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Abstract

It is well documented that the rubber bearings of base-isolated struc-

tures possess strong hysteretic nonlinearity during severe earthquakes

in both site and experiment observation. This thesis is devoted to

discuss and present identification methods for base-isolated structures

considering nonlinear behavior and identifiability in order to track and

monitor the state and characteristics of the base isolation layer.

Firstly, a new method for estimating the restoring force estimation of

the isolation layer in a based-isolated system is proposed. The whole

base-isolated structure is separated into two substructures, the linear

superstructure and the nonlinear isolation layer. The hybrid motion

equation involving the modal coordinates of the superstructure and

the physical coordinates of the isolation layer is derived by component

mode synthesis. This significantly reduces the number of unknown

parameters after the mode shape information of the superstructure

is substituted and makes it possible to identify the isolation layer

directly and locally. The effectiveness of this method is validated in

a simulation example. It is shown that the proposed method is not

sensitive to the mass distribution and the expanded mode shapes but

will be scaled by the total mass.

Secondly, identifiability condition for substructural identification is

investigated in the framework of closed-loop systems by spectral anal-

ysis and parametric methods. Substructures governed by linear and

nonlinear feedback laws are both considered. The feedback law mech-

anism is shown to have greater influence on identifiability than does

the model structure or the identification method.



In addition, the performance of reverse path methods applied to iden-

tify the underlying linear model of base-isolated structures is inves-

tigated. The nonlinear rubber bearings are considered as nonlinear

components attached to an underlying linear model. The advantage

of reverse path formulation is that it can separate the linearity and

nonlinearity of the structure, extract the nonlinearity and identify

the underlying linear structure. The difficulty lies in selecting the

nonlinearity function of the hysteretic force due to its multi-valued

property and path-dependence. In the thesis, the hysteretic force is

approximated by the polynomial series of displacement and velocity.

The reverse path formulation is solved by Nonlinear Identification

through Feedback of Output (NIFO) methods using least-square so-

lution. Numerical simulation is carried out to investigate the identi-

fication performance.

Finally, the proposed restoring force estimation method is applied

to identify real base-isolated structures. The restoring force of the

isolation layer is estimated reasonably. The difficulty lies in how

to describe the state of a nonlinear device of a real structure. The

amplitude-dependent equivalent stiffness and damping coefficient are

adopted to describe the nonlinearity of the isolation layer. The iden-

tified results by the proposed method reconfirm the experimental ob-

servation of nonlinearity in the isolation layer made up of rubber bear-

ings.
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Chapter 1

Introduction

1.1 Base Isolation System

The base isolation system using laminated rubber bearings is an efficient tech-

nology for protecting structures and equipments from seismic damage. After the

Northbridge (1994) and Kobe (1995) earthquakes, the importance of mitigating

seismic damage is attracting more attention, which made base isolation system

come into use more widely. Base isolation systems isolate the superstructure from

the ground, shift its natural frequency from the destructive range of ground mo-

tion, and enable it to absorb more energy without suffering damage. They have

been shown to effectively protect structures from the effects of large earthquakes,

but their effectiveness is largely determined by the behavior of the isolators that

assimilate a large amount of the input seismic energy and reduces interstory

drifts and floor accelerations. If the isolators degrade or fail, the structure will

lose its ability to resist earthquakes. Some researchers (Heaton et al., 1995), have

raised concerns as to the efficacy of seismic isolation during severe, impulsive

earthquakes. Based on the observations from the Northbridge earthquake, base-

isolated building are vulnerable to strong impulsive ground motions generated

at near-source locations. Therefore, it is imperative to assess the condition of

isolators for monitoring the base-isolated structures in order to protect structural

or nonstructural components of superstructures.

Laminated rubber bearing has high capacity in compression and can accom-

modate severe shear deformation. The rubber is laminated and reinforced by steel

1



1.1 Base Isolation System

plates, which restrain rubber from bulging and increase the compression capacity.

The damping is provided by low-damping, natural rubber bearings (NRB), which

supply 2-3% of critical damping in the isolation mode. The damping of natural

rubber can be improved by adding extrafine carbon blace, oils or resins, and

other proprietarty fillers. High damping natural rubber (HDRB) made by this

approach may provide up to 20% of the isolation mode damping. Another type

is lead rubber bearing (LRB), by installing lead plugs in the laminated rubber

bearings to increase energy dissipation through hysteretic damping as the lead

plugs shear during large deformation motion. Both types possess high damping

and have widely been used in civil and architectural structures (Naeim & Kelly,

1999; Skinner et al., 1993). More information related to seismic isolation system

design with rubber bearing can be found in the books written by Kelly (1997),

and Naeim & Kelly (1999).

Since the performance of base-isolated systems greatly depends on the me-

chanical properties of rubber bearings, it is essential to understand the charac-

teristics of bearings. Early experiments were conducted under the unidirectional

large shear deformation with constant compression load (Fujita et al., 1989; Mori

et al., 2003; Robinson, 1982). Abe et al. (2004) studied cyclic behaviors of lam-

inated rubber bearings under multiaxial loading state. Hysteretic phenomenon

of rubber bearing was well observed, and many models were proposed to rep-

resent the experimental results on this basis (Fujita et al., 1989; Hwang et al.,

2002; Kikuchi & Aiken, 1997). For real structures, Tobita (1996) evaluated the

dynamic properties of actual buildings by modeling the structure as a linear,

time-invariant system in each time segment. The variation of the damping and

frequency with the input intensity was observed, and the distinctive amplitude-

dependent damping characteristics of based-isolated structures were found. Stew-

art et al. (1999) investigated the responses of four base-isolated buildings. The

stiffness and damping of the seismic isolation systems evaluated, the systems

were found to respond with a hysteretic action that strongly depended on the vi-

bration amplitude. Because of hysteresis, the stiffness of the isolators decreased

significantly with increasing amplitude.

2



1.2 Hysteresis Model

1.2 Hysteresis Model

Hysteresis due to change in the material’s regime results from plastic deformation

of the structural materials and interface friction at the cracks in the structural

elements. This is the mechanism for energy dissipation within the fabric of a

structure. The energy is dissipated in materials when microscopic cracks elon-

gate (Jeary, 1996). Although it is impractical and impossible to measure the

energy dissipated by the elongation of one crack, as the aggregate effect of fric-

tion force between particles and cracks, the hysteresis is relatively straightforward

to represent the energy dissipation mechanism.

One distinctive feature of hysteresis is its rate-independence, in other words,

the evolution of the hysteretic loop is independent of the deformation-rate, but

depends on the history path of the deformation. This phenomenon is consistent

with the experimental observation that the energy loss per cycle in many mate-

rials does not depend on the deformation frequency over a wide frequency range.

The high-damping rubber bearing (HDRB) possesses little rate dependency in

the input range from 1 to 0.01 Hz, where the natural periods of base-isolated

structures locate (Yoshida et al., 2004). The rate-independent feature is also ob-

served in the friction-type damping devices. Dynamic showed that the hysteresis

loops of wire-cable isolators are almost independent of vibration frequency in the

test frequency range (Demetriades et al., 1993).

Hysteresis is a highly nonlinear phenomenon with path-dependent evolution.

For the purpose of dynamic analysis and simulation, accurate constitutive models

are required to represent the hysteretic behavior. Many hysteretic models have

been developed, the Bouc-Wen model (Bouc, 1967; Wen, 1976) and Ozdemir’s

model (Ozdemir, 1976) are two classic examples. In engineering field, the Bouc-

Wen model has been widely used to describe nonlinear hysteretic systems in-

cluding hysteretic isolators. The classic Bouc-Wen, containing five unspecified

parameters, can represent a wide variety of characteristics, softening or harden-

ing, smoothly varying or bilinear hysteretic behavior. This model can also be

generalized to accommodate the stiffness or strength degradation.

In order to demonstrate how the hysteresis changes the dynamic characteris-

tics of a system, a simple case is considered here. A SDOF hysterestic structure

3
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Figure 1.1: Amplification factor

modeled by Bouc-Wen model is subjected to sinusoid ground motion with vari-

ous amplitudes and frequencies. The amplification factor is examined in Figure

1.1. It is clear that the dynamic response depends on the intensity of the ground

motion. The natural frequency varies from 1.33 Hz when the hysteretic damper

is within a small vibration range to 1 Hz when the hysteretic damper under-

goes extreme plastic deformation. The amplification factor is of saddle shape,

decreases dramatically with the increase of the input intensity at the beginning,

after reaching its minimum begins to increase. For the case of isolation systems

in which the nonlinearity is designed for the energy dissipation to mitigate the

structural damage, the change of the natural frequency and the damping ratio is

incapable of indicating the health condition of the system.

1.3 Nonlinearity System Identification

Mathematical models of natural and man-made systems play an essential role in

today’s science and technology. The applications of models range from simulation

and prediction to control and diagnosis in heterogeneous fields such as all branches

of engineering, economics, medicine, physiology, geophysics, and many others.

System identification is the subject of building mathematical models of dynamical

4
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1.3 Nonlinearity System Identification

systems or determining the unknown physical parameters based on observed input

and output measurements of the systems.

For the purpose of dynamic analysis, most systems in nature are approximated

by linear models. System identification of linear dynamic systems has been stud-

ied widely and throughly. Many approaches have been proposed to identify the

mathematical models, such as, prediction error method (Ljung, 1999), subspace

identification method (Van Overschee & de Moor, 1996). In the field of non-

destructive evaluation and damage detection for civil structures, Doebling et al.

(1996) made a comprehensive survey. Structural damage will result in perma-

nent changes in structural stiffness, distribution of stiffness, and relevant material

properties. These changes may be detected by monitoring dynamic behavior of

the structure. Because of the direct relationship of mass, damping, and stiffness

of a multi-degree-of-freedom system to the natural frequencies, mode shapes, and

modal damping values, many studies have been directed at using these proper-

ties for the purpose of structural health monitoring. The damage detection is

accomplished by monitoring these changes in dynamic properties. However, real

structures possess nonlinear behavior more or less, due to different sources of

nonlinearity. The presence of nonlinearity in a system changes its behavior, and

it makes the linear model inaccurate and invalid. Therefore, these properties

cannot indicate the status of a nonlinear system because in a nonlinear system

they will vary with the intensity of excitation even the system is intact.

Nonlinear system identification deals with nonlinear systems to build math-

ematical models. Numerous methods have been proposed because of the highly

individualistic nature of nonlinear systems since the 1970s. Several survey papers

(Adams & Allemang, 1998; Hemez & Doebling, 2001; Kerschen et al., 2006; Wor-

den, 2000) draw a comprehensive picture about nonlinear system identification in

structural dynamics. Readers can also refer to the textbooks written by Worden

& Tomlinson (2001) and Nelles (2001).

Nonlinear system identification process includes three steps, namely nonlin-

earity detection, characterization and parameter estimation, as outlined in Figure

1.2. The first step is to detect whether a nonlinearity is present or not. Charac-

terization step follows to determine the location, type and function form of the

nonlinearity. Parameter estimation is devoted to establish a mathematic model

5
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 Nonlinearity detection 

Characterization 

a. Location 

b. Type 

Parameter estimation 

Figure 1.2: Nonlinear system identification process

with a good predictive accuracy. The dissertation focuses on mathematic models

of isolation layers of base-isolated buildings, which have strong hysteresis prop-

erty arose by rubber bearings. Since nonlinearity existence, location and type of

isolation layers are known, the only left problem is parameter estimation. Nonlin-

earity detection and characterization are introduced briefly in this section, while

parameter estimation process dealing with hysteretic systems will be summarized

in Section 1.4. As to other types of nonlinearities, readers can refer to aforemen-

tioned survey papers.

1.3.1 Nonlinearity Detection

The detection of structural nonlinearity is the first step toward establishing a

predictive model for nonlinear systems. The primary task of this step is to an-

swer whether there exists structural nonlinearity and what’s the level or extent of

nonlinearity present in this system. A lot of effort has been spent in developing

methods for detecting the presence of nonlinearities in a system. Some of them

will be described briefly here. Details can be found in recent overviews summa-

rized by Adams & Allemang (1998), Vanhoenacker et al. (2002), and Gloth &

Göge (2004).

A system excited by inputs x1(t) and x2(t) generates responses y1(t) and y2(t),

respectively. The principle of superposition is violated if αy1(t) + βy2(t) is not
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1.3 Nonlinearity System Identification

the structural response to the input αx1(t) + βx2(t) for all constants α, β. Then,

it is natural to test the superposition principle in order to detect the nonlinearity

in a system. However, the time consuming aspect and the fact that no obvious

identification process can be linked to this approach are the main drawbacks of

this technique. As explained by Worden & Tomlinson (2001), it is of limited

practical utility.

Homogeneity test, as a restricted form of the superposition principle (set β =

0), is one of the most popular detection techniques. Homogeneity is an indicator of

a system, which indicates the sensitivity of a system to the magnitude of the input

x(t). If the frequency response function (FRF) is invariant for different magnitude

levels of the input, the linearity is held. However, this test is not infallible as

there are some systems that are nonlinear but nevertheless show homogeneity.

The reason is that homogeneity is a weaker condition than superposition.

