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Abstract

Recently, dynamically reconfigurable architectures become popular and widely
researched. It can achieve high computing performance as well as low power
consumption, which is important in portable device such as MP3 players, mo-
bile phones, portable game engines, and cameras for saving battery. Various
architectures have been proposed and they require compilers to generate config-
uration data for evaluating the architectures at design time. Retargetability is
important for a compiler or synthesis tool used for architecture exploration. If
the compiler can be used for multiple target architectures, it can save the time to
develop a compiler for every architecture. This kind of compiler is called “retar-
getable compiler”. However, most of traditional retargetable compilers provide
flexibility to customize the target architecture by selecting parameters and op-
tions. Thus, architecture designers still have to spend time to modify compiler
code when the available options do not support the brand new architecture.

This research focuses on representation model which can be used to cus-
tomize different target architectures without modifying the compiler itself. Graph
with Configuration Information (GCI) is proposed to represent reconfigurable
resources in Dynamically Reconfigurable Processor Arrays (DRPAs). The func-
tional unit, constant unit, register, and routing resource can be represented in
the graph as well as the configuration information.

A prototype compiler called Black-Diamond with GCI is now available for
three different DRPAs. It translates data-flow graph from C-like front-end de-
scription, applies placement and routing by using the GCI, and generates con-
figuration data for each element of the DRPA. Evaluation results of simple
applications show that Black-Diamond can generate reasonable designs for all
three different architectures. Other target architectures can be easily treated
by representing many aspects of architectural property into a GCI.



Chapter 1

Introduction

In recent years, coarse grained Dynamically Reconfigurable Processor Arrays
(DRPAs) have received attention as a flexible and efficient off-loading engine
for various types of System-on-a-Chip (SoC). Some devices are commercially
available [19, 27, 23, 25], and some of them have been integrated into digital
appliances [15].

In order to achieve better area- and power-efficiency compared with tradi-
tional field-programmable devices such as FPGAs, they incorporate the follow-
ing properties; (1) a simple coarse grained processor consisting of an ALU, a
data manipulator, a register file and other functional modules is used as a prim-
itive Processing Element (PE) of an array, and (2) dynamic reconfiguration of
a PE array which enables time-multiplexed execution is introduced. Some of
them use a multicontext facility which can change its configuration with a single
clock cycle.

Unlike common FPGAs, in which the island-style structure using Look Up
Tables (LUTs) with 4 or 5 inputs are commonly used, there are wide design
choices in DRPAs, such as the PE granularity, the number of hardware contexts
which can be switched dynamically, the total amount of wiring resource, and
the size of PE array. Our performance evaluation results revealed that the
optimal PE array size considering the area and power consumption varies in each
application [8]. Thus, there is no all-around architecture in DRPAs, and the
structure should be configurable or customizable for its main target application.
Since DRPAs are embedded into an SoC, their architecture should be customized
at the design time.

1.1 Motivation

For such customized DRPAs, the programming environment, especially a com-
piler, must also be customized. A retargetable compiler which generates config-
uration data from C-like description is the most important component for such
customized DRPAs. Unlike compilers for common CPUs, the core of compilers
for DRPAs is mapping functionality similar to the situation as placement and
routing in common FPGA design tools. A directed graph which represents the
target architecture is needed in such compilers. Unlike uniform FPGAs, DRPAs
equip various types of component each of which has different restrictions. For
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example, the interconnections between networks and components are often lim-
ited for reducing the hardware or corresponding configuration data. Even in the
switching element, the flexibility is often limited. There are a lot of hardware
restrictions on different architecture which must be supported or controlled by
the compiler.

Although some retargetable compilers for DRPAs have been announced
[18, 17, 10], it is difficult to treat brand new architectures. In those traditional
retargetable compilers, the target architecture can be customized by changing
parameters and options which controlled in program code. Thus, the compiler
must be modified when the available options can not support the target archi-
tecture. It results to slow down the research on architecture exploration even
using the retargetable compiler.

1.2 Objective and contribution

This research focuses on studying standard model which can be used to cus-
tomize different target architectures without modifying the compiler itself. Graph
with Configuration Information (GCI) is proposed to represent reconfigurable
resources in dynamically reconfigurable architecture. A retargetable compiler
can use the graph to represent various kinds of DRPA for mapping applica-
tion into the different target architectures. By applying a technique to control
selecting configuration at each node called Disabling Configuration Testing (Dis-
CounT), the hardware restriction in target architecture can be easily treated.

I have developed Black-Diamond compiler to map application based on the
representation of GCI and it can be used for widely architecture exploration.
Moreover, the configuration data can be generated to configure each element in
form of RoMultiC [31] for fast configuration loading by using the GCI.

1.3 Thesis organization

The organization in this thesis is as follows: Chapter 2 introduces reconfigurable
architectures and shows the problem of traditional retargetable compilers. Then,
the GCI is proposed and used to represent a target DRPA. The coarse-grained
multicontext reconfigurable architectures called MuCCRA as a case study are
shown in Chapter 3. A simple retargetable compiler called Black-Diamond,
was developed and used to map application into the architectures (Chapter 4).
Finally, this work is concluded and discussed in Chapter 5.
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Chapter 2

Survey

The reconfigurable device has ability to change its configuration to execute
various kinds of application depending on demand. Basically, the device has
programmable elements which can be reconfigured to form different datapath
and computation. Two main advantages are high parallel computing and low
power consumption compared to the same performance CPU. Recently, many
researches focus on using the reconfigurable architecture as in off-loading engine
for various types of System-on-a-Chip (SoC) for high performance computing,
and especially using in the embedded or portable devices such as mobile phones,
portable game machines, digital audio systems, DVD and MP3 players for bat-
tery saving propose.

2.1 Classification of reconfiguable architectures

A large number of reconfigurable architectures have been developed over the
years by researchers and the industries. Reconfigurable architecture can be
classified based on several different characteristics. This section shows some of
the most distinguishing characteristics to classify the architectures.

2.1.1 Grain size

The granularity is the size of processed data (computational data and transferred
data) which is common used in the entire system. There are two grain types:
fine-grained and coarse-grained.

The fine-grained architecture has programmable elements working in bit-
level called logic blocks which can be reconfigured to represent combination
of logic gates. The input signals tend to select a configuration bit stored in
a register to be an output signal as shown in Figure 2.1(a). Thus, the logic
block is well known as Look-Up Table (LUT). Figure 2.1(b) and 2.1(c) show
examples of configuration data to represent the different logic circuits. There
are 3 input signals (a, b, and c) for selecting output data from a register. The
configuration data which is a collection of logic bits 1 and 0 is delivered to fix
the function of each LUT corresponding to the representing logic circuit. The
LUTs are connected on reconfigurable interconnection network to form a large
computational circuit. It is the most flexible architecture to implement any kind
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of logic circuit since everything is controlled in bit-level. However, it requires
huge configuration data to configure datapath and the LUTs itself, makes long
time to load the configuration in term of millisecond.

Figure 2.1: Example configuration of LUT (a) is LUT structure, (b) and (c) are
examples of configuration corresponding to different logic gate functions

The coarse-grained architecture reduces the large size of configuration data
by providing reprogrammable ability to process data in word-level. Every bit
in the word shares the same control signal, thus, it requires less configuration
data to change computational operation and perform datapath that allows fast
configuration. Moreover, the arithmetic logic is optimizing for each operation
leaded to low silicon-area implementation and also low power consumption.
However, it has less flexibility when compared to the fine-grained architectures
since the flexility was limitted by only the available operations.

2.1.2 Static and dynamic reconfiguration

The coarse-grained reconfigurable architecture and the fine-grained reconfig-
urable architecture can be classified whether they are statically reconfigurable
or dynamically reconfigurable.

In the static reconfiguration, the configuration can not be changed during
execution. It should provide large amount of the reprogrammable hardware to
map large application. If the provided hardware is too small, the application
can not be mapped into the device.

The dynamic reconfiguration is proposed as a relaxed solution to map the
application into small size of hardware. The large application is divided into
many small parts and only a executed part is configured into the hardware.
When another part is required to be executed, it can be configured to replace
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the old part into the same hardware. The intermediate computational data
can be stored in register or memory module for transferring to the other parts
during the time multiplex execution.

Figure 2.2: Classification of reconfigurable system

The reconfigurable architecture can be classified by the grain sizes and the
types of reconfiguration into 4 groups as the diagram shown in Figure 2.2. This
thesis focuses on only the coarse-grained dynamically reconfigurable architecture
which discussed in the next sections.

The most popular fine-grained statically reconfigurable architecture is Field
Programmable Gate Array (FPGA). The FPGA is consisting of a set of LUTs
connected on global routing resources to form datapath of computational circuit.
It can be reconfigured to execute different applications in bit-level and exchange
data with outside of the chip by using I/O cells at the chip boundary.

The fine-grained dynamically reconfigurable architecture requires large con-
figuration data, thus, it is not suitable to switch the context frequently. The
performance can be enhanced by dynamically reconfiguring only a part of the
entire chip (partial reconfiguration technique).

The coarse-grained statically reconfigurable architecture is not flexible and
always requires large number of programmable elements to map application.
In some FPGA architectures, they include a certain number of coarse-grained
functional units instead of implementing the circuits on a large number of LUTs.
For example: multiplication units or memory modules.

2.2 Coarse-grained dynamically reconfigurable
architectures

Various kinds of coarse-grained dynamically reconfigurable architectures are de-
veloped as shown in the table 2.1. This Section shows the criteria to classify
the architectures based on the classification in [4].
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Table 2.1: Today’s coarse-grained dynamically reconfigurable architectures

Name Company Reference
CS2112 Chameleon [29]

DAPDNA-2 IPFlex [28]
DRP-1 NEC electronics [20]
FE-GA Hitachi [14]
Xpp-64 PACT [24]

D-Fabrix Elixent [26]
Kilocore KC256 Rapport [16]

ADRES IMEC [32]
PCA - [21]

2.2.1 PE structure

The coarse-grained dynamically reconfigurable architecture is consisting of an
array of Processing Elements (PEs). A PE provides one or more functional units
such as ALU or data manipulators, register files, and reconfigurable switches.
Those functions and interconnection can be dynamically changed which allows
time multiplex execution.

Figure 2.3: The example of different component structures inside PE body

Figure 2.3 shows the example of different component structures of PE body
in the surveyed architectures. When the PE has only one component, it can
be classified whether 2 inputs (S-2) or 3 inputs (S-3). When the PE includes
multiple components, it can be classified whether the components can be con-
nected to each other (MC) or work independently (MI). Some PE structures
may include register files as the component (R) or are not any include register
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file (N). The classifications of PE structures can be shown as Table 2.2 with its
different grain size.

2.2.2 Dynamic reconfiguration

The datapath and functional unit are controlled by loading configuration data
from the context memory. The configuration data for configuring several PEs
must be loaded from a single on-chip memory module, and usually takes long
configuring time. This kind of configuration method is called “delivery reconfig-
uration”. On the other hand, the configuration data can be distributed to store
in multiple memory modules, and entire configuration of PE array can be load
in a clock. The configuration of PE array is called context related to the same
context pointer broadcasting to all memory modules. This kind of configuration
method is called “multicontext reconfiguration”.

Figure 2.4: Multicontext reconfiguration

Figure 2.4 shows a PE array consisting of PEs with local context memories.
By broadcasting the same context pointer to all PEs, configuration of the entire
PE array can be changed in parallel. Although context switching can be done
with a clock cycle in the multicontext devices, the area of each PE is increased
with the distributed context memory.

The classification of surveyed architectures can be shown as the last column
of Table 2.2. The multicontext reconfiguration architecture is followed by max-
imum number of contexts which can be stored in the local context memory. For
the Kilocore KC256 architecture, the configuration data can be transferred from
outside of the chip by using virtual pipeline with a powerful configuration bus.
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Table 2.2: PE structure

Name Bitwise PE body Register file Reconfiguration
CS2112 16 / 32 S-2 N Multicontext (8)

DAPDNA-2 32 M-C N Multicontext (4)
DRP-1 8 M-C R Multicontext (16)
FE-GA 16 M-I N Multicontext (4)
Xpp-64 24 M-I N Delivery

D-Fabrix 4 S-2 N Delivery
Kilocore KC256 8 S-2 R Multicontext / Delivery

ADRES 32 S-3 R Multicontext (27)
PCA 4 / 8 / 16 S-3 R Delivery

Thus, the number of context is unlimited.

2.2.3 Homogeneous and heterogeneous architecture

A certain number of PEs are connected with reconfigurable interconnection
network for exchanging data between the PEs. A typical structure is square
mesh. The examples of interconnection structures are shown in Figure 2.5.
The number of PEs and interconnection structure are suitable for the different
application domains. If the number of PEs becomes large, it allows more parallel
function to execute in a clock. However, the size of PEs is limited by the silicon
die area and more latency delay for transferring data via long distance wire.

The PE array can be classified whether it is homogenous (Homo) or het-
erogeneous (Hetero). Homogeneous means that all PEs are the same structure,
while more than two types of PEs are used in heterogeneous structure. The
classification result can be shown as Table 2.3.

Table 2.3: Interconnection structure

Name Number of PEs PE array
CS2112 108 Hetero

DAPDNA-2 376 Hetero
DRP-1 512 Homo
FE-GA 32 Hetero
Xpp-64 64 Homo

D-Fabrix 576 Homo
Kilocore KC256 256 Homo

ADRES 64 Hetero
PCA 64 Homo
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Figure 2.5: The examples of different interconnection network

2.3 Overview of the surveyed architectures

This Section shows the overview of surveyed architectures without detail since
they are not related to this research.

2.3.1 CS2112

CS2112 is a processor-based reconfigurable architecture for high-performance
telecommunication and data-communication. A RICS core, reconfigurable fab-
ric, a fast bus, memory system, and I/O are built in a single chip. Figure 2.6
gives the structure of Chameleon CS2112 chip.

A 32-bit RISC core is used as a host processor to schedules computation
intensive tasks onto the PE array. The PE array is consisting of 108 PEs
called Data-Path Units (DPUs). The ALU inside the DPU can be dynamically
reconfigured to execute one of eight instructions. The 108 DPUs are divided
into four slices and each slice is partitioned into three tiles. In each tile, there
are nine DPUs, of which seven are 32-bit ALUs and two are 16-bit multipliers.
The configuration of DPU can be changed by loading from ConTroL Unit (CTL)
which can store eight instructions at maximum. In addition, there are 8Kbytes
of Local Memory (LM) for each slice which can read/write 32-bit data in two
clock cycles. Inside the chip, a high speed bus links the core, PE array, main
memory, and I/O module together. The configuration data is stored in the main
memory and loaded to configure the PE array at runtime by DMA.
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Figure 2.6: Hardware model of Chameleon CS2112 chip

2.3.2 DAPDNA-2

The DAPDNA-2 is the general purpose dynamically reconfigurable processor
for commercial usage. It is a dual-core processor consisting of a custom 32 bits
RISC core called Digital Application Processor (DAP), and a two dimensional
PE array called Distributed Network Architecture (DNA). Both DAP and DNA
are synchronized and co-work at the same clock frequency (166 MHz). The
system includes 8 KB of instruction cache and 8 KB of data cache.

The DAP and DNA are connected with the peripheral of processor via system
bus as shown in Figure 2.7. Inside the DNA, there is six PE arrays called
segment with size 8x8 PEs. It provides rich interconnection between the PEs to
guarantee operational speed of 166 MHz, regardless of the size and complexity
of algorithms. There are 56 multiplier and 32 RAM elements, with 16 KB of
memory each, (totaling 512 KB). This reduces the number of accesses to external
memory that tends to be bottleneck. It also has a DDR-SDRAM interface to
store large amount of data.

