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Chapter 1

Introduction

1.1 Arithmetic of elliptic curves, the modular
elements and Euler systems

In the arithmetic of elliptic curves, arithmetic objects such as Mordell-Weil
groups, Selmer groups and Tate-Shafarevich groups have been studied by
many mathematicians. There are several interesting conjectures about the
relation between the structures of these arithmetic objects and the special
values of L-functions of an elliptic curve. One is the Birch Swinnerton-Dyer
conjecture, which states that the order of vanishing of the L-function is equal
to the rank of the Mordell-Weil group, and some important arithmetic invari-
ants appear in the leading term of the L-function. Another is the Iwasawa
Main Conjecture, which states that the structure of the Selmer group of a
certain infinite extension is dominated by a p-adic L-function which interpo-
lates the special values of the L-function. There is also a difficult conjecture
that the Tate-Shafarevich groups are finite.

There are some important elements which are related to the above con-
jectures. In 1987, Mazur and Tate [12] defined the modular element for the
maximal real subfield Q(ux)™ of the cyclotomic field Q(uy) and for modular
elliptic curves defined over the field Q. They formulated some conjectures
as “refined” Birch Swinnerton-Dyer conjecture without p-adic L-function,
which states that the modular elements are related to the structure of the
Selmer group over the field Q(uy)*. The modular elements are related to
the special values of the L-function of the elliptic curve E, and by taking
p-adic limits of the modular elements, we can obtain the p-adic L-function



of E.

On the other hand, around 1990, a new method was developed to study
arithmetic objects such as the ideal class group of an algebraic number field or
the Tate-Shafarevich group of an elliptic curve, by using a system of elements
which satisfy formulas involving the Euler factors of the Riemann zeta func-
tion or the Hasse-Weil L-function of the elliptic curve. These systems were
named Euler systems. Kolyvagin [9] and Rubin proved that Tate-Shafarevich
groups of certain elliptic curves are finite using the Euler system coming from
the Heegner points (see also Rubin [16] [17]).

In the 1990’s, Kato [7] constructed a new Euler system of a modular form
for cyclotomic fields in cohomology groups, which is called the zeta elements.
By using this Euler system, he obtained significant results about the Selmer
groups, such as the A-cotorsionness of the Selmer groups and a partial result
of the Iwasawa Main Conjecture for modular forms. The zeta elements are
related to the special values of the L-functions. Moreover, it was proved
that the image of the system of the zeta elements in the ordinary case for
Q(pnpee) through the Perrin-Riou’s homomorphism is essentially the p-adic
L-function.

Now that we know every elliptic curve defined over the field Q is modular,
the modular elements and the zeta elements are defined for every elliptic
curve over Q (See [1]).

The relation between the two elements had not been studied. The first
result on the relation between the two systems was Kurihara’s result when
he studied the Selmer groups in the supersingular case. For an odd prime
number p, he studied the relation between the zeta elements and the modular
elements in the finite extension fields in the cyclotomic Z,-extension of the
field Q, and showed that the two elements correspond through a map which
has nice integrality. He used the above correspondence to determine the
structure of the Selmer groups in the simplest case, and showed that the
modular elements are in the Fitting ideal of the Selmer groups, which was
conjectured by Mazur and Tate. He also showed that the behavior of the
orders of the Tate-Shafarevich groups in the supersingular case is different
from that in the ordinary case.

The purpose of this paper is to study the relation between the modular

elements and the zeta elements in general. For an elliptic curve E defined
over Q, we will construct a homomorphism from the cohomology group to the
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group ring of the Galois group for arbitrary cyclotomic fields and good prime
p. We define an admissible system as a system in group rings which satisfies
the same formulas of the modular elements. We will prove that an Euler
system corresponds to an admissible system through the homomorphism,
and as a special case, the zeta element corresponds to the modular element.
We will also prove that the homomorphism has a nice integral property in
many cases. We can regard Kurihara’s map as a special case of our map.
Since our homomorphism is defined for a finite degree extension, we expect
that this homomorphism would be useful to study the Selmer group of a
number field of finite degree.

We will also prove the similar result to the above Kurihara’s result about
the Selmer groups, in the case when p = 2. Namely, we will determine the
structures of the Selmer groups of elliptic curves with supersingular reduction
at 2 in the simplest case. But this case has a difference that the corank of
the Selmer groups is positive while the Selmer groups are finite in Kurihara’s
result for odd prime number p.

1.2 Results of this paper

Let E be an elliptic curve defined over Q and let f(z) = >, a,q" be the
cusp form of weight 2 corresponding to E. We will introduce the results of
this paper.

1.2.1 Selmer groups of an elliptic curve with supersin-
gular reduction in the cyclotomic Z,-extension

The purpose of this paper is to study the correspondence between the modu-
lar elements and the zeta elements, and we first introduce the results obtained
from the correspondence. We will generalize the correspondence in Chapter
3.

In Chapter 2, we will prove the following theorem about the structures of
the Selmer groups in the cyclotomic Zs-extension of Q for an elliptic curve
with supersingular reduction in the simplest case, using the zeta elements
and the modular elements. The following theorems show that the behavior
of the Selmer groups in the supersingular case is different from that in the
ordinary case.



Theorem 1.2.1 (Theorem 2.1.1). Let Q. /Q be the cyclotomic Zsy-extension
of Q and Q,, be its n-th layer. We assume that as # 0, namely ay = £2,

and
ordo(L(F,1)/Qp) = ordy(Tam(E)) = 0

where ordy : Q* — Z is the normalized additive valuation at 2. Then,

1. For any n > 0, let Oq, be the modular element. Suppose n > 1. Then,
the Pontrjagin dual Sel(E/Q,)" of the Selmer group over Q, with respect to

E[2%] is isomorphic to
Z,[Gal(Q./Q)]/(0q., va(fq, )

as Z,[|Gal(Q,,/Q)]-modules.
2. Forn > 2, put
n—1 1
— _1\eon—1-k _ Z(on _ (_1\n
= SR = 2 (1))

k=0
Then, we have Sel(E/Q) = 0,Sel(E/Q;) = Sel(E/Q2) = Qa/Zs as abelian
groups, and

Sel(E£/Q,) = Qu/Zy® (Z/2n—2z)q3—q2 & (Z/Qn—SZ)q4—q3 @@ (Z)22)1 0=

for alln > 3. Hence, if we assume the finiteness of the 2-primary component
of the Tate-Shafarevich group M(E/Q4)[2%], we have

rank E(Q,) =1 for alln > 1,
(E/Qu)[2>] = W(E/Q)[2%°] = 0, and
W(B/Qu)[2%] = (222 2)5~0 & (2/2 200 & - & (2/22)n 0

for alln > 3.
3. Sel(E/Qw)" = Zo[[Gal(Qwe/Q)]]-
The above theorem is an analogue of the following Kurihara’s theorem
[10] for odd prime number p.

Theorem 1.2.2 (Kurihara). Let p be an odd prime and assume that E has

supersingular reduction at p, ordpL(SfE’l) = ord,Tam(E) = 0, and the Galois

action

prp) : Go = Gal(Q/Q) — Aut(E[p]) = GLy(F,)
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is surjective. Let Quoo/Q be the cyclotomic Z,-extension of Q and Q,, be its
n-th layer. Then, for alln > 1

rank £(Q,) = 0
Sel(E/Q,) = HI(E/Q,)[p™]
and

1 Sel(E/Qu)Y ~ Z,[Gal(Qu/Q)]/ (6, val0a, ) (0> 1)
as Z,|Gal(Q,,/Q)]-modules.

2. Put
pl—p S — vt +p—1  (for evenn > 2)
dn = { pnfl_pn72+pn73_pn74+'”_’_p2_p (fOTOddTLZS)
then
Sel(E/Q) Sel(E/Qy) =0

S(E/Qu) = (Z/p" 2" & (B 2B @ - & (ZfpZyn
(for alln > 2)

as abelian groups.

3. Sel(B/Qu)” =~ Z,[[Gal(Que/Q)]] ( as Z,[[Gal(Qu/Q)]]-modules).

Although the zeta elements did not appear explicitly in the above state-
ments, the proofs of the above theorems are based on the behavior of the
modular elements and the zeta elements. An important part of the proof is
to prove that the modular elements annihilate the dual of the Selmer groups
Sel(E/Q,)Y, which is proved by using certain homomorphism which sends
the zeta element to the modular element. This homomorphism will be dis-
cussed in Chapter 3 of this paper in more general situations.

We will make some remarks about the difference between the ordinary
case and the supersingular case.
In the ordinary case, we have the following theorem.

Theorem 1.2.3 (Mazur). Let F' be a number field, and let p be a prime
number. Let F/F be the cyclotomic Z,-extension and F, its n-th layer.
Put A := Z,[|Gal(Fx/F)]]. Assume that E has good ordinary reduction at
all primes of F lying over p. Assume that Sel(E/F.) is A-cotorsion and
that (E/F,) is finite for all n > 0. Then there exist \, u,v € Z such that
tIL(E/F,)[p>®] = p°, where e, = An + up™ + v for all n > 0.
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This is an analogue of Iwasawa’s class number formula. This is proved
by Mazur’s Control theorem.

Remark 1.2.4.

1. The assumption that Sel(£/F,) is A-cotorsion is believed to be always true
in the ordinary case. More precisely, there exists the following conjecture.

Conjecture 1.2.5. For every prime number p,

rank,Sel(E/Fy)” = > [F, : Q).

(2

Here, v runs through all the primes above p such that E has potential su-
persingular reduction at v.

This conjecture is proved in some cases, for example, it was proved by
Kato that this holds for F' = Q. But 3. of Theorem 1.2.1 and Theorem 1.2.2
in the supersingular case show that Sel(E£/Q4) is not A-cotorsion.

2. The structures of the Tate-Shafarevich groups have been rarely determined,
but in the above theorems, the structures of the Selmer groups as abelian
groups are determined.

3. We know that the orders of the Tate-Shafarevich groups from the structures
of the Tate-Shafarevich groups. The above theorems show that the growth
of the orders of the Tate-Shafarevich groups is different from that in the
ordinary case.

4. Concerning the structure of the Selmer groups as Galois modules, Mazur
and Tate [12] conjectured that the modular element is in the Fitting ideal of
the Pontrjagin dual of the Selmer group. From above theorems, the Fitting
ideal of the Pontrjagin dual of the Selmer group Sel(E/Q,,) is proved to be
(0@, vn(fq, ,)). Hence, we have also proved that the conjecture of Mazur
and Tate holds in the above case.

1.2.2 Homomorphisms concerning Euler systems

In Chapter 3, we will construct a homomorphism

P H(Q, ®q Qun), V,E) — Qp[Gn]

for a good prime p and for the cyclotomic field Q(uy) with arbitrary pos-
itive integer N, and study the homomorphism. Here, V,E = Q, ®z, T,F,
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where T,E is the Tate module, and Gy := Gal(Q(un)/Q). The main result
of Chapter 3 is the construction of this homomorphism Ppy. This homomor-
phism Py is defined in §3.3. We will also study some important properties
of PN.

We make a very rough sketch of the construction. As we will see in
Chapter 3, the homomorphism Py is defined, using a certain pairing

Py - D/DO ®Q Q(,UN) X Hl(Qp ®Q Q(MN)>%E) - QP[QN]

and a special element 2y € D/D°®qQ(un). The construction of the element
ry is the main part of the construction of the homomorphism Py.

Kurihara first constructed such a homomorphism in [10] in the case when
N = p" for a positive integer n and when the elliptic curve E has super-
singular reduction at p, inspired by Perrin-Riou’s work [14], in which it was
proved that the p-adic L-function is the image of the Kato’s Euler system
through a certain homomorphism.

Our homomorphism Py with N = p™ plays an important role in Iwasawa
theory for elliptic curves, and is related to an important homomorphism
Col*, which is defined by Kobayashi in [8]. He formulated the Iwasawa
main conjecture for supersingular primes using the homomorphism Col*, and
proved a partial result of the main conjecture using Kato’s zeta elements.

From the definition of Euler systems described below, in the case in which
Kurihara and Kobayashi studied, the system of the zeta elements (z,n),>1 is
only a norm compatible system (see the upper half of the formulas (1.1) of
Euler systems), but we will study general relations between Euler systems,
which is the main difference between this paper and their works.

We will introduce two systems related to the above homomorphism. One
is an admissible system. We will introduce the notion of the admissible
system in this paper. The other is an Euler system.

The modular elements and an admissible system

We will introduce the modular elements defined by Mazur and Tate [12], and
the compatible formulas which the modular elements satisfy.