Nyquist plot, which combines gain and phase characteristics in a single plot,

provides another way of inspecting FRFs for nonlinearity detection. If the FRF

characteristics in Nyquist plots differ significantly from a circular or near-circular

locus in the vicinity of the resonance frequencies, a nonlinearity should be sus-

pected. Moreover, the isochrones, which are the lines connecting points of con-

stant frequency for different excitation levels, should be straight lines for a linear

system.

The coherence function can provide a quick visual inspection of the quality of

FRFs under random excitation, which is defined as

γ2(ω) =
|Syx(ω)|2

Sxx(ω)Syy(ω)
=

H1(ω)

H2(ω)
(1.1)

with

H1(ω) =
Syx(ω)

Sxx(ω)

H2(ω) =
Syy(ω)

Syx(ω)

where Sxx(ω) and Syy(ω) are the power spectral density (PSD) of the input and

output, respectively. Syx(ω) is the cross PSD between the input and output. The

coherence function should be unity for all frequencies ω if and only if the system

is linear. It is a rapid indicator of the presence of nonlinearity. However, the noise
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1.3 Nonlinearity System Identification

can influence the calculated coherence functions seriously, which can’t distinguish

between nonlinearities and noise sources.

Higher-order spectra (HOS) is useful to detect the structural nonlinearity, it

can also provide some qualitative information about the nonlinearity type. Bis-

pectral analysis techniques are used by Choi et al. (1982) to detect nonlinearities

of quadratic types. This technique is very sensitive to quadratic nonlinearities,

but it is only available for random excitations and inefficient for detecting other

nonlinearity types. Collis et al. (1998) developed techniques to detect and ana-

lyze nonlinearities based on the concepts of higher-order spectra, in particular the

bispectrum and trispectrum. The bispectrum can be viewed as a decomposition

of the third moment (skewness) of a signal over frequency, and it is very useful for

detecting asymmetric nonlinearities. While on the contrary, the trispectrum has

advantage in detecting symmetric nonlinearities, as it represents a decomposition

of kurtosis over frequency. However, higher-order spectra can detect certain types

of nonlinearities but not generic types.

Nichols et al. (2006) presented a technique for detecting the presence of nonlin-

earities in structures based on information-theoretic measures. The time-delayed

mutual information and the time-delayed transfer-entropy provide probabilistic

measures of the coupling between structural components. These measure can

capture both linear and nonlinear relationships among time-series data.

Recently, many new techniques have been developed. Adams & Allemang

(2001) introduced a temporal analysis approach using autocorrelation functions

in discrete frequency. Autocorrelation functions of residuals from overdetermined

frequency response functions are used to detect nonlinearities. Kerschen et al.

(2003) utilized Bayesian model selection to detect nonlinearities, this technique

requires a priori knowledge of an underlying model or class of models to be tested.

Trendafilova et al. (2000) recast the nonlinearity detection into a classification

problem employing a nearest neighbor approach.

1.3.2 Characterization of Nonlinearity

It is crucial to have an accurate characterization of the nonlinear behavior of

the structures before parameter estimation. In characterization process, the first

8



1.4 Nonlinear Identification of Hysteretic Systems

step is to localize nonlinearities. By studying frequency response functions (FRF)

at various excitation levels and examining the deformation shapes of the modes

which are most corrupted by the nonlinear response, nonlinearities may be as-

sumed where the relative displacements of these mode shapes are the largest.

Other procedures have been proposed, for example, procedures based on the

restoring force surface (RFS) method (Al-Hadid & Wright, 1989), error localiza-

tion in a linear model updating framework (Fritzen et al., 1998).

Nonlinearity is caused by many different mechanisms and exhibits various

dynamic phenomena. It is useful to characterize the type of nonlinearity. The

following questions need to be answered in this step. What causes the nonlin-

earity? Does it come from stiffness, damping or both? Does the stiffness have

hardening or softening characteristics? Is the restoring force symmetric or asym-

metric? etc.

The RFS method (Masri & Caughey, 1979) represents the restoring force as a

function of the displacement and velocity, visualized the nonlinearity in a three-

dimension plot. Another common way is to look at the distortion in measured

FRFs of nonlinear systems by using Nyquist plots (Vakakis & Ewins, 1994),

Volterra series (Chatterjee & Vyas, 2001), HOFRFs (Schoukens et al., 2000), or

frequency-domain ARX models (Adams, 2002).

1.4 Nonlinear Identification of Hysteretic Sys-

tems

Methods can be categorized into two classes: nonparametric and parametric iden-

tification methods. This classification is certainly not exclusive. Another common

way is to categorize methods by the applied form of the signal, e.g. time-domain

methods, frequency-domain methods and time-frequency analysis. Time-domain

methods conduct the identification process directly based on time series of force,

acceleration, etc.
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1.4.1 Nonparametric Identification

Nonparametric identification does not require a prior knowledge of system struc-

ture, instead searches the best mathematic model in function space represented

by a series known functions.

One fruitful nonparametric method is the restoring force surface (RFS) method,

originated by Masri & Caughey (1979). RFS methods use polynomial approxima-

tion to fit the experimentally determined restoring force, which is considered as

a function of displacement and velocity by an ordinary or Chebyshev polynomial

series expansion. When hysteretic nonlinearity is involved, the nonlinear restor-

ing force appears as a multivalued function of displacement and velocity due to

its path-dependent nature. Therefore, the RFS method is invalid for nonlinear

hysteretic systems in displacement-velocity space of force.

In order to reduce the multivaluedness of the force surface in applying the

RFS method to hysteretic systems, Crawley & O’Donnell (1987) suggested that

the effect of memory can be treated as an augmented state variable dependent

on the state time history, and then a new higher-dimensional force state map

was created in terms of the independent variables of displacement, velocity, and

the augmented state. However, the augmented state could not be estimated

from the measured applied force, acceleration, velocity and displacement prior to

identification. Instead of using the common state space, Hammond et al. (1987)

proposed to plot the nonlinear force surface in an appropriately selected space

(subset of the state vector, SSV). They defined the restoring force derivative with

respect to time as a function of velocity and restoring force. Benedettini et al.

(1995) studied the performance of polynomial approximation of hysteretic systems

in detail. It was shown that the SSV formula could fit the experimental response

time histories much better than the traditional RFS formula. Ni et al. (1999)

represented a new nonparametric identification method for nonlinear hysteretic

systems. The hysteretic restoring force is mapped onto two single-valued surfaces

in an appropriate subspace in terms of the state variables of displacement and

restoring force by the Duhem hysteresis operator. The restoring force surfaces are

almost single-valued functions of displacement and restoring force in representing

most hysteretic models.
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Rice & Fitzpatrick (1988), and Bendat (1990) proposed a reverse path iden-

tification method for single-input/single-output nonlinear systems. This method

treats the response as the input, and the excitation force as the output. The

nonlinear term is considered as a feedback term. It tracks unknown parameters

in frequency domain. Rice & Fitzpatrick (1991) extended this method to identify

two DOFs nonlinear systems treating each response location as a SDOF mechan-

ical oscillator. However, this approach requires excitations to be applied at every

nonlinear location.

Richards & Singh (1998) developed a conditioned reverse path method (CRP).

The improved technique separates the nonlinear part of the system response from

the linear part and constructs a hierarchy structure of uncorrelated response

components in frequency domain. CRP removes the restriction that the excitation

must be applied at the location of the nonlinearity in order to identify its unknown

parameters. Adams & Allemang (2000) proposed a frequency domain method

for estimating parameters of non-linear parametric models by using the spatial

information and treating the nonlinear forces as internal feedback forces in the

underlying linear system. This method is called Nonlinear Identification through

Feedback of the Outputs (NIFO), and it requires measurements of both inputs

and outputs and identifies the FRF of the underlying linear system as well as the

parameters related to nonlinearities with light computational effort. Unlike CRP

methods, NIFO methods estimate the linear and nonlinear coefficients in a single

step.

Recently, Marchesiello & Garibaldi (2008a) developed an efficient time domain

method called Nonlinear Subspace Identification (NSI) for identifying nonlinear

systems by exploiting subspace identification methods. Later, Marchesiello &

Garibaldi (2008b) discussed the identification problem for clearance-type nonlin-

earity by NSI methods. NSI is able to treat many nonlinearities at the same

time, several ad hoc functions are defined and adopted in order to identify the

clearance-type characteristic, showing advantages with respect to the traditional

polynomial approach.

Kerschen et al. (2001) applied the CRP and RFS method for experimental

identification of wire rope isolators, a nonlinear hysteretic system, and compared

these two techniques. Both methods have specified the same functional form of
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the nonlinearity. The CRP technique doesn’t require numerical integration, and

the mass estimation is not necessary. But, particular care is required to chose the

type of nonlinearity, which must be known prior to application. A preliminary

analysis based on the use of multiple and partial coherence functions between

the force vector and any nonlinear vector with attempt form is used to select the

approximated function form.

1.4.2 Parametric Identification

The parametric identification method assumes that the mathematical structure

of nonlinear systems is known. The procedure then searches the appropriate

value in parameter space by the least-squares method or optimization method.

Most parametric identification methods have been implemented referring to the

Bouc-Wen differential model due to its versatility.

Andronikou et al. (1983) first explored the identifiability of hysteretic bilin-

ear systems. The approach was to prove that there are equivalent linear and

nonlinear systems which are identifiable. And they concluded that the origi-

nal hysteretic bilinear system is identifiable as long as the equivalent linear and

nonlinear systems are identifiable.

Yar & Hammond (1987) used the Gauss-Newton iterative method to solve the

least-squares problem for parameter identification of the Bouc-Wen model. Based

on the analysis of the asymptotic properties of the estimates, they discussed the

identifiability of the parameters and pointed out that the input level is important

to certain parameters.

Ni et al. (1998) proposed a frequency domain parametric method to identify

the model parameters from the experimental data of periodic vibration tests. The

harmonic balance technique leads to a frequency domain least-squares problem,

which is solved iteratively by the Levenberg-Marqardt (LM) algorithm. And they

implemented this method to model and identify the experimental hysteresis loops

of wire-cable vibration isolators.

Zhang et al. (2002) developed three identification algorithms, namely the Sim-

plex, extended Kalman filter and generalized reduced gradient method, to esti-

mate the control parameters of a generalized hysteresis model containing 13 pa-
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rameters. The Simplex method is a non-gradient global search method, which is

not sensitive to initial values and small measurement noise. On the contrary, the

extended Kalman filter method is highly sensitive to initial values, which leads to

the problem of convergence and bias. The generalized reduced gradient algorithm

can easily accommodate various error functions and nonlinear constraints. How-

ever, it might yield a local minimum solution of the objective function instead of

a global minimum.

Recently, the differential Evolution algorithm (Kyprianou et al., 2001; Ma

et al., 2006), and Genetic Algorithm (GA) (Kwok et al., 2007) have been used

to estimate parameters of the Bouc-Wen model. Charalampakis & Koumousis

(2008) presented a stochastic identification method. It is based on a hybrid evolu-

tionary algorithm, which first locates the promising regions by a GA variant, then

find the local optima by a hill-climbing technique, and finally identify the param-

eters constrained within feasible domain. Tang et al. (2006) proposed an online

sequential weighted Least Squares Support Vector Machine (LS-SVM) technique

to identify the structural parameters and their change due to damage.

Ma et al. (2004) investigated the generalized Bouc-Wen differential model and

proved that the unspecified parameters of the model are functionally redundant.

The parameter A is suggested to be fixed to unity. Furthermore, the parameters

α and β, controlling the shape of hysteresis loops, do not have clear physical

meaning and affect the entire behavior in an indirect way. A certain constraint

(α + β)/A = 1 is imposed to reduce the redundancy. They also studied the

local and global sensitivity of parameters. The global sensitivity analysis ex-

ploited a probabilistic method, which can account for the mutual interactions

of parameters. It is found that some parameter of the generalized Bouc-Wen

model are rather insensitive, but none of the unspecified parameters in the clas-

sical Bouc-Wen model are insensitive. The study by Ma et al. (2004) provides

the theoretical basis for the multi-stage estimate approach (Loh & Chung, 1993;

Roberts & Sadeghi, 1990) proposed previously. One or two parameters are fixed

to the assumed valued and the remaining parameters are identified (Roberts &

Sadeghi, 1990). The second stage takes the final estimate of the first stage as the

initial guess and identifies all the model parameters. The multi-stage scheme can

improve the identification accuracy as well as convergence.
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1.5 Organization of the Thesis

Chapter 1 is an introduction to the thesis. It starts with the introduction of the

base isolation system, the research focus of the thesis, and stresses the hysteretic

behavior of the rubber bearings, which is the primary obstacle standing in way.

Then the procedure of nonlinear system identification is explained, including the

nonlinearity detection, nonlinearity characterization and parameter estimation.

The nonlinear identification methods for hysteretic systems are summarized in

two categories, the nonparametric and parametric methods.

In Chapter 2, a new method for estimating the restoring force estimation of

the isolation layer in a base-isolated system is proposed. The whole base-isolated

structure is separated into two substructures, the linear superstructure and the

nonlinear isolation layer. The hybrid motion equation involving the modal coor-

dinates of the superstructure and the physical coordinates of the isolation layer

is derived by component mode synthesis. The estimation procedure is elaborated

by a numerical simulation.

