz
Flit size 64/128 bits
Number of ports 5
Number of virtual channels 2
Buffer size 4-flit for each virtual channel
Packet length 4-flit data + 1-flit header

In order to connect cores to routers, a fixed interface, which is referred as a core interface unit

(CIU), is used (Fig. 6.2). In this study, the input/output interface of DRP-1, which consist of two

64-bit separated channels, one for input and another for output, is exploited as a CIU. CIUs serve

two purposes. First, a CIU can convert data exchanging between a core and a router. The channel

width of the network W can be expressed as: W(bit) = flit size + 2 , where flit size is the size of a flit

or the width of a physical channel, and 2 represents two bits for flit header information. For example,

since the input/output interface of DRP-1 with 64 bits is employed to connect to a router, the actual

channel bit width between routers is 66 bits. A CIU is used to convert from core’s 64-bit channels to

router’s 66-bit channels. When data are transferred from a DRP core to a router, the correspondent

CIU adds two bits containing a flit type into 64 bits; on the way back, when data are sent to a DRP

from a router, those two bits of a flit type are removed.

Second, another important reason for using CIUs is to allow tasks to be independent from physi-

cal locations. In a multitasking environment where tasks are dynamically assigned into and removed

from cores, the exact place of a certain task can only be determined at the run time by the operating

system, and it is often changed from time to time either when the system is defragmented or when

the task is removed and later resumed. In a general case, for an application made of multiple tasks

implemented on a such environment, the physical place of tasks are not known at the design time.

6. Multicore Reconfigurable Architecture
6.4. Evaluation 92

This raises the question of how tasks can communicate to one another if their places are not deter-

mined in advanced. My solution is to use CIUs. At the run time, when a task is assigned into a

core, the operating system also updates the routing table of the correspondent CIU to clearly show

where other related tasks are placed. When task A needs to communicate to task B, for example, the

routing information of task B will be added into header flit coming out from task A. Therefore, by

using CIUs, it is possible for tasks to communicate independently from their physical places.

6.3.4 Application model

A target application is represented with multiple tasks that can be arranged to execute in a pipelined

manner. That is, computations can be specified as a data flow graph with streams of data items (edges)

flowing between computation stages (nodes) (Fig. 2.2.1). Basically, a task gets a data stream from its

input communication channel, executes its own computation, and produces the correspondent result

to the output communication channel. Fig. 6.4 shows an example of a representation for a JPEG

encoder.

With the tile-based architecture, each task of a target application is mapped onto a tile or a tile

groups depending on their size. With the multicore architecture, tasks are mapped onto cores. In

both architectures, all tasks belong to a target application are arranged for executing in a pipelined

manner.

6.4 Evaluation

6.4.1 Simulation environment

Fig. 6.5 shows the simulation environment used in this study. A target application is partitioned into

multiple tasks (Task 1, Task 2, ..., Task i, ..., Task n), which are described in BDL. Configuration data

for DRP-1 generated by the compiler/synthesizer can be loaded onto a DRP-1 chip for execution or

for online debug. Apart from configuration data, the compiler also generates Verilog description files

corresponding to BDL source files. These Verilog descriptions with Verilog files implementing router

architecture, network architecture, core interface and test bench become the input for an RTL simu-

lation. With relevant input data, the RTL simulator can run a simulation and produce correspondent

results and reports such as critical path, resource usage, execution clock cycle for evaluation.

6.4.2 Two architectures

6.4.2.1 Target applications

Several real applications shown in Table 6.2 have been implemented in order to compare between

the two mentioned architectures shown in Fig. 6.1 and Fig. 6.2.

6. Multicore Reconfigurable Architecture
6.4. Evaluation 93

Fig. 6.5: Simulation environment

Target applications are manually partitioned into tasks in such a way that suits specific implemen-

tations. In the tile-based architecture, applications are modeled, partitioned into tasks and mapped

onto the reconfigurable array of DRP-1 according to the optimized algorithm presented in [16]. Since

data are exchanged using FIFOs, the communication channel bit width can be varied from 8 to the

maximum of 64 bits. The same configuration is applied to the multicore architecture in order to eval-

uate the effect of using an NoC for inter-task communication instead of FIFOs. More importantly,

the channel bit width of the NoC in the multicore architecture is evaluated with 64 bits and 128 bits

in order to see how the width of communication channels influences on performance.

6.4.2.2 Results

Table 6.2 shows the throughput of target applications implemented in two mentioned architectures.

Tile-based column specifies the result obtained with the tile-based architecture. Multicore (64 bits)

and Multicore (128 bits) present implemented results in the multicore architecture with the channel

bit widths of 64 bits and 128 bits respectively.

It is easy to see that the bit width of communication channels between tasks plays an important

role in improving throughput. While the implementation in the multicore architecture with the 64-bit

channel width, which is the same as the communication channel width of the tile-based architecture,

results in lower throughput, the same configuration with the 128-bit channel width achieves better

throughput in many cases except IMDCT and MPEG implementations. This shows that communi-

cation significantly affects throughput. While it takes only one clock cycle to transfer a data packet

(1bit ≤ size of a data packet ≤ 64bits) from one task to another in the tile-based architecture using a

6. Multicore Reconfigurable Architecture
6.4. Evaluation 94

Table 6.2: Throughput of two evaluated architecture

Application Abbr. Tile-based Multicore (64 bits) Multicore (128 bits)
[Mbps] [Mbps] [Mbps]

Discrete Cosine Transform DCT 341.9 297.1 345.0
Inverse Modified DCT IMDCT 182.3 156.2 178.8
Viterbi decoder Viterbi 4.32 3.9 4.34
JPEG encoder JPEG 106.9 89.2 107.3
Turbo encoder Turbo 4.0 3.4 4.1
G712 encoder G721en 45.1 33.1 46.0
G712 decoder G721de 10.3 9.2 10.5
MPEG-2 decoder MPEG 10.4 8.7 9.7

FIFO, several clock cycles are needed to transfer a packet from one router to another in the multicore

architecture depending on the distance between two routers and the amount of data. The further a

target router is, the more number of clock cycle is required for communication. Moreover, while it

takes at least four clock cycles to transfer one data packet, which corresponds to a flit, between two

adjoining routers, time for communication will reduce if the amount of transferring data is increased

since it takes a fixed number of clock cycles to set up a communication path between two routers in

an NoC.

6.4.3 Evaluation with different core sizes

6.4.3.1 Implementation variants

In order to see how the core size influences on the performance of target applications, this evaluation

uses the same multicore architecture shown in Fig. 6.2 with variable core sizes. In Fig. 6.2, each

core is an 8-tile DRP-1, but Fig. 6.6 show the same architecture with each core has the size of one

(Fig. 6.6(a)) to four tiles (Fig. 6.6(d)). For example, Fig. 6.6(b) shows an architecture where each

core has the size that is equal to two DRP tiles, or in other words, each core can be considered to

contain 128 PEs. Fig. 6.6(a), Fig. 6.6(c) and Fig. 6.6(d) illustrate similar architectures with the core

sizes of one, three and four DRP tiles, respectively.

Since the purpose of this evaluation is not to get the maximum performance, but to show the

effect of the core size on performance, only 64-bit communication channels are applied for the inter-

connection network.

6.4.3.2 Application partitioning and mapping

Following rules are adopted when partitioning and mapping target applications onto evaluated archi-

tectures.

• Since all evaluated variants only use eight cores (Fig. 6.6(a)-Fig. 6.6(d)), the number of tasks

each application is partitioned into must be equal or less than eight.

6. Multicore Reconfigurable Architecture
6.4. Evaluation 95

(a) 1-tile core (V1) (b) 2-tile core (V2)

(c) 3-tile core (V3) (d) 4-tile core (V4)

Fig. 6.6: Implementation variants

• For a specific variant, each application is partitioned into tasks whose sizes are suitable to the

core size of the implementation. For example, in V1 variant where the size of each core is equal

to the size of one tile in DRP architecture (Fig. 6.6(a)), a certain target application should be

divided into tasks in a way that each of which can be implemented using only 64 PEs. If a task

cannot fit within one DRP tile, it must be further partitioned into two or more tasks, each of

which is small enough to fit in one tile.

