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Abstract 
 

Computing is moving towards everyday artifacts to make them “smart” and “intelligent”. 

By making use of the perceived contexts, smart artifacts can support a variety of human-

centric applications. Due to the reasons such as privacy, personality and creativity, end 

users should be empowered to exert control over these applications, or even create new 

applications if they find existing ones cannot meet their particular needs. However, 

because existing smart artifact systems mainly rely on ad-hoc definitions of contexts, 

they don’t provide any reusable components that can facilitate other developers’ effort. 

Moreover, diversity of user ability and interest is not considered in existing user-oriented 

smart home tools. 

To avoid having to start from scratch when building new human-artifact interaction 

systems, we proposed an ontology-based knowledge infrastructure called Sixth-Sense, 

which enables rapid prototyping of artifact-related applications. Unlike previous systems, 

Sixth-Sense builds upon the Semantic Web technologies, which includes a normalized 

ontology (called SS-ONT) definition to reflect vital aspects of human-artifact interactions. 

Sixth-Sense also supports semantically querying of collected contexts and includes a 

generic reasoning engine to derive higher level contexts from raw sensor data. In a word, 

our infrastructure paves the path for rapid prototyping of smart artifact applications. 

Based on this context infrastructure, we developed an ontology-based programming 

model, called Open-Programming. Different from previous systems, this model is 

designed to meet both the “simplicity”, “high intelligence” requirement from novice users 

and the “functionality”, “in-depth” requirement from advanced users. For example, it 

enables an advanced user from family-A to create a rule-based game, and allows parents 

from family-B to reprogram it for their children to play through a simple front-end 

(according to their domestic settings and imagination).  Because “error checking” is an 

important function as a programming tool, we also integrated several mechanisms to 

debug the programmed applications, including an object-relation-based reasoning method 

to deal with hardware errors in smart artifact applications. 

A wide variety of applications are enabled by making use of our system, such as the 

real-world search service (e.g., searching lost objects) and artifact-based pervasive games. 

We also did a series of experiments to evaluate the performance of our infrastructure as 

well as the feasibility of the Open-Programming model. The results indicate that Sixth-

Sense is a promising tool for users with different abilities to control and program smart 

artifacts in future homes. 
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Chapter 1. Introduction 

1.1 Motivation 
The emergence of new types of simple, cheap, interconnected sensors and enabling 

technologies for ubiquitous computing are driving the extension of the computing domain 

from general computers or computer-augmented appliances (e.g., household appliances) 

to other facets of everyday life. Smart artifacts, which are mundane, everyday objects 

(e.g., cups) equipped with computing capabilities, will become part of everyday life in 

the near future. By making use of information perceived from attached sensors, smart 

artifacts can cooperate to support a range of human-centric services, such as acting on a 

person’s behalf, anticipating a person’s activities or needs, and delivering alerts or other 

assistance in an “anywhere, anytime” fashion. 

There have been recently many smart artifact systems developed by researchers. 

However, because not all of the domestic settings and user considerations could be 

accurately known by system developers, for example, facts like “this diary is privately 

owned by Bob”, and particular needs like “reminding me to take that ‘black wallet’ before 

I leave home”, there also emerges a trend to empower end users who have intimate 

knowledge about their living environments to program at home. Our research is mainly 

focused on how to facilitate both experts and end users to program smart artifacts in 

future homes. 

A programming platform for smart artifact systems implies that we want to build a 

bridge between raw sensor data and various applications. There are several requirements 

for building such a bridge, as we mentioned below. 