Chapter 3 investigates the identifiability condition for substructural identifica-

tion in the framework of closed-loop systems by spectral analysis and parametric

methods. Substructures governed by linear and nonlinear feedback laws are both

considered.

In Chapter 4, the performance of reverse path methods applied to identify the

underlying linear model of base-isolated structures is investigated. The nonlinear

rubber bearings are considered as nonlinear components attached to an underly-

ing linear model. The nonlinearity function of the hysteretic force is discussed.

The reverse path formulation is solved by Nonlinear Identification through Feed-

back of Output (NIFO) methods using least-square solution. Numerical simula-

tion is carried out to investigate the identification performance.

In Chapter 5, the proposed restoring force estimation method is applied to

identify two real base-isolated structures. The restoring force of the isolation

layer is estimated reasonably. The amplitude-dependent equivalent stiffness and

damping coefficient are adopted to describe the nonlinearity of the isolation layer.

Chapter 6 draws conclusions regarding to the performance of the proposed

methods and the identifiability condition of substructural identification.
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Chapter 2

Estimating Restoring Force by

Component Synthesis Method

2.1 Introduction

A base-isolated system consists of two very different subsystems: the superstruc-

ture and the isolation layer. The isolation layer of a base-isolated structure is

composed of rubber bearing isolators that typically have damping ratios up to

20%, while the superstructure is just an ordinary building with a very low damp-

ing ratio of its first mode. The conventional damage indices such as the modal

frequencies and mode shapes are insensitive to local damage and thus cannot be

used to quantify damage accurately. In addition, the nonlinearity of the system

makes these indices invalid for damage detection. A direct and local identification

method is therefore better than one using the conventional indices. This chap-

ter presents a new algorithm for estimating the restoring force of the isolation

layer by component mode synthesis. And the amplitude-dependent stiffness and

damping coefficient, which are regressed from the restoring force of the isolation

layer, are utilized to represent the nonlinear state of the isolation layer.
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2.2 Estimating Restoring Force by Component

Mode Synthesis

Component mode synthesis (CMS) is a technique used to perform the dynamic

analysis of structures by means of substructuring, or decomposing the overall

structure into several substructures whose boundary conditions are compatible

in a specified way. This technique is quite useful for the dynamic analysis of com-

plex structures in structural engineering, especially when the substructures have

dynamic characteristics so different that the coupled structure has nonclassical

vibration modes. The CMS methods presented by Hurty (1960) can be classified

into four groups: fixed-interface methods, free-interface methods, hybrid-interface

methods, and loaded-interface methods. These groups differ from each other

mainly in the choice of the supplementary Ritz vectors, the associated general-

ized coordinates, and the coupling procedure. CMS methods have been reviewed

by Craig (1985) and others.

Many attempts have been made to identify the element-level or substructure-

level physical parameters by using CMS methods. Llorca et al. (1994) identified

the joint stiffness parameters by using a free-interface CMS method. While,

Hwang (1998) used a fixed-interface CMS method to identify the stiffness and

damping coefficient parameters of connections by averaging the frequency re-

sponse function in frequency domain. Yun & Bahng (2000) presented a method

for estimating the element-level stiffness parameters by using a back-propagation

neural network, and CMS methods are adopted for efficient generation of the

patterns for training the neural network. Zhang et al. (2007) adopted a sup-

port vector regression method for structural identification via component mode

synthesis.

In this thesis, the state of the isolation layer is our concern and the number

of the accelerometers mounted is limited. A fixed-interface CMS method is used

to derive the hybrid motion equation involving the modal parameters of the su-

perstructure as well as the physical parameters of the isolation layer. This paves

the way for estimating the restoring force of the isolation layer.

The base-isolated structure shown in Figure 2.1 consists of two substructures:

a superstructure and a base isolation layer. The superstructure is considered
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Figure 2.1: Structure model

to be a linear system, and the base isolation layer has both linear and nonlin-

ear components. The linear one has a stiffness kb and damping coefficient cb,

and nonlinear one has a restoring force of fnl. There are many choices for the

nonlinear model, but in the present case a hysteretic model is used because the

rubber bearings of the isolation layer possess strong hysteresis. The model will

be described in detail in numerical simulation.

The dynamic equation of the overall structure is written as

Mẍ + Cẋ + Kx +

[

0

fnl

]

= −Mrẍg (2.1)

where M, K and C are mass, stiffness and damping matrices, respectively. r is

a n × 1 unit vector (r = [ 1 . . . 1 ]T ). x is the displacement relative to the

ground; and ẍg is the ground acceleration.

x = [ xn xn−1 . . . x2 xb ]T = [xT
s xb ]T

Fnl =

[

0

fnl

]
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M =









mn 0
. . .

m2

0 mb









=

[

Ms 0

0 mb

]

Mr = [ mn · · · m2 mb ]T = [ rT
s Ms mb ]T

K =













kn −kn 0
−kn kn + kn+1 −kn+1

...
−k3 k3 + k2 −k2

0 −k2 k2 + kb













=

[

Ks Ksb

Kbs k2 + kb

]

C =













cn −cn 0
−cn cn + cn+1 −cn+1

...
−c3 c3 + c2 −c2

0 −c2 c2 + cb













=

[

Cs Csb

Cbs c2 + cb

]

Moving the nonlinear term to the right-hand side, we obtain

Mẍ + Cẋ + Kx = −Mrẍg − Fnl (2.2)

The whole structure is separated into two substructures that have a common

interface as shown in Figure 2.2. A fixed boundary condition is imposed on this

interface, making it unable to deform and move. These two substructures can

therefore be treated as independent structures and can generate their own modal
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information. Our focus in this thesis is not on how to retrieve the overall modal

information by integrating substructures. Instead, we are trying to transform the

traditional dynamic equations either in physical coordinates or modal coordinates

into a hybrid form by CMS. The hybrid dynamic equations describe both the

linear modal information of the superstructure and the nonlinear physical model

of the isolation layer.

The equilibrium equation of the superstructure is

Msẍ
r
s + Csẋ

r
s + Ksx

r
s = −Msrsẍ

a
b (2.3)

where

xa
b = xg + xb

and

xr
s = xs − xbrs

with rs a (n − 1) × 1 unit vector (rs = [ 1 . . . 1 ]T )

The superscript r indicates coordinates relative to the fixed interface, while the

superscript a indicates absolute coordinates. The subscripts s and b respectively

denote the superstructure and the isolation layer. We assume the damping matrix

of the superstructure is proportional to the stiffness matrix. That is, Cs =

αKs. The modal damping ratios implied by the stiffness-proportional damping

are proportional to the modal frequencies. Therefore, the response of higher

modes will die away sooner. This is consistent with the experience that the lower

modal responses are dominant in civil engineering.

Rewrite the equation of superstructure in modal coordinates, we have

ΦT
s MsΦsξ̈s + ΦT

s CsΦsξ̇s + ΦT
s KsΦsξs = −ΦT

s Msrsẍ
a
b (2.4)

where Φs is the fixed-interface mode shape matrix of the superstructure and

ξs is the modal coordinates. xr
s is related to the modal coordinates as follows:

xr
s = Φsξs.

If Φs is normalized in such a way that

M∗
s = ΦT

s MsΦs = I
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We have the relations

K∗
s = ΦT

s KsΦs = Ω2

and

C∗
s = ΦT

s CsΦs = αΩ2

where Ω is the undamped frequency matrix of the superstructure, ωi is the ith

undamped frequency.

Ω =









ω1 0
. . .

ωn−2

0 ωn−1









Therefore, Eq. (2.4) can be expressed by

M∗
s ξ̈s + C∗

sξ̇s + K∗
sξs = −ΦT

s Msrsẍ
a
b (2.5)

The physical displacements of the superstructure in local coordinates are ex-

pressed as a linear combination of its substructure modes. After some algebraic

transformations, the displacements of superstructure in general coordinates can

be represented by a set of Ritz vectors:

xs = Q

[

ξs

xb

]

(2.6)

where xb is the displacement of the isolation layer representing the interface dis-

placement. The boundary condition of its fixed interface determines the Ritz

vectors (Craig & Bampton, 1968) as

Q = [Φs Ψs ] (2.7)

where Ψs is the constraint mode associated with the fixed interface. It is the

superstructure deformation obtained by imposing one unit displacement on the

fixed interface. In this case the superstructure is constrained only by the base

layer. So Ψs = [ 1 . . . 1 ]T .

The overall physical coordinates can be transformed to the hybrid coordinate

which contains the modal coordinates of the superstructure ξs and the physical

coordinate of the base isolator ẍb.

xs = Φsξs + Ψsxb (2.8)
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x =

[

xs

xb

]

=

[

Φs Ψs

0 1

] [

ξs

xb

]

= Φξ (2.9)

Substituting this into the motion equation of the overall structure and multi-

plying both sides by ΦT , we get from Eq. (2.2)

ΦTMΦξ̈ + ΦTCΦξ̇ + ΦTKΦξ = −ΦTMrẍg − ΦTFnl (2.10)

which we can simplify as follows

M∗ξ̈ + C∗ξ̇ + K∗ξ = −ΦT Mrẍg −ΦTFnl (2.11)

where

ΦTFnl =

[

ΦT
s 0

ΨT
s 1

] [

0

fnl

]

=

[

0

fnl

]

= Fnl

M∗ = ΦTMΦ =

[

ΦT
s 0

ΨT
s 1

] [

Ms 0

0 mb

] [

Φs Ψs

0 1

]

=

[

I ΦT
s Msrs

rT
s MsΦs tr(M)

]

K∗ = ΦTKΦ =

[

ΦT
s 0

ΨT
s 1

] [

Ks Ksb

Kbs k2 + kb

] [

Φs Ψs

0 1

]

=

[

ΦT
s KsΦs 0

0 kb

]

=

[

Ω2 0

0 kb

]

C∗ = ΦTCΦ =

[

ΦT
s 0

ΨT
s 1

] [

Cs Csb

Cbs c2 + cb

] [

Φs Ψs

0 1

]

=

[

ΦT
s CsΦs 0

0 cb

]

=

[

αΩ2 0

0 cb

]

Kbs =
[

0 · · · 0 −k2

]

= KT
sb

Cbs =
[

0 · · · 0 −c2

]

= CT
sb

and

ΨT
s Ks + Kbs = 0
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The final form of the motion equation in the hybrid coordinates is
[

I ΦT
s Msrs

rT
s MsΦs tr(M)

]

ξ̈ +

[

αΩ2 0

0 cb

]

ξ̇ +

[

Ω2 0

0 kb

]

ξ = −ΦTMrẍg − Fnl

(2.12)

The new coordinate system could reduce the number of physical parameters

significantly. Another advantage of this form is that the complete modal infor-

mation of the superstructure is not required. The participation factors of higher

modes are relatively low for base-isolated buildings. We assume here that only

the first l orders of the superstructure mode shapes are known.

When we consider only first l modes as expressed in the form

xs = Φ̄sξ̄s + Ψsxb

x =

[

xs

xb

]

=

[

Φ̄s Ψs

0 I

] [

ξ̄s

xb

]

= Φ̄ξ̄

where ξ̄s is the first l modal coordinates, and ξ̄s is the first l columns of Φs , in

other words, the first l orders of mode shapes.

Following the same procedure, we obtain
[

I Φ̄T
s Msrs

rT
s MsΦ̄s tr(M)

]

¨̄ξ +

[

αΩ̄2 0

0 cb

]

˙̄ξ +

[

Ω̄2 0

0 kb

]

ξ̄ = −Φ̄T Mrẍg − Φ̄TFnl

(2.13)

Substitute ξ, Φs, Mr and Fnl by matrix forms in Eq. (2.12)

[

I ΦT
s Msrs

rT
s MsΦs tr(M)

] [

ξ̈s

ẍb

]

+

[

αΩ2 0

0 cb

] [

ξ̇s

ẋb

]

+

[

Ω2 0

0 kb

] [

ξs

xb

]

= −
[

ΦT
s 0

ΨT
s 1

] [

Msrs

mb

]

ẍg −
[

0

fnl

]

(2.14)

Extract the second row related to the base isolation, we can obtain the fol-

lowing SDOF equation of motion for the isolation layer.

mbẍb + cbẋb + kbxb = −tr(Ms)(ẍb + ẍg) − mbẍg − rT
s MsΦsξ̈s − fnl (2.15)

Therefore, the identification of the isolation layer has become as simple as

possible. The restoring force of isolation layer can be expressed as follows

F = cbẋb + kbxb + fnl = −tr(M)(ẍb + ẍg) − rT
s MsΦsξ̈s (2.16)
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2.3 Mode Shape Expansion

The restoring force consists of two parts. The first term represents the rigid

inertial force of the superstructure, and the second term is the inertial force in

modal coordinates.

2.3 Mode Shape Expansion

For economy, accelerometers are usually not installed on every floor. Therefore

the measured mode shapes consist of a limited number of degrees of freedom

(DOF), typically smaller than the number of DOF in the analytic model. The

full length vector of mode shapes is, however, indispensable in the calculation

of the equivalent external force acting on the isolation layer. It is necessary to

expand the measured mode shapes for matching the other unmeasured DOFs.

Guyan static expansion proposed by Guyan (1965) is suggested in this thesis

because of its simplicity.