For N > 1, let Gy := Gal(Q(un)/Q). Mazur-Tate [12] defined the
modular elements. We define the modular element 6y by

Ox = > ([5l6+ [le)ow € QLN



This definition is slightly different from the original work of Mazur and Tate.
Here, for r € Q, [r]5 € R are defined by

2 /0 fr+iy)dy = [r]p + [0

where f(z) = >.°° a,q" is the modular form corresponding to E and Q7
are Néron periods. From Manin-Drinfeld theorem, we know [T]E € Q.
They are related to the special values of the L-functions as follows.

Proposition 1.2.6 (Mazur, Tate). Let x be a character of conductor N and
let T(X) := X gegy X(0)o(Cn) be the Gauss sum. Then we have

L(E,x1,1)

x(On) = 7(x) oF: (x(=1) = £1).

For each prime number ¢, they satisfy compatible formulas below

aqtv — quM/%(e%) (¢ | M)
(aq—aq—eqaq_l)HM (gt M).
Here, for integers L and M with L dividing M, the map mp/z : Z[Gy] —

Z[G;] is defined by the restriction map of the Galois group Gy — G, and
the map vay/r, : Z[GL] — Z[Gu] is defined by

g — E T

TEGM /L (T)=0

7TqM/M(eqM) = {

for o0 € Gr.
In this paper, we call a system of elements (nar)mr € [[yn QplGar] an
admissible system, when they satisfy the same compatible formulas.

The zeta elements and an Euler system

On the other hand, we call a system of elements

(wa)u € [] H(Qp ©q Qlur), Vo E)
MIN

an Euler system, when they satisfy

) wum (q | M)
RS I A A i (1)
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for a prime number ¢ and a positive integer M. Here F(T) := 1— %‘IT+ %T2
is the polynomial in Definition 3.2.2, where ¢, = 1 (resp. 0) if ¢ is a good
prime (resp. bad prime).

In [7], Kato constructed an Euler system in the cohomology groups

1 1
H1<Z[:U’N7 EL ‘/I,E) = Hit(SpeCZ[MNa §]7 V;JE>

using Beilinson elements in the K-groups. Here H},(SpecZ|uy, £], V,E) is an
étale cohomology group (or a Galois cohomology group) and S is the set of
bad primes, the infinite prime and p. It is called the zeta element. We regard
zy € H(Q, ®q Q(un), V,E) through the natural map H'(Z[uy, £, V,E) —
H'(Q, ©q QUix), 1, E).

The zeta elements are related to the special values of the L-function as
follows.

Proposition 1.2.7 (Kato). Let x be a character of conductor N, then the
zeta element zy € HY(Q, ®q Q(un), V,E) satisfies

L(E,x,l)w

G (1) = 1)

> x(o) expy(o(zn)) =

oceGN

Here, expy is the dual exponential map, w = wg is the Néron differential
and QF are Néron periods.

The properties of the homomorphism Py

We will prove the following three theorems, which state the important prop-
erties of the homomorphism Py. The theorems were proved by Kurihara [10]
in the case when N = p" for odd supersingular prime p. The first theorem
states that Euler systems correspond to admissible systems through the ho-
momorphisms Py. The second theorem states that as a special case of the
correspondence, the zeta element corresponds to the modular element. The
third theorem is about a nice integral property of the homomorphism.
First, we will introduce two theorems.

Theorem 1.2.8 (Theorem 3.4.1). If (war)um € [T n H' (Q,2qQ(1um), V, E)
is an Buler system, then (Py(war))u € [Tann Qpl9um] is an admissible sys-
tem.

11



In other words, the system of the homomorphisms (Pys) s constructed in
this paper sends Euler systems to admissible systems. As we have mentioned,
we have a special Euler system and a special admissible system, namely
the system of the zeta elements and the system of the modular elements.
The system of the zeta elements corresponds to the system of the modular
elements through the homomorphisms.

Theorem 1.2.9 (Theorem 3.4.3). Let zy € H'(Q, ®q Q(un), V,E) be the
zeta element, and let O € Q,|Gn| be the modular element, then we have

PN(ZN) = ‘9N-

The first theorem will be proved by showing that the system (z),s in the
definition of Py satisfies some formulas, and we will prove that the formulas
of admissible systems are obtained by combining the formulas of (z/)5 and
the formulas of Euler systems. Thus, Euler systems correspond to admissible
systems. The second theorem will be proved by the relations between the
special values of L-function and each elements.

We have introduced the correspondence between Euler systems and ad-
missible systems. The next statement is the most important property of the
correspondence. We will introduce the last theorem in Chapter 3, which
states that the homomorphism has a nice integral property in many cases.

Theorem 1.2.10 (Theorem 3.5.1). If p divides N, E(F,(ux))[p] = 0 and
an Euler system (wyy)y is integral, namely

(war)mr € H HY(Q, ®q Q(1n), T, E),
M|N

then the admissible system (Par(war))m is integral, namely

(Par(wan)ar € T 2,16

M|N
Here E is the reduction of the elliptic curve E mod p.

The above integral property was important in the results about the Selmer
groups, because the Selmer groups are Z,-modules but not Q,-modules.

12



Proving the integrality is the longest part of this paper. The proof is based
on the study of the image of the formal logarithm map of the elliptic curve
E. 1In the supersingular case, the proof was easier since the height of the
formal logarithm map is 2. But the height is 1 in the ordinary case, so the
arguments in [10] can not be applied. We will use the similar arguments to
the result of Coleman [4] to study the formal logarithm map.

We will also determine the kernel of the homomorphism P,» where p is a
supersingular prime, which will be used in Chapter 2.

Unfortunately, we have not yet obtained results about the Selmer groups
like the theorem in Chapter 2, or Kurihara [10] in more general case. But
we hope that the homomorphism will be used to study the structures of the
Selmer groups.
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Chapter 2

Iwasawa theory for elliptic
curves with supersingular
reduction

2.1 The Selmer groups in the Z,-extension of

Q

Let E be an elliptic curve defined over Q. If E has good ordinary reduction
at a prime p, the growth of Tate-Shafarevich groups (and Selmer groups) of
E in a Z,-extension can be understood by usual Iwasawa theory. But if F
has supersingular reduction at p, the growth of Selmer and Tate-Shafarevich
groups is more complicated. For an odd prime p, the most basic case was
dealt with in Kurihara [10] where the main assumption was that p does not
divide the L-value L(F,1)/Qg (where Qg is the Néron period). The aim of
this chapter is to study the case p = 2 under the same assumption on the
L-value, namely 21 L(E,1)/Q.

For a prime number p, we consider the cyclotomic Z,-extension Q./Q
whose n-th layer we denote by Q,, namely Q, is the intermediate field
with [Q, : Q] = p™. For an odd p, the condition p 1 L(F,1)/Qg implies
rankF(Qs) = 0 (see [10]), but for p = 2 this does not hold. We will see
that for p = 2 the condition p = 2t L(E, 1)/Qg would imply that the Selmer
groups over @, always have positive corank for n > 1, hence would imply
rankF£(Q,,) > 0 if we assume the Birch and Swinnerton-Dyer conjecture. So
the situation is different.
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As usual, put a, = p+ 1 — #E(F,). In the following, we suppose p = 2
and F has good supersingular reduction at 2. When as; = 0, we have two
nice Iwasawa functions which describe the p-adic L-function of E by Pollack
[15], and we can define + Selmer groups as in Kobayashi [8], and can study
them by the same method as for p > 2. In this chapter, we consider the case
as # 0 (so ag = £2). Let Sel(E/Q,,) be the Selmer group of E over Q,, of
E[2%°]. We will determine the Galois module structure (and the structure as
an abelian group) of Sel(E/Q,,) completely in the case as = £2 under the
assumption 2 t L(FE,1)/Qg, in particular Sel(E/Q,,) is of corank 1. (When
az = 0, the condition 2 1 L(E,1)/Qp does not determine the structure of
Sel(E/Q,) as an abelian group.)

Our main assumption is just 2 1 L(E, 1) /Qg. If the Birch and Swinnerton-
Dyer conjecture is true, this would imply that 2 does not divide the Tam-
agawa factor Tam(E) = Ile, = TI(E(Qy) : Eo(Qr)) (where Ey(Qy) is the
subgroup consisting of points whose images in E(F,) are nonsingular.) We
will prove

Theorem 2.1.1. We assume that as # 0, namely as = £2, and
ordy(L(E,1)/Qg) = orde(Tam(E)) = 0
where ordy : Q* — Z is the normalized additive valuation at 2. Then,

1. For any n > 0, let Oq, be the modular element. Suppose n > 1. Then,
the Pontrjagin dual Sel(E/Q,)" of the Selmer group over Q, with re-
spect to E[2%°] is isomorphic to

Z,[Gal(Q./Q)]/(0q., va(bq, )
as Z2[Gal(Q,,/Q)]-modules.

2. Forn > 2, put

n—1

= Y12 = (20— (1)),

k=0

Then, we have Sel(E/Q) = 0,Sel(E/Q1) = Sel(E/Q2) = Q2/Zy as
abelian groups, and

Sel(E/Q,) = QQ/ZQEB(Z/QR—ZZ)%—QQ@(Z/Qn—i’)z)qzl—qzi@_ - @(Z)2Z) 00
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for all n > 3. Hence, if we assume the finiteness of the 2-primary
component of of the Tate-Shafarevich group TI(E/Q1)[2%°], we have

rank F(Q,) =1 foralln > 1,
WI(E/Q))[2%] = W(F/Qu)[2] = 0, and
WI(E/Qu)2%] & (22225t & (22 L) & - & (Z/2Z)m

for alln > 3.

3. Sel(E/Qu)" = Z[[Gal(Qu /Q)]].

2.2 The modular elements

In this section and the following section, we will introduce the modular el-
ements and the zeta elements again. For N > 1, let Gy = Gal(Q(un)/Q).
We define the modular element 6y € Q[Gy] by

b= > (5lE+I5lE)oe

a€(Z/NZ)*

For the original definition, see Remark 2.2.1
Here, for r € Q, [r]5 € R are defined by

2m /0 for+iy)dy = [r]p + [rEQ5

where f(z) = Y07 a,q" is the modular form corresponding to E. From
Manin-Drinfeld theorem, we know [r]5 € Q. They satisfy

L(E,x',1)

X(On) = 7(x) Of (x(=1) = £1)

for each character x of conductor N, where 7(x) == > g, X(0)o(Cn) is
the Gauss sum. For each prime number ¢, they satisfy compatible formulas
below.

aqbnr — EqVM/%(e%) (¢ | M)

WqM/M(OqM) = { (Clq — 0, — eqo'q_l)QM (q Jf M)
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Here, for integers L and M with L dividing M, the map 71, @ Qp[Gar] —
Q,[GL] is defined by the restriction map of the Galois group Gy — Gr, and
the map va/r : QplGr] — Qp[Gun] is defined by

g Z T
T€GM,Tp/L(T)=0

for o € Gy,
In this paper, we call a system of elements (ma)m € [[yn QplGur] an
admissible system, when they satisfy the same compatible formulas.

Remark 2.2.1. In [12], the modular elements are defined by
a
on = Y, [§lhoa € Qov/{E1}]

a€(Z/NZ)* /{£1}

2.3 The zeta elements

Kato defined an Euler system in cohomology groups H'(Z [y, %], V,E) in [7].
Here H'(Z[uy, 1], V,E) = H. (SpecZ[uy, ], V,E) and S is the set of bad
primes, the infinite prime and p. It is called the zeta element. We regard
zy € H(Q, ®q Q(un), V,E) through the natural map H'(Z[uy, £, V,E) —
H'(Q, ®q Q(un), V,E). We normalize the zeta element as follows.

Proposition 2.3.1. Let x be a character of conductor N, then the zeta
element zy € H'(Q, ®q Q(uy), V,E) satisfies

> x()expilo(en)) = X (1) = £1).

cegN

Here, exp is the dual exponential map and Q3 are Néron periods. See
Kato [7], Theorem 12.5.

We call a system of elements (war)m € [[ H'(Q, ®q Q(pyr), V,E) an
Euler system, when they satisfy

B Wpnr (q | M)
Nrgn/ar (Wonr) —{ Fy(ogwar (gt M),

Here F,(T') is the polynomial in Definition 3.2.2.
Proposition 2.3.2. The zeta elements (zpr)p form an Euler system.

See Kato [7], Theorem 8.12.
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2.4 Proof of the theorem

2.4.1 Conductor

Proposition 2.4.1. Suppose that E has supersingular reduction at 2, and 2
does not divide Tam(E). Then, the conductor of N satisfies

N =3,5 (mod 8).

Proof. Let
y2 + oy + o3y = 3+ a2x2 + oy + Qg

be the minimal Weierstrass equation of F over Z. If £ is a supersingular ellip-
tic curve over Fy, then its j-invariant is 0, and it has a Weierstrass equation
of the form y*+y = 23 + By + Bs(B4, Bs € Fa, cf. [19] p.325). Hence, consid-
ering all possible changes of variables of the Weierstrass equation, we know
that «aq is even and a3 is odd. This implies that the minimal discriminant
Ap = Ag(ay,...,aq) satisfies Ap = 5 (mod 8).

