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Abstract

The present research aims at developing algebraic Reynoldsstress model

(ARSM), which is feasible and accurate to simulate engineering turbulent

flows. The study has been focused on the assessment and modification

of the diffusive transport assumption, which is necessary and crucial to

derive ARSM. By using the budget and asymptotic analyses, itis shown

that the current diffusive transport assumption tends to fail in the near-

wall region. Furthermore, based on above analyses, an alternative form of

diffusive transport constraint is proposed for the near-wall region.

The similar methodology has also been applied to the algebraic heat flux

model (AHFM). As a result, an alternative diffusive transport constraint

has been proposed. Preliminary evaluation results have shown that the

improvement of consequently resulted model can also be expected by em-

ploying the proposed constraint. In addition, the frame invariant concept is

invoked in this study to extend the original advection assumption for flows

associated with rotation and curvature effects. Moreover,the frame in-

variant form of AHFM is derived by using the extended weak-equilibrium

condition.

To this end, some key issues concerning the basic performance of RANS

models have been recognized, such as the modeling of pressure-strain rate,

modeling of pressure transport term. With further study, the improvement

of such models can advance the RANS modeling fundamentally,which

also naturally applies to the algebraic models. It is also noted that, al-

though the a priori tests have proved the proposed alternative constraints

can improve the resultant algebraic models potentially, the more detailed

tests should be performed to validate the proposed alternative constraints.
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Chapter 1

Introduction

1.1 General Background

The computation fluid dynamics (CFD) is widely used in aerodynamics, propulsion,

power generation, pollution, automotive, electrical and civil engineering, as a tool of

design, optimization, prediction of off-design performances of such industrial applica-

tions. Despite various other complexities, turbulence is the major obstacle for accurate

and reliable CFD simulations. Turbulence can have positiveor negative effects on the

flow, the mixing, the dilution and the heat and mass transfer,and it is important for

engineers to be able to predict the effects in the design process. Hence, the simulation

of turbulence plays an essential part in most CFD calculations.

Three major techniques are nowadays in use for research and design purposes re-

garding turbulent fluid flows. Direct numerical simulation (DNS), which solves the

Navier-Stokes equations together with the continuity equation without introducing any

model, is able to represent all the details of the complex turbulent fluctuating mo-

tion. Although, it requires every large computational resource and time. In addi-

tion, the number of grid points and the cost required increase roughly withRe3 (Pope,

2000), which limits the applicability of this approach to low or moderate Reynolds

number and simple geometry flows. In large eddy simulations (LES), the larger three-

dimensional unsteady turbulent motions are represented ina direct fashion, whereas,

the effects of the smaller-scale motions are modeled. Accordingly, LES can be used to

calculate relatively high Reynolds number flows, but the proper resolving the near-wall

regions poses the problems, where a special near-wall treatment has to be introduced

1



1.1 General Background

(Rodi, 2006). Therefore, DNS and LES are nowadays mainly applied to low Reynolds

number flows in simple geometry for scientific rather than practical purposes (Celik,

2005; Hadz̆ić, 1999; Hanjalić, 2005b; Hellsten, 2004). It is noted that the DNS and

LES have been a very useful tool on the development and validation of turbulence mod-

els by providing the very detailed description of fluid flow, also turbulent heat transfer.

Particularly, with the aid of DNS and LES, a term-by-term modeling of the transport

equation can be undertaken, which is not feasible from the experimental database. Ad-

ditionally, the DNS and LES database can be used to develop the low Reynolds number

models, which require a more sophisticated expression in the near-wall region.

The single-point statistical modeling of turbulence is nowadays the most widely

spread approach to predict turbulent flows for practical purposes, which is the so-called

Reynolds averaged Navier-Stokes (RANS) modeling. As a consequence, the second-

moment correlations of fluctuating quantities appear in theRANS equations. By the

level at which these correlations are modeled, several approaches have been developed.

A mathematically and physically well founded approach in the framework of RANS

modeling is the second moment closure, from which the secondmoment correlations

obtain their solution from differential transport equations. The eddy viscosity models

(EVM) relate the unknown Reynolds stresses to mean flow parameters, such as veloc-

ity gradients, and an eddy viscosityνt. The eddy viscosity can be seen essentially as

product of characteristic velocity scale and corresponding length scale. This type of

turbulent models is thought to be most widely used turbulence one in practical appli-

cations, although some serious fundamental deficiencies have been well documented

in the literature. The nonlinear eddy viscosity models (NLEVM) and the Algebraic

models, currently still under development, are a promisingway to overcome the defi-

ciencies of conventional EVMS. Particularly, much research effort has been paid to the

further development of algebraic models, and it is suggested that long-term research

should be supported on algebraic models (Johansson, 2002).

As pointed out byHanjalić (2005b), an industrial user nowadays has very broad

options of the available RANS models, which is reversely making users more diffi-

cult to make a choice in regard to which models should be used for which applica-

tion. Paradoxically, there seems to be not much incentive for fundamental research in

the conventional RANS modeling facing various needs for innovation. Among those

research activities, some interesting directions may be identified, such as the elliptic

2



1.2 Introduction of ARSM

blending model (Manceau, 2005), the new wall function (Craftet al., 2004), the further

improvement of algebraic models (Gatski & Wallin, 2004; Hamba, 2006), et. al. Ad-

ditionally, some new approaches, which seem to depart from the conventional RANS

strategies have attracted more research activities, such as unsteady RANS, multi-scale

RANS, transient RANS, hybrid RANS/LES, and so on, which are supposed to bring

better physical justification and feasibility.

However, it may be noticed that some key issues concerning the basic performance

of RANS models have still remained, such as the modeling of pressure-strain rate,

modeling of pressure transport term. With further study, the improvement of such

model can advance the RANS modeling fundamentally.

1.2 Introduction of ARSM

Among various RANS approaches, the eddy viscosity model (EVM) has received the

most consideration and has been applied to many problems, due to its simple form

and affordable computation cost. However, an EVM eventually fails to represent many

complex features of turbulent flows. The differential Reynolds stress models (DRSM)

include significantly more flow physics, and its applicationto complex flows is an

active area of research (Haaseet al., 2006). In parallel with such efforts, there is a

considerable renewed interest in developing the algebraicapproximations for trans-

port equations of anisotropy tensor (Johansson, 2002), which is the so-called algebraic

Reynolds stress model.

The explicit algebraic Reynolds stress model (EARSM) has been considered as an

alternative to EVM. Positioned at an intermediate level between EVM and DRSM,

the EARSM extends the linear Boussinesq hypothesis by introducing a more general

polynomial representation that should allow for the prediction of more complex flow

physics. This general algebraic relation is obtained by first simplifying the differen-

tial transport equation for the Reynolds stress anisotropytensor. This simplification

results in a corresponding implicit algebraic equation (ARSM) for the Reynolds stress

anisotropy components. The EARSM is then obtained from a tensor polynomial repre-

sentation of the anisotropy components whose terms are functions of the strain rate and

vorticity tensors as well as additional scalar parameters.The EARSM thus inherits the

3



1.2 Introduction of ARSM

simplicity and (some level of) robustness of the eddy viscosity models but also retains

the potential for representing the turbulence anisotropy.

The general weak-equilibrium condition (Rodi, 1972, 1976) is used to derive the

implicit ARSM from the differential transport equation of Reynolds stress anisotropy.

The equilibrium state is of such state that the production equals dissipation with neg-

ligible convective and transport effects. For flows away this state, Rodi introduced

the more general weak-equilibrium assumption, which is theadvection and diffusive

transport inuiuj are proportional to that of thek. For the mean convection term, this

condition assumes that mean flow advection in inertial flows for the Reynolds stress

anisotropy tensorbij (= τij/2k − δij/3) is zero,

Dbij
Dt

= 0 , (1.1)

whereτij = uiuj. For the diffusive transport term, the weak-equilibrium condition

yields that the entire transport term ofτij is proportional to that of the turbulent kinetic

energyk, that is

Dij −
τij
k

D = 0, (1.2)

whereDij represents the entire transport term of the Reynolds stress. It can be parti-

tioned and written as

Dij = D
t
ij + D

p
ij + D

ν
ij

= − ∂

∂xk
uiujuk −

∂

∂xk

(
p

ρ
uiδjk +

p

ρ
ujδik

)
+ ν∇2τij , (1.3)

whereDt
ij is the turbulent transport,Dp

ij is the pressure transport andDν
ij is the vis-

cous diffusion, withD = Dii/2 in Eq. (1.2). The current study focuses on the weak-

equilibrium condition associated with Eq. (1.2).

The validity of the weak-equilibrium condition greatly depends on the nature of the

flow. When the spatial change of the turbulent flow is moderateand the energy balance

is in equilibrium, this assumption is well supported. However, in formulating implicit

ARSM equations in flows relative to non-inertial frames or with flow curvature, this

assumption does not hold. As originally suggested byRodi & Scheuerer(1983), a

generalized condition that can include the effects of system rotation or streamline cur-

vature becomes necessary in order to accurately predict such flows (Rumseyet al.,

2001, 2000).

4



1.3 Introduction of AHFM

The weak-equilibrium condition associated with Eq. (1.1) has been the focus of

some recent studies that have attempted to develop the appropriate form for the anisotropy

equilibrium assumption in both non-inertial frames and fields where streamline curva-

ture effects persist (Gatski & Jongen, 2000; Gatski & Wallin, 2004; Girimaji, 1997;

Hamba, 2006; Wallin & Johansson, 2002). Wallin & Johansson(2002), Gatski &

Wallin (2004) andHamba(2006) have all recently shown that the conditionDbij/Dt+

Ωikbkj − bikΩkj = 0 in the non-inertial frame is incorrect whereΩij is the rotation rate

tensor associated with the angular rotation rate vectorωm of the non-inertial frame co-

ordinates, and the extra termΩikbkj − bikΩkj is necessary to include the motion of flow

itself. Therefore, the appropriate form for the anisotropyequilibrium assumption in the

non-inertial frames areDbij/Dt = 0. Hamba(2006) has also pointed out that the ex-

tended assumption of anisotropy equilibrium can also be objective if the co-rotational

derivative is introduced.

The second assumption (Eq. (1.2)), based on constraints applicable to the entire

transport term (Gatski & Rumsey, 2001), is also necessary in deriving the implicit

algebraic Reynolds stress equations. However, this assumption has received much

less attention since it becomes important only in near-wallregions of inhomogeneous

turbulent flows and is less amenable to analysis than the condition on the Reynolds

stress anisotropy itself. Nevertheless, system rotation and streamline curvature can

greatly influence the diffusion and transport process of turbulent flows. This can be

observed from the DNS and LES (Andersson & Kristoffersen, 1993; Grundestamet al.,

2008; Kim et al., 1987; Kristoffersen & Andersson, 1993; Lamballaiset al., 1998) of

rotating turbulent channel flow. This suggests that the question of whether the current

assumption for diffusive transport can hold in flows involving rotation and curvature

effects should be investigated.

1.3 Introduction of AHFM

There are currently considerable research activities directed toward developing the

model for the prediction of heat transfer in turbulent flows.With the similar reason

of ARSM, the interest on deriving the algebraic approximation approach has been in-

creasing for predicting turbulent heat transfer. Numerousworks have been devoted

to develop the sophisticate algebraic model for turbulent heat flux, such asAbe &

5



1.3 Introduction of AHFM

Suga(2001); Dol et al. (1997); Hattori et al. (2006); Lai & So (1990); Rogerset al.

(1989); Rokni (2000); Shabany & Durbin(1997); So & Sommer(1996), among oth-

ers. Recently,Wikströmet al. (2000) showed that the systematic modeling approach

of forming implicit algebraic relation for turbulent heat flux and proposed a method to

obtain the fully explicit form out of an implicit relation byusing Caylay-Hamilton the-

orem for two- and three-dimensional flows.Soet al. (2004) presented the method to

derive an explicit algebraic model for two-dimensional incompressible non-isothermal

turbulent flows with the aid of tensor representation theory. The works mentioned

above contribute to the development of algebraic model for turbulent heat flux, while

those works are limited to flows in the inertial frames. Consequently, the appropriate

form of algebraic model for turbulent heat flux in the non-inertial frames has been left

unexplored.

The general algebraic relation is first obtained by a simplification of the differential

transport equations of turbulent heat flux by invoking the weak-equilibrium condition.

Analogous to the derivation of ARSM, this weak equilibrium condition assumes that

the advection of turbulent normalized heat flux is zero. The original advection assump-

tion is only valid for inertial frames. As for the non-inertial frames, the proper form

of this assumption is left unexplored. The same issue encountered for the derivation

of algebraic model for Reynolds stress anisotropies has been well resolved by invok-

ing the frame-invariant concept to account for rotation andcurvature effects correctly

(Gatski, 2004; Gatski & Wallin, 2004; Girimaji, 1997; Hamba, 2006; Speziale, 1998,

1979; Weis & Hutter, 2003). As pointed out byHamba(2006), the frame-invariant

property is not only the requirement for mathematical description of turbulent flow, it

also serves as highly useful constraint and tool to form constitutive equations (Hamba,

2006; Speziale, 1998). By invoking the frame-invariant concept, the resultant con-

stitutive equations for Reynolds stress anisotropies are independent of the reference

frames, whether inertial or non-inertial. It has been shownthat the resultant frame-

invariant algebraic model for Reynolds stress anisotropies is capable to include the

system rotation and streamline curvature effects (Gatski & Wallin, 2004; Jongenet al.,

1998a,b). Thus, it is straightforward to extend this methodology tothe modeling of

turbulent heat flux in non-inertial frames. By applying thisframe-invariant constraint,

a reference frame free algebraic heat flux model can be derived, which accounts for

the system rotation and streamline curvature effects.Nagano & Hattori(2003) gave
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the assessment of explicit expression for turbulent heat flux. It is readily observed

that the algebraic formulation employed for turbulent heatflux in their work is not

frame invariant. As a matter of fact, the rotation effects are not fully accounted for.

The above example shows that frame invariant constraint is an omissible constraint for

formulating the algebraic models for turbulent heat flux.

Moreover, the weak-equilibrium condition assumes that thediffusion and transport

in the budget of turbulent normalized heat flux equation are negligible. This treat-

ment is known as the diffusive transport constraint. As another constraint to derive

the AHFM, the diffusive transport constraint removes the differential terms, which are

associated with the diffusion and transport processes. Obviously, its validity is crucial

for resulting an accurate AHFM.Wikström et al. (2000) investigated the validity of

diffusive transport constraint by comparing the characteristic magnitudes of individual

terms in the transport equation for turbulent normalized heat flux. They concluded that

the diffusive transport constraint is appropriate for the streamwise component except

near the wall. For the wall-normal component, this constraint is not well supported

even in the center of the channel. However, their work was limited in the inertial

frames, the validity of this constraint in the non-inertialframes certainly needs to be

investigated further, for AHFM be applied to flows involvingrotation and curvature

effects.

1.4 The objective

The present study aims at the development of algebraic models for prediction of Reynolds

stresses and turbulent heat fluxes. By using DNS data, the detailed behavior of each

term in the transport equations of Reynolds stresses and turbulent heat fluxes for the

near-wall region is understood through the budget and asymptotic analyses. Such un-

derstanding gives the possibilities to assess and modified the diffusive transport con-

straints, which are important in the derivation of algebraic models both for Reynolds

stresses and turbulent heat fluxes. In addition, the frame invariant concept is invoked

in this study to extend the original advection assumption for flows associated with ro-

tation and curvature effects. Moreover, the frame invariant form of AHFM is derived

by using the extended weak-equilibrium condition.
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1.5 Outline

A general review of turbulent flows, concerning the concept of RANS modeling is first

given in chapter 2. In this chapter, it contains an outline ofthe turbulence models

beginning with a brief introduction about the statistical modeling both for turbulent

Reynolds stresses and heat fluxes. Several modeling approaches are discussed in the

framework of the second-moment turbulence closure. Special attention is paid to the

algebraic model, which is becoming more favorable for engineering flows.

In chapter 3, some computational examples by differential Reynolds stress model,

nonlinear eddy viscosity model and linear viscosity model,as well as some critical

observations, are provided for the case of fully developed rotating channel flow. By

these examples, the ability of representing the rotation effects, which appears usually

important in the practical applications, is revealed.

Chapter 4 presents the study on the assessment and modification of diffusive trans-

port constraint for derivation of algebraic Reynolds stress models. This study focuses

on the validity and modification of the diffusive transport assumption in fully devel-

oped rotating channel flow. This is accomplished by ana priori assessment using the

DNS data ofKristoffersen & Andersson(1993).

In Chapter 5, it includes the work on the advancement of algebraic heat flux model.

The weak equilibrium condition is assessed, and a tempt is made to extend the weak

equilibrium condition to noninertial frames. An alternative form of diffusive transport

constraint is proposed and evaluated using DNS data.

Finally, conclusions drawn from the range of present study as well as perspectives

for future work are given in Chapter 5.
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Chapter 2

The Second-Moment Turbulence

Modeling

2.1 Modeling of turbulent Reynolds stresses

The instantaneous velocity and pressure fields in an impressible turbulent flow under

isothermal conditions are solutions of the instantaneous continuity and Navier-Stokes

equations given by

∂Ûi

∂xi
= 0, (2.1a)

∂Ûi

∂t
+ Ûk

∂Ûi

∂xk
= −1

ρ

∂P̂

∂xi
+ ν

∂2Ûi

∂xk∂xk
, (2.1b)

whereρ andν are density and kinematic viscosity of the fluid,Ûi are instantaneous

velocity vector components and̂P is the instantaneous pressure. According to the

Reynolds-averaged approach, the instantaneous velocity and pressure are decomposed

into a time mean and a fluctuating part give by

Ûi = Ui + ui, P̂ = P + p, (2.2)

where the capital symbols(Ui, P ) represent a time mean and the lower-case symbols

(ui, p) represent the fluctuating part. This averaging leads to the Reynolds-averaged

continuity equation and the Reynolds-averaged Navier-Stokes (RANS) equations for
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2.1 Modeling of turbulent Reynolds stresses

incompressible isothermal turbulent flow of a Newtonian fluid, which can be written

as (Durbin & Pettersson, 2001)

∂Ui

∂xi
= 0, (2.3a)

∂Ui

∂t
+ Uj

∂Ui

∂xj
= − 1

ρ

∂P

∂xi
+ ν∇2Ui −

∂uiuj

∂xj
. (2.3b)

Eq. (2.3b) can be rearranged to arrive at a well-known form

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
+

1

ρ

∂

∂xj

(
µ
∂Ui

∂xj
− ρuiuj

)
, (2.4)

where the terms,−ρuiuj, are collected with the traditional normal and shear stress

termsµ∂Ui/∂xj . By this way, it is readily to tell that the averaged effect ofturbulent

advection,−ρuiuj has the similar mathematical representation form as the viscous

stressµ(∂Ui/∂xj + ∂Uj/∂xi) and they are both second tensor variables. This fact

indicates that these two terms may be controlled by the similar mechanism. Therefore,

−ρuiuj is generally treated as a ”stress” also, namelyReynolds stress. Even though

this apparent stress is−ρuiuj, it is convenient and conventional to refer touiuj as the

Reynolds stress.