The Guyan static expansion method is based on the assumption that inertial

forces acting on the unmeasured DOFs are negligible with respect to the elastic

forces. This assumption is implemented by setting M = 0 in the following modal

force equilibrium equation

([

Kaa Kao

Koa Koo

]

− ω2
i

[

Maa Mao

Moa Moo

]) [

ϕai

ϕao

]

= 0 (2.17)

The subscripts a and o respectively represent the locations of the measured

and unmeasured DOFs. This equation leads to an exact analytical relationship

between the mode shapes at the measured and unmeasured DOFs

ϕao = −K−1
oo Koaϕai (2.18)

Usually there is no preknowledge about the stiffness distribution of the super-

structure, so we have to use an alternative way to describe it. We assume that

the stiffness distribution of a building is proportional to its mass distribution.

This assumption is roughly reasonable for buildings with conventional shapes.
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2.4 Identification Procedure

2.4 Identification Procedure

The procedure of the proposed method is illustrated in Figure 2.3. After the

identification process for the superstructure, the number of the unknown param-

eters to be identified could be reduced greatly as shown in Eq. (2.15). Only

partial modal information is required for the estimation of the restoring force,

which makes this method workable when the number of sensors is limited. It is

easy to incorporate the nonlinearity in the isolation layer by selecting nonlinear

models for the restoring force.

F = cbẋb + kbxb + fnl = −tr(M)(ẍb + ẍg) − rT
s MsΦsξ̈s

What we want to identify is the total restoring force on the left-hand side of

this equation. To do this we first need to specify the mass distribution Msrs, the

mode shape matrix Φs, and the acceleration in modal coordinates ξ̈s on the right-

hand side. Given that the acceleration response on floors is observable, the ground

excitation and the acceleration response in the isolation layer and on several

other floors are known. It is not difficult to retrieve the mode shape information

by using subspace identification methods. Only partial modal information is

required for the estimation of the restoring force, but the mode shapes need to be

expanded at unmeasured DOFs. Then the acceleration in modal coordinates ξ̈s

can be obtained by the transformation from the physical coordinates. The mass

distribution Msrs is treated by taking the design value of real buildings, since

the mass of buildings hardly changes unless significant rebuilding or retrofitting

takes place.

2.5 Numerical Simulation

A multistory structure supported by a base isolation layer is considered here. We

refer to the part of the structure above the base as the superstructure, and we

make the following assumptions:

1. The superstructure is of the shear type, its stiffness and mass may vary from

floor to floor, it remains within elastic range even during an earthquake, and

its only nonlinearity is associated with the base isolation system.
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2.5 Numerical Simulation

 Identification of superstructure 

Modal information 

Restoring force of isolation layer 

Expanded mode shape 

Figure 2.3: Procedure of the proposed method

2. The base isolation layer consists of an elastic spring, a hysteretic damper,

and a viscous damper.

According to the experimental observation, Yoshida et al. (2004) concluded

that the elastomeric bearings and friction-type isolators exhibit little rate de-

pendence and quite stable hysteresis loops, a smooth and differential hysteresis

model is adopted for the hysteretic dampers in the dynamic simulation. A widely

accepted one is the Bouc-Wen hysteresis model proposed by Bouc (1967) and

generalized by Wen (1976). Baber & Noori (1986) and other researchers incor-

porate the deterioration of hysteretic characteristics. Although it is not in total

accordance with the plasticity theory and sometimes it predicts negative dissi-

pated energy, as pointed out by Carli (1999), it has been widely used in seismic

engineering.

The differential equation of the Bouc-Wen model is

Dyż = Au̇ − (γsgn(zu̇) + β) |z|p u̇ (2.19)

and the hysteretic force of the isolation layer is given by

fnl = Fyz

The terms Dy and Fy are respectively the yield displacement and force of the

hysteretic damper; z is a dimensionless parameter; A, β and γ are parameters
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Figure 2.4: Simulation model of 7-story base-isolated building

that describe the shape of the hysteresis loop; and u and u̇ are respectively the

displacement and velocity of the isolation layer. The smoothness of transition

from elasticity to plasticity is determined by p, and when p → ∞ the hysteresis

model is reduced to a bilinear case.

A 7-story base-isolated building is considered and the mass and stiffness ma-

trices of the superstructure are defined in Figure 2.4. The damping matrix is

assumed to be proportional to the stiffness matrix and the first order of the

damping ratio is 1%. The modal information of the superstructure is listed in

Table 2.1. The accelerometers are installed in the basement, on the 1st floor, on

the 4th floor, and on the roof. The parameters related to the isolation layer are

listed in Table 2.2. The restoring force of the isolation layer is given by

F = kbxb + cbẋb + fnl (2.20)

The earthquake that happened 23rd July 2005 in Chiba Prefecture, Japan, is

selected as the ground input. The ground acceleration was observed at Hiyoshi

Campus of Keio University and recorded by the Raiosha monitoring system

(Yoshimoto et al., 2003). The maximum acceleration in this record is 70.13 cm/s2

and the sampling rate is 100 Hz (Figure 5.5).
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2.5 Numerical Simulation

Table 2.1: Modal information of superstructure

Frequency (Hz) Damping ratio (%)

1st 1.09 1.00

2nd 2.82 2.59

3rd 4.61 4.22

4th 6.06 5.55

5th 7.36 6.74

Table 2.2: Parameter values
Argument Value

kb 475000 kN/m

cb 6000 kN·s/m

A 1

β 0.6

γ 0.4

p 1

Dy 1.5 mm

Fy 655.4 kN
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Figure 2.5: Ground acceleration observed at Hiyoshi

Table 2.3: Identified mode shapes of superstructure

1% noise 10% noise

Roof 4th floor Roof 4th floor

1st 1 0.4419 1 0.4385

2nd 1 -1.0053 1 -1.0281

The simulation was conducted using Simulink MATLAB R©. The acceleration

response of the superstructure is illustrated in Figure 2.6 and the restoring force

is plotted against displacement in Figure 2.7.

Two cases are under consideration: one with the acceleration response con-

taminated by 1% white noise and the other with the acceleration response con-

taminated by 10% white noise. Taking the acceleration on the 1st floor as the

ground input to the superstructure and the accelerations on the 4th floor and the

roof as the responses, the mode shapes of the superstructure were identified by the

subspace identification method (N4SID: refer to Appendix A) using the toolbox

in Matlab. After the first two mode shapes at measured DOFs were extracted

(Table 2.3), they were expanded to the unmeasured DOFs by using Eq. (2.18)

as shown in Figure 2.8 and 2.9. In this calculation, the stiffness distribution was

assumed to be proportional to the mass distribution.

The acceleration in modal coordinates ξ̈s is corresponding to the physical

acceleration obtained by coordinate transformation

ξ̈s = Φ†
sẍ

r
s (2.21)
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Figure 2.6: Acceleration responses of the superstructure

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

4

Displacement (m)

R
es

to
rin

g 
fo

rc
e 

(k
N

)

 

 

Figure 2.7: Restoring force of the isolation layer vs. displacement
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Figure 2.8: Expanded and analytic mode shapes (1% noise)
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Figure 2.9: Expanded and analytic mode shapes (10% noise)
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Figure 2.10: Acceleration in the 1st modal coordinate ξ̈1 (1% noise)

Φ†
s is the pseudo-inverse matrix of the expanded mode shape matrix of Φs. The

evaluated results and analytical values are plotted in Figures 2.10, 2.11, 2.12 and

2.13.

All the unknown parameters in Eq. (2.16) needed for estimating the restoring

force of the isolation layer were determined assuming the mass to be the same

as that in the simulation model. Figures 2.14 and 2.15 illustrates the difference

between the estimated restoring force and the analytical one. Although they are

consistent at a rather high level, the estimated force-displacement is distorted

a lot (Figures 2.16 and 2.17). These cases with different noise levels show that

noise degrades the identification results, the modal information, and the modal

acceleration has little effect on the estimated restoring force. The reason is that

the dominant part of the restoring force comes from the inertia force of the

superstructure, and the part coming from modal inertia forces doesn’t count as

much.
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Figure 2.11: Acceleration in the 1st modal coordinate ξ̈1 (10% noise)

20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

20

 A
cc

el
er

at
io

n 
in

 2
nd

 m
od

al
 c

oo
rd

in
at

e 
(m

/s
2 )

Time (s)

 

 
Estimated
Analytical

Figure 2.12: Acceleration in the 2nd modal coordinate ξ̈2 (1% noise)
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Figure 2.13: Acceleration in the 2nd modal coordinate ξ̈2 (10% noise)
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Figure 2.14: Estimated restoring force of the isolation layer (1% noise)
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Figure 2.15: Estimated restoring force of the isolation layer (10% noise)
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Figure 2.16: Estimated restoring force vs. displacement (1% noise)
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Figure 2.17: Estimated restoring force vs. displacement (10% noise)

2.5.1 Effect of Mode Selection

The effect of mode selection was examined for three different choices: the first

mode, the first two modes, and the first three modes. As illustrated in Figure

2.18, the first two modes can generate acceptable results. In most cases, the

response of the structure is dominated by the low-order vibration modes with

high participation factors.

2.5.2 Effect of Mass Estimation

The effect of the mass estimation was evaluated by investigating two kinds of

mass variation. First, the mass estimation was scaled to its simulation value, in

this case, by 90%, and the first two modes were selected for the restoring force

estimation. As illustrated in Figure 2.19, the estimated value retains the shape

but is scaled by the same degree. This is due to the reason that the rigid inertial

force, which dominates the restoring force, is proportional to the total.

The second kind of mass variation was that the mass is normally distributed

around the simulation value with a certain standard deviation (in this case, 20
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Figure 2.18: Effect of mode selection on estimation (1% noise)
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Figure 2.19: Effect of mass estimation (1% noise)
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Figure 2.20: Effect of mass estimation (1% noise), (2005 2010 1541 1834 1656

2411 3790 9950 ton, from top down)

of the simulation value). As shown in Figure 2.20, in this case also the estimated

value fit the analytical value very well. From these two examples, it is concluded

that the estimation of the restoring force is insensitive to the mass distribution

but will be scaled by the estimated total mass.

2.6 Conclusions

This chapter represented a new method, based on component mode synthesis, for

estimating the restoring force of an isolation layer. The hybrid motion equation

involving the modal coordinates and the physical coordinates is derived by using

a substructuring technique. This method is applicable even when the number of

sensors is limited because only the mode shape information of the superstructure

and the estimated mass estimation are needed for estimating the restoring force.

It was shown that the proposed method is not sensitive to the mass distribu-

tion and the expanded mode shapes but will be scaled by the total mass. The

effectiveness of this method was validated in simulations.
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Chapter 3

Identifiability of Linear

Superstructures under Feedback

3.1 Introduction

The structural engineering community takes for granted that substructural iden-

tification of a superstructure is equivalent to the case in which a structure is

subject to ground motion, if the base story of the superstructure is considered

as the ground. Structural engineers assume that identification will never fail if

the input and output signals are known. Substructural identification of the su-

perstructure sometimes fails, however, in the case of free vibration. This can’t

be explained by the theory of open-loop identification, even though the input

and output signals of the substructure are both known. Therefore, investigating

the identifiability condition requires new insight, with substructural identification

moved into the framework of closed-loop systems.

In this chapter, we take the example of a base-isolated structure decomposed

into two substructures: a superstructure, and a base isolation layer. The su-

perstructure is considered a linear system. The base isolation layer can be either

linear or nonlinear. We first investigate the linear case, in which the isolation layer

is represented by a linear model with stiffness kb and damping coefficient cb, as

illustrated in Figure 3.1. Here, x is the displacement relative to the ground, ẍg is

the ground acceleration, and the superscript a refers to the absolute coordinates.
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Figure 3.1: Structure model

The motion equation of the overall structure is written as

Mẍ + Cẋ + Kx = −Mrẍg (3.1)

where K, C, and M are the stiffness, damping, and mass matrices, respectively;

and Mr is the diagonal vector of M.

After decomposing the structure into the superstructure and the isolation

layer, these two subsystems compose a complete closed-loop system, as shown in

Figure 3.2. The superstructure is taken as the plant, while the isolation layer is

the regulator. The subscripts s and b denote the superstructure and the isolation

layer, respectively. The ground acceleration functions as the reference signal, a

persistent excitation of any order, and is the input to the overall system. The

output of the plant is contaminated by unmeasured noise sources. We assume

that there are no process disturbances between the plant and the controller, and

that the unmeasured noise doesn’t affect the controller, meaning that there is

no correlation between the noise and the input. The noise sources are modeled

within output signals; therefore, they are located outside the feedback loop. The

isolation layer generates the feedback, which is the relative acceleration of this

layer with respect to the ground. The feedback added via the reference signal is

equal to the absolute acceleration of the layer exciting the plant.
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Figure 3.2: Subsystems in a closed-loop scheme

This chapter is organized as follows. Section 3.2 addresses the basic concepts

of closed-loop identification. Section 3.3 investigates the identifiability problem

for linear systems under linear feedback laws, by examining spectral analysis and

parametric methods. We also derive the identifiability condition for parametric

methods. Section 3.4 briefly explains the identifiability of linear systems under

nonlinear feedback laws. Then, in Section 3.5, we apply the identifiability con-

dition to study the identification of a superstructure by numerical simulation.

