SUMMARY OF Ph.D. DISSERTATION

School	Student Identification Number	SURNAME, First name
Fundamental Science and		
Technology		Kurosawa, Takeshi

Title

Transcendence criterion of Mahler functions

Abstract

For $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_m)$ and $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)$, we put $|\boldsymbol{\lambda}| = \sum_{i=1}^m \lambda_i$ and $\boldsymbol{\alpha}^{\boldsymbol{\lambda}} = \prod_{i=1}^m \alpha_i^{\lambda_i}$. Let $r \ge 2$ be an integer. We define $\Omega_n \boldsymbol{z} := (z_1^{r^n}, \dots, z_m^{r^n})$ for $\boldsymbol{z} = (z_1, \dots, z_m)$ and consider the function

$$\Phi_0(oldsymbol{z}) = \sum_{k\geq 0} rac{E_k(\Omega_koldsymbol{z})}{F_k(\Omega_koldsymbol{z})} \in oldsymbol{K}[[oldsymbol{z}]] = oldsymbol{K}[[oldsymbol{z}_1, \dots, oldsymbol{z}_m]],$$

where \boldsymbol{K} is an algebraic number field and

$$E_k(\boldsymbol{z}) = \sum_{1 \le |\boldsymbol{\lambda}| \le L} e_{k\boldsymbol{\lambda}} \boldsymbol{z}^{\boldsymbol{\lambda}}, \quad F_k(\boldsymbol{z}) = 1 + \sum_{1 \le |\boldsymbol{\lambda}| \le L} f_{k\boldsymbol{\lambda}} \boldsymbol{z}^{\boldsymbol{\lambda}} \in \boldsymbol{K}[\boldsymbol{z}]$$

are coprime. We assume that $\log \|e_{k\lambda}\|$, $\log \|f_{k\lambda}\| = o(r^k)$. For an algebraic number α , $\|\alpha\|$ is defined by $\max\{\overline{|\alpha|}, \operatorname{den}(\alpha)\}$, where $\overline{|\alpha|}$ and $\operatorname{den}(\alpha)$ are the maximum of the absolute values of the conjugates of α and the least positive integer such that $\operatorname{den}(\alpha) \alpha$ is an algebraic integer, respectively. The function $\Phi_0(z)$ satisfies a Mahler type functional equation.

The main theorems of the thesis are as follows:

Theorem 1. Let $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_m) \in (\boldsymbol{K}^{\times})^m$ with $0 < |\alpha_1|, \ldots, |\alpha_m| < 1$ such that $F_k(\Omega_k \boldsymbol{\alpha}) \neq 0$ for every $k \ge 0$. Assume that $|\alpha_1|, \ldots, |\alpha_m|$ are multiplicatively independent. Then $\Phi_0(\boldsymbol{\alpha})$ is algebraic if and only if $\Phi_0(\boldsymbol{z})$ is a rational function over \boldsymbol{K} .

Theorem 1 insists the equivalence between the rationality of the Mahler function $\Phi_0(z)$ and the algebraicity of the value of the function at an algebraic point. Specializing Theorem 1, we get some criterions for the rationality over K of $\Phi_0(z)$. As an application of these criterions, we obtain transcendence results of reciprocal sums of binary linear recurrences. Let $\{R_n\}_{n\geq 0}$ be a binary linear recurrence satisfying

$$R_{n+2} = AR_{n+1} + BR_n,$$
 (1)

where $A, B, R_0, R_1 \in \mathbb{Z}$ with $(A, B), (R_0, R_1) \neq (0, 0)$. Assume that $\Delta = A^2 + 4B$ is positive. Let $\sum_{k\geq 0} '$ be a sum taken over all $k \geq 0$ such that $R_{r^k} \neq 0$.

Theorem 2. Let $\{R_n\}_{n\geq 0}$ be a binary linear recurrence defined by (1). Suppose that $\{R_n\}_{n\geq 0}$ be non-periodic and $R_{r^k} \neq 0$ for infinitely many k. Let $\{a_k\}_{k\geq 0}$ be a sequence in \mathbf{K} such that $a_k \neq 0$ for infinitely many k and $\log ||a_k|| = o(r^k)$. Then

$$\theta = \sum_{k \ge 0} {}' \frac{a_k}{R_{r^k}} \notin \overline{\mathbb{Q}}$$

except in the following two cases:

- 1) Let r = 2, $a_n = a$ $(n \ge N)$ for some $a \in \mathbf{K}$ and $N \in \mathbb{N}$, |B| = 1, and $R_0 = 0$. Then $\theta \in \mathbf{K}(\sqrt{\Delta})$.
- 2) Let r = 2, $a_n = a2^n$ $(n \ge N)$ for some $a \in \mathbf{K}$ and $N \in \mathbb{N}$, $A = \pm (B 1)$, and $AR_0 = 2R_1$. Then $\theta \in \mathbf{K}$.