1.1.1 A Unified Knowledge Infrastructure 

Designing and developing smart-artifact applications have been drawing much attention 

from researchers in recent years. However, smart-artifact services have never been 

widely available to everyday use. Recent research results show that building and 

maintaining smart-artifact systems is still a complex and time-consuming task due to the 

lack of an adequate infrastructure support. We believe such an infrastructure requires the 

following supports: 
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(1) A formal context model that can facilitate context sharing and reuse among 

different smart artifacts and context-aware services. Raw context data obtained from 

various sources comes in heterogeneous formats, and applications that do not have prior 

knowledge of the context representation cannot use the data directly. Therefore, a single 

method for explicitly representing context semantics is crucial for sharing common 

understandings among independently developed smart-artifact systems. A unified 

knowledge-representation scheme also makes it easy to implement knowledge-reuse 

operations, such as extending or merging existing context definitions. Without such a 

common context model, most smart-artifact systems have to be written from scratch at a 

high cost.  

(2) It can easily integrate with generic reasoning and querying engines. Context 

reasoning is a key aspect of context-aware systems because high-level contexts (e.g., is 

there anyone near the book? what is the person doing?) cannot be directly provided by 

low-level sensor contexts (e.g., the lighting level of a room, the 3D coordinate data of a 

book). On the contrary, they have to be derived by reasoning. A context querying engine 

is also important for context-aware systems, which allows applications to selectively 

access the contexts they concern by writing expressive queries. 

As a platform that is intended to work for users from different families, the main 

challenge to realize this requirement is how to make the knowledge infrastructure 

“sharable” and “easily-customizable”, because different families usually have different 

domestic settings, daily routines, and user considerations. 

1.1.2 A Programming Toolkit 

As a programming platform, another requirement is obvious. That is, we should provide 

an integrated toolkit that can facilitate users’ effort to program smart artifacts. Because 

users are different from each other on their ability and interest, one design challenge to 

build such a toolkit is that there needs a trade-off between “simplicity” and 

“functionality”. For novice users, simplicity seems to be the most important thing. 

However, a toolkit that is too simple to use often implies that its functionality is limited, 

which inhibits the design of high-quality applications. On the other hand, for experienced 

users, a system that allows them to exert in-depth control over their smart homes is more 

acceptable. Therefore, measures should be taken to meet different user requirements.  
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One of the significant issues relevant to ubiquitous computing is the problem of 

dealing with uncertainty and failure in sensing, wireless communication as well as 

reasoning. Smart artifact systems are faced with the same problems. In general, there 

might be two kinds of errors to a programmed smart artifact application, they are, 

software errors (e.g., a wrong human input) and hardware errors (e.g., a broken sensor 

embedded in a smart artifact, which caused the object a “hidden” one). Therefore, to 

ensure developed applications work in the right way, an error-checking mechanism that 

can deal with programming errors and fallible sensors is also important for our 

programming toolkit. 

1.2 Contributions 
This thesis investigates the challenges and solutions surrounding building a programming 

platform for smart artifacts in future homes, which seeks to cope with some of the issues 

presented in last section, for example, how to build a sharable knowledge infrastructure 

for smart artifacts, how to answer diverse user requirements about the programming 

toolkit, how to deal with errors in a programmed smart artifact application.  

1.2.1 Sixth-Sense Knowledge Infrastructure  

To facilitate rapid prototyping of smart artifact applications, we proposed a new system 

infrastructure called Sixth-Sense. Unlike similar studies that mainly use ad-hoc data 

structures to represent contexts, Sixth-Sense explores the Semantic Web technology 

[Berners-Lee et al. 01] to define a common ontology that can assist the development of 

human-artifact interaction systems. The Sixth-Sense Ontology (SS-ONT), expressed by 

the Semantic Web language OWL (Web Ontology Language) [Smith et al. 03], reflects 

portion of contexts that typically exist in human-artifact interactions: 

• Artifact properties (static information like “the size or shape of an object”) and status 

(e.g., dynamic information like “this object is tilted”), which reflect information 

obtained from heterogeneous data sources. For example, with the temperature data 

from a cup, we can ascertain if the teacup is filled with hot water. 

• Physical relations among objects (e.g., the spatial relation involved in an object being 

on or near another one) and the relationships between humans and objects (e.g., the 

artifact a human is interacting with). With these contexts, it is possible to recognize 
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the behavior of a human drinking. 