• For variants with large core sizes (V3 and V4 variants), the number of tasks each target ap-

plication is partitioned into may be less than eight; or in other words, in such cases, not all

cores are used. The decision of how many tasks an application should be partitioned into de-

pends on performance. For each variant, different cases, which have different number of tasks,

have been implemented and evaluated. And, the one with the best performance is chosen and

presented on Table 6.3.

• The tasks of an application are mapped in such a way that two tasks that need to exchange data

are assigned to two cores close to each other to reduce network delay as the number of routers

between two cores decreases.

6. Multicore Reconfigurable Architecture
6.4. Evaluation 96

Table 6.3: Implementation results of target applications

Application Abbr. Variant Symbol Tasks Throughput Fragmentation
[Mbps] [%]

Discrete Cosine Transform DCT

1-tile core V1 8 142.4 11.9
2-tile core V2 5 267.8 26.7
3-tile core V3 4 297.1 43.7
4-tile core V4 3 291.4 65.3

Viterbi decoder Viterbi

1-tile core V1 6 2.5 26.7
2-tile core V2 4 3.9 33.6
3-tile core V3 4 3.9 57.1
4-tile core V4 3 3.5 66.0

JPEG encoder JPEG

1-tile core V1 8 39.9 17.1
2-tile core V2 6 66.2 29.1
3-tile core V3 5 89.2 30.2
4-tile core V4 4 92.3 51.1

Turbo encoder Turbo

1-tile core V1 8 1.7 18.1
2-tile core V2 5 3.4 31.2
3-tile core V3 4 3.2 37.7
4-tile core V4 4 3.2 49.7

G712 encoder G721

1-tile core V1 8 3.5 19.8
2-tile core V2 6 5.2 30.2
3-tile core V3 5 9.2 40.3
4-tile core V4 4 8.7 51.2

6.4.3.3 Implementation results

Table 6.3 shows the evaluation results for every implemented variants of target applications. Column

"Tasks" denotes the number of tasks each application is partitioned into. As mentioned earlier, for

variants V1-V4, the number of tasks on column "Tasks" is the best implementation case I can achieve

in terms of throughput.

6.4.3.4 Throughput

It is easy to see that the throughput of implementations with different core sizes (V i variants) are

considerably varying. The best throughput when the core size is equal to two tiles (V2) is the im-

plementation of Viterbi and Turbo; in the case of three tiles (V3) this corresponds to DCT, Viterbi

and G721; and when implementing with four tiles (V4), JPEG implementation achieves the highest

throughput. Apparently, the size of cores influences the throughput of applications implemented in a

multicore architecture.

• When the core size is small, for example, (V1) variants, a target application must be partitioned

into multiple small tasks in order to fit small cores. This creates a great amount of communi-

cation, which causes throughput to drop significantly. With larger core sizes, the number of

tasks each application needs to be divided into is reduced; so, less communication is required,

and throughput is improved.

6. Multicore Reconfigurable Architecture
6.4. Evaluation 97

• Nonetheless, if the core size becomes large like (V4), throughput might not be as good as ex-

pected. Among the target applications in this study, only JPEG has the best throughput with V4

variant. A large core can hold a bigger task, so the partition of an application is likely to gener-

ate fewer tasks. This reduces the amount of communication among tasks, and the throughput

could become better. However, a fewer number of tasks means a smaller number of pipelining

stages, and, the workload balance between computation stages is hard to maintain. There-

fore, throughput could be reduced. In addition, large cores do not use resources effectively as

discussed in the next section.

6.4.4 Internal fragmentation

Internal fragmentation is the fragmentation inside the boundary of a task. This type of fragmentation

comes from the rectangular shape of a task. In the proposed multicore system, each task is mapped

onto a separated core with a fixed size; and, since the size of task is often smaller than that of a core,

some resources may not be used, or they get wasted. There are several types of resources contained

in a tile such as PEs, VMEMs, HMEMs, register files and flip-flops, but in this study, only PEs are

taken into account for calculating internal fragmentation. For a multicontext DRPA, the total internal

fragmentation of an application (Fapp) can be computed as follows.

Fcontext_i(%) =
PEnot_used_i

N
∗ 100

Ftask_ j(%) =
∑k

i=1 Fcontext_i

k

Fapp(%) =

∑T
j=1 Ftask_ j

T

In this equation, Fcontext_i is the fragmentation in ith context. It is the ratio of the number of

unused PEs (PEnot_used_i) in the context to the size of a core (N). F task_ j denotes the fragmentation of

jth task; N is the size of a core in terms of the number of PEs; k is the total number of context a task

requires to implement; and T is the number of tasks the application is partitioned into. According to

the above equation, the internal fragmentation of an application is the average of the fragmentation

of its tasks.

From the internal fragmentation of implementations in Table 6.3, It is easy to see that the frag-

mentation is growing as the core size increases, or in other words, the larger a core size is, the

less effective resource usage becomes. As a result, the size of cores in a multicore system plays an

important role in balancing between throughput and resource usage.

6. Multicore Reconfigurable Architecture
6.5. Conclusion 98

6.5 Conclusion

This section examines two architectures, a tile-based architecture using embedded memory modules

arranged as FIFOs for inter-task communication, and a multicore architecture employing an NoC

to connect computational cores. Target applications are partitioned into a number of tasks, each of

which is mapped onto a tile or a tile group in the tile-based architecture, and onto a core in the mul-

ticore architecture. All tasks of an application are arranged to execute in a pipelined manner. Based

on NEC’s DRP-1, the evaluation result shows that the width of communication channels largely af-

fects on performance. Also, using an NoC to form a multicore architecture proves to be an effective

method toward improving the performance of implemented applications, which can be modeled us-

ing a pipelined processing manner. Moreover, this section tries to investigate how the size of cores

influences the performance of target applications. Evaluation results received from a number of real

applications implemented on the system with different core sizes show that the size of core plays an

important role in balancing between throughput and resource usage. The most suitable core size in

many cases is about the size of two or three tiles of DRP architecture.

Chapter 7

Conclusion and Future Work

7.1 Thesis Summary

The focus of this thesis is to propose, implement and evaluate feasible mechanisms that support to

create a multitasking environment for coarse-grained dynamically reconfigurable processors. This is

achieved by firstly introducing the methodology to guide research and to organize the thesis. Several

concepts including the definitions of applications, hardware tasks and inter-process communications,

which are somehow different from that of the microprocessor domain, are described. An outline

of a system using a coarse-grained DRPA supporting a multitasking environment is also explained.

Moreover, three multitasking models based on resource sharing are introduced.

Secondly the background of coarse-grain DRPAs is examined based on general architectural as-

pects available on currently existing devices. These aspects can be used as criteria to categorize

coarse-grained DRPAs both currently available and future released devices into different classes.

Then a number of DRPAs released by consumer-electronics makers in the last decade including

not only commercially available products but also new devices under research and development is

introduced. Although the target device of research in this thesis is NEC Electronics DRP-1, oth-

ers described in Table 3.2 could become potential target hardware to apply proposed solutions with

relevant changes. Specifically, the proposed preemption algorithms (Chapter 5 and the multicore

reconfigurable system (Chapter 6) can be implemented with other DRPAs with minor modifications;

the proposed mapping method (Chapter 4) needs to be modified to adapt to other platforms because

the method assumes the two features specific to NEC’s DRP architecture: using embedded mem-

ories as FIFO to exchange data between hardware execution units (tiles), and forming tile groups

from separated tiles. As a result, the method can directly apply on platforms that support these two

features; and for other devices without either such two characteristics, the mapping algorithm has to

be changed.

