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Preface

This thesis is written on the subject \Transformations and linkages in tri-

angulations on surfaces" and is to be submitted for the degree of Doctor of

Science at Keio University.

The basis of this thesis is formed by papers written during these seven

years. After an introductory chapter, the reader will ¯nd ¯ve chapters.

General terminology can be found in Chapter 1.

This thesis consists of two parts. In the ¯rst part, I will present my work

about diagonal °ips in triangulations on surfaces. In Chapter 2, we have

decreased the number of diagonal °ips needed to transform one spherical

triangulation into the other with the same number of vertices. In Chapter 3,

we have enhanced this result to the projective plane. We show that O(n)

diagonal °ips are su±cent instead of O(n2) in the classical result.

In the second part, I will present my work about (m;n)-linked graphs
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on the surfaces. In Chapter 4, we give a necessary and su±cient condition

for a planar graph to be (3; 3)-linked. In Chapter 5, we present a su±cient

condition that for a graph on a surface to be (k; k)-linked for k = 3; 4; 5.
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Introduction

A triangulation on a surface is a simple graph embedded on the surface such

that each face is bounded by a 3-cycle. In this thesis, we study transforma-

tions and linkages in triangulations on surfaces.

A diagonal °ip is an operation which replaces an edge e in the quadri-

lateral D formed by two faces sharing e with another diagonal of D. A

diagonal °ip can be applied only if the resulting graph is simple.

Wagner proved that any two spherical triangulations with the same num-

ber of vertices can be transformed into each other by a sequence of diagonal

°ips, up to isomorphism [16]. For the torus, the projective plane and the

Klein bottle, Dewdney [4], Negami and Watanabe [10] proved the same

facts. Moreover, Negami [12] proved that for any surface F 2, there exists

an integer N(F 2) such that any two triangulations G and G0 on F 2 can be

transformed into each other if jV (G)j = jV (G0)j ¸ N(F 2). This result is
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the origin of a big stream of the researches concerning with diagonal °ips

in triangulations [13]. But there are only a few results on the number of

diagonal °ips. Let us consider the minimum number of diagonal °ips needed

to transformed one triangulation into the other.

From Wagner's proof, we can obtain the fact any two spherical triangu-

lations with n vertices can be transformed into each other by at most O(n2)

diagonal °ips. However, Komuro [7] proved that 8n ¡ 48 diagonal °ips are

su±cient. We shall improve this result, focusing on a Hamilton cycle. Sup-

pose that a spherical triangulation G has a Hamilton cycle C. Observe that

G can decomposed into two spanning maximal outerplane graphs sharing

C, and that each of the two maximal outerplane graphs can be transformed

into our standard form by at most maxfn ¡ 5; 0g diagonal °ips. Since we

can prove that these procedures in the two graphs can be done in G inde-

pendently, we can prove the following theorem, preserving C.

THEOREM 1 Any two Hamiltonian triangulations on the sphere with n ver-

tices can be transformed into each other by at most maxf4n¡20; 0g diagonal

°ips, preserving the existence of Hamilton cycles.

How can we transform a given triangulation on the sphere into one with

a Hamilton cycle? Tutte [15] has given a nice su±cient condition for plane
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graphs to have Hamilton cycles as in the following theorem.

THEOREM 2 Every 4-connected plane graph has a Hamilton cycle.

In view of Theorem 2, let us estimate the number of diagonal °ips needed

to transform a given triangulation G into a 4-connected one. Since every

3-cut in G lies on a separating 3-cycle in G, we want to break all 3-cycles by

applying diagonal °ips. Since we can prove that every triangulation G on

the sphere has at most n ¡ 4 separating 3-cycles and that each separating

3-cycle can be broken by a single diagonal °ip without creating a new 3-cut,

we need at most n¡ 4 diagonal °ips to transform G into a 4-connected one,

and hence we have the following theorem by combining this and Theorem 1.

THEOREM 4 Any two triangulations on the sphere with n vertices can be

transformed into each other by at most maxf6n ¡ 30; 0g diagonal °ips, up

to isomorphism.

We would like to extend this result to the projective plane. Similarly

to the spherical case, we observe that a contractible Hamilton cycle C in a

triangulation G on the projective plane decomposes G into a maximal outer

plane triangulation, and a triangulation on the MÄobius band all of whose

vertices lie on the boundary, which is called a Catalan triangulation. Edel-

man and Reiner [5] enumerated the Catalan triangulations on the MÄobius
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band with n vertices, and it was proved that any two of them can be trans-

formed into each other by diagonal °ips, but the number of diagonal °ips

had never been estimated in their paper. In Chapter 3, we estimated how

many diagonal °ips su±ce to transform any two Catalan triangulations on

the MÄobius band. Our theorem is the following.

THEOREM 13 Let G and G0 be two triangulations on the projective plane

with n vertices, each of which has a contractible Hamilton cycle. Then G

and G0 can be transformed into each other by at most 6n¡12 diagonal °ips,

preserving their Hamilton cycles.

Since Thomas and Yu [14] have proved that every 4-connected graph on

the projective plane has a contractible Hamilton cycle and we can prove that

a projective planar triangulation with n vertices has at most n¡6 separating

3-cycles, we can prove the following theorem, which is the ¯rst result to give

a linear bound for the minimum number of diagonal °ips to transform given

two triangulations on a non-spherical surface with respect to n.

THEOREM 12 Any two triangulations on the projective plane with n ver-

tices can be transformed into each other by at most 8n ¡ 26 diagonal °ips,

up to isotopy.

In the second part, we would like to consider a linkage in triangulations
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on surfaces. That is, we want to measure how rich linkage can be taken in a

given triangulation. In order to do, we de¯ne an (m;n)-linkage of a graph,

as follows. This notion is ¯rst de¯ned in [3].

We say that a graph G is (m;n)-linked if for any two disjoint subsets R

and B of V (G) with jRj · m and jBj · n, there are two disjoint subgraphs

GR and GB in G containing R and B, respectively. Note that when m =

n = 2, the (2; 2)-linkage is equivalent to the 2-linkage, where a graph G is

said to be k-linked if for any 2k distinct vertices s1; : : : ; sk, t1; : : : ; tk of G,

there are k disjoint paths connecting si and ti, for i = 1; : : : ; k. In Chapter 4,

we prove the following theorem.

THEOREM 23 Let G be a planar graph with at least six vertices. Then G

is (3; 3)-linked if and only if G is maximal and 4-connected.

In the above theorem, we can easily see that the maximality is necessary,

since a graph with a non-triangular face is not 2-linked (hence it is not (2,2)-

linked neither). So an essential argument to prove Theorem 23 is whether

any spherical triangulation is (3; 3)-linked.

In Chapter 5, we shall generalize this result to triangulations on other

surfaces in terms of the connectivity of the graph and the representativity

of the embedding, where the representativity of an embedding G is the min-
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imum number of intersecting points of G and any non-contractible simple

closed curve on the surface. An essential argument in this generalization is

that in a triangulation G, a minimal vertex cut lies on several cycles whose

removal disconnects the surface. So, analyzing a relation between a mini-

mal tree containing a speci¯ed vertex set S in G and a minimal cut set of

G separating the tree, we obtain the following theorem, which also implies

the su±ciency of Theorem 23 but whose proof is much shorter.

THEOREM 28 Let k be a positive integer. Every (k + 1)-connected bk+4
2 c-

representative triangulation on any surface is (k; k)-linked.
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Chapter 1

Foundation

In this chapter, we shall give the foundations of the thesis. That is, we shall

present basic terminology and notation of graph theory and topology which

will be needed in the following chapters.

1.1 Graphs

A graph G consists of a set V (G) of vertices, a set of E(G) of edges, and

a mapping associating to each edge e 2 E(G) an unordered pair x and y

of vertices called endpoints (or simply ends) of e. We say that an edge is

incident with its ends, and that it joins its ends. In this case, x and y are

called adjacent vertices of G. We allow x = y, in which the edge is called

a loop. If at least two edges join x and y, then they are called multiple
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Figure 1.1: Graphs

edges. The degree of a vertex x is the number of edges incident with x and is

denoted by degG(x). The set of vertices of G adjacent to a vertex x 2 V (G)

is called the neighborhood of x in G and is denoted by NG(x).

A graph G is said to be simple if G has neither loops nor multiple edges,

that is, there is no edge joining a vertex with itself and there is at most one

edge between each pair of vertices of G. It is clear that for each x 2 V (G),

degG(x) = jNG(x)j if G is simple.

Two simple graphs G and G0 are said to be isomorphic if there is a

bijection ½ : V (G) ! V (G0) such that for any x; y 2 V (G), xy 2 E(G)

if and only if ½(x)½(y) 2 E(G0). The bijection ½ is called an isomorphism

between G and G0.
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1.2 Subgraphs and operations on graphs

We say that a graph K is a subgraph of G if V (K) ½ V (G) and E(K) ½

E(G). In particular, if V (G) = V (K), then K is a spanning subgraph of G.

Let G be a graph, let K be a subgraph of G and let S be a nonempty

subset of V (G). If V (K) = S and E(K) consists of the edges of G whose

ends are both in S, then the subgraph K of G is said to be induced by S

and is denoted hSi.

Figure 1.2: A induced subgraph of the graph in Fig: 5.1

We often construct new graphs from old ones by deleting or adding some

vertices and edges. For a subsetW of V (G), we de¯neG¡W = hV (G)¡ V (W )i.

Similarly, for a subgraph H of G, we de¯ne G¡H = hV (G)¡ V (H)i.

Given an edge xy of a graph G, the graph G=xy is obtained from G

by contracting the edge xy. To get G=xy, we identify the vertices x and y

and remove all resulting loops and multiple edges. A graph obtained by a
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sequence of edge-contractions is called a contraction of G.

x

y xy

G G=xy

Figure 1.3: A graph G and its contraction G=xy

1.3 Paths and cycles

Let G be a graph and let

W := x1e1x2e2 : : : ekxk+1

where for xi 2 V (G) and ei 2 E(G), each ei joins xi and xi+1 for i =

1; 2; : : : ; k. Then the sequence W is called a walk in G, and x1 and xk+1 are

called the ends of W . The number k is called the length of W and denoted

by jW j. If x1; : : : ; xk+1 are all distinct, then W is called a path in G.

