SUMMARY OF Ph.D. DISSERTATION

School Fundamental Science and Technology	Student Identification Number	SURNAME, First name
	Kurosawa, Takeshi	

Title

Transcendence criterion of Mahler functions

Abstract

For $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, we put $|\boldsymbol{\lambda}|=\sum_{i=1}^{m} \lambda_{i}$ and $\boldsymbol{\alpha}^{\boldsymbol{\lambda}}=\prod_{i=1}^{m} \alpha_{i}^{\lambda_{i}}$. Let $r \geq 2$ be an integer. We define $\Omega_{n} \boldsymbol{z}:=\left(z_{1}{ }^{r^{n}}, \ldots, z_{m}{ }^{r^{n}}\right)$ for $\boldsymbol{z}=\left(z_{1}, \ldots, z_{m}\right)$ and consider the function

$$
\Phi_{0}(\boldsymbol{z})=\sum_{k \geq 0} \frac{E_{k}\left(\Omega_{k} \boldsymbol{z}\right)}{F_{k}\left(\Omega_{k} \boldsymbol{z}\right)} \in \boldsymbol{K}[[\boldsymbol{z}]]=\boldsymbol{K}\left[\left[z_{1}, \ldots, z_{m}\right]\right],
$$

where \boldsymbol{K} is an algebraic number field and

$$
E_{k}(\boldsymbol{z})=\sum_{1 \leq|\lambda| \leq L} e_{k \lambda} z^{\lambda}, \quad F_{k}(\boldsymbol{z})=1+\sum_{1 \leq|\lambda| \leq L} f_{k \lambda} z^{\lambda} \in \boldsymbol{K}[\boldsymbol{z}]
$$

are coprime. We assume that $\log \left\|e_{k \lambda}\right\|, \log \left\|f_{k \lambda}\right\|=o\left(r^{k}\right)$. For an algebraic number $\alpha,\|\alpha\|$ is defined by $\max \{\overline{|\alpha|}, \operatorname{den}(\alpha)\}$, where $\overline{|\alpha|}$ and $\operatorname{den}(\alpha)$ are the maximum of the absolute values of the conjugates of α and the least positive integer such that $\operatorname{den}(\alpha) \alpha$ is an algebraic integer, respectively. The function $\Phi_{0}(\boldsymbol{z})$ satisfies a Mahler type functional equation.
The main theorems of the thesis are as follows:
Theorem 1. Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in\left(\boldsymbol{K}^{\times}\right)^{m}$ with $0<\left|\alpha_{1}\right|, \ldots,\left|\alpha_{m}\right|<1$ such that $F_{k}\left(\Omega_{k} \boldsymbol{\alpha}\right) \neq 0$ for every $k \geq 0$. Assume that $\left|\alpha_{1}\right|, \ldots,\left|\alpha_{m}\right|$ are multiplicatively independent. Then $\Phi_{0}(\boldsymbol{\alpha})$ is algebraic if and only if $\Phi_{0}(\boldsymbol{z})$ is a rational function over \boldsymbol{K}.

Theorem 1 insists the equivalence between the rationality of the Mahler function $\Phi_{0}(\boldsymbol{z})$ and the algebraicity of the value of the function at an algebraic point. Specializing Theorem 1, we get some criterions for the rationality over \boldsymbol{K} of $\Phi_{0}(\boldsymbol{z})$. As an application of these criterions, we obtain transcendence results of reciprocal sums of binary linear recurrences. Let $\left\{R_{n}\right\}_{n \geq 0}$ be a binary linear recurrence satisfying

$$
\begin{equation*}
R_{n+2}=A R_{n+1}+B R_{n}, \tag{1}
\end{equation*}
$$

where $A, B, R_{0}, R_{1} \in \mathbb{Z}$ with $(A, B),\left(R_{0}, R_{1}\right) \neq(0,0)$. Assume that $\Delta=A^{2}+4 B$ is positive. Let $\sum_{k \geq 0}{ }^{\prime}$ be a sum taken over all $k \geq 0$ such that $R_{r^{k}} \neq 0$.
Theorem 2. Let $\left\{R_{n}\right\}_{n \geq 0}$ be a binary linear recurrence defined by (1). Suppose that $\left\{R_{n}\right\}_{n \geq 0}$ be non-periodic and $R_{r^{k}} \neq 0$ for infinitely many k. Let $\left\{a_{k}\right\}_{k \geq 0}$ be a sequence in \boldsymbol{K} such that $a_{k} \neq 0$ for infinitely many k and $\log \left\|a_{k}\right\|=o\left(r^{k}\right)$. Then

$$
\theta=\sum_{k \geq 0}^{\prime} \frac{a_{k}}{R_{r^{k}}} \notin \overline{\mathbb{Q}}
$$

except in the following two cases:

1) Let $r=2$, $a_{n}=a(n \geq N)$ for some $a \in \boldsymbol{K}$ and $N \in \mathbb{N},|B|=1$, and $R_{0}=0$. Then $\theta \in \boldsymbol{K}(\sqrt{\Delta})$.
2) Let $r=2$, $a_{n}=a 2^{n}(n \geq N)$ for some $a \in \boldsymbol{K}$ and $N \in \mathbb{N}, A= \pm(B-1)$, and $A R_{0}=2 R_{1}$. Then $\theta \in \boldsymbol{K}$.