On the other hand, suppose that [ is a bad reduction prime for E. Since
Tam(E) is odd, ¢, = [E(Qy) : E°(Qy)] is also odd, and the table by Néron
and Kodaira tells us that the number of irreducible components of the Néron
model of E over Z; is odd. It follows from Ogg’s formula that

ord)(N) = ord;)(Ag) (mod 2).
Hence, the absolute value of Ag/N is a square. Thus we have
N=3,5 (mod 8).
O

Corollary 2.4.2. Let E’ be the quadratic twist of E by the Dirichlet char-
acter corresponding to Q(\/i) If E has supersingular reduction at 2 and

OI'dQ(L(QL];I)) = ordy(Tam(F)) = 0, then we have L(E',1) = 0.

Proof. By proposition 2.4.1, the conductor N of E satisfies N = 3,5 (mod 8).
Hence, the sign of the functional equation of E’ is —1. So we have L(E’, 1) =
0. O
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2.4.2 Formal groups

Lemma 2.4.3. Let F be a formal group of height h. Let L/K/Q, are finite
extensions of local fields. Let my and my be the maximal ideal of K and L
respectively, let kx and ki be the residue field of K and L respectively, and
let ek, er, and e be the index of ramification of the extension K/Q,, L/Q,
and LK respectively. Let Dy jx = m{ be the different of the extension L/ K.
Let

NL/K : F(mL) — .F(mK)

be the norm map.

1. If f <2e—2, then N,k is surjective.

L. Put t = [*EL]. Then

€

8(F(mi) /Noyx(F(my))) > (k) ™"/ (k)™

Proof. From [18], try x(m}) = mie with j = [%}

First, we will prove 1. of the lemma.
To prove the surjectivity, it suffices to show that for each j > 1, there
exists ¢ > 1 such that Ny, x(F(m})) = mj, and the induced map

Nijie « F(miy) — F(mi) | F(mi)

is surjective.

Put i; :=e(j+ 1) — f — 1. From the assumption, we have i; > 1 for each
j > 1. We have try g (m7) = mﬂ and trL/K(mL’H) = JH Thus, the trace
map induces the isomorphism

tI'L/K mL /m — mK
The composite of the map
% % tr
F(m)/F(my ™) &= mip fmif " =5 mie fmidt = F (i) [ F(mil")
coincides with the map induced from the norm map

Ny F(m) [ F(mi ™) — Flmi) [ F(mil").

Thus, we have proved the surjectivity of the norm map.
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Next, we will prove 2. of the lemma. Since s > p,ff 7, the formal logarithm
induces the isomorphism

logz : F(m3) = oms.
We have a commutative diagram below.
NL/K: ]:(mL) — f(mK)
| O !
trL/K : L — K
Here, the vertical arrows are the logarithm map of the formal group log.
try ik (mj) = mi. Since f > e — 1, we have
s+ f s+e—1

e

€L €K
> =

b=l e(ph—1) p—1

D lw

Thus, we have an isomorphism
ty =, 0t
logz(m7) — mj.

So, we have Np/x(F(my)) = F(mi). Since we have [F(my) : F(my)] =
(8k2)* ! and [F(mg) : F(mb)] = (8kx)'™", we obtain

A(F () /Neyw(F(me)) = ()™ / (2he)*

O
A consequence of the above lemma is as follows. For n > 1, put
0 (n=1)
G =% plt=p"Z4pr 3 —ptte.4p—1 (n>2,n: even)

pn—l_pn—2+p’R—3_pn_4+...+p2—p (nZB,nOdd)

if p is an odd prime number and
n—1
1
= -1 k2n—1—k — 2n — (=1 n
=3 (1) S = (-1
k=0
if p =2. Let Qx/Q be the cyclotomic Z,-extension and Q,, its n-th layer.
Let k,, be the p-adic completion of Q,,. Then for the extension Q,,/Q,_1, we
havee=pand f=p"+p—2if pisodd and f =2" 4+ 1 if p = 2. We have
the next lemma.
Lemma 2.4.4. Let E/Q be an elliptic curve which has supersingular reduc-
tion at a prime p. Then we have

ord, (2(E(my, ) /New i1 (E(mi,))) > -

20



2.4.3 The behavior of the modular elements

We put G, = Gal(Q,/Q). We denote the map mq,,,/q, : Q[Gni1] —
Q[G,] by m, and the map vq, /q, , : Q[Gn-1] — Q[G,] by v,. We define
the modular element fq, by the image of fyn+2 through the restriction map
Q[Gan+2] — Q[G,]. Note that fq is not #; but the image of 6,.

Proposition 2.4.5. Let Q../Q be the cyclotomic Zs-extension. Let E be an
elliptic curve defined over Q. Suppose that p =2, as = £2 and ordQ (& 1)
0. Let, be a faithful character of the group G,,. Put q, := Z:é( 1)’“2” 1=k —

3(2" — (=1)") as in the previous subsection. Then we have ordyfq = 0,

Y1(0q,) =0 and

Ord(gn*lwn<0Qn) = dQ4n
forn > 2.

Proof. First we prove ¢1(0q,) = 0. We have ¢4 (6q,) = T(Xg)L(%’—’S’l) where

Xs is the Dirichlet character corresponding to Q; = Q(v/2). From Corollary
2.4.2, we have L(E, xs,1) = 0, so ¢1(0;) = 0. We put 0q, = a(l + ~) for
some a € Zy. We have my(fq,) = 2a.

On the other hand, we have

mo(fq,) = ms/1(0s)
= 7T4/1(Cl294 - V4/2(92>)
= 7T2/1(CL2(6L292 - 7/2/1(91)) - 292)
_ 7T2/1((a§ —2)0, — agyg/l(el))
(a3 —2)(az — 1 —1)0; — asb;

L(F,1

= (a§—2a§—3a2+4)u
Qg

L(E,1

= (ay—1)(a3 — ag — 4) (Q )
E

So ords(mo(fq,)) = 1. Thus we get a € Z5. We also have ords(fq) = 0 since

0q = ma1(04)
= my1(axly — vay1(61))
= (a2(612 - 2) - 1)91
05,1,

= (ag — 2&2 — 1) QE
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Since 71 (0q,) = asfq, —v1(0q). We have fq, = asfq, —v1(0q)+a(y*—1) for
some (3 € Ay. Since ¥o(y) = (4 and vy = (1 + ), the ({4 — 1)-adic orders of
the three terms are 3,1, > 2 respectively. Thus we have ord¢,_1(¢1(0q,)) = 1.
Similarly we have ordg,_1(12(6q,)) = 3 and orde,, ,, ~1%n+1(0q,,,) = 2" +
orde,, _,¥n-1(0q,_,) for n > 3. By induction, we have orde,, 1(¢n(0q,)) =
Gn- 0

Proposition 2.4.5 is an analogue of Proposition 1.2 in Kurihara [10].
Proposition 2.4.6 (Proposition 1.2 in Kurihara [10]). Let p be an odd prime

number, let Qs /Q be the cyclotomic Zy-extension and let E be an ellz’ptz’c

curve defined over Q. Assume that E is supersingular at p and ord, E LELD

0. Let v, be a faithful character of the group G,,. Then ord,0q = O and

Ol"dg,]nqwn(eqn) = Qn-

2.4.4 The Selmer groups and cohomology groups

In this section, we assume that F' is a number field, E/F is an elliptic curve
which has good reduction at all the primes above a prime number p. Let
F/F be the cyclotomic Z,-extension of F' and let F,, be its n-th layer for
an integer n > 0. Let I' := Gal(F/F) and I',, := Gal(F,/F). We fix a
generator of I' and denote it by v. We also denote the image of v through
the natural map I' — T'), by ~.

Definition 2.4.7. For an algebraic extension F'/F, we define the Selmer
group Sel(E/F") with respect to E[p™] by

Sel(E/F') := Ker(H'(F', E H HY( N/ (E(F,) ®z Q,/Zy)),

the fine Selmer group Sely(E/F") by

Selo(E/F') := Ker(H'(F', E[p*]) — [ [H'(E}, E[p™])),

and Sel' (E/F') b

Sel'(E/F') := Ker(H'(F', E[p™]) — [ [ H'(F}, E[p™))).

vip
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We define the Selmer group Sel(E/F', T,E) with respect to T,E by

Sel(E/F',T,E) := Ker(H'(F', T,E) — [ [H'(F}, T, B)/(E(F})®Z,)).

Here, v runs through all the prime of F".

From the definitions above, we have
Selo(E/F") C Sel(E/F") C Sel'(E/F").

Let S be a finite set of primes of F' containing primes above p, bad primes
and infinite primes. For a number field F” over F, let O be the ring of
integers of F’ and Op[1/S5] be the ring of S-integers of F’. We consider étale
cohomology groups H*(Or[1/S], A) = H*(Gpr s, A) where G g is the Galois
group of the maximal unramified extension of F’ outside S.

For a Z-module M, M®Z, := lim M ®z Z/p"Z.

For a group G and G-module, M¢ denotes the G-invariant part and Mg
denotes the G-coinvariant.

In this paper, a commutative diagram means a commutative diagram
with exact rows and columns.

Lemma 2.4.8. For a number field F', the sequence

H'(Or[1/S),T,E) — @H'(F,, T,E)/(E(F,)8Z,)
vES

— Sel(E/F)Y — Selo(E/F)¥ — 0

and the sequence

0 — Sel(E/F)— H'(OF[1/S],E GBE Fngp/])z

— Sel(E/F,T,E)" — Selo(E/F,T,E)" — 0

are exact. Here, S is a finite set of primes of F containing bad primes,
primes above p, and infinite primes.
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Proof. We have a commutative diagram

0 Does(E(F) ©z Qp/Zy)

HY(OF[1/8], B[p™]) — = Byes H' (Fr, E[p™])

oo b L(Fy,E[p™
H'(O#[1/S), E[p™]) —— @5 mrremt D

0 0.

From the snake lemma, we have an exact sequence

0 — Kera — Kerb — @ v) ®z Q,/Z,) — Cokera.

vES

From Cassels-Tate-Poitou duality, we have an exact sequence

HY(Op[1/S], E — @ H'(F,, E[p™)) — H(Op[1/S], T,E)".

vES

Thus, there is an injection Cokera — H'(Or[1/S], T,,E)". By the definitions,
we have

Kera = Selo(E/F)
Kerb = Sel(E/F).

Thus, we have an exact sequence

0 — Selo(E/F) — Sel(E/F) — ED(E(F,)©2Q,/Z,) — H(Or[1/5], T,E)".

vES

Since we have (E(F,) ®zQ,/Z,)" = H*(F,,T,E)/(E(F,)®Z,) for v € S, we
have obtained the dual of the first exact sequence of the lemma.
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Similarly, we have a commutative diagram

0
0 GaveS(E(Fv)@Zp)
H'(OF[1/5], T, E) : D,es H'(F, TLE)

H'(Op[1/S], T,E) Des W' (Fo. T,E)/(B(F,)Z,y)

0 0

By the snake lemma, we have an exact sequence

0 — Kerc— Kerd — @ F,)®Z,) — Cokerc

veES

By the similar arguments using Cassels-Tate-Poitou duality as above, we
have an exact sequence

H'(Or[1/S], Ep™]) — @ H'(F,, Ep™))/E(F,) ©2 Qy/Z,

vES

— Sel(E/F,T,E)" — Selo(E/F,T,E)" — 0.

Since the kernel of the first map is Sel(E/F"), we have obtained the second
exact sequence. ]

The next proposition is control theorems for the Selmer groups.

Proposition 2.4.9. We assume that E(F,)[p]| = 0 for any prime v of F
above p and p { Tam(FE), then we have isomorphisms

Selo(E/F) = Selg(E/Fy)"
Sel'(E/F) = Sel'(E/Fy)".
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Proof. The proof is based on the arguments in Greenberg’s article [5] about
Mazur’s control theorem. The assumption E(F,)[p|] = 0 for all v | p implies
that Selg(E/F) — Selg(E/Fy)" is injective. The assumption p { Tam(E)
implies that the cokernel is 0. Thus, it is an isomorphism. We can show
Sel'(E/F) = Sel'(E/Fy)" similarly. O

We define
H'(Op, [1/5], T,E) = limH'(Op,[1/5], T, E).