2.3.3 DRP-1

Dynamically Reconfigurable Processor (DRP) developed by NEC in 2002 can
be shown as Figure 2.8. It provides 16 hardware contexts inside the chip. The
context can be switched within a single clock by Instruction Pointer (IP) pro-
vided from State Transition Controller (STC). To configure the context, the
current configuration memory of DRP-1 is accessed as a common memory, that
is, configuration data is written by specifying address of the memory. Thus, it
requires thousands of clock cycles to load the configuration data. It is connected
in the system via PCI interface. There are 8 tiles and each tile consisted of 8x8
PE array controlled by STC at the center, 8 HMEMs (Horizontal Memory), and
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Figure 2.7: Hardware model of DAPDNA processor

16 VMEMs (Vertical Memory) at boundary of the PE array.
Each PE is consisting of ALU, DMU (Data Management Unit), register file,

context memory, and inter-PE connections. Source and Destination operands
can either come from or come to its own register file or other PEs. The in-
terconnection network for transferring data between PEs is island style inter-
connection. There are 16 data buses for transferring pair of 8 bits data input
from the column buses to a PE and 8 data buses for transferring 8 bits data to
the next column bus. There is another island style interconnection network for
transferring control or condition flag signal separated from the data network.
Two flag bits can be picked in and picked out at the PE.

2.3.4 FE-GA

The FE-GA consists of 24 PEs in ALU type, 8 PEs in MLT type, 10 load/store
(LS) cells with local RAM, a SEQuential Manager (SEQM), a ConFiGuration
Manager (CFGM), a crossbar switch cell (XB), and a system bus interface
as shown in Figure 2.9. Each PE is connected to its neighboring four PEs
(north, south, east, and west), thus, the wire delay is short and can be executed
with high frequency. The configuration data for each ALU, MLT, LS, and XB
are managed by the CFGM and the context can be switched under control of
the SEQM. The SEQM generates a switch trigger using its built-in counter or
comparison result on the ALU.

Each PE in the ALU type consists of a general ALU (16 bits), a shifter, a
data through logic block circuit, and an input delay logic circuit. All components
are operated simultaneously without blocking each other. Each PE in the MLT
type consists of a general multiplier, a data through logic block circuit, and an
input delay logic circuit. Each LS cell can be connected to the XB, bus interface,
and dual-port RAM (CRAM). Since the LS cells can generate load and store
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Figure 2.8: NEC-DRP-1 structure

addresses without using the ALU, the ALU can be saved for user applications.

2.3.5 Xpp-64

The eXtreme Processing Platform (XPP) is reconfigurable architecture opti-
mized for parallel data stream processing where flexibility and fast reconfig-
urability are demanded. The XPP has similarities with other coarse-grained
reconfigurable architectures which are designed and optimized for stream-based
applications. However, the essential difference is the automatic packet-handing
mechanism. All element objects communicate through a packet-oriented net-
work, which route two types of packets: data packets and event packets. Config-
uration data is loaded from an external RAM into internal cache controlled by
configuration manager, then, it configures the elements. As soon as an element
is configured, it can start its operation if data is available.

An XPP array, shown in Figure 2.10, consists of a relatively small num-
ber of different components on homogenous structure. Each PE is integrating
three types of components working independently: ALU which performs typical
functions (suck as multiplication, addition, comparison, shifting), Back Regis-
ter (BREG), and Forward Register (FREG). The BREG provides vertical paths
from bottom to top of an ALU that can be used for addition, barrel shifting, and

12



normalization. The FREG provides routing paths from top to bottom and a
specialized ALU that performs data stream control like multiplexing and swap-
ping. The PE rows are connecting with horizontal routing channels between the
rows. The RAM blocks are dual-ported, allowing simultaneous read and write,
and have a typical size between 512 and 2K words. The PE array of XPP can
exchange data with the outside of the chip via I/O blocks. It is two ports of
an I/O element. The packets handling is performed through an asynchronous
ready/acknowledge protocol.

2.3.6 D-Fabrix

In D-Fabrix, it contains two distinct types of component inside PE, which are
ALU and multiplexer. The ALU is used for datapath purpose to process word-
based data and the multiplexer is used as control block to manipulate data bits.
Moreover, the multiplexers can be implemented as gates which are subset of the
ALU functionality.

Figure 2.11 shows PE array and PE structure of which consists of ALU and
multiplexer components. The D-Fabrix uses chess interconnection network for
transferring data inside the PE array. In the PE, data from network or carryout
of the ALU itself can become control signal of the multiplexer. It allows using
the multiplexer as logic functions shown in Table 2.4.

Table 2.4: Logic funxtions constructed from multiplexer

Function Implementation Function Implementation
0 A ? 0 : 0 1 A ? 1 : 1

A & B A ? B : 0 A | B A ? 1 : B
A & !B B ? 0 : A A | !B B ? A : 1
!A & B A ? 0 : B !A | B A ? B : 1

A A ? 1 : 0 B B ? 1 : 0
!A A ? 0 : 1 !B B ? 0 : 1

Eight logic functions can be implemented by using multiplexer. Since the
multiplexers are smaller and faster then ALUs, there is a net reduction in both
area and delay. The synthesis process needs only target the ALUs, and place-
ment can then determine whether a given multiplexer in the netlist maps to an
ALU or a switchbox multiplexer.

2.3.7 Kilocore KC256

Kilocore is a reconfigurable computing device comprised of two main compo-
nents: (1) a PE array and (2) a peripheral called “wrapper” with interface
logic, controllers, and memory as shown in Figure 2.12. It uses packet-based
I/O model for exchanging operated data and configuration data with the host
computer. All packets are 32 bits wide and are preceded by header data to
identify the type of packet, destination, and other information.

The operated data can be stored up to 128 bits at the input controller
for executing in parallel and the output controller can produce up to 4 result
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packets to transfer 128 bits output data. The configuration packets are stored
in configuration cache inside the configuration controller for reconfiguring a row
of PEs within a clock when needs. The PE array consists of many rows of PEs
called “stripe” with registers between the rows, thus, it can support pipeline
execution. The interconnection network allows a PE can read data only from
some of the nearest neighbor PEs in the stripe, not all of them.

2.3.8 ADRES

ADRES (Architecture for Dynamically Reconfigurable Embedded System) in-
cludes PE array which is divided to be VLIW part and RC array part. There
are VLIW (Very Long Instruction Word) processor as the main processing unit
and a tightly coupled PE array for purpose of acceleration. The PE array is well
known as array of Reconfigurable Cells (RCs) which is optimized for data-flow
while the VLIW part is optimized for control and load/store operations. The
PE array size is 8x8 PEs which the first row was implemented as the VLIW
part connecting by using horizontal data bus as shown in the Figure 2.13.

The VLIW part includes up to eight functional units organized in a row. The
attached array is composed of several rows of RCs organized in a matrix form
implemented as orthogonal interconnection network. The RCs at VLIW part do
not provide the register file while other include register file (RF). Data exchange
with external memory is through the default path of the VLIW processor. There
are global buses for each row or column which allows a RC can get input data
directly from each of its horizontal or vertical neighbors.

2.3.9 PCA

The Plastic Cell Architecture (PCA) is a special class of dynamically reconfig-
urable devices each of whose basic cell can be reconfigured individually. The
device has a uniform array structure of basic cells called “PCA Cells”, which
work independently to realize distributed processing. It includes “Plastic Parts”
and “Built-in Part” respectively as shown in Figure 2.14.

The plastic part consists of basic cells as shown in Figure 2.15. It has an
ALU and a register surrounded by wires and multiplexers. Each basic cell is
connected to four-direction neighbor cells via multiplexers located in four side
of the basic cell.

The built-in part controls data flow and reconfiguration of the plastic parts
inside or outside of the cell. It accepts commands from the accompanied plastic
part or other cells. Each PCA cell is connected to the neighbor cells and this
provides scalability of a PCA device. With self-reconfiguration, PCA can create,
copy, or delete circuit modules to perform flexible and adaptive processing.

The possible architecture parameters include reconfigurable resource in each
basic cell (ALUs with various input word length and supported operations),
wire resources in the array (structure and bandwidth), and mechanism for con-
figuration delivery.
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2.4 Survey on retargetable compilers

Generation of configuration data costs large man-hours without any develop-
ment tools dedicated for the architecture. Retargetability is important for a
compiler or synthesis tool used for architecture exploration. The recent compil-
ers or synthesis tools for reconfigurable devices are developed and targeted only
for a specific architecture, they do not suit for a use of developing new reconfig-
urable architecture. A architecture designer must spend a lot of time to create
a compiler for each architecture and modify the compiler when the architecture
is re-designed. The design time can be saved by using a retargetable which can
customize the target architecture.

Even, there are many reconfigurable architectures have been proposed, there
are only a few works on the retargetable compiler. Many researches tend to
develop a compiler for only a single target architecture. This chapter shows
example of retargetable compiler for coarse-grained reconfigurable architecture.

2.4.1 DRESC compiler

IMEC develops a coarse-grained reconfigurable array called Architecture for Dy-
namically Reconfigurable Embedded Systems (ADRES) with the tools to design
an application specific processor instance based on an architecture template [5].
This enables the designer to combine an arbitrary number of functional units,
interconnects and register files.

Tool flow

Figure 2.16 depicts the proposed tool flow for architectural exploration. It
consist of basically three parts: (1) Compilation and Assembly providing binary
files and a compiled instruction level simulator, (2) Synthesis providing gate
level netlist and physical characteristics needed for power calculation and (3)
Simulation to obtain power and performance figures.

The Compile and Assemble part transforms the ANSI-C application code
into an optimized binary file. The code is first processed by the IMPACT
[6] frontend that performs various ILP optimization and transforms it into an
intermediate representation called Lcode. The DRESC2.0 compiler in Figure
2.16 reads the Lcode, performs ILP scheduling, register allocation and modulo
scheduling for CGA mode and generates the optimized DRE files. These files are
used to create a high level simulator which provides basic performance parame-
ters such as instructions per cycle (IPC). In addition, the Assembler tool creates
the binary files needed for the cycle true Esterel and ModelSim simulations.

The ADRES instance XML description is transformed into VHDL files and
is synthesized in the Synthesize part. Synopsys Physical Compiler v2004.12-
SP1 [2] is used to create the netlist for 90nm CMOS library, from which area,
capacitance and resistor values are extracted to be used multiple times.

In the Simulate part three different simulators are used. The compiled
ISA simulator (marked as A in Figure 2.16) provides the performance num-
bers.ModelSimRTL simulator is used to simulate the generated RTL VHDL
files at highest level of hardware accuracy and to obtain the switching activity
figures needed for RTL power calculations. The Esterel simulator [1] is based
on the Esterel synchronous language dedicated to control dominated reactive
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systems and models the entire ADRES instance as a state machine. The advan-
tage of the Esterel simulator is the reduction in time to simulate a benchmark
compared to ModelSim RTL simulations, as it is 8 - 12 times faster reducing
overall time by a factor of 3 - 6.5 depending on the application. In addition,
it is the behavior level reference model for the core architecture available much
earlier than the verified RTL.

Facilitated by its language, the Esterel simulator has the same structure
as the actual implementation. Thus by enhancing it with bit toggle counting
functions written in C, we are able of capturing the signal activity statistics of
almost all relevant connections. This switching activity is what an RTL HDL
simulator also generates for the power analysis tool. The match between the
generated data is established by using the same signals as defined in the XML
architecture description file.

The switching activities obtained after simulations are annotated on the gate
level design created in the synthesize part. The toggling file and the gate level
design are used by the PrimePower v2004.12-SP1 of Synopsys [2] to estimate
power.

Architecture exploration options

Fourteen different architectures are constructed from 7 different interconnec-
tion options as depicted in Figure 2.17. The architectures are described in the
XML architecture file, which will be used in the tool flow described earlier. The
simplest interconnection option is mesh. It creates connections between desti-
nations and sources of adjacent FUs in horizontal and vertical directions. The
mesh plus interconnection is an extension of mesh with additional connections
that routes over the neighboring FUs. The reg con1 and reg con2 options create
diagonal connections between neighboring FUs and RFs. This creates additional
routing and the possibility of data sharing among FUs connecting directly to
the RFs. The difference is that reg con1 receives data from its neighbors while
reg con2 sends data to them. The extra con option offers an extra FU bypass
to enable parallel processing and routing. The enhance rf option has shared
read and write data ports from the global DRF to the vertically connected FUs.
This is beneficial for communication as the global DRF is used as communica-
tion medium in the array, however it increases power consumption due to the
frequent accesses to the global DRF. Splitting up the powerhungry DRF into
smaller, local DRFs was one of the main features of power reduction. The option
has busses determines if predicate and data busses of 1 and 32 bits wide respec-
tively are implemented in the design. By combining various interconnection
options 14 different architectures are created as noted in Table 2.5.

2.4.2 Kyoto-University’s compiler

For the retargetable compiler from Kyoto-University [9], the target architec-
ture can be customized by changing parameters to control: size of PE-Array,
number of connections between PEs, bitwidth and ALU instructions, for evalu-
ating device on PCA [12][22] platform. Given an application in C-language, the
tool automically executes data-flow analysis, technology mapping, and layout
synthesis.
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Table 2.5: Architectural exploration selection options

Architecture mesh mesh reg reg extra enhance has
plus con1 con2 con RF busses

mesh X
mesh plus X X
xtra con X X X
reg con1 X X X
reg con2 X X X

reg con all X X X X
enh rf X X X
busses X X X
arch 1 X X X X X
arch 2 X X X X X
arch 3 X X X X
arch 4 X X X X

all X X X X X X X
ref X X X X X X

To enable description of applications easy, it is desired to support high-level
language (such as C) for source code of compilation. Figure 2.18 shows a pro-
cessing flow of proposed compiler. Input of the compiler is simplified C language
that does not support all the C grammar. The compiler first converts a given
C code to “GCC Tree” expression using a frontend of GNU Compiler Collec-
tion version 4.0 (GCC-4.0). The GCC Tree, which is intermediate expression
used inside GCC, represents syntax trees of an input C code and architecture-
independent optimizations are performed on the GCC Tree. Next, the compiler
generates a Data Flow Graph (DFG), which represents a flow and dependency
of data and control, from the GCC Tree. Then nodes in the DFG are assigned
to ALUs to generate a netlist of ALUs. Finally, all the ALUs are placed and
routed according to the netlist and configuration data is generated.

2.5 Summary

This Chapter shows survey of the coarse-grained dynamically reconfigurable
architectures, which are the target architectures of this thesis. The configuration
data structures are different cause by the differents reconfigurable resources on
the architectures. It must be generated to evaluate those architectures on real
applications at design time.

The retargetable compilers can generate configuration data for many target
architectures by changing paramters and options. However, the flexibility is
limited within the available options. For developing brand new architectures, the
compiler must be modified to support the new design in architecture exploration.
This is the reason why many researches tend to develop a compiler for only a
single target architecture.
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Figure 2.9: FE-GA structure
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Figure 2.10: XPP-64 structure

Figure 2.11: D-Fabrix structure
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Figure 2.12: Kilocore structure

Figure 2.13: ADRES structure
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Figure 2.14: Array structure of PCA

Figure 2.15: A structure of a basic cell
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Figure 2.16: Overview of tool flow
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Figure 2.17: Interconnection options for architectural experiments

Figure 2.18: Overview of compile flow
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Chapter 3

The GCI representation
model

The target architectures can be customized by changing the providing parame-
ters and options. For developping brand new architectures, the compiler must
be modified to support the new design in architecture exploration.

We need standard model to represent different target architectures without
changing the retargetable compiler itself. This chapter describes about the
representation model used in this research and shows case study of using the
model to represent different target architectures.

3.1 Approach

In order to propose the standard model, we must start from considering the
requirement of representation model used for mapping application:

• In order to map application into target architecture, the compiler must
generate configuration data to control reconfigurable resources on the
device. The different resources are controlled by different configuration
codes. The representation model must include all selectable configuration
codes of the target architecture for generating the configuration data.

• The mapping process can be divided to be placement and routing. The
computations are placed into the architecture by selecting a corresponding
configuration code at functional units. Many routing algorithms requires
the information of interconnection structure in form of directed graph
which represents selectable links to perform datapath between the func-
tional units.

• The different reconfigurable architectures have different hardware restric-
tions. For example, the number of computations is always limilted by the
number of sharing hardware resources, thus, all reconfigurable units can
not be configured to use the same hardware in parallel. The representing
model must represent the restriction inside the target architecture.

By combining all of those requirements, I have an idea to represent the target
architecture by using directed graph directly. The selectable configuration codes
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and restriction to control hardware conflict are also added into the graph. Thus,
the representation graph is called Graph with Configuration Information (GCI).