In a walk W = x1e1x2e2 : : : ekxk+1, if x1 = xk+1, then the walk W is

called closed. A closed walk W is called a cycle if x1; : : : ; xk are all distinct

and e1 : : : ; ek are all distinct. We call a cycle of length k an k-cycle. A edge
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xixj is called a chord of C if xixj =2 E(C) and xi; xj 2 V (C). In particular,

if C has no chord then we call it a chordless cycle.

Figure 1.4: A path, A cycle

A cycle containing all vertices of a graph is called a Hamilton cycle. A

graph G said to be a Hamiltonian if it has a Hamilton cycle.

1.4 Connectivity

A graph is connected if any two of its vertices can be joined by a path, and

otherwise it is disconnected. A maximal connected subgraph of G is called

a component of G. Let G be a connected graph and let S be a subset of

V (G). If G¡S is disconnected, then S is called separating. In particular, if

S ¡ fxg is not separating for any x 2 S, then S is called minimal.

Let G be a connected graph and let C be a subgraph of G. Let A be a

one of the components of G¡ C and let x1; : : : ; xm 2 V (C) be the vertices
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adjacent to vertices of A. Then the connected subgraph consisting of A

together with the edges joining A and fx1; : : : ; xmg is called a C-bridge with

attachments x1; : : : ; xm. An edge xy 2 E(G)¡ E(C) with x and y on C is

also called a C-bridge with attachments x and y.

w

x

y

z

Figure 1.5: S1-bridge

Let G be a graph shown in Fig 1.5. Let S1 = fx; y; zg; S2 = fxg

and S3 = fy; zg be subsets of V (G). Then，S1; S2; S3 are separating．In

particular, S2; S3 are minimal.

Moreover，G ¡ fwg is one of S2-bridges with attachment x. Similarly,

hfw; xgi is one of S1-bridges with attachment x.

1.5 Embedding of graphs into surfaces

Through this thesis, we shall call a connected compact 2-dimensional man-

ifold without boundaries a surface.
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A closed curve on a closed surface F 2 is a continuous function ` : S1 !

F 2 or its image, where S1 is the 1-dimensional sphere, that is, f(x; y) 2

R2 j x2 + y2 = 1g. A closed curve ` is called simple if the function ` is an

injection.

When we discuss embeddings of graphs into surfaces, we regard graphs as

1-dimensional topological spaces, not only as combinatorial objects. Roughly

speaking, to embed a graph into a surface F 2 is to draw the graph on F 2

without crossing edges. Sometimes, it is e®ective to regard an embedding as

an injective continuous map f : G ! F 2. We deal with G and f(G) as the

same object intuitively. However, to distinguish G from the embedded one

f(G), we often call G an abstract graph while we call f(G) an embedding. In

this thesis, we often denote an embedded graph by G. When G is embedded

in a closed surface F 2, then G can be regarded as a subset of F 2. Each

component of F 2 ¡G is called a face of G embedded in F 2. A closed walk

W of G which bounds a face F of G is called the boundary walk of F . An

embedded graph G is said to be a 2-cell embedding, or G is said to be 2-cell

embedded in F 2 if each face of G is homeomorphic to an open 2-cell, that is,

f(x; y) 2 R2jx2 + y2 < 1g. For a graph G embedded on a closed surface F 2,

we denote the face set of G by F (G), and denote the vertex set and edge

sets of G by V (G) and E(G) respectively, as for abstract graphs. A graph
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G is said to be planar if G is embeddable into the plane. If a graph G is a

connected plane graph with all vertices lying on the boundary of its outer

face, then we called an outerplane graph. Especially，if we cannot adding

the edge preserving the condition of outerplane, then we called a maximal

outerplane.

Let G1 and G2 be two graphs embedded in closed surfaces F 2
1 andF 2

2 ,

respectively. Two graphs G1 and G2 are said to be homeomorphic to each

other if there exists a homeomorphism h : F 2
1 ! F 2

2 with h(G1) = G2

which induce an isomorphism from G1 to G2. In this case, we also say that

G1 ½ F 2
1 and G2 ½ F 2

2 are the same ones up to homeomorphism.

We say that a simple closed curve J on F 2 is trivial if J bounds a 2-

cell on F 2, and essential otherwise. We apply these de¯nitions to cycles of

G by regarding them as simple closed curves on F 2. The representativity

of a graph G on a surface is the minimum number of intersecting points

of G and `, where ` runs over all essential closed curves on the surface.

(For convenience, we de¯ne the representativity of a plane graph to be the

in¯nity.) A graph G is said to be k-representative if the representativity of

G is at least k.

A triangulation G of a surface F 2 is a simple graph embedded in F 2

so that each face of G is triangular and so that any two faces of G share
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at most one edge. So it is easy to see every triangulation on any surface

is 3-connected and 3-representative. It is to see that a triangulation G is

k-representative if and only if every essential cycle of G has length at least k.
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Chapter 2

Diagonal Transformations in

Triangulations

In this chapter, we shall study the estimation problem for triangulations.

It will be shown that any two Hamiltonian triangulations with n vertices

on the sphere with n ¸ 5 vertices can be transformed into each other by

at most 4n ¡ 20. Moreover, using this result, we shall prove that at most

6n ¡ 30 diagonal °ips are needed for any two triangulations on the sphere

with n vertices to transform into each other.
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2.1 Classical results

A triangulation G on a closed surface F 2 is a simple graph embedded on F 2

so that each face is triangular and any two faces meet along at most one

edge. Let abd and bcd be two triangular faces of G which have an edge bd

in common. The diagonal °ip of bd is to replace the diagonal bd with ac in

the quadrilateral abcd (See Fiure 2.1). To avoid multiple edges, we do not

carry out this diagonal °ip, if there is an edge ac in G.

a

b

c

d

a

b

c

d

Figure 2.1: Diagonal °ip

Classically, Wagner proved in [16] that any two triangulation on the

sphere with the same number of vertices can be transformed into each

other by a ¯nite sequence of diagonal °ips. Also, Dewdney [4], Negami

and Watanabe [10] have shown the same result for the torus, the projective

plane and the Klein bottle. The same fact does not hold for other sur-
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faces in general, but Negami [12] has shown that there is a positive integer

N = N(F 2) for each surface F 2 such that two triangulations G1 and G2

can be transformed into each other by a ¯nite sequence of diagonal °ips if

jV (G1)j = jV (G2)j > N . Moreover, there are several papers, for example

[11], [2] and [1], describe interesting theorems on diagonal °ips.

2.2 The minimum number of diagonal °ips and

the main theorem

From Wagner's proof, we can obtain the fact that any two spherical triangu-

lations with n vertices can be transformed into each other by at most O(n2)

diagonal °ips. However, Komuro [7] proved that 8n ¡ 48 diagonal °ips are

su±cient, and he has constructed two spherical triangulations with n ver-

tices which need at least 2n¡15 diagonal °ips to transform into each other.

In the arguments on diagonal °ips in triangulations, the standard spherical

triangulation with n vertices, denoted by ¢n, plays an essential role. (See

Figure 2.2.) It is isomorphic to Pn¡2 +K2 as a graph.

In this chapter, we focus on Hamiltonian spherical triangulations and

consider diagonal °ips in those preserving the existence of Hamilton cycles:

THEOREM 1 Any two Hamiltonian triangulations on the sphere with n
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Figure 2.2: Standard spherical triangulation ¢n

vertices can be transformed into each other by at most maxf4n ¡ 20; 0g di-

agonal °ips, preserving the existence of Hamilton cycles.

Tutte [15] has given a nice su±cient condition for plane graphs to have

Hamilton cycles as in the following theorem.

THEOREM 2 (Tutte[15]) Every 4-connected plane graph has a Hamilton

cycle.

Theorem 2 asserts that the number of diagonal °ips needed to transform

given two 4-connected spherical triangulations with n vertices is less than

or equal to the number given in Theorem 1. Hence the following is obvious.

THEOREM 3 Any two 4-connected triangulations on the sphere with n ver-

tices can be transformed into each other by at most maxf4n¡20; 0g diagonal

°ips, up to isomorphism.
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Note that Theorem 3 does not always guarantee the 4-connecedness of

the triangulations appearing in the process of diagonal °ips.

Finally, we shall prove the following theorem, estimating the number of

diagonal °ips to transform a given spherical triangulation into a 4-connected

graph. In particular, the estimation in Theorem 4 is better than Komuro's

result.

THEOREM 4 Any two triangulations on the sphere with n vertices can be

transformed into each other by at most maxf6n ¡ 30; 0g diagonal °ips, up

to isomorphism.

2.3 Hamiltonian triangulations on the sphere

We begin with the following lemmas each of which obviously holds.

LEMMA 5 For n=4; 5, there exists only one spherical triangulation with n

vertices which are ¢4 and ¢5, respectively.

LEMMA 6 Every maximal outerplane graph has a vertex of degree 2.

LEMMA 7 Every maximal outerplane graph with at least 5 vertices has a

vertex of degree at least 4.
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LEMMA 8 Let G be a maximal outerplane graph with outer cycle C, and

let e be any edge not contained in C. Then, e can be switched by a diagonal

°ip without breaking the simpleness of the graph.

Proof. Suppose that e = ac is a diagonal of a quadrilateral abcd, and it

cannot be switched. Then b and d are adjacent in G. In this case, G has a

subgraph isomorphic to K4 with four vertices a; b; c and d. It is well-known

that every outerplanar graph cannot include a subdivision of K4. Therefore,

we get a contradiction.