• Logical relations among objects (e.g., the functional relation between a toothbrush 

and a glass), which are derived from common sense knowledge. Compared to 

physical relations, logical relations among objects can sometimes provide more 

precise and direct information (e.g. based on the known functional relationship, we 

can guess that the object placed in a glass is a toothbrush and not a pen). 

Benefiting from the hierarchical definition structure and semantic sharing natures of 

the ontology, SS-ONT enables home-knowledge sharing and customization among 

different families. By exploring this formal context modeling method, Sixth-Sense also 

integrates several standardized approaches and tools that support expressive querying and 

reasoning of defined facts and contexts. In a word, the Sixth-Sense infrastructure builds a 

good foundation to support the development of a wide variety of smart artifact 

applications. A series of experiments have been conducted to evaluate the performance as 

well as the effectiveness of our knowledge infrastructure. 

1.2.2 The Open-Programming Model 

To address the diversity of user abilities and interests, we proposed a novel approach to 

support end-user programming in smart environments. The ontology-based programming 

model, called Open-Programming, is based on the two design principles, “simplicity” and 

“functionality”.  For experienced users, like expert users and advanced users, they can 

create high quality, flexible services through a generic rule-language and publish them as 

shared services to a Web server. For the majority average home users who have no ability 

or willing to create new services, they can search among the shared services and, 

according to their domestic settings and preferences, reprogram them through a simple 

front-end.  

Various human-centric applications can be developed based on the Open-

Programming model, such as context-aware services and artifact-based games. One 

scenario that describes the working of this model is shown in Fig. 1.1. In this scenario, an 

artifact-based game application created by an advanced user from family-A can be 

published to a Web server and shared by other families. For example, parents from 

family-B can search and reprogram this shared game according to their home resources 

(e.g., smart artifacts, user-generated contents like photos and video clips) and imagination. 
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Their children can enjoy different game plays when their parents assign different settings 

in the “reprogramming” or “customizing” process. The results from a user study indicate 

that our Open-Programming model provides a promising way for users with different 

abilities to program smart artifacts at home.  

 

Figure 1.1: A scenario of Sixth-Sense 

1.2.3 Error-Checking Mechanisms 

Robustness is significant for smart artifact systems. In this work, we integrated a 

simulation mode for users to detect possible programming errors in their applications. 

Moreover, a novel mechanism to handle fallible sensors in smart artifact systems is also 

proposed. Different from other studies, hidden objects in our system can be detected 

using a set of user-defined rules. The rules are mainly abstracted from the knowledge of 

physics and various physical relations (e.g., spatial relations, motion relations) among 

objects. The evaluation results indicate that this approach can, to a certain extent, 

improve the robustness of smart artifact systems. 

1.3 Organization 
The organization of the rest of this thesis is as follows: 

Chapter 2 reviews previous research into smart artifact systems. This encompasses 

context-aware systems, context modeling methods, ontology-based studies, programming 

tools for end users, and methods to deal with uncertainty and failure in context-aware 

systems. 
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Chapter 3 presents the foundation of our work, Sixth-Sense infrastructure, including 

an ontology-based knowledge definition for smart artifacts and several normalized 

reasoning and querying mechanisms based on this definition. 

Chapter 4 presents the Open-Programming model, an ontology-based programming 

model that is designed to address the diversity of user abilities and interest. A detailed 

description of its principles, implementation and some enabled applications will be 

described in this chapter. 

The implementation of the error-checking module of our system will be presented in 

Chapter 5. 

In Chapter 6, we present the evaluations of our system, which consists of several 

aspects, including the performance and effectiveness measurement of our knowledge 

infrastructure, the usability validation of the Open-Programming model, as well as user 

studies on ontology customization and their feedback about the enabled smart artifact 

applications. Some lessons and findings learned from the evaluation process are also 

reported here. 