Hardware

Configuration Data

GCI

01010010010010010010010010010100101
10100101001010001001010010101010101
01010010101010101010010101110101001
01010101010101010101010010101010101
01010110101010101010101000101010101
11010101010101011101010010101000010

Representing

Control

Generate

Configuration Code

Figure 3.1: The relationship between hardware, GCI, and configuration data

Figure 3.2 shows the relationship between hardware, GCI, and configura-
tion data. The hardware or target reconfigurable architecture is controlled by
configuration data to change computaional or interconnection functions. The
configuration data is a collection of configuration codes to select the diffrent
functions. The bits length of the code can be vary depended on the number
of selectable functions. For example, 2 configuration bits can be used to select
4 different functions, and 3 configuration bits can be used to select 8 different
functions. In this research, both interconnection structure and selectable con-
figuration codes of the target architecture are represented by the GCI graph
in the same time. And, the configuration data can be generated by mapping
application on the GCI.

3.2 Graph with configuration information

The GCI is directed graph consisting of nodes and links. The node is used to
represent where configuration code can be changed in the configuration data
to control the hardware function. The link is used to represent interconnec-
tion structure between the nodes where direction of transferred data can be
changed. Thus, some nodes are used to represent only reconfigurability without
connecting to the other nodes.

The directed links can be classified to be input link and output link. The
input links are fixed at a node to represent all selectable configuration codes
as shown in Figure 3.2(a). The configuration code, which is a collection of
logic bits 1 and 0, is attached at each input link. Since only an input link
must be selected at configuration data when mapping application, a node tends
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Figure 3.2: Example of GCI nodes (a) a node with 3 selectable configuration
codes, (b) a node which selected a configuration code by disabling the other 4
input links and a control link to disable input links at the other node

to broadcast the same data to all output links corresponding to the selecting
function. The un-selected input links are marked as disabled input links at the
same node as shown in Figure 3.2(b).

3.3 Disable configuration testing

In order to embed the whole information of the target architecture into GCI, the
restriction of the target architecture must be represented. We can add flexibility
to represent the restriction by allowing selecting an input link to disable input
links at the other nodes. It can be shown in the graph by using control link to
connect source node and target node as shown in Figure 3.2(b). Each control
link sends information whose input links of the target node are disabled. This
information is depending on the selected input link of the source node. A control
link is activated when an input link of the source node is selected temporarily
and the corresponding inputs of the target node are disabled. A target node
can be controlled by multiple source nodes. When multiple control links are
activated, only control information which results at least one enabled input at
the target node is accepted, otherwise, the selection of some source nodes must
be canceled. Note that, the disabled link can not be used for placement or
routing, thus, the target node must select an enabled input for generating the
configuration data. In order to make the above explanation become clear, we
define three Disabling Configuration Testing (DisCounT) rules to control every
node in the GCI as followed:

• When a node selects an input link (by placement or routing), the other
input links must be disabled by the node itself. This rule allows selecting
only one input link at a node for generating configuration data.
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• When a node selects an input link, it can send control information to
disable input links at the other nodes. It can be applied to represent the
hardware restriction of a target architecture. The examples will be shown
on case study later.

• Since a target node can be controlled by multiple source nodes, there is a
rule to avoid the situation that all input links at a node become disabled.
At least one input link must be enabled.

3.4 Case study

Here, as a case study, an example of representing a dynamically reconfigurable
processor called MuCCRA (Multi-Core Configurable Reconfigurable Architec-
ture) based on the GCI is shown. Since MuCCRA is designed for investigating
an optimized structure of DRPA for a given application, several prototypes with
different structures have been designed. Three different MuCCRA structures:
MuCCRA-1, MuCCRA-2 and MuCCRA-D are treated as targets shown in Ta-
ble 3.1. Although the same size of array (4x4 PEs) is used in all architectures,
the bit-width, number of contexts, interconnection structure, and configuration
data structure are different.

Table 3.1: The difference between MuCCRA-1, MuCCRA-2 and MuCCRA-D

MuCCRA-1 MuCCRA-2 MuCCRA-D
Bit-width 24 bits 16 bits 24 bits
Contexts 64 16 64

Heterogeneous: Homogeneous: Homogeneous:
PE structure including All PE provides All PE provides

Multiplier PE a Multiplier a Multiplier
Interconnection 2 bi-direction 3 bi-direction NN-network

Process Rohm’s 0.18um ASPLA’s 90nm Rohm’s 0.18um

3.4.1 Overview of MuCCRA project

The object of MuCCRA project is to develop a design methodology and frame-
work which generate various types of DRPAs easily by selecting the specific
parameters.

As shown in Figure 3.3, the final goal is evaluating the target customized
architecture on both timing analysis and RTL simulation. It starts by reading
architectural parameter file, and generates the Verilog-HDL descriptions of DR-
PAs. The fundamental DRPA architecture template is fixed, and the designers
can generate their desired DRPAs by controlling parameters described in the
parameter file. A simple test bench is generated for simulating the target ar-
chitecture immediately. At the same time, architectural description file for a
retargetable compiler called Black-Diamond which generates configuration data
from C-like language is also created. Now, the generator can only generate a
single core DRPA which can be used as an element of multi-core systems.
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Figure 3.3: MuCCRA design environment

3.4.2 MuCCRA architectures

The basic building unit of MuCCRA architecture is a Processing Element (PE).
The PE array structure of MuCRRA is parametrized by the size of PE array,
bitwidth of data transferred between PEs, number of hardware contexts, se-
lectable operations at each functional unit, and PE structure can be flexibly
defined. Like a lot of existing DRPA devices, a data manipulator called Shift &
Mask Unit (SMU), an Arithmetic Logic Unit (ALU), and a Register File Unit
(RFU) are provided on PE as shown in Figure 3.4. A PE can exchange data
with other PEs by surrounding global routing wires, and can exchange data
between local ALU, SMU, and RFU. The flexibility of interconnection of PE
structure can be defined with the number of selectors provided on inputs and
outputs of the functional units.

Each PE equips local context memory which provides multiple sets of config-
uration data to control ALU, SMU, RFU, and interconnection. Context Switch-
ing Controller (CSC) broadcasts a context pointer to all PEs and a context is
read out from the context memory according to the context pointer. This type
of dynamic reconfiguration is called a multicontext scheme, and a lot of cur-
rent devices support it. Since the number of contexts at the context memory
is limited by area of silicon die, the configuration data which cannot be stored
in the context memory is stored in the central configuration memory, and dis-
tributed to unused area of each context memory during the execution. This
mechanism, called the virtual hardware, has been proposed and researched long
time but rarely implemented in real chips. However, all MuCCRA chips pro-
vide this mechanism, and application which requires exceeded contexts number
can be executed. For high speed configuration data distribution, a multicast
mechanism called RoMultiC [31] is adopted.
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Figure 3.4: PE structure in MuCCRA architecture

MuCCRA-1

The first prototype, MuCCRA-1, was designed with Rohm’s 0.18um process,
and implemented on 5-mm square die with 189 I/O pads. An island-style in-
terconnection structure like traditional FPGAs is adopted in MuCCRA-1 and
MuCCRA-2. As shown in Figure 3.5, an island-style 2-dimensional intercon-
nection is provided, and each PE is surrounded by programmable routing wire
segments. On the intersection of a vertical and a horizontal channel, a Switch-
ing Element (SE) is placed. The SE is a set of simple programmable switches
in which an incoming link is connected to the other SEs. Since it is designed
for multi-media processing, the bitwidth of routing channel is 24 bits. Multi-
plier modules (MULs) are provided at the edge of the PE array since each PE
does not include multiply operation, makes the PE array become hetrogeneous
structure.

MuCCRA-2

MuCCRA-2 was implemented on 2.5-mm square die with 51 I/O pads. ASPLA’s
90nm process was used. The main challenge of MuCCRA-2 is the reduction of
the die area without degrading its performance. For this purpose, the bit-width
and context size are smaller than those of MuCCRA-1. A context memory mod-
ule is shared by two PEs and four SEs on chip layout for reducing the number
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Figure 3.5: MuCCRA-1 array structure

of memory modules. On the other hand, multiply operations are provided in
all PEs, since it appeared that the number of multiplier often dominates perfor-
mance in MuCCRA-1. As a result, the array becomes a homogeneous structure.
MuCCRA-2 uses a 16 bits architecture and 16 contexts can be held in the con-
text memory. The interconnection capacity is also enchanced to improve the
utilization ratio of PEs. Three routing channels are available on MuCCRA-2,
while MuCCRA-1 has only two routing channels.

MuCCRA-D

Although the island-style adopt on MuCCRA-1 and MuCCRA-2 has an advan-
tage of flexibility on PE-to-PE connections, there are two major problems: (1)
the large delay time caused by passing multiple switches, and (2) the maximum
operating frequency is degraded by the maximum delay of longest connection
path on each context. MuCCRA-D uses direct interconnection between neigh-
boring PEs as shown in Figure 3.7 instead. A register which stores the output
data at each component before transferring to the other PEs allows MuCCRA-
D executing at high clock frequency. However, the direct interconnection has
disadvantage of taking a few cycles to transfer data to distance PEs. In order
to reduce the number of hops for transferring data to distant PEs, one rout-
ing channel is connected on both horizontal and vertical direction to the next
neighboring PE, while torus connection is available on only horizontal direction.
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The memory modules (MEMs) are connected on upper and lower side of
the PE array, and the computation flow can go both up and down direction to
exchange data between the memory modules, unlike MuCCRA-1 and MuCCRA-
2 which provide the MEM module only on lower side of the PE array.

3.5 Representing GCI structures

This section shows the representing GCI structure of each component in the
target MuCCRA architectures. First, the GCI of each component in DRPA
(SE, PE, MEM, and MUL) are constructed. Some components require adding
control links to represent hardware restriction. Next, they are connected in
the same graph to represent datapath in a context. Finally, Several duplicated
graphs of a context can be connected together to form a large GCI to represent
entire of the multicontext architecture.

3.5.1 Representing each component of DRPA

The GCI structure to represent each component is constructed only by nodes
and links. There are nodes to represent input ports and output ports of the
components. It is used to connect with the other components to form a large
GCI structure of a context.
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GCI structure of SE

MuCCRA-1 and MuCCRA-2 use island-style interconnection structure to ex-
change data between PEs. The network can be constructed by connecting the
SEs together. The SE can route data in 4 directions (NEWS) based on cross-bar
connection without loop back to the input direction as shown in Figure 3.8.

A set of cross-bar connection controls routing data in a routing channel (4
directions) and multiple sets of cross-bar connection can be implemented on a
SE. Figure 3.8(a) shows GCI structure of SE for only a routing channel. The
number of routing channels can be increased by adding duplicated structure for
another routing channel as shown in Figure 3.8(b).

GCI structure of PE

The island-style interconnection is adopted in MuCCRA-1 and MuCCRA-2. For
island-style interconnection, each PE provides “Pickin” and “Pickout” nodes for
exchanging data with the surrounding global routing wires. Figure 3.9(a) shows
abstract GCI structure of PE surrounding by one bi-directional routing channel.
Two sets of pickin and pickout nodes are used for the forward and backward
directions. There are 3 FUs inside PE with 1 input port and 1 output port
represented by nodes. The input nodes can receive data from output nodes of
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Figure 3.8: Representing GCI of SE ((a) 1 routing channel, (b) 2 routing chan-
nels)

the other FUs or input data from the “Pickin” node. The “Pickout” nodes are
broadcasted by output data from all FUs and data from SE for passing to the
opposite SE (upper horizontal routing channels).

Unlike island-style interconnection adopted in MuCCRA-1 and MuCCRA-
2, MuCCRA-D [13] architecture uses Nearest Neighbor interconnection (NN-
network) in order to transfer data between the PEs quickly. There are 3 bi-
directional routing channels in 4 directions (NEWS) for transferring data from
each FU to the next PEs. Note that, the input and output nodes of each FUs
are connected to every nodes at PE boundary, but the links are omitted in the
Figure since it is difficult to see.

GCI structure of functional unit and constant unit

Both ALU and SMU are functional units, but the different is that there is
a constant unit in SMU. Normally, the constant unit is a register for storing
constant data loaded at configuration. It is used in SMU computation, for
example shifting input data with a certain number of bits or masking input data
using logic AND with the constant data. The GCI representation of functional
unit and constant unit can be shown as Figure 3.10.

Figure 3.10(a) shows the representation of an FU with four operations. The
input port A and B receive data from the other FUs or the network. Each
input link has configuration code for selecting the input data, thus, it is used
as a control information of input functions. Here, four operations of the FU
are represented with 2 bits. Fixing the operation is done by disabling the other
un-selected operation codes.

The constant unit to store constant data loading from configuration data
can be represented by using a node. Figure 3.10(b) shows the representation of
constant unit to stored 3 bits constant data. There are 8 input links associated
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nection, and (b) for NN-network)

with a constant data, and selecting one of them is deciding constant data. Note
that, in practical, the constant node is implemented by storing number of bits
of the constant data rather than adding real input links since 65,536 input links
are required for 16 bits constant data.

GCI structure of MUL and MEM

The GCI structure of multiply unit (MUL), which is available only on MuCCRA-
1, is shown in Figure 3.11(a). It receives 2 input data selected from “Pickin”
nodes and the multiply result is broadcasted from “Output” node to all “Pick-
out” nodes.

Figure 3.11(b) shows a GCI structure of memory module using in both
MuCCRA-1 and MuCCRA-2. It is 2 ports memory which can read data from 2
addresses in parallel. The input addresses can be selected at “In A” and “In B”
nodes, then the reading data are broadcasted from “Out A” and “Out B” nodes
to all “Pickout” nodes respectively. For writing data selected at the “In Data”
node, an input link corresponding to configuration code “1” must be selected
at “W/E” node, and the data is written to the input address at port A.

In MuCCRA-D, there are the same GCI structure of MEM modules at upper
and lower of PE array as shown in Figure 3.11(c). It is 2 ports memory connected
to 2 PEs in different columns in order to reading data from the different ports
in parallel. When an input link “1” is selected at the “W/E” node for writing
data, an input link at “Select Data” node must be also selected to indicate that
the input data at “In A” or “In B” nodes is written data or written address.

3.5.2 Constructing a context

After constructing each component on the target architecture, a large GCI struc-
ture to represent a context can be constructed by connecting all components

34



FU

+ - & |

Node

Node Node

Output

A B

(a) (b)

Node

000

001

010

011

100

101

110

111

Constant

00 01 10 11

00 01 10 00 01 10

Figure 3.10: (a) Operation node, and (b) Constant node (the dash links are not
actual connected in the graph because it is not necessary to transfer data from
any existing node)

together. Note that, the numbers of “Pickin” and “Pickout” nodes are different
from the previous abstract GCI structures.

The GCI structure of a context in MuCCRA-1 can be constructed by con-
necting PE and SE to form the island-style interconnection as shown in Figure
3.12. The pickout node of each routing channel can select input from SE or the
components inside PE and pass data to the next SE. Then, the MUL module is
connected to SEs on the leftmost side of PE array. Finally, the MEM module
is connected to the lowest SEs of PE array.

The GCI structure of PE array in MuCCRA-2 is also constructed by connect-
ing the pickout node inside PE to each routing channel at SE as MuCCRA-1.
There are 3 routing channel on MuCCRA-2 and the connection can be shown
as Figure 3.13. For the MEM modules, only 2 routing channels of the lowest
row of SEs are connected to the pickout nodes in MEM module and the rest
routing channel is connected directly to the next SE.

In MuCCRA-D, the PEs are connected together to form GCI structure of
a context as shown in Figure 3.14. The MEM modules can be connected at
upper and lower of PE array. Note that, the torus links and bypass links are
not shown in the Figure.