Consider the maximal outerplane graph with n vertices isomorphic to

Pn¡1 +K1. We call this the standard maximal outerplane graph and denote

it by ¡n. The unique vertex of degree n ¡ 1 of ¡n is called the apex. (See

Figure 2.3) apex

Figure 2.3: Standard maximal outerplane graph ¡n

27



PROPOSITION 9 Let G be a Hamiltonian triangulation on the sphere with

n vertices. Then G can be transformed into the standard spherical trian-

gulation ¢n by at most maxf2n¡ 10; 0g diagonal °ips, up to isomorphism.

Moreover, if G is 4-connected, then at most maxf2n ¡ 11; 0g diagonal °ips

are enough.

Proof. Let G be a Hamiltonian triangulation on the sphere with a Hamilton

cycle C. Suppose that jV (G)j = n. By Lemma 5, Thus, we may assume

that n ¸ 6.

Clearly, G can be decomposed into two maximal outerplane graphs G1

and G2 such that G1\G2 = C. By Lemma 6, G1 has a vertex v of degree 2.

Let v1 and v2 be the two neighbors of v in G1.

Now we turn attention into the situation around v inG2. Since degG(v) ¸

3 by the 3-connectedness of G, we also have degG2
(v) ¸ 3. (Here, if G is

4-connected, then we have degG2
(v) ¸ 4.) If there is a triangular face vxy

in G2 with xy =2 E(C), then xy can be switched into vz in the quadri-

lateral vxyz formed by Lemma 8. Moreover, we have vz =2 E(G1) since

degG1
(v) = 2. Thus, the diagonal °ip replacing xy with vz does not break

the simpleness of the whole graph, either. Therefore, G2 can be transformed

into the standard maximal outerplane graph S2
»= ¡n with apex v by at most

n¡ 4 diagonal °ips. (If G is 4-connected, then at most n¡ 5 diagonal °ips
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are enough.) Let G0 be the Hamiltonian plane triangulation obtained from

G by the sequence of diagonal °ips transforming G2 into S2.

Now we consider the subgraph G01 of G obtained by removing v. Then

G01 is G01 = G ¡ fvg. We denote the outer cycle G01 by C 0. Since no two

vertices of G01 not adjacent in C 0 are adjacent in G0. We can freely apply a

diagonal °ip for any edge not on C 0, by Lemma 8.

In particular, since G01 has at least 5 vertices, G01 has a vertex u of degree

at least 4, by Lemma 7. We can transform G01 into the standard maximal

outerplane graph S1
»= ¡n¡1 with apex u by at most n¡6 diagonal °ips, since

degG1
(u) ¸ 4 and degS1

(u) = n ¡ 2. The resulting whole graph is nothing

but the standard spherical triangulation ¢n. The number of diagonal °ips

needed is at most 2n¡10. (If G is 4-connected, then at most 2n¡11 diagonal

°ips are enough.)

Note that no diagonal °ips are applied to the edges on the ¯xed Hamilton

cycle C. Hence the existence of Hamilton cycles is always preserved in the

process of diagonal °ips. Therefore, the proposition follows.

Now we shall prove Theorems 1 and 3.

Proof of Theorems 1 and 3. By Proposition 9, any two Hamiltonian trian-

gulations on the sphere with n vertices can be transformed into each other
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by at most maxf4n¡ 20; 0g diagonal °ips, up to isomorphism, by the stan-

dard spherical triangulation ¢n, preserving the existence of Hamilton cycles.

Moreover, if they are 4-connected, then at most maxf4n ¡ 22; 0g diagonal

°ips are su±cient.

2.4 General spherical triangulations

In this section, we shall prove Theorem 4.

LEMMA 10 A spherical triangulation with n vertices has at most n-4 sep-

arating 3-cycles.

Proof. Let G be a spherical triangulation with n vertices. We proceed by

induction on n. In the case when n = 4, we have G = ¢4, by Lemma 5.

Since ¢4 has no separating 3-cycle, the lemma hold, and hence we suppose

that n ¸ 5.

We may assume that G has a separating 3-cycle C = xyz. Cutting

along C, we can decompose G into two spherical triangulations G1 and G2

such that G1 \ G2 = C. Let n1 = jV (G1)j and n2 = jV (G2)j, and hence

n = n1 + n2 ¡ 3. By the induction hypothesis, G1 has at most n1 ¡ 4

separating cycles, and G2 has at most n2 ¡ 4 separating cycles. Therefore
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the number of separating cycles in G is at most

n1 ¡ 4 + n2 ¡ 4 + 1 = (n1 + n2 ¡ 3)¡ 4 = n¡ 4:

Thus the lemma follows for any n ¸ 4. (The standard spherical triangulation

¢n attains the equality.)

LEMMA 11 Let G be a spherical triangulation with n ¸ 6 vertices. Then

G can be transformed into a 4-connected one by at most n¡4 diagonal °ips.

Proof. It is easy to see that every spherical triangulation is 3-connected, and

if fx; y; zg is a set of vertices such that G ¡ fx; y; zg, is disconnected, then

x; y and z are contained in the same 3-cycle. Since G has at most n ¡ 4

separating 3-cycles by Lemma 10, we shall show that G has an edge e such

that the diagonal °ip of e decreases the number of separating 3-cycles by at

least one.

Let C = xyz be a separating 3-cycle in G and e = xy. We may suppose

that if G has an edge included in at least two separating 3-cycles, then we

choose such an edge as e. Let xayb be the quadrilateral formed by two

triangular faces sharing e, where a and b lie in the interior and the exterior

of C, respectively. Consider the cycle C in G has disappeared.

Now we show that no new separating 3-cycle has arisen in G0. Suppose

that G0 has a new separating 3-cycle C 0. Then C 0 contains both a and b,
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since every three vertices separating the graph lies on a 3-cycle. Hence we

can put C 0 = abc. Since a was contained in a component of G¡fx; y; zg, we

must have z = c. Since jV (G)j ¸ 6, either xza; yza; xzb or yzb is separating.

In these cases, xz or zy are included in at least two separating 3-cycles,

but xy is contained in only one separating 3-cycle, which is contrary to the

choice of e. Thus, no new separating 3-cycle has arisen in G0.

Now we shall prove Theorem 4.

Proof of Theorem 4. Let G1 and G2 be any two spherical triangulations with

n vertices. By Lemma 5, we may assume n ¸ 6. By Lemmas 10 and 11, for

i = 1; 2, Gi can be transformed into a 4-connectde triangulation Ti by at

most n¡4 diagonal °ips. By Theorem 3, T1 and T2 can be transformed into

each other by at most 4n ¡ 22 diagonal °ips. Therefore, at most 6n ¡ 30

diagonal °ips can transform G1 and G2 into each other.
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Chapter 3

Extension to the Projective

Plane

In this chapter, we enhanced to the result in Chapter 2 to the projective

plane. That is, we shall prove that any two triangulation on projective plane

with n vertices can be transformed by a linear number of diagonal °ips with

respect to n. This is the ¯rst result on non-spherical surfaces giving a linear

bound for the number of diagonal °ips.

3.1 Main theorem

In this chapter, we shall prove the following theorem:
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THEOREM 12 Any two triangulations on the projective plane with n ver-

tices can be transformed into each other by at most 8n ¡ 26 diagonal °ips,

up to isotopy.

A cycle C of a graph G is embedded in a closed surface F 2 is said to be

contractible if C bounds a 2-cell on F 2. In order to prove Theorem 3.1, we

show the following theorem for triangulations on the projective plane with

a contractible Hamilton cycle, as in the spherical case in Chapter 2.

THEOREM 13 Let G and G0 be two triangulations on the projective plane

with n vertices each of which has a contractible Hamilton cycle. Then G

and G0 can be transformed into each other by at most 6n¡12 diagonal °ips,

preserving their Hamilton cycles.

3.2 Triangulations with contractible Hamilton cy-

cles

In the section, we deal only with triangulations which have contractible

Hamilton cycles. Clearly, a contractible Hamilton cycle in a triangulation G

on the projective plane separatesG into two spanning subgraphs ofG. One is

a maximal outerplane graph, denoted by GP , and the other is a triangulation

of the MÄobius band, denoted by GM , in which all vertices appear on the
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boundary of the MÄobius band. We call it a Catalan triangulation on the

MÄobius band.

LEMMA 14 Let P be a maximal outerplane graph with n ¸ 3 vertices and

let v be a vertex of degree k ¸ 2 in P . Then P can be transformed into a

maximal outerplane graph in which the degree of v is exactly n¡1, by exactly

n¡ k ¡ 1 (· n¡ 3) diagonal °ips, through maximal outer-plane graphs.

Proof. Let xy be an edge of P not in its outer cycle and let vxy and uxy

be two faces sharing xy. Since degP (v) = k, the number of vertices not

adjacent to v is n¡k¡1. Since P has no subgraph isomorphic to K4, u and

v are not adjacent in P . Therefore, we can °ip xy without making multiple

edges. Hence we can increase the degree of v one by one, by diagonal °ips.

Therefore, the lemma follows.

In [5], the Catalan triangulations on the MÄobius band with n vertices

were enumerated and it was proved that any two of them can be transformed

into each other by diagonal °ips, but the number of diagonal °ips had never

been estimated yet.

Let M2 denote the MÄobius band and let @M2 denote the boundary

of M2. Let K be a Catalan triangulation on M2 with m vertices. Let

v1; v2; : : : ; vm be the vertices of K lying on @M2 in this cyclic order. An
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edge vivj is said to be trivial if cutting along vivj separates a disk D from

M2. Clearly, the subgraph of K induced by the vertices on D is a maximal

outerplane graph, which is said to be bounded by vivj . Edges of K which

are not trivial are said to be essential.

Suppose that a Catalan triangulation K on the MÄobius band M2 has

no trivial edge. An essential edge e of K incident to a vertex of degree 3 is

called a spoke. The subgraph of K induced by the essential edges which are

not spokes is said to be the zigzag frame of K, which is uniquely taken. It is

easy to see that the zigzag frame of K is a cycle of an odd length homotopic

to the center line of M2. Moreover, if K has no trivial edge and no spoke,

then K is 4-regular.