The extract transport equation for Reynolds stress tensoruiuj is given as

Duiuj

Dt
= Pij + φij + D

ν
ij + D

t
ij + D

p
ij − εij, (2.5)

where the right-side represents the rate of change ofτij produced by the turbulent

productionPij , the redistributionφij, the viscous diffusionDν
ij , the turbulent transport

Dt
ij , the pressure transportD

p
ij and the turbulent dissipation rateεij . These terms are
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2.1 Modeling of turbulent Reynolds stresses

given by

Pij = −
(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)
, (2.6a)

φij =
p

ρ

(
∂ui

∂xj
+
∂uj

∂xi

)
, (2.6b)

D
ν
ij =

∂

∂xk
ν
∂uiuj

∂xk
, (2.6c)

D
t
ij = − ∂

∂xk

uiujuk −
∂

∂xk

uiujuk, (2.6d)

D
p
ij = − ∂

∂xk

(
p

ρ
uiδjk +

p

ρ
ujδik

)
, (2.6e)

εij = 2ν
∂ui

∂xk

∂uj

∂xk
. (2.6f)

Note that in the incompressible form of theuiuj equations, it is customary to de-

compose the velocity pressure-gradient correlationΠij into a termφij that represents

redistribution of energy among the components and a termD
p
ij that represents the

pressure-related transport:

Πij =φij + D
p
ij

= −
(

1

ρ
ui
∂p

∂xj

+ ui
∂p

∂xj

)
.

The annotations for the terms in the budgets of Reynolds stress transport equation,

Eq. (2.5) indicate physical interpretations.

• Production Pij This term represents the rate at which the energy is transferred

from mean flow to turbulent fluctuations.

• Redistribution φij The terminology, redistribution, implies that it redistribute

the energy among components of Reynolds stresses without altering the total

energy. The fact that the trace of this term is zero also proves its role. The qual-

itative effect of redistribution is to shift the energy fromthe larger components

of uiuj into smaller ones, which makes the flow tend to be isotropic.

• Viscous diffusion Dν
ij This term transports the energy in space by molecular

process. This transport is in a conservative way, without generating or destroying

the energy.
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2.1 Modeling of turbulent Reynolds stresses

• Turbulent transport Dt
ij The physical effect of the transport term is to spread

the Reynolds stresses in space. Since turbulent transport can be expressed with

the divergence of the flux, it is also a conservative term.

• Pressure transport Dp
ij This term is named as transport term since it is also

of conservative form. However, this is a quite ambiguous terminology since

pressure effects are non-local and instantaneous, while transport occurs slowly,

down local gradients.

• Dissipation rate εij This term represents the decay of the turbulence, which

implies that it dissipates the energy of turbulence into heat. The components of

εij allow individual components of Reynolds stresses to dissipate at a different

rate.

For the practice of turbulence modeling, the equations for turbulent kinetic energy

k and its dissipation rateε are usually involved. The equations fork andε define the

dynamics of turbulent kinetic energy, and illustrate the major physical mechanisms in

a turbulent flow within the framework of Reynolds-averagingapproach.

The exactk equation is derived by taking the half of the trace of Eq. (2.5):

Dk

Dt
= P + D − ε, (2.7)

where the turbulent kinetic energyk = 1/2uiui. The terms on the right-hand sideP ,

D andε, can be interpreted as production ofk, diffusion/transport ofk and dissipation

rate ofk, which are (Hanjalić, 2005a)

P = − uiuj
∂Ui

∂xj
, (2.8a)

D =
∂

∂xj

(
ν
∂k

∂xj
− 1

2
uiujuj −

1

ρ
pui

)
, (2.8b)

ε = ν

(
∂ui

∂xj

)2

. (2.8c)

The exactε equation is given by (Mansouret al., 1988)

Dε

Dt
= P 1

ε + P 2
ε + P 3

ε + P 4
ε + D

ν
ε + D

t
ε + D

p
ε − Y, (2.9)
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2.1 Modeling of turbulent Reynolds stresses

where the dissipation rate of kinetic energyε = 1/2εii. The different terms on the

right-hand side of Eq. (2.9) can be identified as

P 1
ε = − 2ν

∂ui

∂xl

∂uk

∂xl

∂Ui

∂xk
Mixed Production, (2.10a)

P 2
ε = − 2ν

∂ul

∂xi

∂ul

∂xk

∂Ui

∂xk
Production by mean velocity gradient, (2.10b)

P 3
ε = − 2νuk

∂ui

∂xl

∂2Ui

∂xk∂xl
Gradient production, (2.10c)

P 4
ε = − 2ν

∂ui

∂xk

∂ui

∂xl

∂uk

∂xl
Turbulent production, (2.10d)

D
ν
ε =

∂

∂xk
ν
∂ε

∂xk
Viscous diffusion, (2.10e)

D
t
ε = − ∂

∂xk
ukε Turbulent transport, (2.10f)

D
p
ε = − ∂

∂xk

(
2ν

ρ

∂p

∂xi

∂uk

∂xi

)
Pressure transport, (2.10g)

Y = − 2

(
ν
∂2ui

∂xk∂xl

)
Dissipation. (2.10h)

It has been shown that the Reynolds-averaged Navier-Stokesequations contain un-

defined variables (second momentsuiuj) as a consequence of averaging previously. To

close the equation set, these variables need to be supplemented. In order to overcome

this problem, the transport equations of Reynolds stresses, Eq. (2.5), of kinetic energy,

Eq. (2.7) and of dissipation rate, Eq. (2.9) are introduced. The transport equations for

the second moments contain some terms of third moments. The transport equations

for third moments can also be derived by multiplying the transport equation of second

momentsuiuj with the fluctuating velocityuk and averaging, which includes terms of

higher-order moments. This problem is known as theTurbulence Closure Problem.

The development of turbulent closure models with the framework of Reynolds-

averaged Navier-Stokes approach has been the subject of intense study and numer-

ous reviews (Gatski, 2004; Reynolds, 1976; Speziale, 1991). A significant number of

closure models have been proposed, which range from the simple algebraic specifica-

tion of turbulent velocity and length scales to the solutionof full differential transport

models. Basically, there are three levels of closure modelscurrently employed in the

community of computational fluid dynamics: eddy-viscositymodel, algebraic model
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2.1 Modeling of turbulent Reynolds stresses

and differential Reynolds stress model. These three levelsof modeling strategy will be

introduced in the following sections.

2.1.1 Differential Reynolds stress model

Differential Reynolds Stress Model (DRSM) is virtually themost natural and logical

level in the framework of Reynolds-averaged Navier-Stokesapproach. The DRSM

aims to obtain a numerically solvable set of transport equations for each Reynolds

stress component and the dissipation rate of kinetic energy. This is quite attractive

in principle, since all the physical processes governing the evolution of the Reynolds

stresses are included in the equations. Among those processes, the very important

production term and also the advection by mean flow can be employed without any

modeling. This is the main motivation of the DRSM approach (Hellsten, 2004). On

the other hand, some other higher-order correlations, which are very important for

evolution of the Reynolds stresses, have to be modeled. The modeling of these terms

basically consists of the subject of developing DRSM. To model these terms appro-

priately, the proper physical understanding, the religious mathematical description and

the rational assumption are necessary most of the time. It isargued that the DRSMs

do not show always an indisputable superiority over other levels of models. One of the

reasons is that more terms need to be modeled. While this offers a better opportunity

to include the important processes, the advantage may be annulled if some of the terms

are modeled wrongly (Hanjalić, 2005a).

The basic concepts of the DRSM were defined byChou(1945) earlier, then Rotta

made an important and lasting contribution as RS model (Rotta, 1951). In the 1970s,

the DRSM gained more attention in the wake of the important work by Hanjalić &

Launder(1972) andLaunderet al. (1975). Since those years, many researchers have

contributed to this field and proposed numerous models. The modeling work involves

combinations of physical insight and assumptions on the specific term’s behavior with

some self-consistent mathematical descriptions to obtainan expression of the term,

which is explicit in the certain dependent variables, that is Reynolds stressesuiuj,

mean velocityUi, strain-rate tensorSij, vorticity tensorWij , kinetic energyk and its

dissipation rateε.
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2.1 Modeling of turbulent Reynolds stresses

The definitions forSij andWij are as following

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, (2.11)

Wij =
1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
. (2.12)

Note that the sum of symmetric strain-rate tensorSij and antisymmetric vorticity tensor

Wij is the velocity gradient tensor (Sij +Wij = ∂Ui/∂xj).

In the exact transport equation for Reynolds stresses, Eq. (2.5), the production term

(Pij) can be treated exactly, while certain models are required for the dissipation term

(εij), diffusion/transport term (Dij) and redistribution term (φij). Extensive research

effort has been given to the modeling of above terms. In the following chapter, an

example will be given to illustrate the details of DRSM for the case of fully developed

rotating channel flow.

2.1.2 Algebraic Reynolds stress model

Among various RANS approaches, the eddy viscosity model (EVM) has received the

most consideration and has been applied to many problems, due to its simple form

and affordable computation cost. However, an EVM eventually fails to represent many

complex features of turbulent flows. The differential Reynolds stress models (DRSM)

include significantly more flow physics, but the applicationto industrial flows is still

challenging (Haaseet al., 2006). Faced with higher demands on prediction accuracy in

more complex flow situations, the need for more accurate and efficient RANS models

has become important.

The explicit algebraic Reynolds stress model (EARSM) has been considered as an

alternative to EVM. Positioned at an intermediate level between EVM and DRSM,

the EARSM extends the linear Boussinesq hypothesis by introducing a more general

polynomial representation that should allow for the prediction of more complex flow

physics. This general algebraic relation is obtained by first simplifying the differen-

tial transport equation for the Reynolds stress anisotropytensor. This simplification

results in a corresponding implicit algebraic equation (ARSM) for the Reynolds stress

anisotropy components. The EARSM is then obtained from a tensor polynomial repre-

sentation of the anisotropy components whose terms are functions of the strain rate and
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2.1 Modeling of turbulent Reynolds stresses

vorticity tensors as well as additional scalar parameters.The EARSM thus inherits the

simplicity and (some level of) robustness of the eddy viscosity models but also retains

the potential for representing the turbulence anisotropy.

Algebraic Reynolds stress models are written directly in terms of the turbulent

stresses and therefore do not rely on the Boussinesq approximation. This enables these

models to predict some degree of anisotropy compared to the eddy viscosity model.

Whereas, when applying the implicit algebraic model to the two- or three-dimensional

flow, one usually finds some numerical issues raised. This is because that the equation

system of algebraic relations needs to be solved directly for the Reynolds stresses, es-

pecially there are no diffusive terms contained in the algebraic Reynolds stress model.

To alleviate the above numerical difficulties, much effort has been devoted to the devel-

opment of explicit algebraic Reynolds stress models. However, a lot of mathematical

steps are necessary to make the algebraic relations explicit. The benefit to perform-

ing all of these additional works during the formulation of the model is that resultant

explicit algebraic stress models provide a significant costsavings compared to the dif-

ferential equations of the full Reynolds stress model.

The very first ARSM in turbulent flow was developed byRodi (1976) from DRSM

equations. The following developments of ARSM were concentrated on the explicit

form of the algebraic relations. As will shown in later section, the nonlinearity of

implicit algebraic relations forms the major obstacle to derive explicit ARSM and the

studies so far differ mainly by the treatment of production-dissipation rationP/ε ap-

pearing in the implicit form of ARSM. Accordingly, the modelproposal can be cata-

logized into three major approaches.

Implicit P/ε

Pope(1975) proposed the idea of using ten tensor groups to form a consistent

explicit relation was proposed, as well as the relation for two-dimensional flow with

leaving the production-dissipation ration (P/ε) in the implicit form. This approach

was later extended and solved for three-dimensional flows byTaulbee(1992), Taulbee

et al. (1994).

Universal constant forP/ε

A different approach was taken byGatski & Speziale(1993), where the equilib-

rium value forP/ε in homogeneous shear flow was assumed to be a universal con-

stant. Thus this model is considered only exactly self-consistent in equilibrium homo-
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geneous shear flow and might be inconsistent to extend this model beyond the equi-

librium flows. Actually, the assumption of a constantP/ε resulted in a model that

produces the wrong asymptotic behavior in rapid distorted flows and also may become

singular under some circumstances. Therefore, some additional corrections have been

proposed, such asGatski & Speziale(1993), Speziale & Xu(1996), Rumseyet al.

(1999), Jongen & Gatski(1998a), Antonello & Masi (2007), to improve the consis-

tency condition. Extensions of EARSMs to account for anisotropic dissipation rate

have been proposed byXu & Speziale(1996), and extended to inhomogeneous flows

by Jongenet al. (1998a).

SolvingP/ε

TheP/ε can be obtained by solving a third-order polynomial equation for two-

dimensional flows, as proposed byGirimaji (1996), Johansson & Wallin(1996), Wallin

& Johansson(2000) extended it to the compressible flow. The rotation and curvature

effects are included byWallin & Johansson(2002). Grundestamet al. (2005b), Grun-

destamet al. (2005a) derived the EARSM based on a nonlinear pressure strain-rate

model. In this approach, the solution for two-dimensional flows are extended to three-

dimension as first approximation.

2.1.2.1 Weak-equilibrium condition

As a matter of fact, the derivation of three mentioned above ARSMs has to invoke

the weak-equilibrium assumption inevitably. The general weak-equilibrium condition

(Rodi, 1972, 1976) is used to derive the implicit ARSM from the differential transport

equation of Reynolds stress anisotropy. For the mean convection term, this condition

assumes that mean flow advection in inertial flows for the Reynolds stress anisotropy

tensorbij (= τij/2k − δij/3) is zero,

Dbij
Dt

= 0 , (2.13)

whereτij = uiuj. Note that the Reynolds stress anisotropy tensorbij here is differ-

ent from previously usedaij, and the relation between this two parameters is2bij =

aij . Both of them are used widely for the turbulence modeling in the framework of

Reynolds-averaged approach. For the diffusive transport term, the weak-equilibrium
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condition yields that the entire transport term ofτij is proportional to that of the turbu-

lent kinetic energyk, that is

Dij −
τij
k

D = 0, (2.14)

whereDij represents the entire transport term of the Reynolds stress. It can be parti-

tioned and written as

Dij = D
t
ij + D

p
ij + D

ν
ij

= − ∂

∂xk
uiujuk −

∂

∂xk

(
p

ρ
uiδjk +

p

ρ
ujδik

)
+ ν∇2τij , (2.15)

whereDt
ij is the turbulent transport,Dp

ij is the pressure transport andDν
ij is the viscous

diffusion, withD = Dii/2 in Eq. (2.14).

The validity of the weak-equilibrium condition greatly depends on the nature of the

flow. When the spatial change of the turbulent flow is moderateand the energy balance

is in equilibrium, this assumption is well supported. However, in formulating implicit

ARSM equations in flows relative to non-inertial frames or with flow curvature, this

assumption does not hold. As suggested byRodi & Scheuerer(1983), a generalized

condition that can include the effects of system rotation orstreamline curvature be-

comes necessary in order to accurately predict such flows (Rumseyet al., 2001, 2000).

In the later section, more detailed discussion will be addressed on this issue.

2.1.2.2 Rodi ARSM

Virtually, Rodi’s ARSM (Rodi, 1976) is the starting basis of many other ARSMs de-

veloped later, therefore, it will briefly reviewed here. Rodi postulated that

Dτij
Dt

− τij
k

Dk

Dt
=0, (2.16a)

Dij −
τij
k

D =0, (2.16b)

where theτij = uiuj is the Reynolds stress tensor. Note that the Eq. (2.16a) is equiva-

lent with Eq. (2.13). By invoking the above weak equilibrium condition, one has

Dτij
Dt

= Pij + φij − εij =
τij
k

(P − ε) . (2.17)
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Rodi (1976) proposed a set of simultaneous algebraic equations for modeling τij
using the model ofLaunderet al. (1975)for φij and the isotropic model forεij, that is

τij
k

(P − ε) = Pij − C1
ε

k

(
τij −

2

3
δijk

)
− C2

(
Pij −

2

3
δijP

)
− 2

3
εδij . (2.18)

By rearranging the above equation, one has

τij = k

[
2

3
δij +

1 − C2

C1 − 1 + P/ε

(
Pij − 2

3
δijP

)

ε

]
. (2.19)

For the Reynolds stress anisotropy tensorbij , Eq. (2.19) can be transformed as

bij =
1
2
(1 − C2)

C1 − 1 + P/ε

(
Pij − 2

3
δijP

)

ε
. (2.20)

Eq. (2.20) implies that the Reynolds stress anisotropy tensorbij is directly proportional

to the production anisotropy.

As can be seen, theτij appears on both side of Eq. (2.20), which makes this ARSM

implicit, therefore, this model is prone to instability in practical computations. For

steady state problems, very small under-relaxation factorhas to be used and for un-

steady state problems, very small time step has to be used in order to obtain con-

vergence (Taulbee(1992)). In addition, the second term of Eq. (2.19) may become

singular , when its denominatorC1 − 1 + P/ε approaches zero. To prevent this nu-

merical instability,Rosenau(1989) proposed regularized version of Rodi’s ARSM to

overcome the possible singular behavior of Eq. (2.19). It can be concluded that the

above-mentioned drawbacks coming along the implicity nature, will compromise the

advantage of ARSM possessing. Naturally, pursuing the explicit formulation forτij or

bij becomes the major direction for developing ARSM, and two typical works will be

reviewed in the following sections.
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2.1.2.3 Gatski and Speziale ARSM

The differential transport equation for the Reynolds stress anisotropy tensorbij is given

by (Gatski & Rumsey, 2001)

Dbij
Dt

=
1

2k

(
Dτij
Dt

− τij
k

Dk

Dt

)

= − bij

(
P

k
− ε

)
− 2

3
Sij −

(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)

+ (bikWkj −Wikbkj) +
φij

2k
+

1

2k

(
Dij −

τij
k

D

)
, (2.21)

whereφij is the pressure-strain rate correlation modeled bySpezialeet al. (1991)

φij = −
(
C0

1 + C1
1

P

ε

)
εbij + C2kSij

+ C3k

(
bikSjk + bjkSik −

2

3
bmnSmn

)
− C4k (bikWkj −Wikbkj) . (2.22)

By introducing the weak-equilibrium condition (Eqs. (2.13) and (2.14)) and sub-

stituting the pressure-strain correlation given by Eq. (2.22) into Eq. (2.21), one obtains

the implicit form of the ARSM

0 = − bij
a4

− a3

(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)

− a1Sij + a2 (bikWkj −Wikbkj) . (2.23)

The coefficients in this implicit form are given by

cw =
C4 − 4

C4 − 2
, a1 =

2

3
− C2

2
,

a2 = 1 − C4

2
, a3 = 1 − C3

2
,

a4 =τ

[(
C1

1

2
+ 1

)
P

ε
+
C0

1

2
− 1

]−1

= τ

[
γ1 + γ0

P

ε

]−1

, (2.24)

with C0
1 = 3.4, C1

1 = 1.8, C3 = 1.25, C4 = 0.40 andτ = k/ε. These coefficients are

obtained directly from the SSG pressure strain-rate correlation model.

