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Abstract

The present research aims at developing algebraic Reystutss model
(ARSM), which is feasible and accurate to simulate engingdurbulent
flows. The study has been focused on the assessment and wudatific
of the diffusive transport assumption, which is necessary @ucial to
derive ARSM. By using the budget and asymptotic analysas,shown
that the current diffusive transport assumption tends iloirfiathe near-
wall region. Furthermore, based on above analyses, amatiez form of
diffusive transport constraint is proposed for the nealt-vegion.

The similar methodology has also been applied to the algebeat flux
model (AHFM). As a result, an alternative diffusive trangpmonstraint
has been proposed. Preliminary evaluation results hawershimat the
improvement of consequently resulted model can also beceeqgdy em-
ploying the proposed constraint. In addition, the framaiiant concept is
invoked in this study to extend the original advection agstion for flows
associated with rotation and curvature effects. Moreower,frame in-
variant form of AHFM is derived by using the extended wealgitigrium
condition.

To this end, some key issues concerning the basic perfoenaiRANS

models have been recognized, such as the modeling of peessam rate,
modeling of pressure transport term. With further studg,ithprovement
of such models can advance the RANS modeling fundamentaliich

also naturally applies to the algebraic models. It is alsteaahat, al-
though the a priori tests have proved the proposed altgeatinstraints
can improve the resultant algebraic models potentially,nttore detailed
tests should be performed to validate the proposed alteenainstraints.
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Chapter 1

Introduction

1.1 General Background

The computation fluid dynamics (CFD) is widely used in aeraiyics, propulsion,
power generation, pollution, automotive, electrical aivil engineering, as a tool of
design, optimization, prediction of off-design performas of such industrial applica-
tions. Despite various other complexities, turbulencéésrmajor obstacle for accurate
and reliable CFD simulations. Turbulence can have positiveegative effects on the
flow, the mixing, the dilution and the heat and mass transiied, it is important for
engineers to be able to predict the effects in the desigrepsodience, the simulation
of turbulence plays an essential part in most CFD calcuiatio

Three major techniques are nowadays in use for researchesmghdpurposes re-
garding turbulent fluid flows. Direct numerical simulatidbNS), which solves the
Navier-Stokes equations together with the continuity é#ignavithout introducing any
model, is able to represent all the details of the complekuient fluctuating mo-
tion. Although, it requires every large computational ese and time. In addi-
tion, the number of grid points and the cost required inareagghly withRe? (Pope
2000, which limits the applicability of this approach to low oroglerate Reynolds
number and simple geometry flows. In large eddy simulatibEsS], the larger three-
dimensional unsteady turbulent motions are representaddirect fashion, whereas,
the effects of the smaller-scale motions are modeled. Altagly, LES can be used to
calculate relatively high Reynolds number flows, but theppraesolving the near-wall
regions poses the problems, where a special near-walinesdithas to be introduced
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(Rodi, 2006. Therefore, DNS and LES are nowadays mainly applied to leywiRIds
number flows in simple geometry for scientific rather tharcpcal purposeselik,
2005 Hadzig 1999 Hanjalic 200%; Hellsten 2004). It is noted that the DNS and
LES have been a very useful tool on the development and vialidaf turbulence mod-
els by providing the very detailed description of fluid flowg@turbulent heat transfer.
Particularly, with the aid of DNS and LES, a term-by-term ralg of the transport
equation can be undertaken, which is not feasible from tpem@xental database. Ad-
ditionally, the DNS and LES database can be used to devetdpuhReynolds number
models, which require a more sophisticated expressioreiméar-wall region.

The single-point statistical modeling of turbulence is adays the most widely
spread approach to predict turbulent flows for practicabpses, which is the so-called
Reynolds averaged Navier-Stokes (RANS) modeling. As aamunence, the second-
moment correlations of fluctuating quantities appear inRA&S equations. By the
level at which these correlations are modeled, severabagpes have been developed.
A mathematically and physically well founded approach ie ttamework of RANS
modeling is the second moment closure, from which the secomment correlations
obtain their solution from differential transport equato The eddy viscosity models
(EVM) relate the unknown Reynolds stresses to mean flow patensy such as veloc-
ity gradients, and an eddy viscosity. The eddy viscosity can be seen essentially as
product of characteristic velocity scale and correspogdiemgth scale. This type of
turbulent models is thought to be most widely used turbwdemee in practical appli-
cations, although some serious fundamental deficiencies ibeen well documented
in the literature. The nonlinear eddy viscosity models (MM) and the Algebraic
models, currently still under development, are a promisvag to overcome the defi-
ciencies of conventional EVMS. Particularly, much reskaffort has been paid to the
further development of algebraic models, and it is suggettat long-term research
should be supported on algebraic modélshanssor2002.

As pointed out byHanjali¢ (200%), an industrial user nowadays has very broad
options of the available RANS models, which is reversely imgkisers more diffi-
cult to make a choice in regard to which models should be uged/ich applica-
tion. Paradoxically, there seems to be not much incentivéuftdamental research in
the conventional RANS modeling facing various needs foouation. Among those
research activities, some interesting directions may batified, such as the elliptic
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blending modellflanceay2005, the new wall functionCraftet al., 2004, the further
improvement of algebraic model&é&tski & Wallin, 2004 Hamba 2006, et. al. Ad-
ditionally, some new approaches, which seem to depart frenconventional RANS
strategies have attracted more research activities, sushsteady RANS, multi-scale
RANS, transient RANS, hybrid RANS/LES, and so on, which anep®sed to bring
better physical justification and feasibility.

However, it may be noticed that some key issues concernafgakic performance
of RANS models have still remained, such as the modeling e$gure-strain rate,
modeling of pressure transport term. With further stude itmprovement of such
model can advance the RANS modeling fundamentally.

1.2 Introduction of ARSM

Among various RANS approaches, the eddy viscosity modeMJENas received the
most consideration and has been applied to many problenestadiis simple form
and affordable computation cost. However, an EVM evengdalils to represent many
complex features of turbulent flows. The differential Regscstress models (DRSM)
include significantly more flow physics, and its applicationcomplex flows is an
active area of researcliéaseet al, 2006. In parallel with such efforts, there is a
considerable renewed interest in developing the algela@proximations for trans-
port equations of anisotropy tensdofianssor2002), which is the so-called algebraic
Reynolds stress model.

The explicit algebraic Reynolds stress model (EARSM) hanlo®nsidered as an
alternative to EVM. Positioned at an intermediate levelnasetn EVM and DRSM,
the EARSM extends the linear Boussinesq hypothesis bydating a more general
polynomial representation that should allow for the predicof more complex flow
physics. This general algebraic relation is obtained by $irsplifying the differen-
tial transport equation for the Reynolds stress anisottepgor. This simplification
results in a corresponding implicit algebraic equation $AR for the Reynolds stress
anisotropy components. The EARSM is then obtained from sotgpolynomial repre-
sentation of the anisotropy components whose terms arédmsof the strain rate and
vorticity tensors as well as additional scalar paramefens. EARSM thus inherits the
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simplicity and (some level of) robustness of the eddy viggasodels but also retains
the potential for representing the turbulence anisotropy.

The general weak-equilibrium conditioR@di, 1972 1976 is used to derive the
implicit ARSM from the differential transport equation oefgolds stress anisotropy.
The equilibrium state is of such state that the productiaraedissipation with neg-
ligible convective and transport effects. For flows away tstiate, Rodi introduced
the more general weak-equilibrium assumption, which isattheection and diffusive
transport inw;; are proportional to that of thie. For the mean convection term, this
condition assumes that mean flow advection in inertial floovstie Reynolds stress
anisotropy tensal;; (= 7,;/2k — 0;;/3) is zero,

Db,

Dt
wherer;; = w;u;. For the diffusive transport term, the weak-equilibriurmdition
yields that the entire transport term=f is proportional to that of the turbulent kinetic
energyk, that is

~0, (1.1)

whereD,; represents the entire transport term of the Reynolds sthesan be parti-
tioned and written as

_ t P v
®ij - Dij + Dz’j + ®ij

= —a;;uiujuk - é%’k (guﬁjk + gujéik) + Vi1, (1.3)
whereD% is the turbulent transporﬂ)ﬁ’j is the pressure transport aflyf; is the vis-
cous diffusion, withtD = D;; /2 in Eq. (1.2). The current study focuses on the weak-
equilibrium condition associated with Ed..D).

The validity of the weak-equilibrium condition greatly deqs on the nature of the
flow. When the spatial change of the turbulent flow is modexatethe energy balance
is in equilibrium, this assumption is well supported. Hoeewn formulating implicit
ARSM equations in flows relative to non-inertial frames othaflow curvature, this
assumption does not hold. As originally suggestedRogli & Scheuere(1983, a
generalized condition that can include the effects of systeation or streamline cur-
vature becomes necessary in order to accurately predibt ffmes Rumseyet al,,
2001, 2000.
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The weak-equilibrium condition associated with Ef.1f has been the focus of
some recent studies that have attempted to develop the@iedform for the anisotropy
equilibrium assumption in both non-inertial frames andifseivhere streamline curva-
ture effects persistGatski & Jongen200Q Gatski & Wallin, 2004 Girimaji, 1997
Hamba 2006 Wallin & Johansson2002. Wallin & Johansson(2002, Gatski &
Wallin (2004 andHamba(2006 have all recently shown that the conditidt,; / Dt +
Qurbr; — biQx; = 0 in the non-inertial frame is incorrect whet®; is the rotation rate
tensor associated with the angular rotation rate vegtpof the non-inertial frame co-
ordinates, and the extra tet,b;; — b;.{2; is necessary to include the motion of flow
itself. Therefore, the appropriate form for the anisotreguilibrium assumption in the
non-inertial frames ar®b;;/ Dt = 0. Hamba(2006 has also pointed out that the ex-
tended assumption of anisotropy equilibrium can also beaivg if the co-rotational
derivative is introduced.

The second assumption (Ed..2)), based on constraints applicable to the entire
transport term Gatski & Rumsey 2001), is also necessary in deriving the implicit
algebraic Reynolds stress equations. However, this adsamipas received much
less attention since it becomes important only in near-vegjions of inhomogeneous
turbulent flows and is less amenable to analysis than theittmman the Reynolds
stress anisotropy itself. Nevertheless, system rotatimhsareamline curvature can
greatly influence the diffusion and transport process diulent flows. This can be
observed from the DNS and LEBrdersson & Kristofferser1 993 Grundestanet al.,
2008 Kim et al,, 1987, Kristoffersen & Anderssornl993 Lamballaiset al.,, 1998 of
rotating turbulent channel flow. This suggests that the tipresf whether the current
assumption for diffusive transport can hold in flows invalyirotation and curvature
effects should be investigated.

1.3 Introduction of AHFM

There are currently considerable research activitiescticetoward developing the
model for the prediction of heat transfer in turbulent flowsith the similar reason

of ARSM, the interest on deriving the algebraic approximatpproach has been in-
creasing for predicting turbulent heat transfer. Numenvasks have been devoted
to develop the sophisticate algebraic model for turbulezdt Hlux, such ag\be &
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Suga(200)); Dol et al. (1997; Hattori et al. (2006; Lai & So (1990; Rogerset al.
(1989; Rokni (2000; Shabany & Durbin1997); So & Sommer(1996, among oth-
ers. Recentlyikstromet al. (2000 showed that the systematic modeling approach
of forming implicit algebraic relation for turbulent heatiland proposed a method to
obtain the fully explicit form out of an implicit relation bysing Caylay-Hamilton the-
orem for two- and three-dimensional flowSo et al. (2004 presented the method to
derive an explicit algebraic model for two-dimensionaldmpressible non-isothermal
turbulent flows with the aid of tensor representation theofyie works mentioned
above contribute to the development of algebraic modeludouient heat flux, while
those works are limited to flows in the inertial frames. Caousmntly, the appropriate
form of algebraic model for turbulent heat flux in the nonrtrad frames has been left
unexplored.

The general algebraic relation is first obtained by a singalifon of the differential
transport equations of turbulent heat flux by invoking th@kvequilibrium condition.
Analogous to the derivation of ARSM, this weak equilibriuondition assumes that
the advection of turbulent normalized heat flux is zero. Titigimal advection assump-
tion is only valid for inertial frames. As for the non-inetiframes, the proper form
of this assumption is left unexplored. The same issue enecenhfor the derivation
of algebraic model for Reynolds stress anisotropies has Wwed resolved by invok-
ing the frame-invariant concept to account for rotation end/ature effects correctly
(Gatski 2004 Gatski & Wallin, 2004 Girimaji, 1997 Hamba 2006 Speziale 1998
1979 Weis & Hutter 2003. As pointed out byHamba(2006), the frame-invariant
property is not only the requirement for mathematical deion of turbulent flow, it
also serves as highly useful constraint and tool to form ise equationsflamba
2006 Speziale 1998. By invoking the frame-invariant concept, the resultanh-c
stitutive equations for Reynolds stress anisotropies radegendent of the reference
frames, whether inertial or non-inertial. It has been shoat the resultant frame-
invariant algebraic model for Reynolds stress anisotBecapable to include the
system rotation and streamline curvature effe@atéki & Wallin, 2004 Jongeret al,,
1998,b). Thus, it is straightforward to extend this methodologyite modeling of
turbulent heat flux in non-inertial frames. By applying thime-invariant constraint,
a reference frame free algebraic heat flux model can be denwiich accounts for
the system rotation and streamline curvature effeblagano & Hattori(2003 gave
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the assessment of explicit expression for turbulent heat fltiis readily observed
that the algebraic formulation employed for turbulent hiéat in their work is not
frame invariant. As a matter of fact, the rotation effects aot fully accounted for.
The above example shows that frame invariant constraimt gsrassible constraint for
formulating the algebraic models for turbulent heat flux.

Moreover, the weak-equilibrium condition assumes thatliffasion and transport
in the budget of turbulent normalized heat flux equation agligible. This treat-
ment is known as the diffusive transport constraint. As la@iotonstraint to derive
the AHFM, the diffusive transport constraint removes tHéedential terms, which are
associated with the diffusion and transport processesioDsly, its validity is crucial
for resulting an accurate AHFMAikstrom et al. (2000 investigated the validity of
diffusive transport constraint by comparing the charastiermagnitudes of individual
terms in the transport equation for turbulent normalizeat fleax. They concluded that
the diffusive transport constraint is appropriate for thremamwise component except
near the wall. For the wall-normal component, this constra not well supported
even in the center of the channel. However, their work wastéidnin the inertial
frames, the validity of this constraint in the non-inerfi@mes certainly needs to be
investigated further, for AHFM be applied to flows involvingtation and curvature
effects.

1.4 The objective

The present study aims at the development of algebraic méatgdrediction of Reynolds
stresses and turbulent heat fluxes. By using DNS data, tladatebehavior of each
term in the transport equations of Reynolds stresses ahdlémt heat fluxes for the
near-wall region is understood through the budget and amtio@nalyses. Such un-
derstanding gives the possibilities to assess and modifeediffusive transport con-
straints, which are important in the derivation of algebraiodels both for Reynolds
stresses and turbulent heat fluxes. In addition, the franagiant concept is invoked
in this study to extend the original advection assumptiariléavs associated with ro-
tation and curvature effects. Moreover, the frame invariarm of AHFM is derived
by using the extended weak-equilibrium condition.
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1.5 Outline

A general review of turbulent flows, concerning the concé®ANS modeling is first
given in chapter 2. In this chapter, it contains an outlinghaf turbulence models
beginning with a brief introduction about the statisticabaeling both for turbulent
Reynolds stresses and heat fluxes. Several modeling apgoace discussed in the
framework of the second-moment turbulence closure. Shattention is paid to the
algebraic model, which is becoming more favorable for eeegiimg flows.

In chapter 3, some computational examples by differentegiri®lds stress model,
nonlinear eddy viscosity model and linear viscosity modsl,well as some critical
observations, are provided for the case of fully develomedting channel flow. By
these examples, the ability of representing the rotatitectsf, which appears usually
important in the practical applications, is revealed.

Chapter 4 presents the study on the assessment and modalificadiffusive trans-
port constraint for derivation of algebraic Reynolds stresdels. This study focuses
on the validity and modification of the diffusive transpossamption in fully devel-
oped rotating channel flow. This is accomplished byaariori assessment using the
DNS data oKristoffersen & Andersso1993.

In Chapter 5, it includes the work on the advancement of afgelbeat flux model.
The weak equilibrium condition is assessed, and a tempt dertaextend the weak
equilibrium condition to noninertial frames. An alternatiform of diffusive transport
constraint is proposed and evaluated using DNS data.

Finally, conclusions drawn from the range of present stugdyell as perspectives
for future work are given in Chapter 5.



Chapter 2

The Second-Moment Turbulence
Modeling

2.1 Modeling of turbulent Reynolds stresses

The instantaneous velocity and pressure fields in an imiptedsirbulent flow under
isothermal conditions are solutions of the instantaneousimuity and Navier-Stokes
equations given by
U,
ox;
s Ukaﬁ" __lop O
ot oz, p Ox; Ox,0xy,’

~ 0, (2.1a)

(2.1b)

wherep andv are density and kinematic viscosity of the fluid, are instantaneous
velocity vector components anfl is the instantaneous pressure. According to the
Reynolds-averaged approach, the instantaneous velodtgr@ssure are decomposed
into a time mean and a fluctuating part give by

~ A

Ui=U;+wv;, P=P+p, (2.2)

where the capital symbold/;, P) represent a time mean and the lower-case symbols
(u;, p) represent the fluctuating part. This averaging leads to #yamélds-averaged
continuity equation and the Reynolds-averaged Naviek€t¢RANS) equations for



2.1 Modeling of turbulent Reynolds stresses

incompressible isothermal turbulent flow of a Newtoniandflwhich can be written
as Durbin & Pettersso2001)

oU;

oo =0 (2.3a)
0UZ 0UZ 10P 2 (9”LL7;UJ'

R — . 2.
ot +Ui Oz, p Ox; Vs Oz, (2.3b)

Eq. 2.3b can be rearranged to arrive at a well-known form

oU. U 10P 1 0 ( oU; —PW)’ (2.4)

ot "0, T pom  pon, Mg,

where the terms;-pu;u;, are collected with the traditional normal and shear stress
termspoU; /O0x;. By this way, it is readily to tell that the averaged effectwfbulent
advection,—pu;u; has the similar mathematical representation form as theous
stressu(0U; /0x; + 0U;/0x;) and they are both second tensor variables. This fact
indicates that these two terms may be controlled by the aimiechanism. Therefore,
—pu;u; is generally treated as a "stress” also, nanfegynolds stressEven though
this apparent stress ispw;u;, it is convenient and conventional to referipr; as the
Reynolds stress.

The extract transport equation for Reynolds stress temsgris given as

Duju; 5
where the right-side represents the rate of changs,abroduced by the turbulent
production?;;, the redistributiorny,;, the viscous diffusiorD!;, the turbulent transport

I
Di;, the pressure transpdlt); and the turbulent dissipation ratg. These terms are

10



2.1 Modeling of turbulent Reynolds stresses

given by
Py = <ulukggi + 5 ’“g—g(;],:) , (2.6a)
o=y (5 52) =
Dy, = a%vég;—?, (2.6¢)
D= — aixkuiu]uk aixkuiujuk, (2.6d)
D= - a% (?ajk + %5%) | (2.6€)
ey = 2y%. (2.6f)

Note that in the incompressible form of thgw; equations, it is customary to de-
compose the velocity pressure-gradient correlatipninto a terme,; that represents
redistribution of energy among the components and a tBfinthat represents the
pressure-related transport:

i =6i; + Dy

The annotations for the terms in the budgets of Reynoldsstransport equation,
Eq. 2.9 indicate physical interpretations.

e Production P;; This term represents the rate at which the energy is traesfer
from mean flow to turbulent fluctuations.

¢ Redistribution ¢;; The terminology, redistribution, implies that it redisuie
the energy among components of Reynolds stresses withteuingl the total
energy. The fact that the trace of this term is zero also @ageole. The qual-
itative effect of redistribution is to shift the energy frahne larger components
of w;z; into smaller ones, which makes the flow tend to be isotropic.

e Viscous diffusion D}; This term transports the energy in space by molecular
process. This transportis in a conservative way, withooégaing or destroying
the energy.