LEMMA 15 Let G be a triangulation on the projective plane with n ¸ 7 ver-

tices. If G has a contractible Hamilton cycle C, then G can be transformed

into K + K1 by at most n ¡ 1 diagonal °ips, where K is some Catalan

triangulation on the MÄobius band.

Proof. Let GP and GM be the maximal outerplane graph and the Catalan

triangulation on the MÄobius band, each of which is a spanning subgraph of

G with boundary C.

We shall make a vertex of degree 2 in GM by at most three diagonal

°ips, without breaking the simpleness of G. If GM has a trivial edge xy,
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then xy bounds an outerplane graph L. It is easy to see that L has a vertex

of degree 2 other than x and y. Thus, we have nothing to do, and hence we

may suppose that GM has no trivial edge.

First, if GM has no trivial edge and no spoke, then GM is 4-regular.

Since GP is outerplanar, GP has a vertex of degree 2 in GP , say v with two

neighbors p and s. Suppose that GM has faces pqv; qrv and rsv meeting

at v, and faces vrs; rts and tus meeting at s in GM . (See the left-hand

of Figure 3.1.) Observe that since degGP (v) = 2, any diagonal °ip in GM

increasing the degree of v yields no edge forming multiple edges with an

edge in GP . Moreover, since n ¸ 7, we have vt; vu =2 E(GM ); otherwise,

we would have u = q and p = t. Therefore rs can be replaced with vt,

and next st can be replaced with vu. Now s has degree 2 in the resulting

graph on M2, which is obtained by two diagonal °ips. (See the right-hand

of Figure 3.1.)

Finally suppose that GM has spokes but no trivial edges. We ¯rst sup-

pose that GM has two consecutive spokes pq and pr such that q and r are

adjacent on C and degGM (q) = degGM (r) = 3. Let pqs, pqr and prt be

three faces meeting at p. It is easy to see that a diagonal °ip can replace

an edge pq with sr without making multiple edges in GM , but GP might

already have an edge sr. In this case, by the planarity of GP , G does not
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p

q r t

v s u p

q r t

v s u

Figure 3.1: Two diagonal °ips making a vertex of degree 2.

have an edge qt because of the obstruction of sr. Therefore, we can make r

have degree 2 by one diagonal °ip.

Now consider the case when the vertices of degree 3 in GM are inde-

pendent. Since n ¸ 7, the zigzag frame of GM has length at least 5. (For

otherwise, i.e, if the zigzag frame has length 3 and all vertices of degree

3 are independent, then we have n · 6, a contradiction.) Let pq be a

spoke with degGM (q) = 3 and shared by two faces pqs and pqt. Note that

4 · degGM (s);degGM (t) · 5. Apply a diagonal °ip of pq to make a vertex

of degree 2 in GM . If impossible, GP already has an edge st. (Here, if G is

assumed to be 4-connected, then this does not happen, because G¡fp; s; tg

must be connected.) If GP has an edge st, then we can make q have degree

5 or 6 and s have degree 2 by at most three diagonal °ips, °ipping the edges

incident to s in GM , not on @M2, to make them be incident to q, similarly
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to the case when GM is 4-regular. (Note that only the ¯nal case requires

at most three diagonal °ips to make a vertex of degree 2 and it does not

happen in the 4-connected case. Hence this proves the following remark.)

We turn our attention to GP . Let G0M denote a Catalan triangulation

with a vertex v of degree 2 obtained from GM by at most three diagonal

°ips. Then we can apply any diagonal °ip in GP increasing the degree

of v, without making multiple edges with an edge of GM . Observe that

degGP (v) ¸ 3, since every vertex of a triangulation on a closed surface has

degree at least 3. Therefore, at most n ¡ 4 diagonal °ips can make v have

degree n ¡ 1 in Gp, by Lemma 14. In the resulting graph, v is adjacent

to all other vertices, and the graph with v removed is obviously a Catalan

triangulation with n¡ 1 vertices.

As shown in the above proof, we have the following remark.

REMARK 16 In Lemma 15, if we assume the 4-connectedness of G, then

the number of diagonal °ips can be improved to n¡ 2.

3.3 General projective planar triangulations

Consider a Catalan triangulation on the MÄobius band shown in the left hand

of Figure 3.2, which is a unique Catalan triangulation with ¯ve vertices
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isomorphic to K5. Let e = v4v5 be an edge of the Catalan triangulation K5

lying on the boundary of the MÄobius band. Subdivide e by m vertices as

shown in the right hand of Figure 3.2, where the MÄobius band is obtained

by identifying the arrows indicated in the left-hand and the right-hand sides

of the rectangles. The resulting graph is called the standard form of the

Catalan triangulations and denoted by ¡m.

v1 v2 v3

v3 v4 v5 v1

v1 v2 v3

v3 v4 v5 v1

Figure 3.2: K5 and the standard form ¡m

The following is the most essential argument in this chapter.

LEMMA 17 Every Catalan triangulation K on the MÄobius band with n ver-

tices can be transformed into the standard form ¡n¡5 by at most 2n ¡ 3

diagonal °ips.

Proof. Suppose that K has p trivial edges. Then it is easy to see that the

unique sub-Catalan triangulation, denoted by K 0, of K with no trivial edges

is obtained from K by successively removing a vertex of degree 2. Clearly,
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K 0 has exactly n¡ p vertices.

Suppose that K 0 has q spokes and let r = n ¡ p ¡ q. Then the zigzag

frame v1 ¢ ¢ ¢ vr, of K 0 has an odd length r ¸ 3. Let qi be the number

of spokes of K 0 incident to vi, for i = 1; : : : ; r. We may suppose that

q1 + q3 + ¢ ¢ ¢+ qr ¸ q2 + q4 + ¢ ¢ ¢+ qr¡1. (For otherwise, we can replace vi by

vi¡1 for each i, because the subscripts are cyclic and taken modulo r). Let

q2 + q4 + ¢ ¢ ¢+ qr¡1 = m and hence we have 2m · q. (See Figure 3.3.)

v2 v4 v6 v8 v10 v1

v1 v3 v5 v7 v9 v11

v11

Figure 3.3: K 0 with zigzag frame v1v2 : : : vr

If r = 3, then by the simpleness of graphs, we have q2; q3 ¸ 1. Hence we

can °ip an edge v2v3 to make the zigzag frame have length 5. So, suppose

that r ¸ 5. Apply diagonal °ips to all m spokes incident to v2; v4; : : : ; vr¡1

to make them trivial one by one. The number of diagonal °ips we did is

exactly

q2 + q4 + ¢ ¢ ¢+ qr¡1 = m: (3.1)
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Note that even if r = 3, the estimation (1) is true. Though we need one

more diagonal °ip of v2v3 to increase the length of the zigzag frame, this

diagonal °ip decreases q2 and q3 by one, respectively.

Next reduce the length of the zigzag frame from r to 5. In particular,

we ¯rst apply a diagonal °ip of v4v5, secondly °ip q5 spokes incident to v5,

and ¯nally °ip v5v6. (See Figure 3.4(1).) The number of diagonal °ips we

did is q5 + 2. In the resulting graph, the zigzag frame has length r¡ 2, and

exactly one new trivial edge v3v7 appears. As far as that the length of the

zigzag frame is at least 7, we apply these operations. If its length is exactly

5, then we apply q1 + qr diagonal °ips, as shown in Figure 3.4(2). Then the

total number of diagonal °ips we did is

(q5 + 2) + (q7 + 2) + ¢ ¢ ¢+ (qr¡2 + 2) + q1 + qr

· (q ¡m) + 2

µ
r ¡ 5

2

¶

: (3.2)

Let H 0 be the current Catalan triangulation obtained from K 0. The

zigzag frame of H 0 has length exactly 5, and all spokes of H 0 are incident

to v3. Moreover, H 0 has 1
2 (r ¡ 5) + m trivial edges, since all m spokes

incident to v2; v4; : : : ; vr¡1 in K 0 are replaced with trivial edges of H 0, and

since decreasing the length of the zigzag frame of K 0 by two yields exactly

one new trivial edge. Let H be the Catalan triangulation consisting of H 0

and all trivial edges of K. Then H has exactly p+ 1
2 (r¡5)+m trivial edges.
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v3 v5 v7

v4 v6

(1)

v1 v3 vr

vr v2

(2)

v1 v3 vr

vr¡1 vr v2 v1

v3 v5 v7

v2 v4 v6

v1 vr¡1

v2

v9 v9

v8 v8

Figure 3.4: Reducing the length of zigzag frame.

Now, renaming vertices, we put H with the zigzag frame u1u2u3u4u5 as

shown in Figure 3.5, where u1 = v1; u3 = v3 and u5 = vr. The four triangular

faces u1u2u5; u1u2u3; u3u4u5 and u4u5u1 of H come from K 0. Let Ri denote

the outer-plane graph bounded by an edge ui¡1ui+1 and containing the edge

ui¡1ui+1, for i 6= 3. (Note that Ri might be just an edge.)

The region Fi of the zigzag frame of H is the union of the faces bounded

by the two edges ui¡1ui; uiui+1 and the path on @M2 connecting ui¡1 and

ui+1, for each i, where the subscripts are taken modulo 5. Now we shall

transform H into a Catalan triangulation in which all the regions of the

zigzag frame, except one corresponding to F3, consists of just one face.
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u3 u5

u4u2u5

u1

u1

R4

R5R1

R2

Figure 3.5: The Catalan triangulation H.

Here we focus on the outer-plane graph R2 and ¯rst suppose that jV (R2)j ¸

3. By Lemma 14, we can make u1 have degree jV (R2)j ¡ 1 by at most

jV (R2)j ¡ 3 diagonal °ips. Let u1; x1; : : : ; xl; u3 be the vertices of R2 lying

on @M2 in this order. Apply ¯ve diagonal °ips of u1u3, u1u2, u1xl, u1u5

and u4u5 in this order, if l ¸ 2. (See Figure 3.6.) If l = 1, then apply three

diagonal °ips of u1u3, u1u2, u4u5 in this order. In the resulting graph, each

of two regions of the zigzag frame corresponding to F2 and F5 is just a face.