A comparison of our work with other related studies and discussions of a few potential 

areas to improve our system are presented in Chapter 7. 

Finally, Chapter 8 presents a summary of this research and indicates areas of possible 

future work. 
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Chapter 2. Background and Related 
Work 
Research in context-aware computing is very diverse as the field itself has not yet been 

clearly defined. Researchers from different communities make efforts to understand and 

improve concepts, technologies as well as applications for computing beyond desktop 

computers, and undertake research in ubiquitous computing. This chapter presents 

background information on smart everyday artifacts and context-aware computing, and 

reviews related work carried out by other researchers. Finally, we will give a summary of 

the remaining issues to be addressed in our work. 

2.1 Aspects of Context-Aware Computing 
Since Weiser’s vision of ubiquitous computing [Weiser 99] more than a decade ago, 

many groups have explored the domain of context-aware applications.  

2.1.1 Application-Specific Context-Aware Systems 

In the earlier stage of this research, most studies were built to demonstrate the usefulness 

of context-aware computing in smart environments and they mainly focused on specific 

applications. AT&T Lab’s Active Badge project provides a means of locating persons 

within a building by determining the location of their active badge [Want et al. 92]. 

Georgia Tech’s Aware Home project focuses on building a sensor-rich living 

environment that is aware of its occupants’ activities [Kidd et al. 99]. Microsoft’s 

EasyLiving team developed a camera-based person detection and tracking system that 

can be used to detect users’ presence and adjust environment settings to suit their needs 

[Brumitt et al. 00]. The HP’s Cooltown project provides physical entities (e.g., people 

and objects) with “Web presence” and lets users navigate from the physical world to the 

Web by picking up links to Web resources using many sensing techniques [Kindberg et 

al. 02]. These projects contribute much to context-aware computing research for they 

explored different ubiquitous computing features. 

2.1.2 Smart Artifact Systems 

In recent years, context-aware computing is extending from computers and mobile 

devices to everyday artifacts. Numerous reports of prototyping research on designing and 
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developing smart-artifact systems have been reported [Beigl et al. 01, Beigl et al. 03, 

Lampe et al. 03, Philipose et al. 04, Siio et al. 03, Yap et al. 05]. Enabled human-centric 

applications, such as helping people quickly locate indoor objects [Yap et al. 05], 

inferring human activities or behaviors from their interactions with everyday objects 

[Beigl et al. 01, Beigl et al. 03, Philipose et al. 04], or assisting humans to manage or 

organize their belongings [Lampe et al. 03, Siio et al. 03], have been reported in these 

studies. These studies demonstrate the usefulness of smart artifacts in future homes. 

However, the problem to these systems is that they are typically proprietary and due to 

the ‘ad-hoc’ approach they deployed to obtain and process context information, they do 

not provide basic structures or reusable components to ease the creation of context-aware 

systems. 

2.1.3 Context-Aware Entertainments 

Ubiquitous entertainments have been another research trend in context-aware computing 

field. For example, pervasive gaming, a new kind of entertainment that aims at 

combining the properties and advantages of both the physical world and the virtual world, 

has become an interest of many researchers. To put it simple, pervasive games are 

“computer-augmented games to be played in physical environments, stressing the 

physical and social nature of the game” [Magerkurth et al. 05].  

The development of pervasive games is still in its early stage. Most projects in this 

field were built to mainly demonstrate the concepts or the usefulness of this new 

technology. Existing pervasive gaming studies are diverse in the technology they used 

and the form they presented. One approach is to augment traditional, real-world games 

with computing functionality, enabled games include smart toys like StoryToy [Fontijn et 

al. 05], storytelling games like StoryRoom [Montemayor et al. 04, Alborzi et al. 00] and 

KidsRoom [Bobick et al. 99], location-aware games like CYSMN [Benford et al. 06], 

and augmented tabletop games like STARS [Magerkurth et al. 04]. Another approach, on 

the contrary, attempts to map computer games onto real-world settings utilizing 

augmented-reality techniques, as demonstrated by Touch Space [Cheok et al. 02] and 

Human Pacman [Cheok et al. 04]. More information about pervasive games can be found 

in Magerkurth et al. [05] and Hinske et al. [07]. The approach to increase physical 

interaction in computer games has also been followed recently by a few commercial 
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systems, such as Dance Dance Revolution [Hoysniemi 06], a dancing game that requires 

players to step on pressure sensitive tiles in time with music, and Wii Sports [Yim et al. 