Eq. (2.23) can be rewritten in matrix notation as

− 1

a4

b − a3

(
bS + Sb − 2

3
{bS} I

)
+ a2 (bW − Wb) = R, (2.25)
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2.1 Modeling of turbulent Reynolds stresses

where{} is the trace operation, e.g.{bS} = bijSji. I is the identity tensor. For current

linear pressure strain-rate model the isotropic dissipation rate, it follows thatR = a1S.

However, theR can contain any known symmetric, traceless tensor (Jongen & Gatski,

1998b).

Eq. (2.23) forms the so-called implicit ARSM and can be solved by an interaction

procedures numerically. However, such procedures can be numerically stiff for most

of the cases, especially for the complex flow. Therefore, it is desirable to arrive at an

explicit form of Eq. (2.23), still the algebraic character remains. The first attempt was

done byPope(1975), who proposed that a general expression for the tensorbij may be

formed withSij andWij by using a three-term basis for two-dimensional flows. This

form can be written as

b =
3∑

n=1

αnT
(n), (2.26)

whereT(1) = S, T(2) = SW − WS andT
(3) = S

2 − 1/3 {S2} I form the three-term

integrity basis. Theαn are scalar expansion coefficients which need to be determined.

Eq. (2.25) can be solved by projecting this algebraic relation onto the tensor basis

T
(m) itself. For this solution, the scalar product of Eq. (2.25) is formed with each of

the tensorsT(m), (m = 1, 2, ...N) (Gatski & Rumsey, 2001; Gatski & Speziale, 1993;

Jongen, 1998). This procedure leads to the following system of equations:

N∑

n=1

αn

[
− 1

a4

(
T

(n),T(m)
)
− 2a3

(
T

(n)
S,T(m)

)

+ 2a2

(
T

(n)
W,T(m)

)
]

=
(
R,T(m)

)
, (2.27)

where the scalar product is defined as
(
T

(n),T(m)
)

=
{
T

(n)
T

(m)
}

. In a more compact

form
N∑

n=1

αnA =
(
R,T(m)

)
, (2.28)

with A being theN ×N matrix, whose definition for two-dimensional flow is

Anm =




− 1

a4

η2 −2a2η
4R2 −1

3
a3η

4

2a2η
4R2 − 2

a4

η4R2 0

−1

3
a3η

4 0 − 1

6a4

η4



. (2.29)
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2.1 Modeling of turbulent Reynolds stresses

The inversion ofA leads to the following expressions for the representation coef-

ficients

α1 = − a4

α0η2

(
{RS} + 2a2a4 {RWS} − 2a3a4

{
RS

2
})
, (2.30a)

α2 = a4

[
a2α1 +

{RWS}
η4R2

]
, (2.30b)

α3 = − a4

[
a3α1 +

6 {RS
2}

η4

]
, (2.30c)

whereα0 = 1 − 2a2
3a

2
4η

2 + 2a2
2a

2
4η

2R2, R2 = −{W2} / {S2} andη2 = {S2}. As

stated previously, sinceR can be any symmetric traceless tensor, the Eq. (2.30) is the

general solution valid for two-dimensional flow. In the ARSMof Gatski & Speziale

(1993), theR = a1S as a consequence of using linear pressure strain-rate modeland

isotropic dissipation model. This fact yields a quite simplication of the right-hand side

of Eq. (2.28) with only one non-zero entry for
(
R,T(m)

)

(
R,T(m)

)
=




{RS}
−2 {RWS}

{RS
2}


 =



a1η

2

0
0


 . (2.31)

Then theαn can be further simplized as

α1 = − a1a4

α0
, (2.32a)

α2 = a4a2α1, (2.32b)

α3 = − 2a3a4α1. (2.32c)

Substituting of Eq. (2.32) into Eq. (2.26), one obtains the explicit algebraic form

for the Reynolds stress anisotropy tensorb

b = α1

[
S + a2a4 (SW −WS) − 2a3a4

(
S

2 − 1

3

{
S

2
}
I

)]
, (2.33)

or for the Reynolds stress tensorτ

τ =
2

3
kI + 2kα1

[
S + a2a4 (SW − WS) − 2a3a4

(
S

2 − 1

3

{
S

2
}

I

)]
. (2.34)

It should be noted that, in Eq. (2.34), thea4 is a function ofP/ε, as shown in Eq.

(2.24). Gatski & Speziale(1993) treated theP/ε to be constant, then the expression
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2.1 Modeling of turbulent Reynolds stresses

above can be simplified. A different approach, which accounted the variation ofP/ε

is proposed later byYing & Canuto(1996) andGirimaji (1996).

According to the definition, the production-dissipation ration can be easily ex-

pressed as
P

ε
= −2

k

ε
{bS} . (2.35)

The insertation of above relation to Eq. (2.24) leads to the following expression fora4

a4 =

[
γ1 − 2

k

ε
γ0α1η

2

]
k

ε
. (2.36)

From Eqs. (2.32) and (2.36), one can derive the following cubic expression forα1

γ2
0α

3
1 −

γ0γ1

η2(k/ε)
α2

1 +
1

4η4(k/ε)2

[
γ2

1 − 2

(
k

ε

)2

γ0a1η
2

− 2η2

(
k

ε

)2(
a2

3

3
− R

2a2
2

)]
α1 +

γ1a1η
2

4η6(k/ε)
= 0. (2.37)

To obtain the proper solution of this equation,Jongen & Gatski(1998b) lean on an

asymptotic analysis whereby the correct solution is the root with lowest real part of the

above polynomial.

Once again, be noted, that above explicit form of ARSM is for the two-dimensional

flows. Whereas,Jongen & Gatski(1998b) argued that Eq. (2.34) can be used as

an approximation in the case of general three-dimensional flows. Actually, the exact

solution for three-dimensional flows consists of ten independent tensor basis, which

will be numerically difficult for practical applications, more details can be referred to

Jongen(1998).

2.1.2.4 Wallin and Johansson ARSM

Different with approach taken byGatski & Speziale(1993), Wallin & Johansson(2000)

(hereafter as WJ) proposed a new explicit algebraic Reynolds stress model. The major

difference between the models ofGatski & Speziale(1993) andWallin & Johansson

(2000) may be considered as the difference of adopted pressure strain-rate model. On

the other hand, the issue regarding the production-dissipation ratiop/ε remains here,

and solved by a cubic equation as well. The procedure of deriving WJ model will be

reviewed briefly.
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2.1 Modeling of turbulent Reynolds stresses

The weak-equilibrium condition is still invoked for deriving the WJ model, and the

following implicit algebraic equation can be arrived

(P − ε) aij = Pij −
2

3
Pδij − εij +

2

3
εδij + φs

ij + φr
ij, (2.38)

where pressure strain-rate termφij is split into two terms, namely show partφs
ij and

rapid partφr
ij. The rest terms have the same expression as shown in Eq. (2.5).

Apparently, in the WJ model, the isotropic dissipation ratemodel is also adopted.

Note that the original nomenclature is kept here for Reynolds stress anisotropy tensor

aij(= 2bij).

To close the Eq. (2.38), theφs
ij andφr

ij have to be modeled. In WJ model, the

models ofRotta (1951) and Launderet al. (1975) for slow part and rapid part are

adopted, respectively, which are

φs
ij = − C1εaij, (2.39)

φr
ij = − C2 + 8

11

(
Pij −

2

3
Pδij

)
− 30C2 − 2

55
k

(
∂Ui

∂xj
+
∂Uj

∂xi

)

− 8C2 − 2

11

(
−uiuk

∂Uk

∂xj
− ujuk

∂Uk

∂xi

)
. (2.40)

The constantC2 in the φr
ij was originally suggested to be0.4 by Launderet al.

(1975), but more recent studies have suggested a higher value close to 5/9, such as

Lumley (1978), Shabbir & Shih(1992), Taulbee(1992). By substituting Eqs. (2.39)

and (2.40) into Eq. (2.38) and setting theC2 = 5/9, one can obtain an implicit alge-

braic relation for Reynolds stress tensoraij

(
C1 − 1 +

P

ε

)
aij = −15

8
Sτ

ij +
4

9

(
aikW

τ
kj −W τ

ikakj

)
, (2.41)

whereSτ
ij = Sijk/ε andW τ

ij = Wijk/ε. Eq. (2.41) can be rewritten in a matrix

notation

Na = −6

5
S

τ + (aWτ − W
τ
a) , (2.42)

where N is related the production dissipation ration by

N =
9

4

{
C1 + 1 +

P

ε

}
. (2.43)

24



2.1 Modeling of turbulent Reynolds stresses

Once again, the explicit representation of Eq. (2.42) is required to avoid the nu-

merical difficulties. Following the procedure proposed byPope(1975), Wallin & Jo-

hansson(2000) proposed a general relation for the Reynolds stress anisotropy tensora

using ten tensor basis in terms ofS
τ andW

τ for three-dimensional flows

a = β1S
τ + β2

(
S

τ2 − 1

3
II SI

)
+ β3

(
W

τ2 − 1

3
II W I

)

+ β4 (Sτ
W

τ − W
τ
S

τ ) + β5

(
S

τ2
W

τ −W
τ
S

τ2
)

+ β6

(
S

τ
W

τ2 + W
τ2

S
τ − 2

3
IV I

)
+ β7

(
S

τ2
W

τ + W
τ
S

τ2 − 2

3
V I

)

+ β8

(
S

τ
W

τ
S

τ2 − S
τ2

W
τ
S

τ
)

+ β9

(
W

τ
S

τ
W

τ2 − W
τ2

S
τ
W

τ
)

+ β10

(
W

τ
S

τ2
W

τ2 − W
τ2

S
τ2

W
τ
)
, (2.44)

where theβn (1 ≤ n ≤ 10) coeffcients may be functions of the five independent

invariants in terms ofSτ andW
τ . These invariant are given by

II S =
{
S

τ2
}
, (2.45a)

II W =
{
W

τ2
}
, (2.45b)

III S =
{
S

τ3
}
, (2.45c)

IV =
{
S

τ
W

τ2
}
, (2.45d)

V =
{
S

τ2
W

τ2
}
. (2.45e)

By inserting Eq. (2.44) into Eq. (2.42) and using the Cayley-Hamilton theorem

to reduce the higher-order tensor groups, one can obtain theβn-coefficients. For

two-dimensional flows, there are three independent groups:S
τ , (Sτ2 − II SI) and

(Sτ
W

τ − W
τ
S

τ ), and onlyβ1 and β4 are non-zero coefficients. Then, the repre-

sentation fora can be formed as

a = β1S
τ + β4 (Sτ

W
τ −W

τ
S

τ ) , (2.46)

where

β1 = − 6

5

N

N2 − 2II W
, (2.47a)

β2 = − 6

5

1

N2 − 2II W

. (2.47b)

(2.47c)
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2.1 Modeling of turbulent Reynolds stresses

From Eqs. (2.43), (2.47) and (2.42), one can obtain a cubic equation for the un-

knownN

N3 − C ′
1N

2 −
(

27

10
II S + 2II W

)
N + 2C ′

1II W = 0, (2.48)

whereC ′
1 = 9 (C1 − 1) /4.

The aboveN-equation can be solved in a closed form with the solution forthe

positive root being

N =





C ′
1

3
+
(
P1 +

√
P2

)1/3
+ sign

(
P1 +

√
P2

) ∣∣P1 +
√
P2

∣∣1/3
P2 ≥ 0,

C ′
1

3
+ (P 2

1 + P2)
1/6 cos

(
1

3
arccos

[
P1√

P 2
1 − P2

])
P2 < 0,

(2.49)

where theP1 andP2 are defined as

P1 =

(
C ′2

27
+

9

20
II S − 2

3
II W

)
C ′

1, (2.50a)

P2 = P 2
1 −

(
C ′2

9
+

9

10
II S +

2

3
II W

)3

. (2.50b)

For three-dimensional flows, theN-equation is of six order, where the analytical

solution can not be obtained. Therefore,Wallin & Johansson(2000) suggested to use

Eq. (2.48) as an approximation. Accordingly, theβn coefficients are

β1 = − 6

5

N (2N2 − 7II W )

(N2 − 2II W ) (2N2 − II W )
, (2.51a)

β2 = − 72

5

N−1IV

(N2 − 2II W ) (2N2 − II W )
, (2.51b)

β4 = − 12

5

(N2 − 2II W )

(N2 − 2II W ) (2N2 − II W )
, (2.51c)

β6 = − 36

5

N

(N2 − 2II W ) (2N2 − II W )
, (2.51d)

β9 =
36

5

1

(N2 − 2II W ) (2N2 − II W )
, (2.51e)

where all other coefficients are zero.

Naji et al. (2004) evaluated the GS and WJ models for the turbulent flow through

a square duct which involves a secondary flow and significant anisotropy between the

turbulent Reynolds stress tensor components. An a priori evaluation of these models
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2.1 Modeling of turbulent Reynolds stresses

is made using direct numerical simulation (DNS) results of Navier-Stokes equations.

Comparisons of results from EASM and from DNS shows that these models are able

to predict reasonably well such flows. It is concluded that the GS model, which is of a

three tensor basis should be more convenient for engineering applications, and can be

used as an optimal approximation for three-dimensional flows.

2.1.2.5 Inclusion of rotation effects

Turbulent flows are known to be sensitive to the system rotation effects. It is also clear

that the differential Reynolds stress models are capable tocapture these non-inertial

effects. Therefore, it is understandable that the ARSMs, which derived from the dif-

ferential Reynolds stress model, can inherit the ability torepresent the system rota-

tion effects. However, this sensitivity is partially lost through the weak-equilibrium

assumption invoked in order to derive the ARSM. It has been shown that, in princi-

ple, this deficiency can be removed by extending the weak-equilibrium condition to

non-inertial frames, such asSpeziale(1979), Speziale(1998), Weis & Hutter(2003),

Gatski & Wallin(2004), Hamba(2006). The common agreement is that, the extra term

bikΩkj −Ωikbkj should be included into Eq. (2.23) to fully account for the non-inertial

effects, whereΩij is the system rotation rate tensor.

As a result, for the GS model, the rotation effects can be included by the following

implicit algebraic model.

0 = − bij
a4

− a3

(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)

− a1Sij + a2 (bikW
∗
kj −W ∗

ikbkj) , (2.52)

where

W ∗
ij = Wij +

1

a2

Ωij . (2.53)

The above result shows that, to include the rotation effectsthrough an extended weak-

equilibrium condition, the resultant implicit algebraic equation is only altered through

a change in vorticity tensor. Since Eq. (2.52) is an implicit equation forbij in the

inertial frame, it needs to be transformed into the non-inertial frame to preserve the

frame-invariant property, which is given by
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0 = − b̄ij
a4

− a3

(
b̄ikS̄kj + S̄ik b̄kj −

2

3
b̄mnS̄mnδij

)

− a1S̄ij + a2

(
b̄ikW̄

∗
kj − W̄ ∗

ik b̄kj

)
, (2.54)

where

W̄ij = W ∗
ij − εijkΩk = Wij +

1

a2
Ωij − εijkΩk, (2.55)

and the tensorΩij is simply related to the rotation rateΩk by

Ωij = −εijkΩk. (2.56)

So that

W̄ij = Wij −
(

1 +
1

a2

)
εijkΩk, (2.57)

whereεijk is the permutation tensor.

For the WJ model, the similar methodology is adopted to include the rotation ef-

fects, details can be found inWallin (2000), Wallin & Johansson(2002), Grundestam

(2006), et al.

2.1.3 Eddy viscosity model

The concept behind the eddy viscosity models is that the unknown Reynolds stresses,

a consequence from the Reynolds averaging procedure, are modeled using mean flow

parameters, such as velocity gradients, and an eddy viscosity νt, which was proposed

by Boussinesq more than a century ago

uiuj = −νt (x, y, z)

(
∂Ui

∂xj

+
∂Uj

∂xi

)
+

2

3
kδij . (2.58)

The expression for the Reynolds stresses can be algebraic, linear or non-linear, by

which the eddy viscosity models can be further sub-divided into four classes, which are

algebraic (zero-equation) models, one-equation models, two-equation models and non-

linear models. By definition, ann-equation model indicates that a model that requires

solutions ofn additional differential transport equations in addition to those expressing

conservation of mass, momentum and energy. In the context ofeddy viscosity model,

these additional differential transport equations are supposed to provide the velocity
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2.1 Modeling of turbulent Reynolds stresses

scale and the length scale (Bredberg, 2001) for the formulation of eddy viscosityνt,

which is

νt = u · l, (2.59)

whereu is the velociy scale andl is the length scale.

The two-equation level of closure attempts to develop the transport equations both

for the velocity scale and length scale of flow. In the contextof two-equation closure,

many different models have been proposed. The main difference among these models

is the choice of the length scale quantity. The mostly used two-equation model is that of

k-ε model, which uses the dissipation rate,ε, appearing in thek-equation to construct

the eddy viscosity. Another widely used two-equation modelis thek-ω model, where

the ω is the dissipation per unit turbulent kinetic energy or specific dissipation rate

(Wilcox, 1993).

Thek − ε type of two-equations models uses the turbulent energyk to constitute

the velocity scale,k1/2, and the turbulent energy dissipation rateε to constitute the

turbulent length scale, formallyk3/2/ε. Thus, the eddy viscosityνt is given by the

relation

νt = Cµ
k2

ε
= Cµkτ, (2.60)

whereτ = k/ε.

Note that there are several notable deficiencies with abovek-ε type of models,

namely linear eddy viscosity model. One is the isotropy of the eddy viscosity as

consequences of Boussinesq approximation, which assumes adirect proportionality

between the turbulent Reynolds stresses and the mean strainrate tensor. This very fea-

ture leads the failure for prediction of turbulent flows in some complex cases, such as

the secondary motions in ducts. Another deficiencies with linear eddy viscosity model

is that of insensitivity to the non-inertial effects, such as imposed rotations, since the

sole dependence on the strain rate (Eq. (2.58)), which is material frame indifferent. To

remedy these deficiencies, possible choices are the modification on a case-by-case or

ad hocbasis, such asLaunderet al. (1977), Howardet al. (1980), et al.; or to extend

the one-term tensor representation to a nonlinear multipleterms representation, which

forms the category of nonlinear eddy viscosity model, such asSpeziale(1987), Taulbee

(1992), Mompeanet al. (1996), Craft et al. (1997) et al. It may be conclude that, in

the framework of eddy viscosity model, the nonlinear eddy viscosity model approach
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2.1 Modeling of turbulent Reynolds stresses

offers a relatively more rigorous manner for prediction of complex flows compared to

that of linear eddy viscosity models. The general form for deriving the nonlinear eddy

viscosity model may be expressed as

τij =
2

3
kδij +

N∑

n=1

α
′

nT
(n)
ij , (2.61)

whereT (n)
ij are the tensor bases andα

′

n are the expansion coefficients which need to be

determined.