11



2.1 Modeling of turbulent Reynolds stresses

e Turbulent transport Dj; The physical effect of the transport term is to spread
the Reynolds stresses in space. Since turbulent transgpolie expressed with
the divergence of the flux, it is also a conservative term.

e Pressure transport D}; This term is named as transport term since it is also
of conservative form. However, this is a quite ambiguoumieology since
pressure effects are non-local and instantaneous, whitsport occurs slowly,
down local gradients.

¢ Dissipation rate ¢;; This term represents the decay of the turbulence, which
implies that it dissipates the energy of turbulence inta.h&€he components of
e;; allow individual components of Reynolds stresses to dagsipt a different
rate.

For the practice of turbulence modeling, the equationsuidoulent kinetic energy
k and its dissipation rate are usually involved. The equations fbrande define the
dynamics of turbulent kinetic energy, and illustrate thganphysical mechanisms in
a turbulent flow within the framework of Reynolds-averagagpgproach.

The exact: equation is derived by taking the half of the trace of Efj5)

DE
—=P+D - 2.7
— = P+D—, @7

where the turbulent kinetic enerdy= 1/2w;u;. The terms on the right-hand sidg
D ande, can be interpreted as productiontgfdiffusion/transport of: and dissipation
rate ofk, which are Hanjali¢ 2005)

oU;
P= - Ui”LLja—xj, (28a)
0 ok 1 1
D= T — —m 2.
o, <V0xj QUZUJUJ ppuz) , (2.8b)
ou; \ 2
— L. 2.
€ l/(a%) (2.8¢)
The exact equation is given byMlansouret al,, 1988
De 1 2 3 4 v t
E:P€+P€+P€+P€+DE+DE+®§—K (2.9)

12



2.1 Modeling of turbulent Reynolds stresses

where the dissipation rate of kinetic energy= 1/2¢,;. The different terms on the
right-hand side of Eq.2.9) can be identified as

Pl =— Qs O, O, Mixed Production  (2.10a)
al’l al’l 8xk
P =— 2yaul 9 OU, Production by mean velocity gradient (2.10b)
Ox; Oxy, Oxy,
92U
P?=— 2uuk% Ui Gradient production (2.10c)
8xl émﬁxl
Pl=_—2 Ou; Oui Ouy Turbulent production  (2.10d)
6;1:k 8931 6:1,7
DY = iy& Viscous diffusion  (2.10e)
8xk 8xk
Dl = — a%ku—,ﬁ Turbulent transport  (2.10f)
D = — 0 (2 9p Ouy Pressure transport (2.109)
2, .
Y =—2(v il Dissipation  (2.10h)
8a:k0xl

It has been shown that the Reynolds-averaged Navier-Seakegions contain un-
defined variables (second momemnfs;) as a consequence of averaging previously. To
close the equation set, these variables need to be suppkném order to overcome
this problem, the transport equations of Reynolds stre&spd2.5), of kinetic energy,
Eq. .7) and of dissipation rate, Eq2.9) are introduced. The transport equations for
the second moments contain some terms of third moments. r&hsport equations
for third moments can also be derived by multiplying the $g@ort equation of second
momentsz;w; with the fluctuating velocity,, and averaging, which includes terms of
higher-order moments. This problem is known asTheulence Closure Problem

The development of turbulent closure models with the franrevof Reynolds-
averaged Navier-Stokes approach has been the subjecteosestudy and numer-
ous reviews Gatski 2004 Reynolds 1976 Speziale 199]). A significant number of
closure models have been proposed, which range from thdesatgebraic specifica-
tion of turbulent velocity and length scales to the solutdifull differential transport
models. Basically, there are three levels of closure madgiently employed in the
community of computational fluid dynamics: eddy-viscositgdel, algebraic model

13



2.1 Modeling of turbulent Reynolds stresses

and differential Reynolds stress model. These three lefetodeling strategy will be
introduced in the following sections.

2.1.1 Differential Reynolds stress model

Differential Reynolds Stress Model (DRSM) is virtually theost natural and logical
level in the framework of Reynolds-averaged Navier-Stoikegroach. The DRSM
aims to obtain a numerically solvable set of transport eqoatfor each Reynolds
stress component and the dissipation rate of kinetic enefgys is quite attractive
in principle, since all the physical processes governirgewolution of the Reynolds
stresses are included in the equations. Among those pexethe very important
production term and also the advection by mean flow can be@mglwithout any
modeling. This is the main motivation of the DRSM approadiel(sten 2004. On
the other hand, some other higher-order correlations, lware very important for
evolution of the Reynolds stresses, have to be modeled. Thkeling of these terms
basically consists of the subject of developing DRSM. To elddese terms appro-
priately, the proper physical understanding, the religimathematical description and
the rational assumption are necessary most of the time.algised that the DRSMs
do not show always an indisputable superiority over otherlgeof models. One of the
reasons is that more terms need to be modeled. While thissaifbetter opportunity
to include the important processes, the advantage may hél@hif some of the terms
are modeled wronglyHanjali¢ 2005).

The basic concepts of the DRSM were defineddiwu (1945 earlier, then Rotta
made an important and lasting contribution as RS maddettg 1951). In the 1970s,
the DRSM gained more attention in the wake of the importantway Hanjalic &
Launder(1972 andLaunderet al. (1975. Since those years, many researchers have
contributed to this field and proposed numerous models. Tdaeting work involves
combinations of physical insight and assumptions on theiBpéerm’s behavior with
some self-consistent mathematical descriptions to olaaiexpression of the term,
which is explicit in the certain dependent variables, tilsaReynolds stressegu;,
mean velocityU;, strain-rate tensa$;;, vorticity tensorlV;;, kinetic energyt and its
dissipation rate.

14



2.1 Modeling of turbulent Reynolds stresses

The definitions forS;; andWW;; are as following

1 (OU, o,
Si =3 <axj + axz-) , (2.11)
1 (OU, o,

Note that the sum of symmetric strain-rate ten$gand antisymmetric vorticity tensor
W,; is the velocity gradient tensof{; + W;; = oU,/0x;).

In the exact transport equation for Reynolds stresses,Z%), the production term
(P;;) can be treated exactly, while certain models are requoethe dissipation term
(¢i;), diffusion/transport term7),,) and redistribution termg(;). Extensive research
effort has been given to the modeling of above terms. In teviing chapter, an
example will be given to illustrate the details of DRSM foettase of fully developed
rotating channel flow.

2.1.2 Algebraic Reynolds stress model

Among various RANS approaches, the eddy viscosity modeMENas received the
most consideration and has been applied to many problenestadiis simple form
and affordable computation cost. However, an EVM evengdalils to represent many
complex features of turbulent flows. The differential Regscstress models (DRSM)
include significantly more flow physics, but the applicattorindustrial flows is still
challenging Haaseet al., 2006. Faced with higher demands on prediction accuracy in
more complex flow situations, the need for more accurate Hioteat RANS models
has become important.

The explicit algebraic Reynolds stress model (EARSM) hanlo®nsidered as an
alternative to EVM. Positioned at an intermediate levelhsetn EVM and DRSM,
the EARSM extends the linear Boussinesq hypothesis bydaotiog a more general
polynomial representation that should allow for the prédicof more complex flow
physics. This general algebraic relation is obtained by $irsplifying the differen-
tial transport equation for the Reynolds stress anisottepgor. This simplification
results in a corresponding implicit algebraic equation $AR for the Reynolds stress
anisotropy components. The EARSM is then obtained from sotgpolynomial repre-
sentation of the anisotropy components whose terms arédmsof the strain rate and
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2.1 Modeling of turbulent Reynolds stresses

vorticity tensors as well as additional scalar paramefense. EARSM thus inherits the
simplicity and (some level of) robustness of the eddy viggasodels but also retains
the potential for representing the turbulence anisotropy.

Algebraic Reynolds stress models are written directly mmte of the turbulent
stresses and therefore do not rely on the Boussinesq apmaban. This enables these
models to predict some degree of anisotropy compared todtig wscosity model.
Whereas, when applying the implicit algebraic model to the-tor three-dimensional
flow, one usually finds some numerical issues raised. Thigdaumse that the equation
system of algebraic relations needs to be solved directlthimReynolds stresses, es-
pecially there are no diffusive terms contained in the algetReynolds stress model.
To alleviate the above numerical difficulties, much eff@asiveen devoted to the devel-
opment of explicit algebraic Reynolds stress models. Hewevlot of mathematical
steps are necessary to make the algebraic relations éxpliece benefit to perform-
ing all of these additional works during the formulation b&tmodel is that resultant
explicit algebraic stress models provide a significant sasings compared to the dif-
ferential equations of the full Reynolds stress model.

The very first ARSM in turbulent flow was developedRgdi (1976 from DRSM
equations. The following developments of ARSM were coneat on the explicit
form of the algebraic relations. As will shown in later seati the nonlinearity of
implicit algebraic relations forms the major obstacle tokeexplicit ARSM and the
studies so far differ mainly by the treatment of productissipation rationP/= ap-
pearing in the implicit form of ARSM. Accordingly, the modetoposal can be cata-
logized into three major approaches.

Implicit P/e

Pope (1979 proposed the idea of using ten tensor groups to form a demnsis
explicit relation was proposed, as well as the relation War-tlimensional flow with
leaving the production-dissipation ratio®(¢) in the implicit form. This approach
was later extended and solved for three-dimensional flowEalbee(1992), Taulbee
et al. (19949.

Universal constant for P/

A different approach was taken lyatski & Spezialg1993, where the equilib-
rium value for P/ in homogeneous shear flow was assumed to be a universal con-
stant. Thus this model is considered only exactly self-sbast in equilibrium homo-
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2.1 Modeling of turbulent Reynolds stresses

geneous shear flow and might be inconsistent to extend thikehieyond the equi-
librium flows. Actually, the assumption of a constante resulted in a model that
produces the wrong asymptotic behavior in rapid distor@adland also may become
singular under some circumstances. Therefore, some addittorrections have been
proposed, such aSatski & Spezialg1993, Speziale & Xu(1996, Rumseyet al.
(1999, Jongen & Gatsk{1998&), Antonello & Masi(2007), to improve the consis-
tency condition. Extensions of EARSMs to account for amggut dissipation rate
have been proposed I§u & Speziale(1996, and extended to inhomogeneous flows
by Jongeret al. (199&).

Solving P/e

The P/= can be obtained by solving a third-order polynomial equefar two-
dimensional flows, as proposed Gyrimaji (1996, Johansson & Wallifi1996), Wallin
& Johanssor{2000 extended it to the compressible flow. The rotation and durea
effects are included bwallin & Johanssor2002. Grundestanet al. (200%), Grun-
destamet al. (2005) derived the EARSM based on a nonlinear pressure stragn-rat
model. In this approach, the solution for two-dimensior@ai8 are extended to three-
dimension as first approximation.

2.1.2.1 Weak-equilibrium condition

As a matter of fact, the derivation of three mentioned aboRSKs has to invoke
the weak-equilibrium assumption inevitably. The generahl+equilibrium condition
(Rodi, 1972 1976 is used to derive the implicit ARSM from the differentiahirsport
equation of Reynolds stress anisotropy. For the mean ctiamgerm, this condition
assumes that mean flow advection in inertial flows for the Rigstress anisotropy
tensorb;; (= 7;;/2k — 6;;/3) is zero,
Db,

= 2-1
i -0, (2.13)

wherer;; = w;u;. Note that the Reynolds stress anisotropy tergonere is differ-
ent from previously used;;, and the relation between this two parameter2bjs =

a;j. Both of them are used widely for the turbulence modelinghie framework of
Reynolds-averaged approach. For the diffusive transpam,tthe weak-equilibrium
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2.1 Modeling of turbulent Reynolds stresses

condition yields that the entire transport termrgfis proportional to that of the turbu-
lent kinetic energyk, that is

whereD,; represents the entire transport term of the Reynolds sthesan be parti-
tioned and written as

_ t v
Dy = Dy + D+ Dij

= —a;zkuiujuk — aixk <§Ui5jk + %ujéik) + Vi, (2.15)
whereDj; is the turbulent transporD);; is the pressure transport afi; is the viscous
diffusion, withD = D;;/2in Eq. 2.14).

The validity of the weak-equilibrium condition greatly deqs on the nature of the
flow. When the spatial change of the turbulent flow is modexatethe energy balance
is in equilibrium, this assumption is well supported. Hoeewn formulating implicit
ARSM equations in flows relative to non-inertial frames othaflow curvature, this
assumption does not hold. As suggesteRogli & Scheuere(1983, a generalized
condition that can include the effects of system rotatiostogamline curvature be-
comes necessary in order to accurately predict such flBeméeyet al,, 2001, 2000.

In the later section, more detailed discussion will be asii¥d on this issue.

2.1.2.2 Rodi ARSM

Virtually, Rodi's ARSM (Rodi, 1976 is the starting basis of many other ARSMs de-
veloped later, therefore, it will briefly reviewed here. Rpdstulated that

DTZ'j Tz’j D]C o
bt kD" (2.162)
Dij — %@ 0, (2.16b)

where ther;; = w;u; is the Reynolds stress tensor. Note that the Ed.63 is equiva-

lent with Eq. @.13. By invoking the above weak equilibrium condition, one has
DTZ']‘
Dt

Tz’j

k

= Pij+ dij —eij = 7 (P —¢). (2.17)
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2.1 Modeling of turbulent Reynolds stresses

Rodi (1976 proposed a set of simultaneous algebraic equations foehmag; ;
using the model okaunderet al. (1979for ¢,; and the isotropic model faf;;, that is

Tij € 2 2 2
?] (P—e)=1P;— Cl% (Tij - §5z'jk) -y (Pz'j - §5z'jp) - 55513" (2.18)

By rearranging the above equation, one has

s 10 (P
37 Cy—1+PJe £

Tij:k

(2.19)

For the Reynolds stress anisotropy tensarEq. .19 can be transformed as

_ 3(1-Cy) (P —36,P)
Ci—14PJe £

bi; . (2.20)
Eq. @.20 implies that the Reynolds stress anisotropy tehgas directly proportional
to the production anisotropy.

As can be seen, the; appears on both side of EQ.20, which makes this ARSM
implicit, therefore, this model is prone to instability imgatical computations. For
steady state problems, very small under-relaxation fauasrto be used and for un-
steady state problems, very small time step has to be usediér to obtain con-
vergence Taulbee(1992). In addition, the second term of Eg2.L9 may become
singular , when its denominatar, — 1 + P/e approaches zero. To prevent this nu-
merical instabilityRosenay1989 proposed regularized version of Rodi's ARSM to
overcome the possible singular behavior of EB.19). It can be concluded that the
above-mentioned drawbacks coming along the implicity reatwill compromise the
advantage of ARSM possessing. Naturally, pursuing the@kfdrmulation for;; or
b;; becomes the major direction for developing ARSM, and twadgiworks will be
reviewed in the following sections.
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2.1 Modeling of turbulent Reynolds stresses

2.1.2.3 Gatski and Speziale ARSM

The differential transport equation for the Reynolds stassotropy tensds; is given
by (Gatski & Rumsey2007)

Dbij . 1 (DTij Tl'jDk’)

Dt 2k

Dt k Dt

k 3

iy 1 Tij
+ (bisWi; — Wibgj) + ok + oF (Dm - ) , (2.21)

whereg;; is the pressure-strain rate correlation modele®pgzialeet al. (1991)

= — by (E - 5) - 251" - (bikskzj + Sikbrj — gbmnsmn(sij)

P
gbij = — <O? + Cllg) €bij + Cgk’Sij
2
+ Csk <biszjk + bk Sik — gbmnsmn) — Cuk (bitWij — Wirbe;) . (2.22)

By introducing the weak-equilibrium condition (Eq2.13 and @.14) and sub-
stituting the pressure-strain correlation given by EoR?) into Eqg. €.21), one obtains
the implicit form of the ARSM

bij 2
0=— a_] —as <bz‘k5kj + Sikbrj — gbmnsmn(sij)
4
— alsij -+ a9 (bszk] — Wlkbk_]) . (223)
The coefficients in this implicit form are given by
L _Cima 2 G
w 04 _ 27 1 — 3 9 )
C C
CL2—1—74, a3:1_737
Cl p. c 1" Pl
MZ{CJ+Q—+J—} :Th+%ﬁ : (2.24)
2 € 2 €

with €9 = 3.4, C} = 1.8, C3 = 1.25, Cy = 0.40 andt = k/=. These coefficients are
obtained directly from the SSG pressure strain-rate caticgl model.
Eq. 2.23 can be rewritten in matrix notation as

1 2
——b—as (bS + Sb — 3 {bS} I) + ay (bW — Wb) = R, (2.25)
Qy
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where{} is the trace operation, e.§bS} = b;;5;;. I is the identity tensor. For current
linear pressure strain-rate model the isotropic disspatate, it follows thaR = a,S.
However, theR can contain any known symmetric, traceless tendongen & Gatski
1998).

Eq. .23 forms the so-called implicit ARSM and can be solved by aenattion
procedures numerically. However, such procedures can ivemcally stiff for most
of the cases, especially for the complex flow. Therefores dasirable to arrive at an
explicit form of Eq. @.23), still the algebraic character remains. The first attenge w
done byPope(1979, who proposed that a general expression for the tépsoray be
formed with.S;; andW;; by using a three-term basis for two-dimensional flows. This
form can be written as

3
b=> a,T", (2.26)
n=1

whereT® =S, T® = SW — WS andT® = S? — 1/3 {S?} I form the three-term
integrity basis. They,, are scalar expansion coefficients which need to be detedmine
Eq. .25 can be solved by projecting this algebraic relation onetémsor basis
T(™) jtself. For this solution, the scalar product of EQ.Q5 is formed with each of
the tensord' ™), (m = 1,2,...N) (Gatski & Rumsey2001; Gatski & Spezialg1993
Jongen1998. This procedure leads to the following system of equations

N

D an| - ai (T, T) — 2a5 (T™S, T™)

n=1 4

+ 2a; (T™W, T™) | = (R, T™), (2.27)

where the scalar product is defined(88™, T™)) = {T" T}, In a more compact
form

N
> a,A=(R,TM), (2.28)
n=1

with A being theN x N matrix, whose definition for two-dimensional flow is

1 1
——n"  2a'R* —azn’
ay 9 3
Apn = |2a9m*R?  ——n*R? 0 . (2.29)
1 “ 1
__ 4 0 = 4
I 3a317 6a477

21



2.1 Modeling of turbulent Reynolds stresses

The inversion ofA leads to the following expressions for the representataei-c
ficients

Qg

ay = — — ({RS} + 2asa4 {RWS} — 2a3a, {RS?}) (2.30a)
Qo
{RWS}
Qg = Gy |:CL20(1 + R | (2.30b)
2
Q3 = — Qy {agoq + 0 {f;s }} ) (2.30c)

whereay = 1 — 2a3ain® + 2a3a’n*R?, R* = —{W?} /{S?*} andn?® = {S?}. As
stated previously, sincB can be any symmetric traceless tensor, the EQ( is the
general solution valid for two-dimensional flow. In the ARSWGatski & Speziale
(1993, theR = ;S as a consequence of using linear pressure strain-rate raodel
isotropic dissipation model. This fact yields a quite siiogion of the right-hand side
of Eq. (2.28 with only one non-zero entry fofR, T™)

{RS} a1772
(R, T™) = | -2{RWS}| = | 0 |. (2.31)
{RS?} 0
Then thex,, can be further simplized as
ap = — 14 (2.32a)
Qo
vy = A4a00071, (2.32b)
a3 = — 2a3a400. (2.32¢)

Substituting of Eq. Z.32 into Eq. @.26), one obtains the explicit algebraic form
for the Reynolds stress anisotropy tenbsor

b=a [S + azas (SW — WS) — 2a3a4 (82 — % {s*} I)} : (2.33)
or for the Reynolds stress tensor
T = %/{31 -+ 2]{?&1 |iS + asay (SW - WS) — 2&3&4 (82 — % {82} I)} . (234)

It should be noted that, in Eq234), thea, is a function ofP/e, as shown in Eq.
(2.24). Gatski & Spezialg1993 treated theP/s to be constant, then the expression
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above can be simplified. A different approach, which accedithe variation o’/
is proposed later bying & Canuto(1996 andGirimaji (1996.
According to the definition, the production-dissipatiotion can be easily ex-

pressed as

P k
—=-2- {bS}. (2.35)

The insertation of above relation to EQ.24) leads to the following expression faj

k

k
ay = {71 - 2—70041772} - (2.36)
€ €

From Eqgs. 2.32 and @.36), one can derive the following cubic expressiondgr

2
2 3 o1 2 1 2 k 2
_ DN s
’70051 7’]2(1{3/5) aq + 4774(]{7/5)2 [71 <€) Yoai1
2
ap+ - (2.37)

-2 (E) <§ - o+

To obtain the proper solution of this equatialgngen & Gatsk{199&) lean on an
asymptotic analysis whereby the correct solution is théwath lowest real part of the
above polynomial.