Thirdly, a systematic method for mapping an application modeled as a Kahn Process Network

onto a target DRPA in order to enhance throughput by trying to exploit more inherent parallelism

of target applications is proposed and evaluated. By exploring the multi-process execution in dy-

7. Conclusion and Future Work
7.1. Thesis Summary 100

namically reconfigurable processors, which is a technique to enhance throughput through exploiting

more inherent parallelism of applications. Basically, a total process for an application is divided into

small processes, assigned into limited areas of a reconfigurable array, and concurrently executed in a

pipelined manner. In order to do that, the size of tiles, which is a unit area of dynamically reconfig-

urable array, and the grouping of processes are adjusted. Using real applications such as DCT, JPEG

encoder and Turbo encoder, the impact of different versions mapped onto the NEC Dynamically

Reconfigurable Processor on performance is evaluated. Evaluation results show that the proposed

mapping algorithm achieves the best performance in terms of the throughput and the execution time.

Fourthly, a research for a suitable mechanism to preempt tasks executing on dynamically recon-

figurable processors is performed. Basically, when a task is preempted, its necessary state informa-

tion must be correctly preserved in order for the task to be resumed later. Not only do coarse-grained

DRPAs have different architectures using a variety of development tools, but the great amount of state

data of hardware tasks executing on such devices are usually distributed on many different storage el-

ements. To address these difficulties, a general method for capturing the state data of hardware tasks

targeting coarse-grained DRPAs is proposed and evaluated. Based on resource usage, algorithms for

identifying preemption points and inserting preemption states subject to user-specified preemption

latency are proposed. Moreover, a modification to automatically incorporate proposed steps into the

system design flow is also discussed. The performance degradation caused by additional preemption

states is minimized by allowing preemption only at predefined points where demanded resources are

small. The evaluation result using a model based on NEC ElectronicsĄf DRP-1 shows that the pro-

posed method can produce preemption points satisfying a given preemption latency with reasonable

hardware overhead (from 6% to 15%).

Last, a new multicore reconfigurable system, which is a potential architecture candidate for real-

izing a multitasking environment, is proposed. As an extension of Chapter 4, a comparision between

application impementations using a multi-thread execution model on a tile-based architecture and

a multicore architecture is performed. Based on such a multicore reconfigurable architecture, a re-

search on how the size of cores in a multicore reconfigurable system influences on the performance

and the resource utilization of target applications is examined and discussed. Recently, an efficient

multicore architecture for processors toward multitasking design has emerged as a dominant trend in

the chip making industry. As reconfigurable devices gradually prove their capability in improving

computation power while preserving flexibility, I examine a multicore reconfigurable architecture

composed of multiple hardware execution units or cores connected by an interconnection network.

An application is partitioned into a set of tasks, each of which is mapped onto a core for execution

in a pipelined manner. Using real applications implemented on the proposed architecture in which

cores are based on the tile structure of NEC Electronics’ DRP-1, the evaluation result shows that the

size of core is a trade-off between throughput and resource usage, and the size equals to two or three

DRP tiles is an appropriate choice for many cases.

7. Conclusion and Future Work
7.2. Suggestions for Future Research 101

7.2 Suggestions for Future Research

This thesis presents several key methods toward building a multitasking environment on coarse-

grained DRPAs. Although this topic has been the main research subject for GPPs for a long time,

and a lot of research results have come into real life through implementations in processor archi-

tectures, operating systems, software developments and user realization, related studies in the field

of reconfigurable computing are still immature. To date, an effective reconfigurable architecture, an

operating system and a software framework that can support a true multitasking environment have

not yet appeared. Apart from having a few researches in this field, it is necessary to take into con-

sideration a lot of difficulties to transform equivalent concepts and implementations from software

world based on GPPs to hardware world based on reconfigurable devices. In this thesis, I developed

only some basic methods for a simple multitasking computational model. As a result, the work opens

up a great field for future research. At this point, I recommend following directions for future work

• Mapping method for hardware tasks on multicore reconfigurable architecture: When

proposing the mapping algorithm in Chapter 4, I assume the two following conditions: (1)

Embedded memories are used as FIFOs to exchange data between tiles since a target applica-

tion is modeled as a KPN. (2) Neighboring tiles can be joined together to form tiles groups.

However, it is not always the case for many DRPAs, some of which might not allow embed-

ded memories to work as FIFOs for data communication between hardware execution units

(HEUs), others may not have capability to join HEUs and allows them to work independently

and in parallel. Moreover, in the proposed multicore reconfigurable system (Chapter 6), cores

are connected by an international network not FIFOs; so, an original KPN cannot be directly

applied. Besides, it is often difficult to join several cores together to create a core group, a

concept similar to a tile group described in Chapter 4. As a result, a new mapping method is

necessary for a multicore reconfigurable architecture, where cores cannot communicate using

the FIFO mechanism.

• Simulation environment for improving the proposed preemption algorithm under real
situation: the preemption algorithm introduced in Chapter 5 was evaluated in a limited sce-

nario where only one application occupies and executes on the whole target reconfigurable

array. That is why in the evaluation part of Chapter 5, only the maximum preemption latency

was provided, not the real preemption latency. In a real situation, multiple applications can

be assigned to different execution units for execution in parallel. Then a certain running ap-

plication may be preempted; the resources occupied by the application are freed; and a new

application could be brought in for execution. In such a circumstance, the actual preemption

latency of a target application will vary depending on the number of applications in the system

at a given time, the moment when a preemption request is issued, and the condition of the sys-

tem. In addition, the result given in Table 5.1 does not take into account time for transferring

7. Conclusion and Future Work
7.2. Suggestions for Future Research 102

data between the target reconfigurable device and the outside memory. Since the input/output

channel of the target device is shared with other applications, sometimes, it could be blocked.

All of this happen in a real system and make the actual preemption latency increase. In order to

evaluate preemption latency more elaborately, it is necessary to build a simulation environment

that can capture all aspects of a real system.

• Design issues for multicore reconfigurable architectures: The multicore reconfigurable sys-

tem proposed in Chapter 6 is just a first step. The next step is to evaluate different structures

and configurations such as how different topologies of an interconnection network influence

on performance, area overhead and the structure of the system; how large an interconnection

network occupies or how much area overhead caused by a network is; how different channel

bit widths affects area overhead and throughput; how to map an application consisting of mul-

tiple tasks onto a multicore architecture to achieve certain goals; and, how to defragment the

system when tasks are dynamically allocated and freed.

• Design issues for interconnection networks: As interconnection networks may have great

impact on performance, area overhead, wire delay and power of a multicore reconfigurable

architecture, they need more attention [28, 118, 124, 123]. One of the solutions to the wire

delay problem is three-dimensional IC technology that stacks multiple wafers or dice using

vertical interconnects [126, 127, 128, 129]. Stacked dynamically reconfigurable processors are

an innovative approach to solve the issue of stretched programmable wires.

• Prototype of a reconfigurable architecture that supports a multitasking and multi-thread
model: In spite of introducing several mechanisms toward a multitasking environment on

DRPAs, a complete system has not yet been build and evaluated. It is crucial to design such

a system with proposed solutions in order to examine how well proposed methods work in a

general architecture and in a real situation.