3.5.3 Constructing entire architecutre

Since the MuCCRA architectures have several context memories to store and
execute a context in a clock, the same GCI structures are used to represent
configuration on each context. They are connected by adding links between the
nodes in different contexts as shown in Figure 3.15. The nodes for transferring
data to the next context is called “write nodes” and the nodes for receiving data

35



MUL
Output

Pickin

Pickout

Pickout

Pickout

MEM
Out A Out B

In A

In B

In Data W/E

Pickin

In A In B

Select Data W/E

MEM Out BOut A

(a)

(b)

(c)

In A

In B

0 1

0 1 0 1

Figure 3.11: GCI structures of (a) MUL module, (b) and (c) MEM modules

from the previous context is called “read node”. They are implemented to be
register components which always transfer data to the next context like register
“REG-1”, or which has configuration codes to enable writing like register “REG-
2”. The link from read node to write is used for holding data from the previous
context when the write enable bits is set to be “0”.

3.5.4 Adding hardware restriction

In order to map application into target architecture, the placement process
assigns computational operation to functional units, and the routing process se-
lect configuration codes in order to transfer the computational data. However,
some components include hardware restriction which must be controlled in pro-
gram code of traditional retargetable compiler. The GCI supports to control
the hardware restriction during placement and routing by just adding control
information between the nodes. The examples are shown as below:

Hardware restriction on RFU

A register file is a common component of DRPA, and often consisting of two-
port structure, that is, port A can be used for both reading and writing, but
port B is only for reading. In this case, when port A is used for writing data,
it cannot be used for reading simultaneously except that the reading address
and writing address are the same. Figure 3.16 shows GCI representation of
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a two-port register file with four register entries. Each register is consisting
of read node for receiving data from the previous context and write node for
transferring data to the next context. A register address for reading data at
output B can be generated corresponding to the configuration bits of a selected
input link directly. However, the register address at output A must be used for
both reading and writing. The shaded node (named “DisCounT”) is used to
generate the address instead of the output port A. If input from “R3” is selected
at the “Output A” node, the control link disables all virtual links other than
R3 at the “DisCounT” node. In this case, only a control link from “Write”
node corresponding to R3 is acceptable. With the similar manner, it is found
from the graph that connections are allowed only when the register selected at
“Output A” node and the register address of “Write” node are the same.

Hardware restriction on SE

In MuCCRA-2, the fully routing capability is not allowed for reducing the num-
ber of bits in configuration data, and only the switching patterns shown in the
Table 3.2 are allowed. Five bits configuration codes can be used for each channel
instead of 8 bits to control selecting output data of 4 directions.

The no,so,eo, and wo are output ports and the ni,si,ei, and wi are input
ports. There is a register at the north direction to store input data before
transferring to east and west direction to avoid combinatorial loop in the inter-
connection network. The ni is write node to transfer input data to read node
(“nR”) of the next context. The configuration code 00000 is used in the case
that no input to be routed by sending zero value instead to save energy.
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The corresponding GCI is shown in Figure 3.17. The shaded nodes (“SW0”,
“SW1”, and “SW2”) are used to generate configuration data of the combination
of routing for each channel as shown in the Table 3.2. The connecting path can
be established from input to output if there is still one or more enable inputs
after the output sends control information to disable the other input links at
the shaded node.

Hardware restriction on PE

The PE of MuCCRA-1 can transfer output data from ALU, SMU, and RFU
to 2 bi-directional routing channels by using 4 “Pickout” nodes. Each node
is controlled by 2 bits configuration code to select data from the PE or pass
SE data, making 8 bits to control the pickout unit. For the pickout unit of
MuCCRA-2, a pair of “Pickout” nodes to transfer forward and backward data
in each routing channel are controlled by 3 bits configuration code. A shaded
node is added into GCI graph for selecting the different 3 bits configuration code
controlled by control information from each pair of pickout nodes, like in the
case of SE as shown in Figure 3.13. Thus, it requires 9 bits to control pickout
of 3 routing channels instead of 12 bits.

The MuCCRA-2 has carry network separated from the island-style data
network. The carry network can transfer carry signal to the north, east, and west
neighboring PEs as shown by dashed lines in Figure 3.6. The GCI structure of
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carry network can be shown as Figure 3.18. There are pickin and pickout nodes
for transferring carry signal to the next PEs. The pickin nodes can select output
carry from functional units inside the PE and send control informations to the
shaded node to select a corrsponding configuration code. 3 bits configuration
data for controlling 3 output nodes can be reduced to be 2 bits configuration
code at the shaded node. Note that, the input links at shaded node are omitted
in the Figure.

Hardware restriction on ALU

The GCI structure of ALU in MuCCRA-2 can be shown as Figure 3.19. Some
operations are limited in order to pass data from “Carry In” to output directly
without any computation. So, an “Operation” node for selecting the operation
codes is controlled by the link from the node “Carry Out”.

Hardware restriction on SMU

The GCI structure of SMU in MuCCRA-2 can be shown as Figure 3.20. Four
shaded nodes are used to represent two types of operation code. In order to
avoid the redundancy in configuration code, SMU uses two modes of operations:
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“Short-Constant” with 6 bits operation code and 14 bits constant value, and
“Long-Constant” with 4 bits operation code and 16 bits constant value. A pair
of shaded node is used for selecting one from two modes. In this case, the input
which generates an empty string (NULL) is enabled when the corresponding
mode is not selected, and thus, all other input links are disabled in the shaded
node. Note that, in practical, there is special control information to disable
generating configuration code at the shaded node rather that disable the real
input links.

Hardware restriction on RFU of MuCCRA-2

Since the MuCCRA-2 architecture includes carry network, the RFU can also
select writting carry signal independent from the writting data. The data se-
lector and carry selector require 3 bits configuration codes to control (6 bits in
total), and it can be reduced to be 4 bits at the shaded node “W/E” as shown
in Figure 3.21.

The duplicated set of register and output node are added into the GCI
structure for the carry signal. The shaded nodes “Address A” and “Address B”
are added in the graph for generating configuration codes to read data from the
same register number of data and carry. With the same manner as commond
two-port register file, the configuration code of port A indicates a written register
of both data and carry signal. Every write port transfers control information to
select a configuration code which is corrsponding to the written register number,
thus, writting data and carry to the same register number is acceptable. Note
that, the input links at shaded node are omitted in the Figure.
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3.6 Summary

The GCI includes all possible configuration codes on the target architecture. It
can be used to represent functional unit, constant unit, interconnection struc-
ture, and register file which are important components of DRPA. Since registers
component can be represented in GCI as links between contexts, the intermedi-
ate data transferred to other contexts can be routed as well as routing connec-
tions in the same context.

In order to fix a selecting configuration code at a node, the other input links
must be disabled. The restriction in hardware can be represented by adding
control information into the GCI to disable input links at the other nodes, and
there are 3 DisCounT rules to control every node during placement and routing.
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Table 3.2: Routing table of SE in MuCCRA-2

Configuration Output
Code no so eo wo
00000 – – – –
00001 si ni wi ei
00010 si ei wi NR
00011 si wi NR ei
00100 ei ni NR ei
00101 ei ni si ei
00110 ei ni wi si
00111 ei ni wi ei
01000 ei ei NR ei
01001 ei ei si ei
01010 ei ei wi ei
01011 ei wi NR si
01100 ei wi NR ei
01101 ei wi si NR
01110 ei wi si ei
01111 ei wi wi ei
10000 wi ni si ei
10001 wi ni wi NR
10010 wi ni wi si
10011 wi ni wi ei
10100 wi ei NR si
10101 wi ei si NR
10110 wi ei wi NR
10111 wi ei wi si
11000 wi ei wi ei
11001 wi wi wi NR
11010 wi wi wi si
11011 wi wi wi ei
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Chapter 4

A retargetable compiler
using GCI

A simple retargetable compiler called Black-Diamond was developped by using
the GCI to represent a target architecture. Now, it can generate configura-
tion data of three different models of DRPA; MuCCRA-1, MuCCRA-2 and
MuCCRA-D.

4.1 Black-Diamond compiler

The flow of compilation is shown in Figure 4.1. Although common placement
and routing algorithms used for FPGAs can be applied on the GCI, we adopt
the simplest method in order to develop the retargetable compiler as quick as
possible by making the best use of the characteristics of the GCI.

Source Code File

Parser

Placement & Routing

Generating Configuration Data

Configuration Data File

Text File

Operation Flow

Text File

Net-List

Reading Library Files

Text Files

Figure 4.1: Compile flow of the Black-Diamond Compiler
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The target application is described in a C-like language as shown in Figure
4.2. After giving source code file into the compiler, library file corresponding to
the header file name in the source code is read out. It is consisting of GCI and
library functions to be placed in the target architecture. Once the application
is mapped into the architecture, the compiler generates configuration data in
the text format as output.

4.1.1 Front-end language

#include <MuCCRA_1.h>
//#include <MuCCRA_2.h>
//#include <MuCCRA_D.h>

int address = 0;
int data,constant;
int branch_back = (0 - 2);  //  for MuCCRA_1,2
//int branch_back = (0 - 8);  //  for MuCCRA_D

[@5] call [ address ] REGISTER4 ( address );

$  //  Context dividing

call [ ] FETCH_MEM0A ( address );

//  assigned "3" at constant field
call [constant] ASSIGN <3> ();
//  equal to "call [int increase] ASSIGN <1> ();"
int increase = 1;

$  //  Context dividing

call [ data ] READ_MEM0A ( );
calculate data = data << constant;
call [ ] WRITE_MEM1 ( address , data );
calculate address = address + increase;

//  for MuCCRA_1,2
[@ "PE_11"] call [ address ] REGISTER4 ( address );
//  for MuCCRA_D
//[@ "PE_10",2] call [ address ] REGISTER4 ( address );

call [] BRANCH_CONTEXT (branch_back);  //  for MuCCRA_1,2
//[@12] call [] BRANCH_CONTEXT (branch_back);  //  for MuCCRA_D

1

3

4

5

2

Figure 4.2: An example input source code ((1) header file for indicating target
architecture name, (2 and 5) register used in looping, (3) giving reading address
to memory, and (4) reading data from memory in the next context)

The parser used to translate the input source code to a data flow graph is
developed by using LEX & YACC [3] in Linux. The data flow graph represents
dependency by connecting the nodes corresponding to computations (library
functions) used in the application. The output node of an function is linked
to connect input node of the other functions by using a variable. The same
variable name can be used to connect many different pairs of source and sink
nodes depending on the last return value from the library function.

There are 3 parameter fields to call a function: output field (in front of
function name), input field (behind function name), and constant field (between
function name and input field if needed). The output field can return multiple
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variables since pointers and structures are not allowed, and the input field can
receive multiple variables to link the returning data from other functions. The
constant field is provided to assign the given constant values to constant nodes
where the function is placed.

4.1.2 Architecture description language

A target architecture can be declared in the header of the input source code
file. Similar to the header file of common C language, it consists of prototype
functions which are interface to call functions in a library file. Normally, the
hader file has “.h” extension and the same file name with “.lib” extension is read
out as the library file. In Black-Diamond compiler, the header file is declared
with the same name as the target architecture for loading library file to describe
the architecture.

The content inside library is written as a human readable description lan-
guage. It can be divided into three parts: (1) constructing GCI graph, (2)
definding library functions which can be called in the source code, and (3) gen-
erating output configuration data file.

Constructing GCI graph

In order to construct the GCI graph, first, template nodes with different config-
uration codes are definded. Each configuration code is considered as an input
link which can be selected for generating configuration data or connected to
another node for routing data when the template node is added into each ele-
ment as a real node. Since the PE array of target architecture is constructed
by connecting many elements which have the same configuration structures, the
same type elements (PEs, SEs, MULs, and MEMs) use the same group of tem-
plate nodes to construct GCI structure. There are descriptions to add control
information to disable input links at the other nodes when some input links are
selected for representing hardware restriction of the target architecture.

The multicontext architecture can become target of Black-Diamond com-
piler. It requires a large GCI graph to represent every context. However, only
a context is definded as template in the library file for constructing every con-
texts. Some nodes are declared to be read node and write node for adding links
between the nodes in different contexts to represent registers.

Definding library functions

For mapping application into the target architecture, the compiler must know
information where to place the calling library functions into functional units at
each element. Since the functional unit is represented by nodes, each function
tends to indicate: (1) input nodes as target of routing data returned from the
other functions, (2) nodes to select an input link corresponding to the compu-
tation of function, (3) constant nodes to assign constant value from the input
source code, and (4) output nodes as source of routing data transferred to the
other functions. When the function is called, the number of input variables,
output variables, and constant values must be matched to the number of nodes.
The prototype of each function is available at the header file for reference.
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Generating configuration data

From the results of placement and routing in the GCI, the configuration data
can be directly generated by just combining the configuration bits of a selected
input link at each node in a specific order. If the target component is not used,
the node must select an input link associated with a default configuration code
to fulfill entire code of the configuration data.

The configuration data can be generated in order to enable multicast for
reducing the number of configuration clock cycles. The multicast mechanism
called RoMultiC [31] is adopted in all MuCCRA architectures, and the dupli-
cated configuration data found in the different elements can be configured in
parallel by using bitmap pattern. The node which does not select input link
during the placement and routing can become the same selection as in another
element to reduce the number of configuration clock cycles. The effective way
to generate the bitmap pattern can be found in [30].

4.2 Mapping application

After giving source code, the compiler maps the application and generate con-
figuration data for a target architecture corresponding to the header file. The
mapping process can be divided to be placement and routing.

4.2.1 Placement algorithm

In order to map application into the architecture represented in GCI, the ap-
plication is translated into a directed graph representing the data flow between
computational nodes called data-flow graph as shown in Figure 4.3. The com-
putational node is corresponding to the library function to fix configuration at
the target placement (ex. ALU, SMU, or MEM). The input source code may
consist of user function which is the collection of library functions, however, it
must be translated to be the sequence of library functions. From this point, the
word “function” means only the library function.

The function has a list of nodes in different types; output nodes, input nodes,
constant nodes, and fixed nodes. The output and input nodes are source and
sink nodes to be connected to form the datapath in the data-flow graph. Some
functions such as initial constant data (assignment function) or shifting function
requires constant value assignment. The constant node is used to indicate the
node to be assigned the value. The fixed node is configured to select an input
link corresponding to the computation.

In the target architecture, there are many possible elements to place a func-
tion. The possible target placement is called target element as shown in Figure
4.4. It is a group of nodes to be referred by the existing node types in the
function. In this example, the target architecture has 4 target elements (FUs)
consisting of 7 nodes. The list of FUs is attached to the function in order to find
possible placement solution. At the output node of FU, there is an input from
the read node of register. With the same manner as in the ALU of MuCCRA-2
architecture, when the output data is routed from the register, the control link
disables all input links except “10” at the “OPERATION” node. The selection
at “OPERATION” node of lower right FU is set without placing any function
by routing data “A” from the previous context.
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Figure 4.3: Data-flow graph

Here, a placement position is obtained from a simple greedy algorithm shown
in Figure 4.5. Since the GCI applies hardware restriction, some input links are
disabled by the first or second DisCounT rules after the placement. Thus, the
order of calling function becomes important. The algorithm tries to place each
function according to the list of target elements in order to route all input data
successfully. We also need to ensure that, after the fixed node selects an in-
put link and activates the control information, every node still has at least an
enable input link due to the third DisCounT rule (can active control informa-
tion), otherwise, the control information activated by placing and routing at
the target must be canceled. In usual case, each calling function is placed into
the first possible position, and the search starts from context zero by setting
“shifting value” and initialing “start context” values to be zero. Once the plac-
ing position is obtained, the fixed node activates control information due to the
first and second DisCounT rules, the constant node selects an input link corre-
sponding to the constant data, and return variable at output field of function
recognizes output node at the target element. A user can control to arrange the
placement by inserting pragma in the source code before calling function. In the
case that all target elements can not be used for a function placement, it tries
to be placed in the next context.

4.2.2 Routing algorithm

In order to find the minimum cost path for routing data in the GCI, the shortest-
path algorithm with obstacle avoidance [11] is used. The routing algorithm
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Figure 4.4: Example placing in the GCI representing a context of target archi-
tecture

shown in Figure 4.6 returns value to the placement algorithm indicating whether
there exists path from the source node to the sink node or not.