Once again, be noted, that above explicit form of ARSM is liertivo-dimensional
flows. Whereas,Jongen & Gatsk(199&) argued that Eq. A.:34) can be used as
an approximation in the case of general three-dimensiomakfl Actually, the exact
solution for three-dimensional flows consists of ten inae@at tensor basis, which
will be numerically difficult for practical applications,one details can be referred to
Jongen(1998.

2.1.2.4 Wallin and Johansson ARSM

Different with approach taken iyatski & Spezial¢1993, Wallin & Johanssoii2000
(hereafter as WJ) proposed a new explicit algebraic Regraiteéss model. The major
difference between the models Ghatski & Speziald1993 andWallin & Johansson
(2000 may be considered as the difference of adopted pressars-sate model. On
the other hand, the issue regarding the production-dissipeatiop/ remains here,
and solved by a cubic equation as well. The procedure of idgriwvJ model will be
reviewed briefly.
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2.1 Modeling of turbulent Reynolds stresses

The weak-equilibrium condition is still invoked for deng the WJ model, and the
following implicit algebraic equation can be arrived

2 2 ‘
(P —¢€)ai; = Py = 3Poyj — ej + 5€0 + 65 + i, (2.38)

3

where pressure strain-rate tetfy) is split into two terms, namely show papf; and
rapid part¢;;. The rest terms have the same expression as shown in E&). (
Apparently, in the WJ model, the isotropic dissipation ratedel is also adopted.
Note that the original nomenclature is kept here for Reymsldess anisotropy tensor
aij (= 2bi;).

To close the Eqg. 4.38, the ¢;; and¢;; have to be modeled. In WJ model, the
models ofRotta (1951 and Launderet al. (1975 for slow part and rapid part are
adopted, respectively, which are

Qbfj = — 01€a7;j, (239)
: Cy+8 2 30C, — 2 (oU; 0U;
8Cy — 2 oU}, Uy,
-0 (—uiuk—axj — ujuk_@xi ) ) (2.40)

The constant’; in the ¢;; was originally suggested to lie4 by Launderet al.
(1979, but more recent studies have suggested a higher value g9, such as
Lumley (1978, Shabbir & Shih(1992, Taulbee(1992. By substituting Egs. 2.39
and Q.40 into Eq. .38 and setting th€', = 5/9, one can obtain an implicit alge-
braic relation for Reynolds stress tenagr

P 15 4 o
(01 -1+ ;) a;; = _gsij + 9 (aikazj — Wiars) , (2.41)

where S]; = Sijk/e and W = Wi;k/e. Eq. @.41) can be rewritten in a matrix
notation

Na = —gsT + (aW’™ — WTa), (2.42)
where N is related the production dissipation ration by
9 P
N:Z{Cl+1+;}. (2.43)
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2.1 Modeling of turbulent Reynolds stresses

Once again, the explicit representation of EJ.4Q) is required to avoid the nu-
merical difficulties. Following the procedure proposedRnpe(1975, Wallin & Jo-
hanssorf2000 proposed a general relation for the Reynolds stress aosotenson
using ten tensor basis in terms®f andW~ for three-dimensional flows

T T2 1 T2 1
+ 54 (STWT o WTST) + 55 (ST2WT o WTST2)
2 2
+ B (STWT2 + W87 — §]VI) + 37 (SﬂWT + WTS™ — 3 VI)
+ 68 (STWTST2 o ST2WTST) + 59 (WTSTWT2 o WTQSTWT)
4 610 (WTST2‘WT2 o ‘WT2ST2‘WT) 7 (244)

where theg, (1 < n < 10) coeffcients may be functions of the five independent
invariants in terms o8” andW7. These invariant are given by

IIs= {S™}, (2.45a)

Iy = {W™}, (2.45b)
s = {S™}, (2.45¢)
IV = {STW™}, (2.45d)

V= {ST?W}. (2.45e)

By inserting Eq. 2.44) into Eq. .42 and using the Cayley-Hamilton theorem
to reduce the higher-order tensor groups, one can obtairg themefficients. For
two-dimensional flows, there are three independent gro§s: (S™ — IIsI) and
(STW™ — W7S7), and only3; and 3, are non-zero coefficients. Then, the repre-
sentation fom can be formed as

a=/S"+ 0, (SSWT—W'S"), (2.46)
where
6 N
Gy = — ENT 2l YT (2.47a)
6 1
By = — SN 2l YT (2.47b)
(2.47c)

25



2.1 Modeling of turbulent Reynolds stresses

From Eqgs. 2.43, (2.47) and @.42, one can obtain a cubic equation for the un-
known N
N® — C{N? — (f—gﬂg + 2HW) N +2C Iy =0, (2.48)
whereC] =9 (C, — 1) /4.
The aboveN-equation can be solved in a closed form with the solutiontter
positive root being

] .
S (P VR wsion(P o+ VE) [P+ VBT Rz,
N={ (2.49)
; 1 P
G, (P2 + P,)"/% cos| ~arccos| ———— P, <0,
3 3 PP
where theP, and P, are defined as
c? 9 2
P=|—+—I¢g— =11 ! 2.50
= (5 + s - 31w i (2.500)
c? o9 2 K
Po=P— | —+ =Ilg+ =1 . 2.50b
2 1 < 9 + 10'ts + 3 W) ( )

For three-dimensional flows, thE-equation is of six order, where the analytical
solution can not be obtained. Therefoviallin & Johanssorf2000 suggested to use
Eq. 2.48 as an approximation. Accordingly, thk coefficients are

6  N(2N?—TIly)

0= 5 INE 20 2N — T (2.513)
—1

ba =~ %(]\W - 211]:;) (]2‘]/\72 — IIw)’ (2.510)
2

== 15_2 (N2 — (glw) (22111\;5)— )’ (2.51¢)

fo == 35_6 (N2 — 2HW§\E2N2 — Iy’ (2.51d)

Bo = 30 ! (2.51€)

5 (N2 —21ly) (2N? — IIyy)’

where all other coefficients are zero.

Naji et al. (2004 evaluated the GS and WJ models for the turbulent flow through
a square duct which involves a secondary flow and significaisb&ropy between the
turbulent Reynolds stress tensor components. An a priatuation of these models
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2.1 Modeling of turbulent Reynolds stresses

is made using direct numerical simulation (DNS) results af/idr-Stokes equations.
Comparisons of results from EASM and from DNS shows thatelmesdels are able
to predict reasonably well such flows. It is concluded that®@8 model, which is of a
three tensor basis should be more convenient for engirgeagplications, and can be
used as an optimal approximation for three-dimensionaldlow

2.1.2.5 Inclusion of rotation effects

Turbulent flows are known to be sensitive to the system kmadffects. It is also clear
that the differential Reynolds stress models are capabbapture these non-inertial
effects. Therefore, it is understandable that the ARSMschvtlerived from the dif-
ferential Reynolds stress model, can inherit the abilitygpresent the system rota-
tion effects. However, this sensitivity is partially lostrough the weak-equilibrium
assumption invoked in order to derive the ARSM. It has beawshthat, in princi-
ple, this deficiency can be removed by extending the weakHequm condition to
non-inertial frames, such &pezialeg(1979, Spezialg(1998, Weis & Hutter (2003,
Gatski & Wallin (2004, Hamba(2006. The common agreement is that, the extra term
birQk; — ixbi; should be included into Eq2(23) to fully account for the non-inertial
effects, wheré),; is the system rotation rate tensor.

As a result, for the GS model, the rotation effects can baughed by the following
implicit algebraic model.

bi; 2
0=— a_] —ag (bz‘kskj + Sirbr; — gbmnsmn(sij)
4
—a15;5 + ag (bW s — Wib;), (2.52)
where 1
Wi = Wi + —Q. (2.53)
5)

The above result shows that, to include the rotation effictaigh an extended weak-
equilibrium condition, the resultant implicit algebraiguation is only altered through
a change in vorticity tensor. Since Eg2.%2) is an implicit equation fow;; in the
inertial frame, it needs to be transformed into the nontiakframe to preserve the
frame-invariant property, which is given by
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2.1 Modeling of turbulent Reynolds stresses

Z_?i' - = - 2 _
0=———as (bz‘kskj + Sikbr; — gbmnsmn(sij)
Q4
— algij -+ a9 (Z_?ZkW]:] — 7;];[_%]') i (254)
where .
Wiy = Wi — einble = Wi + a_Qij — €k, (2.55)
2

and the tensa®,; is simply related to the rotation rafe, by
Qij = _Eijkz'-Qk- (256)

So that .
Wij =Wy — (1 + a_) €ijk Sk, (2.57)
2

wheree; ;. is the permutation tensor.

For the WJ model, the similar methodology is adopted to ihelthe rotation ef-
fects, details can be found Wallin (2000, Wallin & Johanssor§2002, Grundestam
(2000, et al.

2.1.3 Eddy viscosity model

The concept behind the eddy viscosity models is that the amkrReynolds stresses,
a consequence from the Reynolds averaging procedure, afteledousing mean flow
parameters, such as velocity gradients, and an eddy vigegswhich was proposed
by Boussinesq more than a century ago

ou;  oU; 2
wu; = —v (z,y,2) (6:1:- + 8;1:j) + §k5ij’ (2.58)
7 7

The expression for the Reynolds stresses can be algelraey lor non-linear, by
which the eddy viscosity models can be further sub-dividéalfour classes, which are
algebraic (zero-equation) models, one-equation modeisetjuation models and non-
linear models. By definition, an-equation model indicates that a model that requires
solutions ofn additional differential transport equations in additiorthose expressing
conservation of mass, momentum and energy. In the conteddyf viscosity model,
these additional differential transport equations argespd to provide the velocity
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2.1 Modeling of turbulent Reynolds stresses

scale and the length scalBrédberg 2007) for the formulation of eddy viscosity;,
which is
vy =u-1, (2.59)

whereu is the velociy scale andis the length scale.

The two-equation level of closure attempts to develop thesport equations both
for the velocity scale and length scale of flow. In the contéxtvo-equation closure,
many different models have been proposed. The main differamong these models
is the choice of the length scale quantity. The mostly usedaguation model is that of
k- model, which uses the dissipation rateappearing in thé-equation to construct
the eddy viscosity. Another widely used two-equation masléhek-w model, where
the w is the dissipation per unit turbulent kinetic energy or sfieclissipation rate
(Wilcox, 1993.

The k — ¢ type of two-equations models uses the turbulent engrgyconstitute
the velocity scalek'/?, and the turbulent energy dissipation ratéo constitute the
turbulent length scale, formally®/2/s. Thus, the eddy viscosity, is given by the
relation 2

v = C’u? = Ckr, (2.60)
wherer = k/e.

Note that there are several notable deficiencies with albevdéype of models,
namely linear eddy viscosity model. One is the isotropy & #uady viscosity as
consequences of Boussinesq approximation, which assurdiesch proportionality
between the turbulent Reynolds stresses and the meanrsii@tensor. This very fea-
ture leads the failure for prediction of turbulent flows inmscomplex cases, such as
the secondary motions in ducts. Another deficiencies wiisdr eddy viscosity model
is that of insensitivity to the non-inertial effects, sucimposed rotations, since the
sole dependence on the strain rate (2059), which is material frame indifferent. To
remedy these deficiencies, possible choices are the mdidifican a case-by-case or
ad hocbasis, such akaunderet al. (1977, Howardet al. (1980, et al.; or to extend
the one-term tensor representation to a nonlinear muligptas representation, which
forms the category of nonlinear eddy viscosity model, sw®yezialg1987), Taulbee
(1992, Mompeanet al. (1996, Craft et al. (1997 et al. It may be conclude that, in
the framework of eddy viscosity model, the nonlinear eddbcosity model approach
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2.1 Modeling of turbulent Reynolds stresses

offers a relatively more rigorous manner for prediction ofmplex flows compared to
that of linear eddy viscosity models. The general form fanuleg the nonlinear eddy
viscosity model may be expressed as

N
2 /
n=1

whereTZ.(j") are the tensor bases angl are the expansion coefficients which need to be
determined.

Since one of the advantages with the nonlinear viscosityeisod the ability of
represent the anisotropy of Reynolds stress tensors, tiaig)stforward to reform the
equations in terms of the Reynolds stress anisotrapjeshich leads to

N
by = Ty, (2.62)
n=1

which may be found identical to EqR.26), which is used to derive algebraic Reynolds
stress models. As a matter of fact, the ARSMs and NLEVMs stteesame basic
formulation, and in both cases, an explicit tensor repregem forb;; is obtained in
terms ofS;; andWW;;. The identifying feature to distinguish these two types oidel
are the technique to obtain the expansion coefficiept#\s shown in previous section,
in the ARSM case, the projection method and Cayley-Hamilt@orem are used to
obtain such coefficients in a mathematically consistertifasfrom the differential
Reynolds stress model; while in the case of NLEVM, the exjmnesoefficients are
determined based on calibrations with experimental or mioaledata and physical
constraints. To illustrate such ideas, two examples willjiven below.

Shihet al. (1995 proposed a quadratic model

b= als + Qo (SW — WS) . (263)

Theq; coefficients are determined by applied the rapid distotti@ory constraint
to rapidly rotating isotropic turbulence, and the realiligbconstraints

755 =20, NOsum (2.64a)

74, <TgsTy,. Schwarz inequality (2.64b)
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2.2 Modeling of turbulent heat flux

The coefficients are further optimized by comparison withezkment and numerical
simulation of homogeneous shear flow and the inertial s@blay

Craftet al. (1996 argued that higher-order terms are necessary in ordeethqr
flows with complex strain fields. To this en@raft et al. (1996 proposed a cubic
model

b :als + Qo (Sz — %{Sz}:[)
s (SW — WS) + a (W2 _ %{Wz}l)
+ ag (w?s L SW2 g{SWZ}I) Lo (WS? —SPW).  (2.65)

Calibration of above model coefficients is based on an opttion over a wide rage of
flows, which include plane channel flow, circular pipe flomadly rotating pipe flow,
fully developed curved channel flow and impinging jet flows.

2.2 Modeling of turbulent heat flux

The modeling of turbulent heat fluxes is important in manyieagring applications,
and usually found to be carried out by invoking the Reynoldsaged analogy. This
leads to the same decomposition as for the velocities, thpaeature can be expressed
as

O=0+6, (2.66)

where the capital symbol®{ represent an ensemble mean and the lower-case sym-
bols @) represent the fluctuating part. This averaging leads t&Rehaolds-averaged
equations of turbulent mean flow without buoyancy effectdiews

i _ 0, (2.67a)
al’l'
DU; 10P 0 ou;

=— - — | v=— — W, 2.67
Dt p Ox; * Ox; <V8:Ej uluj) ’ (2.670)
Do 0 00 —

whereU; is the mean velocity of the flowf’ is the mean pressurex and v are the
constant density and kinematic viscosity respectivaly:; is the Reynolds stress,

31



2.2 Modeling of turbulent heat flux

is the thermal diffusivity© is the mean temperature ang is the turbulent heat flux
with ¢ being the temperature fluctuation.

The resulting unknown;d in Eq. (2.679Q causes the same problems for the tem-
perature equation as the Reynolds stresses do for the mameinuation. Closing Eq.
(2.679 needs the supply af;d, which consists the context of turbulent heat flux mod-
eling. It should be noted that any modeling of turbulent Hieat without mentioning
the velocity models is considered incomples® (& Speziale1999. The temperature
equations are usually modeled as scalar equations withwrkaelocity field. On the
contrary, the closure of the velocity equations can be edmut with no regarding to
the temperature field in the case of neglecting buoyancytstfeAdditionally, it has
been pointed out that model for the temperature field shoatldb@ a higher level than
that for velocity field Cebeci & Bradshaw1984).

Similar to the Reynolds stresses, the prediction of theulerii heat fluxes can be
carried out using a hierarchy of models, which consist oflgrat transport models and
second-order closure modelSq & Speziale1999. The gradient transport models
include the eddy viscosity model and algebraic model. Tostraot such models,
the assumptions of dynamic similarity between temperatunck velocity fields and
gradient transport of heat momentum are usually invokednil&i methodology is
also often used to develop the second-order closure foulemb heat fluxes. Well
documented reviews about turbulent heat flux models can r&dftn So & Speziale
(1999.

Also in analogy with the transport equation for Reynoldessir the exact transport
equation of turbulent heat flux in inertial frames withoubiancy effect can be given
by

Du;0
Dt
whereP; is the production term which contains the production dudaéogradient of
mean temperature and velocity, is pressure temperature-gradient correlation term
(also known as RT-Corr.), D,y is the combination of viscous diffusion, turbulent
transport and pressure transport apds the dissipation terr®ol et al. (1997). These

= Py + ¢io + Dig — €io, (2.68)
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2.2 Modeling of turbulent heat flux

terms are given by

00 —0U;

Py = — uzu]a—x] — Uj@a—xj, (269&)
Big = o0 : (2.69b)
p Ox;
0 o0 ou; Ou;u;  100p
Dip = — | a=—u; L) - * - 2.
0 Oz (a Ox; i+ v0 8xj) Oz, p Ox;’ (2.690)
= il 2.
gip = (@ +v) Oz, O, (2.69d)

It is noted that the terms containing correlations of seawrtdgher orders in EQR(68
need to be modeledP;, can be treated in an exact manner by second or lower order
variables. Generally, a transport model for turbulent Hiet can be expressed in
terms of the gradient of mean velocity/; /0x;, gradient of temperatur@o /0x;, the
Reynolds stressegu;, the heat fluxes,;f and some time scales.

Attention here will go to the derivation of algebraic heakflnodel from the dif-
ferential transport model for turbulent heat flux estaldsbyWikstromet al. (2000
andSoet al. (2004). During this process, the weak-equilibrium conditionngaked
to obtain the algebraic relations for turbulent heat fluxmalagy with the derivation
of algebraic Reynolds stress models.