Since one of the advantages with the nonlinear viscosity models is the ability of

represent the anisotropy of Reynolds stress tensors, it is straightforward to reform the

equations in terms of the Reynolds stress anisotropiesbij , which leads to

bij =

N∑

n=1

αnT
(n)
ij , (2.62)

which may be found identical to Eq. (2.26), which is used to derive algebraic Reynolds

stress models. As a matter of fact, the ARSMs and NLEVMs sharethe same basic

formulation, and in both cases, an explicit tensor representation for bij is obtained in

terms ofSij andWij . The identifying feature to distinguish these two types of model

are the technique to obtain the expansion coefficientsαn. As shown in previous section,

in the ARSM case, the projection method and Cayley-Hamiltontheorem are used to

obtain such coefficients in a mathematically consistent fashion from the differential

Reynolds stress model; while in the case of NLEVM, the expansion coefficients are

determined based on calibrations with experimental or numerical data and physical

constraints. To illustrate such ideas, two examples will begiven below.

Shihet al. (1995) proposed a quadratic model

b = α1S + α2 (SW − WS) . (2.63)

Theαi coefficients are determined by applied the rapid distortiontheory constraint

to rapidly rotating isotropic turbulence, and the realizability constraints

τββ ≥0, no sum (2.64a)

τ 2
βγ ≤τββτγγ . Schwarz inequality (2.64b)
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2.2 Modeling of turbulent heat flux

The coefficients are further optimized by comparison with experiment and numerical

simulation of homogeneous shear flow and the inertial sublayer.

Craft et al. (1996) argued that higher-order terms are necessary in order to predict

flows with complex strain fields. To this end,Craft et al. (1996) proposed a cubic

model

b =α1S + α2

(
S

2 − 1

3
{S2}I

)

+ α3 (SW −WS) + α4

(
W

2 − 1

3
{W2}I

)

+ α5

(
W

2
S + SW

2 − 2

3
{SW

2}I
)

+ α6

(
WS

2 − S
2
W
)
. (2.65)

Calibration of above model coefficients is based on an optimization over a wide rage of

flows, which include plane channel flow, circular pipe flow, axially rotating pipe flow,

fully developed curved channel flow and impinging jet flows.

2.2 Modeling of turbulent heat flux

The modeling of turbulent heat fluxes is important in many engineering applications,

and usually found to be carried out by invoking the Reynolds averaged analogy. This

leads to the same decomposition as for the velocities, the temperature can be expressed

as

Θ̂ = Θ + θ, (2.66)

where the capital symbols (Θ) represent an ensemble mean and the lower-case sym-

bols (θ) represent the fluctuating part. This averaging leads to theReynolds-averaged

equations of turbulent mean flow without buoyancy effect as follows

∂Ui

∂xi
= 0, (2.67a)

DUi

Dt
= − 1

ρ

∂P

∂xi
+

∂

∂xj

(
ν
∂Ui

∂xj
− uiuj

)
, (2.67b)

DΘ

Dt
=

∂

∂xj

(
α
∂Θ

∂xj
− ujθ

)
, (2.67c)

whereUi is the mean velocity of the flow,P is the mean pressure.ρ andν are the

constant density and kinematic viscosity respectively.uiuj is the Reynolds stress,α

31



2.2 Modeling of turbulent heat flux

is the thermal diffusivity,Θ is the mean temperature anduiθ is the turbulent heat flux

with θ being the temperature fluctuation.

The resulting unknownuiθ in Eq. (2.67c) causes the same problems for the tem-

perature equation as the Reynolds stresses do for the momentum equation. Closing Eq.

(2.67c) needs the supply ofuiθ, which consists the context of turbulent heat flux mod-

eling. It should be noted that any modeling of turbulent heatflux without mentioning

the velocity models is considered incomplete (So & Speziale, 1999). The temperature

equations are usually modeled as scalar equations with a known velocity field. On the

contrary, the closure of the velocity equations can be carried out with no regarding to

the temperature field in the case of neglecting buoyancy effects. Additionally, it has

been pointed out that model for the temperature field should not be a higher level than

that for velocity field (Cebeci & Bradshaw, 1984).

Similar to the Reynolds stresses, the prediction of the turbulent heat fluxes can be

carried out using a hierarchy of models, which consist of gradient transport models and

second-order closure models (So & Speziale, 1999). The gradient transport models

include the eddy viscosity model and algebraic model. To construct such models,

the assumptions of dynamic similarity between temperatureand velocity fields and

gradient transport of heat momentum are usually invoked. Similar methodology is

also often used to develop the second-order closure for turbulent heat fluxes. Well

documented reviews about turbulent heat flux models can be found inSo & Speziale

(1999).

Also in analogy with the transport equation for Reynolds stress, the exact transport

equation of turbulent heat flux in inertial frames without buoyancy effect can be given

by
Duiθ

Dt
= Piθ + φiθ + Diθ − εiθ, (2.68)

wherePiθ is the production term which contains the production due to the gradient of

mean temperature and velocity,φiθ is pressure temperature-gradient correlation term

(also known as P&T-Corr.), Diθ is the combination of viscous diffusion, turbulent

transport and pressure transport andεiθ is the dissipation termDol et al.(1997). These
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2.2 Modeling of turbulent heat flux

terms are given by

Piθ = − uiuj
∂Θ

∂xj
− ujθ

∂Ui

∂xj
, (2.69a)

φiθ =
p

ρ

∂θ

∂xi
, (2.69b)

Diθ =
∂

∂xj

(
α
∂θ

∂xj

ui + νθ
∂ui

∂xj

)
− ∂θuiuj

∂xj

− 1

ρ

∂θp

∂xi

, (2.69c)

εiθ = (α + ν)
∂θ

∂xj

∂ui

∂xj

. (2.69d)

It is noted that the terms containing correlations of secondor higher orders in Eq.(2.68)

need to be modeled.Piθ can be treated in an exact manner by second or lower order

variables. Generally, a transport model for turbulent heatflux can be expressed in

terms of the gradient of mean velocity∂Ui/∂xj , gradient of temperature∂Θ/∂xj , the

Reynolds stressesuiuj, the heat fluxesuiθ and some time scales.

Attention here will go to the derivation of algebraic heat flux model from the dif-

ferential transport model for turbulent heat flux established byWikströmet al. (2000)

andSoet al. (2004). During this process, the weak-equilibrium condition is invoked

to obtain the algebraic relations for turbulent heat flux in analogy with the derivation

of algebraic Reynolds stress models.

To obtain the algebraic relation for normalized turbulent heat flux, the turbulent ki-

netic energyk(= uiui/2) and the temperature variancekθ(= θ2/2) are also necessary.

Their transport equations can be expressed as

Dk

Dt
= Dk + Pk − εk, (2.70a)

Dkθ

Dt
= Dθ + Pθ − εθ. (2.70b)

In analogy with the derivation of transport equation for Reynolds stress anisotropy

bij(= uiuj/2k− δij/3) (Gatski & Wallin, 2004), one can obtain the transport equation

for normalized turbulent heat fluxξi(= uiθ/(k
1/2k

1/2
θ )) (Hattori et al., 2006; Soet al.,

2004; Wikströmet al., 2000)

Dξi
Dt

=
1

k1/2k
1/2
θ

(Piθ + φiθ − εiθ)−
ξi
2

[
τk

(
Pk

εk

− 1

)
+ τθ

(
Pθ

εθ

− 1

)]
+D

a
i , (2.71)
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2.2 Modeling of turbulent heat flux

whereτk = εk/k andτθ = εθ/kθ are time scales. Note that the concept of normalized

heat flux itself directly conflicts with the linearity principle proposed byPope(1983),

which has been often preferred to be abandoned in many scalartransport models, such

asHattori et al. (2006); Soet al. (2004); Wikströmet al. (2000). The termDa
i is the

diffusion and transport ofξi, which reads

D
a
i =

Diθ

k1/2k
1/2
θ

− 1

2
ξi

(
Dθ

kθ

+
Dk

k

)
. (2.72)

Eq.(2.71) provides the full description for the transport equation of ξi, which is the

basis to derive the algebraic model. By invoking the weak-equilibrium condition (So

et al., 2004; Wikströmet al., 2000), i. e.,

Dξi
Dt

= 0, (2.73a)

D
a
i = 0, (2.73b)

one can reduce Eq.(2.71) to an approximated form for normalized turbulent heat flux

ξi:

0 =
1

k1/2k
1/2
θ

(Piθ + φiθ − εiθ) −
ξi
2

[
τk

(
Pk

εk

− 1

)
+ τθ

(
Pθ

εθ

− 1

)]
. (2.74)

To achieve the AHFM, the specific models for the pressure temperature-gradient cor-

relationφiθ and the dissipation termεiθ are neccesary. A rather general model for

the combined effect ofφiθ andεiθ that has been studied byWikströmet al. (2000) is

considered here, which can be written as

φiθ − εiθ = −
(
C1θ + C5θ

k

εkθ
ujθ

∂Θ

∂xj

)
ε

k
uiθ + C2θujθ

∂Ui

∂xj

+ C3θujθ
∂Uj

∂xi
+ C4θuiuj

∂Θ

∂xj
, (2.75)

whereC1θ ∼ C5θ are model coefficients.

Substituting Eq.(2.75) into Eq.(2.74), and after further generalization, one obtains

0 = −Cb

(
2bij +

2δij
3

)
Θj − CSSijξj − CWWijξj

−ξi
2

{
τk

(
Pk

εk

− 1 + 2C1θ

)
+ τθ

[
Pθ

εθ

(1 − 2C5θ) − 1

]}
, (2.76)
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2.2 Modeling of turbulent heat flux

whereCb = 1 − C4θ, CS = 1 − C2θ − C3θ, CW = 1 − C2θ + C3θ and Θi =

(k/kθ)
1/2(∂Θ/∂xi). The strain-rate tensorSij and vorticity tensorWij are given as

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, (2.77a)

Wij =
1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
. (2.77b)

Furthermore, Eq.(2.76) can be expressed by a function of specific terms such that

0 = fi (bkm, Skm,Wkm, ξm,Θm) . (2.78)
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Chapter 3

Calculation of fully developed rotating

channel flow

3.1 Calculation of fully developed rotating channel flow

using LS model

In this section, a calculation of fully developed rotating channel flow will be under-

taken to show the performance of DRSM. Fully developed channel flow has been

studied extensively to increase the understanding of the mechanics of wall-bounded

turbulent flows experimentally (Johnstonet al., 1972; Matsubara & Alfredsson, 1996,

1998) and numerically (Alvelius, 1999; Cambonet al., 1992; Grundestamet al., 2008;

Kristoffersen & Andersson, 1993; Lamballaiset al., 1996, 1998; Liu & Lu , 2007; Pi-

omelli & Liu , 1995; Tafti & Vanka, 1991) et al. Its geometric simplicity is attractive

for both experimental and theoretical investigations of complex turbulence interactions

near a wall. Also the turbulent flows with system rotation areconsiderable interest in

a variety of industrial, geophysical and astrophysical applications.

It is well established that system rotation affects both themean motion and the

turbulent structure. The interaction of the Coriolis forcewith the mean shear produces

stabilization or destabilization of the flow near the two walls. Here, the concept of

stability is related to an enhancement (destabilization) or with a damping (stabilization)

of the turbulence levels compared to the non-rotating case.Along the unstable side

(pressure side) of the channel, the mean shear vorticity is parallel to the rotation vector,
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3.1 Calculation of fully developed rotating channel flow using LS model

Ω

y

Vorticity

Figure 3.1: Schematics of the fully developed rotating channel flow

while along the stable side (suction side), these two vectors are anti-parallel. This

situation can lead to the complete suppression of turbulence and the relaminarization

of the flow on the stable side of the channel if the rotation rate is sufficiently high

(Dutzleret al., 2000; Pallares & Davidson, 2000).

With the development of high performance computers, it becomes possible to re-

veal more details of turbulent flow with DNS and LES simulation, which are also often

used to test and validate the various closure models.Kristoffersen & Andersson(1993)

carried out DNS of rotating channel flow atRe = 5800 andRo ≤ 0.5 .Lamballaiset al.

(1996) andLamballaiset al.(1998) computed rotating channel flow atRe = 5000 and

Ro ≤ 1.5 by DNS andRe = 14000 andRo ≤ 1.5 by LES. Also for the channel flow

without system rotation,Kim et al. (1987) computed the channel flow at Re=5600

by DNS, a large number of turbulence statistics are computedand compared with the

experimental data. In this study, the above DNS and LES calculations will play as a

benchmark, to show the performance of turbulence model for the prediction of fully

developed rotating channel flow.

The schematics of fully developed turbulent flow between to infinite parallel walls

rotating around spanwise axis shown in Fig.3.1. The resulting flow, which is assumed

to be incompressible, is characterized by the following mean streamwise momentum

equation:

0 = −1

ρ

∂Peff

∂x
− d

dy
uv + ν

d2U

dy2
. (3.1)

In the above equation, the gradient of effective pressurePeff = P − ρΩ2r2 is uniform

in entire flow field. Also Eq. (3.1) shows that the total shear stress varies linearly

across the channel as in non-rotating flow.
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3.1 Calculation of fully developed rotating channel flow using LS model

As to the turbulence model, the model developed byLaunder & Shima(1989) is

adopted because it predicts a variety of flows fairly well andalso its relatively simple

formulation. For clarity, some model details will be reviewed briefly here.

As shown in the exact transport equation of Reynolds stress tensor, Eq. (2.5), the

turbulent productionPij and viscous diffusionDν
ij are treated in exact forms. Addi-

tionally, the Coriolis production termCij to include the rotation effects can be also

treated directly. While the others terms need to be modeled.

The turbulent transport of Reynolds stressDt
ij is represented by the general gradi-

ent diffusion hypothesis, as shown previously.

D
t
ij =

∂

∂xk

(
Cs
k

ε
ukul

∂uiuj

∂xl

)
, (3.2)

where theCs = 0.22 here. Although this simple choice has been made for computa-

tional convenience rather than accuracy, the relative unimportance of diffusive trans-

port in the stress budget for the boundary layers means that possible errors are unlikely

to have a significant effect (Launder & Shima(1989)). In addition, the pressure trans-

port effect has been modeled together with turbulent transport in Eq. (3.2) by adjusting

the coefficientCs.

The pressure strain-rate correlation (redistribution) term is modeled as

φij = φij,1 + φij,2 + φij,3 + φw
ij,1 + φw

ij,2 + φw
ij,3, (3.3)

where

φij,1 = − C1εaij = −C1ε

(
uiuj

k
− 2

3
δij

)
, (3.4a)

φij,2 = − C2

(
Pij −

2

3
δijP

)
, (3.4b)

φij,3 = − 1

2
C2

(
Cij −

2

3
δijC

)
, (3.4c)

φw
ij,1 =Cw

1

ε

k

(
ukulnlnkδij −

3

2
uiuknjnk −

3

2
ujuknink

)
fw, (3.4d)

φw
ij,2 =Cw

2

(
φkl,2nknlδij −

3

2
φik,2njnk −

3

2
φjk,2nink

)
fw, (3.4e)

φw
ij,3 =Cw

2

(
φkl,3nknlδij −

3

2
φik,3njnk −

3

2
φjk,3nink

)
fw. (3.4f)
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3.1 Calculation of fully developed rotating channel flow using LS model

In the above redistribution model, thefw is the near-wall damping function, taken as

fw =
k3/2

2.5ε

(
1

y
+

1

2d− y

)
, (3.5)

with y being the distance normal to the wall andd being the half width of the channel.

Note that in theLaunder & Shima(1989) redistribution model, three non-dimensional

parametersA, A2 andA3 are employed to offer a convenient way to meet the two-

component limit, which requires that the velocity fluctuation of normal to the wall

falls to zero more rapidly than the other two components by continuity, as wall is

approached.

The coefficients in the redistribution model here are as following

C1 = 1 + 2.58AA
1/4
2

{
1 − exp

[
− (−0.0067Ret)

2]} , (3.6a)

C2 = 0.75A1/2, (3.6b)

Cw
1 = − 2

3
C1 + 1.67, (3.6c)

Cw
2 = max

[(
2

3
C2 −

1

6
/C2

)
, 0

]
. (3.6d)

For the dissipation rate of Reynolds stress tensor,εij, the assumption of local

isotropy is adopted:

εij =
2

3
δijε. (3.7)

For the dissipation rate model,Launder & Shima(1989) also used these parame-

ters, so did by theHanjalić & Jakirlić (1993) model later. Finally, the dissipation rate

of turbulence energy,ε, is obtained by solving

Dε

Dt
=

d

dy

[(
Cε
k2

ε
+ ν

)
dε

dy

]
+ (Cε1 + ψ1 + ψ2)

ε

k
P − Cε2

ε2

k
, (3.8)

where

ψ1 = 2.5A

(
P

ε
− 1

)
, (3.9a)

ψ2 = 0.3 (1 − 0.3A2) exp
[
− (0.002Ret)

2] , (3.9b)

whereψ1 has the effect to reduce turbulence length scale, andψ2 controls relaminariza-

tion of turbulent flow under favorable pressure gradient. The coefficientsCε, Cε1 and
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3.1 Calculation of fully developed rotating channel flow using LS model

Table 3.1: The terms in the transport equations of Reynolds stress tensor

Terms u2 uv v2 w2

Pij −2uv
dU

dy
−v2

dU

dy
0 0

εij
2

3
ε 0

2

3
ε

2

3
ε

Cij 4Ω3uv −2Ω3

(
u2 − v2

)
4Ω3uv 0

φij,1 −C1
ε

k

(
u2 − 2

3
k

)
−C1

ε

k
(uv) −C1

ε

k

(
v2 − 2

3
k

)
−C1

ε

k

(
w2 − 2

3
k

)

φij,2 −C2

(
P11 −

2

3
P

)
−P12 C2

2

3
P C2

2

3
P

φij,3 −2C2Ω3uv −C2Ω3

(
v2 − u2

)
2C2Ω3uv 0

φw
ij,1 Cw

1

ε

k

(
v2
)
fw Cw

1

ε

k

(
−3

2
uv

)
fw Cw

1

ε

k

(
−2v2

)
fw Cw

1

ε

k

(
v2
)
fw

φw
ij,2

2

3
C2C

w
2 Pfw

2

3
C2C

w
2 P12fw −4

3
C2C

w
2 Pfw

2

3
C2C

w
2 Pfw

φw
ij,3 2C2C

wΩ3uvfw
3

2
C2C

wΩ3

(
v2 − u2

)
fw −4C2C

wΩ3uvfw 2C2C
wΩ3uvfw

Cε2 in the above dissipation model are taken as their standard high Reynolds number

values (Launderet al., 1972), respectively.