Abbreviation and Acronyms

2D Two-dimensional

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BDL Behavioral Design Language

CIU Core Interface Unit

CPU Central Processing Unit

DCT Two-dimensional Discrete Cosine Transform

DMU Data Manipulation Unit

DPU Datapath Unit (CS2112)

DRP Dynamically Reconfigurable Processor

DRPA Dynamically Reconfigurable Processing Array

DSP Digital Signal Processor, Digital Signal Processing

FFU Flip-Flop Unit

FIFO First In First Out

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

GPP General Purpose Processor

HDL Hardware Description Language

HEU Hardware Execution Unit

HMEM Horizontal Memory

I/O Input/Output

ILP Instruction-Level Parallelism

IMDCT Inverse Modified Discrete Cosine Transform

IP Intellectual Property

IRAM Internal Random Access Memory

JPEG JPEG encoder

KPN Kahn Process Network

LUT Look-up-Table

MAC Multiply-Accumulate

Abbreviation and Acronyms 104

MEM Memory module

MIMD Multiple Instruction Multiple Data

MIPS Million Instructions Per Second

MLT Multiply and Accumulate Cell (Hitachi FE-GA)

MPEG MPEG-2 decoder

MuCCRA Multi-Core Configurable Reconfigurable Architecture

MULT Multiplier

NoC Network-on-Chip

OS Operating System

PAE Processing Array Element

PC Program Counter

PCI Peripheral Component Interconnect

PE Processing Element

RC Reconfigurable Cell (Mophosys)

RCFU Reconfigurable Functional Unit

RFU Register File Unit

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SE Switching Element

SIMD Single Instruction Multiple Data

SMU Shift and Mask Unit

SoC System-on-Chip

STC State Transition Controller

STG State Transition Graph

Turbo Turbo encoder

Viterbi Viterbi decoder

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration

VMEM Vertical Memory

XPP eXtreme Processing Platform

Bibliography

[1] R.W. Hartenstein and H. Grunbacher. The Roadmap to Reconfigurable computing. In Proceedings

of the 10th International Workshop on Field-Programmable Logic and Applications (FPL’00), pages

27–30, August 2000. 1

[2] S. Brown, R. Francis, J. Rose, and Z. Vranesic. Field-Programmable Gate Arrays. Kluwer Academic

Publishers, 1992. 1

[3] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs. Kluwer

Academic Publishers, 1999. 1, 48

[4] S.M. Arnold D. Buell and W.J. Kleinfelder. SPLASH 2: FPGAs in a Custom Computing Machine.

IEEE Computer Society Press, 1996. 2

[5] E. Tau, I. Eslick, D. Chen, J. Brown, and A. DeHon. SPACE 2 as a Reconfigurable Stream Processor.

In Proceedings of 4th Australasian Conference on Parallel and Real-time Systems (PART’97), pages

286–297, September 1997. 2

[6] J. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable Coprocessor. In Pro-

ceedings of the 5th IEEE Symposium on FPGAs for Custom Computing Machines (FCCM’97), pages

12–21, April 1997. 2, 26

[7] ITRS. International Technology Roadmap for Semiconductors 2007 Edition, 2007. available at

http://www.itrs.net/. 2

[8] Timothy Mark Pinkston and Jeonghee Shin. Trends Toward On-Chip Networked Microsystems. Inter-

national Journal of High Performance Computing and Networking, 3(1):3–18, September 2005. 2

[9] J. Patterson and H. Agah. Synopsys and Xilinx Unveil Next Generation Flow for Platform FPGAs.

Xcell Journal Online, 41, September 2001. 2

[10] Xilinx. Spartan-3A FPGA Family: Data Sheet, 2005. 2

[11] Xilinx. Virtex-4 Family Overview, 2005. 2

[12] Xilinx. Virtex-5 Family Overview, 2007. 2

[13] Altera. Stratix IV Device handbook, Volume 1, 2008. 2

[14] Hideharu Amano. A Survey on Dynamically Reconfigurable Processors. IEICE Transactions on Com-

munications, E89-B(12):3179–3187, December 2006. 2, 48, 67, 86

[15] David Geer. Chip makers turn to multicore processors. IEEE Computer, 38(5):11–13, May 2005. 3,

86

[16] V.M. Tuan and H. Amano. A Mapping Method for Multi-Process Execution on Dynamically Recon-

figurable Processors. IEICE Transactions on Information & Systems, E91-D(9):2312–2322, September

2008. 5, 93

http://www.itrs.net/

Bibliography 106

[17] V.M. Tuan and H. Amano. A Preemption Algorithm for a Multitasking Environment on Dynami-

cally Reconfigurable Processors. IEICE Transactions on Information& Systems, E91-D(12), December

2008. 5

[18] Ivica Crnkovic. Software Engineering and Science. Presentation

on Research Methodology for Natural Sciences and Technology, 2006.

http://www.idt.mdh.se/kurser/ct3340/ht07/se-methods2003.pdf. 7

[19] S. Hauck and A. Dehon. Reconfigurable Computing: the theory and practice of FPGA-based compu-

tation. Morgan Kaufmann Publishers, 2008. 9

[20] M. Suzuki, Y. Hasegawa, Y. Yamada, N. Kaneko, K. Deguchi, H. Amano, K. Anjo, M. Motomura,

K. Wakabayashi, T. Toi, and T. Awashima. Stream Applications on the Dynamically Reconfigurable

Processor. In Proceedings of International Conference on Field Programmable Technology (FPT 2004),

pages 137–144, December 2004. 9, 61, 82

[21] O. Diessel, H. Elgindy, M. Middendorf, H. Schmeck, and B. Schmidt. Dynamic scheduling of tasks on

partially reconfigurable FPGAs. IEE Proceedings on Computers and Digital Techniques, 147(3):181–

188, May 2000. 11, 88

[22] Grant Wigley and David Kearney. The management of applications for reconfigurable computing using

an operating system. Australian computer Science Communications, 24:73–81, January 2002. 11

[23] H. Walder, C. Steiger, and M. Plazner. Fast online task placement on FPGAs: Free space partitioning

and 2D-Hashing. In Proceedings of Parallel and Distributed Processing Symposium (IPDPS’03), pages

178–185, April 2003. 11

[24] M. Handa and R. Vemuri. Area fragmentation in reconfigurable operating systems. In Proceedings

of the International Conference Engineering of Reconfigurable Systems and Algorithms (ERSA’2004),

pages 77–83, June 2004. 11

[25] Scott Hauck. The Roles of FPGAs in Reprogrammable Systems. Proceedings of the IEEE, 86(4):615–

639, April 1998. 12

[26] H. Krupnova and G. Saucier. FPGA-based emulation: Industrial and custom prototyping silutions. In

Proceedings of the International Conference on Field-Programmable Logic and Applications, pages

68–77, August 2000. 12

[27] Altera Corp. Altera Stratix Device Handbook, July 2005. http://www.altera.com. 13

[28] W.J. Dally and B. Towles. Route Packets not Wires: On-Chip Interconnection Networks. In Proceedings

of Design Automation Conference, pages 684–689, June 2001. 14, 88, 102

[29] J. S. N. Jean, K. Tomko, V. Yavagal, J. Shah, and R. Cook. Dynamic reconfiguration to support concur-

rent applications. IEEE Transactions on Computers, 48:591–602, June 1999. 17, 68

[30] L. Levinson, R. Manner, M.Sesler, and H. Simmler. Preemptive Multitasking on FPGAs. In Proceedings

of the 2000 IEEE Symposium on Field-Programmable Custom Computing Machines, pages 301–302,

April 2000. 17, 68

[31] H. Simmler, L. Levinson, and R. Manner. Multitasking on FPGA Coprocessors. In Proceedings of the

10th International Workshop on Field-Programmable Logic and Applications (FPL’00), pages 121–

130, January 2000. 17, 68

http://www.idt.mdh.se/kurser/ct3340/ht07/se-methods2003.pdf
http://www.altera.com

Bibliography 107

[32] H.K.H. So and R.W. Brodersen. Improving usability of fpga-based reconfigurable computers through

operating system support. In Proceedings of the 16th International Conference on Field Programmable

Logic and Applications (FPL’06), pages 1–6, August 2006. 17

[33] M. Middendorf, B. Scheuermann, H. Schmeck, and H. Elgindy. An evolutionary approach to dy-

namic task scheduling on FPGAs with restricted buffer. Journal of Parallel and Distributed Computing,

62:1407–1420, September 2002. 19

[34] J. Teich, S. Fekete, and J. Schepers. Compile-time optimization of dynamic hardware reconfigurations.