07], a video game that allows players to physically mimic the actions required to play 

sports using a sensor-augmented console.  

Existing systems have greatly contributed to context-aware entertainment research by 

emphasizing the natures of ubiquitous interaction. The major problem to them is that they 

mainly explored the resources that were specially designed for a certain gaming 

experience, there lacks a general platform which can make use of easily-found resources 

(e.g., everyday artifacts, user generated contents－like photos and video clips) in a smart 

environment. For example, physical props and playing fields are two key resources of 

pervasive games [Hinske et al. 07]. However, as envisioned in previous studies, there has 

been a high cost to arrange props, for they either offer proprietary props [Fontijn et al. 05, 

Montemayor et al. 04, Magerkurth et al. 04, Cheok et al. 02, Cheok et al. 04] or ask users 

to make props manually using some materials (e.g., cardboard boxes [Alborzi et al. 00]). 

The playing field in existing systems ranges from a table [Magerkurth et al. 04] to a city 

[Benford et al. 06]. Though it demonstrates well the ubiquitous feature of pervasive 

games, some issues are also raised. For example, some designated gaming spaces are not 

commonly found in our life (e.g., specially-designed storytelling corners in a room 

[Montemayor et al. 04, Bobick et al. 99]) and some are even unsafe for players (e.g., 

playing on the street [Benford et al. 06]).  

2.2 Knowledge Representation and Context Modeling 
According to Dey’s definition [Dey et al. 00], context is “any information that can be 

used to characterize the situation of an entity”. An entity is a person, or object that is 

considered relevant to the interaction between a user and an application, including the 

user and application themselves. In his definition, the knowledge definition of a particular 

domain is also regarded as contexts (i.e., static contexts). There have been previous many 

methods on how to represent contexts and knowledge in context-aware systems. 

2.2.1 Context Modeling Methods 

Numerous approaches have been explored for context modeling. Most studies are based 

on informal context models, such as using simple data structures (e.g., key-value pairs) 
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[Beigl et al. 01, Philipose et al. 04] and data formats (e.g., pictures) [Siio et al. 03], 

relational database schemes [Yap et al. 05], XML [Lampe et al. 03], and programming 

objects (e.g., Java classes). As these systems rely on ad hoc representations of contexts, 

independently developed applications cannot interoperate based on a common 

understanding of context semantics. Furthermore, because the expressive power involved 

in using such ad hoc schemes is quite low, it is difficult for them to perform context 

reasoning by introducing generic inference engines. As a result, the reasoning tasks of 

these systems are mostly implemented as programming procedures, which makes the 

overall systems inflexible and difficult to maintain. 

Recent research work has focused on providing toolkit or infrastructure support to 

tackle the above issues. The pioneering work of Context Toolkit provided an object-

oriented architecture for rapid prototyping of context-aware applications [Salber et al. 99]. 

It gives developers a set of programming abstractions which separate context acquisition 

from actual context usage and reuse sensing and processing functionality. The Smart-Its 

project proposed a generic layered architecture for sensor-based context computation, 

including separate layers for feature extraction and abstract context derivation [Beigl et al. 

03]. Henricksen et al. [02] model context using both ER and UML models, where 

contexts can be easily managed with relational databases. A logic-programming based 

platform for context-aware applications is described in LogicCAP [Loke 04].  