Table3.1 listed the all the terms in the transport equation of Reynolds stress ten-

sor, excepted for the diffusive transport term, for the specific case of fully developed

rotating channel, whereΩ3 is the system rotation rate.

The above equations are solved by the finite difference method with 201 non-

uniform distributed nodes in they direction to meet the grid density requirements sug-

gested bySoet al. (1991), and the first computational node was situated aty+ ≤ 0.5.

The distance between each node is increased with an expansion ration of1.05. On the

solid wall, Reynolds stresses and mean velocity are set to0, and for the dissipation rate

41



3.1 Calculation of fully developed rotating channel flow using LS model

is:

ε = 2ν

(
d
√
k

dy

)2

, (3.10)

which represents the exact limit. The kinetic energyk is not solved directly here, and

obtained byk =
(
u2 + v2 + w2

)
/2. The solution was assumed to have reached a

steady state when the sum of absolute normalized residuals across the channel normal-

ized with the time step, fell below10−5.

Stationary Case

First of all, the computation of fully developed channel flowwithout rotation is

undertaken to show the basic performance of adopted DRSM here, and compared with

the DNS data ofKim et al. (1987). The computations are carried out for Reynolds

numberRe = 5600, based on the bulk mean velocityUm and the channel width2d:

Re =
2Umd

ν
. (3.11)

To verify the grid independence, the computation with different nodes number dis-

tributed in they direction was carried out, as shown in Fig.3.2. Fig. 3.2a shows the

non-dimensional velocityU profile normalized by the bulk velocityUm with nodes

number51, 101, 151, 201. For the nodes number101, 151 and201, it shows that the

velocity profile is independent from the nodes number without any discernible effect.

For nodes number51, qualitatively inconsistent profile is shown compared withthose

of other nodes number. For the streamwise Reynolds stressu2, similar behavior is also

observed, further proved that by using the node number more that101, the computa-

tion results can be independent from the choice of nodes number. Howsoever, in the

present computation, the node number201 is adopted for relative high resolution and

easy comparison with DNS data.

The profiles of the mean velocity non-dimensionalized by thewall shear velocity

are shown in Fig.3.3, and also law of wall and log law are presented in the figure.

Within the sublayer,y+ ≤ 5, the computational result follows the linear law as the

DNS. In the logarithmic region, however, there exits a noticeable discrepancy between

these two results.

The profiles of three normal Reynolds stresses normalized bythe wall shear veloc-

ity uτ and compared with DNS data are shown in Fig.3.4, The definition for the wall
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Figure 3.2: Verification of the grid independence

shear velocity in this stationary case is as following

uτ =

√
ν
dU

dy
|wall. (3.12)

And the local coordinatey+ is

y+ = uτy/ν. (3.13)

Although the general shape of the profiles is in good agreement, there exits some

discrepancy between these model simulation and DNS data.

Excellent agreement is obtained for the Reynolds shear stress componentuv as

shown in Fig.3.5across the channel. It is worthy to note that the correct representing

the Reynolds shear stress is crucial for evaluating the performance of turbulent models,

since the Reynolds shear stress appears in the momentum equation.

Considering the no-slip boundary condition and continuityequation, the velocity

and pressure fluctuations in the wall vicinity can be expanded as (Mansouret al., 1988;

Patelet al., 1985; Soet al., 1997)

u+ = b1y
+ + · · · , (3.14a)

v+ = c2y
+2 + · · · , (3.14b)

w+ = b3y
+ + · · · , (3.14c)

uv+ = b1c2y
+3 + · · · , (3.14d)

where wall units are used (normalized by kinematics viscosity ν and the friction ve-

locity uτ ).
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Figure 3.3: Mean velocityU+ profile

The limiting near-wall behavior of the rms of the Reynolds stresses is shown in

Fig. 3.6, where

u = urms/
(
4y+

)
, (3.15a)

v = vrms/
(
104y+2

)
, (3.15b)

w = wrms/
(
y+
)
, (3.15c)

uv =uv/
(
104y+3

)
. (3.15d)

It is quite obvious that the LS model can not represent the limiting wall behavior,

especially for thev anduv.

Rotating Case

The computations for rotating channel flow are conducted forReynolds number

Re = 5000 and5800 compared with the results of DNS. For this application, different

values of the rotation number are considered, which corresponds to0 ≤ Ro ≤ 0.5 at
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Figure 3.5: Reynolds shear stress normalized by the wall shear velocity

Re = 5800, andRo = 1.5 atRe = 5000. The definition forRo is

Ro = 2Ω3d/Um. (3.16)

Fig. 3.7compares the mean velocity represented by this work and those from DNS.

The vertical axis is normalized by the bulk mean velocityUm, and the horizontal axis

by the channel width2d. The left (y/2d = 0) and right (y/2d = 1) hand sides of

the figure correspond to the pressure and suction sides, respectively. The result by

DNS indicates that the velocity profile becomes gradually asymmetric about the center

as the rotation number increases. The LS model represents this tendency fairly well

up toRo = 0.5. As for the higher rotation, however, the LS model gives parabolic

velocity profile contrary to the asymmetric one given by DNS.A true fact is that, for

relatively high rotation number, e.g.Ro = 1.5, the turbulent flow shows the trend

of relaminarization (Dutzler et al., 2000; Lamballaiset al., 1998; Liu & Lu , 2007;

Pallares & Davidson, 2000). It appears that LS model has over predicted this trend by

giving a laminar-like velocity profile.
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Figure 3.6: Near-wall behavior of Reynolds stresses

The three normal Reynolds stress components,u2, v2, w2 and the shear stressuv

are presented in Figs.3.8- 3.11with the same condition as for the mean velocity pro-

file in Fig. 3.7. The overall tendency shown by the results of DNS is that the Reynolds

stresses are damped along the suction side and enhanced along the pressure side. The

computation of LS model represents the similar tendency, and shows fairly well agree-

ment with DNS generally forRo up to0.5. Whereas, as was the case shown in mean

velocity profile, the agreement with DNS becomes worse when theRo increases. All

the Reynolds stress components nearly vanish forRo = 1.5, which corresponds to the

laminar-like mean velocity profile, and once again, impliesthat the rotation effects are

over estimated in the LS model.

Different from the definition of wall shear velocityuτ by Eq. (3.12) in the station-

ary case, there are two local shear velocity for pressure side and suction side, respec-
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3.1 Calculation of fully developed rotating channel flow using LS model

tively:

uτp =

√
ν
dU

dy
|p,wall, (3.17a)

uτs =

√
ν
dU

dy
|s,wall. (3.17b)

Additionally, Kristoffersen & Andersson(1993) gave definition for the global shear

velocityuτ in terms ofuτp anduτs:

u2
τ =

1

2

(
u2

τp + u2
τp

)
. (3.18)

It is obvious that for stationary case(Ω3 = 0), the mean flow is symmetric with respect

to the(x, z)-plane aty = 0 anduτ = uτp = uτs.

Local shear velocities, as defined in Eq. (3.17), are shown as a function of the

rotation number in Fig.3.12, also compared with those of DNS data.

The results of LS model shown in Fig.3.12 follow the similar trend as those of

Kristoffersen & Andersson(1993) andLamballaiset al. (1998) up to rotation num-

ber 0.5 generally, namely that the wall shear velocity is reduced onthe suction side

and increased on the pressure side due to stabilization and destabilization respectively.

However, the results of LS model show appreciably greater rotation effect than DNS

do, which implies that the LS model is somehow over-sensitive to the rotation ef-

fects. Recall that the rotation effects are included in the LS model by and only by the

presence of Coriolis production and its redistribution, itis reasonable to ascribe the

over-sensitivity to the model of redistribution model, since the Coriolis production is

treated in an exact way.

On the other hand, for the relatively high rotation number, e.g. Ro = 1.5, the

LS model shows its quite positive perspective, which is the ability to represent the

reliminarlization phenomena. In Fig.3.12, around theRo = 1.5, the DNS ofLambal-

lais et al. (1998) shows thatuτp/uτ decreases, meanwhile theuτs/uτ increases. The

general tendency is that theuτp/uτ anduτs/uτ tend to obtain unity eventually, which

implies that the turbulent flow is relaminarlizing. The LS model represents this ten-

dency fairly well, although it seems the flow predicted by LS model has already been
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Figure 3.12: Local wall shear velocitiesuτp/uτ , uτs/uτ as function ofRo. ©: LS

model,4: DNS byKristoffersen & Andersson(1993), �: DNS byLamballaiset al.

(1998).

laminarlized, sinceuτp/uτ anduτp/uτ are quite close to unity. This proves the previ-

ous observation that the LS seems to be over-sensitive to therotation effects, and this

is also consistent with observation of Figs.3.8-3.11.

Fully developed turbulent flows at low Reynolds numbers in stationary and rotating

channels have been simulated using a second order code with apopular differential

Reynolds stress model - LS model. It shows that the LS model isable to correctly

represent the global behavior of turbulence, give quite satisfactory agreement for mean

velocity and Reynolds stress components both for the stationary and rotating cases.

In this sense, it implies that the second-moment closure in this study does capture

the main effects of rotation on the turbulence structure. Inparticular, the different

behavior near the two walls has been traced to the fact the imposed rotating effects

damp the turbulence intensity along the suction side and enhance it along the pressure

side, which shows the potential that differential Reynoldsstress model possesses for

predicting the turbulent rotating flows.

On the other hand, however, the fact that the LS model fails togive good agreement
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3.2 Evaluation of eddy viscosity models considering rotation effects

with DNS data for high rotation number indicates the requirement of further develop-

ment for LS model. The analyses on mean velocity, Reynolds stresses, as well as the

local wall shear velocities, suggest that the LS model seemsto be over-sensitive to the

rotation effects, which could be the future direction for the improvement of the model.

Since the terms other than the pressure strain-rate are treated in an exact manner to in-

clude the rotation effects in the LS model, it is suggested that the more attention should

be paid for the pressure strain-rate term, to correctly include the rotation effects.

3.2 Evaluation of eddy viscosity models considering ro-

tation effects

As well known fact, an inherent shortcoming of eddy viscosity type of models is that

they are independent of imposed system rotation. So when theEVMs are applied

for curvature or rotating flow, some modifications have to be made to sensitize such

models to Coriolis force. A common practice is to modify the turbulent length scale

by adding rotating dependent terms to the dissipation rate equation; another way is to

introduce the vorticity tensors to sensitize the rotation effects.

In this section, the predictive capability of linear and nonlinear eddy viscosity mod-

els will be evaluated systematically, for fully developed non-rotating and rotating chan-

nel flow. In this case, the imposed rotation breaks the symmetry of the flow field and

may eventually lead to relaminarization on the stable side of the channel. For the EVM

models, they all require the solutions of two transport equations: equation for turbu-

lent kinetic energy and one for turbulent dissipation rate.For the incompressible, fully

developed rotating channel flow, these two equations have the following simplified

expressions

νt =fµCµkτ, (3.19a)

0 =P − ε+D +
d

dy

[(
ν +

νt

σε

)
dk

dy

]
, (3.19b)

0 =C∗
ε1P

ε

k
− f2C

∗
ε2 + E +

d

dy

[(
ν +

νt

σε

)
dε

dy

]
, (3.19c)

τ =k/(ε−D). (3.19d)
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3.2 Evaluation of eddy viscosity models considering rotation effects

The first EVM model evaluated here is that ofHoward et al. (1980), which is

proposed to capture the rotation effects by adding rotatingdependent terms to the dis-

sipation rate equation. This model for Coriolis force effects are based on a study of

curved boundary layers byLaunderet al.(1977). In theε equation, ”on the grounds of

seeking the simplest possible form”, it is chosen to accommodate curvature effects by

making the value ofC∗
ε2 depends on a turbulent curvature Richardson number (Rit).

Ri =

−2Ω

(
∂W

∂x
− 2Ω

)

(
∂W

∂x

)2 . (3.20)

Then following the practice ofLaunderet al.(1977), turbulent Richardson number

is formed by replacing the mean flow time-scale represented by the denominator(∂W/∂x)2

with a turbulence time-scalek/ε. Thus the Richardson number becomes

Rit = −2Ω

(
k

ε

)2(
∂U

∂x
− 2Ω

)
. (3.21)

In this Coriolis-modified eddy viscosity model, the following relations are used to

close the Eq. (3.19)

D = − 2ν

(
∂
√
k

∂y

)2

, (3.22a)

E =2ννt

(
∂S

∂y

)2

, (3.22b)

fµ = exp

[
−3.4

(
1 +

Ret

50

)−2
]
, (3.22c)

Ret =
kτ

ν
, (3.22d)

C∗
ε2 =

[
Cε2 + 1.536S2τ 2

(
Ω

S

)(
1 − Ω

S

)]
, (3.22e)

f2 =1 − 0.3 exp
(
−Re2t

)
, (3.22f)

whereCµ = 0.09, C∗
ε1 = 1.44, Cε2 = 1.92, σk = 1, σε = 1.3, andΩ is the system

rotation rate. The wall boundary condition are given byk = 0 andε = 0.

Howardet al. (1980) compared the solution of this model in a relatively low rota-

tion number (Ro = 0.21) with the experimental data ofJohnstonet al. (1972), which
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3.2 Evaluation of eddy viscosity models considering rotation effects

conducted experiments on water flowing in a rotating channelflow apparatus. The in-

clusion of a Coriols force modification to the wall function is believed to result in a

markedly poor fit with the measured velocity profile. Also it is thought that the value

of y+, for the first gird spacing from the wall is too big, which was between 15 and 30.

The another eddy viscosity model reviewed here is that proposed byShih et al.

(1995), which introduces the vorticity tensors to the quadratic relations for Reynolds

stress anisotropies

bij = −C∗
µτSij + c2τ

2
(
SikW kj −W ikSkj

)
, (3.23)

with

W ij ≡Wij − εmijΩm, Ωm = (0, 0,Ω) , (3.24)

whereεijk is the permutation tensor.

The relations used inShihet al. (1995) to close Eq. (3.19) are as

c2 = −

√
1 − 18C∗2

µ (Sτ)2

1 + 12 (Sτ)2

∣∣∣∣1 − Ω

S

∣∣∣∣
, (3.25a)

D =E = 0, (3.25b)

f2 =

[
1 − exp

(
− y+

5.5

)]2

, (3.25c)

y+ =
yuτ

ν
, (3.25d)

C∗
µ =


6.5 + 3

√
2 |Sτ |

√

1 − 3
Ω

S
+

9

2

(
Ω

S

)2



−1

, (3.25e)

whereuτ is the friction velocity,fµ = 1.0, Cµ = 0.09, C∗
ε1 = 1.44, C∗

ε2 = 1.92,

σk = 1 andσε = 1.3. As for the boundary condition,k = 0 is used at the wall, while

ε = 2ν(∂
√
k/∂y)2 is used for the boundary condition for dissipation rate.

Once again, theLaunder & Shima(1989) model is used again to compare with the

EVMS, and the DNS database ofKristoffersen & Andersson(1993) is used to show

the performance of above models.

As indicated from Figures3.13-3.15, the Coriolis-modified EVM ofHowardet al.

(1980) presents quite reasonable predictions for the mean velocity and turbulent kinetic
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3.2 Evaluation of eddy viscosity models considering rotation effects

energy at different rotation numbers. The nonlinear eddy viscosity model ofShihet al.

(1995) fails to represent the rotation effects generally, gives unacceptable predictions

for mean velocity and turbulent kinetic energy. Noted that the Coriolis-modified EVM

predicts correctly the linear velocity profile on the pressure side, while the NLEVM

fails to. At Ro = 0.5 and 1.5, it seems that NLEVM is insensitive to the rotation

effects.

Once again, it is proved that the DRSM is the most rational andpromising approach

in the framework of RANS modeling. As shown in Figures3.13-3.15, the DRSM gives

fairly good agreement with the DNS data, and has the overall advantage compared the

eddy viscosity type of model.
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Chapter 4

Evaluation of extended

weak-equilibrium conditions for

Reynolds stress

4.1 Introduction

This study focuses on the validity and modification of the diffusive transport assump-

tion in fully developed rotating channel flow. This is accomplished by ana priori

assessment using the DNS data ofKristoffersen & Andersson(1993). This database

has been selected because it has been most commonly used for model development and

comparison with other DNS (Jakirlić et al., 2002). Based on the asymptotic analysis

of the near-wall behavior, an alternative form for the diffusive transport constraint is

proposed, and evaluated using the DNS data. Results show that the newly proposed

diffusive transport constraint applied to the implicit algebraic anisotropy equation more

accurately accounts for the near-wall behavior than previously proposed forms. This

suggests that the performance of algebraic Reynolds stressmodels can be improved in

flows where rotation and curvature effects exist.
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4.2 Evaluation of diffusive transport constraint

4.2 Evaluation of diffusive transport constraint

The fully developed rotating channel flow is adopted as a testcase where the turbulence

structure is strongly influenced by the Coriolis force, and differs considerably from that

of the non-rotating case. There have been many experimentaland computational stud-

ies of this problem (Johnstonet al., 1972; Kim et al., 1987; Kristoffersen & Andersson,

1993; Lamballaiset al., 1998; Moore, 1967) that have shown that the imposed system

rotation changes the dynamic structure of the turbulent flow. Consequently, the turbu-

lence level is enhanced along the pressure side while reduced along the suction side,

and the diffusive transport across the channel is increased, or changes sign. The correct

representation of these rotation-induced features is an important criteria for turbulence

model development.

The exact transport equation for the Reynolds stress anisotropy tensorbij in the

non-inertial frame is given by

Dbij
Dt

+ Ωikbkj − bikΩkj

= −bij
(
P

k
− ε

k

)
− 2

3
Sij −

(
bikSkj + Sikbkj −

2

3
bmnSmnδij

)

+
(
bikW̃kj − W̃ikbkj

)
+
φij

2k
− 1

2k

(
εij −

τij
k
ε
)

+
1

2k

(
Dij −

τij
k

D

)
, (4.1)

with Sij being the mean strain rate tensor,Wij being the mean vorticity tensor and

W̃ij = Wij + Ωij , Ωij = εimjωm with ωm being the system rotation rate. In Eq. (4.1),

Dij has the same form as shown in Eq. (1.3). The terms on the right-hand side include

the pressure-strain rate correlationφij and the turbulent dissipation rateεij. These

terms are given by

φij =
p

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)
, (4.2a)

εij = 2ν
∂ui

∂xk

∂uj

∂xk

. (4.2b)

The other terms come from the turbulent kinetic energy equation

Dk

Dt
= P − ε+ D, (4.3)
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4.2 Evaluation of diffusive transport constraint

where the right-hand side represents the turbulent production P = −τik∂Ui/∂xk, the

isotropic turbulent dissipation rateε = εii/2 and the combined effects of turbulent

transport, pressure transport and viscous diffusionD.