In Proceedings of International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTAĄE9), pages 1097–1103, June 1999. 19

[35] J. Teich, S. Fekete, and J. Schepers. Optimization of dynamic hardware reconfigurations. The Journal

of Supercomputing, 19:57–75, May 2001. 19

[36] PACT Inc. XPP-III Processor Overview, version 2.0 edition, July 2006. 21, 29, 48

[37] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. Chaves Filho. MorphoSys:

An Integrated Reconfigurable System for Data-Parallel and Computation-Intensive Applications. IEEE

Transactions on Computers, 49(5):465–481, May 2000. 22

[38] Guy Lemieux and David Lewis. Design of interconnection networks for programmable logic. Kluwer

Academic Publishers, 2004. 22

[39] M. Kato, Y. Hasegawa, and H. Amano. Evaluation of MuCCRA-D: A Dynamically Reconfigurable

Processor with Directly Interconnected PEs. In Proceedings of the International Conference on Engi-

neering of Reconfigurable Systems and Algorithms (ERSA’2008), pages 353–359, July 2008. 23, 44,

47, 48

[40] K. Compton, J. Cooley, S. Knol, and S. Hauck. Configuration Relocation and Defragmentation for Run-

Time Reconfigurable Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

10(3):209–220, June 2002. 23, 88

[41] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A Time-Multiplexed FPGA. In Proceedings of

the 5th IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM1997), pages

22–28, April 1997. 23

[42] E. Tau, I. Eslick, D. Chen, J. Brown, and A. DeHon. A First Generation DPGA Implementation. In

Proceedings of the 3rd Canadian Workshop on Field-Programmable Devices, May 1995. 23

[43] X. P. Ling and H. Amano. WASMII: A Data Driven Computer on a Virtual Hardware. In Proceedings

of the 1st IEEE Symposium on FPGAs for Custom Computing Machines (FCCM1993), pages 33–42,

April 1993. 25

[44] Y. Shibata, M. Uno, H. Amano, K. Furuta, T. Fujii, and M. Motomura. A Virtual Hardware System

on a Dynamically Reconfigurable Logic Device. In Proceedings of the 8th IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM2000), pages 295–296, April 2000. 25

[45] S. Goldstein, H. Schmit, M. Moe, M. Budiuy, S. Cadambi, R. Taylor, and R. Laufer. PipeRench: A

Coprocessor for Streaming Multimedia Acceleration. In Proceedings of the 26th Annual International

Symposium on Computer Architecture (ISCA1999), pages 28–39, May 1999. 25

[46] J. Arnold, D. Buell, and E. Davis. Splash 2. In Proceedings of the 4th Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 316–322, June 1992. 25

Bibliography 108

[47] J. Arnold and W. Kleinfelder. Splash 2: FPGAs in a Custom Computing Machine. IEEE Computer

Society, 1996. 25

[48] K. Nakajima, H. Sato, H. Asami, M. Iida, K. Shindome, H. Mori, K. Takahashi, and Y. Mizukami.

FPGA-based Parallel Machine : RASH. In Proceedings of the 20th International Conference on Applied

Informatics (AI2002), pages 269–273, Feburary 2002. 25

[49] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider. Teramac – Configurable Custom

Computing. In Proceedings of the 3rd IEEE Workshop on FPGAs for Custom Computing Machines

(FCCM1995), pages 32–38, April 1995. 25

[50] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The Garp Architecture and C Compiler. IEEE Com-

puter, 33(4):62–69, April 2000. 26

[51] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. M. Arnold, and M. Gokhale. The

NAPA Adaptive Processing Architecture. In Proceedings 6th IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM1998), pages 28–37, April 1998. 26

[52] P. M. Athanas and H. F. Silverman. Processor Reconfiguration Through Instruction-Set Metamorphosis.

IEEE Computer, 26(3):11–18, March 1993. 26

[53] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman, , and S. Ghosh.

PRISM-II Compiler and Architecture. In Proceedings of the 1st IEEE Workshop on FPGAs for Custom

Computing Machines (FCCM1993), pages 9–16, April 1993. 26

[54] F. Raimbault, D. Lavenier, S. Rubini, and B. Pottier. Fine Grain Parallelism on a MIMD Machine

Using FPGAs. In Proceedings of the 1st IEEE Workshop on FPGAs for Custom Computing Machines

(FCCM1993), pages 2–8, April 1993. 26

[55] R. Razdan and M. Smith. A High Performance Microarchitecture with Hardware Programmable Func-

tional Units. In Proceedings of the Annual International Symposium on Microarchitecture (MICRO-27),

pages 172–180, 1994. 26

[56] R. Witting and P. Chow. OneChip: An FPGA Processor with Reconfigurable Logic. In Proceedings of

the 4th IEEE Symposium on FPGAs for Custom Computing Machines (FCCM1996), pages 126–135,

1996. 26

[57] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera Reconfigurable Functional Unit. In Proceedings

of the 5th IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM1997), pages

87–96, April 1997. 26

[58] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: A High-Performance Architecture with

a Tightly-Coupled Reconfigurable Functional Unit. In Proceedings of the International Symposium on

Computer Architecture (ISCA2000), pages 225–235, 2000. 26

[59] T. Toi, N. Nakamura, Y. Kato, T. Awashima, K. Wakabayashi, and L. Jing. High-level Synthe-

sis Challenges and Solutions for a Dynamically Reconfigurable Processor. In Proceedings of the

2006 IEEE/ACM International Conference on Computer-Aided Design (ICCAD2006), pages 702–708,

November 2006. 26, 31, 55, 79

[60] K. Wakabayashi and T. Okamoto. C-Based SoC Design Flow and EDA Tools: An ASIC and System

Vendor Perspective. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

19(12):1507–1522, December 2000. 26

Bibliography 109

[61] B. Salefski and L. Caglar. Re-Configurable Computing in Wireless. In Proceedings of the 38th Design

Automation Conference (DAC2001), pages 178–183, June 2001. 27, 48

[62] PACT Inc. Video Decoding on XPP-III, revision 1.1 edition, July 2006. 30

[63] M. Motomura. A Dynamically Reconfigurable Processor Architecture. In Proceedings of Microproces-

sor Forum, October 2002. 30, 48, 50, 53, 87, 88

[64] T. Sugawara, K. Ide, and T. Sato. Dynamically Reconfigurable Processor Implemented with IPFlex’s

DAPDNA Technology. IEICE Transactions on Information & System, E87-D(8):1997–2003, August

2004. 32, 48

[65] T. Sato. Dynamic Reconfiguration and Its Granularity inside Future DAPDNA Architecture. In Pro-

ceedings of International Symposium on Advanced Reconfigurable Systems, pages 114–127, December

2005. 34

[66] T. Sato. A Dual-Core Dynamically Reconfigurable Engine Employs 955 Parallel Processing Elements.

In Proceedings of Microprocessor Forum, May 2007. 34, 48

[67] T. Komada, T. Tsunoda, M. Takeda, H. Tanaka, Y. Akita, M. Sato, and M. Ito. Flexibile Engine:

A Dynamic Reconfigurable Accelerator with High Performance and Low Power Consumption. In

Proceedings of the 9th IEEE Symposium on Low-Power and High Speed Chips (COOL Chips IX),

pages 393–408, April 2006. 34, 48, 88

[68] T. Stansfield. Using Multiplexers for Control and Data in D-Fabrix. In Proceedings of the 13th Interna-

tional Conference on Field Programmable Logic and Applications (FPL’03), pages 416–425, August

2003. 36, 48

[69] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings. A Reconfigurable Arithmeric

Array for Multimedia Applications. In Proceedings of the ACM/SIGDA 7th International Symposium

on Field-Programmable Gate Arrays (FPGA1999), pages 135–143, Feburary 1999. 36

[70] T. Matsumoto, K. Kimura, H. Takano, T. Amatsubo, K. Mori, K. Senda, S. Inoue, and M. Matsui. Per-

formance Evaluation of Reconfigurable Processing Array in Area Efficiency and Operating Frequency.