The number of diagonal °ips we did is at most jV (R2)j ¡ 3 + 5.

Secondly we suppose that jV (R2)j = 2. If we also have jV (R5)j = 2,

then we have nothing to do for F2 and F5. So, suppose that jV (R5)j ¸ 3.

Similarly to the above case, at most jV (R5)j¡3 diagonal °ips make u4 have

degree jV (R5)j ¡ 1 in R5 and we apply two diagonal °ips of u1u4 and u4u5.
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u3 u5 u2

u4 u1 u3xl

R5

u3 u5 u2

u4 u1 u3xl

R5

Figure 3.6: Moving vertices of R4 and R5.

In the resulting graph, the two regions corresponding to F2 and F5 are just

faces. Then the number of diagonal °ips we did is at most jV (R5)j ¡ 3 + 2.

Note that by the above operations, the number of trivial edges decreases by

one, if jV (R2)j ¸ 3 or jV (R5)j ¸ 3.

We can do the same procedures for the regions R1 and R4. Let L denote

the resulting graph in which exactly four regions are just faces. Hence, the

number of diagonal °ips transforming H into L is at most

maxfjV (R2)j+ 2; jV (R5)j ¡ 1g+ maxfjV (R4)j+ 2; jV (R1)j ¡ 1g

· p+
1

2
(r ¡ 5) +m+ 8; (3.3)

since

(jV (R1)j¡2)+(jV (R2)j¡2)+(jV (R4)j¡2)+(jV (R5)j¡2) · p+
1

2
(r¡5)+m:

Note that we can assume that the number of trivial edges of L is at most

p + 1
2(r ¡ 5) + m ¡ 1, since we may suppose that at least one of R1, R2,
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R4 and R5 has at least three vertices. (For otherwise, we don't need to add

(3.3) to the estimation of the maximum number of diagonal °ips, and this

case requires a few number of diagonal °ips.)

Finally we °ip all trivial edges of L, all of which are incident to u3. Since

the number of trivial edges of L is at most p+ 1
2 (r¡ 5)+m¡ 1, the number

of diagonal °ips transforming L into the standard form is at most

p+
1

2
(r ¡ 5) +m¡ 1 = p+

r

2
+m¡

7

2
: (3.4)

Therefore, by (3.1),(3.2),(3.3) and (3.4), the total number of diagonal

°ips is at most

m+ (q ¡m+ r ¡ 5) +

µ

p+
r

2
+m+

11

2

¶

+

µ

p+
r

2
+m¡

7

2

¶

= 2p+ q + 2m+ 2r ¡ 3 · 2(p+ q + r)¡ 3 = 2n¡ 3;

since q ¸ 2m. Therefore, the lemma follows.

3.4 Triangulations on the projective plane with

contractible Hamilton cycles

In the previous section, we described only the result on triangulations with

contractible Hamilton cycles. In this section, we shall mention how we can
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obtain triangulations with contractible Hamilton cycles from any triangula-

tions.

The following gives an important su±cient condition for a graph on the

projective plane to have a contractible Hamilton cycle.

LEMMA 18 (Thomas and Yu [14]) Every 4-connected graph on the pro-

jective plane has a contractible Hamilton cycle.

The following lemma is essential.

LEMMA 19 Let G be a triangulation on the projective plane with n vertices.

Then G can be transformed into a 4-connected triangulation by at most n¡6

diagonal °ips.

Proof. Observe that a triangulation on the projective plane has no separating

3-cycle if and only if it is 4-connected. We ¯rst show that G has at most n¡6

separating 3-cycles, by induction on n. It is well-known that the smallest

triangulation on the projective plane is the unique triangular embedding

of K6, which has no separating 3-cycle. Therefore, the lemma holds when

n = 6.

When n ¸ 7, we may assume that G has a separating 3-cycle C =

xyz, and it is innermost, that is, there is no separating 3-cycle in the 2-

cell bounded by C. Cutting along C, we can decompose G into a plane
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triangulation G1 with no separating 3-cycle and a triangulation G2 on the

projective plane. By induction hypothesis, G2 has at most jV (G2)j ¡ 6

separating 3-cycles. Let M denote the number of separating 3-cycles in G.

Then we have

M · jV (G2)j ¡ 6 + 1 = (n¡ jV (G1)j+ 3)¡ 5 · n¡ 6;

since jV (G1)j ¸ 4.

Now we shall show that there is a diagonal °ip decreasing the number

of separating 3-cycles by at least one. Let C = xyz be a separating 3-cycle

in G and e = xy. Let xayb be the quadrilateral formed by two triangular

faces sharing e, where a lies in the 2-cell region bounded by C. Consider

the diagonal °ip of e replacing xy with ab. In the resulting graph G0, the

separating cycle C in G has disappeared.

We shall show that no new separating 3-cycle arises in G0, by possibly

re-choosing e. Suppose that G0 has a new separating 3-cycle C 0. Then C 0

contains both a and b; otherwise, C 0 would be contained in G. We must have

C 0 = abz, where we assume that x is contained in the 2-cell region bounded

by C 0 in G0. This means that V (G1) = fx; y; z; ag since C is innermost in

G. In this case, the edge yz can be °ipped to destroy a 3-cycle byz and

make no new separating 3-cycle, because byz separates a and other vertices

outside byz. Therefore, at most n¡ 6 diagonal °ips can make the graph be
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4-connected.

3.5 Proof of theorems

It is well-known that the smallest triangulation on the projective plane is the

unique triangular embedding of K6. Let xy be one of its edges, and suppose

that two faces xyz and xyw share xy. Subdivide xy by m vertices v1; : : : ; vm

and add 2m edges viz; viw for i = 1; : : : ;m. The resulting graph with m+ 6

vertices is called the standard form of triangulations on the projective plane

and denoted by ªm. (See Figure 3.7.) Clearly, we obtain the standard form

ªm from the standard form §m¡1 of Catalan triangulations of the MÄobius

band M 2 by pasting a disk along @M2, placing a vertex v at its center and

joining v to all vertices of §m.

We ¯rst prove the following theorem.

THEOREM 20 Let G be a triangulation on the projective plane with n ver-

tices which has a contractible Hamilton cycle. Then G can be transformed

into ªn¡6, preserving the Hamilton cycle, by at most 3n¡ 6 diagonal °ips.

If G is 4-connected, then the number of diagonal °ips is improved to 3n¡ 7.

Proof. We may suppose that n ¸ 7. By Lemma 15, G can be transformed

into K +K1 by at most n¡ 1 diagonal °ips, preserving the Hamilton cycle,
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Figure 3.7: The standard form ªm of triangulations on the projective plane.

where K is some Catalan triangulation on the MÄobius band with n ¡ 1

vertices. (By Remark 16, if G is 4-connected, the number \n¡1" of diagonal

°ips can be replaced with \n¡ 2".)

Note that no two vertices of K are joined by an edge outside K. There-

fore, it su±ces to prove thatK can be transformed into §n¡6. By Lemma 17,

it can be done by at most 2(n¡ 1)¡ 3 diagonal °ips. Therefore, G can be

transformed into ªn¡6 by at most 3n ¡ 6 (3n ¡ 7 when G is 4-connected)

diagonal °ips, preserving the Hamilton cycle.

THEOREM 21 Every triangulation on the projective plane with n vertices

can be transformed into the standard form ªn¡6 by at most 4n¡13 diagonal

°ips, up to isotopy.
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Proof. Let G be a triangulation on the projective plane with n vertices.

By Lemma 19, at most n¡ 6 diagonal °ips transform G into a 4-connected

triangulation, denoted by H. By Lemma 18, H has a contractible Hamilton

cycle. Then apply Theorem 20.

Now we shall prove Theorems 12 and 13.

Proof of Theorems 1 and 2. Theorems 1 and 2 follow from Theorems 10 and

9, respectively, via the standard form ªn¡6.

Proof of Theorems 12 and 13. Theorems 12 and 13 follow from Theorems 21

and 20, respectively, via the standard form ªn¡6.

Finally we consider two triangulations G1 and G2 on the projective plane

with n vertices which need many diagonal °ips to transform them into each

other. Let G1 = ªn¡6, and let G2 be a triangulation with maximum de-

gree 6. For example, it is constructed from K6 by putting a triangular mesh

shown in Figure 3.8 to each face.

The maximum degree of G1 is n¡1 and it is attained by two vertices, say

x and y. To transform G1 into G2, we have to decrease the degree of x and y

to six or ¯ve. Since each diagonal °ip decreases the degree of a ¯xed vertex

at most by one, each of x and y requires at least (n¡ 1)¡ 6 diagonal °ips.

Observe that the degree of x and y decrease simultaneously by one diagonal
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Figure 3.8: A triangular mesh.

°ip, only if this diagonal °ip is applied to the edge xy. If such diagonal °ips

are applied at least twice in the process from G1 to G2, then there must be

a diagonal °ip joining x and y, which increases deg(x) + deg(y). Therefore,

if the number deg(x) + deg(y) is non-increasing in the process from G1 to

G2, then the edge xy is °ipped at most once, and the number of diagonal

°ips transforming G1 to G2 is at least

(n¡ 1)¡ 6 + (n¡ 1)¡ 6¡ 1 = 2n¡ 13:

Therefore, the order of our estimation in Theorems 13 and 12 cannot be

improved. Therefore, we have the following.

PROPOSITION 22 For any integer N , there exists a pair of triangulations

G1 and G2 on the projective plane with n ¸ N vertices such that at least

2n¡ 13 diagonal °ips are needed to transform them into each other.
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Chapter 4

(3,3)-Linked graphs on the

sphere

In this chapter, we shall study (3; 3)-linkage of graphs, in particular, we shall

prove that a planar graph with at least six vertices is (3,3)-linked if and only

if G is 4-connected and maximal.