To obtain the algebraic relation for normalized turbulesaitflux, the turbulent ki-
netic energyk(= w;u;/2) and the temperature variankg = 62/2) are also necessary.
Their transport equations can be expressed as

Dk
B~ Dy + P, — ey, (2.70a)
Dk
—Dte =Dy + Py — ey. (2.70b)

In analogy with the derivation of transport equation for Relgls stress anisotropy
bi; (= wu;/2k — 0;;/3) (Gatski & Wallin, 2004, one can obtain the transport equation
for normalized turbulent heat flug(= w6/ (k*/2k,'*)) (Hattori et al, 2006 Soet al,
2004 Wikstromet al., 2000

Dg; 1 &i Py by
- P+ bip— i) — 2 | (25— 1 20 q) | 4o 271
Di = g (P 00205 [ (1) (1) +o @7
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2.2 Modeling of turbulent heat flux

wherer, = ¢, /k andry = ¢4/ky are time scales. Note that the concept of normalized
heat flux itself directly conflicts with the linearity pringde proposed byope(1983,
which has been often preferred to be abandoned in many satgport models, such
asHattori et al. (2009; Soet al. (2004; Wikstromet al. (2000. The termD¢ is the
diffusion and transport of;, which reads

o Dig Dy Dy
®i_k;1/27k;;/2__£(]{39+? . (2.72)

Eq.@.71) provides the full description for the transport equatidr¢,o which is the
basis to derive the algebraic model. By invoking the weakHdaium condition So
et al, 2004 Wikstromet al,, 2000, i. e.,

Dg
5 =0, (2.73a)
D =, (2.73b)

one can reduce EQ(71 to an approximated form for normalized turbulent heat flux

&

1 §i By By
= (Pyt g —eip) — 2 LA | 0. 2.74
k1/2k;/2( 0 + Gig — €ip) 5 {Tk(gk )+TG(69 )} (2.74)

To achieve the AHFM, the specific models for the pressure ¢&gatpre-gradient cor-
relation ¢,y and the dissipation term;, are neccesary. A rather general model for
the combined effect o,y ande;y that has been studied Wikstromet al. (2000 is
considered here, which can be written as

k 00 oU;
big — €ip = — <Cw + Cso—— % ujg@xj) 7 dio + Coolljo o~ oz,
oU; 8@
+ Oggujg oz, + Cyoti; iU a (2.75)

whereC;y ~ Csy are model coefficients.
Substituting EqZ.75) into Eq.Q.74), and after further generalization, one obtains

20;;
0 = C (2[72] + )@ CSSUé] CWWwé]
& {Tk <i L +2cw) . [@ (1 - 2C5) - 1} } (2.76)
2 €k €
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2.2 Modeling of turbulent heat flux

Wherer =1- 049, CS = 1—- 029 - 036', CW =1- 029 + 039 and @z =
(k/kg)*2(0©/0z;). The strain-rate tensd¥;; and vorticity tensofV;; are given as

1 /U, oU;
S =3 (ax» + 8;-) , (2.77a)
7 %
1 /U, oU;
Wy =3 (ax» - a@j) : (2.77b)
7 4

Furthermore, EqQ.76) can be expressed by a function of specific terms such that
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Chapter 3

Calculation of fully developed rotating
channel flow

3.1 Calculation of fully developed rotating channel flow
using LS model

In this section, a calculation of fully developed rotatirttaonel flow will be under-
taken to show the performance of DRSM. Fully developed chbfiow has been
studied extensively to increase the understanding of theharecs of wall-bounded
turbulent flows experimentallydphnstoret al, 1972 Matsubara & Alfredsson 996
1998 and numericallyAlvelius, 1999 Camboret al., 1992 Grundestanet al.,, 2008
Kristoffersen & Anderssonl993 Lamballaiset al,, 1996 1998 Liu & Lu, 2007, Pi-
omelli & Liu, 1995 Tafti & Vanka, 1991 et al. Its geometric simplicity is attractive
for both experimental and theoretical investigations ehptex turbulence interactions
near a wall. Also the turbulent flows with system rotation @asiderable interest in
a variety of industrial, geophysical and astrophysicaliappons.

It is well established that system rotation affects bothrttean motion and the
turbulent structure. The interaction of the Coriolis fovaéh the mean shear produces
stabilization or destabilization of the flow near the two lsalHere, the concept of
stability is related to an enhancement (destabilizatiom)ith a damping (stabilization)
of the turbulence levels compared to the non-rotating cadeng the unstable side
(pressure side) of the channel, the mean shear vorticigralgl to the rotation vector,
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3.1 Calculation of fully developed rotating channel flow usiag LS model

y O

Q
o= O

Figure 3.1: Schematics of the fully developed rotating clehifiow

while along the stable side (suction side), these two vecioe anti-parallel. This
situation can lead to the complete suppression of turbeland the relaminarization
of the flow on the stable side of the channel if the rotatioe iatsufficiently high
(Dutzleret al,, 200Q Pallares & Davidso2000.

With the development of high performance computers, it beeopossible to re-
veal more details of turbulent flow with DNS and LES simulatihich are also often
used to test and validate the various closure modelstoffersen & Andersso(iL993
carried out DNS of rotating channel flow&t = 5800 andRo < 0.5 .Lamballaiset al.
(1996 andLamballaiset al. (1998 computed rotating channel flow & = 5000 and
Ro < 1.5 by DNS andRe = 14000 and Ro < 1.5 by LES. Also for the channel flow
without system rotationKim et al. (1987 computed the channel flow at Re=5600
by DNS, a large number of turbulence statistics are companeldcompared with the
experimental data. In this study, the above DNS and LES [louns will play as a
benchmark, to show the performance of turbulence modeh#@ptediction of fully
developed rotating channel flow.

The schematics of fully developed turbulent flow betweemfmite parallel walls
rotating around spanwise axis shown in R3gl. The resulting flow, which is assumed
to be incompressible, is characterized by the following m&aeamwise momentum

equation:
10Py; d__  d*U
—= - —uv+vrv——7.
p Ox dy dy?
In the above equation, the gradient of effective presgufe = P — pQ?r? is uniform
in entire flow field. Also Eq. §.1) shows that the total shear stress varies linearly

across the channel as in non-rotating flow.

0:

(3.1)
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3.1 Calculation of fully developed rotating channel flow usiag LS model

As to the turbulence model, the model developed.bynder & Shima1989 is
adopted because it predicts a variety of flows fairly well afsb its relatively simple
formulation. For clarity, some model details will be revehbriefly here.

As shown in the exact transport equation of Reynolds stezssot, Eq. 2.5), the
turbulent production?;; and viscous diffusiorD}; are treated in exact forms. Addi-
tionally, the Coriolis production termy;; to include the rotation effects can be also
treated directly. While the others terms need to be modeled.

The turbulent transport of Reynolds stré3fs is represented by the general gradi-
ent diffusion hypothesis, as shown previously.

0 ( k_am)

— | Cs—w1y
oxy, € r;

to_
Dl =

(3.2)

where theC; = 0.22 here. Although this simple choice has been made for computa-
tional convenience rather than accuracy, the relative pamance of diffusive trans-
port in the stress budget for the boundary layers means tisatle errors are unlikely
to have a significant effectaunder & Shimg1989). In addition, the pressure trans-
port effect has been modeled together with turbulent tramsp Eq. @.2) by adjusting
the coefficient’,.

The pressure strain-rate correlation (redistributiomptes modeled as

Gij = Gij1+ ij2 + Gij3 + Dij1 T Pijo + Diss (3.3)
where
;2
¢ijn = — Ciea;; = —Che (U;J _ 5(5”.) 7 (3.4a)
2
Gijo = — Cy (Pij - gfsijp) ) (3.4b)
1 2
Gijz = — 502 Cij — 55@'0 ; (3.4c)
w wE [ 3____ 3
17,1 :Cl % UkUlnlnk(Sz'j - éuiuknjnk — éujuknmk fw, (34d)
w w 3 3
1.2 =Cs <¢kl,QNknz5ij - §¢ik,2njnk - §¢jk,2nmk) Jw (3.4€)
w w 3 3
i7,3 :Cg <¢kl,3nknl(3ij - §¢ik,3njnk — §¢jk73n,’nk) fw. (34f)
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3.1 Calculation of fully developed rotating channel flow usiag LS model

In the above redistribution model, thfg is the near-wall damping function, taken as

K32 (1 1
fw—ﬁ(§+2d_y)a (3.5)

with y being the distance normal to the wall ashdeing the half width of the channel.
Note that in thdeaunder & Shimg1989 redistribution model, three non-dimensional
parametersd, A, and A; are employed to offer a convenient way to meet the two-
component limit, which requires that the velocity fluctoatiof normal to the wall
falls to zero more rapidly than the other two components hytinaity, as wall is
approached.

The coefficients in the redistribution model here are a®valg

Cy =1+ 25844 {1 — exp [~ (=0.0067Re;)*] } (3.6a)
Cy = 0.75AY2, (3.6b)
op =~ %01 +1.67, (3.6c)
Cy = maxK%OQ - %/02) ,0} . (3.6d)

For the dissipation rate of Reynolds stress tensgr, the assumption of local
isotropy is adopted:
2

€ij = §5ij€~ (37)

For the dissipation rate moddlaunder & Shimg1989 also used these parame-
ters, so did by thélanjali¢ & Jakirlic (1993 model later. Finally, the dissipation rate
of turbulence energy, is obtained by solving

De d k2 de 5 g2
Dl d_y {(Oa? + V) d_y} + (Co1 + 1 + 92) EP — CgQﬁ; (3.8)
where
Y = 2.54 (g — 1) , (3.9a)
iy = 0.3 (1 — 0.3A5) exp [~ (0.002Re,)?] , (3.9b)

wherey; has the effect to reduce turbulence length scaleyambntrols relaminariza-
tion of turbulent flow under favorable pressure gradiente Thefficients., C.; and
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3.1 Calculation of fully developed rotating channel flow usiag LS model

Table 3.1: The terms in the transport equations of Reynatdsstensor

Terms

u uv v
dU —dU
P o _2
i uv a0 a0 0 0
2 2 2
€ij 3¢ 0 3¢ 3¢
Cyy 4070 20, (ﬁ - v2> 4070 0
I RN v _,% o (w2 | 2o (w2
¢U>1 Cl 2 (u 31{3) Cl 2 (UU) Cl 2 (U 3]€ Cl 2 w 3]€
2 2 2
Gijo | —C (Pu - gp) — Py 02513 C’zgp
¢z’j,3 —2029;»,% —0293 (F - u2) 20293% 0
w wE (— wE€ 3__ w & — wE (—
| ap(P)e | ooy (‘5"”) fo | orp ()0 | g (@) A
5,2 50202 P fy 50202 P fu —50202 Pfy 50202 Pf,
v | 20CvQgTt, gogcmg (W _ u2) fu |l —ac,0v0uunt, | 2000wt

C.» in the above dissipation model are taken as their standgtdReynolds number
values [Launderet al,, 1972, respectively.

Table3.1listed the all the terms in the transport equation of Reysisliess ten-

sor, excepted for the diffusive transport term, for the #mecase of fully developed
rotating channel, wher@s is the system rotation rate.

The above equations are solved by the finite difference ndettith 201 non-

uniform distributed nodes in thedirection to meet the grid density requirements sug-
gested bySoet al. (1991, and the first computational node was situategiak 0.5.
The distance between each node is increased with an expaasion of1.05. On the
solid wall, Reynolds stresses and mean velocity are $etand for the dissipation rate
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3.1 Calculation of fully developed rotating channel flow usiag LS model

2
e=2v <M> , (3.10)
dy

which represents the exact limit. The kinetic enekgg not solved directly here, and
obtained byk = <@ +F+W) /2. The solution was assumed to have reached a
steady state when the sum of absolute normalized resideralsssthe channel normal-
ized with the time step, fell below0—°.

Stationary Case

First of all, the computation of fully developed channel flasthout rotation is
undertaken to show the basic performance of adopted DRS&) &ed compared with
the DNS data oKim et al. (1987. The computations are carried out for Reynolds

numberRe = 5600, based on the bulk mean velocity, and the channel widt@d:
Re = QUmd. (3.11)

v

To verify the grid independence, the computation with défe nodes number dis-
tributed in they direction was carried out, as shown in F§2 Fig. 3.2a shows the
non-dimensional velocity/ profile normalized by the bulk velocity,, with nodes
number51, 101, 151, 201. For the nodes numbén1, 151 and201, it shows that the
velocity profile is independent from the nodes number wittaoy discernible effect.
For nodes numberl, qualitatively inconsistent profile is shown compared wiitbse
of other nodes number. For the streamwise Reynolds sifessnilar behavior is also
observed, further proved that by using the node number nhatd @1, the computa-
tion results can be independent from the choice of nodes aunipwsoever, in the
present computation, the node number is adopted for relative high resolution and
easy comparison with DNS data.

The profiles of the mean velocity non-dimensionalized bywlad shear velocity
are shown in Fig.3.3, and also law of wall and log law are presented in the figure.
Within the sublayery™ < 5, the computational result follows the linear law as the
DNS. In the logarithmic region, however, there exits a reslde discrepancy between
these two results.

The profiles of three normal Reynolds stresses normalizeéddowall shear veloc-
ity v, and compared with DNS data are shown in Bg}, The definition for the wall
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Figure 3.2: Verification of the grid independence

shear velocity in this stationary case is as following

tr = 4 (3.12)
dy
And the local coordinatg* is
Yyt =uy/v. (3.13)

Although the general shape of the profiles is in good agregrttere exits some
discrepancy between these model simulation and DNS data.

Excellent agreement is obtained for the Reynolds sheasssttemponentiv as
shown in Fig.3.5across the channel. It is worthy to note that the correcessgprting
the Reynolds shear stress is crucial for evaluating th@pegnce of turbulent models,
since the Reynolds shear stress appears in the momentutioequa

Considering the no-slip boundary condition and contineifgation, the velocity
and pressure fluctuations in the wall vicinity can be expdradeMansouret al,, 1988
Patelet al,, 1985 Soet al,, 1997

ut=byt 4 (3.14a)
v =y (3.14b)
w =byyT 4+ -+, (3.14¢)
W = by (3.14d)

where wall units are used (normalized by kinematics viggasiand the friction ve-
locity ).
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Figure 3.3: Mean velocity/* profile

The limiting near-wall behavior of the rms of the Reynoldesses is shown in
Fig. 3.6, where

U= U/ (4y7), (3.15a)
V= Upms/ (10*y7?) (3.15b)
w = wrms/ <y+) ) (315C)
wv =uv/ (10*y™?) . (3.15d)

It is quite obvious that the LS model can not represent thdéihm wall behavior,
especially for the anduw.

Rotating Case

The computations for rotating channel flow are conductedRfeynolds number
Re = 5000 and5800 compared with the results of DNS. For this application atiht
values of the rotation number are considered, which cooredpto) < Ro < 0.5 at
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Figure 3.4: Three normal Reynolds stresses computed by Ldehoompared with
DNS data (a) in global coordinates (b) in local coordinates
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Figure 3.5: Reynolds shear stress normalized by the wadirshedocity

Re = 5800, andRo = 1.5 at Re = 5000. The definition forRo is
Ro = 2Q3d/U,,. (3.16)

Fig. 3.7compares the mean velocity represented by this work aneé fhms DNS.
The vertical axis is normalized by the bulk mean veloéity, and the horizontal axis
by the channel widtld. The left ¢y/2d = 0) and right {,/2d = 1) hand sides of
the figure correspond to the pressure and suction sidesatasgy. The result by
DNS indicates that the velocity profile becomes graduafyrasetric about the center
as the rotation number increases. The LS model represestietidency fairly well
up to Ro = 0.5. As for the higher rotation, however, the LS model gives palia
velocity profile contrary to the asymmetric one given by DMSrue fact is that, for
relatively high rotation number, e.gkRo = 1.5, the turbulent flow shows the trend
of relaminarization Dutzler et al., 2000 Lamballaiset al., 1998 Liu & Lu, 2007,
Pallares & Davidsoj2000. It appears that LS model has over predicted this trend by
giving a laminar-like velocity profile.

46


Chapter1/Chapter1Figs/EPS/Chp0-fig07.eps

3.1 Calculation of fully developed rotating channel flow usiag LS model

11

10

(o]
T

W (@) N
T T T

[\ w ESN
T T T

Figure 3.6: Near-wall behavior of Reynolds stresses

The three normal Reynolds stress componerttsy?, w? and the shear stress
are presented in Fig8.8- 3.11with the same condition as for the mean velocity pro-
file in Fig. 3.7. The overall tendency shown by the results of DNS is that #ynBlds
stresses are damped along the suction side and enhancgdlaqgressure side. The
computation of LS model represents the similar tendenaysaows fairly well agree-
ment with DNS generally foRRo up t00.5. Whereas, as was the case shown in mean
velocity profile, the agreement with DNS becomes worse wherRb increases. All
the Reynolds stress components nearly vanistkior= 1.5, which corresponds to the
laminar-like mean velocity profile, and once again, imptlest the rotation effects are
over estimated in the LS model.

Different from the definition of wall shear velocity, by Eq. 3.12) in the station-
ary case, there are two local shear velocity for pressureead suction side, respec-
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Figure 3.7: Mean velocity profile foRe = 5800, Ro = 0 - 0.5 and Re = 5000,
Ro=1.5
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Figure 3.8: Reynolds stres& profile for Re = 5800, Ro = 0 - 0.5 and Re = 5000,
Ro=1.5
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Figure 3.9: Reynolds stres8 profile for Re = 5800, Ro = 0 - 0.5 and Re = 5000,
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Figure 3.10: Reynolds stresg profile for Re = 5800, Ro = 0 - 0.5 and Re = 5000,
Ro=1.5
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Figure 3.11: Reynolds stress profile for Re = 5800, Ro = 0 - 0.5 and Re = 5000,
Ro=1.5
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tively:
au
Urp = Vd_y|p7wall7 (3173)
au
Urg = V— |s,wall~ (317b)
dy

Additionally, Kristoffersen & Anderssorf1993 gave definition for the global shear
velocity «, in terms ofu.,, andu.:

2 _
ul =

(uip + uzp) . (3.18)

NO| —

It is obvious that for stationary cag@; = 0), the mean flow is symmetric with respect
to the(z, z)-plane aty = 0 andu, = u,p = Urs.

Local shear velocities, as defined in E®.1(7), are shown as a function of the
rotation number in Fig3.12 also compared with those of DNS data.

The results of LS model shown in Fig.12follow the similar trend as those of
Kristoffersen & Anderssori1993 and Lamballaiset al. (1998 up to rotation num-
ber 0.5 generally, namely that the wall shear velocity is reducedhansuction side
and increased on the pressure side due to stabilizationestdhilization respectively.
However, the results of LS model show appreciably great@tion effect than DNS
do, which implies that the LS model is somehow over-seresitoy the rotation ef-
fects. Recall that the rotation effects are included in tBenhodel by and only by the
presence of Coriolis production and its redistributiornisiteasonable to ascribe the
over-sensitivity to the model of redistribution model,@rthe Coriolis production is
treated in an exact way.

On the other hand, for the relatively high rotation numbey, €20 = 1.5, the
LS model shows its quite positive perspective, which is thiditg to represent the
reliminarlization phenomena. In Fi§.12 around theko = 1.5, the DNS ofLambal-
lais et al. (1998 shows that.,,/u, decreases, meanwhile the,/u, increases. The
general tendency is that the, /u, andu.,/u, tend to obtain unity eventually, which
implies that the turbulent flow is relaminarlizing. The LS aebrepresents this ten-
dency fairly well, although it seems the flow predicted by L8d=l has already been
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Figure 3.12: Local wall shear velocities,/u. , u,s/u, as function ofRo. (O): LS
model,A: DNS byKristoffersen & Anderssoif1993, [ I: DNS by Lamballaiset al.
(1998.

laminarlized, since,, /v, andu,,/u, are quite close to unity. This proves the previ-
ous observation that the LS seems to be over-sensitive totagon effects, and this
is also consistent with observation of Figs8-3.11

Fully developed turbulent flows at low Reynolds numbersatighary and rotating
channels have been simulated using a second order code ywapudar differential
Reynolds stress model - LS model. It shows that the LS modablis to correctly
represent the global behavior of turbulence, give quitsfsatory agreement for mean
velocity and Reynolds stress components both for the si@tyoand rotating cases.
In this sense, it implies that the second-moment closurdis dtudy does capture
the main effects of rotation on the turbulence structure.pdrticular, the different
behavior near the two walls has been traced to the fact thedetprotating effects
damp the turbulence intensity along the suction side andras#hit along the pressure
side, which shows the potential that differential Reynatiess model possesses for
predicting the turbulent rotating flows.

On the other hand, however, the fact that the LS model fadgv®good agreement
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with DNS data for high rotation number indicates the requeat of further develop-

ment for LS model. The analyses on mean velocity, Reynoléssts, as well as the
local wall shear velocities, suggest that the LS model sderns over-sensitive to the
rotation effects, which could be the future direction fog tmprovement of the model.
Since the terms other than the pressure strain-rate atedrigean exact manner to in-
clude the rotation effects in the LS model, it is suggestatltthe more attention should
be paid for the pressure strain-rate term, to correctlyishelthe rotation effects.