In Proceedings of the 9th IEEE Symposium on Low-Power and High Speed Chips (COOL Chips IX),

pages 423–434, April 2006. 37

[71] T. Kiyohara. Multimedia Processor-based Platform for a Wide Range of Digital Consumer Electronics.

In Proceedings of the 8th IEEE Symposium on Low-Power and High Speed Chips (COOL Chips XIII),

pages 133–141, April 2005. 37

[72] M. Nakajima, T. Yamamoto, M. Yamasaki, T. Hosoki, and M. Sumital. Low Power Techniques for

Mobile Application SoCs Based on Integrated Platform UniPhier. In Proceedings of the 12th Asia and

South Pacific Design Automation Conference (ASPDAC2007), pages 649–653, January 2007. 37

[73] B. Levine. Kilocore: Scalable, High-Performance, and Power Efficient Coarse-grained Reconfigurable

Fabrics. In Proceedings of International Symposium on Advanced Reconfigurable Systems, pages 129–

158, December 2005. 38, 48

[74] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor. PipeRench: A Virtualized Pro-

grammable Datapath in 0.18 Micron Technology. In Proceedings of the 24th IEEE Custom Integrated

Circuits Conference (CICC2002), pages 63–66, May 2002. 38

Bibliography 110

[75] F. Veredas, M. Scheppler, W. Moffat, and B. Mei. Custom Implementation of the Coarse-Grained

Reconfigurable ADRES Architecture for Multimedia Purposes. In Proceedings of International Con-

ference on Field Programmable Logic and Application (FPL’05), pages 106–111, August 2005. 39,

48, 53

[76] Stretch Inc. http://www.stretchinc.com/_files/s6ArchitectureOverview.pdf. 41, 48

[77] J. Arnold. S5: The Architecture and Development Flow of a Software Configurable Processor. In

Proceedings of the 4th IEEE International Conference on Field Programmable Technology (FPT2005),

pages 120–128, December 2005. 42

[78] M. Saito, H. Fujisawa, N. Ujiie, and H. Yoshizawa. Cluster Architecture for Reconfigurable Signal

Processing Engine for Wireless Communication. In Proceedings of the International Conference on

Field Programmable Logic and Applications (FPL’05), pages 353–359, August 2005. 43, 48

[79] H. Amano, Y. Hasegawa, S. Tsutsumi, T. Nakamura, T. Nishimura, V. Tanbunheng, A. Parimala,

T. Sano, , and M. Kato. MuCCRA chips: Configurable dynamically-reconfigurable processors. In

Proceedings of Solid-State Circuits Conference (ASSCC’07), pages 384–387, November 2007. 44, 45,

48, 59

[80] Y. Saito, M. Kato, S. Saito, T. Sano, Hirai K, T. Nishimura, T. Nakamura, S. Tsutsumi, Y. Hasegawa,

and H. Amano. Practice Evaluation Dynamically Reconfigurable Processor MuCCRA-2. In IEICE

Technical Reports, RECONF2008-34, pages 69–74, September 2008. (In Japanese). 45, 48

[81] E. Ahmed and J. Rose. The Effect of LUT and Cluster Size on Deep-Submicron FPGA Performance

and Density. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12, 2004. 48

[82] Y.Hasegawa, S.Abe, S.Kurotaki, V.Tuan, N.Katsura, T.Nakamura, T.Nishimura, and H.Amano. Perfor-

mance and Power Analysis of Time-multiplexed Execution on Dynamically Reconfigurable Processor.

In Proceedings of the 20th International Parallel and Distributed Processing Symposium/ Reconfig-

urable Architecture Workshop (IPDPS2006), April 2006. 50, 63, 64, 88

[83] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of IEEE, 75(9):1235–

1245, September 1987. 51

[84] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceedings of IEEE, 83(5):773–

799, May 1995. 51

[85] Gilles Kahn. The semantics of a simple language for parallel programming. In Proceedings of the IFIP

Congress 74, pages 471–475. North-Holland Publishing Co., August 1974. 51

[86] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A framework for

simulating and prototyping heterogeneous systems. International Journal in Computer Simulation,

special issue on "Simulation Software Development", 4(2):155–182, April 1994. 51

[87] Ralf Niemann. Hardware/Software co-design for data flow dominated embedded systems. Kluwer

Academic Publishers, 1998. 51

[88] M.D. Galanis, A. Milidonis, G. Theodoridis, D. Soudris, and C.E. Goutis. A partitioning methodology

for accelerating applications in hybrid reconfigurable platforms. In Proceedings of the conference on

Design, Automation and Test in Europe, volume 3, pages 247–252, March 2005. 51

[89] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast Template Placement for Reconfigurable Computing

Systems. IEEE Design and Test of Computers, 17(1):68–83, March 2000. 51

http://www.stretchinc.com/_files/s6ArchitectureOverview.pdf

Bibliography 111

[90] S.P.Fekete, E.Koehler, and J.Tech. Optimal FPGA Module Placement with Temporal Precedence Con-

straints. In Proceedings of the conference on Design, Automation and Test in Europe, pages 658–665,

March 2001. 51

[91] P-H.Yuh, C-L Yang, Y-W. Chang, and H-L Chen. Temporal Floorplanning Using 3D-subTCG. In

Proceedings of the 2004 conference on Asia South Pacific design automation: electronic design and

solution fair, pages 725–730, January 2004. 51

[92] T. Sugawara, K. Ide, and T. Sato. Dynamically Reconfigurable Processor Implemented with IPFlex’s

DAPDNA Technology. IEICE Transactions on Information & Systems, E87-D(8):1997–2003, May

2004. 53

[93] B. Khailany, W.J. Dally, U.J. Kapasi, P. Mattson, J. Namkoong, J.D. Owens, B. Towles, A. Chang, and

S. Rixner. Imagine: Media processing with streams. IEEE Micro, 21:35–46, March/April 2001. 53

[94] Independent JPEG Group. http://www.ijg.org/. 61, 82

[95] C. Berrou and A. Glavieux. Near optimum error correcting coding and decoding: Turbo codes. IEEE

Transactions Communications, 44:1261–1271, October 1996. 61, 82

[96] MPEG Software Simulation Group (MSSG). http://www.mpeg.org/MPEG/MSSG. 61, 82

[97] J. Noguera and R.M. Badia. Multitasking on reconfigurable architectures:Microarchitecture support

and dynamic scheduling. ACM Transactions on Embedded Computing Systems, 3(2):385–406, May

2004. 67

[98] G. Brebner. The Swappable Logic Unit: A Paradigm for Virtual Hardware. In IEEE Symposium on

FPGAs for Custom Computing Machines, pages 77–86, April 1997. 68

[99] D. Koch, C. Haubelt, and J. Teich. Efficient hardware checkpointing: concepts, overhead analysis,

and implementation. In Proceedings of International Symposium on Field-Programmable Gate Arrays,

pages 188–196, February 2007. 68

[100] S. A. Guccione, D. Levi, and P. Sundararajan. JBits: A Java-based interface for reconfigurable comput-

ing. In Proceedings of Second Annual Military and Aerospace Applications of Programmable Devices

and Technologies Conference (MAPLD), pages 301–302, September 1999. 68

[101] H. Kalte and M. Porrmann. Context Saving and Restoring for Multitasking in Reconfigurable Systems.