By invoking the assumption of anisotropy equilibriumDbij/Dt = 0, one can re-

duce and rewrite Eq. (4.1) as

0 =
1

2k

(
Pij + Cij −

τij
k
P
)

+
1

2k
φij −

1

2k

(
εij −

τij
k
ε
)

+
1

2k

(
Dij −

τij
k

D

)
, (4.4)

Pij = −τik
∂Uj

∂xk
− τjk

∂Ui

∂xk

= −4

3
kSij − 2k (bikSkj + Sikbkj) + 2k (bikWkj −Wikbkj) , (4.5a)

Cij = −4k (εimkωmbkj + εjmkωmbki) , (4.5b)

wherePij +Cij − (τij/k)P is the production term,φij is the redistribution term,εij −
(τij/k)ε is the dissipation term, andDij − (τij/k)D is the diffusive transport term.

Note that the rotation effects are represented by the termCij.

The validity of the original diffusive transport assumption associated with Eq. (1.2)

is examined. The budget of Eq. (4.4) is evaluated using DNS data ofKristoffersen &

Andersson(1993). All the dependent variables including the higher-order correlations

are obtained directly from the DNS, and they have been non-dimensionalized byν and

uτ , whereν is the kinematic viscosity anduτ is the friction velocity. The database

used here contains DNS carried out forReb = 2Ubd/ν = 4800, with Reb being the

bulk Reynolds number based on the channel half widthd and the mean flow velocity

Ub. The rotation number is defined by

Ro = 2|ωm|d/Ub. (4.6)

Figures4.1 and4.2 show the budget of Eq. (4.4) for theb11- andb12-components

for theRo = 0.0, 0.15 and0.50 cases. Note that hereafter all the budget terms are

multiplied by 2k for better illustration as the legends shown in the plots. Since the

production term is shown to vanish at the wall, the redistribution term balances the

diffusive transport term plus the dissipation term for all three rotation numbers. As

expected, the diffusive transport term plays a crucial rolein thebij transport equation
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4.2 Evaluation of diffusive transport constraint

in the near-wall region. Thus, any diffusive transport constraint that neglects the dif-

fusive transport term, such as Eq. (1.2), is unlikely to hold for the near-wall region.

In the center of the channel, the absolute levels of the diffusive transport term are not

negligibly small. Although this suggests that neglect of the diffusive transport term is

also unlikely to hold for the center of the channel, the present study will focus on the

diffusive transport constraint in the near-wall region.

Gatski & Rumsey(2001) re-examined the assumption Eq. (1.2) applied to theDij

and proposed a modification. If Eq. (1.2) is rewritten in terms of the anisotropy tensor

bij ,

Dij −
τij
k

D = Dij −
2

3
Dδij − 2Dbij , (4.7)

the right-hand side of Eq. (4.7) is shown to be the sum of the deviatoric part ofDij

and a term proportional to the anisotropy tensorbij with scalar coefficientD. The term

proportional to the deviatoric part ofDij is then assumed to vanish, that is

Dij −
2

3
Dδij = 0 , (4.8)

and the new constraint on diffusive transport term is then given by

Dij −
τij
k

D = −2Dbij . (4.9)

Applying the extended constraint to Eq. (4.4), one has the reduced transport equa-

tion for bij

0 =
1

2k

(
Pij + Cij −

τij
k
P
)

+
φij

2k
− 1

2k

(
εij −

τij
k
ε
)
− D

k
bij . (4.10)

Now consider thea priori evaluation of the extended constraint. The left-hand side

of Eq. (4.9) is substituted with DNS data, and compared the right-side of Eq. (4.9).

Additionally, considering the actual form that diffusive transport term appears in the

transport equation ofbij , it is more straightforward to scale both sides of Eq. (4.9) by

2k.

For the non-rotating case, Figure4.3 shows that this extended diffusive transport

constraint gives rather larger or opposite sign values in the near-wall region for all

Reynolds stress components than the DNS does. For the rotating cases, Figures4.4-

4.5 display the same trends as the non-rotating case. Thus, the extended diffusive
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4.3 Near-wall behavior of Reynolds stress equation
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Figure 4.3: Validation of extended diffusive transport constraint forRo = 0

transport constraint proposed byGatski & Rumsey(2001) is not capable of improv-

ing the performance of ARSM in the near-wall region. While itmay be a consistent

first approximation to assume that a constraint on the diffusive transport term should

be proportional to the Reynolds stress anisotropybij , it is also necessary that some

account be explicitly taken of the presence of the wall. Rather than pursuing such a

modification, a more beneficial approach is to investigate the asymptotic behavior of

the various terms in the vicinity of the wall.

4.3 Near-wall behavior of Reynolds stress equation

The discussion now will be focused on the possible modification to improve the dif-

fusive transport constraint by the means of budget analysis. To analyze the near-wall

behavior of individual terms in Eq. (4.4), the velocity and pressure fluctuations in the

wall vicinity can be expanded as shown in Eq. (3.14).
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4.3 Near-wall behavior of Reynolds stress equation

y+

0 5 10 15 20
-6

-4

-2

0

2

DNS

Extended Model

b11    Ro=0.15

(a)

y+

05101520
-6

-4

-2

0

2

y+

0 5 10 15 20
-1

0

1

2

3

DNS

Extended Model

b12    Ro=0.15

(b)

y+

05101520
-1

0

1

2

3

y+

0 5 10 15 20
-1

0

1

2

3

DNS

Extended Model

b22    Ro=0.15

(c)

y+

05101520
-1

0

1

2

3

y+

0 5 10 15 20
-.5

0.0

.5

1.0

1.5

DNS

Extended Model

b33    Ro=0.15

(d)

y+

05101520
-.5

0.0

.5

1.0

1.5

Figure 4.4: Validation of extended diffusive transport constraint forRo = 0.15 (lhs:

suction side,rhs: pressure side)
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4.3 Near-wall behavior of Reynolds stress equation
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Figure 4.5: Validation of extended diffusive transport constraint forRo = 0.50 (lhs:

suction side,rhs: pressure side)
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4.3 Near-wall behavior of Reynolds stress equation

u+ = b1y
+ + · · · , (4.11a)

v+ = c2y
+2 + · · · , (4.11b)

w+ = b3y
+ + · · · , (4.11c)

p+ = ap + bpy
+ + · · · , (4.11d)

where wall units are used (normalization by kinematic viscosity ν and the friction

velocityuτ ).

For theb11 equation, the near-wall asymptotic behavior of budget can be expressed

as

P11 + C11 −
u2

k
P =

(
−2b23

b21 + b
2

3

+ 4Ω+
3

)
b1c2y

+3 + · · · , (4.12a)

φ11 = 2apb1,1y
+ + 2

(
apc1,1 + bpb1,1

)
y+2 + · · · , (4.12b)

ε11 −
u2

k
ε = 8

b1c1b
2
3 + b3c3b

2
1

b21 + b23
+ · · · , (4.12c)

D11 −
u2

k
D =

4b21apc2 − 12b21b3c3 + 12b23b1c1

b21 + b23
+ · · · . (4.12d)

Note that the left-hand sides of the above equations are in wall unit but the symbols

are retained for simplicity.

For theRo = 0 case, the budget of theb11-component in Figure4.6 shows that

the production term is the dominant source in the rangey+ ≥ 10, while the redistri-

bution term is the dominant sink. In the vicinity of the wall,the production term and

redistribution term decay rapidly, while the dissipation and diffusive transport terms

balance each other up to the wall. For theRo = 0.15 andRo = 0.50 cases, it is readily

observed that the rotation effect plays a significant role inthe budget, since the flow

structure is significantly different compared with the non-rotating case. However, the

relative balance between the different terms in the budget remains roughly similar to

the non-rotating case.

Recall that in the original formulation for the ARSM, assumptions on the isotropic

behavior of the tensor dissipation rate,εij = 2εδij/3, and the anisotropy of the diffu-

sive transport termDij = (τij/k)D are made. However, Figure4.6has shown that the
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4.3 Near-wall behavior of Reynolds stress equation

contributions from the dissipation rate term and the diffusive transport term balance,

but are not negligible in the near-wall region. This then requires that the remaining

terms in the equation balance each other in the near-wall region.

For b12 equation, wall asymptotic behavior of terms in Eq. (4.4) can be expressed

as

P12 + C12 −
uv

k
P = −2Ω+

3 b
2
1y

+2 + · · · , (4.13a)

φ12 = apb1 +
(
2apc1 + 2c2b1

)
y+ + · · · , (4.13b)

ε12 −
uv

k
ε = 2b1c2y

+ + · · · , (4.13c)

D12 −
uv

k
D = −apb1 − 2apc1y

+ + · · · . (4.13d)

Figure4.7 shows the budget of theb12 equation. For the non-rotating and rotat-

ing cases, the dominant source is the production term, whilethe dominant sink is the

redistribution term through most of the channel. As the wallis approached, the dissi-

pation term decays asO(y+), and the production term decays faster asO(y+2). The

redistribution term remains large, and remains in balance with diffusive transport term

for y+ ≤ 10. The asymptotic analysis also shows that in the wall vicinity, the redis-

tribution and diffusive transport terms decay asO(y0). At the wall, the redistribution

term is equal to the diffusive transport term.

In the RANS formulation, the velocity pressure-gradient term Πij is usually split

into a pressure transportD
p
ij term and a redistribution termφij (Mansouret al., 1988).

The corresponding expansions of these three terms for theb12-component are

Π12 = −2b1c2y
+ + · · · , (4.14a)

φ12 = apb1 + 2
(
b1c2 + apc1

)
y+ + · · · , (4.14b)

D
p
12 = −apb1 − 2

(
2b1c2 + apc1

)
y+ + · · · . (4.14c)

Equation (4.14) shows that theΠ12 is of O(y+) and thatφ12 andD
p
12 are ofO(y0).

Thus theΠ12 component is negligible in the near-wall region. Based on this observa-

tion, one can conclude thatφ12 balancesDp
12 in the near-wall region. Since theDp

12

component makes the major contribution to the diffusive transport termDij−(τij/k)D,

it means that the diffusive transport term balances the redistribution term in the near-

wall region. This is consistent with the conclusion drawn from the budget analysis

73



4.4 Modification of diffusive transport constraint

of theb12-component equation. This indicates that for theb12-component the original

diffusive transport constraint will still fail in the near-wall region. The fact that the re-

distribution term balances the diffusive transport term suggests a relationship between

the two in arriving at an alternative form of the diffusive transport constraint. One may

use the redistribution term to represent the diffusive transport term in the near-wall

region. Since the implicit ARSM is intended to replicate thepredictive capabilities

of the DRSM, an alternative to neglecting the diffusive transport term, is to choose a

diffusive transport constraint related to the redistribution term.

Figure4.8 shows the budget of theb22 equation, the redistribution term becomes

negative at abouty+ ≈ 10, while the diffusive transport term becomes large and keeps

in balance with the redistribution term fory+ ≤ 10. Consistent with the Taylor se-

ries expansions, Figure4.8 shows that the production term decays asO(y+3), and the

dissipation term decays asO(y+2). If the velocity pressure-gradient partitioning is ex-

amined, theΠ22 decays asO(y+2), and as with theΠ12 component becomes negligible

for y+ ≤ 10. Thus the diffusive transport term once again balances the redistribution

term in the near-wall region. This further supports the proposal of using the redistribu-

tion term to represent the diffusive transport term in the near-wall region

Figure4.9 shows the budget from theb33 equation. Fory+ ≤ 10, the production

term decays rapidly, but the diffusive transport term becomes large close to the wall

and balances the redistribution and dissipation terms. This is similar to the behavior

found for theb11- component.

4.4 Modification of diffusive transport constraint

The above observations on the wall asymptotic behavior of the terms in thebij equa-

tions can be summarized as follows: in theb11- andb33-equations, the viscous dissi-

pation stays finite on the wall, keeping balances with the viscous diffusion part in the

diffusive transport process there, as well as in close proximity to the wall; in theb12-

andb22-equations, pressure transport and redistribution stay finite in close proximity

to the wall. The near-wall modeling strategy of the diffusive transport term must cope

with these two different mechanisms, and this is readily accomplished by adopting the

form

74



4.4 Modification of diffusive transport constraint
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Figure 4.6: Scaled terms in the budget ofb11 in wall coordinates (lhs: suction side,

rhs: pressure side)
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Figure 4.7: Scaled terms in the budget ofb12 in wall coordinates (lhs: suction side,

rhs: pressure side)
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Figure 4.8: Scaled terms in the budget ofb22 in wall coordinates (lhs: suction side,

rhs: pressure side)
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4.4 Modification of diffusive transport constraint
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Figure 4.9: Scaled terms in the budget ofb33 in wall coordinates (lhs: suction side,

rhs: pressure side)
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4.4 Modification of diffusive transport constraint
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Figure 4.10: Validation of proposed diffusive transport constraint for b11-

component (lhs: suction side,rhs: pressure side)
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Figure 4.11: Validation of proposed diffusive transport constraint for b22-

component (lhs: suction side,rhs: pressure side)
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4.4 Modification of diffusive transport constraint
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Figure 4.12: Validation of proposed diffusive transport constraint for b33-

component (lhs: suction side,rhs: pressure side)
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4.4 Modification of diffusive transport constraint
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Figure 4.13: Validation of proposed diffusive transport constraint for b12-

component (lhs: suction side,rhs: pressure side)
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4.4 Modification of diffusive transport constraint

Dij −
τij
k

D = −
[
φij −

(
εij −

τij
k
ε
)]
fd, (4.15)

with fd being a function that restricts the effect of the redistribution term and dissipa-

tion term within the near-wall region. The form offd is specified so that it becomes

unity at the wall and slowly decays away from the wall for,y+ ≥ 10. Such behavior is

easily extracted from the functional form

fd = 1 −
[
1 − exp

(
−y

+

6

)]2

. (4.16)

Substitution of Eq. (4.15) into Eq. (4.4) yields the modified ARSM equation

0 =
1

2k

(
Pij + Cij −

τij
k
P
)

+

[
φij

2k
− 1

2k

(
εij −

τij
k
ε
)]

(1 − fd) . (4.17)

This equation shows that the diffusive transport constraint used in the formulation must

balance both the redistribution and dissipation terms nearthe wall - effectively remov-

ing their near-wall effect. It should be noted that the validity of this form is unaffected

by the system rotation since the balance between the redistribution and pressure trans-

port and that between the viscous diffusion and dissipationpersist regardless of the

rotation number (see Figures4.6 to 4.9). In another analysis of the non-rotating and

rotating channel flow cases,Manceau(2005) also showed that the asymptotic behav-

ior in the near-wall region was unaffected. In addition, while that study focused on

the DRSM formulation, the alteration of the redistributionterm was the focus of the

near-wall elliptic blending formulation used.

Now ana priori test is performed on the proposed alternative form given in Eq. (4.15),

of which both sides are scaled by2k as for the case of extended one. Figure4.10shows

the results forb11-component where the newly proposed diffusive transport constraint

(cf. Eq. (4.15)) gives very good agreement with DNS data in the wall vicinity for

both non-rotating and rotating cases. The same level of agreements is achieved for

both theb22-component, Figure4.11, and for theb12-component, Figure4.13. A slight

discrepancy between the DNS and proposed model persists forthe b33-component,

Figure4.12, particularly near the pressure side. This is attributableto an increase in

the production term there (cf. Figure4.9). It adversely affects the balance between the

diffusive transport term and its counterparts. A more advanced modeling strategy may

be necessary to cope with this issue.
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4.5 Concluding Remarks

This evaluation showed that the newly proposed alternativediffusive transport con-

straint has the potential to yield an improved implicit formfor the ARSM. This coupled

with suitable models for the redistribution and dissipation rate terms.

4.5 Concluding Remarks

An assessment of the weak-equilibrium condition has been undertaken by means of an

a priori evaluation of the fully developed channel flow with spanwiserotation using

DNS data. The budget of the various terms in Eq. (4.4) confirms that the diffusive trans-

port term is crucial in the near-wall region. Two diffusive transport constraints based on

either zero anisotropy or an anisotropy proportional to theReynolds stress anisotropy,

are then evaluated using DNS data. The results show that neither of these conditions

can hold for the near-wall region. An asymptotic analysis ofthe near-wall behavior for

different terms in the budget equations shows that forb12- andb22-components, the dif-

fusive transport term balances the redistribution term in the near-wall region; forb11-

andb33-components, the diffusive transport and dissipation terms balance each other in

the vicinity of the wall. Based on this asymptotic behavior,an alternative form of the

diffusive transport constraint is proposed and evaluated.The results show that this new

alternative diffusive transport constraint can be used to improve the predictive ability

of the resultant ARSM.
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Chapter 5

On the weak-equilibrium condition for

algebraic heat flux model

5.1 Introduction

The objective of this chapter is the validity and modification of weak-equilibrium con-

dition used to derive AFHM for flows in the non-inertial frames. The proper form of

advection assumption will be derived by invoking the frame-invariant property to ac-

count for the rotation and curvature effects correctly. Moreover, it will also be shown

that the transport equation for turbulent heat flux can be written in Euclidean-invariant

form by introducing the Jaumann-Noll derivative. The diffusive transport constraint

will also be addressed in detail to show its invalidity for flows in non-inertial frames.

Based on the budget analyses, an attempt is made to achieve the near-wall correction

of current diffusive transport constraint. Thea priori test of the near-wall correction

will be performed for the rotating channel flow with heat transfer by using DNS data.

5.2 Algebraic model for turbulent heat flux

Eq. (2.76) is the general model equation used for predicting the turbulent heat flux,

however it is only valid for flows in inertial frames. As in non-inertial frames, certain

modification must be made to Eq. (2.76) to account for system rotation and stream-

line curvature effects. Since the weak-equilibrium condition is the basis to derive the
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5.3 Frame invariant form of AHFM

algebraic approximation from transport model of normalized turbulent heat flux, it is

straightforward to explore the extended weak-equilibriumcondition that is valid both

in inertial and non-inertial frames.

5.3 Frame invariant form of AHFM

5.3.1 Frame invariant form of transport equation for ξi

The transformation between inertial and non-inertial frames for the normalized heat

flux transport equation is briefly described here. Followingthe works ofGatski &

Wallin (2004) andHamba(2006), the rectangular coordinatesx∗i in the non-inertial

frame transforms to the coordinates in the inertial framexi as

xi = Qijx
∗
j , (5.1)

whereQij is an orthogonal transformation tensor.

The system rotation tensor expressed in thex∗i coordinates is given by

Ω∗
ij =

dQki

dt
Qkj = εjikω

∗
k, (5.2)

whereεijk is the permutation tensor, andω∗
k is the angular rotation rate vector. The

system rotation tensor expressed in thexi coordinatesΩij is zero by definition.