4.1 Main theorem

A graph is said to be k-linked if for any distinct 2k vertices a1; : : : ; ak,

b1; : : : ; bk, there are disjoint paths from ai to bi , for all i. A graph G is said

to be k-ordered if for any distinct k vertices of G, there exists a cycle of G
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through them in any speci¯ed order.

Recently, Chen et al. introduced the notion \(m;n)-linked" [3]. This

derived from the Graph Minor argument related to a graph linkage problem.

A graph G is said to be (m;n)-linked if for any two disjoint subsets R;B ½

V (G) with jRj · m and jBj · n, there are two disjoint connected subgraphs

GR and GB containing R and B, respectively. Clearly, a graph is 2-linked

if and only if it is (2; 2)-linked. But there seems to be no relation between

3-linked graphs and (3; 3)-linked graphs.

In this section, we shall prove the following theorem:

THEOREM 23 Let G be a planar graph with at least six vertices. Then G

is (3; 3)-linked if and only if G is maximal and 4-connected.

It is clear that if a graph is complete, then it is (3,3)-linked. Moreover,

if a graph G is non-complete and has at most six vertices, then G is not

(3,3)-linked (because G has a 3-cut).

It is easy to see that if a graph is 4-ordered, then it is 2-linked, and

hence (2,2)-linked. Goddard proved that every 4-connected maximal planar

graph is 4-ordered [6]. However, the converse does not necessarily hold,

that is, the maximality is necessary but the 4-connectedness is not. We

have the following corollary, combining Theorem 23 with the result on 4-

ordered planar graphs. However, we don't know whether the corollary holds
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without the assumption on the planarity.

COROLLARY 24 If a planar graph G with at least six vertices is (3; 3)-

linked, then G is 4-ordered.

4.2 Proof of the theorem

In this section, we shall prove Theorem 23. In order to specify two disjoint

subsets R and B of the vertices, we suppose that the vertices in R are colored

red, those in B are colored blue, and other vertices are white. Therefore all

vertices of the graph considered are distinguished with three colors, red,

blue, and white. Each edge is classi¯ed according to the color of its end

vertices. An edge joining two white vertices is called a white edge. An edge

joining red and blue vertices are called a vivid edge.

To prove the theorem, we need the following lemmas.

LEMMA 25 Let G be a k-connected maximal planar graph and S ½ V (G)

with jSj = k for k = 3; 4; 5: If S is separating, then there is a chordless

k-cycle passing through S.

Proof. We shall prove that if G is a k-connected plane graph and let S be

a separating set with jSj = k, for any k ¸ 0, then G admits a k-curve for

S, that is, a simple closed curve l drawn on the plane which intersects G at
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exactly k vertices of S but has no other intersection, and both the interior

and the exterior of l contain at least one vertex respectively.

We proceed by induction on k. In the case when k = 0 (that is, G

is disconnected), there is a 0-curve, and hence the lemma holds. Then we

suppose that k ¸ 1.

For any ¯xed vertex x 2 S, let G0 = G ¡ fxg and S0 = S ¡ fxg.

Then G0 is a (k¡ 1)-connected plane graph, and S0 is a separating set with

jS0j = k¡1. By induction hypothesis, G0 admits a (k¡1)-curve ° for S0. Let

F be the face of G0 which is new face of G0 according to remove x, and let

Int F denote the interior of F . Observe that ° passes through Int F . (For

otherwise, S0 would be a separating set of G with k ¡ 1 vertices, contrary

to the k-connectivity of G.) Moreover, ° intersects Int F exactly once. (For

otherwise, a subset of S0 would form a smaller separating set, contrary to

the (k ¡ 1)-connectivity of S0.) Now we put a vertex x on the segment of °

contained in Int F , and join x to all the neighbors of x in G. This can be

done without crossing of edges added and °, since ° intersects Int F exactly

once. Therefore, G admits a k-curve for S.

Now let k 2 f3; 4; 5g, and we prove that if G is a maximal plane graph

and S is a separating set with jSj = k, then G admits a k-cycle passing

through S. By the above observation, G admits a k-closed curve ° for S.
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Since each face of G is triangular, we can ¯nd a k-cycle C along ° passing

through only the vertices of S.

If C has a chord xy in G, then at least one of the two cycles C1 and

C2 with E(C1) \ E(C2) = fxyg and E(C1) [ E(C2) = E(C) [ fxyg has a

separating cycle though a fewer vertices than those in S, contrary to the

k-connectivity of G. Hence C is chordless.

LEMMA 26 (Hama and Nakamoto [9]) Every 4-connected maximal pla-

nar graph is transformed into the octahedron by a sequence of edge contrac-

tions, preserving the 4-connectedness.

LEMMA 27 Let G be a 4-connected maximal planar graph and let e be an

edge. If the graph G=e obtained from G by contracting e is not 4-connected,

then e is contained in a separating 4-cycle in G.

We shall prove Theorem 23.

Proof of Theorem 23. We ¯rst prove the necessity. Suppose that a plane

graph G has a non-triangular face F with boundary walk v1v2 ¢ ¢ ¢ vk (k ¸

4). If v1; v3 2 R and v2; v4 2 B, then G has no two connected subgraphs

containing R and B respectively, by the planarity. Therefore, all faces of G

must be triangular. If G has a cut set S ½ V (G) with jSj = 3, then G must

have a separating 3-cycle consisting of the three vertices of S. If R = S
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and if two vertices of B are speci¯ed in two distinct components of G ¡ S

respectively, then G has no connected subgraph containing B. Therefore, G

must be 4-connected.

Now we shall prove the su±ciency. Let G be 4-connected maximal

plane graph, which is a counterexample with a minimum number of ver-

tices, throughout this proof.

Claim 1 G has at least nine vertices.

Proof. For convenience, a double wheel, denoted by DWk, is a 4-connected

plane triangulation consisting of a k-cycle v1 : : : vk (k ¸ 4) and other two

vertices x and y lying on the interior and the exterior of the cycle with edges

xvi and yvi, for i = 1; : : : ; k. An edge of DWk not contained in the k-cycle

is called a spoke. If jV (G)j · 7, then G is clearly a double, by lemma 26. If

jV (G)j = 8, G is either DW6 or DW5 with one spoke subdivided again by

lemma 26. It is easy to see that a double wheel is (3; 3)-linked. Moreover,

the other graph can be checked to be (3; 3)-linked. ¦

Let R and B be two ¯xed disjoint subsets of V (G) with jRj · 3 and

jBj · 3 which are arbitrarily speci¯ed in G. By the choice of G, there do

not exist two disjoint connected subgraphs GR and GB containing R and B,

respectively.
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Claim 2 Every non-vivid edge of G lies on a separating chordless 4-cycle.

Proof. If a non-vivid edge e = uv does not satisfy the claim, then the graph

G=e obtained from G by contracting e is 4-connected, by Lemma 27. Let

[uv] be the vertex in G=e corresponding to the edge uv in G. Let R0 and

B0 be two subsets of V (G=e) corresponding to R and B in G. Since e is

non-vivid, R0 and B0 are disjoint in G=e.

Then, by the minimality of G, G=e has two disjoint connected subgraphs

GR0 and GB0 containing R0 and B0, respectively. Therefore, it is easy to see

that the pre-images of GR0 and GB0 by the contraction are the required two

disjoint connected subgraphs in G. This contradicts the minimality of G. ¦

Claim 3 Every white vertex of G has degree at least 5.

Proof. If the claim does not hold, then G has a white vertex u of degree 4,

by the 4-connectedness of G. Let v1; v2; v3; v4 be the neighbors of u lying in

this cyclic order. Since each uvi is non-vivid, it lies on an separating 4-cycle,

by Claim 2. By Lemma 25, a separating 4-cycle through uv1 contains v3 and

some vertex, say x. (Note that this 4-cycle contains neither v2 nor v4, since

it is chordless.) Similarly, a separating 4-cycle for uv2 contains v4 and some

vertex, say y. By the planarity, we must have x = y. Let K be the graph

consisting of u; y; v1; v2; v3 and v4. Then K is isomorphic to the octahedron,
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which is a 4-connected maximal plane graph. If G ¡ V (K) 6= ;, then G

would have a 3-cut contrary to the 4-connectedness of G, and hence G = K.

This contradicts Claim 1. ¦

Claim 4 G has at least one white edge.

Proof. Suppose that the white vertices are independent in G. By Claim 1,

there are at least three white vertices, say u; v and w. Since any neighbor

of each of u; v and w is not white, and since there are at most six non-

white vertices in G, we have jNG(u) \ NG(v) \ NG(w)j ¸ 3, by Claim 3.

Therefore, G has a subgraph isomorphic to K3;3. By Kuratowski's theorem,

this contradicts the planarity of G. ¦

Let C be a separating 4-cycle of G, and let CI and CE be the connected

components of G ¡ C lying in the interior and the exterior of C in G,

respectively. Let CI = G ¡ CE and let CE be the plane graph which is a

planar embedding of G¡ CI such that C is the outer cycle.

By Claim 4, there is at least one white edge xy. Moreover, there is a

separating 4-cycle ¡ containg xy, by Claim 2. Now we may assume that ¡

is minimal, that is, there is no other separating 4-cycle through xy in ¡I .

Claim 5 ¡I has at least two vertices.
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Proof. If ¡I has only one vertex, say v, then two edges vx and vy are non-

vivid. By Claim 2, we can ¯nd two separating chordless 4-cycles through vx

and vy, respectively. Similarly to Claim 3, we can conclude that G is the

octahedron, contrary to Claim 1. ¦

Claim 6 Each of ¡I and ¡E has both red and blue vertices.