3.2 Evaluation of eddy viscosity models considering ro-
tation effects

As well known fact, an inherent shortcoming of eddy visgpgipe of models is that
they are independent of imposed system rotation. So whelkc¥WMs are applied
for curvature or rotating flow, some modifications have to laento sensitize such
models to Coriolis force. A common practice is to modify thebulent length scale
by adding rotating dependent terms to the dissipation iqiet@n; another way is to
introduce the vorticity tensors to sensitize the rotatiffeats.

In this section, the predictive capability of linear and lwear eddy viscosity mod-
els will be evaluated systematically, for fully develop&dhrrotating and rotating chan-
nel flow. In this case, the imposed rotation breaks the symynoéthe flow field and
may eventually lead to relaminarization on the stable sidiseochannel. For the EVM
models, they all require the solutions of two transport éigna: equation for turbu-
lent kinetic energy and one for turbulent dissipation r&tar. the incompressible, fully
developed rotating channel flow, these two equations hawddlfowing simplified
expressions

v =f,C kT, (3.19a)
0:P—5+D+i[(u+ﬁ)d—k}, (3.19b)
dy 0./ dy
0=C* P _ fon+ B4 L Ku + ﬁ) f} (3.19¢)
Tk c dy o.) dy|’
7 =k/(c — D). (3.19d)
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The first EVM model evaluated here is that ldbward et al. (1980, which is
proposed to capture the rotation effects by adding rotategendent terms to the dis-
sipation rate equation. This model for Coriolis force effeare based on a study of
curved boundary layers lyaunderet al. (1977). In thee equation, "on the grounds of
seeking the simplest possible form”, it is chosen to accodatecurvature effects by
making the value o, depends on a turbulent curvature Richardson num®gj.(

90 (a_W - 29)

. ox

Ri = 5 .
ow
Ox

Then following the practice dfaunderet al. (1977, turbulent Richardson number

is formed by replacing the mean flow time-scale representéideodenominatgv/ox)*

with a turbulence time-scafe/c. Thus the Richardson number becomes

ri =20 (1) (57 -=0). (3.21)

€ ox

In this Coriolis-modified eddy viscosity model, the followg relations are used to
close the Eq.3.19

(3.20)

2
D=—2v (aa—\/ﬂ : (3.22a)
Y
2
E =2vy, (Z—S) : (3.22b)
Y
-2

f. =exp [—3.4 (1 + %) ] , (3.220)

Re; :k—T, (3.22d)
14

x Q Q

e {052 +1.5365%72 (E) (1 - E)} , (3.22e)

fo=1—0.3exp (—Rej), (3.22f)

whereC), = 0.09, C}, = 1.44, C., = 1.92, 04, = 1, 0. = 1.3, and(2 is the system
rotation rate. The wall boundary condition are givenkby: 0 ande = 0.

Howardet al. (1980 compared the solution of this model in a relatively low rota
tion number Ro = 0.21) with the experimental data dbhnstoret al. (1972, which
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conducted experiments on water flowing in a rotating chafioel apparatus. The in-
clusion of a Coriols force modification to the wall functishbelieved to result in a
markedly poor fit with the measured velocity profile. Alsositthought that the value
of ¢y, for the first gird spacing from the wall is too big, which wastween 15 and 30.

The another eddy viscosity model reviewed here is that megpdyShih et al.
(1995, which introduces the vorticity tensors to the quadratiations for Reynolds
stress anisotropies

bij = —CZTSU + o7’ (Sikaj - Wikskj) , (3.23)

with
Wz'j = I/Vz'j — Emz'jQrm Qm = (0, 0, Q), (324)
whereg,;;; is the permutation tensor.
The relations used iBhihet al. (1995 to close Eq. 8.19 are as

\/1 — 18022 (Sr)?

Co = — aQr (3.25a)

2
1+12(S7)° |1 S'

D =E =0, (3.25b)
v \1°

pefimen (L)) 250

yt =2 (3.25d)

1%
-1
. Q 9/0\°

wherew, is the friction velocity,f, = 1.0, C, = 0.09, C = 1.44, C%, = 1.92,
or = 1 ando, = 1.3. As for the boundary conditiort, = 0 is used at the wall, while
e = 2v(0vVk/0y)? is used for the boundary condition for dissipation rate.

Once again, theaunder & Shimg1989 model is used again to compare with the
EVMS, and the DNS database Kfistoffersen & Anderssorf1993 is used to show
the performance of above models.

As indicated from Figure8.13-3.15 the Coriolis-modified EVM oHowardet al.
(1980 presents quite reasonable predictions for the mean ¥eglkaad turbulent kinetic
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energy at different rotation numbers. The nonlinear eddgosity model oShihet al.
(1995 fails to represent the rotation effects generally, giveaaceptable predictions
for mean velocity and turbulent kinetic energy. Noted that€oriolis-modified EVM
predicts correctly the linear velocity profile on the pressside, while the NLEVM
fails to. At Ro = 0.5 and 1.5, it seems that NLEVM is insensitive to the rotation
effects.

Once again, itis proved that the DRSM is the most rationalmachising approach
in the framework of RANS modeling. As shown in Figuredd.33.15 the DRSM gives
fairly good agreement with the DNS data, and has the oveltairrstage compared the
eddy viscosity type of model.
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Figure 3.13: Mean velocity and turbulent kinetic energyfilgs at Ro = 0

59


Chapter1/Chapter1Figs/EPS/Chp0-fig15a.eps
Chapter1/Chapter1Figs/EPS/Chp0-fig15b.eps

3.2 Evaluation of eddy viscosity models considering rotabin effects

1.6

Ro=0.5

U/,

Ro=0.5 . EVM(C)
O — NLEVM
/ ™~ ~ S RSM

DNS

y/2d

Figure 3.14: Mean velocity and turbulent kinetic energyfites atRo = 0.5
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Figure 3.15: Mean velocity and turbulent kinetic energyfites atRo = 1.5
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Chapter 4

Evaluation of extended
weak-equilibrium conditions for
Reynolds stress

4.1 Introduction

This study focuses on the validity and modification of théugifve transport assump-
tion in fully developed rotating channel flow. This is accdisiped by ana priori
assessment using the DNS dataKoistoffersen & Anderssoif1993. This database
has been selected because it has been most commonly useatifelrdavelopment and
comparison with other DNSJ@kirli€ et al, 2009. Based on the asymptotic analysis
of the near-wall behavior, an alternative form for the diffie transport constraint is
proposed, and evaluated using the DNS data. Results showhéhaewly proposed
diffusive transport constraint applied to the implicit@kgaic anisotropy equation more
accurately accounts for the near-wall behavior than preshoproposed forms. This
suggests that the performance of algebraic Reynolds stredsls can be improved in
flows where rotation and curvature effects exist.
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4.2 Evaluation of diffusive transport constraint

The fully developed rotating channel flow is adopted as actest where the turbulence
structure is strongly influenced by the Coriolis force, aiifitts considerably from that
of the non-rotating case. There have been many experimemdatomputational stud-
ies of this problemJohnstoret al., 1972 Kim et al,, 1987, Kristoffersen & Andersson
1993 Lamballaiset al., 1998 Moore, 1967 that have shown that the imposed system
rotation changes the dynamic structure of the turbulent fle@nsequently, the turbu-
lence level is enhanced along the pressure side while rddcaloag the suction side,
and the diffusive transport across the channel is increasethanges sign. The correct
representation of these rotation-induced features is goiitant criteria for turbulence
model development.
The exact transport equation for the Reynolds stress aootensor;; in the

non-inertial frame is given by

Db,;

Dt

+ Qirbr; — binS

P ¢ 2 2
= —by <E - E) - gSz'j - (bz‘kskj + Sikbrj — gbmnsmn(sij)

+ <bikaj - Wikbkzg) + ;b—z - i <5z’j - %5> + i <@ij - %@> , (4.1)

with S;; being the mean strain rate tensbr;; being the mean vorticity tensor and
/V[v/ij = Wi + Qij, Qij = €imjwn, With w,,, being the system rotation rate. In E4.1),
D;; has the same form as shown in Et.3). The terms on the right-hand side include
the pressure-strain rate correlatioyy and the turbulent dissipation ratg;. These
terms are given by

b Ou;  Ouj
¢z] - p (al’] + axz)> (42a)
. 8u2 8uj

The other terms come from the turbulent kinetic energy egoat

Dk
Pt D 4,
Dt e+ D, (4.3)
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where the right-hand side represents the turbulent prastuét = —7,,0U; /0xy, the
isotropic turbulent dissipation rate = ¢;;/2 and the combined effects of turbulent
transport, pressure transport and viscous diffugion

By invoking the assumption of anisotropy equilibriudb,;; /Dt = 0, one can re-
duce and rewrite Eq4(1) as

. 1 Tij 1 1 Tij 1 Tij
0= o (Py+Ciy = Z2P) + 6 — o (21— 2e) + o (Dy - 22D), (44
oU; oU;
Py = _Tika—x;_Tjka—xk
4
= —gk‘si' — 2k (b Skj + Sirbrj) + 2k (biWi; — Wirbg;),  (4.5a)
Cij = —4k (€imkWmbrj + €jmrwmbri) , (4.5b)

whereP;; + C;; — (;;/k) P is the production termy;; is the redistribution terng,; —
(1;/k)e is the dissipation term, an®;; — (,;/k)D is the diffusive transport term.
Note that the rotation effects are represented by the grm

The validity of the original diffusive transport assumpti@ssociated with Eql1(2)
is examined. The budget of EdL.4) is evaluated using DNS data Kfistoffersen &
Anderssor(1993. All the dependent variables including the higher-orderelations
are obtained directly from the DNS, and they have been noredsionalized by and
u,, Wherev is the kinematic viscosity and. is the friction velocity. The database
used here contains DNS carried out fé¢, = 2U,d/v = 4800, with Re, being the
bulk Reynolds number based on the channel half witdémd the mean flow velocity
U,. The rotation number is defined by

Ro = 2|wy,|d/Uy. (4.6)

Figures4.1 and4.2 show the budget of Eq.4(4) for the b;;- andb,-components
for the Ro = 0.0, 0.15 and0.50 cases. Note that hereafter all the budget terms are
multiplied by 2k for better illustration as the legends shown in the plotsicSithe
production term is shown to vanish at the wall, the redistidn term balances the
diffusive transport term plus the dissipation term for allete rotation numbers. As
expected, the diffusive transport term plays a crucial iolihe b;; transport equation
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in the near-wall region. Thus, any diffusive transport ¢oaiat that neglects the dif-
fusive transport term, such as EQ4-23), is unlikely to hold for the near-wall region.
In the center of the channel, the absolute levels of the glifeutransport term are not
negligibly small. Although this suggests that neglect & dhiffusive transport term is
also unlikely to hold for the center of the channel, the pneseudy will focus on the

diffusive transport constraint in the near-wall region.

Gatski & Rumsey2007]) re-examined the assumption Ed.2) applied to theD,;
and proposed a modification. If Ed..D) is rewritten in terms of the anisotropy tensor
bija
%@ =D, — gmij — 2Db;; (4.7)
the right-hand side of Eq4(7) is shown to be the sum of the deviatoric partiof;
and a term proportional to the anisotropy tenspwith scalar coefficienD. The term
proportional to the deviatoric part @¥;; is then assumed to vanish, that is

2
and the new constraint on diffusive transport term is theemby
Tiiq

Applying the extended constraint to E4.4), one has the reduced transport equa-
tion for bij

1

0=

(Bj Oy %P) n (5—]; . i (eij _ T—kﬂg) _ %bﬁ . (4.10)

Now consider thea priori evaluation of the extended constraint. The left-hand side
of Eq. @.9) is substituted with DNS data, and compared the right-sideqo (4.9).
Additionally, considering the actual form that diffusivamsport term appears in the
transport equation df;;, it is more straightforward to scale both sides of E49) by
2k.

For the non-rotating case, Figude3 shows that this extended diffusive transport
constraint gives rather larger or opposite sign values énrtear-wall region for all
Reynolds stress components than the DNS does. For thengptases, Figure$.4-

4.5 display the same trends as the non-rotating case. Thusxteeded diffusive
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4.2 Evaluation of diffusive transport constraint
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Figure 4.1: The budget of different scaled terms in Bcd)(for b1,
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4.3 Near-wall behavior of Reynolds stress equation
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Figure 4.3: Validation of extended diffusive transport stvaint for Ro = 0

transport constraint proposed Batski & Rumsey2007) is not capable of improv-
ing the performance of ARSM in the near-wall region. Whileniay be a consistent
first approximation to assume that a constraint on the diéusansport term should
be proportional to the Reynolds stress anisotrbpyit is also necessary that some
account be explicitly taken of the presence of the wall. Bathan pursuing such a
modification, a more beneficial approach is to investigageasymptotic behavior of
the various terms in the vicinity of the wall.

4.3 Near-wall behavior of Reynolds stress equation

The discussion now will be focused on the possible modibceto improve the dif-
fusive transport constraint by the means of budget analysisanalyze the near-wall
behavior of individual terms in Eq4(4), the velocity and pressure fluctuations in the
wall vicinity can be expanded as shown in E§.14).
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4.3 Near-wall behavior of Reynolds stress equation
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Figure 4.4: Validation of extended diffusive transport swaint for Ro = 0.15 (lhs:
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4.3 Near-wall behavior of Reynolds stress equation
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4.3 Near-wall behavior of Reynolds stress equation

ut o= byt (4.11a)
vt o= ey (4.11b)
S W (4.11¢)
pt o= apt+byt+---, (4.11d)

where wall units are used (normalization by kinematic vestyor and the friction
velocity u.,).

For theb,; equation, the near-wall asymptotic behavior of budget caexpressed
as

u? _2b_i2’> + 17 g3
Pll + Oll — ?P = b_2 +B2 —+ 493 blcgy —+ . 5 (412a)
1 3
o = 2a,bi1y" +2 (@1 +bpbia) yTP 4, (4.12b)
u? bicib3 + bscsh?
e — %g =0 1015—3117303 SRR (4.12¢)
1 3
w2 i — 1202heen - 1902
D, Cp - WG 120G F12ha g o)
k b? + b2

Note that the left-hand sides of the above equations are linuwe but the symbols
are retained for simplicity.

For the Ro = 0 case, the budget of the;-component in Figurd.6 shows that
the production term is the dominant source in the ramige> 10, while the redistri-
bution term is the dominant sink. In the vicinity of the wadhg production term and
redistribution term decay rapidly, while the dissipatiordaiffusive transport terms
balance each other up to the wall. For the= 0.15 and Ro = 0.50 cases, it is readily
observed that the rotation effect plays a significant roltheabudget, since the flow
structure is significantly different compared with the notating case. However, the
relative balance between the different terms in the budgatims roughly similar to
the non-rotating case.

Recall that in the original formulation for the ARSM, assuiaps on the isotropic
behavior of the tensor dissipation ratg, = 26,;/3, and the anisotropy of the diffu-
sive transport termD,; = (r;;/k)D are made. However, Figuke6has shown that the
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4.3 Near-wall behavior of Reynolds stress equation

contributions from the dissipation rate term and the diffegransport term balance,
but are not negligible in the near-wall region. This thenuiegs that the remaining
terms in the equation balance each other in the near-watineg

For b;; equation, wall asymptotic behavior of terms in E4.4f can be expressed

as
uv +7.2, +2
Pis + 012 — ?P = —2Q3 bly + - (4133)
Gro = apby + (24,01 + 202b1) y T+, (4.13b)
1o — %g = ooyt 4, (4.13c)
uv oy R SR
Dy — ?D = —apyby —2a,c0y" + - (4.13d)

Figure4.7 shows the budget of thig, equation. For the non-rotating and rotat-
ing cases, the dominant source is the production term, wide@ominant sink is the
redistribution term through most of the channel. As the w&#ipproached, the dissi-
pation term decays a8(y "), and the production term decays fasterdg*?). The
redistribution term remains large, and remains in balante diffusive transport term
for y© < 10. The asymptotic analysis also shows that in the wall vigjriie redis-
tribution and diffusive transport terms decay@@g,°). At the wall, the redistribution
term is equal to the diffusive transport term.

In the RANS formulation, the velocity pressure-gradiemirtél;; is usually split
into a pressure transpdftfj term and a redistribution tergy; (Mansouret al.,, 1988).
The corresponding expansions of these three terms fdr ff@dmponent are

My, = —2bicayt +-- | (4.14a)
P12 = %+2(R+m)y++”w (4.14b)
@?2 = —apbl -2 (2b162 + m) y+ + - (4140)

Equation 4.14) shows that thél,, is of O(y™) and thatp,, andD?, are of O(y°).
Thus thell;; component is negligible in the near-wall region. Based andbserva-
tion, one can conclude that, balancesDY, in the near-wall region. Since tHBY,
component makes the major contribution to the diffusivedpeort termD,; —(7;; /k)D,
it means that the diffusive transport term balances thestellution term in the near-
wall region. This is consistent with the conclusion drawonirthe budget analysis
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4.4 Modification of diffusive transport constraint

of the b;,-component equation. This indicates that for thecomponent the original
diffusive transport constraint will still fail in the neavall region. The fact that the re-
distribution term balances the diffusive transport termgasts a relationship between
the two in arriving at an alternative form of the diffusivarisport constraint. One may
use the redistribution term to represent the diffusivedpant term in the near-wall
region. Since the implicit ARSM is intended to replicate fredictive capabilities
of the DRSM, an alternative to neglecting the diffusive gport term, is to choose a
diffusive transport constraint related to the redistiidterm.

Figure4.8 shows the budget of thig, equation, the redistribution term becomes
negative at abouj™ ~ 10, while the diffusive transport term becomes large and keeps
in balance with the redistribution term fgrr < 10. Consistent with the Taylor se-
ries expansions, Figu#8shows that the production term decays¥g™?), and the
dissipation term decays &Ky *?). If the velocity pressure-gradient partitioning is ex-
amined, thdl,, decays a®)(y*?), and as with thél,, component becomes negligible
for y* < 10. Thus the diffusive transport term once again balancesetiistribution
term in the near-wall region. This further supports the ps#b of using the redistribu-
tion term to represent the diffusive transport term in tharrveall region

Figure4.9 shows the budget from thgs; equation. For* < 10, the production
term decays rapidly, but the diffusive transport term beesiarge close to the wall
and balances the redistribution and dissipation termss iBhgimilar to the behavior
found for theb,;- component.

4.4 Modification of diffusive transport constraint

The above observations on the wall asymptotic behavior®téhms in the,; equa-
tions can be summarized as follows: in the- andbss-equations, the viscous dissi-
pation stays finite on the wall, keeping balances with theauis diffusion part in the
diffusive transport process there, as well as in close pndyito the wall; in theb,-
and b,o-equations, pressure transport and redistribution stag fim close proximity
to the wall. The near-wall modeling strategy of the difféstvansport term must cope
with these two different mechanisms, and this is readilypagadished by adopting the
form
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4.4 Modification of diffusive transport constraint
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4.4 Modification of diffusive transport constraint
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4.4 Modification of diffusive transport constraint

Dij — %@ == |:¢ij - <€ij - %5)} Ja, (4.15)
with f,; being a function that restricts the effect of the redisttidiuterm and dissipa-
tion term within the near-wall region. The form ¢f is specified so that it becomes
unity at the wall and slowly decays away from the wall fgr, > 10. Such behavior is

easily extracted from the functional form

1= e (2] w19

Substitution of Eq.4.15) into Eq. @.4) yields the modified ARSM equation

1

0=

(Ri+Cu-2P) 4 [2 - (e )| a-m . @an

This equation shows that the diffusive transport constrased in the formulation must
balance both the redistribution and dissipation terms tieawall - effectively remov-
ing their near-wall effect. It should be noted that the vigfidf this form is unaffected
by the system rotation since the balance between the riédistn and pressure trans-
port and that between the viscous diffusion and dissipatiensist regardless of the
rotation number (see Figurds6to 4.9). In another analysis of the non-rotating and
rotating channel flow casebjanceau2005 also showed that the asymptotic behav-
ior in the near-wall region was unaffected. In addition, hhat study focused on
the DRSM formulation, the alteration of the redistributimm was the focus of the
near-wall elliptic blending formulation used.