Under above transformation rule, the variables appearing in the transport equation

of normalized turbulent heat flux can be transformed as

bij = Qikb
∗
kmQ

T
mj , (5.3a)

Sij = QikS
∗
kmQ

T
mj , (5.3b)

Wij = Qik (W ∗
km + Ω∗

km)QT
mj . (5.3c)

ξi = Qijξ
∗
j , (5.3d)

Relative to Euclidean transformation, it is readily seen that,bij , Sij andξi are all frame

invariant while vorticity tensorWij is not. However,Wij can be made frame invariant

by adding a measure of the non-inertial frame rotation rateΩ∗
ij

W
∗

ij = W ∗
ij + Ω∗

ij . (5.4)
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Similarly, the material derivative of normalized turbulent heat fluxDξj/Dt can be

transformed as
Dξj
Dt

= Qji

(
Dξ∗i
Dt

+ Ω∗
ikξ

∗
k

)
. (5.5)

The transport equation of normalized turbulent heat flux nowcan be transformed

to the coordinatesx∗i , which can be written as

Dξ∗i
Dt

+ Ω∗
ikξ

∗
k = f ∗

i

(
b∗km, S

∗
km,W

∗

km, ξ
∗
m,Θ

∗
m

)
. (5.6)

The above result indicates that the normalized turbulent heat flux equation given

by Eq. (5.6) is not frame invariant respect to a change of coordinate system under Eu-

clidean transformation, since Eq. (5.5) is not frame invariant. This is not consistent

with general understanding about mathematical expressions, which is nothing but a

tool to describe physical laws, and should be independent from the choice of coordi-

nate systems. This inconsistency can be overcome by introducing the Jaumann-Noll

derivative (Trusov, 1987) also called corotational derivative (Thiffeault, 2001).

D̄a

Dt
=
Da

Dt
+ Ωa, (5.7a)

D̄b

Dt
=
Db

Dt
+ bΩ − Ωb, (5.7b)

with a andb being being a vector and a tensor respectively. Applying Eq.(5.7a) to

Eq. (5.5), one can derive a frame-invariant form of the material derivative of normal-

ized turbulent heat flux
D̄ξ∗j
Dt

=
Dξ∗j
Dt

+ Ω∗
jkξ

∗
k. (5.8)

Eq. (5.6) then becomes

D̄ξ∗j
Dt

= f ∗
j

(
b∗km, S

∗
km,W

∗

km, ξ
∗
m,Θ

∗
m

)
. (5.9)

It tells that the transport equation of normalized turbulent heat flux, Eq.(5.9), is now

frame invariant, since the corotational derivativeD̄ξ∗j /Dt can be considered as a frame

invariant variable asW
∗

ij and the RHS of Eq. (5.9) is expressed in terms of frame

invariant variables. Consequently, any model expression derived from Eq. (5.9) should

also be frame invariant as argued byWeis & Hutter(2003).
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5.3.2 Euclidean invariant form of AHFM

As stated byHamba(2006), Eq. (5.9) is not suitable for curved flows, therefore it

should be further generalized. To this end, the coordinate systemx†i that is embedded

in the flow and the coordinate systemx∗i in which the observer is fixed are considered

here. The transformation rule betweenx†i system and inertial system is given by

x†i = Tijxj , (5.10)

whereTij is a proper orthogonal transformation tensor.

By this transformation rule, the normalized turbulent heatflux equation can be

described in thex†i system as

Dξ†i
Dt

+ Ω
(r)†
ik ξ†k = f †

i

(
b†km, S

†
km,W

†
km + Ω

(r)†
km , ξ†m,Θ

†
m

)
, (5.11)

whereΩ
(r)†
ij = TikdT

T
kj/dt is the rotation rate of thex†i system expressed in thex†i

system.

Since thex†i system is independent of the inertial systemxi, Eq.(5.11) can be writ-

ten in the inertial system as

T T
ij

Dξ†j
Dt

+ Ω
(r)
ik ξk = fi (bkm, Skm,Wkm, ξm,Θm) , (5.12)

whereΩ
(r)
ij = T T

ikΩ
(r)†
km Tmj is the rotation rate of thex†i system expressed in the inertial

system. By applying the weak-equilibrium conditionDξ†i /Dt=0, the resultant implicit

algebraic equation foraj may have the form in the inertial system as

fi (bkm, Skm,Wkm, ξm,Θm) − Ω
(r)
ik ξk = 0. (5.13)

Once again, considering the observer in thex∗i coordinate system, it is straightfor-

ward to transform Eq. (5.12) to the non-inertial systemx∗i . It follows

QjiT
T
ji

Dξ†j
Dt

+ Ω
(r)∗
ik ξ∗k = f ∗

i

(
b∗km, S

∗
km,W

∗
km + Ω†

km, ξ
∗
m,Θ

∗
m

)
. (5.14)

As stated byGatski & Wallin(2004), irrespective of the coordinate system, the correct

form of the weak-equilibrium condition should be

Dξ†j/Dt = 0, (5.15)
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which is a extension of the original condition. Then the resultant implicit algebraic

equation forξj in the non-inertial system can be given by

Ω
(r)∗
ik ξ∗k = f ∗

i

(
b∗km, S

∗
km,W

∗
km + Ω†

km, ξ
∗
m,Θ

∗
m

)
. (5.16)

It is clear that the AHFM written in Eq. (5.16) is frame invariant, since it is ex-

pressed in terms of frame invariant variables. It is important to note thatΩ∗
ij is different

from Ω
(r)∗
ij . The former represents a measure of the rotation rate of the flow, while the

latter represents the rotation rate of the observer. If thex∗i system coincides with thex†i
system,Ω∗

ij = Ω
(r)∗
ij is obtained. Noted thatΩ(r)∗

ij should be used for general cases. For

instance of curved turbulent flows, which is usually analyzed relative to an observer

fixed in an inertial frame. Consequently it arises a problem that how to measureΩ(r)∗
ij

for such curved flows. There are some works related to this issue, such asGatski &

Jongen(2000); Girimaji (1997); Wallin & Johansson(2002), among others.

Now, Eq. (2.76), which is expressed in inertial frames can be rewritten in non-

inertial frames as

Ω
(r)∗
ij ξ∗j = − Cb

(
2b∗ij +

2δij
3

)
Θ∗

j − CSS
∗
ijξ

∗
j − CW

(
W ∗

ij + Ω†
ij

)
ξ∗j

− ξ∗i
2

{
τ

(
Pk

εk

− 1 + 2C1θ

)
+ τθ

[
Pθ

εθ

(1 − 2C5θ) − 1

]}
. (5.17)

Eq. (5.17), which is derived based on extended weak-equilibrium condition (Eq. (5.15)),

has the ability to predict the normalized turbulent heat fluxfor flows in the non-inertial

frames. By comparing with Eq. (2.76), one can tell that Eq. (5.17) has an extra term

Ω
(r)∗
ij ξ∗j , which describes the advection ofξi in the non-inertial frames, and the mean

vorticity in Eq. (2.76) has been replaced with the absolute vorticity. By above mea-

sures, the system rotation and streamline curvature effects can be both included in the

AHFM.

5.3.3 A Priori test of extended advection assumption

To demonstrate the validity of extended advection assumption, ana priori test will be

performed using the DNS database (Elsamni & Kasagi, 2001; Kasagi & Iida, 1999;

Nishimura & Kasagi, 1996). The test case adopted here is a fully developed turbu-

lent flow in a plane channel, which is rotated at a specified angular velocity around its
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Figure 5.1: The test of extended advection assumption. Residual of Eq. (5.20)(circle)

compared to that of Eq. (5.21)(solid line). The dash line is for the extra termΩijξj

spanwise axis. The Coriolis force arising from the imposed system rotation enhances

the turbulence along the pressure side, while reducing the turbulent activity along the

suction side. The two walls are assumed to be kept at different, but constant tempera-

tures, and any buoyancy effect is neglected. The DNS database used here is carried out

for Reb = 4750 andPr = 0.71, whereReb is the bulk Reynolds number based on the

channel half widthd and the bulk velocityUb, andPr = ν/α is the Prandtl number.

The rotation number is defined as

Ro = 2ωmd/Ub, (5.18)

whereωm is the system angular velocity.

By transforming Eq. (2.71) to the non-inertial frames and rewriting in a tensorial

form, one can have

Dξ∗i
Dt

+ Ω∗
ijξ

∗
j = −

(
2b∗ij +

2δij
3

)
Θ∗

j − S∗
ijξ

∗
j −

(
W ∗

ij + Ω∗
ij

)
ξ∗j + D

a
i

+
1

k1/2k
1/2
θ

(φiθ − εiθ) −
ξ∗i
2

[
τk

(
Pk

εk
− 1

)
+ τθ

(
Pθ

εθ
− 1

)]
.

(5.19)

By applying the original advection assumption, which applies to the left-hand side
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5.4 The diffusive transport constraint

of Eq. (5.19) to be zero, one has

0 = −
(

2b∗ij +
2δij
3

)
Θ∗

j − S∗
ijξ

∗
j −

(
W ∗

ij + Ω∗
ij

)
ξ∗j

+
1

k1/2k
1/2
θ

(φiθ − εiθ) −
ξ∗i
2

[
τk

(
Pk

εk
− 1

)
+ τθ

(
Pθ

εθ
− 1

)]
+ D

a
i . (5.20)

By applying the extended assumption, Eq. (5.15), one has

Ω∗
ijξ

∗
j = −

(
2b∗ij +

2δij
3

)
Θ∗

j − S∗
ijξ

∗
j −

(
W ∗

ij + Ω∗
ij

)
ξ∗j

+
1

k1/2k
1/2
θ

(φiθ − εiθ) −
ξ∗i
2

[
τk

(
Pk

εk
− 1

)
+ τθ

(
Pθ

εθ
− 1

)]
+ D

a
i . (5.21)

With the specific models for the pressure temperature-gradient correlationφiθ, the

dissipation termεiθ and diffusive transport termDa
i , Eqs. (5.20) and (5.21) are readily

to arrive at the implicit form of AHFM respectively, such as Eq. (5.17). However, in

order to validate the extended form of advection assumption, any other model influence

should be isolated. Therefore, Eqs. (5.20) and (5.21) are used to perform thea priori

test directly, without any model involved. The DNS databaseare employed for the

supply ofφiθ, εiθ andD
a
i . The residuals of Eqs. (5.20) and (5.21) are computed, and

smaller residuals suggest the better performance.

Since no models are introduced, the magnitude of any residual can be directly

associated with the validity of the two assumptions. The results shown in Figure5.1

are the distribution forRo = 0.159. It is shown that the extended assumption gives

practically zero residuals for all two componentsξ1 andξ2 across the channel which

means that the extended assumption is able to fully account for the rotation effect for

flows in non-inertial frames. This is in contrast to the original assumption where large

residuals across the channel for all two components are shown.

5.4 The diffusive transport constraint

As known fact, the weak-equilibrium condition consists of advection assumption and

diffusive transport constraint. The previous section has focused on the advection as-

sumption, which is extended for the applicability to the non-inertial frames. In the

following section, attention will be paid on the diffusive transport constraint. It is true
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5.4 The diffusive transport constraint

that the system rotation and streamline curvature can influence the transport process

in turbulent flows significantly. This can be observed from numerous computations

and experimental studies, such asKasagiet al. (1992); Liu & Lu (2007); Matsubara

& Alfredsson(1996); Wu & Kasagi(2004); Yamawakiet al. (2002). Consequently,

the issue of whether the assumption for diffusive transportcan hold in flows involv-

ing rotation and curvature effects arises. The same question for the diffusive transport

assumption associated with Reynolds stress anisotropy tensor has been explored pre-

viously using budget analysis of Reynolds stress anisotropy equation together with the

near-wall asymptotic behavior analysis. For the current study, the analogous strategy

will be employed to address the issue of diffusive transportassumption associated with

normalized turbulent heat flux.

5.4.1 Budget of normalized turbulent heat flux equation

In analogy with the derivation of transport equation for Reynolds stress anisotropybij
, one can obtain the transport equation of normalized turbulent heat fluxξi for fully

developed rotating channel flow

0 =

[
Piθ −

ξi
2

(
RPk +

Pθ

R

)]
+

[
Diθ −

ξi
2

(
RDk +

Dθ

R

)]

+ φiθ −
[
εiθ −

ξi
2

(
Rεk +

εθ

R

)]
, (5.22)

whereR = k
1/2
θ /k1/2. One may interpret the terms on the RHS as production anisotropy,

diffusive transport, pressure temperature-gradient correlation and dissipation anisotropy.

It is noted that thePiθ here includes the production due to mean temperature gradient

P T
jθ, the production due to mean velocity gradientPU

iθ and the Coriolis productionCiθ.

The weak-equilibrium assumption takes the diffusive transport as negligible, which

leads to an algebraic approximation for the transport of normalized turbulent heat flux.

The budget of the various terms in Eq. (5.22) is evaluated by using DNS database

(Elsamni & Kasagi, 2001; Kasagi & Iida, 1999; Nishimura & Kasagi, 1996). Fig-

ures5.2(a) and (b) show the budget ofξ1-component for non-rotating case, where the

production anisotropy is the dominant source, while the pressure temperature-gradient

correlation is the dominant sink. Moving towards the wall, the production anisotropy

and pressure temperature-gradient correlation decay fast. The diffusive transport and
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Figure 5.2: The budget of Eq. (5.22) for ξ1 LHS: Pressure side, RHS: Suction side.
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Figure 5.3: The budget of Eq. (5.22) for ξ2 LHS: Pressure side, RHS: Suction side.
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5.4 The diffusive transport constraint

dissipation anisotropy appear as the dominant source and sink, of which are both re-

lated to the viscous effect caused by wall proximity for current studying case.

For the rotating cases, the significant influence of rotationeffects can be observed

by examining Figures5.2(c) - 5.2(f), where the turbulent intensity is enhanced along

pressure side, while reduced along suction side. The production anisotropy becomes

dominant sink for the rotating case, which is contrary with the non-rotating case. The

diffusive transport is obviously enhanced by the imposed rotation effect, since it be-

comes dominant source instead of being sink. The pressure temperature-gradient cor-

relation is suppressed gradually with increasing rotationnumber, and becomes less

important across the channel. The dissipation anisotropy is also remarkably influenced

by the system rotation, since its sign is changed with different rotation numbers. Nev-

ertheless, for the region near the wall, the diffusive transport and dissipation anisotropy,

which are related to viscous effects, are crucial.

Forξ2-component, the behavior of individual terms in the budget equation is differ-

ent with that ofξ1-component. Since it is wall-normal component, instead of viscous

effect, the pressure fluctuation dominates the near-wall behavior of budget equation.

For the non-rotating case, Figures5.3(a) and5.3(b) show that the dominant source is

the pressure temperature-gradient correlation, while theproduction anisotropy is the

sink. Moving to the wall, the production anisotropy and dissipation anisotropy be-

come less important, while the pressure temperature-gradient correlation and diffusive

transport, which are related to the pressure fluctuation, keep balance with each other,

and obtain finite value on the wall. For the rotating cases, similar to ξ1-component,

the imposed rotation effects influence the budget remarkably. The diffusive transport

becomes more important, while the dissipation anisotropy keeps being small across

the channel. Similar to the non-rotating case, the diffusive transport and pressure

temperature-gradient correlation, which are related to the pressure fluctuation, become

more important near the wall.

For all events discussed above, the pressure temperature-gradient correlation bal-

ances the sum of the diffusive transport plus dissipation anisotropy, which indicates

that the diffusive transport plays a crucial role in the budget ofξi transport equation for

near-wall region. Consequently, the diffusive transport constraint, which neglects the

diffusion/-transport term, is unlikely to hold there.
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5.4 The diffusive transport constraint

Table 5.1: Near-wall behavior of budget terms in Eq. (5.22)

i 1 2

Production O(y3) O(y3)

Diffusive transport O(y) − (1/ρ) bθap

P&T-Corr. O(y2) (1/ρ) bθap

Dissipation O(y) O(y)

5.4.2 Modification of diffusive transport constraint

The analysis about the budget ofξi transport equation above has shown the invalidity

of current diffusive transport constraint. In the previouschapter, a tempt has been made

to resolve this problem by representing the diffusive transport by the sum of redistribu-

tion and dissipation anisotropy terms associated with Reynolds stress anisotropy. For

current study, this proposal will be extended to the diffusive transport assumption asso-

ciated with normalized turbulent heat flux. First, the near-wall behavior of individual

term in the budget equation ofξi is analyzed. Based on that analysis, the near-wall

correction of diffusive transport constraint is proposed.To analyze the near-wall be-

havior of individual terms in the budget equation, we expandthe pressure, velocity and

temperature fluctuations (Soet al., 2004; Wikströmet al., 2000) in the wall vicinity as

follows

p = ap + bpy + cpy
2 + · · · , (5.23a)

u = ai + biy + ciy
2 + · · · , (5.23b)

θ = aθ + bθy + cθy
2 + · · · , (5.23c)

whereai = b2 = aθ = 0 (no-slip boundary condition, continuity and constant wall

temperature). The expansions ofuθ, vθ andkθ then become

uθ = bθb1y
2 +

(
bθc1 + cθb1

)
y3 + · · · , (5.24a)

vθ = bθc2y
3 +

(
bθd2 + cθc2

)
+ · · · , (5.24b)

kθ =
1

2
b2θy

2 + bθcθy
3 + · · · . (5.24c)
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5.4 The diffusive transport constraint

The budget terms in Eq. (5.22) are also expanded and listed in Table5.1, where

only the terms are ofO(y0) are listed. The budget terms that are at least of second

order are omitted, since their wall limits are considered tobe less important. For

ξ1-component, the diffusive transport and dissipation anisotropy are of lower orders

compared to the production anisotropy and pressure temperature-gradient correlation,

which indicates that they are more important in the near-wall region. The produc-

tion anisotropy and pressure temperature-gradient correlation decay fast in the near

wall region; while the diffusive transport balances the dissipation anisotropy up to

the wall. Forξ2-component, Table5.1 shows that the diffusive transport and pressure

temperature-gradient correlation are the major contributors near the wall, while the

production anisotropy and dissipation anisotropy decay asof higher order and eventu-

ally vanish on the wall.

Above observation indicates that, forξ1- andξ2-component, the fact that diffusive

transport balances the sum of pressure temperature-gradient correlation plus dissipa-

tion anisotropy suggests a possibility to arrive at the alternative form of diffusive trans-

port constraint. One may use the sum of pressure temperature-gradient correlation

plus dissipation anisotropy to represent the diffusive transport in the near-wall region.

Based on above analyses, we propose an alternative form of diffusive transport con-

straint by the equation below:

Diθ −
ξi
2

(
RDk +

Dθ

R

)
= −

{
φiθ −

[
εiθ −

ξi
2

(
Rεk +

εθ

R

)]}
ft, (5.25)

whereft is a model function. For present case, the following generalform may be

used

ft = 1 −
[
1 − exp

(
y+

λ

)]2

, (5.26)

wherey+ = yuτ/ν anduτ is the friction velocity. As well known fact, the Prandtl

numberPr and the Reynolds numberRe have the significant influence on the scalar

field (Kawamuraet al., 1999, 1998; Kim & Moin , 1987). So & Speziale(1999) sug-

gested any near-wall models should reflect aPr dependence; otherwise, they would

not be able to replicate the thermal asymptotes correctly asa wall is approached. The

above arguments imply that the proposed diffusive transport constraint should be made

parametric ofPr, which means that theλ should be incorporating with thePr number.