Proof. Suppose that one of ¡I and ¡E , say ¡I has no red vertices. Let ~G

be the graph obtained from G by contracting ¡I into a single vertex, say

v. Then ~G is a 4-connected maximal plane graph with jV ( ~G)j < jV (G)j, by

Claim 5. If ¡I contains at least one blue vertex, then we specify that v is

blue in ~G. Otherwise, we specify v to be white in ~G. By the assumption

of G, ~G is (3; 3)-linked, and hence there are red and blue connected graphs,

denoted by ~Gr and ~Gb, in ~G, respectively. If v is contained in neither ~Gr nor

~Gb, then we let GR = ~Gr and GB = ~Gb in G. If v is contained in ~Gb, then

we let GR = ~Gr and let GB be the graph obtained from ~Gb by replacing v

with ¡I , therefore the claim holds. We can do similarly when v is contained

in ~Gr. ¦

Claim 7 ¡I has at most three vertices.

Proof. We ¯rst prove that there is no white vertex in ¡I . Suppose that there

is a white vertex v in ¡I . Since there is no white edge in E(¡I)¡ E(¡), by
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Figure 4.1: ¡0E with j¡E j = 2

Claim 2 and the minimality of ¡, all neighbors of v are not white. Hence

¡I must contain at least ¯ve non-white vertices, by Claim 3. However, this

implies that ¡E has at most one non-white vertex, contrary to Claim 6.

In order to prove the claim, we suppose that ¡I has at least four vertices.

For ¡E , let ¡0 be a minimal separating 4-cycle of ¡E through some white

edge, say e, where possibly ¡0 = ¡. Note that there is no white vertex in the

interior ¡0I of ¡0, as proved similarly to the case for ¡I . Therefore, by the

assumption, there are at most two non-white vertices in ¡0I , since G has at

most six non-white vertices. By Claim 5, ¡0I has exactly two vertices, and

hence ¡0I must be a graph shown in Figure 4.1, up to symmetry. However,

we can clearly ¯nd separating 4-cycle thought e bounding a smaller number

of vertices than ¡. This contradicts the minimality of ¡0 in ¡E . ¦

Claim 8 Each vertex v of ¡ has degree at least four in ¡I .
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Proof. Let ¡ = v1v2v3v4, where v1 and v2 are white vertices. Suppose

N¡I
(v3) = fv2; x; v4g. By Claim 5, v1v2xv4 is a separating 4-cycle through

white edge v1v2 in ¡I , other than ¡. This contradicts the minimality of ¡.

Thus, we have deg¡I
(v3) ¸ 4. Similarly, we have deg¡I

(v4) ¸ 4. Now sup-

pose N¡I
(v1) = fv2; x; v4g. Since v1x is non-vivid, v1x lies on a separating

chordless 4-cycle, say C, by Claim 2. Since C must pass through v3 and

since C has length four, there exists an edge joining x and v3 in G. Since G

is 4-connected, ¡I consists of only one vertex x. This contradicts Claim 5.

Therefore, we have deg¡I
(v1) ¸ 4. Similarly, we have deg¡I

(v2) ¸ 4. ¦

It is easy to see that Claim 8 implies that jV (¡I)j ¸ 4, since G has no

3-cut. However, this contradicts Claim 7. Therefore, the counterexample G

does not exist, and the theorem holds.
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Chapter 5

(k; k)-Linked graphs on

surfaces

In this chapter, we would like to generalize the result in Chapter 4 to tri-

angulations on other surfaces with respect to the connectivity of graphs

and the representativity of embeddings, where the representativity of an

embedding G is the minimum number of intersecting points of G and any

non-contractible simple closed curve on the surface. An essential argument

in this generalization is that in a triangulation G, a minimal vertex cut of

the graph lies on several cycles whose removal disconnects the surface. So,

analyzing a relation between a minimal tree containing a speci¯ed vertex

set in G and a minimal cut set of G separating the tree, we shall generalize
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Theorem23. However, we note that the property \each face is triangular"

is not necessary for a graph on a non-spherical surface to be (k; k)-linked,

since such surfaces do not satisfy \Jordan Curve Theorem". On the other

hand, if we restrict a graph on a surface to be a triangulation, then we can

use an important property called \a k-separation property", which will play

an immmportant role in proving our theorems.

5.1 Main theorem

In this chapter, we shall prove the following theorem:

THEOREM 28 Let k be a positive integer. Every (k+ 1)-connected bk+4
2 c-

representative triangulation on any surface is (k; k)-linked.

Since every graph is obviously (1; 1)-linked, the case when k ¸ 2 is es-

sential in Theorem 28. Moreover, Theorem 28 for plane triangulations when

k = 3 is equivalent to the su±ciency of Theorem 23, since the represen-

tativity of a plane triangulation is de¯ned to be the in¯nity. Note that

for any ¯xed surface F 2, there exist only ¯nitely many 7-connected graphs

embeddable in F 2, it might not be natural to consider triangulations with

connectivity at least 7.
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Now, let's consider the sharpness of Theorem 28 with respect to the

connectivity and the representativity.

PROPOSITION 29 The estimation for the connectivity and representativity

cannot be relaxed.

Proof. Since the (k+1)-connectedness is clearly necessary, we consider only

the representativity. Figure 5.1 shows a triangulation on the annulus which

is obtained from the rectangle by identifying its top and bottom, where the

shaded part in the rectangle is arbitrarily triangulated and even the region

might not be homeomorphic to a disk. Let G be a 5-connected triangulation

on a surface containing an annular part shown in the ¯gure. Since C = xr1r2

is an essential cycle of length 3, G is not 4-representative. We shall prove

that G is not (4; 4)-linked.

Let R = fr1; r2; r3; r4g and B = fb1; b2; b3; b4g be two disjoint vertex

sets as in the ¯gure, and we shall prove that G does not have two disjoint

subgraphs containing R and B, respectively. For contradictions, we may

suppose that G has a connected subgraph, denoted by HR, containing all

vertices of R but no vertices of B. Then HR must contain the vertex x. In

this case, the removal of R [ fxg from G separates G so that fb1; b2g and

fb3; b4g are contained in distinct components of G¡ (R [ fxg) respectively,

and hence G cannot have a connected subgraph containing B but avoiding
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Figure 5.1: Not (4,4)-linked triangulations G on the torus

V (HR). Therefore, the 4-representativity cannot be omitted in the case

when k = 4.

By similar arguments, one can easily construct examples showing the

bound only for the representativity in the theorem is sharp. On the other

hand, in case of k ¸ 6, we have not yet proved that the bound is sharp,

since the construction of triangulations with high connectivity seems to be

di±cult.

5.2 Proof of theorems

In this section, we shall prove Theorem 28. In order to prove the theorem,

we need the following notion called \k-separation property" for abstract
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graphs.

Let G be a graph. For a nonempty subset U ½ V (G), let hUi denote the

subgraph of G induced by U . A subset S of V (G) (resp., a subgraph K) is

said to be separating if G ¡ S (resp., G ¡ V (K)) is disconnected. We say

that a separating set S of G is minimal if S ¡ fxg is not separating for any

x 2 S.

DEFINITION 30 A graph G satis¯es the k-separation property if for any

minimal separating set S ½ V (G), either of the following holds:

(i) hSi has a cycle of length at least k, or

(ii) hSi contains a union of at least two cycles of length at least bk+3
2 c as

a spanning subgraph.

Clearly, if a graph G satis¯es the k-separation property, then G is k-

connected. The readers might feel that the k-separation property of an

abstract graph is unnatural and arti¯cial in a sense, but the following lemma

points out an important property which a k-connected bk+3
2 c-representative

triangulation on a surface has as an abstract graph.

LEMMA 31 Let G be a k-connected bk+3
2 c-representative triangulation on

any surface F 2, where k ¸ 2 is a positive integer. Then G satis¯es the

k-separation property.
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Proof. Let S = fv1 : : : vmg be a minimal separating set of G. Then by

the k-connectedness of G, we have jSj = m ¸ k. We shall prove that the

subgraph hSi of G induced by S has a spanning separating cycle or a union

of at least two nonseparating essential cycles each of whose length is at least

bk+3
2 c as a spanning subgraph.

Since G ¡ S is a disconnected embedding on F 2, we can take a simple

closed curve J or several simple closed curves J1; : : : ; J` on F 2 where G¡S

is embedded, without intersecting V (G¡S) and E(G¡S), which separates

F 2 so that each component of F 2¡J (or F 2¡fJ1; : : : ; J`g) contains at least

one vertex of G¡ S.

Now re-construct G from the embedding G¡ S by adding v1; : : : ; vm to

F 2 one by one and prove that G admits a simple closed curve on the surface

intersecting only the vertices of S(or several simple closed curves). For any

¯xed vertex vi 2 S, let G0 = G¡fvig and S0 = S¡fvig. Since S is a minimal

separating set of G, S0 is a minimal separating set of G0, too. Let F be the

face of G0 which is a new face of G0 arisen by removing vi, and let Int F

denote the interior of F . Observe that separating simple closed curve J (or

some nonseparating essential simple closed curve) passes through Int F .

We ¯rst consider the case when we take J for G ¡ S. Then vi can be

put on J so that any edge joining vi and a vertex of G¡S does not cross J .
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Therefore, J intersects G only at the vertices of S. Since each face of G

is triangular, we can ¯nd an m-cycle C along J passing through only the

vertices of S. Thus, hSi has an m-cycle with m ¸ k.

The case when we take nonseparating essential cycles J1; : : : ; J` for G¡S

is essentially similar to the previous case for J . By the minimality of S, each

vertex of S can be put on one of J1; : : : ; J`. We have only to ¯nd a cycle

Ci of G along each Ji for i = 1; : : : ; `. (Note that some vertex of S might

be contained in at least two of the cycles.) So, we have to note that G has

no essential cycle whose length is less than bk+3
2 c by the assumption for the

representativity of G. Hence we must have jJij ¸ b
k+3

2 c for i = 1; : : : ; l.