To serve as the context modeling method of a user-oriented platform for smart homes 

(like our system), it must meet several requirements: First, it can easily represent the 

heterogeneous, semantically-rich relationships among physical (like smart artifacts and 

humans) and logical entities (like software agents); Second, it should be “sharable” 

among different families and be “easily-extendable” to meet the evolving environment 

(e.g., a new kind of sensor is deployed or a new relationship between two object classes 

is needed to be added); Third, it can work easily with an inference engine to interpret 

collected contexts; Finally, it should provide an “easy-to-use” tool for users to customize 

the knowledge definition of their home. However, the context management studies 

mentioned above cannot fulfill these requirements: (1) the expressive power of the 

methods they used are still low (e.g., semantics like a symmetry property “isNear” and 

taxonomy information cannot be easily represented by them); (2) they don’t provide 
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adequate support for organizing contexts in formal structure format, which makes it 

difficult to realize knowledge sharing and reuse among different families; (3) they 

provide no generic mechanism for context querying and reasoning. Though LogicCAP 

introduced a formal logic-based model for context reasoning, it didn’t support knowledge 

sharing and was difficult to be maintained by home users; (4) existing methods are 

mainly designed for experts, and they don’t provide any easy-to-use interface for end 

users. To address these issues, recently there emerges another way — an ontology-based 

approach, to model contexts, as surveyed in the next section. 

2.2.2 Ontology-based Studies 

The term “ontology” has a long history in philosophy, in which it refers to the subject of 

existence. In the context of knowledge management, ontology is referred as the shared 

understanding of some domains, which is often conceived as a set of entities, relations, 

axioms, facts and instances [Uschold et al. 96]. 

Table 2.1: Database vs. Ontology 

Axis of Comparison Database Schemes Ontology Schemes 

Modeling perspective Intended to model data being 

used by one or more applications 

Intended to model a domain 

Structure vs. 

Semantics 

Emphasis while modeling is on 

structure of the tables 

Emphasis while modeling is on the 

semantics of the domain – emphasis on 

relationships, also facts/knowledge. 

What concerns Efficiency and effectiveness on 

data processing 

Expressiveness, semantic sharing,  

logical reasoning 

Table 2.1 gives a comparison of database schemes and ontology schemes. In contrast 

to database-based knowledge infrastructures, context modeling based on ontology is 

more normalized and promising [Strang et al. 04], which can at least offer the following 

four advantages. First, ontology is based on a set of normalized standards and it can 

explicitly represent the knowledge of a domain [Uschold et al. 96]. Second, an ontology 

provides a shared vocabulary base, which enables the sharing of context semantics, and 

its hierarchical structure facilitates developers to reuse and extend domain ontologies. 

Third, using ontology as a knowledge infrastructure allows the underlying system 

implementations to be better integrated with various existing logical reasoning 

mechanisms. Finally, there are free, mature and user-friendly ontology editors, like 

Protégé-OWL editor (available at: “http://protege.stanford.edu/”). These four characters 
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just meet the requirements mentioned in last section, so our system explored the 

ontology-based method to build our context model. 

Semantic Web [Berners-Lee et al. 01] is an effort that has been going on in the W3C 

to provide rich and explicit descriptions of Web resources. The essence of it is a set of 

standards for exchanging machine-understandable information. Among these standards, 

Resource Description Framework (RDF) provides data model specifications [Brickley et 

al. 00], and Web Ontology Language (OWL) enables the definition and sharing of 

domain ontologies [Smith et al. 03]. Using OWL, one can (1) formalize a domain by 

defining classes and the properties of those classes, (2) define individuals and assert their 

properties, and (3) reason about these classes and individuals. From a formal point of 

view, OWL is rooted in description logic (DL), which allows OWL to exploit DL 

reasoning tasks such as class consistency and consumption [Smith et al. 03]. 

Web ontology and other Semantic Web technologies have been recently employed in 

modeling and reasoning contexts in different ubiquitous computing domains. 