Finally, the last section summarizes our main results.

3.2 Basic Concepts of Closed-loop Identification

The essential concept in closed-loop identification is identifiability, which means

that there exists an identified model M(θ) that can describe the true system S

when the number of measurements tends to infinity. In the case of a closed-loop

system, as shown in Figure 3.3, the input and the unmeasurable noise, which is

inside the feedback loop, are correlated whenever the feedback controller exists.

This is why several methods that can be applied in open loops fail when applied

to closed-loop data.

The identifiability problem of linear systems under linear feedback was first

investigated by Akaike (1967) by using spectral analysis, showing that under

pure feedback conditions, spectral analysis fails to yield informative results for
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Figure 3.3: A closed-loop system

the plant. Box & MacGregor (1974) concluded an identical result by using corre-

lation methods, which are not applicable to the causality of true systems. Ljung

et al. (1974) explored the same problem by direct, parametric approaches and

proved that by shifting between different linear regulators, it is always possible to

achieve identifiability for pure feedback systems. The required number of regula-

tors depends only on the numbers of inputs and outputs. Söderström et al. (1975)

then included noise sources in the regulator and external input signals for a gen-

eral configuration. Ng et al. (1977) derived the identifiability conditions for joint

input-output approaches, which require that there be no correlation between the

noise in the forward and reverse paths. The presence of delays in either the plant

or the regulator is necessary to avoid an algebraic loop, as Ljung et al. (1974) and

Söderström et al. (1976) pointed out. This can be relaxed to a condition relating

to the absence of algebraic loops in closed-loop systems (Sohn, 2003). Wang et al.

(2004) used a fast-sampling direct approach to lift these restrictive identifiability

conditions for a closed-loop system without external signals. Finally, Forssell &

Ljung (1999) and Gustavsson et al. (1977) provided comprehensive surveys of

closed-loop identifiability.

In the structural engineering community, the identifiability of substructural

identification has seldom been considered. It is vitally important to determine

under what conditions it is possible to obtain reliable, identified results for closed-

loop systems. Generally speaking, the result of identification depends on the
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following items, as classified by Gustavsson et al. (1977):

1. System

2. Feedback structure

3. Model structure

4. Identification method

5. Experimental conditions

3.2.1 System

Consider a linear time-invariant dynamical system in a discrete-time representa-

tion

S : y(t) = G0(q)u(t) + v(t), v(t) = H0(q)e(t) (3.2)

where y(t) ∈ Rp is a p-dimensional output signal; u(t) ∈ Rm is an m-dimensional

input signal; e(t) ∈ Rp is a sequence of independent random variables with zero

mean and covariance matrix E[e(t)eT (t)] = Λ > 0; and G0(q) and H0(q) are

rational transfer function matrices, with H0(q) being an inversely stable, monic

filter. q denotes the forward shift operator, e.g. q−1u(t) = u(t − ∆t).

3.2.2 Feedback Structure

Assume that this system is operated under a linear feedback law

u(t) = r(t) + K(q)y(t) (3.3)

where r(t) is a m-dimensional reference signal assumed to be independent of the

noise v, which is either an additional measurable signal or a noise disturbance

in the regulator output; and K(q) is a linear, time-invariant regulator of appro-

priate dimensions. The feedback structure plays a vital role in the identifiability

conditions of a closed-loop system. The number of regulators or the complexity

of the regulator can influence the identifiability of a closed-loop system.
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3.2.3 Model

To determine a model of the system S, we consider a model set

M : y(t) = Gθ(q)u(t) + Hθ(q)ε(t), θ ∈ Θ ⊂ Rd (3.4)

where ε(t) is a sequence of independent, random vectors with zero mean values

and covariances Λ̃; Gθ(q) and Hθ(q) are the dynamics model and the noise model

respectively, and both are appropriate rational transfer function matrices depend-

ing on a real-valued parameter vector θ. When θ varies within a feasible region,

Eq. (3.4) represents a family of models, sometimes called a model structure. We

assume that G is causal and H is both monic and causal.

3.2.4 Identification Method

The procedure to determine the parameter vector is called the identification

method. For a closed-loop system, identification methods can be classified into

three main groups:

1. The direct approach: Ignore the feedback and identify the system directly

by measuring the input and output, exactly as if it was an open-loop system.

2. The indirect approach: If the regulator is known, then the closed-loop sys-

tem as a whole can be identified. The corresponding open-loop system is

determined through knowledge of the regulator.

3. The joint input-output approach: Jointly consider both the input and the

output as the output from a system driven by some extra input or noise.

The corresponding open-loop system is identified by estimating the charac-

teristics of this augmented system.

Each group includes several different methods, such as correlation and spectral

analysis, the parametric identification method (Ljung, 1999), and the subspace

identification method (Van Overschee & de Moor, 1996). If there is a time delay in

either the system or the regulator, and if the regulator noise is independent of the

system noise, then the direct and joint input-output approaches are equivalent for

determining identifiability. Furthermore, the indirect approach has no advantage
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3.3 Identifiability Conditions for Linear Feedback Laws

over direct identification in terms of either identifiability or accuracy. Therefore,

we adopt the direct identification approach in this part.

3.2.5 Experimental Conditions

Basically, the experimental conditions consist of the sampling rate and the length

of the experiment, which describe how the input is determined. An experimental

system can be operated in an open loop, or the experimental conditions can be

determined by the feedback of a given regulator. Traditionally, the conditions

include the regulator characteristics. In this chapter, however, we exclude these

characteristics from the experimental conditions and instead regard the regulator

characteristics as a dependent item, called the feedback structure.

3.2.6 Identifiability Definition

The property of identifiability is related to the consistency of parameter estima-

tion. There are several definitions on different levels, as defined by Ljung et al.

(1974). For a certain model structure, experimental conditions, and identifica-

tion method, a system is said to be system identifiable (SI) if an identified model

M(θ) converges to the true system S when the number of measurements tends

to infinity. If a system is SI for all possible model structures, then it is said to be

strongly system identifiable (SSI).

3.3 Identifiability Conditions for Linear Feed-

back Laws

3.3.1 Nonparametric Methods

As a classical, well-established method, spectral analysis was first used by Akaike

(1967) to study the identifiability problem with nonparametric identification

methods on closed-loop data. The frequency response function can be obtained

from the spectrum analysis

G(ω) =
Φuy(ω)

Φu(ω)
(3.5)
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3.3 Identifiability Conditions for Linear Feedback Laws

where Φu(ω) and Φuy(ω) are the power spectrum of input u and the cross-

spectrum between input u and output y, respectively. Another formulation of

G(ω) is the following

G(ω) =
G0(e

iω)Φr(ω) + K(eiω)|H0(e
iω)|2σ2

e

Φr(ω) + |K(eiω)|2|H0(eiω)|2σ2
e

(3.6)

where Φr(ω) is the power spectrum of the reference signal r. When the reference

signal exists, the frequency response gives a weighted average of the true process

frequency response and the frequency response of the controller’s inverse. If there

is no persistent excitation signal, meaning that Φr(ω) = 0, then nonparametric

methods identify only the inverse of the feedback controller

G(ω) =
1

K(eiω)
(3.7)

This shows that spectral analysis will not yield information about the plant

if applied to a pure feedback operation. Box & MacGregor (1974) concluded

an identical result by using correlation methods. Nonparametric methods fail

to yield informative results because the causality of true systems is not able to

be implied by these methods. Instead, these methods only identify the best

correlation relationship between the input and output, which is represented by

the feedback law.

3.3.2 Parametric Methods

Söderström et al. (1976) generalized the identifiability conditions for a system by

including the noise sources in the regulator and the external input signals. The

regulator is assumed to shift among r different feedback laws

u(t) = r(t) + Ki(q)y(t) 1 ≤ i ≤ r (3.8)

Each case applies during a nontrivial period of the total time of an exper-

iment. Here, we introduce some abbreviations to facilitate concise description.

We denote G = G0(q), Ĝ = Gθ(q), H = H0(q), Ĥ = Hθ(q) and Ki = Ki(q). Eq.

(3.2) and Eq. (3.8) give

y(t) = GKiy(t) + Gr(t) + He(t) (3.9)
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3.3 Identifiability Conditions for Linear Feedback Laws

Simplify it, y(t) is expressed by

y(t) = (I − GKi)
−1Gr(t) + (I − GKi)

−1He(t) (3.10)

Then, the input can be written as

u(t) = [Ki(I − GKi)
−1G + I]r(t) + Ki(I − GKi)

−1He(t) (3.11)

We also introduce the following notation for the feedback law Ki

Pi = (I − GKi)
−1G (3.12)

Now, we consider direct identification. The residual ε(t) is given as

ε(t) = Ĥ−1[y(t) − Ĝu(t)]

= Ĥ−1[Pi − Ĝ(KiPi + I)]r(t) + Ĥ−1(I − ĜKi)(I − GKi)
−1He(t)

(3.13)

Since Ki is causal and the input u(t) is independent of e(t), the minimum

variance prediction error ε(t) is asymptotically given as

ε(t) ≡ e(t)

Therefore, Eq. (3.13) implies the following

{

Ĥ−1[Pi − Ĝ(KiPi + I)] = 0

Ĥ−1(I − ĜKi)(I − GKi)
−1H = I

1 ≤ i ≤ r (3.14)

Both sides of the first equation are added with a term H−1[(GKi − I)Pi +G],

which is equal to zero according to Eq. (3.12). Thus it can be rewritten in this

form
(Ĥ−1Ĝ − H−1G)(−KiPi − I) + (Ĥ−1 − H−1)Pi

= H−1[(GKi − I)Pi + G] = 0
(3.15)

The second equation is simplified as

− (Ĥ−1Ĝ − H−1G)Ki + (Ĥ−1 − H−1) = 0 (3.16)

Thus, we rewrite Eq. (3.14) in matrix form

[

Ĥ−1 − H−1 H−1G − Ĥ−1Ĝ
]

[

Pi I
KiPi + I Ki

]

=
[

Ĥ−1 − H−1 H−1G − Ĥ−1Ĝ
]

[

I 0
Ki I

] [

Pi I
I 0

]

=
[

0 0
]

(3.17)
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3.3 Identifiability Conditions for Linear Feedback Laws

Because the matrix

[

Pi I
I 0

]

is nonsingular, we finally have

[

Ĥ−1 − H−1 H−1G − Ĥ−1Ĝ
]

Rr =
[

0 0
]

(3.18)

Rr =

[

I1 · · · I1 0 · · · 0
K1 · · · Kr I2 · · · I2

]

where I1 has order ny|ny, 0 has order ny|nr, Ki has order nu|ny, and I2 has order

nu|nr. Thus, Rr is a matrix of order ny + nu|r(ny + nr). Here, r is the number

of regulators, and ny, nu and nr are the numbers of plant outputs, plant inputs,

and reference signals, respectively. If the identification result converges to the

true model, then we have

Ĥ = H, Ĝ = G

This implies that
Ĥ−1 − H−1 = 0

H−1G − Ĥ−1Ĝ = 0
(3.19)

This requires that Rr should be nonsingular.

In conclusion, the identifiability condition for a linear system under linear

feedback can be summarized as follows: For a linear multivariate system, if there

is a reference signal, it must be a persistent excitation of any finite order. As-

sume that there is a time delay in either the system or the regulator, such that

G(0)Ki(0) = 0. Then, the system is SSI if and only if

rank(Rr) = ny + nu (3.20)

A necessary condition for Eq. (3.20) to hold is that

r ≥ (ny + nu)/(ny + nr) (3.21)

The presence of a delay in either the plant or the regulator, given by G(0)Ki(0) =

0, avoids algebraic relations between the input and output and necessary to guar-

antee identifiability. Here, this is represented strictly, but Sohn (2003) relaxed

this classic delay-structure condition for the identifiability of closed-loop systems.
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3.3 Identifiability Conditions for Linear Feedback Laws

3.3.3 Identifiability Conditions of Superstructures

We can now apply the derived identifiability condition to the case of superstruc-

tures, for two situations: ground excitation, and free vibration.

3.3.3.1 Ground Excitation

In the case of ground excitation, the reference signal is of the same dimension as

the input signal, i.e., nu = nr; and the regulator is not replaceable, i.e., r = 1.

Then, the identifiability condition becomes

rank

[

I1 0
K1 I2

]

= ny + nu (3.22)

Therefore, no matter what the feedback might be, the necessary condition

from Eq. (3.21) always holds if there is ground motion. In other words, if the

input and output of the plant are given, the superstructure in the case of an

earthquake is SSI.

3.3.3.2 Free Vibration

The case of free vibration means a situation with pure linear feedback laws, so

nr = 0. Then, the identifiability condition becomes

rank

[

I1 · · · I1

K1 · · · Kr

]

= ny + nu (3.23)

Therefore, the necessary condition from Eq. (3.21) for the free-vibration case

is given as

r ≥ 1 + nu/ny (3.24)

This means even if no reference signal exists, the presence of at least two

linear feedback laws guarantees the system identifiability of the superstructure.