Now ana priori test is performed on the proposed alternative form givergin415),
of which both sides are scaled by as for the case of extended one. FigdirE0shows
the results fob;;-component where the newly proposed diffusive transparstraint
(cf. Eg. @.15) gives very good agreement with DNS data in the wall vigiridr
both non-rotating and rotating cases. The same level ofeaggats is achieved for
both theby;-component, Figurd.11, and for theb;;-component, Figurd.13 A slight
discrepancy between the DNS and proposed model persistaddg;-component,
Figure4.12 particularly near the pressure side. This is attributédolan increase in
the production term there (cf. Figude9). It adversely affects the balance between the
diffusive transport term and its counterparts. A more adedrmodeling strategy may
be necessary to cope with this issue.
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This evaluation showed that the newly proposed alterndiffiesive transport con-
straint has the potential to yield an improved implicit fdionthe ARSM. This coupled
with suitable models for the redistribution and dissipatiate terms.

4.5 Concluding Remarks

An assessment of the weak-equilibrium condition has bedemimken by means of an
a priori evaluation of the fully developed channel flow with spanwis&tion using
DNS data. The budget of the various terms in Bod)confirms that the diffusive trans-
port term is crucial in the near-wall region. Two diffusivarsport constraints based on
either zero anisotropy or an anisotropy proportional toRegnolds stress anisotropy,
are then evaluated using DNS data. The results show th&enaif these conditions
can hold for the near-wall region. An asymptotic analysighefnear-wall behavior for
different terms in the budget equations shows thabfgrandb,,-components, the dif-
fusive transport term balances the redistribution termhertear-wall region; fob, -
andbss-components, the diffusive transport and dissipation sdvadance each other in
the vicinity of the wall. Based on this asymptotic behavar,alternative form of the
diffusive transport constraint is proposed and evaluakbd.results show that this new
alternative diffusive transport constraint can be usearpprove the predictive ability
of the resultant ARSM.
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Chapter 5

On the weak-equilibrium condition for
algebraic heat flux model

5.1 Introduction

The objective of this chapter is the validity and modificatad weak-equilibrium con-

dition used to derive AFHM for flows in the non-inertial frameThe proper form of
advection assumption will be derived by invoking the frammeariant property to ac-
count for the rotation and curvature effects correctly. d&bwer, it will also be shown
that the transport equation for turbulent heat flux can bé&evriin Euclidean-invariant
form by introducing the Jaumann-Noll derivative. The dsffte transport constraint
will also be addressed in detail to show its invalidity fomiBin non-inertial frames.
Based on the budget analyses, an attempt is made to acheenedh-wall correction
of current diffusive transport constraint. Thepriori test of the near-wall correction
will be performed for the rotating channel flow with heat ster by using DNS data.

5.2 Algebraic model for turbulent heat flux

Eq. .76 is the general model equation used for predicting the terttheat flux,
however it is only valid for flows in inertial frames. As in namertial frames, certain
modification must be made to EQ.76 to account for system rotation and stream-
line curvature effects. Since the weak-equilibrium coodits the basis to derive the
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5.3 Frame invariant form of AHFM

algebraic approximation from transport model of normaliagrbulent heat flux, it is
straightforward to explore the extended weak-equilibrizondition that is valid both
in inertial and non-inertial frames.

5.3 Frame invariant form of AHFM

5.3.1 Frame invariant form of transport equation for ¢&;

The transformation between inertial and non-inertial feanfor the normalized heat
flux transport equation is briefly described here. Following works ofGatski &
Wallin (2004 and Hamba(2006, the rectangular coordinate$ in the non-inertial
frame transforms to the coordinates in the inertial framas

1= Qu, (5.1)

where();; is an orthogonal transformation tensor.
The system rotation tensor expressed initheoordinates is given by

dQpi

Q==X
“ dt

ij = Ejikw;ck> (5.2)

wheree,j;; is the permutation tensor, ang is the angular rotation rate vector. The
system rotation tensor expressed in theoordinates?;; is zero by definition.

Under above transformation rule, the variables appeaninige transport equation
of normalized turbulent heat flux can be transformed as

bij = Qubpm @1 (5.3a)
Sij = Qi Sim@r, (5.3b)
Wij = Qik Wi + Qi) Q- (5.3¢c)
& = Qis&;, (5.3d)

Relative to Euclidean transformation, it is readily seet,th;, S;; and¢; are all frame
invariant while vorticity tensofV;; is not. However}V;; can be made frame invariant
by adding a measure of the non-inertial frame rotation t¥te

Wi = Wi+ Q. (5.4)
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5.3 Frame invariant form of AHFM

Similarly, the material derivative of normalized turbuléseat fluxD¢; /Dt can be

transformed as D§ De:
—L = Qi ( + Q3 k;) (5.5)

The transport equation of normalized turbulent heat flux waw be transformed

to the coordinates;, which can be written as
D¢r
Dt

+ = 7 (Bl Sions W €1s O3 ) (5.6)

The above result indicates that the normalized turbuleat flex equation given
by Eqg. 6.6) is not frame invariant respect to a change of coordinateesysinder Eu-
clidean transformation, since Ed.9) is not frame invariant. This is not consistent
with general understanding about mathematical expressighich is nothing but a
tool to describe physical laws, and should be independent the choice of coordi-
nate systems. This inconsistency can be overcome by intioglthe Jaumann-Noll
derivative {Trusoy, 1987 also called corotational derivativ&lfiffeault, 2001).

Da Da

Di Ft + Qa, (57&)
Db Db

— =—+bQ2 - 0b g
Dt Dt * ’ (.7b)

with a andb being being a vector and a tensor respectively. Applying(Eq.9 to
Eq. 6.5, one can derive a frame-invariant form of the material\dgive of normal-
ized turbulent heat flux

Dé;‘ Dé* "
Eq. 6.6) then becomes
Dtj = fj <bkm?Skm?ka7€m?@m> : (59)

It tells that the transport equation of normalized turbtlesat flux, Eq%.9), is now
frame invariant, since the corotational derivatl_ve;f /Dt can be considered as a frame
invariant variable aW; and the RHS of Eq.5.9) is expressed in terms of frame
invariant variables. Consequently, any model expresstoned from Eq. $.9) should
also be frame invariant as argued\Wgis & Hutter(2003.
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5.3 Frame invariant form of AHFM

5.3.2 Euclidean invariant form of AHFM

As stated byHamba(2006, Eqg. (6.9 is not suitable for curved flows, therefore it
should be further generalized. To this end, the coordiryﬂtemxj that is embedded
in the flow and the coordinate systerhin which the observer is fixed are considered
here. The transformation rule betweg‘fnsystem and inertial system is given by

o =Ty, (5.10)

whereT}; is a proper orthogonal transformation tensor.
By this transformation rule, the normalized turbulent hiéat equation can be
described in the:! system as

Df .
ot O Tel = 1 (b ( foosh w4 QDb el @T) (5.11)
where Q" = T,,dT] /dt is the rotation rate of the! system expressed in the

system.
Since thaj system is independent of the inertial systemEQq.6.11) can be writ-
ten in the inertial system as
D¢]

WhereQE Tg;Q ., ; is the rotation rate of the! system expressed in the inertial
system. By applying the weak-equilibrium conditiﬁ)rzfj/Dt:O, the resultant implicit
algebraic equation far; may have the form in the inertial system as

J5 B Sks Wms € O) — Q& = 0. (5.13)

Once again, considering the observer intfi€oordinate system, it is straightfor-
ward to transform Eq.5.12) to the non-inertial system. It follows

TDgT * * *
Q]ZCZ}’LE + Q gkz - fz < km> Sk:m? szm + ka? gm? ®m) . (514)

As stated byGatski & Wallin (2004), irrespective of the coordinate system, the correct
form of the weak-equilibrium condition should be

D¢} /Dt = 0, (5.15)
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5.3 Frame invariant form of AHFM

which is a extension of the original condition. Then the hesu implicit algebraic
equation forg; in the non-inertial system can be given by

6 = 17 (Vs Sioms Wi + Vs 65003 ) - (5.16)

It is clear that the AHFM written in Eq.5(16) is frame invariant, since it is ex-
pressed in terms of frame invariant variables. Itis impurta note thaf2?; is different
from Qg)* The former represents a measure of the rotation rate ofaiethile the
latter represents the rotation rate of the observer. littgystem coincides with the!
system();; = QE;)* is obtained. Noted theﬂg)* should be used for general cases. For
instance of curved turbulent flows, which is usually anatlyeelative to an observer
fixed in an inertial frame. Consequently it arises a probleat how to measur@f.;f)*
for such curved flows. There are some works related to thigjssuch asatski &
Jongen(2000; Girimaji (1997); Wallin & Johanssori2002, among others.

Now, Eq. .76, which is expressed in inertial frames can be rewrittenan-n
inertial frames as

3Q9f4x%§—owo%+gﬁg

— 5—: {7’ (& -1+ 2019) + 79 {& (1—2C5) — 1} } : (5.17)

2 Ek o

ij

ﬁqu—@(mﬁ-

Eq. 6.17), whichis derived based on extended weak-equilibrium tardEq. 6.15),
has the ability to predict the normalized turbulent heat fanflows in the non-inertial
frames. By comparing with Eq2(76), one can tell that Eq5(17) has an extra term
Qg)*g*, which describes the advection §fin the non-inertial frames, and the mean
vorticity in Eq. 2.76) has been replaced with the absolute vorticity. By above-mea
sures, the system rotation and streamline curvature sféect be both included in the
AHFM.

5.3.3 APriori test of extended advection assumption

To demonstrate the validity of extended advection assumpéina priori test will be
performed using the DNS databagdsamni & Kasagi2001, Kasagi & lidg 1999
Nishimura & Kasagi1996. The test case adopted here is a fully developed turbu-
lent flow in a plane channel, which is rotated at a specifiedimgelocity around its
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Figure 5.1: The test of extended advection assumption.diakof Eq. 6.20)(circle)
compared to that of Eq5(21)(solid line). The dash line is for the extra tefi;¢;

spanwise axis. The Coriolis force arising from the imposedesn rotation enhances
the turbulence along the pressure side, while reducingufiieiient activity along the
suction side. The two walls are assumed to be kept at diffebeih constant tempera-
tures, and any buoyancy effect is neglected. The DNS datalszsl here is carried out
for Re, = 4750 and Pr = 0.71, whereRe, is the bulk Reynolds number based on the
channel half widthd and the bulk velocity/,, and Pr = v/« is the Prandtl number.
The rotation number is defined as

Ro = 2w,,d/Us, (5.18)

wherew,, is the system angular velocity.
By transforming Eq. Z.71) to the non-inertial frames and rewriting in a tensorial
form, one can have
D&
Dt

261 * %k * * * a
3J) OF — S5& — (Wi +9Q55) & + D

1 & b By
t g 00—y n(E-1)+n (2]

(5.19)

J

By applying the original advection assumption, which aggplio the left-hand side
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5.4 The diffusive transport constraint

of Eq. 6.19 to be zero, one has

0=— (2bij + 3J) 07 — 556 — (Wi +95) &

+ - (dio — €ip) — %* |:7'k (& — 1) + 7 (& — 1)} + D¢, (5.20)

K12k ek €0

By applying the extended assumption, Eg.16), one has

Q58 =~ (2% + 3]) O] — 556 — (Wi +95) &

1 & By Py a
+ lek;/g (bio — €i9) — 5 |:7—I<: (5_k: - 1) + 79 <€_9 - 1)} +Df. (5.21)

With the specific models for the pressure temperature-gnadiorrelationy,, the
dissipation ternz;y and diffusive transport ter®¢, Eqgs. 6.20 and 6.21) are readily
to arrive at the implicit form of AHFM respectively, such aq.H5.17). However, in
order to validate the extended form of advection assumpaioyother model influence
should be isolated. Therefore, Eq5.20 and 6.21) are used to perform thee priori
test directly, without any model involved. The DNS databasz employed for the
supply of ¢y, ;0 andD¢. The residuals of Eqs5(20 and 6.21) are computed, and
smaller residuals suggest the better performance.

Since no models are introduced, the magnitude of any reswumbe directly
associated with the validity of the two assumptions. Thelteshown in Figures.1
are the distribution folRo = 0.159. It is shown that the extended assumption gives
practically zero residuals for all two componeitsand¢, across the channel which
means that the extended assumption is able to fully accounhé rotation effect for
flows in non-inertial frames. This is in contrast to the anmgjiassumption where large
residuals across the channel for all two components arershow

5.4 The diffusive transport constraint

As known fact, the weak-equilibrium condition consists d¥ection assumption and
diffusive transport constraint. The previous section lsi$ed on the advection as-
sumption, which is extended for the applicability to the fioartial frames. In the

following section, attention will be paid on the diffusivansport constraint. It is true
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5.4 The diffusive transport constraint

that the system rotation and streamline curvature can mfi¢he transport process
in turbulent flows significantly. This can be observed fronmeuous computations
and experimental studies, suchkassagiet al. (1992; Liu & Lu (2007); Matsubara
& Alfredsson(1996; Wu & Kasagi(2004); Yamawakiet al. (20023. Consequently,
the issue of whether the assumption for diffusive transpant hold in flows involv-
ing rotation and curvature effects arises. The same queitidhe diffusive transport
assumption associated with Reynolds stress anisotrogpitéras been explored pre-
viously using budget analysis of Reynolds stress anisptegpation together with the
near-wall asymptotic behavior analysis. For the curramd\stthe analogous strategy
will be employed to address the issue of diffusive transasstimption associated with
normalized turbulent heat flux.

5.4.1 Budget of normalized turbulent heat flux equation

In analogy with the derivation of transport equation for Relgs stress anisotropy;
, One can obtain the transport equation of normalized tertitheat fluxg; for fully
developed rotating channel flow

= [PZ‘ _%<RPH%)} + {%—%(R@H%”

+ g — {am - % (Rak n g—Re)} : (5.22)
whereR = k;/Q/k1/2. One may interpret the terms on the RHS as production anjsptr
diffusive transport, pressure temperature-gradienetation and dissipation anisotropy.
It is noted that theP,y here includes the production due to mean temperature gitadie
P};, the production due to mean velocity gradiétjf and the Coriolis productiofy.
The weak-equilibrium assumption takes the diffusive tpamsas negligible, which
leads to an algebraic approximation for the transport ofradized turbulent heat flux.
The budget of the various terms in E&.Z2) is evaluated by using DNS database
(Elsamni & Kasagi 2001, Kasagi & lidg 1999 Nishimura & Kasagi 1996. Fig-
ures5.2(a) and (b) show the budget §f-component for non-rotating case, where the
production anisotropy is the dominant source, while theguwee temperature-gradient
correlation is the dominant sink. Moving towards the wailk production anisotropy
and pressure temperature-gradient correlation decay Tast diffusive transport and
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Figure 5.3: The budget of Eh.22 for &, LHS: Pressure side, RHS: Suction side.
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5.4 The diffusive transport constraint

dissipation anisotropy appear as the dominant source akddi which are both re-
lated to the viscous effect caused by wall proximity for eatrstudying case.

For the rotating cases, the significant influence of rotagidects can be observed
by examining Figure$.2(c) - 5.2(f), where the turbulent intensity is enhanced along
pressure side, while reduced along suction side. The ptioduanisotropy becomes
dominant sink for the rotating case, which is contrary wite hon-rotating case. The
diffusive transport is obviously enhanced by the imposedtian effect, since it be-
comes dominant source instead of being sink. The pressmgetature-gradient cor-
relation is suppressed gradually with increasing rotatiamber, and becomes less
important across the channel. The dissipation anisot®pisb remarkably influenced
by the system rotation, since its sign is changed with difierotation numbers. Nev-
ertheless, for the region near the wall, the diffusive tpamsand dissipation anisotropy,
which are related to viscous effects, are crucial.

For&-component, the behavior of individual terms in the budgetion is differ-
ent with that of¢;-component. Since it is wall-normal component, insteadistaus
effect, the pressure fluctuation dominates the near-walhier of budget equation.
For the non-rotating case, Figures(a) and5.3(b) show that the dominant source is
the pressure temperature-gradient correlation, whileptbeuction anisotropy is the
sink. Moving to the wall, the production anisotropy and gliason anisotropy be-
come less important, while the pressure temperature-@mnadorrelation and diffusive
transport, which are related to the pressure fluctuatioep kelance with each other,
and obtain finite value on the wall. For the rotating casesjlar to £;-component,
the imposed rotation effects influence the budget remaykdtiie diffusive transport
becomes more important, while the dissipation anisotragspk being small across
the channel. Similar to the non-rotating case, the difidhansport and pressure
temperature-gradient correlation, which are relatedeégtiessure fluctuation, become
more important near the wall.

For all events discussed above, the pressure temperataegt correlation bal-
ances the sum of the diffusive transport plus dissipatiasaaropy, which indicates
that the diffusive transport plays a crucial role in the betduf ¢; transport equation for
near-wall region. Consequently, the diffusive transportstraint, which neglects the
diffusion/-transport term, is unlikely to hold there.
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5.4 The diffusive transport constraint

Table 5.1: Near-wall behavior of budget terms in Eg12Q)

i 1 2
Production O(y?) O(y?)
Diffusive transport ~ O(y)  —(1/p) beay,
P& T-Corr. O(y?) (1/p) byay,

Dissipation O(y) O(y)

5.4.2 Modification of diffusive transport constraint

The analysis about the budget@ftransport equation above has shown the invalidity
of current diffusive transport constraint. In the previchapter, atempt has been made
to resolve this problem by representing the diffusive tpamsby the sum of redistribu-
tion and dissipation anisotropy terms associated with Blegstress anisotropy. For
current study, this proposal will be extended to the diffasransport assumption asso-
ciated with normalized turbulent heat flux. First, the n@atl behavior of individual
term in the budget equation gf is analyzed. Based on that analysis, the near-wall
correction of diffusive transport constraint is proposéd.analyze the near-wall be-
havior of individual terms in the budget equation, we expiuedoressure, velocity and
temperature fluctuationS¢et al., 2004 Wikstromet al,, 2000 in the wall vicinity as
follows

p=a,+by+cyt+--, (5.23a)
u=a; +by+cy*+ -, (5.23b)
0 = ag + boy + coy® +- - -, (5.23¢c)

wherea; = by = a9y = 0 (no-slip boundary condition, continuity and constant wall
temperature). The expansionsuf, v0 andk, then become

uf = bybyy® + (bocr + cobr) y> + -+, (5.24a)

00 = bycay® + (bada + CoC3) + - -, (5.24b)
1+ - .

ko = §bgy2 + beCey3 4+ (5.24¢)
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5.4 The diffusive transport constraint

The budget terms in Eq.5(22 are also expanded and listed in Tabl&, where
only the terms are of)(y°) are listed. The budget terms that are at least of second
order are omitted, since their wall limits are consideredeoless important. For
&1-component, the diffusive transport and dissipation arigy are of lower orders
compared to the production anisotropy and pressure tetypergradient correlation,
which indicates that they are more important in the neat-vegjion. The produc-
tion anisotropy and pressure temperature-gradient edioel decay fast in the near
wall region; while the diffusive transport balances thesgiation anisotropy up to
the wall. Foré;-component, Tabl®.1 shows that the diffusive transport and pressure
temperature-gradient correlation are the major contoitsuhear the wall, while the
production anisotropy and dissipation anisotropy decayf &sgher order and eventu-
ally vanish on the wall.

Above observation indicates that, for and&,-component, the fact that diffusive
transport balances the sum of pressure temperature-gtadigelation plus dissipa-
tion anisotropy suggests a possibility to arrive at thera#ive form of diffusive trans-
port constraint. One may use the sum of pressure tempefgtadéent correlation
plus dissipation anisotropy to represent the diffusivagport in the near-wall region.
Based on above analyses, we propose an alternative fornffaside transport con-
straint by the equation below:

Dig — % (RDk + %) = - {Cbie - {51'9 - % <R€k + %)} } fes (5.25)

where f; is a model function. For present case, the following genfenrath may be

used 2
f=1- [1 — exp (yj)} , (5.26)

wherey™ = yu,/v andu, is the friction velocity. As well known fact, the Prandtl
numberPr and the Reynolds numbéte have the significant influence on the scalar
field (Kawamuraet al, 1999 1998 Kim & Moin, 1987. So & Spezialg1999 sug-
gested any near-wall models should refle@d®radependence; otherwise, they would
not be able to replicate the thermal asymptotes correctiyvaall is approached. The
above arguments imply that the proposed diffusive trangmostraint should be made
parametric ofPr, which means that thie should be incorporating with ther number.