The node in GCI also has cost information to represent wire delay of the
target architecture. It is used in order to search the minimum cost path to route
data. Since each node broadcasts the same output data inputted to other nodes,
the list of input links can be the list of nodes where the input comes from. The
path from the source to sink node is found by using Breadth First Search (BFS).
The algorithm is started by adding the sink node into the searching list which
is empty when starting. If there is no source node in the list, the input node
with minimum propagation cost is added into the list. The process is repeated
until the source node is found or there is no more un-reachable input node (not
found). If there exists the connecting path, it can be obtained by backtracking
from the source node.

All nodes on the connecting path are set to select an input link related to
the backtracked input node. Since the GCI represents a constraint graph using
DisCounT nodes, the input nodes, whose can not activate control information
when the corresponding input links is selected, are not added into the searching
list. All input nodes on the connecting path become disable except the selected
routing input node by the first DisCounT rule. Thus, the input connection of
the followed calling function can share the routing path to the same source node
by using the rest enabling input links of pre-routing connection.
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Position *PLACEMENT ( start_context , shifting_value ,
                      function ) {
  FOR ( each context ; start_context to MAX_CONTEXT ) {
    FOR ( each target in function ) {
      can_place = true ;
      FOR { each input of function } {
        IF ( can not ROUTING(sink at target,source) ) {
          can_place = false ;
        }
      }
      FOR ( each fixed_node in function at target ) {
        IF ( can not active control information ) {
          can_place = false ;
        }
      }
      IF ( can_place ) {
        shifting_value = shifting_value - 1 ;
        IF ( shifting_value < 0 ) {
          return [ context , target ] ;
        }
      }
      ELSE {
        Cancel the activate control information ;
      }
    }
  }
  return [ ERROR ] ;
}

Figure 4.5: Placement algorithm

4.2.3 The example application

Figure 4.2 shows an example application for shifting all data stored in MEM0
and writing result into MEM1 at the same address. By changing the header
file declared at Figure 4.2(1), the same application can be mapped into differ-
ent target architectures. The placement of each function can be automatically
decided based on the restriction of GCI in order to route all input data to the
function. The first possible placement position is selected, however, a user can
control to place into the other positions by using the pragma.

The “@” pragma controls shifting the placement to be another position. In
the example at Figure 4.2(2), the shifting value is 5 and the following function
is placed into the sixth possible position (placing at “PE11” in MuCCRA-1 and
MuCCRA-2, and at “PE10” in MuCCRA-D due to the different interconnection
networks). If there is not possible position to place the function, it tries to find
in the next context by routing input data via register automatically since the
register is represented as link between contexts. The pragma can also control
the placement to a target element by indicating its name as shown at Figure
4.2(5).

The context looping can be performed by calling “BRANCH CONTEXT”
function to transfer negative value related to the next executed context. Even
the register can be automatically assigned to transfer data to the next context,
the current version of compiler can not automatically assign the same register
for storing data between the last context in the loop and the first context in the
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Fact *ROUTING ( sink_node , source_node ) {
  search_list -> clear () ;
  search_list -> add ( sink_node ) ;
  WHILE ( searching_list has not source_node ) {
    add_node = NULL ;
    FOR ( each node in search_list ) {
      FOR ( each input_node at the node ) {
        IF ( search_list has not input_node )
          IF ( can activate control information )
            IF ( propagation cost less than add_node )
              add_node = input_node ;
              add_node -> backtrack = node ;
      }
    }
    IF ( add_node is NULL ) {
      return [ FALSE ] ;
    }
    search_list -> add ( add_node ) ;
  }
  node = source_node ;
  WHILE ( node is not sink_node ) {
    node -> backtrack -> select ( node ) ;
    node = node -> backtrack ;
  }
  return [ TRUE ] ;
}

Figure 4.6: Routing algorithm

next iteration. The “REGISTER4” function shown in Figure 4.2(2) and 4.2(5)
is used to ensure that the register for holding the counting value “address”
at the last context and reading at the first context in the loop are the same.
Otherwise, the routing algorithm assigns register based on the minimum cost
path.

In many architectures, the PE array can read data from memory module
with a clock delay. The reading address is sent, and the reading data can be
available in the next context since the multicontext architecture can switch
context within a clock. A user can insert “$” pragma between the function
“FETCH MEM0A” and “READ MEM0A” to start placing the following func-
tion in the next context.

The interconnection architecture of MuCCRA-1 and MuCCRA-2 is almost
the same, but different style is adopted in MuCCRA-D. Thus, 3 contexts are
used in the MuCCRA-1 and MuCCRA-2, while 9 contexts are used in the
MuCCRA-D. In the case of MuCCRA-D, different set of pragmas which is com-
mented out in the source code is used. By activating these lines, the code can
be used for MuCCRA-D.

4.3 Graphic user interface

Mapping of application onto the PE array can be controlled by the user in
Black-Diamond compiler. As the initial placement, it maps functions to the
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first possible target elements automatically. However, the user may want to
arrange the placement manually, for example, in order to reduce the loading
configuration time in RoMultiC scheme or increasing usage of PE in a context.
In this case, the user can insert pragmas in the source code to control the
placement.

Figure 4.7: Screen shot of the Black-Diamond Compiler

For such cases, Black-Diamond supports Graphic User Interface (GUI) to
show the placement and routing graphically. An example is shown in Figure
4.7. The target architecture is shown in 3-dimensional graphic. It can show
the list of functions placed in each context with the same variable name in the
source code. There is a pointer to show the node of function in the target placed
element corresponding to each variable at the parameter fields. By selecting
input link, the routed path is highlighted in the picture, so, the user can easily
trace the path. This GUI is also helpful for debugging.

4.4 Designs using the retargetable compiler

It is difficult to demonstrate the benefit of the retargetable compiler, that is,
how it can treat various target architectures easily. By using the GCI, Black-
Diamond can treat three different types of DRPAs: MuCCRA-1, MuCCRA-2
and MuCCRA-D.
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4.4.1 Evaluated applications

Black-Diamond can generate configuration data for all architectures just by
changing the header file. Here, application implementation examples on three
architectures are shown. Since the purpose of MuCCRA architectures here is
slightly different from each other, implemented applications are not always the
same. Five applications are used here for evaluation: Alpha-Blender combines
two input images depending on a constant alpha. Three pairs of color data
(RGB) can be combined in parallel. Discrete Cosine Transform (DCT) is a
part of JPEG coder, and treats 8 × 8 image matrices. First, 1 dimentional
DCT is computed in the row direction, then the similar computation is done
to the transposed matrix. Thus, it is consisting of two processes: 1D-DCT and
transpose. Contrast is “Histogram Equalization” used to enhance contrast of
input image. It includes two iterations, one is for uniforming the histogram and
the other is for replacing color. Secure Hash Algorithm (SHA-1) is required
in the Digital Signature Standard (DSS). It is computationally infeasible to
find two different messages which produce the same message digest. Viterbi
algorithm is widely used to enhances the performance of digital communication
systems by providing error correction over a noisy channel. The algorithm
receives bits stream as input data and computes several path metrics in parallel
to obtain the corrected bits stream data as output.

4.4.2 Mapping results

Table 4.1, 4.2, and 4.3 show the required contexts, maximum clock frequency
and execution time. The clock frequency of MuCCRA-2 is higher than those
of MuCCRA-1, since it is designed with the advanced process. In MuCCRA-D,
there is a register to store data before transferring it to other PEs, thus, all
applications are executed in the same clock frequency.

Table 4.1: Mapping and execution results on MuCCRA-1

Application Contexts Clk Exe. time
Alpha-Blender 6 38MHz 6682nsec
DCT:1D-DCT 12 27MHz 3240nsec
DCT:Transpose 6 45MHz 924nsec

SHA1 12 20MHz 20900nsec
Viterbi 22 31MHz 15040nsec

Table 4.2: Mapping and execution results on MuCCRA-2

Application Contexts Clk Exe. time
Alpha-Blender 5 90MHz 5643nsec

Contrast 11 76MHz 5057nsec
DCT:1D-DCT 12 66MHz 1350nsec
DCT:Transpose 6 76MHz 572nsec
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Table 4.3: Mapping and execution results on MuCCRA-D

Application Contexts Clk Exe. time
Alpha-Blender 11 125MHz 7200nsec
DCT:1D-DCT 17 125MHz 928nsec
DCT:Transpose 23 125MHz 184nsec

SHA1 29 125MHz 5816nsec

The Alpha-Blender requires smaller number of contexts in MuCCRA-2 than
in MuCCRA-1 since the number of routing channels is larger. Thus, many com-
putational functions can be placed and executed in the same context even there
are limited switching patterns at the SE of MuCCRA-2 architecture. For the
DCT application, it requires the same number of contexts because the map-
pings on both architectures are almost the same. All applications mapped on
MuCCRA-D architecture require the number of contexts about 2 times com-
pared to the MuCCRA-1 and MuCCRA-2, since the interconnection structure
transfers data to only vertical and horizontal PEs So, it takes at least 2 contexts
to transfer data to diagonal PEs. However, the applications can be executed in
higher clock frequency.

The execution time of every application is superior to those from TI’s DSP
which works at 225MHz. Those results demonstrate that the practical applica-
tions can be developed by using Black-Diamond with multiple architectures.

4.4.3 Compilation time

The compilation time to map each application into the target architecture is
measured from giving input source code to generating the configuration data.
The result is measured on Intel(R) dual Core(TM) CPUs (2.40GHz) with 4096KB
cache. Table 4.4 shows the compilation time to map each application on the
MuCCRA architectures is relatively short (tens of seconds). The major reason
is that, MuCCRA is a coarse-grained architecture consisting of small number
of PEs (16 PEs). We will check the cases with larger size arrays in the next
subsection.

Table 4.4: Compilation time of mapping each application on the different target
architectures

Application MuCCRA-1 MuCCRA-2 MuCCRA-D
Alpha-Blender 0.81sec 3.39sec 3.66sec

Contrast - 23.46sec -
DCT:1D-DCT 6.83sec 25.34sec 12.38sec
DCT:Transpose 1.35sec 9.22sec 16.37sec

SHA1 4.71sec - 23.98sec
Viterbi 8.70sec - -
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4.4.4 Manual mapping and mapping without pragma

In the Black-Diamond compiler, users can control the initial placement using
pragmas. Since the compilation time is not so long, the user can make a lot
of trial placement with various initial placement. On the other hand, perfectly
manual mapping is extremely hard for the programmer. For MuCCRA-1, as
an initial programming tool, a graphic editor tool called “MuCCRA editor” is
available. In this tool, the programmer must fix the location of PEs and paths
between them graphically for all contexts.

Table 4.5: Number of context required for mapping application on different
methods on MuCCRA-1

Application Black-Diamond Manual
name with pragma without pragma mapping

Alpha-Blender 6 7 8
DCT:1D-DCT 12 19 13
DCT:Transpose 6 6 15

The table 4.5 shows the required number of contexts from three cases: the
case when the pragma is reasonably used, all pragmas are removed, and ev-
erything is completely done manually with “MuCCRA editor” [7]. Only three
applications were implemented manually, since the program using “MuCCRA
editor” takes extremely long time. The manual mapping results are not always
better than the result without pragma. Especially, it requires a large num-
ber of contexts for matrix transpose in DCT which requires complicated access
of shared memory. This type of application is hard to be treated by manual
mapping. It also appears that the initial placement by pragma can reduce the
number of contexts in some cases. So, the optimization by pragma for initial
placement in Black-Diamond gives the better results with reasonable effort.

4.4.5 Mapping on larger size arrays

Since Black-Diamond uses simple placement and routing algorithm, in the worst
case, if there are “n” target elements (count all contexts) and “m” functions to be
placed, it requires the time in term of O(nm). However, in the real application,
the target element to place function is usually found in only 1 or 2 contexts
distance in a target architecture with reasonable amount of routing resources.
Table 4.6 shows compilation time of mapping Alpha-Blender on MuCCRA-2
architecture with larger PE array sizes (8x8 and 16x16). The number of nodes
of GCI shown in the second column is increased in linear due to the number
of PEs (5 contexts). In the large PE array size, the routing algorithm must
search connection on the large network, and there are many target elements
to seek before placing the calling functions in the same positions as 4x4 PE
array. Although the compiling time shown in the last column is increased in
exponential, the result shows that Black-Diamond is useful at least for arrays
with hundreds of PEs. Note that, sophisticated place and routing algorithms
can be used with the GCI proposed here. For a larger array with thousands of
PEs, such sophisticated algorithms should be introduced.
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Table 4.6: Compilation time of mapping Alpha-Blender on different array sizes
of MuCCRA-2 architecture

PE array size Number of nodes Compiling time
4 x 4 2758 x 5 3.40sec
8 x 8 11146 x 5 29.13sec

16 x 16 51154 x 5 503.12sec

4.5 Summary

A simple retargetable compiler called Black-Diamond has been implemented
by using GCI to represent target architecture. A user can insert pragma into
source code to arrange the placement manually. For this purpose, the GUI is
also available to show mapping result graphically.

The Black-Diamond compiler can map applications into three different ar-
chitectures by changing the header file to indicate the target architecture in the
source code. A user can make a lot of trial to optimize the placement by using
pragma compared to manual mapping since the compilation time is relatively
short (tens of seconds).
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Chapter 5

Conclusions and discussions

5.1 Conclusions

Retargetability is important for a compiler or synthesis tool used for architecture
exploration. The traditional retargetable compilers can generate configuration
data for many target architectures by changing paramters and options. However,
the flexibility is limited within the available options. For developing brand new
architectures, the compiler must be modified to support the new design. This
thesis shows a standard model to represent different target architectures without
changing the retargetable compiler itself.

The Graph with Configuration Information (GCI) is proposed to represent
configurable resource in the target dynamically reconfigurable architecture. The
GCI nodes represent selectable configuration codes as input links and intercon-
nection structure in the same time. In order to fix a selecting configuration code
at a node, the other input links must be disabled. The restriction in hardware
can be represented by adding control information into the GCI to disable input
links at the other nodes, and there are 3 DisCounT rules to control every node
during placement and routing. Since a user can apply the restriction to control
every node in the GCI directly, it allows higher degree of flexibility in the design-
space exploration than the traditional parameter based retargetable compilers
which can selecting only a set of available interconnection options. The MuC-
CRA architectures have been selected as case study, and many examples of using
the GCI to represent each component with different hardware restrictions are
shown. Other target architectures can be easily treated by representing many
aspects of architectural property into a GCI.

A prototype compiler called Black-Diamond with GCI is now available for
three different dynamically reconfigurable architectures. It translates data-flow
graph from C-like front-end description, applies placement and routing by using
the GCI, and generates configuration data for each element of the DRPA in
the form of multicasting. A user can insert pragma into source code to arrange
the placement manually. For this purpose, the GUI is also available to show
mapping result graphically. Since the compilation time is relatively short (tens
of seconds), a user can make a lot of trial to optimize the placement. Evaluation
results of simple applications show that Black-Diamond can generate reasonable
designs for three different architectures.

59



5.2 Discussions

5.2.1 A problem on mapping algorithm

In Chapter 4, Table 4.5 shows the manual mapping using a graphic tool does
not always give good results. However, theoretically, it has advantage over the
current version of routing algorithm in the following case. Since the connections
are routed separately, the first connection has higher priority than the routing
path in the next connection. From this property, the placing at the nearest PE
may be blocked.
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Figure 5.1: Problem of minimum cost path routing

The example can be shown as Figure 5.1, a function transfers 2 output data
from node “S1” and “S2” to inputs at another function at nodes “T1” and “T2”
respectively, and the bold line shows the routing path of the connections. In the
Figure 5.1(b) and 5.1(c), a connection is selected to be routed first which results
propagation cost equal to 10, however, another connection can not be routed.
The functions must be replaced into the other target elements in order to route
the connections, which may degrade the placement performance. On the other
hand, Figure 5.1(d) shows the route decided manually. Both connections can
be routed successfully with propagation cost equal to 15. Since GCI applied
DisCounT rules at every node to represent hardware restriction, this example
reveals that the order of disabling link becomes important.

5.2.2 Future work

The placement and routing algorithms used in Black-Diamond is simple, and
sometimes requires human effort to add controlled pragmas. More sophisticated
methods to automatic placement and routing are left as future work.