If the identifiability condition is not satisfied, the system is not SSI. It can,

however, be SI for certain model structures. Söderström et al. (1975) investigated

the identifiability of a pure feedback system without external inputs for certain

model structures and derived the necessary and sufficient condition for identifia-

bility. This condition requires that the order of the regulator be higher than that

of the plant for identifiability to hold.
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Figure 3.4: Simulation model for a three-story building

When the regulator is operated by a nonlinear feedback law, Eq. (3.6) can

not clarify the identifiability of the plant, because the description of the regulator

in the frequency domain is invalid. In parametric approaches, if the feedback law

is nonlinear, it can be viewed as a different linear regulator during every short

time segment. Therefore, the complexity of the nonlinear regulator guarantees

the identifiability of the plant in the case of pure feedback, and in the case with

external signals, as well.

3.4 Numerical Simulation

In this simulation, we considered a three-story structure. The part of the structure

above the base layer was defined as the superstructure. The superstructure was of

the shear type and assumed to remain within its elastic range. The stiffness and

mass could vary from floor to floor, as illustrated in Figure 3.4. The damping

coefficient matrix was proportional to the stiffness matrix as C = αK, with

α = 0.001. Tables 3.1 and 3.2 list the modal information for the superstructure

and the overall structure, respectively. The time step for the simulation was

∆t = 0.01 second. The structure was placed in a state of free vibration by setting

its initial displacement. The acceleration response was contaminated by 1% white

noise (i.e., the standard deviation of the noise was 1% of the standard deviation

of the response).
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3.4 Numerical Simulation

Table 3.1: Modal information of the superstructure (fixed base)

Frequency (Hz) Damping ratio (%)

1st 1.2762 0.0040

2nd 3.6125 0.0113

3rd 5.3489 0.0168

Table 3.2: Modal information of the overall structure
Frequency (Hz) Damping ratio (%)

1st 0.9113 0.0029

2nd 2.4803 0.0078

3rd 4.0756 0.0128

4th 5.5001 0.0173

Autoregressive moving average models with exogenous inputs (ARMAX mod-

els) includes disturbance dynamics, can flexibly describe a disturbance as a mov-

ing average of white noise. The model is given as following

y(t) + a1y(t− 1) + · · ·+ ana
y(t − na) = b1u(t − 1) + · · ·+ bnb

u(t − nb)
+ e(t) + c1e(t − 1) + · · ·+ cnc

e(t − nc)
(3.25)

where ai, bi and ci are the coefficients of the AR, X and MA part, respectively.

na, nb and nc are model orders of each part. This model can also be rewritten

A(q)y(t) = B(q)u(t) + C(q)e(t) (3.26)

where

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na

B(q) = b1q
−1 + · · · + bnb

q−nb

C(q) = 1 + c1q
−1 + · · · + cnc

q−nc

A(q)y(t) is the auto-regression part of the output, B(q)u(t) describes a process

of exogenous inputs, and C(q)e(t) represents the disturbance dynamics, is the

moving average of a stationary white noise e(t). And this corresponds to Eq.

(3.2) with

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

C(q)

A(q)
(3.27)
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Figure 3.5: Acceleration responses (initial displacement: 0.01 m on the roof, 0

elsewhere)

For further information about the model estimation, readers can refer to the

book written by Ljung (1999).

Thus, an ARMAX model is used for identification, using the acceleration

on the first floor for the input signals and the acceleration on the roof for the

outputs signals, as shown in Figure 3.5. When the regulator (i.e., the base story)

was governed by a linear feedback law, the parametric method obviously failed

to identify the superstructure, as illustrated in Figure 3.6.

To ensure the nonlinearity of the regulator, a cubic hardening stiffness was

added to the base layer: Fn = βkbx
3
b (β = 10000), where xb was the displacement

relative to the ground. As shown in Figure 3.7, the result identified by the

ARMAX model is consistent with that of the analytical model.
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Figure 3.6: Parametric method for linear feedback case
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Figure 3.7: Parametric method for nonlinear feedback case
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3.5 Conclusions

3.5 Conclusions

We have explored the identifiability condition for substructural identification in

cases of free vibration. As explained by Akaike (1967), spectral analysis in the

frequency domain cannot obtain the identifiability of a superstructure. If the base

layer is governed by a linear feedback law, the identifiability of the superstructure

is lost unless there are at least two regulators. By making the regulators nonlin-

ear, identifiability can be regained with parametric methods. In a free-vibration

field test, the identification of a linear substructure under linear feedback laws

can be guaranteed if a nonlinear device is attached to the rest of the structure.

The feedback, determined by the characteristics of the regulator, has a greater

influence on the identifiability than does the model structure or the identification

method.

53



Chapter 4

Nonlinear Identification of

Hysteretic Systems by Reverse

Path Method

4.1 Introduction

For the purpose of system identification, most structures are approximated by a

linear model. And the modal parameters (frequency, modal shape, etc.) or phys-

ical parameters (stiffness and damping coefficient) describe the status of linear

structures, the variance of these parameters indicates the damage to the struc-

ture. However, nonlinearity exists inevitably in a real world, and sometimes it

behaves so strongly that the methods for linear structures fail to identify the

system and detect the damage by linear approximation. For example, it is well

observed that base-isolated buildings exhibit nonlinear and hysteretic properties

under experiment situation. The dynamic parameters will vary with the inten-

sity of excitation even if the system is intact, consequently the change of these

parameters can not indicate the status of nonlinear systems.

In recent years, system identification of nonlinear dynamic structures has

made significant progress. Kerschen et al. (2006) investigated the past and recent

developments in nonlinear system identification methods. Although the number

of methods is large, there are no method to identify any type of nonlinearity.
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4.1 Introduction

Rice & Fitzpatrick (1988), and Bendat (1990) proposed a reverse path iden-

tification method for single-input/single-output nonlinear systems. This method

treats the response as the input, and the excitation force as the output. The

nonlinear term is considered as a feedback term. It tracks unknown parameters

in frequency domain. Rice & Fitzpatrick (1991) extended this method to identify

two DOFs nonlinear systems treating each response location as a SDOF mechan-

ical oscillator. However, this approach requires excitations to be applied at every

nonlinear location.

Richards & Singh (1998) developed a conditioned reverse path method (CRP).

The improved technique separates the nonlinear part of the system response from

the linear part and constructs a hierarchy structure of uncorrelated response com-

ponents in frequency domain. CRP removes the restriction that the excitation

must be applied at the location of the nonlinearity in order to identify its un-

known parameters. Adams & Allemang (2000) proposed a frequency domain

method for estimating parameters of nonlinear parametric models by using the

spatial information and treating the nonlinear forces as internal feedback forces

in the underlying linear system. This method is called Nonlinear Identification

through Feedback of the Outputs (NIFO), and it requires measurements of both

inputs and outputs and identifies the Frequency Response Function (FRF) of the

underlying linear system as well as the parameters related to nonlinearities with

light computational effort. Unlike CRP methods, NIFO methods estimate the

linear and nonlinear coefficients in a single step.

Recently, Marchesiello & Garibaldi (2008a) developed an efficient time domain

method called Nonlinear Subspace Identification (NSI) for identifying nonlinear

systems by exploiting subspace identification methods. Later, Marchesiello &

Garibaldi (2008b) discussed the identification problem for clearance-type nonlin-

earity by NSI methods. NSI is able to treat many nonlinearities at the same

time, several ad hoc functions are defined and adopted in order to identify the

clearance-type characteristic, showing advantages with respect to the traditional

polynomial approach.

The advantage of reverse path formulation is that it can separate the linearity

and nonlinearity of the structure, extract the nonlinearity and identify the un-
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Figure 4.1: Nonlinear model with feedback

derlying linear structure. Therefore, the modal and physical parameters of the

underlying linear structure become meaningful again.

Here, we use NIFO methods to identify the underlying linear model of hys-

teretic systems subjected to external force. The hysteretic restoring force is mod-

eled by polynomial approximation of displacement and velocity. Numerical sim-

ulation is carried out to investigate the identification performance.

4.2 Reverse Path

The reverse path method exploits traditional spectral analysis techniques to iden-

tify nonlinear systems, treating the input-output relationship of excitation and

response in a reversal way. The advantage of this method is that it can utilize

the well-established linear analysis techniques for nonlinear systems. This idea is

illustrated via a simple example. Let’s consider the symmetric Duffing equation

mẍ + cẋ + kx + k3x
3 = f(t) (4.1)

where m, c and k are the mass, damping coefficient and stiffness of the underlying

linear system, respectively. k3 is the coefficient of the cubic nonlinear term. f(t)

is the external excitation.

Generally, a nonlinear system can be described by Figure 4.1, as a linear

system with nonlinear feedback. The underlying linear system is defined by the

linear frequency response function

H(ω) =
1

−ω2m + iωc + k
(4.2)
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Figure 4.2: Reverse path model

where i =
√
−1. This transfer function relates an ”effective” excitation fe(t) with

displacement response x, where the effective excitation force is defined as

fe(t) = f(t) − k3x
3 (4.3)

with k3x
3 as nonlinear feedback.

Now, we consider the above nonlinear system in an alternative viewpoint.

Taking the Fourier transform F[•] of Eq. (4.1) gives

B(ω)X(ω) + A(ω)Y (ω) = F (ω) (4.4)

where B(ω) = 1/H(ω), X(ω) = F[x(t)] and F (ω) = F[f(t)]. For the nonlinear

term, A(ω) = k3 and Y (ω) = F[x3(t)].

By exchanging the roles of the input and output, the displacement response

x is considered as the input and the excitation force f(t) as the output. Thus,

the SDOF nonlinear system is viewed as a two-input/single-output system as

illustrated in Figure 4.2.

Multiplying Eq. (4.4) by X(ω) and taking the expectation, we obtain

B(ω)Sxx(ω) + A(ω)Sxy(ω) = Sxf(ω) (4.5)

Similarly, Multiplying Eq. (4.4) by Y (ω) gives

B(ω)Syx(ω) + A(ω)Syy(ω) = Syf(ω) (4.6)

These two equations form a set of simultaneous equations. By solving them,

we can obtain unknown B(ω) and A(ω) at every frequency.
[

Sxx(ω) Sxy(ω)
Syx(ω) Syy(ω)

](

B(ω)
A(ω)

)

=

(

Sxf(ω)
Syf (ω)

)

(4.7)
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It is worth noting that the coefficient A(ω) is estimated as a complex function

with respect to frequency. The real part of the result represents the coefficient

k3, and the imaginary part is meaningless with magnitude much smaller than the

real part. The limitation of this method for MDOF systems is that the excitation

must be applied at the location of nonlinearities.

4.3 Nonlinear Identification through Feedback

of Output Method

The NIFO method is a spectral approach for identifying MDOF nonlinear sys-

tems, developed by Adams & Allemang (2000). It interprets the nonlinearities as

the unmeasured internal feedback forces, and exploits the spatial information of

type of nonlinearities.

Let’s consider the Duffing equation again. We can rewrite Eq. (4.4) in the

frequency domain as

B(ω)X(ω) = F (ω) − A(ω)Y (ω) (4.8)

The nonlinear forces, viewed as internal feedback forces, are the functions of

the measured output (cubic function of the displacement x3). Eq. (4.8) shows

that the underlying linear system is excited by two forces: one is the external

force F (ω), the other is the internal nonlinear feedback due to the nonlinearity

Y (ω). Premultiplying Eq. (4.8) by the transfer function of the underlying linear

system H(ω) gives

X(ω) = H(ω)F (ω)− H(ω)A(ω)Y (ω) (4.9)

in matrix form, we have

X(ω) =
[

H(ω) H(ω)A(ω)
]

(

F (ω)
−Y (ω)

)

(4.10)

where Y (ω) = F[x3(t)] is a known nonlinear function. This suggests that the type

of nonlinearities should be known as a function of measured outputs before we

identify nonlinear systems. The configuration of nonlinearity types is the spatial
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information of nonlinear systems. Solving Eq. (4.10) gives the estimates of the

FRFs of the underlying linear system H(ω) and the coefficient A(ω) of nonlin-

earities in a single step. A stable least-square solution with spectral averaging is

suggested to identify the parameters related to structural nonlinearities.

If the NIFO method is applied to MDOF nonlinear systems, Eq. (4.10) can

be given in matrix form

X(ω) =
[

H(ω) H(ω)A1(ω) · · · H(ω)An(ω)
]











F(ω)
−Y1(ω)

...
−Yn(ω)











(4.11)

where X(ω) is a p-dimensional output vector, and F(ω) is a q-dimensional input

vector. Yn(ω) represents different types of nonlinearities. H(ω) is the frequency

response function of the underlying linear structure, a p× q-dimensional matrix.

An(ω) indicates the location of nonlinear types, a q × 1-dimensional matrix.

Rewrite Eq.(4.11) in a compact form

X(ω) = Ho(ω)Fo(ω) (4.12)

where Ho(ω) is a p×(q+n)-dimensional matrix, and Fo(ω) is a (q+n)-dimensional

vector.

4.3.1 Least Square Solution

Assuming that data length of measurements is N , we divide it in ns segments

possible overlapped. Then, an overdetermined set of linear equations is obtained.