In Proceedings of 15th International Conference on Field-Programmable Logic and Applications, pages

223–228, August 2005. 68

[102] S. Jovanovic, C. Tanougast, and S. Weber. A Hardware Preemptive Multitasking Mechanism Based on

Scan-path Register Structure for FPGA-based Reconfigurable Systems. In Proceedings of the Second

NASA/ESA Conference on Adaptive Hardware and Systems, pages 358–364, August 2007. 68

[103] M. Ullmann, M. Hubner, B. Grimm, and J. Becker. An FPGA run-time system for dynamical on-

demand reconfiguration. In Proceedings of the18th International Parallel and Distributed Processing

Symposium (IPDPSĄf04) - Reconfigurable Architectures Workshop, pages 135–142, April 2004. 68,

87, 88

[104] K. Kim, R. Karri, and M. Potkonjak. Micropreemption Synthesis: An Enabling Mechanism for Multi-

task VLSI Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

25:19–30, January 2006. 68

Bibliography 112

[105] J. Simonson and J.H. Patel. Use of Preferred Preemption Points in Cache-Based Real-Time Systems. In

Proceedings of 15th International Computer Performance and Dependability Symposium, pages 316–

325, April 1995. 70

[106] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Designing an operating system for

a heterogeneous reconfigurable SoC. In Proceedings of the 17th International Symposium on Parallel

and Distributed Processing, April 2003. 70, 88

[107] E. A. Lee and D. C. Messerschmitt. Static Scheduling of Synchronous Data flow Programs for Digital

Signal Processing. IEEE Transactions on Computers, 36(1):24–36, January 1987. 72

[108] A.V. Aho, R. Sethi, and J.D. Ullman. Compiler: Principles, Techniques, and Tools. Addison Wesley,

1986. 76

[109] V.Sreedhar, G.R. Gao, and Y. Lee. Identifying Loops Using DJ Graphs. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 18(6):649–658, November 1996. 76

[110] Steven A. Guccione. Multicore Devices: A New Generation of Reconfigurable Architectures. In Pro-

ceedings of the 8rd International Conference on Engineering of Reconfigurable Systems and Architec-

tures (ERSA’2008), pages 3–11, July 2008. 86

[111] Freescale Semiconductor. Multi-Core Microprocessors in Embedded Applications, 2005. White Paper.

86

[112] Y. Kurose, I. Kumata, M. Okabe, H. Hanaki, K. Seno, K. Hasegawa, H. Ozawa, S. Horiike, T. Wada,

S. Arima, K. Taniguchi, K. Ono, H. Hokazono, T. Hiroi, T. Hirano, and S. Takashima. A 90nm Embed-

ded DRAM Single Chip LSI with a 3D Graphics, H.264 Codec Engine, and a Reconfigurable Processor.

In Proc. of the 16th Symp. on High Performance Chips (Hot Chips 16), August 2004. 86

[113] Toshiba. A Dynamically Reconfigurable Architecture for Stream Processing, 2007. Tutorial at Interna-

tional Conference on Field-Programmable Technology 2007 (ICFPT’07). 86, 88

[114] Sanyo. Reconfigurable Architecture for Car Tuners, 2007. Tutorial at International Conference on

Field-Programmable Technology 2007 (ICFPT’07). 86, 88

[115] P. Merino, J.C. Lopez, and M. Jacome. A Hardware Operating System for Dynamic Reconfiguration of

FPGAs. In Proceedings of the 8th International Workshop on Field-Programmable Logic and Applica-

tions (FPL’98), pages 431–435, August 1998. 87

[116] P. Merino, M. Jacome, and J.C. Lopez. A Methodology for Task Based Partitioning and Scheduling

of Dynamically Reconfigurable Systems. In Proceedings of IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM), pages 324–325, April 1998. 87

[117] A. Ahmadinia, C. Bobda, and J. Teich. Dynamic Scheduling and Placement Algorithm for Reconfig-

urable Hardware. In Architecture of Computing Systems (ARCS), pages 125–139, April 2004. 87

[118] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins. Interconnection networks enable

fine-grain dynamic multi-tasking on FPGAs. In Proceedings of the 12th International Workshop on

Field-Programmable Logic and Applications (FPL’02), pages 795–805, September 2002. 87, 88, 102

[119] Herbert Walder and Marco Platzner. Reconfigurable Hardware Operating Systems: From Design Con-

cepts to Realizations. In Proceedings of the 3rd International Conference on Engineering of Reconfig-

urable Systems and Architectures (ERSA’2003), pages 284–287, June 2003. 87, 88

Bibliography 113

[120] Gordon Brebner and Oliver Diessel. Chip-based Reconfigurable Task Management. In Proceedings

of the 11th International Conference on Field Programmable Logic and Applications (FPL’01), pages

182–191, August 2001. 87, 88

[121] H. Walder and M. Platzner. Non-preemptive Multitasking on FPGA: Task Placement and Footprint

Transform. In Proceedings of the International Conference on Engineering of Reconfigurable Systems

and Algorithms (ERSA’2002), pages 24–30, June 2002. 87, 88

[122] H. Kalte, M. Koester, B. Kettelhoit, M. Porrmann, and U. Ruckert. A comparative study on system ap-

proaches for partially reconfigurable architectures. In Proceedings of the 4rd International Conference

on Engineering of Reconfigurable Systems and Architectures (ERSA’2004), pages 70–76, June 2004.

87

[123] Luca Benini and Giovanni De Micheli. Networks on chips: technology and tools. Morgan Kaufmann

Publishers, 2006. 87, 102

[124] T. Marescaux, J-Y. Migmolet, A. Bartic, W. Moffa1, D. Verkest, S. Vemalde, and RLauwereins. Net-

works on Chip as Hardware Components of an OS for Reconfigurable System. In Proceedings of the

13th International Workshop on Field-Programmable Logic and Applications (FPL’03), pages 256–

259, September 2003. 88, 102

[125] Y. Mignolet, S. Vernalde, D. Verkest, and R. Lauwereins. Enabling hardware-software multitasking on

a reconfigurable computing platform for networked portable multimedia appliances. In Proceedings of

the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA’2002),

pages 116–122, June 2002. 88

[126] B. Black, D.W. Nelson, C. Webb, and N. Samra. 3D Processing Technology and Its Impact on iA32

Microprocessors. In Proceedings of the International Conference on Computer Design, pages 316–318,

October 2004. 102

[127] S. Das, A. Fan, K.N. Chen, C.S. Tan, N. Checka, and R. Reif. Technology, Performance, and Computer-

Aided Design of Three-Dimensional Integrated Circuits. In Proceedings of the International Symposium

on Physical Design, pages 108–115, April 2004. 102

[128] W.R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer, and P.D. Franzon.

Demystifying 3D ICs: The Pros and Cons of Going Vertical. IEEE Design and Test of Computers,

22(6):498–510, November 2005. 102

[129] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. Kandemir. Design and Management

of 3D Chip Multiprocessors Using Network-in-Memory. In Proceedings of the International Sympo-

sium on Computer Architecture, pages 130–141, June 2006. 102

Publications

Journal Papers

[1] Vu Manh Tuan, and Hideharu Amano, "A Mapping Method for Multi-process Execution on

Dynamically Reconfigurable Processors", IEICE Transaction on Information & Systems, Vol.

E91-D, No.9, pages 2312-2322, September 2008.

[2] Vu Manh Tuan, and Hideharu Amano, "A Preemption Algorithm for a Multitasking Environ-

ment on Dynamically Reconfigurable Processors", IEICE Transaction on Information & Sys-

tems, Vol. E91-D, No.12, pages 2793-2803, December 2008.

[3] Yohei Hasegawa, Shohei Abe, Syunsuke Kurotaki, Vu Manh Tuan, and Hideharu Amano,

"Evaluation of Time-multiplexed Execution on the Dynamically Reconfigurable Processor",

IPSJ Transaction on Advanced Computing Systems (ACS), Vol. 47, No. SIG12 (ACS15),

pages 171-181, September 2006. (In Japanese)

[4] Masayasu Suzuki, Yohei Hasegawa, Shohei Abe, Vu Manh Tuan, and Hideharu Amano, "A

Novel Cost-Effective Context Memory Structure for Dynamically Reconfigurable Processors",

IEICE Transaction on Information& Systems, Vol. J89-D, No. 6, pages 1101-1109, June 2006.