Proposition 2.4.10. We assume that E(F,)[p] = 0 for any prime v of F
above p, p{ Tam(FE) and Selo(E/F) = 0. Then, the natural map

H'(OF. [1/8]. T,E)r, — H(Or,[1/8], T,E)

15 surjective for all n > 0.

n

Proof. 1t suffices to show the proposition under the assumption that n =
0. From proposition 2.4.9, we have Sely(E/F) = Selo(E/Fy) = 0. From
Cassels-Tate-Poitou duality, we have an exact sequence

0 — H*(Op[1/8],T,E) = D H*(F,, T,E) — H(Ox[1/8], Ep™])" — 0.
veES

Here, the injectivity of the first right arrow follows from Selo(E/F) = 0.
Since the second term is finite, H*(Op[1/S5], T, E) is finite. Hence,

H*(Op(1/8], E[p™]) = 0.

Applying Cassels-Tate-Poitou duality again, we have an exact sequence

HY(OF[1/5], E[p™])

HY(Or,[1/5], E[p™])"

Des H' (Fo, E[p™]) — (D,es., B (Fs)w: E[p™])"

HY(Or[1/5], T,E) (H'(Or.[1/5], T,E)")"
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Here, the injectivity of the left vertical sequence follows from Selo(E/F) =0
and the surjectivity follows from H*(Op[1/5], E[p>]) = 0.

The top right arrow is an isomorphism from the inflation-restriction se-
quence. The center right arrow is injective by the same argument of the proof
of the control theorem for Sely(E/F). The bottom right arrow is injective.
Taking dual, we have proved the proposition. O

2.4.5 The Selmer groups and the zeta elements

Let Qu/Q be the cyclotomic Z,-extension of Q. Put k := Q,, and k, be the

p-adic completion of Q,, for n > 0. Let E/Q be an elliptic curve. We assume

that E has supersingular reduction at p and ordpLgE’l) = ord,Tam(E) = 0.
E

If Gq — Aut(E]p]) is surjective, then we have

z:= (zq,) € limH'(Oq,[1/S], T,E).

Namely, the system of the zeta elements is an integral Euler system. In
the case of Theorem 2.1.1, the system is an integral system. We define
A = Z,[G,] and A = Z,[[I']] = lim A,,.

Proposition 2.4.11. We have
Sel(E/Q) = 0.
Proof. This follows from the arguments of Euler system in §14 of Kato [7]. O
Lemma 2.4.12. Forn > 0, we have
Selp(F/Q,) = 0.

Proof. From Proposition 2.4.11, we have Sely(£/Q) = 0. From the control
theorem, we have Sely(F/Qs) = 0. Applying the control theorem again, we
have Sely(E£/Q,) for n > 0. O

Proposition 2.4.13. The cohomology group H'(Oq[1/S),T,E) is a free
A-module of rank 1.

Proof. This follows from the arguments in §13 of Kato [7]. O
Lemma 2.4.14. We have

H'(0q..[1/S], T,E)r, = H'(Oq,[1/5], T, E).
Hence H'(Oq, [1/5], T,E) is a free A,-module of rank 1.

27



Proof. From proposition 2.4.10, there is a surjective map
H'(0q.[1/S], T,E)r, — H'(Oq,[1/S], T,E). (2.1)

Since H'(Oq..[1/S], T,E)r, = A, the left hand side of the equation 2.1 is
isomorphic to Ar, = A,,. Hence, the kernel of the map is trivial and the
equation 2.1 is actually an isomorphism. O]

Lemma 2.4.15. The cohomology group H'(Z[1/S], T, E) is a free Z,-module
of rank 1 generated by zq.

Proof. The dual exponential map induces an isomorphism
exp” : H1<va TpE)/(E(Qp>®Zp) - pilzpwE'

From Lemma 2.4.14, H'(Z[1/5], T,E) is a free Z,-module of rank 1. Since
we have

. ap, 1
exp(z2q)=(1— — 4+ - )wg,
(2q) = ( ) p) B
the image of zq in H'(Q,, T, F) generates H'(Q,, T,E)/(E(Q,)®Z,). Hence
zq generates H'(Z[1/5], T, E). O

Lemma 2.4.16. We have
H'(Oq,[1/5], T,E) = (2q,)a,-

Proof. From Proposition 2.4.14, Lemma 2.4.15 and Nakayama’s lemma, z
generates H'(Oq_ [1/S],T,E). Again by the isomorphism in Lemma 2.4.14

H'(Oq..[1/5], T, E)r, = H'(Oq,[1/S]. T,E),
zq, generates H'(Oq, )[1/5], T,E). O
Proposition 2.4.17. We have
Sel(B/Qu)" = H'(ky, Ty B)/(E(ka)Z, + (2q,)n,).

Proof. Since Sely(E£/Q) = 0 and there is only one prime of Q,, above p, we
have an exact sequence

H'(0q,[1/S), T,E) — H'(kn, T,E)/(E(kn)®Z,) — Sel(E/Q,,)" — 0

by Lemma 2.4.8. Since the module H'(Oq, [1/S], T,E) is generated by zq,
by Lemma 2.4.16, we have proved the proposition. ]
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Theorem 2.4.18. The dual of the Selmer group Sel(E/Qu)Y is a free A-
module of rank 1.

Proof. Since we know that A-rank of Sel(F/Qu)" is > 1 (see Theorem 2.6
in Coates-Sujatha [3]), we only have to show that Sel(E/Q)" is generated
by one element. By the definition of the Selmer groups, we have an exact
sequence

0 — Sel(E/Q) — Sel'(B/Q) — H'(Qy, E[p™))/E(Q,) ©2 Qu/Z,.

Since we have Sel(£/Q) = 0 and the dual of the last term is isomorphic to
Z,, Sel'(E/Q)" is generated by one element. From the control theorem and
Nakayama’s lemma, Sel'(F/Q,,) is generated by one element as a A-module.
We have another exact sequence

0 — Sel(E/Qu) — Sel'(B/Qu) — H' (b, E[p¥))/ Elkc) @2 Qy/Z,.

Since E has supersingular reduction at p, the last term is 0. Hence, Sel(E/Q)"
is generated by one element. Thus we have proved the theorem. O

Lemma 2.4.19. The dual of the Selmer group Sel(E/Q,)Y is a cyclic A,-
module.

Proof. Since the restriction map
Sel(F/Q,) — Sel(E/Qx)
is injective, the map
Sel(F/Qu)" — Sel(E/Q,)"

is surjective. From the above theorem, Sel(EF/Q)" is a cyclic A-module. So
Sel(E/Q,)Y is a cyclic A,-module. O

2.4.6 The Selmer groups and the modular elements

Proposition 2.4.20. Sel(E/Q,)" is annihilated by Oq, and v,(fq, _,).

Proof. From Proposition 2.4.17, we have
Sel(B/Qn)" = W' (ky, T,E)/(E(k.)®Z, + (2q,)a,)-
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From the properties of the map ﬁn in §3.6, the map
H (kn, T, B) /(B (kn)®Zy + (2q,)a,) = An @ M/ ((0q, va(0q,,))) A,

is injective. So, it suffices to show that Imﬁn/<(9Qn,l/n(9Qn_1)))A is an-

n

nihilated by 6q, and v,(fq,_,). We denote Nrq, q, , by Nr,. Let w €
H'(k,, T,E), we have

0q, Fa(w) = 0q,(Pq, (w),va(Pq,_,(Nr.(w))))
= (0q.Pq.(w),0q,v(Pq,_, (Nra(w)))
= (0q,Pq,(w),vs(bq,-1)Pq,(w))
= Pq.(w)(0q,,vn(0q, ,)) € ((0q., v.(0q, 1)))A,

In the third line, we used the Lemma 3.6.6 in §3.6. Thus, it is annihilated by
6q, - Similarly, v,(6q, ,) annihilates it. Thus we have proved the proposition.
O

For n > 1, put I,, :== (0q,,v.(fq, ,)). From now on, we assume that
as = £2if p=2. Put R, := Ker(A,,/I, — Ay/I;). Thus, the sequence

Is exact.
The numbers (g;);>1 in Lemma 2.4.4 often appear in the following argu-
ments. Note that ¢ = 0 if p is odd and ¢; = 1 if p = 2.

Lemma 2.4.21. We have Ay /1; = (Z,)?.

Proof. Since the sequence

Z,/(0q) > M/ I 5 2,/ (¥1(0q,)) — 0

is exact and Oq is a p-adic unit, it suffices to show that

Zy/(91(0q,)) = (Z,)".

Since 11(0q,) is a p-adic unit if p is odd and ¢4 (fq,) = 0 if p = 2, we have
proved the lemma. ]

Lemma 2.4.22. We have rankz, Sel(E/F,T,E) < corankg Sel(E/F).
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Proof. This follows from the exact sequence

Sel(E/F, T,E) — Sel(E/F,V,E) — Sel(E/F).

Lemma 2.4.23. We have
Sel(E/Ql)v =M/

and

Sel(B/Qu. T, E) = (Z,)".
Proof. We first prove that Sel(E/Q;)Y = A;/I;. Since the map
A /I — Sel(E/Qq)Y

is surjective, it suffices to show the injectivity. From Lemma 2.4.21, we have
Ay/1; = 0 for odd p. Hence the isomorphism holds as 0 = 0. We assume that
p = 2. Since A1/I} = Zy, Sel(E/Q1)" is a cyclic Zs-module. We will prove
rankz,Sel(£/Q1)Y > 0. Since ¢4 (0q,) = 0 implies that L(E,1,1) = 0, we
have exp*((y — 1)zq,) = 0. Thus we have (v — 1)zq, € Sel(E/Qq, TLE).
Since H'(Q,, Ty E) is a free A;-module generated by zq,, we have

rankZQSel(E/Ql, TQE) > 0.
From Lemma 2.4.22, we have corankz,Sel(£/Q;) > 0. Thus we have
Sel(E/Ql)v = Al/Il.

We prove the second isomorphism. Since E(Qq)[p] = 0, Sel(£/Qu, T,E)[p] =
0. Since we have

rankz, Sel(E/Qq,T,E) < corankz, Sel(E/Qq) = ¢,
the isomorphism holds as 0 = 0 if p is odd. If p = 2, we have seen that
rankz,Sel(E/Qq, ToE) > 0,

so rankz,Sel(£/Q1,T>F) = 1. We have proved the isomorphism. O
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We put

n

Tn = Z(QZ - Q1>~

i=1
Namely, r, =Y, ¢; if pisodd and r,, = ((¢; — 1) if p = 2.

Lemma 2.4.24. 1. R, = (A,/I,)tors and ords(§R,,) < 7.

2. orda(£(Sel(E/Qun) Y tors) = Tn-

Proof of 1. of Theorem 2.1.1. Assuming this, we will prove the main the-
orem. Since Sel(£/Q,)Y is a cyclic A,-module, there exists a surjective
homomorphism f : A,,/I,, — Sel(E/Q,)".

We proved the isomorphism in the case n = 1 in Lemma 2.4.23, we treat
the case when n > 2. The diagram

0 R, A, /I, A /L

F

0 — Kera —Sel(E£/Q,,)" o Sel(E/Qy)Y —0

0

is commutative. From the snake lemma, the homomorphism f’ is also sur-
jective. So Kera is finite, we have Kera = (Sel(E/Q,)" )tors and from the
above lemma, f’ is bijective. So f is also bijective. O

Lemma 2.4.25. We have dimg, F, ®z, Ay /L, = ¢y.
Proof. We have
2 AL+ T) —1).

A
Let t1(T) = uy(T)p dy(T) and to(T) := us(T)p"2do(T) be the power series
corresponding to Oq, and v,(fq, ,) respectively. Here, uy(T"), ua(T) € A
and d;(T), ds(T') are distinguished polynomials. Since ¢,(0q, ) = t1({m — 1)
and comparing the orders, the degree of 1 = 0 and the degree of di(7T) is
qn- We have

Fp ®Zp An/In
= AJ(t(T), to(T), 1+ T)" —1,p)
A/ (T, p).

Since the dimension of the last space is ¢,. We have proved the lemma. [J
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Proof of 1. of Lemma 2.4.24. By the definitions, R; = 0 and r; = 0, thus
ord,(fR;) = 1. We have a commutative diagram

0 (2.2)
0—— Ry Apv/ILy AL, ——0
Bn Vn Xp
0 R, Ay /T, A/, ——0
n
0 —= Cokerf3, —= Oy, /(¥n(bq,)) — (Z/pZ)" —0

Here, the injectivity of the first right arrow of the third line is deduced from
the snake lemma. Thus we have

ord,(1R,,)

ord,(8R,—1) + ord,(§Coker(,)

= rn1 +0rdy(Oy, /(Un(bq,))) — ord,(1Z/pZ)"
= Th—1t+t4qn—q

Tn-

Proposition 2.4.26. We have Ry = 0 and
R, (Z/pnflz>q27q1 D (Z/pnf2z)q37q2 DD (Z/pZ)Qn*Qn—l
forn > 2.