{Z(ω)}ns×p = {P(ω)}ns×(q+n){Ho(ω)T}(q+n)×p (4.13)

and

{Z(ω)}ns×p =
[

X(ω)1 X(ω)2 · · · X(ω)ns

]T
(4.14)

{P(ω)}ns×(q+n) =
[

Fo(ω)1 Fo(ω)2 · · · Fo(ω)ns

]T
(4.15)

where the superscript T means transpose of a matrix.

Eq. (4.13) is the well-known least-square problem with the solution at fixed

frequency

P(ω)TP(ω)Ho(ω)T = P(ω)TZ(ω) (4.16)
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4.3 Nonlinear Identification through Feedback of Output Method

where P(ω)TP(ω) is called the information matrix. In order to avoid possible

ill-conditioning from the formation of P(ω)TP(ω), the orthogonal decomposition

is suggested via Gram-Schmidt orthogonalization.

For convenience, ω is omitted in matrix representation. For example, P(ω) is

abbreviated as P. The classical Gram-Schmidt orthogonalization factorizes P by

Cholesky decomposition as

P = WS (4.17)

where

S =















1 s12 s13 · · · s1(q+n)

1 s23 · · · s1(q+n)

. . .
. . .

...
1 s(q+n−1)(q+n)

1















(4.18)

is a (q + n) × (q + n) unit upper triangular matrix, and

W =
[

w1 · · · wq+n

]

(4.19)

is a ns × (q + n) matrix with orthogonal columns that satisfy

WTW = D (4.20)

and D is a positive diagonal matrix.

The Gram-Schmidt procedure calculates S one column at one time and or-

thogonalizes P as follows.

w1 = p1

sik = <wi,pk>

<wi,wi>
, 1 ≤ i < k

wk = pk −
k−1
∑

i=1

sikwi







k = 2, · · · , q + n
(4.21)

where <, > denotes the inner product.

Define

g = D−1WTZ (4.22)

then the unknown matrix Ho can be obtained using backward substitution.

SHo
T = g (4.23)

60



4.4 Numerical Simulation

 

bc
bk

bm

nlf

External force 

Figure 4.3: SDOF model

4.4 Numerical Simulation

4.4.1 Simulation Model

The Bouc-Wen hysteresis model is adopted for the hysteretic dampers in the dy-

namic simulation. The differential equation of the Bouc-Wen model is described

by Eq. (2.19). A simplest case is considered to study the performance of pro-

posed methods. A single DOF base-isolated system, as shown in Figure 4.3, is

subjected to the external force. The equation of motion of this system is

mbẍ + cbẋ + kbx + fnl = F (4.24)

where mb, cb and kb are the mass, damping coefficient and stiffness of the SDOF

system, respectively. The parameters of the system are defined as in Table 4.1.

This system is excited by Gaussian noise with various variance. Obviously, the

response depends on the intensity of excitation.

4.4.2 Nonlinearity Function

The nonlinearity function is required to be known before application. This prob-

lem can be overcome by assuming a function space as a search space, when the

nonlinearity type is not clear. Masri & Caughey (1979) and Masri et al. (1982)

proposed a nonparametric method named restoring force surface (RFS) methods

by using polynomial approximation to fit the experimentally determined restoring

force. The nonlinear restoring force is considered as a function of displacement

and velocity by an ordinary or Chebyshev polynomial series expansion.
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Table 4.1: Parameter values
Argument Value

mb 8000 ton

kb 475000 kN/m

cb 6000 kN·s/m

β 0.6

γ 0.4

p 1

Dy 1.5 mm

Fy 655.4 kN

When hysteretic nonlinearity is involved, the nonlinear restoring force appears

as a multivalued function of displacement and velocity due to its path-dependent

nature. The choice of nonlinearity type poses a cumbersome matter. The poly-

nomial approximation of displacement to fit the nonlinear restoring force will

result in a memoryless nonlinear stiffness model, losing hysteretic characteristics.

The polynomial approximation of displacement and velocity representing the hys-

teretic force could relax the memoryless property in a certain level, but could not

eliminate its multivalued-function property. Hammond et al. (1987) proposed to

plot the surface of nonlinear force in a selected space (subset of the state vec-

tor, SSV). They defined the restoring force derivative with respect to time as

a function of velocity and restoring force. Benedettini et al. (1995) studied the

performance of polynomial approximation of hysteretic systems in detail. It was

shown that the SSV formula could fit the experimental response time histories

much better than the traditional formula. However, a recursive procedure is re-

quired to solve the problem that the hysteretic force is a evaluated through the

integration of its derivative. Here, the traditional formula are used to describe

the nonlinear force, further investigation will explore the way of integrating SSV

models with NIFO methods.

The hysteretic force is approximated by the following series

Fh =
∑

aijx
ivj (4.25)

where v is velocity and aij are coefficients of polynomial terms. The linear terms of
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Table 4.2: Simulation and NIFO parameters

Argument Value

∆t(s) 0.005

Time span (s) 500

Block size 10000

Overlap (%) 90

Averages ns 89

displacement and velocity are excluded because they are remained to be identified

as a part of the underlying linear system. Each polynomial term could be viewed

as a nonlinearity type.

4.4.3 Results by NIFO

The SDOF system is excited by a zero-mean Gaussian random input, whose stan-

dard deviation is 798.8 kN so that the maximum displacement response is compa-

rable with the yield displacement of the hysteretic damper, as shown in Figures

4.4 and 4.5. Numerical integration is conducted by using Simulink MATLAB R© ,

and a total number of 105 samples has been generated for the NIFO application

(Table 4.2).

Polynomial approximation of hysteretic force is up to third order.

Fh = a20x
2 + a11xv + a02v

2 + a30x
3 + a21x

2v + a12xv2 + a03v
3 (4.26)

As shown in Figure 4.6, the NIFO and linear estimates are compared with

the underlying linear frequency response function. Although the NIFO estimate

achieved better performance than the linear estimate, it still can not retrieve

the accurate information of the underlying linear system. The reason is that

the multivalued-property remains so that the polynomial approximation can not

represent the hysteretic force accurately. Figure 4.7 shows the NIFO estimate by

using polynomial approximation of displacement only. The memoryless property

of the nonlinear approximation function makes the performance worse near the

vicinity of resonant frequency.
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Figure 4.4: Excitation and response (standard deviation of excitation is 798.8

kN)

The system is subject to a more intensive Gaussian random input, whose

standard deviation is 2403 kN. The maximum displacement is more than two

times of the yield displacement, as shown in Figures 4.8 and 4.9. The NIFO

estimate in Figure 4.10 deviates further away from the linear value, when the

nonlinearity gets stronger.
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Figure 4.5: Hysteretic loop (standard deviation of excitation is 798.8 kN)
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Figure 4.6: Frequency response function by NIFO using polynomial approxima-

tion of displacement and velocity
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Figure 4.7: Frequency response function by NIFO using polynomial approxima-

tion of displacement
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Figure 4.8: Excitation and response (standard deviation of excitation is 2403 kN)
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Figure 4.9: Hysteretic loop (standard deviation of excitation is 2403 kN)
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Figure 4.10: Frequency response function by NIFO using polynomial approxima-

tion of displacement and velocity
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4.5 Conclusions

4.5 Conclusions

A nonlinear identification technique named NIFO has been presented to identify

hysteretic systems. The hysteretic restoring force is modeled by polynomial ap-

proximation of displacement and velocity. The idea of reverse path is attractive

for its simplicity. It is able to extract the underlying linear model out of nonlinear

systems, and it makes the traditional dynamic characteristics (modal frequencies,

mode shapes, etc.) meaningful for indicating the state of nonlinear systems. How-

ever, polynomial approximation can not yield the exact hysteretic force due to

the inherent multivalued-property of hysteretic systems, so that NIFO can not

identify the exact underlying linear model. To overcome the difficulties, SSV

model is suggested to model the nonlinear hysteretic force. Further study should

be made to explore possible algorithms of nonlinear identification methods.
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Chapter 5

Application to Real Buildings

5.1 Raiosha

5.1.1 Overview

The proposed method is applied to a building named Raiosha at Keio University

in Yokohama City, Japan. It is a 7-story based-isolated building, 30.95 me-

ters high. The structure of the superstructure is steel frame and the supporting

columns are concrete-filled tubes. The base isolation layer is equipped with three

kinds of devices: 55 high-damping rubber bearings of 750-900mm in diameter,

6 oil dampers in each direction, and 9 elastic sliding bearings. As illustrated in

Figure 5.1, the monitoring system installed in this building has 16 accelerometers

at 7 locations and 3 displacement sensors at 2 locations. The sampling frequency

of these sensors is 100 Hz. The measurements are stored in a monitoring server

and, can be accessed and downloaded via the web.

The earthquake that happened 23 July 2005 in Chiba Prefecture, Japan, was

used for analysis. The movement in the x plane was considered for the analysis.

The ground motion is plotted in Figure 5.5, the acceleration collected by #1, #2,

#4 and #5 (shown in Figure 5.1) in the x direction and the deformation of the

isolation layer collected by #102 in the x direction are shown in Figures 5.6 and

5.7.

Yoshimoto et al. (2005) developed an algorithm based on the subspace identi-

fication to identify the stiffness of the isolation layer and applied it to Raiosha. In
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Figure 5.1: Elevation views showing sensor allocation
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Figure 5.2: Overview of Raiosha
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Figure 5.4: Sensor location on the 1st floor
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Figure 5.5: Ground acceleration (in x direction)

the paper, when the deformation of the layer is small (with the maximum value

0.76 mm in y direction), the identification succeeded in applying to the simu-

lation case and the existing building under earthquakes. The method is based

on linear models, however, and thus nonlinear behaviors are not explicitly con-

sidered. The nonlinearity in the isolations is the crucial feature accounting for

the behavior of the base-isolated system. This nonlinearity will be illustrated by

the force-displacement plot showing the hysteresis, and the amplitude-dependent

stiffness and damping coefficient are adopted to relate the nonlinearity with the

deformation.

5.1.2 Restoring Force Estimation

The identification of the superstructure is performed under the assumption that

it is a linear lightly damped structure. The mode shapes of the superstructure

that are identified by the subspace identification method (N4SID) when the ac-

celeration on the 1st floor is taken as the excitation and the accelerations on the

4th floor and the roof are taken as the responses listed in Table 5.1 along with

other modal information. We then expand the first two modes (Figure 5.8) and

use the expanded mode shapes to estimate the restoring force. The accelerations

in modal coordinates are calculated by coordinate transformation (Figure 5.9).

Assuming the estimated mass to be the simulation value, we were able to

estimate the restoring force expressed in Eq. (2.16). Figure 5.10 shows the

estimated result, and Figure 5.11 shows the force-displacement plot.
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Figure 5.6: Acceleration responses (#2 #4 #5 in x direction)
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Figure 5.7: Deformation of the isolation layer (#102 in x direction)

Table 5.1: Identified modal information of the superstructure

Mode shape

Frequency (Hz) Damping ratio (%) Roof 4th floor

1st 1.0819 0.0347 1 0.3680

2nd 3.4720 0.0445 1 -1.4671

73

Chapter4/Chapter4Figs/fig18.eps
Chapter4/Chapter4Figs/fig19.eps


5.1 Raiosha

0 0.5 1
1

2

3

4

5

6

7

8

F
lo

or

1st mode

−2 −1 0 1
1

2

3

4

5

6

7

8

F
lo

or

2nd mode

Figure 5.8: Expanded mode shapes
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Figure 5.9: Acceleration in modal coordinates
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Figure 5.10: Restoring force of the isolation layer
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Figure 5.11: Force-displacement plot
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Figure 5.12: Equivalent stiffness and damping coefficient

Figure 5.11 indicates that the isolation layer has strong hysteresis due to its

large deformation. However, it is difficult to extract intrinsic state information of

the isolation layer from the force-displacement plot. As stated by Stewart et al.

(1999) and Tobita (1996), the performance of the base-isolated system depends

on the vibration intensity. Therefore, it is feasible to represent the state condition

of the isolation layer by the equivalent stiffness and damping coefficient, which

are evaluated with respect to the deformation of the isolation layer.

If we assume the restoring force consists of the equivalent elastic force and

the equivalent viscous force, we can write

f(ẋb, xb) = keqxb + ceqẋb (5.1)

Restoring force at time t can be estimated by substituting the recorded dis-

placement and velocity into this equation

f(t) =
[

xb(t) ẋb(t)
]

[

keq

ceq

]

= HtP (5.2)

The minimum least-squares approximation of the coefficient is given by

P = (HTH)−1HT f (5.3)
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The recorded data is sliced into segments, and the equivalent coefficients are

estimated within each segment. The average amplitude of the displacement is

evaluated by using the following equation

Aeq =
√

2RMS(xb) (5.4)

where RMS means root mean square function.

The estimated stiffness and damping coefficient in the x plane are plotted

against the displacement amplitude in Figure 5.12. Both of them decrease with

increasing amplitude, as usual, the estimation of the equivalent stiffness is more

stable than that of the damping coefficient. The stiffness is very sensitive in the

small amplitude range and might drop 50% at a shear strain of 2.5% (the 100%

shear strain is at 0.2-m displacement in the design book for Raiosha). Compared

to the small amplitude experiment performed by Abe et al. (2004), the same

decreasing pattern is confirmed.

5.2 Base-Isolated Hospital Building

5.2.1 Overview

The second real application is a hospital building located in Kushiro City, Japan.