In current study, a constant value 6 fowas chosen for time-being and its universal
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validity should be task of future study. The proposed funtis supposed to become
unity for wall vicinity, and equal t® otherwise. Consequently, one can restricts the
effects of pressure temperature-gradient correlationdgsglpation anisotropy within
the near-wall region.

From the above asymptotic behavior and budget analysescaméell that the
near-wall diffusion and transport 6f are mainly contributed by pressure transport and
viscous diffusion, both of which must be properly approxiesa Foré;-component,
the pressure fluctuation parts of both sides in BRH are negligible, which leaves
that the viscous diffusion part of LHS balances the viscassiplation anisotropy part
of RHS. For&;-component, the viscous related parts of both sides in 5 are
negligible, which leaves that the pressure transport paktHs balances the pres-
sure fluctuation part of RHS. These balances vary for diffecemponents, but this
difference is automatically compensated. By adopting tiesgnt diffusive transport
constraint, one can change E§.42 to

0= |:Pi - % <RPI<:+%):| + {¢i9_ {&6—%(351@‘1‘%)]}(1 — fi). (5.27)

This equation indicates that the diffusive transport c@sts need to be incorpo-
rated in the manner that both pressure temperature-gtasigelation and dissipation
anisotropy disappear near the wall. It should be noted treavalidity of this form is
unaffected by the system rotation since the balance betthegoressure temperature-
gradient correlation and pressure transport and that leetivee viscous diffusion and
dissipation anisotropy persist regardless of the rotatiomber as already seen in Fig-
ures5.2and5.3

An a priori test is performed to evaluate the present d¥kisiansport constraint
given in Eq. 6.29, of which both sides are computed using the DNS data and com-
pared with each other. Figu®4 shows the results fof;-component, where the
present diffusive transport constraint gives fairly gogdegment with DNS data for
y+ < 5 both for non-rotating and rotating cases, which can be dened as an im-
provement compared with the original one. Egicomponent, FigureS.5 shows that
the present diffusive transport constraint can also givedgagreement fog™ < 10
compared to the DNS data.
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5.5 Concluding remarks

Whereas, compared with the Reynolds-stress case, wheextireded constraint
gives excellent agreement with DNS data for all Reynoldssstcomponents, the ex-
tended constraint in present study remains noticeableegiaocy from DNS data in
some cases. In both the Reynolds stresses and heat fluxatsosis, the productions
are assumed to be negligible. This assumption is well supgar the case of Reynolds
stresses, of which, the production becomes negligibleawitinity of the wall mostly.
However, for the case of heat fluxes, the production remairedi Hut noticeable val-
ues fory™ < 10 sometimes, as shown in Figb.2) and 6.3). Howsoever, the above
evaluation indicates that present alternative diffusigagport constraint has the poten-
tial to advance the AHFM, once the accurate models for pressemperature-gradient
correlation and dissipation anisotropy in E§.42) are provided.

5.5 Concluding remarks

This chapter focuses on the validity and extensions of weepklibrium condition in
the non-inertial frames. The weak-equilibrium conditiamich consists of advection
assumption and diffusive transport constraint, is thessderive the algebraic heat
flux model from differential transport model. The frame ingat concept is invoked
in this study to extend the original advection assumptiariléavs associated with ro-
tation and curvature effects. Moreover, we derived the &amariant form of AHFM
by using the extended weak-equilibrium condition. It isoatgoven that the trans-
port equation of normalized heat flux can be written in a Elean invariant way by
introducing the Jaumann-Noll derivative.

The budget analyses of the various terms of exact transpaeten for&; show
that the diffusive transport is crucial in the near-wallicgg An asymptotic analysis of
the near-wall behavior shows that, the diffusive transkeeps balance with the sum of
pressure temperature-gradient correlation plus dissipanisotropy in the wall vicin-
ity, while production anisotropy is small. An alternativarin of diffusive transport
constraint is proposed and evaluated using DNS data. Hiabushows that present
alternative constraint has the potential to improve thaliptere ability of resultant
AHFM.
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Chapter 6

Conclusion and Perspective

In the course of this study, the framework of RANS modelingeisiewed in detail.
Some demonstrations using DRSM, NLEVM and EVM have beenngigethe case
of fully developed rotating channel flow, and compared toRINS computation. The
results indicate that the DRSM, which is mathematically gimgsically better founded,
is the most reliable one to represent the considered flowrfest

The most important tasks accomplished in the present stedya development of
algebraic models for Reynolds stress and turbulent heatrispectively. Instead of
dealing with elaborate mathematical derivation, focuslieen placed on the starting
point of deriving such algebraic models, which is so-calezbk-equilibrium con-
dition. With the aid of DNS database, it has been discovenad the conventional
weak-equilibrium condition tends to fail in the near-wadgion. It is believed that,
with the incorrect weak-equilibrium condition, the efftotderive the algebraic models
with elaborate mathematical techniques will be certainipnpromised. In the present
study, by using the budget analysis and asymptotic anathgalternative form of dif-
fusive transport constraint, both for Reynolds stress arolitent heat flux, has been
proposed, which offers a firmer foundation to derive algiebm@odels from DRSMs.
The a priori tests suggest that the proposed forms have tiemfed to improve the
predictive ability of resultant algebraic models.

In addition, the frame invariant concept is invoked in thigdy to extend the orig-
inal advection assumption for flows associated with rotaand curvature effects.
Moreover, we derived the frame invariant form of AHFM by usthe extended weak-
equilibrium condition. It is also proven that the transpagtiation of normalized heat
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flux can be written in a Euclidean invariant way by introdugithe Jaumann-Noll
derivative.

It is noted that the comprehensive test of proposed modsladizbeen conducted
in the present study, although it is necessary in order tealee full potential of the
proposed models. The successful implements of proposetraonts, both for ARSM
and AHFM, requires reliable models for redistribution amsgbation terms, specially
for the near-wall region. Accordingly, this requirementl€dor more attention on
the improvement of the redistribution and dissipation &rAnother interesting term,
which draws attention in the course of present study, is tleegure transport term.
Currently, this term has been handled together with theousdliffusion. However,
observation suggests the pressure transport plays a vpoytiamt role in the near-wall
region. Therefore, it should be modeled separately. Abbyectives have also always
been the demands by the further development of second-natosare.

It has to be admitted that there has been some argumentsthbaoate of algebraic
models playing in the framework of RANS modeling. One may demif it is worth
the effort to develop such algebraic models because ofthbliesome numerical treat-
ment. Additional modifications have to be made to includerttwinertial effects. On
the other hand, the DRSM accounts such effects naturalljie\h present stage, the
most rational level of RANS modeling, the DRSM is not yet doanit in the practical
applications because of the computation cost. In this silnathe algebraic models
find their way and attract attentions, as wRape(1999 refers to that the realistic goal
is always theoptimalturbulence model. Hopefully, it can be expected that ramid i
provement of numerical method and computer resource waddedse the importance
of the argument for algebraic model in the near future. Adewly, the importance of
DRSM models in practical applications would increase.
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Appendix A

The transformation of W and S

The velocityU* in the non-inertial fram€* can be obtained by taking the time deriva-
tive, then the the spatial derivative Of is

8U*

- 00"+ Q2 Q" (A1)
Xz

whereQ = dQ/dt andQ” = 9z /0x*.
Then following Eq.A.1), the Euclidean transformation can be performed for strain
rate tensolS and the vorticity tensor/

g _ Lfour (Ut
-2\ O or*

0 0
= 00"+ Q00" + 100" + 507 (U) Q
1 10U 1 1 ou\"
= 500" +505-Q" + 500" + 5(-Q) <a_x) (-Q")
= 2 (Q@") +@sq", (A2)
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. 1 (oUux [oU\"
W= 5(8;5* _<8:17*) ) (A3)

= 500"+ 3070  — Lag" — 10" (g—g)TQ

= 500" - 200" + 1000 - () (Z—Z)T Q")

= 00"~ 200" + 20" + 200" +3070 Q" ~ 1(~Q) (g—g)T (~Q"),
=QQ" +QWQ". 0 (A.4)

For the strain-rate tenséf, sinceQQ” = I

S*=QSQT. (A.5)
For the vorticity tensor, one may deduce to

W*=Q (W +0) Q. (A.6)
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Appendix B

The transformation of w0
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Appendix C
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Appendix D

The incorporation of proposed
diffusive transport constraint with

ARSM

D.1 The basic equation set

The explicit algebraic stress model Gatski & Spezial€1993, applicable to inertial
and noninertial frames, is given by

bz’j = - alC;TSZ-j - CLlagC:TQ <SZ]€V~V]€] — I/T/ZkSk])

1
+ 2a1a3C';TQ (Sz’kskj — gSmnSmn(sij) ; (D.1)
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D.1 The basic equation set

where
4 i\ 2 N
p -1
g= {(011/2 +1) —+ cY/2 — 1} , (D.2b)
Wz‘j - Cwemiija (DZC)
Cy—4
= ) D.2

=53 (D.2d)

The coefficients are defined as= 0.487, a; = 0.8, a3 = 0.375,C) = 3.4,C, = 0.4
andC| = 1.8.

Above Gatski-Spezial algebraic Reynolds stress relattanse further simplified
for the case of fully developed rotating channel flow

k% dU
— _ga. O D.3a
T12 gan n dy, ( )
2 4 K ko =
T = g]{; + gng;a;),m?Sé + 4a2a1§512W12, (D.3b)
2 4 K o =
8 8 o s k3
T33 = gk - ggzcua3a1€—25122‘ (D.3d)

Above stress relations need to be coupled with Equationsufbulent kinetic en-
ergy and the turbulent dissipation rate, which are

10P;; d__ &U
- = - £ D.4
> on dyzw +v e (D.4a)
0=p— et L|(py) &l (D.4b)
dy o:) dy
0=cpS - fon+ L (v ) E (D.4c)
T ey o.) dyl|’ '
where
v = f.CLkT, T=k/e. (D.5)

Note that theP, ;s is affected by theRo, which is2Qd/U,,.
To sum up, the coefficients in the GS ARSM are listed in Tabld(
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D.2 The incorporation

Table D.1: Coefficients in the GS ARSM

Item Value
fu 1.0
C, 0.094
o ()]
c 1.44
s, 1.83
oy 1
[ 1.3
ay 0.487
as 0.8
as 0.375
Cy 0.4
Co 3.4
Ct 1.8

D.2 The incorporation

In the present study, only straightforward incorporati®ansidered. Recall that the
proposed diffusive transport constraint for ARSM is given b

B o)) fa. (D.6)

Tii
Dyy—7D = =loy — (eiy—

k

Direct incorporation of Eq. [§.6) into the exact transport equation for Reynolds
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D.3 Results and comments

stress anisotropy tensby leads to

1

"=

(Ri+Co-2r)+ |- L (-2 a-r @

Following the explicit method presented Batski & Spezial€1993, Eq. ©.7)
can be made explicit fob;;. Actually, in theGatski & Spezialg1993 model, the
dissipation anisotropy term is set to zero. This fact sutggést the effect of proposed
constraint will only be reflected by the changing of redizition term. Consequently,
it is readily to recognized that the resultant ARSM, which@gised by incorporat-
ing the proposed constraint, will remain the same form as (©gl). However, the
corresponding model coefficients should be modified asviatig

L2 0C . C . BG
1 3 27 2 27 3 27
1 0 1
a4:rKﬁCl +1)5+501 —1} :
2 € 2
B=1-fa

D.3 Results and comments

The ARSM equation set introduced in the previous sectioonligesl by the finite dif-
ference method with 201 non-uniformly distributed nodethimy direction, and the
first node was situated gt~ < 0.5. The distance between each node is increased with
an expansion rate df.05. The boundary condition fok is 0 and for the dissipation

ratee
e=2w (0_\/%) : (D.8)
dy
To stabilize the computation, the discretization of mormenequation (Eq.49) is
re-managed as following.

w = (D.9)
dy
/{72

Vi1 = galC;? (DlO)
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D.3 Results and comments

The momentum equation can be arranged as

10Py; d du d*U
0= = L — D.11
p Ox +dy (thdy) dez’ ( )
10Py; d du
= —— — | I— D.12
p O +dy(dy)’ (12
withT' = vy +v.
The diffusion terms are discretized using CDS
%), ("%)
Y/)ir1 Y)_1
{i <rﬂ)} ~ S 2, (D.13)
dy dy 3 ($¢+1 - xz’-l)
Furthermore, the CDS approximations for the first ordendditie are
(rd—U) ~ FH;M, (D.14)
dy )1 2Tyl — X4
(rd—U) ~ ri_;M, (D.15)
dy i—1 2T — X1
where
1
L1 = B (Lipa +14), (D.16a)
1
L= 5 Ty +Tyq). (D.16b)
(D.16c)
The resulting algebraic equation for momentum at noaads
Consequently, the coefficients of the algebraic equation (B.17)) are
. 2t v+ Vag
Al = ’ = D.18a
P hiy1 (hig1 + hy) ( )
; 2v+ v+ i
Ay = ’ 7 D.18b
W hi (hiz1+ hi) ( )
Al = — (A + A}y, (D.18c)
10P,
g =L 9Fas (D.18d)
p Oz
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D.3 Results and comments
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Figure D.1: Model coefficient,

with h; = z; — ;1.

The discretization ok ande equations follows the similar manner. The computa-
tion is conducted forzo = 0 and0.2. The results for original Gatski-Speziale ARSM
(referred as ARSM), and the revised ARSM after incorporatibproposed diffusive
transport constraint (referred as ARSMC), are presentétkifiollowing plots.

D.3.1 Stationary case

First of all, the distribution of model coefficierft; is shown in Fig.D.1. This coef-
ficient is supposed to become unity at the wall and slowly geeavay from the wall
for y* < 10, which is well represented in Fidp. 1.

In Fig. D.2, the mean velocity profile are shown both for original ARSMI aie-
vised ARSM. By examining FigD.2, one can tell that by original GS model, fairly
well agreement with DNS data is achieved. And by the revisB&M, improvement

-0.80

is not obtained. In FigD.3, the plots for Reynolds stress components are presented.

Similar with the mean velocity, the revised version of ARSM dot bring improve-
ments comparing to the original one.
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Figure D.2: Mean velocity profile fokRo = 0

D.3.2 Rotating case ofo = 0.2

For the rotating case dto = 0.2, Both the original ARSM and revised ARSM possess
certain ability to represent the rotation effect as showiiopn D.4. Nevertheless,
there still exists noticeable discrepancy between the Dhbthe original ARSM.
Once again, the revised version of ARSM yet brings any im@noent comparing with
original ARSM. This observation also stands for the plototifer Reynolds stress

components (FigD.5).
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Figure D.5: Reynolds stress componentsRor= 0.2

117


Appendix4/Appendix4Figs/EPS/uv_ro015.eps
Appendix4/Appendix4Figs/EPS/u2_ro015.eps
Appendix4/Appendix4Figs/EPS/v2_ro015.eps
Appendix4/Appendix4Figs/EPS/w2_ro015.eps

118



References

ABE, K. & SUGA, K. 2001 Towards the development of a Reynolds-averagest alg
braic turbulent scalar-flux modeéht. J. Heat and Fluid Flow22 (1), 19-29.5

ALVELIUS, K. 1999 Studies of turbulence and its modelling througbedaeddy- and
direct numerical simulation. PhD thesis, Royal Institut@echnology, Stockholm,
Sweden.37

ANDERSSON H. |. & KRISTOFFERSEN R. 1993 Reynolds-stress budgets in rotating
channel flow. InProceedings of Ninth Symposium on Turbulent Shear Flows, pp
16C18. Kyoto, Japarb

ANTONELLO, M. & M AsI, M. 2007 A simplified explicit algebraic model for the
Reynolds stressebit. J. Heat and Fluid Flow28 (5), 1092-109717

BREDBERG, J. 2001 On two-equation eddy-viscosity modé&ech. Rep.Internal Re-
port 01/8, Chalmers University of Technolod39

CAMBON, C., ACQUIN, L. & LUBRANO, J. L. 1992 Toward a new Reynolds stress
model for rotating turbulent flow$hys. Fluids4, 812. 37

CeBECI, T. & BRADSHAW, P. 1984Physical and computational aspects of convective
heat transfer Springer.32

CELIK, |. 2005 RANS/LES/DES/DNS: the future prospects of turbakemodeling.
J. Fluid Engrg.127, 829-830.2

CHou, P. Y. 1945 On the velocity correlations and the solutionhaf €quations of
turbulent fluctuationQuart. Appl. Math3 (3), 38-45.14

119



REFERENCES

CRAFT, T. J., &NT, S. E., hCcOVIDES, H. & LAUNDER, B. E. 2004 A new wall
function strategy for complex turbulent flowslumerical Heat Transfer, Part B:
Fundamentalg5 (4), 301-3183

CRrRAFT, T. J., LAUNDER, B. E. & SUGA, K. 1996 Development and application of a
cubic eddy-viscosity model of turbulendet. J. Heat and Fluid Flowd7 (2), 108—
115.31

CRAFT, T. J., LAUNDER, B. E. & SUGA, K. 1997 Prediction of turbulent transi-
tional phenomena with a nonlinear eddy-viscosity motigl. J. Heat and Fluid
Flow 18(1), 15-28.29

DoL, H. S., HANJALIC, K. & KENJERES, S. 1997 A comparative assessment of the
second-moment differential and algebraic models in teiuhatural convection.
Int. J. Heat and Fluid Flowi8 (1), 4-14.6, 32

DURBIN, P. A. & PETTERSSON B. A. 2001Statistical theory and modeling for tur-
bulent flowsWiley New York. 10

DUTZLER, G. K., PETTERSSONREIF, B. A. & ANDERSSON H. I. 2000 Relami-
narization of turbulent flow in the entrance region of a raprdtating channelint.
J. Heat and Fluid Flow21 (1), 49-57.38, 46

ELSAMNI, O. & KASAGI, N. 2001 The effects of system rotation with three orthog-
onal rotating axes on turbulent channel flow.Tline 7th International Congress on
Fluid Dynamics and Propulsion, Cairo, Egypt, December 0889, 92

GATskKI, T. B. 2004 Constitutive equations for turbulent flow$ieor. Comp. Fluid
Dyn.18(5), 345-3696, 13

GATSKI, T. B. & JONGEN, T. 2000 Nonlinear eddy viscosity and algebraic stress
models for solving complex turbulent flowBrog. Aerospace ScB6 (8), 655—682.
5,89

GATsKI, T. B. & RuMSEY, C. L. 2001 Linear and non-linear eddy viscosity models.
In Closure Strategies for Turbulent and Transitional Flo@ambridge University
Press 5, 20, 21, 66, 69

120



REFERENCES

GATSKI, T. B. & SPEZIALE, C. G. 1993 On explicit algebraic stress models for com-
plex turbulent flowsJ. Fluid Mech.254, 59-78.16, 17, 21, 22, 23, 109 112

GATSKI, T. B. & WALLIN, S. 2004 Extending the weak-equilibrium condition for
algebraic Reynolds stress models to rotating and curved flbviFluid Mech.518,
147-155.3, 5, 6, 27, 33, 86, 88

GIRIMAJI, S. S. 1996 Fully explicit and self-consistent algebraigritéds stress
model.Theor. Comp. Fluid Dyr8 (6), 387-40217, 23

GIRIMAJI, S. S. 1997 A Galilean invariant explicit algebraic Reymsostress model
for curved flowsPhys. Fluids9, 1067-10775, 6, 89

GRUNDESTAM, O. 2006 Modelling and simulation of turbulence subject yetem
rotation. PhD thesis, Royal Institute of Technology, Staulkn, Sweden28

GRUNDESTAM, O., WALLIN, S. & JOHANSSON A. V. 2005 An explicit algebraic
Reynolds stress model based on a nonlinear pressure sttaimodellnt. J. Heat
and Fluid Flow26 (5), 732-74517

GRUNDESTAM, O., WALLIN, S. & JOHANSSON A. V. 200% Techniques for deriv-
ing explicit algebraic Reynolds stress models based ormipiete sets of basis ten-
sors and predictions of fully developed rotating pipe fl&hys. Fluidsl7, 115103.
17

GRUNDESTAM, O., WALLIN, S. & JOHANSSON A. V. 2008 Direct numerical simu-
lations of rotating turbulent channel flow. Fluid Mech.598 177-1995, 37

HAASE, W., AuPoIX, B., BUNGE, U. & SCHWAMBORN, D. 2006 FLOMANIA -
a European initiative on flow physics modelling: results loé £uropean-Union
funded project, 2002-200&pringer.3, 15

HADZIC, I. 1999 Second-moment closure modelling of transitiomal ansteady tur-
bulent flows. PhD thesis, Delft University of Technolo@y.