Proof. First we show F, ®z, R,,. Since the last term of the middle sequence
of the diagram (2.2) is a free Z,-module, the sequence is split. Thus tensoring
F, preserves the exactness. Since p-rank of R,, and Coker(3, in the diagram
(2.2) are both ¢, — ¢1 from Proposition 2.4.5 and Proposition 2.4.6, we have
proved the proposition. O
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As a corollary of the above proposition, we have 2. of Theorem 2.1.1 if
p = 2 and Theorem 7.4 in Kurihara [10] if p is odd.

Corollary 2.4.27 (2. of Theorem 2.1.1, Theorem 7.4 in Kurihara [10]). For
n > 1, we have

Sel(E/Qy) = (Qp/Z,)" &(Z/p" T Z)2 ™" @ (Z/p" L)@ - -@(Z/pZ)" .
Lemma 2.4.28. Forn > 1, we have rankszn/[n =q.
Proof. This follows from the finiteness of R,,. [
We put G/p—1 := Gal(Q,/Qn-1).
Lemma 2.4.29. We have an isomorphism
Sel(E/Q1, T,E) = Sel(E/Q,, T,F)
through the restriction map for n > 1.

Proof. Since E(Q,)[p] = 0, Sel(E/Qy,T,E) is a torsion-free module. From
the above lemma, we have

q1 = rankg A, /I, > corankgz Sel(£/Q,) > rankgz Sel(E/Q,, T,E) > ¢.

Thus Sel(E/Q,,T,E) is a free Z,-module of rank ¢;. From the inflation-
restriction sequence, the restriction map

Sel(F/Q,_1, T,E) — Sel(E/Q,, T, )/

induces an isomorphism. Since Sel(E/Q,,T,E) has no torsion points, we
have Sel(E/Q,,, T,E)%/»1 = Sel(E/Q,,T,E). Thus we have proved the
lemma. O]

Lemma 2.4.30. For n > 0, we have
Selp(E/Qu, T,E) = 0.

Proof. This follows immediately from Sely(£/Q,) = 0. O
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We will prove 2. of Lemma 2.4.24.

By Proposition 2.4.5, we have ordc,, ,%,(0q,) = qn- Let S, be the set
of primes of Q,, above S. By Lemma 2.4.8 and Lemma 2.4.30, we have an
exact sequence

0 — Sel(E/Q,) — H'(0q,[1/S., Ep™)) — E}(I(SSZ))gf [ij/];p

UESn

—  Sel(E/Qu, TpE)V — 0.

Put

O = Im(Hl(OQnu/sn],E[p“]) - @D Eiéf?”f%%% )
vESH ne z=r 8

. or Hl((Qn)mE[poo]) — Se v
= K (D pqu) e gz, — UE/TE))

Put G, /-1 = Gal(Q,/Qn-1). Then we have two commutative diagrams

0——=Sel(E/Qu1) —=H'(Oq, ,[1/S, 1], E[p™]) —= Coes —0

| | |

O — Se].(E/Qn)G”/”_l —_— Hl (OQn [1/57’1,]7 E[poo])Gn/nfl — an/n—l

and

Qn 1 vy [ D v
oG~ D i @ ) 62 Gy /2 S/ QT

|

H' ((Qn)w, E[p™))
(Qn)v) Rz Qp/zp

vES,

— = Sel(E/Qy, T,E)" —=0.

From the inflation-restriction sequence, the center vertical arrow of the
first diagram H'(Oq, _,[1/S,_1], E[p™]) — H'(Oq, [1/S,], E[p>])¢"/»— is an
isomorphism. Thus we have

Coker(Sel(E/Qn_1) — Sel(E/Q,,)%/»1) = Ker(Cp_y — an/nfl)
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from the snake lemma. So, we consider the order of Ker(C,,_y — C,). We
have

ord,(fKer(C\,—1 — C,,))

HY(Qu)o EP®) oy HY(Qu)us Ep™))
- "rdp(”Ker<U§S‘fl B(Qu-1).) €2 Qy/Z, QE«%) 2a,7,)

— ord,(tKer(Sel(E/Q,_1, T,E)" — Sel(E/Q,, T,E)")).

Since

(Qui)o EP*)  y H'(Qu) B
ord(#Ker (€D E (Qu1)y) ©2 Q) Z, BE((Q.).) @z Qp/Zp>)

VESH_1 vES,
Hl(kn—la E[poo]) R H' (kna E[poo]) ))

E(’“nfl) Xz Qp/zp E(kn> Xz Qp/zp

— ord,(tCoker(Ny, k., : E(my,) — E(mg, ,))")

= {n

> ordp(ﬂKer<

from Lemma 2.4.4 and

tKer(Sel(F/Q,_1,T,E)" — Sel(E/Q,, T,E)")
tCoker(Sel(£/Qy,, T,E) — Sel(E/Qu-1, T,E))
4(Z/pZ)"

i1l

from Lemma 2.4.29, we have
ord, (1Coker(Sel(E/Q,,—1) — Sel(E/Q,)"/"=1)) > g, — q1.
We have a commutative diagram

00— (Sel(E/Qn)"Y )tors Sel(F/Q,)Y ——=Sel(E/Q1)Y ——0

I |

0—— (Sel(E/Qn—l)v)tors - Sel(E/Qn—l) - Sel E/Ql —0.

Here, hs is surjective. So h; is also surjective and we have

Kerh; = Kerhs,.
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Thus we have

Ordp(ﬁ(sel(E/Qn)v)tors)

ord, (4(Sel(E/Qn-1)")tors) + ord,(fKerhy)

rn—1 + ord,(fKerhs)

Tn—1 + ord,fCoker(Sel(E/Q,—1) — Sel(£/Q.))

> 7,1 + ord,Coker(Sel(E/Q,_1) — Sel(E/Q,,)%/-1)
2 Tp—1+ dn — 1
= Ty

Thus, we have proved the lemma.
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Chapter 3

A homomorphism concerning
the zeta elements and the
modular elements

3.1 Theorems

We give a homomorphism which concerns about Euler systems for an elliptic
curve. We will construct a homomorphism

Py H(Qy ®q Qi) Vo E) — QylGn]
for each N > 1 and a good prime p. We will prove the theorems below.

Theorem 3.1.1 (Theorem 3.4.1). If (war)um € [Ty H' (Q,2qQ(1wm), V, E)
is an Buler system, then (Py(war))u € iy Qpl9um] is an admissible sys-
tem.

Theorem 3.1.2 (Theorem 3.4.3). Let zy € H'(Q, ®q Q(un), V,E) be the
zeta element, and let O € Qu|Gn| be the modular element, then we have

PN(ZN) = QN.

Theorem 3.1.3 (Theorem 3.5.1). If p divides N, E(FP(MN))[p] =0 and an
Euler system (wpr)ar is integral, namely

(wa)u € [ HH(Qp ®q Qluu), T, E),
M|N
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then the admissible system (Par(war))ar is integral, namely

(Par(wan)ar € T 2,16

MI|N

Here E is the reduction of the elliptic curve E mod p.

3.2 Group rings

Let £/Q be an elliptic curve defined over the rational field. For a prime
number [, we call [ a good prime if F has good reduction at [, and call | a
bad prime if F has bad reduction at [.

Here we introduce group rings of cyclic groups because they are important
to define the homomorphism. For each integer N > 1, let C'y be the abstract
cyclic group of order N with generator {y. If M divides N, we regard
Cy C Cy and &y = fj\\,]/M. Choose a N-th root of unity (y € Q for each N
satisfying Cyy = (8™ if M divides N.

Define the ring homomorphism

UN Q[CN] - Q(,UN)
by {n +— (.
If L and M are two natural numbers satisfying (L, M) = 1, we identify
Q[CLy] with Q[CL][Cux] by €M, = &1 and €E,, = £y, and define
vy QO] — Q(ur)[C]

by &1, — (r and §xr — &y The homomorphism vy, a is often denoted by vy
For an integer a which is coprime to L, we define

04+ Qur)[Cu] — Q(ur)[Cum]

by (= (f and &y = iy
If a is coprime to LM, then it is easy to show the diagram

Qu)[Cy] 2% Q(ur)[Cu]
UM l O UM l

Qurn) = Qurm)

39



is commutative. Here, o, € Gal(Q(ura)/Q) is the unique element satisfying
0a(Crar) = Cias-

If I/,L, M > 1 are integers which satisfy L | L' and (L', M) = 1, then it
is easy to show that the diagram

trL’/L

Qu)lCyl  ——  Qur)[Cn]
UMl O UML

tr,,
Qlurn) —% Q(urar)

is commutative. Here, trz//;, in the upper row only acts on the coefficients.
It is easy to see that the trace maps try,,; and trp/py commute with O,
for each integer a coprime to L'. In this paper, the trace map trquy)/Q(um)
for the extension of cyclotomic fields Q(un)/Q(uas) is simply denoted by
trN/M'

Lemma 3.2.1. Let ! be a prime number, then each eigenvalue of 5, : Q[Cn] —
Q[Cn] is either a root of unity or 0.

Proof. Write N = ["M with [ f M and let r be the order of [ mod M in

~n—+r

the multiplicative group (Z/MZ)*. Then we have o' = 5,'""". Let p be an
eigenvalue of 7, then we have p" = p"*", which implies that if p # 0, then p
is an r-th root of unity. O

Definition 3.2.2. For a prime number [, we define the number ¢; by

] '_{ 1 (I: good)
P10 (1 bad)

and we define the polynomial Fi(T) € Q[T] by

F(T):=1— %T + %TQ

Here, a; is the l-th coefficient of the normalized cusp form Y ", a,q"
which corresponds to the elliptic curve E.

Proposition 3.2.3. The inverse F,(0;)™" exists in Endq(Q[Cn]). IfL{ N,
then Fy(o;)~" exists in Endq(Q(un))-
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Proof. Since Fy(;) is a Q-linear map, it is enough to show that the map is
injective.

If [ is a bad prime, then we have Fj(o;) = 1 — %0;. If there exists non-
zero x € Q[Cy] which satisfy (1 —90;)x = 0, then 1 is an eigenvalue of %oy,
but because of |¢;] < 1 and the previous lemma, the absolute value of an
eigenvalue of %o is < % Hence 1 — 90y is injective.

If [ is a good prime, then we have Fi(o;) =1 — %oy + %82. Let o, € C
be the two roots of T? — @7 + 1 = 0. Then we have 1 — %6, + 107 =

(1—go)(1 - %81). So by the similar argument as above, if the map is not

injective, then $0; or %81 has eigenvalue 1. But since we have |a| = ] = V/,
this does not hold.
The latter is proved similarly. O]

For a global or a local field K, we denote the absolute Galois group
Gal(K/K) by Gk and for a G g-module B, we denote the cohomology group
H'(Gg, B) by H'(K, B). Let F be an extension of Q. For a Gp-module B,
we denote [T, , H'(F,, B) by H'(Q, ®q F, B). Here v runs through all the
primes of F' above p and F), is the v-adic completion of F'.

For an extension of p-adic fields K’/ K and Gg-module B, we denote the
corestriction map H' (G, B) — H'(Gg, B) by

Nry i : H(K', B) — H'(K, B).

For an extension of global fields F'/F and Gp-module B, we denote the
product of norm maps

11> Negyw : [[H'(FL.B) =] ][0 (F,. B) - [[H"(F.. B)
vlp wlv w|p vlp wlv v|p

by
Nrpyp: H(Q, ®q F', B) — H'(Q, ®q F, B).

Here, v runs through all the primes of F' above p and w runs through all the
primes of F’ above v. For the extension of cyclotomic fields Q(un)/Q(1ar)
with M | N, the map Nrqu,)/Q(uy) is simply denoted by Nry/a.

3.3 Definition of the map

For the rest of the paper, we assume that p is a good prime. Let £ be an
elliptic curve over Z, whose generic fiber is £/. We denote its special fiber
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by &. Let D := H.,.(E/Z,) be the crystalline cohomology, then D is a

free Z,-module of rank 2, and Frobenius automorphism ® acts on D. Define
D := D ®gz, Q,. We regard Néron differential w = wg as an element of D.
Write ¢ = %, then o2 — aypp~! +p = 0. The cup product defines a non-
degenerate alternating pairing [, | : D x D — Q,, such that [p(w),w] # 0.
We write D° := Q,w C D. Let w* € D/D" be the unique element satisfying
[w*,w] = 1. For an extension K/Q,, we can naturally extend the pairing [, |
to [,] : D®q, K X D ®q, K — K and for a number field ' we can define
the pairing [,]: D®q F x D®q F — Q, ®q F.

We introduce the dual exponential map, which was first defined by Bloch
and Kato in [2]. The definition below is different from that in [2] but they
coincide.