Ranganathan et al. [03] developed a middleware for context awareness, where they 

represented context ontology written in DAML+OIL. Chen et al. [04a] proposed an 

agent-oriented Context Broker Architecture (CoBrA) infrastructure for semantic context 

representation and privacy control. Semantic Space is a pervasive computing 

infrastructure that exploits Semantic Web technologies to support explicit representation 

and flexible reasoning of contexts in smart spaces [Wang et al. 04]. Yamada et al. [05] 

explores ontology to describe the knowledge of digital information appliances in home 

networks. Ontology has also be employed in sensor network systems to deal with some 

particular issues, such as relation-based data search [Lewis et al. 06] and the adaptive 

problem of sensor networks [Acancha et al. 04].  

The above studies explored ontology to cope with different problems in different 

domains, such as context modeling in context-aware systems and problem description in 

sensor networks. However, none of them address ontology-based programming, for 

example, the concept that developing a programming toolkit that explores the knowledge 

sharing nature of an ontology to support cooperative development among users is not 

presented in them. Moreover, though ontology-based method has been employed into 

many domains for context modeling, there lacks an ontology definition for human-artifact 
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interaction systems. Because so many interactions in daily life occur between people and 

everyday artifacts (such as books, toothbrushes, etc.), ignoring such rich and valuable 

contexts will limit the reasoning tasks that a knowledge infrastructure can support. For 

example, inferring whether a teacup is filled with tea, or recognizing an artifact-related 

behavior such as a person drinks, cannot be implemented by existing studies. Finally, all 

ontologies in above systems are defined by experts, and there lacks a study to investigate 

whether end users can exert control over ontology definitions. Because home users have 

the most intimate knowledge about their living environments, they should be allowed to 

manage the ontology definition of their home. 

2.3 End-User Programming at Home 
For users of all ages, learning to program can be a very difficult task. Since early 1960’s, 

there have been a number of programming languages and environments with the intention 

of making programming accessible to a larger number of users, as surveyed by Kelleher 

et al. [05].  

2.3.1 Programming at Home, Why? 

In recent years, with the development of ubiquitous computing technology, there also 

emerges a trend that aims at empowering end users to create context-aware applications 

in smart homes. There are several reasons for learning to program at home: First, in order 

for smart homes to achieve their promise of significantly improving the lives of families 

through socially appropriate and timely assistance, they will need to sense, anticipate and 

respond to activities in the home. Interestingly, expanding system capabilities can easily 

overstep some invisible boundary, making families feel at the mercy of, instead of in 

control of that technology [Davidoff et al. 2006]. Therefore, seeking to be more sensitive 

to users becomes one major reason for smart home programming. Second, our homes are 

changing rapidly with the introduction of sensors into many everyday artifacts. Allowing 

users to program their home can increase their knowledge and acceptance of new smart 

objects. Third, not all domestic settings and user considerations can be accurately known 

by application developers, so home users who have more intimate knowledge about their 

living environments and daily routines than “hired programmers” should be allowed to 

exert control over these services in terms of their demands, as reported in Dey et al. [06]. 
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Finally, there are also funny and education considerations, such as allowing users to 

enjoy self-designed entertainments at home and drawing some users into programming 

activities at an early age [Mattila et al. 06]. 

2.3.2 Programming at Home, How? 

In light of the reasons mentioned in the last subsection, there is no doubt that it is vital to 

import end-user programming at home, but another problem emerges, that is, how much 

control is appropriate for end users? In current desktop computing environments, most 

home computer users find themselves becoming system administrators, for they have to 

concern themselves with chores that would seem familiar to a mainframe system operator: 

updating hardware, performing software installation and removal, learning how to use a 

software, and so on [Edwards et al. 01]. Within a coming smart home era, our homes will 

be filled with much more smart objects and context-aware services, the operations under 

which will be more complex and time-consuming than in current desktop computing era. 

Lacking of ability or interest to deal with such chores will be a big design challenge to 

smart home developers. 