HAMBA, F. 2006 Euclidean invariance and weak-equilibrium coadifor the alge-
braic Reynolds stress modél.Fluid Mech.569 399-408.3, 5, 6, 27, 86, 88

121



REFERENCES

HANJALIC, K. 2005 Turbulence and transport phenomena - modelling and simula-
tion. Lecture Notel2, 14

HANJALIC, K. 2005 Will RANS survive LES? a view of perspectivek.Fluid Engrg.
127,831-839.2

HANJALIC, K. & JAKIRLI C, S. 1993 A model of stress dissipation in second-moment
closuresAppl. Sci. Res1(1-2), 513-51840

HANJALIC, K. & L AUNDER, B. E. 1972 A Reynolds stress model of turbulence and
its application to thin shear flows. Fluid Mech.52 (04), 609-63814

HATTORI, H., MORITA, A. & NAGANO, Y. 2006 Nonlinear eddy diffusivity models
reflecting buoyancy effect for wall-shear flows and heatdfanint. J. Heat and
Fluid Flow 27 (4), 671-6836, 33, 34

HELLSTEN, A. 2004 New two-equation turbulence model for aerodynamajplica-
tions. PhD thesis, Helsinki University of Technolo@y.14

HowARD, J.H.G., RTANKAR, S.V. & BORDYNUIK, R.M. 1980 Flow prediction
in rotating ducts using Coriolis-modified turbulence madél Fluid Engrg.102,
46-461.29, 56, 57

JAKIRLIC, S., HANJALIC, K. & TROPEA C. 2002 Modeling rotating and swirling
turbulent flows: a perpetual challengdAA J.40(10), 1984-199663

JOHANSSON A. V. 2002 Engineering turbulence models and their develeqt, with
emphasis on explicit algebraic Reynolds stress moddSM Courses Lecd42,
253C300.2, 3

JOHANSSON A. V. & WALLIN, S. 1996 A new explicit algebraic Reynolds stress
model. InThe 6th European Turbulence Conference, Lausanne, Slanzempp.
31-34.17

JOHNSTON, J. P., HKALLEENT, R. M. & LEzIus, D. K. 1972 Effects of spanwise
rotation on the structure of two-dimensional fully deveddpurbulent channel flow.
J. Fluid Mech.56 (03), 533-55737, 56, 64

122



REFERENCES

JONGEN, T. 1998 Simulation and modeling of turbulent incomprelesfluid flows.
PhD thesis, Swiss Federal Institute of Technoldfy.23

JONGEN, T. & GATsKI, T. B. 199& A new approach to characterizing the equilibrium
states of the Reynolds stress anisotropy in homogenedud¢ace. Theor. Comp.
Fluid Dyn.11 (1), 31-47.17

JONGEN, T. & GATskKI, T. B. 199® General explicit algebraic stress relations and
best approximation for three-dimensional flowst. J. Eng. Sci36 (7), 739-763.
21,23

JONGEN, T., MACHIELS, L. & GATsKI, T. B. 199& Predicting noninertial effects
with linear and nonlinear eddy-viscosity, and algebraiesst modeld-low, Turbu-
lence and CombustioB0 (2), 215-2346, 17

JONGEN, T., MOMPEAN, G. & GATsKI, T. B. 199® Predicting S-duct flow using a
composite algebraic stress mod&lAA J.36 (3), 327-3356

KASAGI, N. & IIDA, O. 1999 Progress in direct numerical simulation of turbtibeat
transfer. InThe 5th ASME/JSME Joint Thermal Engineering Conferencegteb-
19, San Diego, California89, 92

KASAGI, N., TOMITA, Y. & KURODA, A. 1992 Direct numerical simulation of pas-
sive scalar field in a turbulentchannel flalvHeat Transfed 14, 598—-606.92

KAWAMURA, H., ABE, H. & MATSUO, Y. 1999 DNS of turbulent heat transfer in
channel flow with respect to Reynolds and Prandtl numbecsifint. J. Heat and
Fluid Flow 20 (3), 196—-20797

KAWAMURA, H., OHSAKA, K., ABE, H. & YAMAMOTO, K. 1998 DNS of turbulent
heat transfer in channel flow with low to medium-high Pramdinber fluid.Int. J.
Heat and Fluid Flowl9 (5), 482-49197

Kim, J. & MoIN, P. 1987 Transport of passive scalars in a turbulent chdlovel In
6th Symposium on Turbulent Shear Flows, Toulouse, Framg, %-9. 97

Kim, J., MoIN, P. & MOSER R. 1987 Turbulence statistics in fully developed chan-
nel flow at low Reynolds numbei. Fluid Mech.177, 133-166.5, 38, 42, 64

123



REFERENCES

KRISTOFFERSEN R. & ANDERSSON H. I. 1993 Direct simulations of low-
Reynolds-number turbulent flow in a rotating chandeFluid Mech.256, 163—-197.
viii, 5, 8, 37, 38, 53, 54, 57, 63, 64, 65

LAI, YG & SO, RMC 1990 Near-wall modeling of turbulent heat fluxeg. J. Heat
Mass TransfeB3, 1429-14406

LAMBALLAIS , E., LESIEUR M. & M ETAIS, O. 1996 Effects of spanwise rotation on
the vorticity stretching in transitional and turbulent ohal flow. Int. J. Heat and
Fluid Flow 17 (3), 324-33237, 38

LAMBALLAIS , E., METAIS, O. & LESIEUR M. 1998 Spectral-dynamic model for
large-eddy simulations of turbulent rotating channel fldlweor. Comp. Fluid Dyn.
12 (3), 149-177viii, 5, 37, 38, 46, 53, 54, 64

LAUNDER, BE, PRIDDIN, CH & SHARMA, Bl 1977 The calculation of turbulent
boundary layers on spinning and curved surfadeBluid Engrg.99, 231-239.29,
56

LAUNDER, B. E., MORSE A., RoDI, W. & SPALDING, D. B. 1972 Prediction of
free shear flows: a comparison of the performance of six tanme models. In
Conference on Free Turbulent Shear Flows, NASA Rept. SPER1361-426.,
vol. 1, pp. 20-2141

LAUNDER, B. E., REECE, G. J. & RoDI, W. 1975 Progress in the development of a
Reynolds-stress turbulence closurekluid Mech.68 (03), 537-56614, 19, 24

LAUNDER, B. E. & SHIMA, N. 1989 Second-moment closure for the near-wall
sublayer- Development and applicatiddAA J.27 (10), 1319-132539, 40, 57

Liu, N.-S. & Lu, X.-Y. 2007 Direct numerical simulation of spanwise ratgtturbu-
lent channel flow with heat transfént. J. Numer. Meth. Fluid53(11), 1689-1706.
37,46, 92

LUMLEY, J. L. 1978 Computational modeling of turbulent flosslv. Appl. Mechl8,
123-176.24

124



REFERENCES

MANCEAU, R. 2005 An improved version of the elliptic blending modigbplication
to non-rotating and rotating channel flows.Rroc. 4th Int. Symp. Turb. Shear Flow
Phenomena, Williamsburg, VA, US3, 83

MANSOUR, N. N., Kim, J. & MoOIN, P. 1988 Reynolds-stress and dissipation-rate
budgets in a turbulent channel flow.Fluid Mech.194, 15-44.12, 43,73

MATSUBARA, M. & ALFREDSSON P. H. 1996 Experimental study of heat and mo-
mentum transfer in rotating channel floRhys. FluidsB, 2964.37, 92

MATSUBARA, M. & A LFREDSSON P. H. 1998 Secondary instability in rotating chan-
nel flow. J. Fluid Mech.368 27-50.37

MOMPEAN, G., GAVRILAKIS, S., MACHIELS, L. & DEVILLE, M. O. 1996 On pre-
dicting the turbulence-induced secondary flows using mealit — = models.Phys.
Fluids 8, 1856.29

MOORE, J. 1967 Effect of coriolis forces on turbulent flow in readatar channels.
Tech. Rep.MIT Gas Turbine Lab. Rep. 7464

NAGANO, Y. & HATTORI, H. 2003 Direct numerical simulation and modelling of
spanwise rotating channel flow with heat transeurbul.4 (1), 1-15.6

NAJI, H., MOMPEAN, G. & YAHYAOUI, O. E. 2004 Evaluation of explicit algebraic
stress models using direct numerical simulatidn3urbul.5 (38), 1-25.26

NISHIMURA, M. & KASAGI, N. 1996 Direct numerical simulation of combined
forced and natural turbulent convection in a rotating plahannel. InThe 3rd
KSME/JSME Thermal and Fluid Engineering Conference, Kygri{prea 89, 92

PALLARES, J. & DAVIDSON, L. 2000 Large-eddy simulations of turbulent flows in
stationary and rotating channels and in a stationary sqliaseTech. Rep.Report
00/03, Dept. of Thermo and Fluid Dynamics, Chalmers Unite@f Technology.
38,46

PATEL, V. C., RoDI, W. & SCHEUERER G. 1985 Turbulence models for near-wall
and low Reynolds number flows- A revie&lAA J.23(9), 1308-131943

125



REFERENCES

PIOMELLI, U. & L1iu, J. 1995 Large-eddy simulation of rotating channel flowsgsi
a localized dynamic modeRhys. Fluids7, 839.37

PoPE, SB 1983 Consistent modeling of scalars in turbulent fldRtsys. Fluids26,
404.34

PoPE, S. B. 1975 A more general effective-viscosity hypothegisFluid Mech.
72(02), 331-34016, 21, 25

PoPE, S. B. 1999 Modeling complex turbulent flows. Modeling complex turbu-
lent flows(ed. M. D. Salas, N. Hefner & L. Sakell), pp. 53—-67. Kluwer Aeaic
Publishers104

PoPE, S. B. 2000Turbulent flowsCambridge University Pres§.

REYNOLDS, W. C. 1976 Computation of turbulent flow8nnu. Rev. Fluid Mech.
8(1), 183-20813

RoDI, W. 1972 The prediction of free turbulent boundary layersulsg of a two-
equation model of turbulence. PhD thesis, University ofdam 4, 17

RoDI, W. 1976 A new algebraic relation for calculating the Reysoktresses.
Zeitschrift fuer angewandte Mathematik und Mechabik 219-221. 4, 16, 17,
18

RoDI, W. 2006 DNS and LES of some engineering flowkiid Dynamics Research
38(2-3), 145-1732

RobI, W. & SCHEUERER G. 1983 Calculation of curved shear layers with two-
equation turbulence modeBhys. Fluid26, 1422.4, 18

ROGERS M. M., MANSOUR, N. N. & REYNOLDS, W. C. 1989 An algebraic model
for the turbulent flux of a passive scaldr.Fluid Mech.203 77-101.6

RoOkNI, M. 2000 A new low-Reynolds version of an explicit algebrairess model
for turbulent convective heat transfer in dudtsimer. Heat Transfer, Part B7 (3),
331-363.6

126



REFERENCES

ROSENAU, P. 1989 Extending hydrodynamics via the regularizatiothefChapman-
Enskog expansiorRhys. Rev. 40(12), 7193-719619

ROTTA, J. 1951 Statistische Theorie nichthomogener Turbuléeitschrift fir Physik
A Hadrons and Nuclel31(1), 51-77.14, 24

RuUMSEY, C. L., GATsKI, T. B., ANDERSON K. W. & NIELSEN, E. J. 2001 Isolating
curvature effects in computing wall-bounded turbulent 8olnt. J. Heat and Fluid
Flow 22 (6), 573-5824, 18

RUMSEY, C. L., GATsKI, T. B. & MORRISON J. H. 1999 Turbulence Model Pre-
dictions of Extra-Strain Rate Effects in Strongly-Curveldws. AIAA Paperpp.
99-0157.17

RUMSEY, C. L., GaTskKI, T. B. & MORRISON J. H. 2000 Turbulence model predic-
tions of strongly curved flow in a U-ducAlAA J.38(8), 1394-14024, 18

SHABANY, Y. & DURBIN, P. 1997 Explicit algebraic scalar flux approximatiéhAA
Journal35 (6), 985-9896

SHABBIR, A. & SHIH, T. H. 1992 Critical assessment of Reynolds stress turbalen
models using homogeneous floWwsch. Rep.NASA TM 105954.24

SHIH, T-H., ZHU, J. & LUMLEY, J. L. 1995 A new Reynolds stress algebraic equa-
tion model.Comput. Methods Appl. Mech. Engif5(1-4), 287-30230, 57, 58

So, R. M. C., JN, L. H. & GATsklI, T. B. 2004 An explicit algebraic Reynolds
stress and heat flux model for incompressible turbulencet IRdon-isothermal
flow. Theor. Comp. Fluid Dynl7 (5), 351-3766, 33, 34, 96

So, R. M. C., Lal, Y. G., ZHANG, H. S. & HwANG, B. C. 1991 Second-order
near-wall turbulence closures-A revieMAA J.29, 1819-183541

SO, R. M. C., ARKAR, A., GERODIMOS, G. & ZHANG, J. 1997 A dissipation rate
equation for low-Reynolds-number and near-wall turbuéefitieor. Comp. Fluid
Dyn.9 (1), 47-63.43

127



REFERENCES

So, R. M. C. & SOMMER, T. P. 1996 An explicit algebraic heat-flux model for the
temperature fieldnt. J. Heat Mass Transfe39 (3), 455-4656

SO, R. M. C. & SPEZIALE, C. G. 1999 A review of turbulent heat transfer modeling.
Annual Review of Heat Transfé, 177-219.32, 97

SPEZIALE, CG 1998 A review of material frame-indifference in meclanAppl.
Mech. Re\51 (8), 489-5046, 27

SPEZIALE, C. G. 1979 Invariance of turbulent closure modelsys. Fluid22, 1033—
1037.6, 27

SPEZIALE, C. G. 1987 Second-order closure models for rotating teriduflows.
Quart. Appl. Math45, 721-733.29

SPEZIALE, C. G. 1991 Analytical methods for the development of Regladdtress
closures in turbulencénnu. Rev. Fluid Mect23 (1), 107-15713

SPEZIALE, C. G., S\RKAR, S. & GATsSKI, T. B. 1991 Modelling the pressure—strain
correlation of turbulence: an invariant dynamical systemsroachJ. Fluid Mech.
227, 245-272.20

SPEZIALE, C. G. & Xu, X. H. 1996 Towards the development of second-order clo-
sure models for nonequilibrium turbulent flowst. J. Heat and Fluid Flowl7 (3),
238-244.17

TAFTI, D. K. & VANKA, S. P. 1991 A numerical study of the effects of spanwise
rotation on turbulent channel flowhys. Fluids3, 642.37

TAULBEE, D. B. 1992 An improved algebraic Reynolds stress model angspond-
ing nonlinear stress moddthys. Fluids4, 2555-256116, 19, 24, 29

TAULBEE, D. B., SONNENMEIER, J. R. & WALL, K. M. 1994 Stress relation for
three-dimensional turbulent flowBhys. Fluids, 1399-140116

THIFFEAULT, J. L. 2001 Covariant time derivatives for dynamical systein Phys.
A: Math. Gen.34, 5875-588587

128



REFERENCES

TRuUsoV, P. V. 1987 Corotation derivatives and defining relationthetheory of large
plastic strainsJ. Appl. Mech. Tech. Phy28(2), 311-31687

WALLIN, S. 2000 Engineering turbulence modeling for CFD with a foon explicit
algebraic Reynolds stress models. PhD thesis, Royalutestif Technology, Stock-
holm, Sweden28

WALLIN, S. & JOHANSSON A. V. 2000 An explicit algebraic Reynolds stress model
for incompressible and compressible turbulent flows-luid Mech.403 89-132.
17,23, 25,26

WALLIN, S. & JOHANSSON A. V. 2002 Modelling streamline curvature effects in
explicit algebraic Reynolds stress turbulence models.J. Heat and Fluid Flow
23(5), 721-7305, 17, 28, 89

WEISs, J. & HUTTER, K. 2003 On Euclidean invariance of algebraic Reynoldssstre
models in turbulencel. Fluid Mech 476, 63-68.6, 27, 87

WIKSTROM, P. M., WALLIN, S. & JOHANSSON A. V. 2000 Derivation and investi-
gation of a new explicit algebraic model for the passiveactlix. Phys. Fluidsl2,
688.6, 7, 33, 34, 96

WiLcox, D. C. 1993Turbulence modeling for CFIDCW Industries29

Wu, H. & KAsAGI, N. 2004 Turbulent heat transfer in a channel flow with aslojtr
directional system rotatiomnt. J. Heat Mass Transfe47 (21), 4579-459192

XU, X. H & SPEZIALE, C. G. 1996 Explicit algebraic stress model of turbulend wi
anisotropic dissipatiorAlAA J.34, 2186-218917

YAMAWAKI , D., OBI, S. & MASUDA, S. 2002 Heat transfer in transitional and tur-
bulent boundary layers with system rotationt. J. Heat and Fluid Flow23 (2),
186-193.92

YING, R. & CANUTO, V. M. 1996 Turbulence modelling over two-dimensionalsill
using an algebraic Reynolds stress expresdsmundary Layer Meteorol77 (1),
69-99.23

129



	Nomenclature
	1 Introduction
	1.1 General Background
	1.2 Introduction of ARSM
	1.3 Introduction of AHFM
	1.4 The objective
	1.5 Outline

	2 The Second-Moment Turbulence Modeling
	2.1 Modeling of turbulent Reynolds stresses
	2.1.1 Differential Reynolds stress model
	2.1.2 Algebraic Reynolds stress model
	2.1.2.1 Weak-equilibrium condition
	2.1.2.2 Rodi ARSM
	2.1.2.3 Gatski and Speziale ARSM
	2.1.2.4 Wallin and Johansson ARSM
	2.1.2.5 Inclusion of rotation effects

	2.1.3 Eddy viscosity model

	2.2 Modeling of turbulent heat flux

	3 Calculation of fully developed rotating channel flow
	3.1 Calculation of fully developed rotating channel flow using LS model
	3.2 Evaluation of eddy viscosity models considering rotation effects

	4 Evaluation of extended weak-equilibrium conditions for Reynolds stress
	4.1 Introduction
	4.2 Evaluation of diffusive transport constraint 
	4.3 Near-wall behavior of Reynolds stress equation
	4.4 Modification of diffusive transport constraint
	4.5 Concluding Remarks

	5 On the weak-equilibrium condition for algebraic heat flux model
	5.1 Introduction
	5.2 Algebraic model for turbulent heat flux
	5.3 Frame invariant form of AHFM
	5.3.1 Frame invariant form of transport equation for i
	5.3.2 Euclidean invariant form of AHFM
	5.3.3 A Priori test of extended advection assumption

	5.4 The diffusive transport constraint
	5.4.1 Budget of normalized turbulent heat flux equation
	5.4.2 Modification of diffusive transport constraint

	5.5 Concluding remarks

	6 Conclusion and Perspective
	A The transformation of W and S
	B The transformation of uj
	C The transformation of DujDt
	D The incorporation of proposed diffusive transport constraint with ARSM
	D.1 The basic equation set
	D.2 The incorporation
	D.3 Results and comments
	D.3.1 Stationary case
	D.3.2 Rotating case of Ro=0.2


	References