Let G be a graph and let C be a subgraph of G. Let A be one of the

components of G ¡ V (C), or a chord of C, i.e., an edge xy of G such that

x; y 2 V (C) but xy =2 E(C), and let x1; : : : ; xm 2 V (C) be the vertices ad-

jacent to vertices of A, or the end vertices of the chord. Then the connected

subgraph of G induced by V (A) [ fx1; : : : ; xmg is called a C-bridge with

attachments x1; : : : ; xm. (We say that the C-bridge obtained from a chord

of C is trivial.)

The following theorem is the most essential argument for proving Theo-

rem 28.
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THEOREM 32 Let k be a positive integer. If a graph G satis¯es the (k+1)-

separation property, then G is (k; k)-linked.

Proof. Let G be a graph satisfying the (k+ 1)-separation property. Then G

is (k+1)-connected. Moreover, for every minimal separating set S of G, hSi

has either a separating spanning cycle of length at least k+1 or a union of at

least two cycles of length at least bk+4
2 c as a spanning subgraph. In order to

prove the theorem, we shall prove that for any disjoint subsets R;B ½ V (G)

with jRj · k and jBj · k, G has a connected subgraph HR containing all

vertices of R but no vertices of B such that G ¡HR is connected. Clearly,

this implies that G is (k; k)-linked.

Since G is (k + 1)-connected but jBj · k, G ¡ B must be connected.

Hence, we can always take a connected subgraph HR containing all vertices

of R but avoiding B. A vertex x 2 V (HR) ¡ R is said to be removable

if HR ¡ fxg is still connected. We suppose that HR is minimal , that is,

HR has no removable vertex. If G ¡ V (HR) is connected, then the lemma

immediately follows. Therefore, we suppose that G¡V (HR) is disconnected.

We begin with the following claim.

Claim 9 HR has no cycle whose length is at least k + 1.

Proof. For contradictions, we suppose thatHR has a cycle C = v1v2v3 ¢ ¢ ¢ vm,

71



where m ¸ k+1. Then in the following argument, we shall ¯nd a removable

vertex in HR, which contradicts the minimality of HR.

For each i, take a nontrivial C-bridge in HR whose attachment is only

vi, if any. If there is, we let Di be such a C-bridge, and let Di = fvig

otherwise, for i = 1; : : : ; m. (In the latter case, we say that vi is bad.) Since

Di and C intersect only at vi in HR, we have Di \Dj = ; for any distinct

i; j 2 f1; : : : ;mg. Moreover, since jRj · k, we can ¯nd Dt containing no

vertices in R for some t 2 f1; : : : ;mg, by Pigeonhole Principle. Hence, by

the minimality of HR, we have Dt = fvtg. Then vt is removable in HR since

vt is contained in C. A contradiction. ¦

Claim 9 asserts that hSi has no cycle of length at least k + 1. Hence,

by the following two claims, we deny the other possibility for hSi described

in De¯nition 30. Then we shall prove that if hSi has a union of cycles

C1; : : : ; Cp as a spanning subgraph for some p ¸ 2, then one of the cycles

must have length less than bk+4
2 c.

Claim 10 hSi has two cycles Ci; Cj such that jV (Ci) \ V (Cj)j · 1.

Proof. For contradictions, we suppose that jV (Ci) \ V (Cj)j ¸ 2 for any

distinct i; j 2 f1; : : : ; pg. We ¯rst prove that hSi is 2-connected, by using

Whitney's theorem [17] which states that a graph is 2-connected if and only if
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it has a cycle passing through any two distinct vertices speci¯ed in the graph.

Let x1; x2 be any two distinct vertices in S. If x1 and x2 lie on the same cycle

Ci, then the assertion clearly holds, and hence we may suppose that xi 2 Ci,

for i = 1; 2, without loss of generality. Since jC1\C2j ¸ 2 by the assumption,

we can take two distinct vertices p; q 2 V (C1) \ V (C2)¡ fx1; x2g. Observe

that C1 is decomposed into two paths with endvertices p; q, and let R be the

path containing x1 as an inner vertex. We may suppose that no vertices in

V (C1) \ V (C2)¡ fp; qg are contained in R, by changing p; q suitably. Since

p; q are two distinct vertices of C1, we can take two paths P1 and Q1 from

x1 to p and q in C1, respectively, and similarly, we can ¯nd two paths P2

and Q2 from x2 to p and q in C2, respectively, where Pi and Qi intersect

only at xi, for i = 1; 2. Hence, (P1 [ P2) [ (Q1 [ Q2) contains a required

cycle in hSi, since R has no inner vertices of V (C1) \ V (C2). Therefore, we

can conclude that hSi is 2-connected.

We proceed similarly to the proof of Claim 9. Since G is (k + 1)-

connected, we have jSj ¸ k + 1, where we let S = fv1; : : : ; vmg for some

m ¸ k + 1. For each i, consider a nontrivial hSi-bridge whose attachment

is only vi. If there is, we let Di be such a hSi-bridge, and let Di = fvig

otherwise. Since Di \ Dj = ; for any distinct i; j, and since jRj · k, we

can ¯nd some Dt which has no vertex in R. Hence we have Dt = fvtg for
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some t 2 f1; : : : ;mg since HR is minimal. On the other hand, since hSi

is 2-connected as shown in the ¯rst paragraph, vt is removable in HR, a

contradiction. ¦

Without loss of generality, we may suppose that C1 and C2 satisfy

Claim 10.

Claim 11 At least one of C1 and C2 has length less than bk+4
2 c.

Proof. For contradictions, we suppose that the length ki of Ci is at least

bk+4
2 c, for i = 1; 2. Since jC1 \ C2j = 0; 1 by Claim 10, we consider the

following two cases separately, depending on it.

We ¯rst suppose that C1 and C2 are disjoint. Let V (C1[C2) = fv1; ¢ ¢ ¢ vmg.

We proceed similarly to the proof of Claim 9. De¯ne Di as a (C1[C2)-bridge

whose attachment is only vi, for i = 1; : : : ;m. (Note that a component W

of G ¡ V (C1 [ C2) which has only one foot in some vertex in V (C1) and

some feets in the other C2 must be neglected for the de¯nition of Di's, since

W has at least two feets in C1 [ C2 in this case.) Since

m = k1 + k2 ¸

¹
k + 4

2

º

+

¹
k + 4

2

º

¸ k + 3;

and since jRj · k, we can take three distinct Di's containing no vertices

of R, say Dp; Dq; Dr. Hence, by the minimality of HR, the three vertices

vp; vq; vr are bad in HR. Here we may suppose that vp; vq 2 V (C1) without
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loss of generality. If vp is removable (i.e., HR¡fvpg is still connected), then

we are done, similarly to the earlier case. Hence we suppose that vp is not

removable in HR. Since vp =2 R, we may suppose that vp is a cut vertex of

HR, and there is a C1-bridge Dp containing C2 whose attachment is only

vp. In this case, vq 2 V (C1) is removable, since vq can no longer be a foot

of the C1-bridge containing C2, and hence vq is removable. This contradicts

the minimality of S.

Finally, we suppose that C1 and C2 share exactly one vertex. Similarly

to the above case, we de¯ne D1; : : : ;Dm, where

m = k1 + k2 ¡ 1 ¸

¹
k + 4

2

º

+

¹
k + 4

2

º

¡ 1 ¸ k + 2:

Hence we can ¯nd at least two bad vertices, say vp; vq. Since at least one of

vp; vq, say vp, is not the unique vertex contained in both C1 and C2, vp is

removable, a contradiction. ¦

By Claims 9, 10 and 11, we have proved that if G ¡ V (HR) is discon-

nected, then G cannot satisfy the k-separation property, a contradiction.

Therefore, G ¡ V (HR) is connected, and hence we can take two disjoint

connected subgraphs HR and HB containing two disjoint vertex sets R with

jRj · k and B with jRj · k, respectively, arbitrarily speci¯ed in G. ¦

Proof of Theorem 28. Theorem 28 follows from Lemma 31 and Theo-
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rem 32.

Extending Thoerem 23, we have proved that every (k + 1)-connected

bk+4
2 c-representative triangulation on any surface is (k; k)-linked. In the

theorem, the assumption for the connectivity and the representativity is

necessary. On the other hand, as I mentioned in Introduction, the condition

\each face is triangular" is not necessary in our theorem. We do not know

whether we can remove such an assumption from our theorem. Therefore,

the following problem will be interesting.

PROBLEM 33 Can the condition with each face triangular be removed from

our theorem?

Finally, we would like to consider Theorem 23 with a su±ciently large

integer k. In this paper, we essentially proved that any graph with the

(k + 1)-separation property is (k; k)-linked. On the other hand, a (k + 1)-

connected bk+4
2 c-representative triangulation satis¯es the (k+1)-separation

property, and hence it is (k; k)-linked. Though we can take a su±ciently

large k in this argument, we do not know whether there actually exists a

(k+ 1)-connected bk+4
2 c-representative triangulation for su±ciently large k.

In order to construct such a triangulation, some algebraic method might be

useful.
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Index

2

2-cell, 19

2-cell embedded, 19

2-cell embedding, 19

A

abstract graph, 19

adjacent, 13

B

bridge, 18

C

Catalan triangulation, 9, 35

chord, 17

Chordless, 17

closed curve, 19

component, 17

connected, 17

contractible, 9, 34

contracting, 15

contraction, 16

D

degree, 14

diagonal °ip, 7, 23

disconnected, 17

E

edges, 13

embed, 19

embedding, 19

essential, 20

F

face, 19
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G

graph, 13

H

Hamilton cycle, 17

Hamiltonian, 17

homeomorphic, 20

I

induced, 15

isomorphic, 14

isomorphism, 14

L

(m,n)-linked, 11

k-linked, 11

loop, 13

M

maximal outerplane, 20

multiple edges, 14

N

neighborhood, 14

O

outerplane, 20

P

planar, 20

R

k-representative, 20

representativity, 11, 20, 64

S

separating, 17, 68

separation property, 67

simple, 14, 19

subgraph, 15

surface, 18

T

triangulation, 7, 20

trivial, 20

V
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vertices, 13

W

boundary walk, 19

walk, 16
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