Base isolation system has been adopted to protect the medical devices and sus-

tain the functionality of this hospital when earthquakes happen. It is a 3-story

reinforced-concrete building, 45 meters long in x direction and 40 meters wide in

y direction, as illustrated in Figure 5.13. The reinforced-concrete superstructure
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is supported by 50 high-damping rubber bearings of 600-750 mm in diameter.

The height of rubber bearing is 16.2 cm.

Accelerometers have been installed at three locations in order to monitor the

building during earthquakes. The acceleration responses on the ground and the

1st floor are measured in both horizontal (x and y direction) and vertical direc-

tions, while the acceleration responses on the roof are measured only in horizontal

direction. A thermometer located at the isolation layer is set considering the tem-

perature effect to rubber bearings. Because the air conditioning system in the

hospital is in operation 24 hours a day and the isolation layer is sealed for heat

preservation, the temperature effect to rubber bearings is not considered in this

application. The analysis is conducted in x and y direction, respectively, without

considering the coupling effect between these two directions.

5.2.2 Restoring Force Estimation

5.2.2.1 Tokachi-oki Earthquake in 2003

The acceleration record was obtained during Tokachi-oki earthquake on Septem-

ber 26th, 2003, as in Figures 5.14 and 5.15. The deformation of the isolation layer

is calculated by Fourier transformation from acceleration difference between the

ground and the 1st floor. The acceleration difference is first filtered by a band-

pass filter to remove the slow drift and high frequency noise. Then, the Fourier

transformation of deformation is derived from that of the filtered signal due to

their mathematical connection in frequency domain. The deformation in time

domain is computed by inverse Fourier transformation. The deformation of the

isolation layer is plotted in plan view in Figure 5.16. The maximum deforma-

tion is 13.4 cm in x direction, the rubber bearing experienced extremely large

deformation with over 80% shear strain (maximum deformation/height of rubber

bearing).

Before the restoring force estimation, nonparametric methods are utilized to

get some prior information about the building. The transfer function of the

superstructure is shown in Figures 5.17 and 5.18, taking the acceleration on the

1st floor as inputs and the acceleration on the roof as outputs. The first resonant
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Figure 5.13: Overview of a hospital building in Kushiro City
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Figure 5.14: Acceleration response in x direction
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Figure 5.15: Acceleration response in y direction
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Figure 5.16: Deformation of isolation layer

frequencies in both directions are around 4.5 Hz. It tells that the reinforced-

concrete superstructure is quite stiff in both directions. The transfer function of

the whole structure is shown in Figures 5.19 and 5.20, taking the acceleration

on the ground as inputs and the acceleration on the roof as outputs. The first

resonant frequencies in both directions are around 0.5 Hz, far smaller than that

of the superstructure. The rubber bearings effectively isolate the superstructure

from the ground and elongate the period.

The mode shapes of the superstructure are identified by the subspace identi-

fication method (N4SID) from the data set between 20 s to 180 s. Because the

superstructure is rather rigid, only the first mode shape (Figure 5.21) is selected

to estimate the restoring force. The hysteresis loops are illustrated in Figures

5.22 and 5.23.

By the same procedure applied to Raiosha, the equivalent stiffness and damp-

ing coefficient (Figures 5.24 and 5.25) every 2 seconds per segment (close to the

period of the first mode) are calculated with respect to the deformation of the

isolation layer. The equivalent stiffness starts at a very high level because the

rubber bearings restore toward the initial loading stiffness during the interval
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Figure 5.17: Estimated transfer function of superstructure in x direction (input:

acceleration on the 1st floor, output: acceleration on the roof)
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Figure 5.18: Estimated transfer function of superstructure in y direction (input:

acceleration on the 1st floor, output: acceleration on the roof)
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Figure 5.19: Estimated transfer function of whole structure in x direction (input:

acceleration on the ground, output: acceleration on the roof)
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Figure 5.20: Estimated transfer function of whole structure in y direction (input:

acceleration on the ground, output: acceleration on the roof)
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Figure 5.21: Expanded 1st mode shape
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Figure 5.22: Hysteresis loop of isolation layer in x direction
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Figure 5.23: Hysteresis loop of isolation layer in y direction

between severe earthquakes yielding extreme deformation. To remove this effect,

the equivalent values are recomputed based on the data set between 50 s to 180

s, as plotted in Figure 5.26 and Figure 5.27. The time span for each segment is

set at 1 second for more samples. The range of deformation is set between 0 to

0.02 m for aftermentioned comparison. The equivalent stiffness in both directions

shows that its dependence on deformation. The same pattern as Raiosha’s results

is confirmed.

5.2.2.2 Kushiro-oki Earthquake in 2004

In oder to track the state and characteristics of the isolation layer, the proposed

method is applied to another acceleration response (Figures 5.28 and 5.29) ob-

served during Kushiro-oki earthquake occurred on November 29th, 2004. The

deformation of the isolation layer is calculated in the same way, as plotted in

Figure 5.30. The maximum deformation is 4.3 cm in y direction.

The superstructure are identified by the subspace identification method to

obtain the first mode shapes in both directions. The estimated restoring force

are plotted against the deformation in Figures 5.31 and 5.32 from 20 s to 180
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Figure 5.24: Equivalent stiffness and damping coefficient in x direction (from 20

s to 180 s, 2 s per segment)
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Figure 5.25: Equivalent stiffness and damping coefficient in y direction (from 20

s to 180 s, 2 s per segment)
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Figure 5.26: Equivalent stiffness and damping coefficient in x direction (from 50

s to 180 s, 1 s per segment)
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Figure 5.27: Equivalent stiffness and damping coefficient in y direction (from 50

s to 180 s, 1 s per segment)
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Figure 5.28: Acceleration responses in x direction
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Figure 5.29: Acceleration responses in y direction
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Figure 5.30: Deformation of isolation layer

s. The equivalent stiffness and damping coefficient are shown in Figures 5.33

and 5.34. Comparing with Figures 5.26 and 5.27, the equivalent stiffness in both

directions has smaller variance and is slightly higher in small deformation range.
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Figure 5.31: Hysteresis loop of isolation layer in x direction
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Figure 5.32: Hysteresis loop of isolation layer in y direction

90

Chapter4/Chapter4Figs/Kushiro04/xHLoop04.eps
Chapter4/Chapter4Figs/Kushiro04/yHLoop04.eps


5.2 Base-Isolated Hospital Building

0 0.005 0.01 0.015 0.02
0

2

4

6
x 10

5

S
tif

fn
es

s 
(k

N
/m

)

Equivalent stiffness and damping coefficient in x direction

0 0.005 0.01 0.015 0.02
0

2

4

6
x 10

4

Amplitude (m)

D
am

pi
ng

 C
oe

ffi
ci

en
t (

kN
*s

/m
)

Figure 5.33: Equivalent stiffness and damping coefficient in x direction (from 20

s to 180 s, 2 s per segment)
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Figure 5.34: Equivalent stiffness and damping coefficient in y direction (from 20

s to 180 s, 2 s per segment)
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5.3 Conclusions

5.3 Conclusions

The restoring force estimation method was applied to two real base-isolated struc-

tures, Raiosha at Keio University and a hospital in Kushiro City. The estimated

restoring force has strong hysteresis property in both cases. The amplitude-

dependent equivalent stiffness and damping coefficient were adopted to describe

the nonlinearity of the isolation layer. The equivalent stiffness of the base isola-

tion layer depends on the deformation and decreases with increasing deformation.

The identified results by the proposed method reconfirmed the experimental ob-

servation of nonlinearity in the isolation layer made up of rubber bearings.
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Chapter 6

Conclusions

This thesis made contribution to identifying the base-isolated structures sub-

jected to severe earthquakes, which possess strong hysteretic nonlinearity. The

identification methods were investigated in two schemes.

One scheme separates the whole structure into a linear superstructure and a

nonlinear base isolation layer. A new method based on component mode syn-

thesis was presented for estimating the restoring force of an isolation layer. The

hybrid motion equation involving the modal coordinates and the physical coordi-

nates is derived by using a substructuring technique. This method is applicable

when the number of sensors is limited because only the mode shape informa-

tion of the superstructure and the estimated mass are needed for estimating the

restoring force. It was shown that the proposed method is not sensitive to the

mass distribution and the expanded mode shapes but will be scaled by the to-

tal mass. The effectiveness of this method was validated in simulations and in

application to real base-isolated structures. The amplitude-dependent equivalent

stiffness and damping coefficient are adopted to describe the nonlinearity of the

isolation layer. The identified results by the proposed method reconfirmed the

experimental observation of nonlinearity in the isolation layer.

The other scheme separates the whole structure into an underlying linear

structure and a nonlinear component. A nonlinear identification technique named

NIFO has been presented to identify hysteretic systems in this scheme. The hys-

teretic restoring force is modeled by polynomial approximation of displacement

and velocity. The idea of reverse path is attractive for its simplicity. It is able
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to extract the underlying linear model out of nonlinear systems, makes the tra-

ditional dynamic characteristics meaningful for indicating the state of nonlinear

systems. However, polynomial approximation can not yield the exact hysteretic

force due to the inherent multivalued-property of hysteretic systems, so that

NIFO can not identify the exact underlying linear model. To overcome the diffi-

culties, SSV model is suggested to model the nonlinear hysteretic force. Further

study should be made to explore possible algorithms of nonlinear identification

methods.

In the first scheme, the identification of the superstructure is necessary for

mode shape extraction. The identifiability condition for substructural identifica-

tion was investigated by spectral analysis and parametric methods in order that

we can make sure that the identified results are accurate and reliable in what

condition. An eternal excitation will always assure the identifiability of the su-

perstructure. In case of free vibration, spectral analysis in the frequency domain

cannot obtain the identifiability of a superstructure. If the base layer is governed

by a linear feedback law, the identifiability of the superstructure is lost unless

there are at least two regulators. By making the regulators nonlinear, identifia-

bility can be regained with parametric methods. In a free-vibration field test, the

identification of a linear substructure under linear feedback laws can be guaran-

teed if a nonlinear device is attached to the rest of the structure. The feedback,

determined by the characteristics of the regulator, has a greater influence on the

identifiability than does the model structure or the identification method.
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Appendix A

Subspace Identification

The subspace identification formulates and solves a major part of the identifica-

tion problem on a signal level. The main characteristic of these schemes is the

approximation of a subspace defined by the span of the column or row space of

matrices determined by the input-output data. The parametric time-invariant

model is calculated from these spans by exploiting their special structure, such

as the shift-invariance property. Subspace identification methods take advantage

of robust numerical techniques such as QR factorization and singular value de-

composition (SVD). For brevity, only an archetypical procedure is illustrated in

this paper.

Given a deterministic-stochastic state-space model with a p-dimensional out-

put yt and a m-dimensional input ut

xt+1 = Axt + But + wt

yt = Cxt + Dut + vt
(A.1)

where wt and vt are unmeasurable disturbances respectively called process error

and measurement error and x is a n-dimensional state space vector.

From Eq. (A.1) we can formulate the k-step ahead predictor yt+k by expanding

xt+k. Then we form the equation

Yr(t) = Orxt + SrUr(t) + V (t) (A.2)
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where

Yr(t) =











yt

yt+1
...

yt+r−1











, Ur(t) =
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And the kth block component of V (t) is

Vk(t) = CAk−2wt + CAk−3wt+1 + · · ·+ Cwt+k−2 + vt+k−1 (A.3)

Oris the extended observability matrix for the system. To eliminate the term

with Ur(t) and make the noise influence from V (t) disappear asymptotically, we

introduce

Y = [ Yr(1) Yr(2) · · · Yr(N) ]

X = [x1 x2 · · · xn ]

U = [ Ur(1) Ur(2) · · · Ur(N) ]

V = [ V (1) V (2) · · · V (N) ]

We can rewrite Eq. (A.2) as

Y = OrX + SrU + V (A.4)

and form an N × N matrix orthogonal to the matrix U

Π⊥
UT = I− UT (UUT )−1U (A.5)

Multiplying Eq. (A.4) by Π⊥
UT will eliminate the term with U, yielding

YΠ⊥
UT = OrXΠ⊥

UT + VΠ⊥
UT (A.6)

By correlating with a suitable matrix Φ (Van Overschee & de Moor, 1996),

the noise term can be removed as well. Thus we have

G =
1

N
YΠ⊥

UT ΦT (A.7)

96



The column space can reduced by using singular value decomposition (SVD).

If has rank n, only the first n singular values will be non-zero. So we have

G = USV T =
[

U1 U2

]

[

S1 0
0 S2

] [

V T
1

V T
2

]

= U1S1V
T
1 (A.8)

where S1 is the N × N upper left part of S.

An estimate of the extended observability matrix may be obtained as Ôr =

U1S1. We finally can estimate the system matrices C by using the first block row

of Or and estimate the system matrix A by using the shift property. Once we

have C and A, we can estimate the matrices B and D by solving a linear least-

squares problem. It is worth noting that the left and right weighting matrices for

the oblique projection G determine a wide class of subspace algorithms, such as

N4SID (Van Overschee & De Moor, 1993), MOESP (Verhaegen, 1994) and CVA

(Larimore, 1990).
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