Let K be a finite extension of Q,, Ok its ring of integers and my its
maximal ideal. Let T,,E be the Tate module of E, i.e.

1,5 = lim E[p"]
and V,F = T,F ®z, Q,. Let E be the formal group of the elliptic curve
E. Let expy be the exponential map of the formal group E. Then if r € N

is large enough, we can define Z,-linear map expy p : mj — E(m}’() We
consider the composite of the map

mic — E(mie) — Emy) — E(K)8Z, — H(K,T,E)

and it is denoted by expp,, @ my — H'(K,T,E). Here, the first arrow
is expy, the second arrow is the natural inclusion, the third arrow is the

composite of the natural inclusion E (mg) — E(K) and the induced map
from E(K) — E(K) ®z Z/p"Z, where

E(K)®Z, :=lim E(K) ®z Z/p"Z,

and the last arrow is the Kummer map.
By tensoring Q,,, we can define the map

expp K — HA(K, V)
and define the map

expg : D/D° ®q, K — H'(K,V,E)
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by w* ®@ x + expy, (7).
The diagram below is commutative

E(mg) —  HY(K,T,E)
| log |
D/D°@q, K =% HYK,V,E)

Here, log : E(mK) — D/D° ®q, K is defined by z — w* @ log(z), where

logs : E(mg) — K is the formal logarithm map of the formal group E.
The dual exponential map exp} : H'(K,V,E) — D° ®q, K is a map
which makes the following diagram commutative
H(K,V,E) x H(K,V,E) — Q

T expg | expi |
D/D°®q, K x D’®q, K — Q

Here, the upper right arrow is the composite of the cup product and the
corestriction map

H' (K, V,E) x H'(K, V,B) % H2(K, Vpjiye) <25 HA(Qy, Vi) = Q,

and the lower right arrow is the composite

tr
D/D"®q, K x D° ®q, K 1L k =%, q,

For a number field F with [F : Q] < oo, we define expp : D/D° ®q F —
H'(Q, ®q F,V,E) to be the composite of the isomorphism

D/D°®q F = D/D’®q, (Q,®qF)
=~ D/D°®q, (HFU)

v|p
~ T[(D/D°®q, F.)
vlp
and
HeXva : H(D/DO ®q, Fv) - HHl(Fvv VpE) = Hl(Qp ®q F, V;)E)
lp v|p v|p
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We define exp} : HY(Q, ®q F,V,E) — D° ®q F similarly.
The diagram below is commutative

[,]
HI(QP@)QF’%E) X HI(QP®QF7V10E) — Qp

expp | expy | |
tre/ql,
D/DO®QF X DO®QF F/—QH> Qyp
Here, [, |p:==3_,,[. ]r,, and trr/q[, | is the composite of

D/DO®QFxD0®QF_>Qp®QF e/ —2,Q,®qQ=Q,.

For F' = Q(uy) with a positive integer N, we denote eXPq(uy) DY €XPy,
eXPQ () PY €xPy and [, Jqeuy) by [, Jv. For an abelian field F', we define
Gr := Gal(F/Q) and for N > 1, Gy := Gal(Q(un)/Q) = (Z/NZ)*.

Definition 3.3.1. For each x € D/D°®q F and z € H'(Q, ®q F,V,E), we
define

PF(ZL',Z) = ZaegFtrF/Q[U($)7eXPF( )]U
= Yorerl0(@), T(exph(2)]oT™ € Qy[Gr].

For N > 1, we denote Pqy)(7, 2) by Pn(z,2).

Remark 3.3.2. Py(z, z) is an analogue of the pairing P, (z, z) in Kurihara
[10] §3.

Define the ring endomorphism * : Q,[Gr] — Q,[Gr| by (D ,cq, @00)" =
> eegy W00

Lemma 3.3.3. For an element A € Q,[Gr|, we have

Pp(Az,z) = A"Pp(x,z)
Pr(z,Az) = APp(z,z).

In particular, if A= exists in Q,|Gn|, then we have
P

Pp(A™'w, A*2) = Pp(z, 2).
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Proof. To prove the first half of the lemma, it suffices to show it in the case
when A = p € Gy. From the definition, we obtain

Pr(p(z), 2)
= Y lopla), T(expi(2))Jor !

U,TEgN

= " ) [lop)(a), (expi())(op)7!

o,TEGN

= p' ) lo(a), (expi(2))]or !

o,7€0N
= p ' Pp(z, 2)

Thus we have proved Pr(p(x),z) = p*Pr(x,z). We can prove Pp(z, p(2)) =
pPrp(z, z) similarly. The latter is obtained from the former immediately. [

Definition 3.3.4. Let F' be an abelian field of conductor N. We define 'y
and xy by

oy = on(([[F@E)éw) € Qluw)

1IN
ry = ryw* € D/D’®q Q(un),
and define xp € D/D° @q F by
Tp = tTQuy)/F(TN).-
We define the homomorphism
Pr: H(Q, ®q F,V,E) — Q,[Gr]

by Pr(z) := Pp(xp,z). Here, F|(T) is the polynomial in Definition 3.2.2.
We denote Pquy)(2) by Pn(2).

Proposition 3.3.5. Assume q is a prime number and N > 1 is an integer.
Then, we have

tqu/N(qu> =N Q¢fN — Equ(Uq)_IJUN/q (q]I N)
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Before proving the proposition, we prove a lemma.

Lemma 3.3.6. For a prime number l, define the sequence (cg))nzo in Z|7]
by c(()l) = O,cgl) =1, and forn > 1,

O R ﬂc(z) € 0
n+1 . l n l Ch=1s

and define the polynomial ﬁl(n) (T) e Q[T] b

f'l(n)(T) = cgil ell O

Then, we have

Zcm i+ F"(3) Fi(e) oy

as an endomorphism of Q(ur)[Cur] for L, M > 1 with (L, M) =1 and 11 L.
In particular, we have

a €] ~
Fio) ' =1+ (Tl ~ T’UI)Fl(al) 15,

Remark 3.3.7. The sequence (cg))nzo is a generalization of the sequence
(¢,) in section 2.2.1 in Kurihara [10].

Proof. 1t is enough to show that

-1

Z F(@)5 + F™M@)5) = 1. (3.1)

=0

We will prove the equation (3.1) by induction.

Since we have ﬁ’l(o) (1) = 1, the equation holds in the case when n = 0.
To prove the rest part of the induction, it is enough to show that

FEM@)er = (@) + F Y (@)ep! (3.2)

for all n > 0.
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From the definitions of the sequence (cg ))nzo and the polynomials E(”) (T)

and Fy(T'), we have

A Fi@) + B @)5
= 07(1[)+1<1 - %31 + Ellazz) + (c ’512’26-\[ Ell 1(1l)+1/\l2)
= n+1 + <C77r)|*2 sz ngl)ﬂ)al
= C1(1l-)‘r-l - %Cnl)Al
= "),

Multiplying o7, we have proved the equation (3.2).

the lemma.

Thus, we have proved
O

Proof of Proposition 3.3.5. We will prove the same formula for 2’y,. Put N =

q"M with (¢, M) = 1.

Since we have Fj(o;)~

Tq(Ean)

= &N, we have

)

trqu/N( :

tqu/N

trgn/n (Vgn (F

_|_

_Etqu/N un (F,

HFZ (G1)”

'=1+ (% —%6,)F(0,)"'6; from Lemma 3.3.6 and

qu )

llgN

tI'qN/N(UqN((l -+ (

tronyn (van (] | F1(32)

HFz a1)”

1| M

gqN

_1)€qN))

1M

. tqu/N oy (F,

HFI a) " MEw))

1| M

HFI Ul

IIM

1G4 (En))- (3.3)

First, we treat the first term of the right hand side of the equation (3.3).
As we have seen in §1, we have

trgn/N © Ugn = tTgntipg/gnas © Upp © Ugn = Upg O tTgn+1/4n O Ugn,
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and the trace map commutes with 7, for each positive integer a. We also
have &1y = 0y (fqn+1)/\_nl+1<£M) Thus we have

trgn/n (Van ([ [ F1(30) 7)an))
I|M

trgnyy (Uan ([ [ FiB1) ) (@) (6o )Tk (€00))))
I|M

= v (trgn s ([T F@) ™) @3 (Gr)T 0k (6a0))))

I|M

= vn (T EG) ™)@ (trgme jgn (G )5 2l (60)))-
1M

Since we have trgni1/gn((gn+1) = 0 if n > 1, we have

van ([ 1B ™) (@ (trgnen jgn (G )T il (a0))) = 0
I\ M

if n > 1. Since we have vy 0G5y = 040 vy, M = N and try1((y) = —1 if
n = 0, we have

UqN HFZ o1) 1 UM trq/l(Cq)) (fM)))

I|M

= ([ R@E) ™5, ()

IIN

= UqN H-Fl Ul gN
IIN

_ 71 /

= —(0'_1 — @ Eq
q

+ 25 )F,(0,) 2\
q q q) Q( Q) N

Thus we have

tqu/N(qu((H Fi(61)7)éen))
1M

§ (3.4)

o~~~

0
B { —(og' = %q + 6;q‘7q>Fq(‘7q)_lﬂnlj\/

q

I
=
N—
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Next, we treat the second term of the equation (3.3). Since we have
on(Fy(Gy) (T F1(@1) 7 )én) € Q(uw), the trace map tryn/y is multipli-
cation by ¢ if ¢ | N and multiplication by ¢ — 1 if ¢ N. We also have

a) (I FE)™ =] F@)"

I|M IIN
if ¢ | N. Thus we obtain
a,
~Ltron/n (vn(F, HFl o)1 )EN))
7 1| M

{ agx'y (n>1) (3.5)

(o) ey (0= 0)

q

We then treat the third term of the equation (3.3). Since we have
04(En) = Eu it ¢ | N and Fy(3,) (T £1(@) 1) = [y~ Fi(@) 7 if ¢ | N,

we have

—tqu/N UN HFZ Ul Uq gN)))
q 1| M
€Ty (n>2)
= €gFy(oq)” 117/1\1 (n=1) (3.6)

(g~ 1)ogFylo,) 'y (n="0).
Combining the equations (3.4), (3.5) and (3.6), if ¢> | N, we have

/ / /
tqu/N(a:qN) = 0+ a2y — €2y
q

- / /
= TN — €Ty
q

If g || N, we have

trgn/n(Tgn) = 0+ agrly — eqFy(0q) "y

= a,xly — equ(Jq)’lx/%.

49



If ¢4 N, we have

tr‘lN/N(x,qN) = _(Uq - E + gaq)Fq(Uq>_1x§v
1
A= )t
——(q - 1)‘7qu(061) TN
B P U L T L oY B e,
= q q g7 q p q q)4'q\0q N

= (ag — €oq — U(J_I)Fq(oq)_lx;\%

Thus, we have proved the proposition. O

3.4 Euler systems and admissible systems

In the introduction, we introduced two system, namely Euler systems and
admissible system. We will prove the theorem below.

Theorem 3.4.1. If (wy)y € HM‘NHl(Qp ®q Q(un), Vo E) is an Euler
system, then (Par(war))m € [Ty QplGum] is an admissible system.

Before proving the theorem, we will prove a lemma.

Lemma 3.4.2. Let K/F be an extension of abelian fields. For x € D @q K
and z € H(Q, ®q K, V,E), we have

Tk p(Pr(x,2)) = Pp(trg/p(x), Nrg/p(2)).
Forx € D®q F and z € HY(Q, ®q K, V,E), we have
Py (z,z) = vigyr(Pr(z, Nrg/r(2))).

Proof. For v € D ®q K and 2z € H(Q, ®q K,V,E), an easy calculation
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shows that

i/ (P (2, 2))
= e Y [s(x), expi(t(z)))st ™)

s,teCGk

= ) [s(x), expie(t(=)mym(st ™)

s,t€GK

= > > [5(x), t(expi (2))])or™"

0, TEGR s,t€GK, T p(s)=0,mK p(t)=T

=Sy s Y tewid)or!

0,7€Gr s€GK T p(s)=0 teGx Mg p(t)=7

= Z [o(trre/r(2)), T(tr p(expy (2)))]or !

o,7€GR

= Z [a(trK/F(x)),exp;(T(NrK/F<Z)))]UT_1

o,7€GR

= Pr(trg/p(z), Nrg/p(2)).

Thus, we have proved the first half of the lemma.
Similarly, for ¥ € D ®q F and z € H(Q, ®q K, V,E), we have

vi/r(Pr(z, Nrg/p(2)))
= viyr( Y [o(x), expp(r(Negp(2)]or ™)

0,7€GR

_ Z ( Z [o(x), GXP}(T(NTK/F(Z)))DP

pEGK 0,7€Gp Tk p(p)=0T !