For the front-end of Black-Diamond compiler, it can be divided into input
source code and architecture description. The input source code is simplified
C language that does not support all the C grammar. There is only an “int”
variable type for connections between functions. When the target architecture
provides data network and carry network separately like MuCCRA-2, sometimes
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a user confuses and try to form connections on the different networks that
is impossible. The pointer grammar, structure grammar, and object-oriented
programming style should be adopted to write the source code easily.

In order to construct GCI of target architecture, the current version of Black-
Diamond uses simple architecture description which every element and link must
be constructed from scratch. So, the architecture description files become very
large (12,026 lines, 59,243 lines, and 26,111 lines for MuCCRA-1, MuCCRA-2,
and MuCCRA-D respectively). The description of duplicated element struc-
tures are constructed by writing another program to generate the same struc-
tures repeatly. It can be improved by constructing duplicated structures from
a template in the description file.
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Appendix A

Architecture Description

A.1 The work before hand

The Black-Diamond compiler can be customized to map application into many
target architectures by changing a header file at source code. The header file
name has “.h” extension corresponding to read the same library file name with
“.model”, “.type”, “.architecture”, and “.code” extension. They are used to
define 3D model to draw in Graphic User Interface (GUI) corresponding to
each configuration code which is attached at each node, interconnection struc-
ture, and sequence of the nodes to generate configuration data of the target
architecture. However, it is too compilcate and a designer must have very deep
knowledge in order to define the target architecture by using those architecture
descriptions. So, I simplify the architecture description to be understood easily.
The tool called Diamond-Dust is used for generating 4 library files from an ar-
chitecture description file with extension “.gci”. Note that, the Black-Diamond
compiler will be developed to construct the Graph with Configuration Infor-
mation (GCI) to represent the target architecture from the new architecture
description directly in the future.

A.2 Diamond-Dust tool

To use the tool, the name of target architecture file is giving followed in the ex-
ecute command without extension. For example command line “dust TEST”,
the input file name “TEST.gci” is read out for generating architecture de-
scription for the target architecture named “TEST”. The output files are: (1)
“TEST.model”, (2) “TEST.type”, (3) “TEST.architecture”, (4) “TEST.code”,
and (5) “TEST.h”. They are library description used in the Black-Diamond
compiler when indicating header file in source code with the name “TEST.h”
(#include 〈 TEST.h 〉).

In order to create the architecture description file (.gci), first, the nodes in-
side the architecture are defined with configuration information. Then, they
are grouped as reconfigurable element inside the target architecture. Next, the
nodes are connected together by adding link between them. Finally, the re-
striction information is added into the graph. The graph representing target
architecture is described only one context, and the Black-Diamond compiler
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duplicates the graph if more number of contexts is needed to map application.
Some nodes are identified for linking between the contexts. There are also de-
scription for defining functions which can be mapped into the architecture, and
description for generating configuration data to configure the target architec-
ture. The examples of creating architecture description are described step by
step as below:

A.3 Example 1: Example Target Architecture

Figure A.1: Representing PE in GCI

In this example, the architecture consists of 4 Processing Elements (PEs).
Each PE has a Functional Unit (FU) and a register as shown in Figure A.1.
Since the FU receives 2 input data (“A” and “B”) to calculate output data,
it requires 3 nodes to represent input ports and an output port. The register
has “Read” node and “Write” node for transferring data between contexts.
The “Write” node can select input data from “Read” node for transferring to
the next context and can select input data from “Write Enable” node to store
the output data from FU. The architecture description to represent the nodes
attached with configuration bits at each input can be described as below:

NODE "Output" // Output of Functional Unit
POSITION 0.5 0.0 0.0
COST 20
CONFIGURATION "000_" // Addition Operation
CONFIGURATION "001_" // Substraction Operation
CONFIGURATION "010_" // Multiply Operation
CONFIGURATION "011_" // Receive I/O data
CONFIGURATION "100_" // Send input A to I/O Bus
CONFIGURATION "101_" // Send input B to I/O Bus
DEFAULT 0
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NODE "Input A" // Input A of Functional Unit
POSITION 0.0 0.0 1.0
COST 10
CONFIGURATION "00_" // Get input from horizontal PE
CONFIGURATION "01_" // Get input from vertical PE
CONFIGURATION "10_" // Get input from Register
CONFIGURATION "11_" // Get input from horizontal Register
DEFAULT 0

NODE "Input B" // Input A of Functional Unit
POSITION 1.0 0.0 1.0
COST 10
CONFIGURATION "00_" // Get input from horizontal PE
CONFIGURATION "01_" // Get input from vertical PE
CONFIGURATION "10_" // Get input from Register
CONFIGURATION "11_" // Get input from vertical Register
DEFAULT 0

NODE "Read" // Output of Register
POSITION 2.0 0.0 0.0
COST 30
CONFIGURATION "(R)"

NODE "Write" // For sending data to next context
POSITION 2.0 0.0 0.5
COST 0
CONFIGURATION "(Holding)"
CONFIGURATION "(Writing)"

NODE "Write Enable" // Input of Register
POSITION 2.0 0.0 1.0
COST 30
CONFIGURATION "0_" // No writing
CONFIGURATION "1_" // Enable writing
DEFAULT 0

The keyword “NODE” is followed by the node name to create a new node
in the architecture and the following keywords are used in order to explain
property of the node. The keyword “POSITION” indicates location of the node
on the PE in GUI while the keyword “COST” indicates delay to transfer input
data to output at the reconfigurable point in real hardware. At the application
mapping, Black-Diamond compiler uses this information to search routing path
with minimum delay to transfer data.

In order to configure the device, it requires configuration codes for (1) se-
lecting computational operation at FU, (2) selecting input data at FU, and (3)
controlling writing data into register. The keyword “CONFIGURATION” is
used to describe the different configuration codes corresponding to each input.
The keyword “DEFAULT” indicates selecting an input for generating configu-
ration data if the node is not routed or set to select a configuration code. In
the case of “Read” node and “Write” node, it also has input link to transfer
data between contexts but they are not generated in configuration data. So, the
keyword “DEFAULT” is not necessary to be defined.
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After all nodes with different reconfigurable property are defined, they are
grouped to be reconfigurable element inside the architecture as described below:

ELEMENT "PE_0"
WHERE -3.0 0.0 3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Read"
ADD "Write"
ADD "Write Enable"

ELEMENT "PE_1"
WHERE 3.0 0.0 3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Read"
ADD "Write"
ADD "Write Enable"

ELEMENT "PE_2"
WHERE -3.0 0.0 -3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Read"
ADD "Write"
ADD "Write Enable"

ELEMENT "PE_3"
WHERE 3.0 0.0 -3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Read"
ADD "Write"
ADD "Write Enable"

The keyword “ELEMENT” is used for creating reconfigurable element in
the architecture. The property “WHERE” indicates position to draw the PE
in GUI of the Black-Diamond compiler. And, all nodes identifying by keyword
“ADD” are also drawn related to the position of PE locally as shown in the
Figure A.1.

Next, the nodes in each element are connected together by adding link be-
tween the nodes. Each link is consisting of two nodes represented transferring
data in a direction. The links in GCI can be described as shown below:

// Connection inside PE

// (1) Holding Register data
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// (2) Receive writing data
// (3) Connect Register between contexts
// (4) Receive writing data from Output

NET "PE_0"@"Read" -> "PE_0"@"Write","(Holding)"
NET "PE_0"@"Write Enable" -> "PE_0"@"Write","(Writing)"
REGISTER "PE_0"@"Write" -> "PE_0"@"Read","(R)"
NET "PE_0"@"Output" -> "PE_0"@"Write Enable","1_"

NET "PE_1"@"Read" -> "PE_1"@"Write","(Holding)"
NET "PE_1"@"Write Enable" -> "PE_1"@"Write","(Writing)"
REGISTER "PE_1"@"Write" -> "PE_1"@"Read","(R)"
NET "PE_1"@"Output" -> "PE_1"@"Write Enable","1_"

NET "PE_2"@"Read" -> "PE_2"@"Write","(Holding)"
NET "PE_2"@"Write Enable" -> "PE_2"@"Write","(Writing)"
REGISTER "PE_2"@"Write" -> "PE_2"@"Read","(R)"
NET "PE_2"@"Output" -> "PE_2"@"Write Enable","1_"

NET "PE_3"@"Read" -> "PE_3"@"Write","(Holding)"
NET "PE_3"@"Write Enable" -> "PE_3"@"Write","(Writing)"
REGISTER "PE_3"@"Write" -> "PE_3"@"Read","(R)"
NET "PE_3"@"Output" -> "PE_3"@"Write Enable","1_"

// Connection between PEs

NET "PE_1"@"Output" -> "PE_0"@"Input A","00_"
NET "PE_2"@"Output" -> "PE_0"@"Input A","01_"
NET "PE_0"@"Read" -> "PE_0"@"Input A","10_"
NET "PE_1"@"Read" -> "PE_0"@"Input A","11_"
NET "PE_1"@"Output" -> "PE_0"@"Input B","00_"
NET "PE_2"@"Output" -> "PE_0"@"Input B","01_"
NET "PE_0"@"Read" -> "PE_0"@"Input B","10_"
NET "PE_2"@"Read" -> "PE_0"@"Input B","11_"

NET "PE_0"@"Output" -> "PE_1"@"Input A","00_"
NET "PE_3"@"Output" -> "PE_1"@"Input A","01_"
NET "PE_1"@"Read" -> "PE_1"@"Input A","10_"
NET "PE_0"@"Read" -> "PE_1"@"Input A","11_"
NET "PE_0"@"Output" -> "PE_1"@"Input B","00_"
NET "PE_3"@"Output" -> "PE_1"@"Input B","01_"
NET "PE_1"@"Read" -> "PE_1"@"Input B","10_"
NET "PE_3"@"Read" -> "PE_1"@"Input B","11_"

NET "PE_3"@"Output" -> "PE_2"@"Input A","00_"
NET "PE_0"@"Output" -> "PE_2"@"Input A","01_"
NET "PE_2"@"Read" -> "PE_2"@"Input A","10_"
NET "PE_3"@"Read" -> "PE_2"@"Input A","11_"
NET "PE_3"@"Output" -> "PE_2"@"Input B","00_"
NET "PE_0"@"Output" -> "PE_2"@"Input B","01_"
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NET "PE_2"@"Read" -> "PE_2"@"Input B","10_"
NET "PE_0"@"Read" -> "PE_2"@"Input B","11_"

NET "PE_2"@"Output" -> "PE_3"@"Input A","00_"
NET "PE_1"@"Output" -> "PE_3"@"Input A","01_"
NET "PE_3"@"Read" -> "PE_3"@"Input A","10_"
NET "PE_2"@"Read" -> "PE_3"@"Input A","11_"
NET "PE_2"@"Output" -> "PE_3"@"Input B","00_"
NET "PE_1"@"Output" -> "PE_3"@"Input B","01_"
NET "PE_3"@"Read" -> "PE_3"@"Input B","10_"
NET "PE_1"@"Read" -> "PE_3"@"Input B","11_"

In the description, the node on the left side (source node) transfers data
to the node on the right side (sink node). The nodes are referred with the
element name followed by “@” in front of the node name. Since each input at
a node attached with different configuration bits, the sink node also requires to
be followed by “,” and configuration bits to indicate connected input.

There are two keywords for adding link into GCI: (1) keyword “NET” and
(2) keyword “REGISTER”. The source node indicated by using the keyword
“NET” is same context as the sink node while the source node indicated by
using the keyword “REGISTER” is located in the previous context executed
before the context of sink node. When Black-Diamond duplicates the graph to
add new context for mapping application, the GCI of new context is connected
with the previous context by adding the “REGISTER” links.

Now, the nodes and interconnection network of the target architecture have
been represented as architecture description based on GCI. By using Diamond-
Dust to translate the description (dust EXAMPLE1) and execute the Black-
Diamond compiler with input source code indicating the target architecture
(#include 〈 EXAMPLE1.h 〉), the screenshot can be shown as Figure A.2. All
nodes are shown as small white boxes. Each element shown in different position
has the same set of nodes to represent input ports and output port of FU and
register.

A.4 Example 2: Adding Description for Map-
ping Application

In the first example, the target architecture has been represented, however, it
can not be used for mapping application since the Black-Diamond compiler also
requires information of available computational operation and a sequence of the
nodes for generating configuration data. The description for adding computa-
tional operation of the target architecture can be shown as below:

FUNCTION "Addition"
OUTPUT "Output"
FIX "Output" , "000_"
INPUT "Input A"
INPUT "Input B"
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Figure A.2: Screenshot of example 1

PLACE "PE_0"
PLACE "PE_1"
PLACE "PE_2"
PLACE "PE_3"

FUNCTION "Substraction"
OUTPUT "Output"
FIX "Output" , "001_"
INPUT "Input A"
INPUT "Input B"
PLACE "PE_0"
PLACE "PE_1"
PLACE "PE_2"
PLACE "PE_3"

FUNCTION "Multiply"
OUTPUT "Output"
FIX "Output" , "010_"
INPUT "Input A"
INPUT "Input B"
PLACE "PE_0"
PLACE "PE_1"
PLACE "PE_2"
PLACE "PE_3"

FUNCTION "Receive" // For receiving data from global bus

68



OUTPUT "Output"
FIX "Output" , "011_"
PLACE "PE_0"
PLACE "PE_1"
PLACE "PE_2"
PLACE "PE_3"

FUNCTION "Send_A" // For sending input data A to global bus
OUTPUT "Output"
FIX "Output" , "100_"
INPUT "Input A"
PLACE "PE_0"
PLACE "PE_1"
PLACE "PE_2"
PLACE "PE_3"

FUNCTION "Send_B" // For sending input data B to global bus
OUTPUT "Output"
FIX "Output" , "101_"
INPUT "Input B"
PLACE "PE_0"
PLACE "PE_1"
PLACE "PE_2"
PLACE "PE_3"

The computational operation can be called in source code of the Black-
Diamond compiler to be placed into the architecture as library function. Each
function is declared by using keyword “FUNCTION” and followed by the func-
tion name. It requires property “PLACE” to indicate reconfigurable element
whose function can be placed. The property “OUTPUT” and “INPUT” are
used to indicate the node in the placed element related to parameter list of
the calling function for exchanging data with other functions. The property
“FIX” is used for selecting input at the node where the computational opera-
tion is placed element. The node name inside the element is fixed to select the
following configuration code.

By using Diamond-Dust to translate the description (dust EXAMPLE2) and
execute the Black-Diamond compiler with the following input source code, the
screenshot can be shown as Figure A.3. There are input links to transfer data
from output node of PE 0 and PE 3 to the input nodes of PE 1 for multiplying.

// Input source code of Black-Diamond compiler

#include < EXAMPLE2.h >

int a , b , c ;

call [ a ] Receive ( ); // Getting data by accessing bus at PE_0
[ @2 ] call [ b ] Receive ( ); // Getting data by accessing bus at PE_3
call [ c ] Multiply ( b , a ); // Multiply data at PE_1
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Figure A.3: Screenshot after mapping application

There are reserved functions which user can use to calculate data with-
out writing calling function as the previous example input source code. They
are shown in Table A.1 and used to declare the library function instead of
the keyword “FUNCTION”. All of those reserved functions require declaring
2 input nodes for receiving data and 1 output node for transferring the com-
putational result except the “ASSIGN FUNCTION” (be explained in Exam-
ple 5). Some architectures require to set configuration codes at the first con-
text and last context different from the other contexts. The reserved function
“FIRST CONTEXT FUNCTION” and “LAST CONTEXT FUNCTION” can
be added to set static configuration codes at the first context and last context
respectively.