(In Japanese)

International Conference Papers

[5] Vu Manh Tuan, Hiroki Matsutani, Naohiro Katsura, and Hideharu Amano, "Evaluation of a

Multicore Reconfigurable Architecture with Variable Core Sizes", In Proceeding of the 23th

International Parallel and Distributed Processing Symposium (IPDPS 2009) / Reconfigurable

Architectures Workshop (RAW2009), May 2009 (accepted).

[6] Vu Manh Tuan, and Hideharu Amano, "A Method for Capturing State Data on Dynamically

Reconfigurable Processors", In Proceeding of 2008 International Conference on Engineering

of Reconfigurable Systems and Algorithms (ERSA), pages 208-214, Las Vegas, July 2008.

[7] Vu Manh Tuan, and Hideharu Amano, "A Mapping Method for Multi-Processing Execution

on Dynamically Reconfigurable Processors", In Proceeding of 2007 International Conference

on Field-Programmable Technology (ICFPT2007), 357-360, Kitakyushu, December 2007.

Publications 115

[8] Vu Manh Tuan, Yohei Hasegawa, and Hideharu Amano, "Performance Analysis of Multi-

Process Execution Model on Dynamically Reconfigurable Processor", In Proceeding of the 7th

International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA2007),

pages 203-206, Las Vegas, NV, June 2007

[9] Yohei Hasegawa, Shohei Abe, Shunsuke Kurotaki, Vu Manh Tuan, Naohiro Katsura, Takuro

Nakamura, Takashi Nishimura, and Hideharu Amano, "Performance and Power Analysis of

Time-multiplexed Execution on Dynamically Reconfigurable Processor", In Proceeding of the

20th International Parallel and Distributed Processing Symposium (IPDPS 2006) / Reconfig-

urable Architectures Workshop (RAW2006), Rhodes Island, Greece, April 2006.

[10] Masayasu Suzuki, Yohei Hasegawa, Vu Manh Tuan, Shohei Abe, and Hideharu Amano, "A

Cost Effective Context Memory Structure for Dynamically Reconfigurable Processors", In

Proceeding of the 20th International Parallel and Distributed Processing Symposium (IPDPS

2006) / Reconfigurable Architectures Workshop (RAW2006), Rhodes Island, Greece, April

2006.

[11] Vu Manh Tuan, Yohei Hasegawa, Naohiro Katsura, and Hideharu Amano, "Performance-Cost

Trade-off Evaluation for the DCT Implementation on the Dynamically Reconfigurable Proces-

sor", In Proceeding of International Workshop on Applied Reconfigurable Computing (ARC2006),

pages 115-121, Delft, Netherlands, March 2006.

[12] Yohei Hasegawa, Shohei Abe, Shunsuke Kurotaki, Vu Manh Tuan, Naohiro Katsura, Takuro

Nakamura, Takashi Nishimura, and Hideharu Amano, "Application-Based Performance and

Power Analysis of Dynamically Reconfigurable Processor", International Symposium on Ad-

vanced Reconfigurable Systems, Kyoto, Japan, December 2005.

Domestic Conference Papers and Technical Reports

[13] Vu Manh Tuan, Hiroki Matsutani, Naohiro Katsura, and Hideharu Amano, "Evaluation of a

Multicore Reconfigurable Architecture", IEICE Technical Reports, VLD2008-92, pages 7-12,

January 2009.

[14] Vu Manh Tuan, and Hideharu Amano, "A Method for Saving and Restoring Context Data of

Hardware Tasks on the Dynamically Reconfigurable Processor", IEICE Technical Reports,

RECONF2008, pages 71-76, January 2008.

[15] Yohei Hasegawa, Shohei Abe, Syunsuke Kurotaki, Vu Manh Tuan, and Hideharu Amano,

"Evaluation of Time-multiplexed Execution on the Dynamically Reconfigurable Processor",

The 4th Symp. on Advanced Computing Systems and Infrastructures (SACSIS2006), pages

135-142, May 2006. (In Japanese)

[16] Yohei Hasegawa, Takashi Nishimura, Shohei Abe, Syunsuke Kurotaki, Vu Manh Tuan, and

Publications 116

Hideharu Amano, "Application-Based Performance and Power Analysis on Dynamically Re-

configurable Processor", The 27th Parthenon Symposium, pages 3-10, December 2005. (In

Japanese)

[17] Yohei Hasegawa, Hideharu Amano, Shohei Abe, Syunsuke Kurotaki, and Vu Manh Tuan,

"Performance and Power Analysis of Time-multiplexed Execution on Dynamically Recon-

figurable Processor", IEICE Technical Reports, RECONF2005-35, pages 31-36, September

2005. (In Japanese)

[18] Naohiro Katsura, Yohei Hasegawa, Vu Manh Tuan, Hiroki Matsutani, and Hideharu Amano,

"Performance Evaluation of Multi-core DRP for Stream Application", IEICE Technical Re-

ports, RECONF2006-52, pages 49-54, November 2006. (In Japanese)

[19] Vu Manh Tuan, Yohei Hasegawa, Naohiro Katsura, and Hideharu Amano. Performance Eval-

uation of Hardware Multi-process Execution on the Dynamically Reconfigurable Processor,

IEICE Technical Reports, RECONF2006-31, pages 25-30, September 2006.

[20] Naohiro Katsura, Yohei Hasegawa, Vu Manh Tuan, and Hideharu Amano, "Implementation of

Stream Application on Programmable Devices by C Level Design", IEICE Technical Reports,

RECONF2005-82, pages 31-36, January 2006. (In Japanese)

	Preface
	Acknowledgments
	Introduction
	Motivation
	Contribution of the Thesis
	Thesis Organization

	Methodology and System Architecture
	Methodology
	Concepts
	Application
	Hardware task
	Computational core
	Inter-task communication

	System Architecture
	Multitasking Execution Model
	Time-sharing, non-space partitioning
	Non-time sharing, static partitioning
	Time-sharing, two-dimensional partitioning
	Time-sharing, multicore partitioning

	Coarse-grained Dynamically Reconfigurable Processing Arrays
	DRPA Architecture Overview
	Coarse-grained processing array
	Interconnection structure
	Dynamic reconfiguration method
	Coupling between CPU and DRPA
	C-based programming methodology

	Review of DRPAs
	Chameleon CS2112
	PACT XPP-III
	NEC Electronics DRP-1
	IPFlex DAPDNA-2
	Hitachi FE-GA
	Elixent D-Fabrix
	Rapport Kilocore
	IMEC ADRES
	Stretch S5/S6 SCP Engine
	Fujitsu Cluster Architecture
	MuCCRA platform

	Summary

	Hardware Task Mapping
	Problem
	Related Work
	Target Architecture and Application Model
	Target architecture
	Target application model
	Goal of mapping

	Mapping Algorithm
	Target task graphs
	Target architecture and task mapping
	Mapping algorithm

	Target Device
	Device
	Mapping applications onto DRP-1

	Evaluation
	Target applications
	Mapping versions
	Implementation results
	Throughput
	Execution time
	Area utilization
	Two methods for topological mapping

	Conclusion

	Hardware Task Preemption
	Problem
	Related Work and Research Contribution
	Related work
	Research contribution

	Preemption Analysis
	Task switching
	Approach
	State transition graph

	Preemption Algorithms
	System design flow
	Preemption algorithm
	Illustrative example

	Target Device
	Evaluation
	Target applications
	Hardware overhead
	Preemption latency
	Hardware overhead vs. preemption latency

	Conclusion

	Multicore Reconfigurable Architecture
	Problem
	Related Work
	Evaluated Architectures
	Target Device
	Tile-based architecture
	Multicore architecture
	Application model

	Evaluation
	Simulation environment
	Two architectures
	Evaluation with different core sizes
	Internal fragmentation

	Conclusion

	Conclusion and Future Work
	Thesis Summary
	Suggestions for Future Research

	Abbreviation and Acronyms
	Bibliography
	Publications