= > 3 [o(2), (trse/ e (expie (2))])p

PEGK 0,7€GR T p(p)=0T

— 3 3 o(x), >, tHexpi())e

pPEGK 0,7€Gp, Tk p(p)=0T! teGx, T F(t)=T

_ 3 o), texp(2))lp.

pt€GK,0,TEGF T p(p)=0T L,/ (t)=T

The condition 7, r(p) = o7~ and mx/p(t) = 7 is equivalent that mx/p(pt) =
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o and mg/p(t) = 7. Putting s = pt € Gg, we obtain

3 o(2), texpic(2))]p

pt€GK,0,TEGF, T p(p)=0T L,/ (t)=T

= > (o), t(expic (2))]st ™"

5,t€GK,0,7€GF T/ F(8)=0,Tx /p (t)=T

=Y sl expi(t(:))]st
s,t€GK

= Pg(z,2)
Thus, we have proved the lemma. O

Proof of Theorem 3.4.1. From Definition 3.3.4 and Lemma 3.4.2, we have

Tantynr (Paar (Wqnr))
7TqM/M(PqM (qu, qu))

= PM(tqu/M<qu)a quM/M<qu))'

If ¢* | M, from Proposition 3.3.5, we have

Pur(trgnr/ne (Tgnr ), Nrgar/ar (wonr))
= Pylagry — €, wyy)

= a,Py(xa, wy) — eqPM(x%,wM).

Applying Lemma 3.4.2 by L = %, we have

PM(ZL'M, ’LUM)
= Uy (Pas (e, Nry o (wir))

= Z/M/M(PM(.Z'M,’(UM)).
q q q q

Thus, we have proved that

Tana/mt (Parr(Warr)) - = agPar(2ar, war) — €qvpgy e (Po (20, wr )

= agPu(wa) — éqppyar (Pa (war)).
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If g || M, then we have

Pur(trqar/nr (Tgnr ), Nrgar/ar (wanr))
= PM(@qu - equ(Uq)ilxMa wM)

= CLqPM(.TM,wM) — EqPM(F (aq)_lxﬂ,wM)

= 0y Pas(earwar) — gy (Pas (Fy(0,) e, Ny )
= a,Pu(xy,wy) — quM/M( %( (o )lx%,Fq(aq_l)w%))
= a,Pu(xym wM)—quM/M( L(l’]\/l wM))

= agPu(war) — gy ar (P (w %))

Here, we used Lemma 3.3.3.
If g+ M, then we have

Pur(trarnr (Tgnr), Nrgar/ar (wanr))
= Pu((ag — €04 — qul)Fq(Uq)ilxMa Fq(Uz;l)wM)

= (ag— 04— Eqaq_l)PM(wM) .
Thus, we have proved the theorem. O
Theorem 3.4.3. For the notations as above, we have Py(zn) = Ox.
To prove this theorem, we need some lemmas.

Lemma 3.4.4. Let (nar)m, (km)m € Ty QplGu] be two admissible sys-
tems. Fiz a positive integer M dividing N. If n;, = Kk, for each positive integer
L with L dividing M and L # M, and x(ny) = x(kn) for each character x
of conductor M, then ny = k.

Proof. To prove ny = Ky, it suffices to show that x(ny) = x(kn) for
each character x of Gy;. From the assumption, x(ny) = x(kun) for each
character y of conductor M. If the conductor of x is not equal to M, then
we can regard x as a character of the group G u for some prime number g

dividing M, and we obtain x(na) = X(my 2 (nr)). So it suffices to show
q
that 7y, a (nar) = 7y (k) for each prime number ¢ dividing M.
q q
First, we assume that ¢* divides M. Then, we get ), a (y) = agnu —
q q

eqy%/%(n%) and WM/%(FLM) = aghar — equ%/%(m%). Since we have Nar =
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ta and ny = £ from the assumption, we obtain 7, a (ar) = 7y (Kr).
q q q q q
If ¢ || M, then we have

7TM/%@M) = (aq —0qg — 5(10;1)77% = (aq —0q — 6(1051)“% = 7TM/%(“M)-

Thus we have proved the lemma. O

Lemma 3.4.5. Let (na)m, (km)m € Ty QplGu] be two admissible sys-
tems. Suppose that for each positive integer M dividing N, we have x(na) =
X(kar) for each character x of conductor M. Then we have ny = K.

Proof. We will prove that 1y, = k), for each positive integer M dividing N
by induction. First, we show that 7; = k1. From the assumption, x°(n) =
x°(k1) for the character x° of conductor 1. Since x° : Q,[G1] ~ Q,, we have
Th = K1.

Next, suppose that M divides N and n;, = kj, for each positive integer L
such that L divides N and L < M. From the assumption, we have x(nas) =
X (k) for each character x of conductor M. We also have n;, = kp, for each
positive integer L with L dividing M and L # M. Applying Lemma 3.4.4,
we have 1y, = kp;. Thus we have proved the lemma. O

Proof of Theorem 3.4.3. From Lemma 3.4.5, it is enough to show that for a
character y of conductor N, the y part of the both hands are equal.
A direct calculation shows that

X(Pn(zn))

= Y [o(an), T(expy(zn))x(o)x(r )
o0,TEGN

= [ alen)x(0), D mlexpy(zx)x (7). (3.7)
oeGn TEGN

We first treat the right half of the pairing of the equation (3.7). From the
properties of the zeta elements, we get

> lexpy(zn))xH(7)

TEGN

= > expi(r(an)x ' (7)
TEGN
L(E,x~ ' 1)
05
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Next, we treat the left half. Put Fy(T) := F"(T), and let Iy, I, . .., I, be

all the prime numbers dividing N such that [; <[y < --- <[, then we have

So,

HFz(/U\l)f

I|N
le 011 H Fl’ Ul/
VN>
(1 +E1<011)E1 011 0_11 H E’ Ol’

U|NJ'>l

H E’ Ul’ 1 H E’ Ul’ E1(011)E1(011) 1/O-\ll

VIN,V>1 VN>l

Fl2 0'12 H E’ UZ’ T+ H Fl’ Ul’ Fl1(o-l1)Fl1(O-l1) la-\ll

UINI'>13 VN>l
1+ E H E/ O'l/ E(U[)E(Ul) 6'\[.
IIN VN>

if we denote Hy = ([T Fr (Gr) ")) Fi(G1) Fi(G1) ", then we have

[[FG) " =1+ Ha:.

IIN IIN

From the definition of =y, we get

ey = ([ F@)

IIN

= oun((1+ Z Ho7)én )w

1IN

= UN(fN + ZH@%)W

1IN

= (v + Y un(Higx))w"

IIN

Since UN(Hf%) € Q(p@), we obtain ) ;- O'(UN(Hf%))X(O') = 0. So we

have

> olan)x(o) = > ollw)x(o)w” = T(x)w" .

ceGN ocEGN
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Therefore, it follows from (3.7) that

. L(E,x 11
X(Pr(ev)) = ot HEXD,
E
L(E,x ' 1)
= x(0n).
Thus, we have proved the equality. O

3.5 Integrality of the map

In this section, we will prove the following theorem.

Theorem 3.5.1. If E(F,,(1x))[p] = 0, (war)ur € [Ty B (Qo®qQ(1n), T, E)
is an integral Euler system and p divides N, then (Pa(war)) v € [asn ZplGu]

1 an integral admissible system. Here E is the reduction of the elliptic curve
E mod p.

Before proving the theorem, we make some preparations.

For a positive integer N = [[, [, where each [ is a prime number and ¢
is a non-negative integer, define S(N) to be S(N) := {l : prime number| ¢, >
0}, and for a set of prime numbers S, define Ns to be Ng := [[ 1% =
N/ TTeq

For the rest of the section, we write N = Mp™ with p t+ M and n > 1.
From Lemma 3.3.6, we have
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TN = HFz o) N )w

IIN
= HFl Ul §N
I|M
e;—1 N
= on(F6,) ([ %5 + FG)F(E) 5w
M =0
el’ 1
= w(FG)" > (D M50 HF (G) Fy(6)) 715 En )w*
SCS(M) I'¢S i=0 les
eyr—1
= Y v IS AT E GIRG)  ens)w"
ScS(M) ¢S i=0 les

So, if we put vs := ([[gs(>i0 L5 HleS “V(5)))En, € Z,)[Cnyg], then
we obtain

= > (] A ™on(F @) ys)w”

ScS(M) 1S
Here, the coefficients of vg are in Zy) = {§ € Qla,b € Z,p { b} because
A" € Zy,y and F“V(T) € Z,[T] from their definitions. )
In the next lemma, logy is the forma/l\ logarithm of the for/r\nal group F
and for an abelian field F', we put logs(E(mp)) := [],, logp(E(mr,)), and
we put log(E(mp)) :=logz(E(mp))w* C D/D° ®q F.
Lemma 3.5.2. Let a € log(E(myp)) and w € H'(Q, ®q F,T,E). Then we

have
PF(O./,U)) € Zp[gp]

Proof. From the definition, we have

Pr(o, w)

Z tre/qlo(a), wlo.

oceGr
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So what we have to prove is that trp/qlo(a),expp(w)] € Z,. But this
follows from the fact that o(«) is in the image of log because the formal
logarithm map is Galois compatible, and the commutativity of the following
diagram

E(mp) x HYQ,®qFT,E) — Z,
| log | expp !
D/‘D0®Qp (Qp®QF) X D0®Qp (Qp®QF) - Qp )

where the pairing in the upper row is the composite of the Kummer map
E(mp) — H(Q, ®q F,T,E) and

[]r: HY(Q, ®q F,T,F) x H(Q, ®q F,T,E) — Z,,

and the pairing in the lower row is trg/ql, .

Lemma 3.5.3. If as € log(mquy,)) for all S C S(M),

y= > (I[F@) as

SCS(M) leS
and (wr)r € [T n HY(Q, ®q Q(uur), T,E) is an integral Euler system, then

Pn(y,wy) € Zy[Gn].

From the lemma above, what we need to show to prove the theorem is
that vy (F(G,) " 'vs) € logp(mquy,)) for all S C S(M).

Proof of Lemma 3.5.3. From the definition, we get

PF<y7wF>
= Pp( Z (HFI(O'Z)_I)O‘&U)F)
ScS(M) les
= Y Pl Filo) Mo, wr)
SCS(M) lesS
= Z VF/FS(PFS((HFl(‘Tl)il)O‘SaNrF/Fs(wF)))'
ScS(M) leS
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We have

visps(Pes (] | Filor) ™) as, Nrgypg (wr)))

les
= vy (Prs ([ [ Fi(o) ™ Das, (] Filor )ws))
les leS

= vp/rs(Prs(as, wg)).

From the previous lemma, we have

PF5<a37 wS) € Zp[ng]‘
Thus we have proved the lemma. O

For the rest of this section, we will prove that vy (F,(5,)  vag(ys)) is in
the image of logz in Q, ®q Q(uny) because we have

= (
= ( p(0p)” UMS( ))~

Let v be a prime of Q(uar,) dividing p, it is easy to show that the diagram
below is commutative,

Quus)[Cpr] = Qlpnss) [Cpr]
! O !
QUiass o[Crr] 2 Qlraars o[ Crr]
Here, 7, denotes a ring endomorphism of Q(gasg)y[Cypr] defined by
a — oy(a)
Sp” — Sgn

for @ € Q(uamy)y, where o, denotes the Frobenius automorphism of the
unramified extension Q(garg)v/Q,p-

Later on, we regard vy (vs) € Q(parg)n[Cpn] and we will show that
vpn (F(0,) tons (7)) € log5(MmQ(uxy).) by the following arguments.

Let K be a finite unramified extension of Q,, Ok its ring of integers,
mg = pOk its maximal ideal, k¥ := Og/mg and o € Gal(K/Q,) the
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Frobenius automorphism (i.e. o(z) = x (mod p) forallz € Ok). Let
Mg = (p,T) be the maximal ideal of the ring of power series O [[T]].
We define the ring Cx by

Cx = {f(T) € K[[T]]] f(x) converges for any = € Q,, such that |z|, < 1},

i.e. the ring of power series whose radius of convergence is > 1. Here, |- |, is
the normalized p-adic absolute value.
For each integer n > 1, let Zx ,, be the ideal of Cx defined by

Tin :={f(T)€Cx|f({i—1)=0fori=0,1,...n}.
For f(T') € K[[T]], we define

¢f(T) = o f(1+T)" —1).
Here, o f(T) := > .2, 0(b)T" for f(T) = > 2 b:T" € K[[T]]. Note that we

have ¢Zg ,, C IKW,:SO x +— ¢(x) induces a map Cx/Zk, — Cr/Tkn. It is
also denoted by ¢.

We define 7 : K[Cpn| — K[Cyn] by
a — o(a)
gp" = 55"

for a € K.