In current study, a constant value 6 forλ was chosen for time-being and its universal
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5.4 The diffusive transport constraint

validity should be task of future study. The proposed function is supposed to become

unity for wall vicinity, and equal to0 otherwise. Consequently, one can restricts the

effects of pressure temperature-gradient correlation anddissipation anisotropy within

the near-wall region.

From the above asymptotic behavior and budget analyses, onecan tell that the

near-wall diffusion and transport ofξi are mainly contributed by pressure transport and

viscous diffusion, both of which must be properly approximated. Forξ1-component,

the pressure fluctuation parts of both sides in Eq. (5.25) are negligible, which leaves

that the viscous diffusion part of LHS balances the viscous dissipation anisotropy part

of RHS. Forξ2-component, the viscous related parts of both sides in Eq. (5.25) are

negligible, which leaves that the pressure transport part of LHS balances the pres-

sure fluctuation part of RHS. These balances vary for different components, but this

difference is automatically compensated. By adopting the present diffusive transport

constraint, one can change Eq. (5.22) to

0 =

[
Piθ −

ξi
2

(
RPk +

Pθ

R

)]
+

{
φiθ −

[
εiθ −

ξi
2

(
Rεk +

εθ

R

)]}
(1 − ft) . (5.27)

This equation indicates that the diffusive transport constraints need to be incorpo-

rated in the manner that both pressure temperature-gradient correlation and dissipation

anisotropy disappear near the wall. It should be noted that the validity of this form is

unaffected by the system rotation since the balance betweenthe pressure temperature-

gradient correlation and pressure transport and that between the viscous diffusion and

dissipation anisotropy persist regardless of the rotationnumber as already seen in Fig-

ures5.2and5.3.

An a priori test is performed to evaluate the present diffusive transport constraint

given in Eq. (5.25), of which both sides are computed using the DNS data and com-

pared with each other. Figure5.4 shows the results forξ1-component, where the

present diffusive transport constraint gives fairly good agreement with DNS data for

y+ ≤ 5 both for non-rotating and rotating cases, which can be considered as an im-

provement compared with the original one. Forξ2-component, Figures5.5shows that

the present diffusive transport constraint can also give good agreement fory+ ≤ 10

compared to the DNS data.
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Figure 5.4: Validation of present near-wall correction of diffusive transport constraint

for ξ1 LHS: Pressure side, RHS: Suction side. The present constraint (solid line) com-

pared to DNS (circle).
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Figure 5.5: Validation of present near-wall correction of diffusive transport constraint

for ξ2 LHS: Pressure side, RHS: Suction side. The present constraint (solid line) com-

pared to DNS (circle).
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5.5 Concluding remarks

Whereas, compared with the Reynolds-stress case, where theextended constraint

gives excellent agreement with DNS data for all Reynolds stress components, the ex-

tended constraint in present study remains noticeable discrepancy from DNS data in

some cases. In both the Reynolds stresses and heat fluxes situations, the productions

are assumed to be negligible. This assumption is well supported in the case of Reynolds

stresses, of which, the production becomes negligible in the vicinity of the wall mostly.

However, for the case of heat fluxes, the production remains small but noticeable val-

ues fory+ ≤ 10 sometimes, as shown in Figs. (5.2) and (5.3). Howsoever, the above

evaluation indicates that present alternative diffusive transport constraint has the poten-

tial to advance the AHFM, once the accurate models for pressure temperature-gradient

correlation and dissipation anisotropy in Eq. (5.22) are provided.

5.5 Concluding remarks

This chapter focuses on the validity and extensions of weak-equilibrium condition in

the non-inertial frames. The weak-equilibrium condition,which consists of advection

assumption and diffusive transport constraint, is the basis to derive the algebraic heat

flux model from differential transport model. The frame invariant concept is invoked

in this study to extend the original advection assumption for flows associated with ro-

tation and curvature effects. Moreover, we derived the frame invariant form of AHFM

by using the extended weak-equilibrium condition. It is also proven that the trans-

port equation of normalized heat flux can be written in a Euclidean invariant way by

introducing the Jaumann-Noll derivative.

The budget analyses of the various terms of exact transport equation forξi show

that the diffusive transport is crucial in the near-wall region. An asymptotic analysis of

the near-wall behavior shows that, the diffusive transportkeeps balance with the sum of

pressure temperature-gradient correlation plus dissipation anisotropy in the wall vicin-

ity, while production anisotropy is small. An alternative form of diffusive transport

constraint is proposed and evaluated using DNS data. Evaluation shows that present

alternative constraint has the potential to improve the predictive ability of resultant

AHFM.
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Chapter 6

Conclusion and Perspective

In the course of this study, the framework of RANS modeling isreviewed in detail.

Some demonstrations using DRSM, NLEVM and EVM have been given for the case

of fully developed rotating channel flow, and compared to theDNS computation. The

results indicate that the DRSM, which is mathematically andphysically better founded,

is the most reliable one to represent the considered flow features.

The most important tasks accomplished in the present study are the development of

algebraic models for Reynolds stress and turbulent heat flux, respectively. Instead of

dealing with elaborate mathematical derivation, focus hasbeen placed on the starting

point of deriving such algebraic models, which is so-calledweak-equilibrium con-

dition. With the aid of DNS database, it has been discovered that the conventional

weak-equilibrium condition tends to fail in the near-wall region. It is believed that,

with the incorrect weak-equilibrium condition, the effortto derive the algebraic models

with elaborate mathematical techniques will be certainly compromised. In the present

study, by using the budget analysis and asymptotic analysis, the alternative form of dif-

fusive transport constraint, both for Reynolds stress and turbulent heat flux, has been

proposed, which offers a firmer foundation to derive algebraic models from DRSMs.

The a priori tests suggest that the proposed forms have the potential to improve the

predictive ability of resultant algebraic models.

In addition, the frame invariant concept is invoked in this study to extend the orig-

inal advection assumption for flows associated with rotation and curvature effects.

Moreover, we derived the frame invariant form of AHFM by using the extended weak-

equilibrium condition. It is also proven that the transportequation of normalized heat
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flux can be written in a Euclidean invariant way by introducing the Jaumann-Noll

derivative.

It is noted that the comprehensive test of proposed models has not been conducted

in the present study, although it is necessary in order to reveal the full potential of the

proposed models. The successful implements of proposed constraints, both for ARSM

and AHFM, requires reliable models for redistribution and dissipation terms, specially

for the near-wall region. Accordingly, this requirement calls for more attention on

the improvement of the redistribution and dissipation terms. Another interesting term,

which draws attention in the course of present study, is the pressure transport term.

Currently, this term has been handled together with the viscous diffusion. However,

observation suggests the pressure transport plays a very important role in the near-wall

region. Therefore, it should be modeled separately. Above objectives have also always

been the demands by the further development of second-moment closure.

It has to be admitted that there has been some arguments aboutthe role of algebraic

models playing in the framework of RANS modeling. One may wonder if it is worth

the effort to develop such algebraic models because of the troublesome numerical treat-

ment. Additional modifications have to be made to include thenoninertial effects. On

the other hand, the DRSM accounts such effects naturally. While, in present stage, the

most rational level of RANS modeling, the DRSM is not yet dominant in the practical

applications because of the computation cost. In this situation, the algebraic models

find their way and attract attentions, as whatPope(1999) refers to that the realistic goal

is always theoptimal turbulence model. Hopefully, it can be expected that rapid im-

provement of numerical method and computer resource would decrease the importance

of the argument for algebraic model in the near future. Accordingly, the importance of

DRSM models in practical applications would increase.
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Appendix A

The transformation of W and S

The velocityU∗ in the non-inertial frameC∗ can be obtained by taking the time deriva-

tive, then the the spatial derivative ofU∗ is

∂U∗

∂x∗
= Q̇QT +Q

∂U

∂x
QT , (A.1)

whereQ̇ = dQ/dt andQT = ∂x/∂x∗.

Then following Eq.(A.1), the Euclidean transformation can be performed for strain-

rate tensorS and the vorticity tensorW

S∗ =
1

2

(
∂U∗

∂x∗
+

(
∂U∗

∂x∗

)T
)

=
1

2
Q̇QT +

1

2
Q
∂U

∂x
QT +

1

2
QQ̇T +

1

2
QT

(
∂U

∂x

)T

Q

=
1

2
Q̇QT +

1

2
Q
∂U

∂x
QT +

1

2
QQ̇T +

1

2
(−Q)

(
∂U

∂x

)T

(−QT )

=
d

dt

(
QQT

)
+QSQT , (A.2)
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W ∗ =
1

2

(
∂U∗

∂x∗
−
(
∂U∗

∂x∗

)T
)

(A.3)

=
1

2
Q̇QT +

1

2
Q
∂U

∂x
QT − 1

2
QQ̇T − 1

2
QT

(
∂U

∂x

)T

Q

=
1

2
Q̇QT − 1

2
QQ̇T +

1

2
Q
∂U

∂x
QT − 1

2
(−Q)

(
∂U

∂x

)T

(−QT )

=
1

2
Q̇QT − 1

2
QQ̇T +

1

2
Q̇QT +

1

2
QQ̇T

︸ ︷︷ ︸
0

+
1

2
Q
∂U

∂x
QT − 1

2
(−Q)

(
∂U

∂x

)T

(−QT ),

= Q̇QT +QWQT . (A.4)

For the strain-rate tensorS∗, sinceQQT = I

S∗ = QSQT . (A.5)

For the vorticity tensor, one may deduce to

W ∗ = Q (W + Ω)QT . (A.6)
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Appendix B

The transformation of ujθ
∗

ujθ
∗

= lim
α→∞

1

N

N∑

α=1

(
u
∗(α)
j θ∗(α)

)

= lim
α→∞

1

N

N∑

α=1

(
Qjiu

(α)
i θ(α)

)

= Qji lim
α→∞

1

N

N∑

α=1

(
u

(α)
i θ(α)

)

= Qjiuiθ. (B.1)
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Appendix C

The transformation of
Dujθ
Dt

Dujθ
∗

Dt
=

∂ujθ
∗

∂t
+ u∗k

∂ujθ
∗

∂xk

=
∂Qjiuiθ

∂t
+Qkmum

∂Qjiuiθ

Qkm∂um

= Q̇jiuiθ +Qji
∂uiθ

∂t
+Qjium

∂uiθ

∂xm

= QjlΩliuiθ +Qji

(
∂uiθ

∂t
+ um

∂uiθ

∂xm

)

= QjiΩikukθ +Qji
Duiθ

Dt

= Qji

(
Ωikukθ +

Duiθ

Dt

)

= Qji
D̄uiθ

Dt
. (C.1)
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Appendix D

The incorporation of proposed

diffusive transport constraint with

ARSM

D.1 The basic equation set

The explicit algebraic stress model ofGatski & Speziale(1993), applicable to inertial

and noninertial frames, is given by

bij = − a1C
∗
µτSij − a1a2C

∗
µτ

2
(
SikW̃kj − W̃ikSkj

)

+ 2a1a3C
∗
µτ

2

(
SikSkj −

1

3
SmnSmnδij

)
, (D.1)
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D.1 The basic equation set

where

C∗
µ =

[
1 − 4

3
a2

3g
2

(
k

ε

)2

SmnSmn + 4a2
2g

2

(
k

ε

)2

W̃mnW̃mn

]−1

, (D.2a)

g =

[(
C1

1/2 + 1
) P
ε

+ C0
1/2 − 1

]−1

, (D.2b)

W̃ij = − cωemijΩm, (D.2c)

cω =
C4 − 4

C4 − 2
. (D.2d)

The coefficients are defined asa1 = 0.487, a2 = 0.8, a3 = 0.375, C0
1 = 3.4, C4 = 0.4

andC1
1 = 1.8.

Above Gatski-Spezial algebraic Reynolds stress relationscan be further simplified

for the case of fully developed rotating channel flow

τ12 = − ga1C
∗
µ

k2

ε

dU

dy
, (D.3a)

τ11 =
2

3
k +

4

3
g2C∗

µa3a1
k3

ε2
S2

12 + 4a2a1
k3

ε2
S12W̃12, (D.3b)

τ22 =
2

3
k +

4

3
g2C∗

µa3a1
k3

ε2
S2

12 − 4a2a1
k3

ε2
S12W̃12, (D.3c)

τ33 =
8

3
k − 8

3
g2C∗

µa3a1
k3

ε2
S2

12. (D.3d)

Above stress relations need to be coupled with Equations forturbulent kinetic en-

ergy and the turbulent dissipation rate, which are

0 = − 1

ρ

∂Peff

∂x
− d

dy
uv + ν

d2U

dy2
, (D.4a)

0 = P − ε+
d

dy

[(
ν +

νt

σε

)
dk

dy

]
, (D.4b)

0 = C∗
ε1P

ε

k
− f2C

∗
ε2 +

d

dy

[(
ν +

νt

σε

)
dε

dy

]
, (D.4c)

where

νt = fµCµkτ, τ = k/ε. (D.5)

Note that thePeff is affected by theRo, which is2Ωd/Um.

To sum up, the coefficients in the GS ARSM are listed in Table (D.1)
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D.2 The incorporation

Table D.1: Coefficients in the GS ARSM

Item Value

fµ 1.0

Cµ 0.094

f2

[
1 − exp

(
− y+

6.5

)]2

C∗
ε1 1.44

C∗
ε2 1.83

σk 1

σε 1.3

a1 0.487

a2 0.8

a3 0.375

C4 0.4

C0
1 3.4

C1
1 1.8

D.2 The incorporation

In the present study, only straightforward incorporation is considered. Recall that the

proposed diffusive transport constraint for ARSM is given by

Dij−
τij
k

D = −[φij − (εij−
τij
k
ε)]fd. (D.6)

Direct incorporation of Eq. (D.6) into the exact transport equation for Reynolds
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stress anisotropy tensorbij leads to

0 =
1

2k

(
Pij + Cij −

τij
k
P
)

+

[
φij

2k
− 1

2k

(
εij −

τij
k
ε
)]

(1 − fd). (D.7)

Following the explicit method presented byGatski & Speziale(1993), Eq. (D.7)

can be made explicit forbij . Actually, in theGatski & Speziale(1993) model, the

dissipation anisotropy term is set to zero. This fact suggests that the effect of proposed

constraint will only be reflected by the changing of redistribution term. Consequently,

it is readily to recognized that the resultant ARSM, which isrevised by incorporat-

ing the proposed constraint, will remain the same form as Eq.(D.1). However, the

corresponding model coefficients should be modified as following

â1 =
2

3
− βC2

2
, â2 = 1 − βC4

2
, â3 = 1 − βC3

2
,

â4 = τ

[(
βC1

1

2
+ 1

)
P

ε
+
βC1

0

2
− 1

]−1

,

β = 1 − fd.

D.3 Results and comments

The ARSM equation set introduced in the previous section is solved by the finite dif-

ference method with 201 non-uniformly distributed nodes inthey direction, and the

first node was situated aty+ ≤ 0.5. The distance between each node is increased with

an expansion rate of1.05. The boundary condition fork is 0 and for the dissipation

rateε

ε = 2ν

(
∂
√
k

∂y

)
. (D.8)

To stabilize the computation, the discretization of momentum equation (Eq.(D.4a)) is

re-managed as following.

uv = − νt1
dU

dy
, (D.9)

νt1 = ga1C
∗
µ

k2

ε
. (D.10)

112



D.3 Results and comments

The momentum equation can be arranged as

0 = −1

ρ

∂Peff

∂x
+

d

dy

(
νt1
dU

dy

)
+ ν

d2U

dy2
, (D.11)

= −1

ρ

∂Peff

∂x
+

d

dy

(
Γ
dU

dy

)
, (D.12)

with Γ = νt1 + ν.

The diffusion terms are discretized using CDS

[
d

dy

(
Γ
dU

dy

)]
≈

(
Γ
dU

dy

)

i+ 1

2

−
(

Γ
dU

dy

)

i− 1

2

1
2
(xi+1 − xi−1)

. (D.13)

Furthermore, the CDS approximations for the first order derivative are
(

Γ
dU

dy

)

i+ 1

2

≈ Γi+ 1

2

Ui+1 − Ui

xi+1 − xi
, (D.14)

(
Γ
dU

dy

)

i− 1

2

≈ Γi− 1

2

Ui − Ui−1

xi − xi−1

, (D.15)

where

Γi+ 1

2

=
1

2
(Γi+1 + Γi) , (D.16a)

Γi− 1

2

=
1

2
(Γi + Γi−1) . (D.16b)

(D.16c)

The resulting algebraic equation for momentum at nodei reads

Ai
pUi + Ai

EUi+1 + Ai
WUi−1 = Qi. (D.17)

Consequently, the coefficients of the algebraic equation (Eq. (D.17)) are

Ai
E =

2ν + νt1,i+1 + νt1,i

hi+1 (hi+1 + hi)
, (D.18a)

Ai
W =

2ν + νt1,i + νt1,i−1

hi (hi+1 + hi)
, (D.18b)

Ai
P = − (Ai

E + Ai
W ), (D.18c)

Qi =
1

ρ

∂Peff

∂x
, (D.18d)
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Figure D.1: Model coefficientfd

with hi = xi − xi−1.

The discretization ofk andε equations follows the similar manner. The computa-

tion is conducted forRo = 0 and0.2. The results for original Gatski-Speziale ARSM

(referred as ARSM), and the revised ARSM after incorporation of proposed diffusive

transport constraint (referred as ARSMC), are presented inthe following plots.

D.3.1 Stationary case

First of all, the distribution of model coefficientfd is shown in Fig.D.1. This coef-

ficient is supposed to become unity at the wall and slowly decays away from the wall

for y+ ≤ 10, which is well represented in Fig.D.1.

In Fig. D.2, the mean velocity profile are shown both for original ARSM and re-

vised ARSM. By examining Fig.D.2, one can tell that by original GS model, fairly

well agreement with DNS data is achieved. And by the revised ARSM, improvement

is not obtained. In Fig.D.3, the plots for Reynolds stress components are presented.

Similar with the mean velocity, the revised version of ARSM did not bring improve-

ments comparing to the original one.
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Figure D.2: Mean velocity profile forRo = 0

D.3.2 Rotating case ofRo = 0.2

For the rotating case ofRo = 0.2, Both the original ARSM and revised ARSM possess

certain ability to represent the rotation effect as shown inFig. D.4. Nevertheless,

there still exists noticeable discrepancy between the DNS and the original ARSM.

Once again, the revised version of ARSM yet brings any improvement comparing with

original ARSM. This observation also stands for the plots ofother Reynolds stress

components (Fig.D.5).
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