By rewriting the architecture description to be:

// Replace FUNCTION "Addition"
ADD_FUNCTION "+"

// Replace FUNCTION "Substraction"
SUB_FUNCTION "-"

// Replace FUNCTION "Multiply"
MUL_FUNCTION "*"
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Table A.1: Reserved functions

Keyword Example Source Code
ASSIGN FUNCTION int a = 5 , b , c;

assign b = 8 ;
ADD FUNCTION calculate c = a + b ;
SUB FUNCTION calculate c = a - b ;

SHIFT LEFT FUNCTION calculate c = a ¡¡ b ;
SHIFT RIGHT FUNCTION calculate c = a ¿¿ b ;

MUL FUNCTION calculate c = a * b ;
FIRST CONTEXT FUNCTION ( automatic called at the first context )
LAST CONTEXT FUNCTION ( automatic called at the last context )

The previous input source code becomes:

// Input source code of Black-Diamond compiler

#include < EXAMPLE2.h >

int a , b , c ;

call [ a ] Receive ( ) ; // Getting data by accessing bus at PE_0
[ @2 ] call [ b ] Receive ( ) ; // Getting data by accessing bus at PE_3
//call [ c ] Multiply ( b , a ) ; // Multiply data at PE_1
calculate c = b * a ;

A.5 Example 3: Adding Description for Gener-
ating Configuration Data

Since each node selects a configuration code corresponding to select an input
at the node, the configuration data to configure device can be generated as
sequence of the node in GCI. Suppose each PE in the target architecture requires
configuration codes for: (1) indicating computational operation, (2) selecting
input data, (3) controlling writing register, and (4) selecting configured PE (2
bits). So, 4 clock cycles are needed to configure a context. The description for
generating configuration data can be shown as followed:

MAX_CONTEXT 16

FILE "conf.dat"
GENERATE "PE_0"@"Output"
GENERATE "PE_0"@"Input A"
GENERATE "PE_0"@"Input B"
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GENERATE "PE_0"@"Write Enable"
STATIC "_00_"
CONTEXT_INDEX 4
COUNT_CONFIGURATION
NEW_LINE

GENERATE "PE_1"@"Output"
GENERATE "PE_1"@"Input A"
GENERATE "PE_1"@"Input B"
GENERATE "PE_1"@"Write Enable"
STATIC "_01_"
CONTEXT_INDEX 4
COUNT_CONFIGURATION
NEW_LINE

GENERATE "PE_2"@"Output"
GENERATE "PE_2"@"Input A"
GENERATE "PE_2"@"Input B"
GENERATE "PE_2"@"Write Enable"
STATIC "_10_"
CONTEXT_INDEX 4
COUNT_CONFIGURATION
NEW_LINE

GENERATE "PE_3"@"Output"
GENERATE "PE_3"@"Input A"
GENERATE "PE_3"@"Input B"
GENERATE "PE_3"@"Write Enable"
STATIC "_11_"
CONTEXT_INDEX 4
COUNT_CONFIGURATION
NEW_LINE

GEN_ALL_CONTEXT
NEW_LINE

FILE "tft.dat"
NUM_CONFIGURATION 8
STATIC "_"
NUM_CONTEXT 5

The keyword “FILE” is followed by the file name for storing configuration
data generated as a sequence of the node in GCI indicated by keyword “GENER-
ATE”. Since the configuration code to indicate configured PE is static for each
PE, it can be added into the configuration data by using keyword “STATIC”.
The number of available context in the target architecture is indicated by key-
word “MAX CONTEXT” at the beginning of description. The keyword “CON-
TEXT INDEX” is followed by the number of digit to indicate the configured
context. In some architectures, the number of configuration clock cycles is also
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necessary. The keyword “COUNT CONFIGURATION” is used for counting in-
creased by 1 per found keyword. Noth that, the number of configuration clock
cycles is counted on every context used for mapping the application. It is always
paired with the keyword “NEW LINE” to put 〈 ENTER 〉 character into the
configuration data file to indicate new configuration clock cycle (new memory
block of initial memory data in Verilog HDL). At the end of file “conf.dat”, the
keyword “GEN ALL CONTEXT” is added to generate configuration data for
every context. Finally, the file “tft.dat” is created. It contains information of
the number of configuration clock cycle and number of context by the keyword
“NUM CONFIGURATION” and “NUM CONTEXT” respectively (the number
of digit is indicated by the followed number).

A.6 Example 4: Adding Graphic to the Target
Architecture

The screenshot shown at Figure A.3 is difficult to understand. The example of
description for improving the graphic can be shown as follows:

// Insert before declaring NODE
NODE_SIZE 0.1
NODE_COLOR 0.0 0.0 1.0

TEXT_SIZE 0.003

COLOR 0.4 0.4 0.7 // PE_0
BOX ( -3.75 -0.3 2.5 ) , ( -0.25 -0.15 4.5 )
COLOR 1.0 1.0 1.0
TEXT ( -3.75 0.2 2.5 ) , "PE_0"

COLOR 0.4 0.4 0.7 // PE_1
BOX ( 2.25 -0.3 2.5 ) , ( 5.75 -0.15 4.5 )
COLOR 1.0 1.0 1.0
TEXT ( 2.25 0.2 2.5 ) , "PE_1"

COLOR 0.4 0.4 0.7 // PE_2
BOX ( -3.75 -0.3 -3.5 ) , ( -0.25 -0.15 -1.5 )
COLOR 1.0 1.0 1.0
TEXT ( -3.75 0.2 -3.5 ) , "PE_2"

COLOR 0.4 0.4 0.7 // PE_3
BOX ( 2.25 -0.3 -3.5 ) , ( 5.75 -0.15 -1.5 )
COLOR 1.0 1.0 1.0
TEXT ( 2.25 0.2 -3.5 ) , "PE_3"

COLOR 0.5 0.5 0.5 // Frame of PE_Array
LINE ( -4.25 -0.225 5.0 ) , ( 6.25 -0.225 5.0 )
LINE ( -4.25 -0.225 5.0 ) , ( -4.25 -0.225 -4.0 )
LINE ( -4.25 -0.225 -4.0 ) , ( 6.25 -0.225 -4.0 )
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LINE ( 6.25 -0.225 5.0 ) , ( 6.25 -0.225 -4.0 )

The keyword “NODE SIZE” and “NODE COLOR” must be defined before
using keyword “NODE” to control size and color of the new node. The keyword
“NODE SIZE” requires following value to indicate the size (default value is 0.05)
and three values following the keyword “NODE COLOR” are used to indicate
red, green, and blue colors of the node (default values are 1.0, 1.0, and 1.0 (white
color)).

Keyword “BOX” and “LINE” require two position values (x, y, and z) to
indicate starting point and ending point of drawing while keyword “TEXT”
requires only a position to draw the following text. The drawing color can
be changed by adding keyword “COLOR” before the drawing keywords. The
screenshot after adding the graphic description can be shown as Figure A.4.

Figure A.4: Screenshot after adding graphic description

A.7 Example 5: Adding Constant Node to the
Target Architecture

Some architectures can load constant data from configuration data to store in
constant register of each PE and use for calculation. It requires a node in each
PE to represent the constant value. In this example, we change the target
architecture by adding a constant register to store the constant data inside FU.
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A new FU operation is also added to read the constant data at the output of
the FU. The additional description can be shown as below:

// Add new operation to "Output" node of FU
CONFIGURATION "111_" // Send constant data to output

CONSTANT_NODE "Constant" , 16

// Add the new node to each PE
ADD "Constant"

// Add generating node into configuration data of each PE
GENERATE "PE_0"@"Constant"
STATIC "_"

ASSIGN_FUNCTION "Assign"
OUTPUT "Output"
FIX "Output" , "111_"
CONSTANT "Constant"
PLACE "PE_0"
PLACE "PE_1"
PLACE "PE_2"
PLACE "PE_3"

First, a new operation is added into the “Output” node for sending constant
data to the output. The node for representing constant value can be created
by adding a lot of virtual links at the node to represent all possible constant
bits. If the constant data is 16 bits, it requires 65536 virtual links. It makes
the description become large and waste a lot of memory. The effective way
is recognizing only the number of bitwidth and generating configuration bits
corresponding to selecting the virtual links. Keyword “CONSTANT NODE”
used for creating the constant node is followed by the constant node name and
the number of bitwidth. Next, the constant node is inserted into each PE and
also inserted to generate the configuration data. Finally, a function to set the
constant value is needed. When the function is placed into architecture, it fixes
computational operation to be the new operation and indicates the output node.
Normally, the function can be called in the source code by inserting “〈” and “〉”
to set selecting input at the node indicated by using keyword “CONSTANT”.
The keyword “ASSIGN FUNCTION” can be used for representing reserved
function and assign the constant value by using “=” sign in the source code
instead.

By using Diamond-Dust to translate the modified description (dust EXAM-
PLE5), the following input source code can be compiled. The comment line
bellowed the variable declaration can be used instead of the “int a = 3”.

// Input source code of Black-Diamond compiler

#include < EXAMPLE5.h >
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int a = 3 , b , c ; // Assign constant value at PE_0
//call [ a ] Assign < 3 > ( ) ;
//assign a = 3 ;

[ @2 ] call [ b ] Receive ( ) ; // Getting data by accessing bus at PE_3
calculate c = a - b ; // Subtract data at PE_1

A.8 Example 6: Adding restriction to Control
Accessing Global Bus

This example shows how to add restriction into the architecture description.
Since each PE in the architecture can access to write data into global bus (us-
ing the operation corresponding to configuration codes “100 ” and “101 ”), it
requires restriction to limit accessing the bus by only a PE per context. The
description to add the restriction can be shown as below:

DISCOUNT "PE_0"@"Output"
CONTROL "PE_1"@"Output","100_" -> "100_"
CONTROL "PE_1"@"Output","100_" -> "101_"
CONTROL "PE_1"@"Output","101_" -> "100_"
CONTROL "PE_1"@"Output","101_" -> "101_"
CONTROL "PE_2"@"Output","100_" -> "100_"
CONTROL "PE_2"@"Output","100_" -> "101_"
CONTROL "PE_2"@"Output","101_" -> "100_"
CONTROL "PE_2"@"Output","101_" -> "101_"
CONTROL "PE_3"@"Output","100_" -> "100_"
CONTROL "PE_3"@"Output","100_" -> "101_"
CONTROL "PE_3"@"Output","101_" -> "100_"
CONTROL "PE_3"@"Output","101_" -> "101_"

DISCOUNT "PE_1"@"Output"
CONTROL "PE_0"@"Output","100_" -> "100_"
CONTROL "PE_0"@"Output","100_" -> "101_"
CONTROL "PE_0"@"Output","101_" -> "100_"
CONTROL "PE_0"@"Output","101_" -> "101_"
CONTROL "PE_2"@"Output","100_" -> "100_"
CONTROL "PE_2"@"Output","100_" -> "101_"
CONTROL "PE_2"@"Output","101_" -> "100_"
CONTROL "PE_2"@"Output","101_" -> "101_"
CONTROL "PE_3"@"Output","100_" -> "100_"
CONTROL "PE_3"@"Output","100_" -> "101_"
CONTROL "PE_3"@"Output","101_" -> "100_"
CONTROL "PE_3"@"Output","101_" -> "101_"

DISCOUNT "PE_2"@"Output"
CONTROL "PE_0"@"Output","100_" -> "100_"
CONTROL "PE_0"@"Output","100_" -> "101_"
CONTROL "PE_0"@"Output","101_" -> "100_"
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CONTROL "PE_0"@"Output","101_" -> "101_"
CONTROL "PE_1"@"Output","100_" -> "100_"
CONTROL "PE_1"@"Output","100_" -> "101_"
CONTROL "PE_1"@"Output","101_" -> "100_"
CONTROL "PE_1"@"Output","101_" -> "101_"
CONTROL "PE_3"@"Output","100_" -> "100_"
CONTROL "PE_3"@"Output","100_" -> "101_"
CONTROL "PE_3"@"Output","101_" -> "100_"
CONTROL "PE_3"@"Output","101_" -> "101_"

DISCOUNT "PE_3"@"Output"
CONTROL "PE_0"@"Output","100_" -> "100_"
CONTROL "PE_0"@"Output","100_" -> "101_"
CONTROL "PE_0"@"Output","101_" -> "100_"
CONTROL "PE_0"@"Output","101_" -> "101_"
CONTROL "PE_1"@"Output","100_" -> "100_"
CONTROL "PE_1"@"Output","100_" -> "101_"
CONTROL "PE_1"@"Output","101_" -> "100_"
CONTROL "PE_1"@"Output","101_" -> "101_"
CONTROL "PE_2"@"Output","100_" -> "100_"
CONTROL "PE_2"@"Output","100_" -> "101_"
CONTROL "PE_2"@"Output","101_" -> "100_"
CONTROL "PE_2"@"Output","101_" -> "101_"

When a FU selecting operation at FU to transfer input data to the global
bus, the other FUs can not access to the bus in the same context. The keyword
“DISCOUNT” is used for indicating the “Output” node which is disabled inputs
by the other nodes. If the other nodes indicated by using keyword “CONTROL”
selects an input corresponding to the followed configuration code, the input
corresponding to the configuration code followed “-〉” is disabled at the “Output”
node indicated by the keyword “DISCOUNT”. The example source code to show
the different between before and after adding the restriction can be shown as
following:

// Must be selected only a included file to indicate a target architecture

#include < EXAMPLE5.h > // Architecture before adding restriction
//#include < EXAMPLE6.h > // Architecture after adding restriction

int a = 1 , b = 2 , output ;

call [ output ] Send_A ( a ) ;
call [ output ] Send_B ( b ) ;

Figure A.5 shows the screenshot of architecture before adding the restriction.
Two calling functions to access the global bus can be the same context. The
“Send A” function is placed at “PE 2” and the “Send B” function is placed at
“PE 3”.
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Figure A.5: Screenshot before adding restriction

Figure A.6 shows the screenshot of architecture after adding the restriction.
The application requires 2 contexts for placing the two calling functions. In
context 0, the constant value “b” is stored in register of “PE 1” at first. Then,
the “Send B” function access the global bus in the next context.

A.9 Example 7: Changing Register to be Reg-
ister File

In all previous examples, each PE in the architecture has only a register. Many
architectures store intermediate by using register file. This example explains
how to replace the register by 1 port register file with 4 register entries. The
register file requires 2 configuration bits to indicate both reading and writing
register number and 1 configuration bits to enable the writing. If the reading
and writing are occurred in the same context, they must use the same register
number.