For i = 0,1,...,n, we define ¥; : Cpn — pn to be a character of Cpn of
conductor p’ by &m + (i and define ¢; : Cx — K (pupn) by f(T) +— f(¢pi —1).
From the definition of Zx ,, we have an injection

[Tosi: Cx/Irn = TTimo K (1)
f(T) mod Ty — (f(G — 1))

Lemma 3.5.4. There is an isomorphism
CK/IK,n ~ K[Cp'ﬂ],

and the diagrams

CK/IK,n i) CK/IK,TL
o
K[Cpn] = K[Cp”]
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and

St Ci/Irn — K(upn)
) O |
'Upn . K [Cpn] — K(,upn )

are commutative. Here, the vertical arrows are isomorphisms.

Proof. Note that the natural inclusion K[T] C Ck induces an injection
K[T)/((1 + T)*" — 1) — Cx/Zkn, and comparing the dimensions of K-
vector spaces K[T|/((1 + T)"" — 1) ~ [\, K(yp) and Cr [Tk, it is an
isomorphism K[T]/((1 + T)"" — 1) ~ Cx/Zk,. The ring homomorphism
K[T] — K[Cpn] defined by 1 + T +— &,n also induces the isomorphism
K[T]/((1 4+ T)*" — 1) ~ K[Cp]. So we have an isomorphism Cr/Zy,, ~
K[Cyn]. It is easy to see that both ¢ and & correspond to the ring ho-
momorphism K[T]/((1 + T)*" — 1) — KI[T]/((1 + T)*" — 1) defined by
f(T) mod (1+T)"" —1) — f((1+T)*»—1) mod ((1+T)?" —1), and both g,
and v, correspond to the ring homomorphism K[T]/((1+T)P" —1) — K (pn)
defined by f(T) mod ((1+T)?" —1) — f((m — 1). O

Put K = Q(uamy), here. Let 45(T) € KI[T] be a polynomial which
corresponds to vs € Ok[Cpn] through the isomorphism above. We can take
Ys(T) € Ok[T]. To prove vy (F,(0,) 'umg(vs)) € logs(mr), it is enough
to show that there exists g(7') € Cx such that F,(¢)g(T) = ¥s(T') and

9(Gpr — 1) € logp(mi).
We will prove this by the following arguments, which is an analogue of
Coleman’s paper [4].

Proposition 3.5.5. We have

(1= + %¢2)10gE(MK) c OklIT])

Proof. Let e(T) € Mk. It is easy to see that
¢e(T) = e(T)"  (mod pOk|[T]])
and for X,Y € Mg with X =Y (mod pOx|[T]]), we have

logs(X) = logs(Y)  (mod pOy[[TT).
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Thus, we have
¢logp(e(T)) = logp(e(T)")  (mod pOk|[[T1]).
From Honda’s theory [6] section 6, we have
log 5 (X7") — @ log 5 (X?) + plog5(X) =0 (mod pOx[[T]).
Combining all the above, we obtain

(p — ayd + &%) log (e(T))
= plogs(e(T)) — aylogs(e(T)?) + logs(e(T)")
0 (mod pOx[[T])).

Dividing the equation by p, we obtain (1 — 22¢ + %gbz)logE(e(T)) €
Ok [[T7]). O

Proposition 3.5.6. Assume that E(k)[p] = 0. Then we have

(1= 29+ -6 log(Mic) = Oxl[T]].
p p

Proof. Since we have M = mg+ ;T O|[T]] where + is the formal group law
of the formal group E, it is enough to show that (1 — %¢+ ﬁng) logs(mg) =
Ok and (1 —22¢ + %d)z) log s (TOk|[[T]]) = TOk|[T]] separately.

First, we will show that (1 — %"gzﬁ + %(bQ)logE(T(’)K[[T]]) = TOk[[T]).
It is enough to show that for each i > 1, the induced map T'Ok|[[T]] —
T'Ox[[T) /T Ok ([T]] by (1 — 2¢ + ¢?) log is surjective. Since we have

1 .
(1— %as + 20 logs(aT")

= (a—apta® + p%_lof’z)Ti +7(7T)

with r(T') € T Ok[[T]] for each a € O, it is enough to show the surjec-
tivity of the map

OK — OK
i—1 1 02

a = a—a)p e’ +pPla
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Since the above map is Z,-linear, it is enough to show that the map mod p
is surjective by Nakayama’s lemma.

If ¢ > 2, then the map mod p is the identity map a — «. If ¢ = 1, the
map mod p is

k — k

a — a—a,af

Here @, is the image of a, € Z under the natural map Z — Z/pZ ~ F,.
Note that a’ = a? (mod p).

Since k is a finite field, the surjectivity is equivalent to the injectivity of
the map mod p. We will prove the injectivity.

Suppose that the map mod p is not injective. Then, there exists a non-
zero element o € k such that a = @,a”. Since we have @,” = @,, we have

2 d d

2 d
— P _— ) — YL
a=7ay,a’ =a,"a” =-.-- =70, 0" =a, ",

where d = [k : F,]. Since o # 0, we have @, = 1 in F,,.

We will show that the assumption E(k)[p] = 0 implies that al # 1(mod p).
From basic facts about elliptic curves over finite field, we get #E(k) =
pd — ozg — ﬂg + 1, where a,, 3, are two roots of the equation 7% —a,T +p = 0.
Since oy, + 3, = a, and «a,3, = p, we obtain

o+ By = (ap+f)" (mod p)
_ d
= aj,.
Thus, we get al — 1= —p? +al + 32— 1= —#E(k) 0 (mod p) and we
have proved that (1 — “2¢ + ¢%) logz(TOk|[T]]) = TOk|[T1].

Next, we will show that (1 — %(b + %ng) logs(mk) = Ok. First, we will
show that the assumption E(k)[p] = 0 implies that logz(x) = x (mod p*)
for x € p’_(’)K and for ¢ > 1. From basic properties of logs, we see that
for € Q, such that ord,(z) > g, we have logg(x) = x(mod {y €
Q,lord,(y) > ord,(z)}), where h is the height of the formal group E and ord,
is the normalized p-adic valuation. So, it is enough to show that ]ﬁ < 1. If
p > 3, then it is obvious. If p = 2, then the assumption E(k)[2] =0 implies
that E s supersmgular at 2. Since the height of the formal group E is 2,

1

=% 71=3 < 1. Thus, we have proved the statement.

ph—l
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Let j € Z,5 > 1 and u € Og. We compute
a 1 .
1— Lo+ —¢*) logs(p'u
( A )log s (p'u)
= —a,p '+ (mod p).

To prove the surjectivity of the map (1— %"qﬂ%gb?) logs : mg — Ok, it is
enough to show the surjectivity of the induced map p’Ox — p 1Ok /p’ Ok
for each 5 > 1. But by the similar arguments as above, the induced map is
essentially

kE — k

_ 2
u = —ayu’ +ul,

and we can show that it is injective, hence surjective.
Thus, we have proved the lemma. O

Let es(T') € Oquu).[[T]] be a power series satisfying
a

(1= 20+ }9&) log(e5(T)) = 75(T).

Then, from the arguments above,
Upn (F3(Gp) " vars (75)) = logp(es(Gon — 1)) € logz(mquyg).)-

It is in the image of log;. This is what we wanted to show.

3.6 Kernel of the map

In this section we prove the next proposition. This was used in the proof of
Proposition 2.4.20.

Proposition 3.6.1. Let p be a supersingular prime. Let Qo /Q be the cy-

clotomic Z,-extension and Q, its n-th layer. Let k, be the p-adic completion
of Q.. Then the kernel of the map

ﬁn : Hl(kapE) - Zp[an]2
w — (Pq,(w),vnoPq, , oNrq,/q, (0))
is E(ky)RZ,.
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Proposition 3.6.2. Let F' be an abelian field. Let o € E(mp) Then the
kernel of the map

Pr(log(a), -) : Hl(Qp ®q I, T,E) — Zy[GF]

is (()z,(gp))"- Here (-)= is the exact annihilator with respect to the cup

product
H'(Q, ®q F,T,E) x H(Q, ®q F,T,E) — Z,.

Proof. This follows immediately from the definition. ]

Corollary 3.6.3. Let F' be an abelian field. Let o, 3 € E(mp) Then the
kernel of the map

P:HY(Q,®q F,T,E) — Z,[Gr)?
w — (Pp(log(a), w), Pr(log(8), w))

is ((ov, B)z,(gx1) "

As we have seen in the previous section, there exists agm € E (MQ(ugym))
such that log(agm) = xgn.

Lemma 3.6.4. We have

E(mQ(Mq)) = <QQ>Zp[gq]’

and R
E(mQ(qu”)) = <Oéqpn, Oéqpn71>zp[gqpn]

forn > 1.

Proof. Since p is supersingular,

log s : E(mqu,)) — M)

is an isomorphism. We have to show x; generates mqy,,). First, we assume
that p is an odd prime. An easy calculation shows that

Lp
a 1
= 4+ (2 -Em)
p (p p) »(1)
p
= —1
gp +p_ap+1



Since (,—1 generates mqy,,) as a Zy|G,-module, z; generates mqy,)/PMq(u,)-
From Nakayama’s lemma, x; generates mq(,)-
If p = 2, then we have

@
= G-+ PP ) R(1)

2-@2-2(2-@2)02
= (-1
G T T

By the similar arguments above, /; generates mgq,,). Thus we have proved
the first half of the lemma.

We will prove the latter half by induction. We will prove that cagyn+1
generates E (M, ne))/ E (MQ(uyym))- The formal logarithm map induces an
injection

log : E(mQ(qun+1))/E(mQ(qu”)) - (mQ(qun+1) + Qp(hgpn))/ Qphigpn)

[

= MQUu 1) Q)

The element agyn+1 corresponds to Zgpm+r =2 (ymer — 1 (mod Qp(pgpn)).
Since (gm+1 — 1 generates MQu, 1) /MQuyn)s Cgprtt gemerates

~

E(mQuy,m))/ E(MQugm))-
Since trgpnt1/gpnTgpntt = ApTgpn — Tgpn—1, We have

N,

qpn+1/qpnaqpn+1 — apaqpn —_— aqpnfl.

~

Thus agpn+1 and age generates E(mq 1)) O
Put aq, = Nq(u,n)/Q. (). Then, we have the following lemma.

Lemma 3.6.5. Let aq,,0q, , € E(an) be elements such that log(aq, ) =
zq, andlog(aq, ,) =zq, ,- Then we have

E(mq,) = (aq,,2qQ, 1)2,(dq,]-

Proof. We only have to show that Nq,(,n)/k, 15 surjective. Let e and f
be the ramification index and the order of the different of the extension
Q(pbgpn )/ kn respectively. If p = 2, we have e = f = 2. If p > 3, we have
e =f =p—1. In both cases, f < 2e —2. From Lemma 2.4.3, the norm map
is surjective. L]
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Proof of Proposition 3.6.1. Since we have

PQTL (w) = PQ(,LLn) (.CCQ", w)l/n © PQn—l © NrQn/anl(w) = PQ(ﬂn)(xQn—l’ w)’

the kernel of the map P, is (aq,. 0Q._1)7,(64,] = E(mq,)* = (E(k,)®Z,)" .

Since the exact annihilator of E(k,)®Z, is E(k,)®Z, itself, we have proved
the proposition. O

Lemma 3.6.6. Let (nyn), and (kpn), be two admissible systems. Then

Vpn+1/pn (npn ) /ﬁ;pn-{—l = npn+1 I/pn+l/pn (ffpn ) .
Proof. Since both of the right and left hand side of the equation is in vyn+1,n (Qp[Gpn]),
it suffices to show the equality
7Tpn+l/pn (Vpn+1/pn ('r]pn ) /ﬁ;pn+l ) = 7Tpn+1/pn (T]pn+l Vpn+1/pn (ffpn)) .

First we assume that n = 0. Then we have

Tp/1 (Vo1 () i)
= (p— Dmmpn(kp)
= (p—Dm(a, — 1 —¢€y)k1.

We also have

Tp/1 (M1 (K1)
= () (p— D)k
= (ap—1—¢)mp— 1)k
Thus we have proved the equality in the case when n = 0. Next, we assume

that n > 1. We will prove the equation by induction. Then the left hand
side of the equation is

Tyt fpn (V1 (T ) K1)
= Pl Tyt jpr (Fpnin)
= Py (apkipn — €pVpn fpn1 (Fpn-1)).
The right hand is
M1 jpn (1 V1 ppn (Fipn ))
= Tyt (Tpnt1 ) Pripn

(apnpn — 6pl/pn/pn71 (’r’pnfl ))p/{pn .
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From the assumption of the induction, we have

T]pn I/pn/pnfl (/fpnfl) — I/pn/pnfl (’r}pnfl )/{pn .

Thus, we have proved the lemma.
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