A new node is added into each PE for generating the register number (rep-
resented by 4 input links). This node is used for controlling the register number
of reading and writing to be the same. Since the register file is consisting of
4 entries, it requires 4 sets of “Read” node and “Write” node to connect each
entry between the different contexts. Selecting register reading data at the new
node and the “Write” node of each entry disables un-corresponding generating
register number. If reading and writing disable the different register number, the
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Figure A.6: Screenshot after adding restriction

one must be canceled to keep at least an enable input link. The corresponding
description can be shown as below:

NODE "DisCounT" // New Output of Register
POSITION 2.0 0.0 0.0
COST 20
CONFIGURATION "00_" // Reading register R0
CONFIGURATION "01_" // Reading register R1
CONFIGURATION "10_" // Reading register R2
CONFIGURATION "11_" // Reading register R3

// Replace the "READ" node
NODE "Read R0" // Read node of register R0

POSITION 2.0 0.2 0.4
COST 11
CONFIGURATION "(R0)"

NODE "Read R1" // Read node of register R1
POSITION 2.0 0.4 0.4
COST 12
CONFIGURATION "(R1)"

NODE "Read R2" // Read node of register R2
POSITION 2.0 0.6 0.4
COST 13
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CONFIGURATION "(R2)"
NODE "Read R3" // Read node of register R3

POSITION 2.0 0.8 0.4
COST 14
CONFIGURATION "(R3)"

// Replace the "Write" node
NODE "Write R0" // For sending data from register R0 to next context

POSITION 2.0 0.2 0.7
COST 0
CONFIGURATION "(Holding R0)"
CONFIGURATION "(Writing R0)"

NODE "Write R1" // For sending data from register R1 to next context
POSITION 2.0 0.4 0.7
COST 0
CONFIGURATION "(Holding R1)"
CONFIGURATION "(Writing R1)"

NODE "Write R2" // For sending data from register R2 to next context
POSITION 2.0 0.6 0.7
COST 0
CONFIGURATION "(Holding R2)"
CONFIGURATION "(Writing R2)"

NODE "Write R3" // For sending data from register R3 to next context
POSITION 2.0 0.8 0.7
COST 0
CONFIGURATION "(Holding R3)"
CONFIGURATION "(Writing R3)"

// Replace ADD "Read" and ADD "Write" at each PE
ADD "DisCounT"
ADD "Read R0"
ADD "Read R1"
ADD "Read R2"
ADD "Read R3"
ADD "Write R0"
ADD "Write R1"
ADD "Write R2"
ADD "Write R3"

Since the register file requires configuration bits to select reading register
data, new node called “DisCounT” is added into the architecture and used as
output instead of the “Read” node. The read node and write node are duplicated
to be 4 sets for each register entry. The cost property of every read node is
different. In the case, it tends to use register “R0” for storing intermediate data
first since the Black-Diamond compiler routes data in minimum cost connection.
Next, the links to connect the new node and restriction information must be
added to control the register file at all PEs. The “DisCounT” node has 4 input
links to select data from the “Read R0”, “Read R1”, “Read R2”, and “Read
R3” nodes. The additional description of “PE 0” can be shown as below:
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NET "PE_0"@"Read R0" -> "PE_0"@"DisCounT","00_"
NET "PE_0"@"Read R1" -> "PE_0"@"DisCounT","01_"
NET "PE_0"@"Read R2" -> "PE_0"@"DisCounT","10_"
NET "PE_0"@"Read R3" -> "PE_0"@"DisCounT","11_"

// Replace NET "PE_0"@"Read" -> "PE_0"@"Write","(Holding)"
NET "PE_0"@"Read R0" -> "PE_0"@"Write R0","(Holding R0)"
NET "PE_0"@"Read R1" -> "PE_0"@"Write R1","(Holding R1)"
NET "PE_0"@"Read R2" -> "PE_0"@"Write R2","(Holding R2)"
NET "PE_0"@"Read R3" -> "PE_0"@"Write R3","(Holding R3)"

// Replace NET "PE_0"@"Write Enable" -> "PE_0"@"Write","(Writing)"
NET "PE_0"@"Write Enable" -> "PE_0"@"Write R0","(Writing R0)"
NET "PE_0"@"Write Enable" -> "PE_0"@"Write R1","(Writing R1)"
NET "PE_0"@"Write Enable" -> "PE_0"@"Write R2","(Writing R2)"
NET "PE_0"@"Write Enable" -> "PE_0"@"Write R3","(Writing R3)"

// Replace REGISTER "PE_0"@"Write" -> "PE_0"@"Read","(R)"
REGISTER "PE_0"@"Write R0" -> "PE_0"@"Read R0","(R0)"
REGISTER "PE_0"@"Write R1" -> "PE_0"@"Read R1","(R1)"
REGISTER "PE_0"@"Write R2" -> "PE_0"@"Read R2","(R2)"
REGISTER "PE_0"@"Write R3" -> "PE_0"@"Read R3","(R3)"

DISCOUNT "PE_0"@"DisCounT"
CONTROL "PE_0"@"DisCounT","00_" -> "01_"
CONTROL "PE_0"@"DisCounT","00_" -> "10_"
CONTROL "PE_0"@"DisCounT","00_" -> "11_"
CONTROL "PE_0"@"DisCounT","01_" -> "00_"
CONTROL "PE_0"@"DisCounT","01_" -> "10_"
CONTROL "PE_0"@"DisCounT","01_" -> "11_"
CONTROL "PE_0"@"DisCounT","10_" -> "00_"
CONTROL "PE_0"@"DisCounT","10_" -> "01_"
CONTROL "PE_0"@"DisCounT","10_" -> "11_"
CONTROL "PE_0"@"DisCounT","11_" -> "00_"
CONTROL "PE_0"@"DisCounT","11_" -> "01_"
CONTROL "PE_0"@"DisCounT","11_" -> "10_"
CONTROL "PE_0"@"Write R0","(Writing R0)" -> "01_"
CONTROL "PE_0"@"Write R0","(Writing R0)" -> "10_"
CONTROL "PE_0"@"Write R0","(Writing R0)" -> "11_"
CONTROL "PE_0"@"Write R1","(Writing R1)" -> "00_"
CONTROL "PE_0"@"Write R1","(Writing R1)" -> "10_"
CONTROL "PE_0"@"Write R1","(Writing R1)" -> "11_"
CONTROL "PE_0"@"Write R2","(Writing R2)" -> "00_"
CONTROL "PE_0"@"Write R2","(Writing R2)" -> "01_"
CONTROL "PE_0"@"Write R2","(Writing R2)" -> "11_"
CONTROL "PE_0"@"Write R3","(Writing R3)" -> "00_"
CONTROL "PE_0"@"Write R3","(Writing R3)" -> "01_"
CONTROL "PE_0"@"Write R3","(Writing R3)" -> "10_"
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// Add "DisCounT" node for generating configuration data
GENERATE "PE_0"@"DisCounT"

The restriction information forces to disable un-corresponding configuration
bits at the “DisCounT” node when the write nodes or the “DisCounT” node
itself select input data. By using the same source code as Example 6, the
screenshot can be shown as Figure A.7. All register entries are stacked for
representing register “R0”, “R1”, “R2”, and “R3” from lower to upper.

Figure A.7: Screenshot after replacing register file

A.10 Example 8: Automatic Passing Input Data
to Output

Now, let turn back to consider the input source code at Example 2, it requires
shifting pragma (“[ @2 ]”) to place the two calling functions into “PE 0” and
“PE 3” for multiplying. Without the pragma, the multiply function must be
placed in the next context since data from diagonal PE can not become input.

Some architectures have operation to transfer data from input of FU to
output directly. The operation can be fixed to transfer data from the diagonal
PE by selecting input link from the input of FU. After the operation is fixed for
transferring the data, it can not be overwritten by placing the other operation
anymore. In order to modify, it requires additional description as below:
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// Add new operation to "Output" node of FU
CONFIGURATION "110_" // Pass input data to output

// Add to control passing input data to output at each PE
NET "PE_0"@"Input A" -> "PE_0"@"Output","110_"

The new operation for passing input data to output is added into the “Out-
put” node of FU (operation “110 ”). Then, a link is added to transfer data from
“Input A” node to “Output” node at each PE. By using the same source code
as Example 2 with shifting pragma, the two calling functions are placed into
“PE 0” and “PE 1”. However, the multiply function can be also placed in the
same context at “PE 2” by passing the variable “b” data at “PE 3” as shown
in Figure A.8.

Figure A.8: Screenshot after adding by-passing operation into FU

A.11 Example 9: Applying RoMultiC in Con-
figuration Data Generating

Some architectures apply RoMultiC scheme in configuration. Instead of using
address to indicate a PE to be configured one by one, RoMultiC uses bitmap
pattern to configure multiple PEs in parallel. Figure A.9 shows an example of
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configuring in the RoMultiC scheme. There are bitmaps (multicast bits) in X
and Y direction. Many PEs at the crossing points (digit “1” means activate
configuring) can be configured with the same configuration data.

Figure A.9: Example of configuring RoMultiC scheme

In Figure A.10, each PE requires 16 multicast bits for multicasting on PE-
Array size 8x8. Since the multicast bits are available on X and Y dimension,
there are 2 activate bits to configure a PE. In order to configure multiple PEs
with the same configuration data, The Black-Diamond compiler combines the
bitmap by calculating logic “OR” all multicast bits to activate the bits for Ro-
MultiC. It may require different number of configuration clock cycles depending
on the pattern of duplicating configuration data in the PE-Array.

In Example 3 (Adding Description for Generating Configuration Data), the
configuration data is generated by using keyword “GENERATE” to indicate
the generated node. But in order to generate configuration data in RoMultiC,
Black-Diamond compiler must have information of the bitmap on each PE for
combining. And every node inside the PE must be known for finding the dupli-
cated configuration data in different PE. Thus, the configuration data must be
generated by indicating element instead of the node. Since every node inside the
element is not generated (for example, read node and write node), the element
should be modified as the description below:

ELEMENT "PE_0"
WHERE -3.0 0.0 3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Constant"
ADD "DisCounT"
ADD "Write Enable"
ADD_NOGEN "Read R0"
ADD_NOGEN "Read R1"
ADD_NOGEN "Read R2"
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Figure A.10: Combining bitmap of each PE

ADD_NOGEN "Read R3"
ADD_NOGEN "Write R0"
ADD_NOGEN "Write R1"
ADD_NOGEN "Write R2"
ADD_NOGEN "Write R3"
ADD_STATIC "_"
ADD_BITMAP_0
ADD_BITMAP_1

ADD_STATIC "_"
ADD_BITMAP_0
ADD_BITMAP_1
ADD_STATIC "_"
ADD_CONTEXT_INDEX 4
ADD_COUNT
ADD_NEWLINE

ELEMENT "PE_1"
WHERE 3.0 0.0 3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Constant"
ADD "DisCounT"
ADD "Write Enable"
ADD_NOGEN "Read R0"
ADD_NOGEN "Read R1"
ADD_NOGEN "Read R2"
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ADD_NOGEN "Read R3"
ADD_NOGEN "Write R0"
ADD_NOGEN "Write R1"
ADD_NOGEN "Write R2"
ADD_NOGEN "Write R3"
ADD_STATIC "_"
ADD_BITMAP_0
ADD_BITMAP_1
ADD_STATIC "_"
ADD_BITMAP_1
ADD_BITMAP_0
ADD_STATIC "_"
ADD_CONTEXT_INDEX 4
ADD_COUNT
ADD_NEWLINE

ELEMENT "PE_2"
WHERE -3.0 0.0 -3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Constant"
ADD "DisCounT"
ADD "Write Enable"
ADD_NOGEN "Read R0"
ADD_NOGEN "Read R1"
ADD_NOGEN "Read R2"
ADD_NOGEN "Read R3"
ADD_NOGEN "Write R0"
ADD_NOGEN "Write R1"
ADD_NOGEN "Write R2"
ADD_NOGEN "Write R3"
ADD_STATIC "_"
ADD_BITMAP_1
ADD_BITMAP_0
ADD_STATIC "_"
ADD_BITMAP_0
ADD_BITMAP_1
ADD_STATIC "_"
ADD_CONTEXT_INDEX 4
ADD_COUNT
ADD_NEWLINE

ELEMENT "PE_3"
WHERE 3.0 0.0 -3.0
ADD "Output"
ADD "Input A"
ADD "Input B"
ADD "Constant"
ADD "DisCounT"
ADD "Write Enable"
ADD_NOGEN "Read R0"
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ADD_NOGEN "Read R1"
ADD_NOGEN "Read R2"
ADD_NOGEN "Read R3"
ADD_NOGEN "Write R0"
ADD_NOGEN "Write R1"
ADD_NOGEN "Write R2"
ADD_NOGEN "Write R3"
ADD_STATIC "_"
ADD_BITMAP_1
ADD_BITMAP_0
ADD_STATIC "_"
ADD_BITMAP_1
ADD_BITMAP_0
ADD_STATIC "_"
ADD_CONTEXT_INDEX 4
ADD_COUNT
ADD_NEWLINE

Every node inside the element is going to be generated. The keyword
“ADD” is replaced by keyword “ADD NOGEN” for indicating un-generated
node. The keyword “ADD BITMAP 0” and “ADD BITMAP 1” are used for
adding bitmap node to the PE (BITMAP 1 is active bit). In the same manner as
the example 3, some special commands can be added to control the generating
as shown in the Table A.2.

Table A.2: Pair of generating commands

Outside Element Inside Element
STATIC ADD STATIC

CONTEXT INDEX ADD CONTEXT INDEX
COUNT CONFIGURATION ADD COUNT

NEW LINE ADD NEWLINE

In order to configure the PE-Array, it may require different number of config-
uration clock cycle depending on the pattern of duplicate configuration data in
the PE-Array. Black-Diamond compiler requires information of elements to be
configured in RoMultiC. Only a duplicated configuration data are multicasted
when the command is executed. User must indicate looping to loop generating
the configuration data in RoMultiC until all PEs are configured. The executed
command for generating configuration data in RoMultiC can be shown as the
description below:

// Add keyword "SELECT" to "Write Enable" node
SELECT 0

RETURN_POINT
GEN_ROMULTIC
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CONFIGURE "PE_0"
CONFIGURE "PE_1"
CONFIGURE "PE_2"
CONFIGURE "PE_3"

LOOP_ROMULTIC

The keyword “GEN ROMULTIC” is used for indicating group of PE which
can be configured in RoMultiC scheme by using the followed keyword “CON-
FIGURE”. The keyword “RETURN POINT” and keyword “LOOP ROMULTIC”
are used for looping to generate configuration data until all indicated PEs are
configured.

In order to reduce the number of configuration clock cycle, Black-Diamond
changes selecting input at the node which is not fixed automatically. However,
the “Write Enable” node should not be changed since it may overwrite data stor-
ing in the register without routing between contexts. The keyword “SELECT”
must be used to fix selecting input at the “Write Enable” node to protect from
the automatic changing.

Some architectures can load multiple sets of RoMultiC to configure in parallel
(For example, the switching element of MuCCRA-1 and MuCCRA-2 architec-
ture). Multiple keyword “GEN ROMULTIC” can be used as the description
below:

// Add new elements for generating white space and executing special command
ELEMENT "Space Element"

ADD_STATIC "_"
ELEMENT "End Element"

ADD_STATIC "_"
ADD_CONTEXT_INDEX 4
ADD_COUNT
ADD_NEWLINE

// Remove the duplicate part as the "End Element" in each PE

// Replace the RoMultiC looped
RETURN_POINT

GEN_ROMULTIC
GEN_ORDER 2
CONFIGURE "PE_0"
CONFIGURE "PE_1"
CONFIGURE "PE_2"
CONFIGURE "PE_3"

GEN_ELEMENT "Space Element"
GEN_ORDER 1

GEN_ROMULTIC
GEN_ORDER 0
CONFIGURE "PE_0"
CONFIGURE "PE_1"
CONFIGURE "PE_2"
CONFIGURE "PE_3"
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GEN_ELEMENT "End Element"
GEN_ORDER 3

LOOP_ROMULTIC

Between the RoMultiC configuration data, a user can add white space or
execute special command by generating the new element by using keyword
“GEN ELEMENT”. Moreover, the generating order can be switched by set-
ting “GEN ORDER” property.

A.12 Example 10: Improving Graphic

This example is not so important but allows a user to understand the archi-
tecture by graphic user interface easily. One of difficulty to understand this
example target architecture is: where is the component inside the reconfig-
urable element? All previous screenshots show flowing node represented input
and output of FU and register. Adding drawing box (using keyword “BOX”)
into graphic makes it become clearly to be understood as shown in Figure A.11.

Figure A.11: Screenshot after adding drawing box to FU and register

However, a new problem occurs. The strain line to represent connection
from “PE 3” to “PE 2” looks like drilling the register component and does not
connect to the “Input A” of FU. This problem can be solved by adding new
nodes (“NODE SIZE 0” and “COST 0”) floating over the input node for receiv-
ing data at each input link before reaching to the input node. The screenshot
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can be shown as Figure A.12. This technique can be also used for making arrow
at the end of connection too.

Figure A.12: Screenshot after adding floating nodes over input and output node

At the output node of FU, the different operations are represented and a
user can not know what operation is placed at the FU without looking at the
generated configuration data. The selecting input link can be shown by using
drawing text in the graphic. By replacing the keyword “CONFIGURATION”
with “CONFIGURATION TEXT” at the “Output” node as the description
below, the text followed “,” is draw in graphic corresponding to the selection as
shown in Figure A.13. The register file can be also modified to show the reading
and writing register number too.

CONFIGURATION_TEXT "000_" , "Addition" // Addition Operation
CONFIGURATION_TEXT "001_" , "Subtraction" // Subtraction Operation
CONFIGURATION_TEXT "010_" , "Multiply" // Multiply Operation
CONFIGURATION_TEXT "011_" , "Receive" // Receive I/O data
CONFIGURATION_TEXT "100_" , "Send_A" // Send input A to I/O Bus
CONFIGURATION_TEXT "101_" , "Send_B" // Send input B to I/O Bus
CONFIGURATION_TEXT "110_" , "Pass_Input" // Pass input data to output
CONFIGURATION_TEXT "111_" , "Constant" // Send constant data to output
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Figure A.13: Screenshot after modifying the “Output” node to show text cor-
responding to selecting input
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