Table 2.2: Different user types and supporting systems 

User Type Technical 

Level 

Capability Supporting 

Systems 

Expert users 

(Programmers) 

High Creating services using APIs, toolkits, 

and libraries 

CoBrA,  

Semantic Space 

Advanced 

users 

Middle With certain technical skills, willing to 

experience various new techniques 

Alfred, Jigsaw, 

CAMP, iCAP 

Average users 

(Novices) 

Low With little or no technical experience, 

do not like to exert complex control 

_ 

As illustrated in Table 2.2, according to their different technical levels, end users can 

be broadly classified into three types: expert users, advanced users, and average users. 

Average users (or novices) have little technical experience and they may lose interest in 

controlling a smart home if the operations are complex. In contrast, advanced users and 

expert users are experienced computer users and they are willing to experience various 

new techniques. They prefer to exert in-depth control over their smart living 

environments. The existence of diverse user types yields a third problem: how to meet 

their different requirements? Before answering this question, we will first give a survey 

of previous end-user programming methods. 
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2.3.3 End-User Programming Tools 

There have been recently a few studies that focus on empowering users to program at 

home. Some of them seek to create a tool that can help users to easily control their smart 

homes. For example, the Alfred project uses simple speech-based commands to support 

end user programming in intelligent environments [Gajos et al. 02]. The Jigsaw project 

uses a jigsaw-puzzle metaphor based interface to allow end-user configuration of smart 

devices [Humble et al. 03]. A magnetic-poetry metaphor based system to enable end 

users to create context-aware applications is described in CAMP [Truong et al. 04]. 

AutoHAN is a software architecture that enables user-programmable specification of the 

interaction between appliances in a domestic house [Blackwell et al. 01]. iCAP allows 

users to exert control over a sensing environment through a visual, rule-based 

programming tool [Dey et al. 06]. There are also some projects that concern game 

creation in specially designed playing fields. StoryRoom proposes a physical 

programming approach that allows children to control sensors and actuators in a playing 

field [Montemayor et al. 04]. A visual programming platform that empowers children to 

create games in interactive playground environments is reported in UbiPlay [Mattila et al. 

06]. According to the approach they used, previous end-user programming systems 

broadly fall into two groups, namely visual programming and physical programming.  

(1) Visual programming: Many novices are struggled with the syntax problems (e.g., 

remembering the order of parameters) when programming using texts [Kelleher et al. 05]. 

Visual programming tools attempt to provide alternative input mechanisms to bypass 

these problems. Two major ways are available to build a visual programming 

environment. Some systems use graphical objects to represent elements of a program 

such as action commands and control structures. These objects can be moved around and 

combined in different ways to form programs, as demonstrated in iCAP [Dey et al. 06] 

and UbiPlay [Mattila et al. 06]. Utilizing explicit, easy-to-understand metaphors is 

another way to teach beginners how to program, which has also been exploited in many 

previous studies, as reported in Jigsaw [Humble et al. 03] and CAMP [Truong et al. 04]. 

(2) Physical programming: Unlike studies in the prior group that ask users to work 

with programming techniques on the screen, systems in this group attempt to create an 

entirely physical or tangible programming environment. As defined in Montemayor et al. 
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[04], physical programming is “the creation of computer programs by physically 

manipulating computationally augmented objects in a smart environment”. StoryRoom 

[Montemayor et al. 04] and AutoHan [Blackwell et al. 01] are two good examples that 

exploit the physical programming method to assist end-user developers. 

These systems indeed lower barriers to allow users who don’t have special technical 

skills to program. However, the problem to them is whether users have ability or interest 

to utilize these programming tools. For example, to create a simple application in iCAP, 

though no coding is needed, users still have to perform a series of “chore-like” operations, 

such as drawing icons, creating elements, specifying parameters and dealing with 

ambiguity, which are time-consuming and complex for average home users. Therefore, 

it’s an impractical hypothesis that end-users would be interested in creating applications 

by using these visual toolkits. One study that supports our view was reported in Barkhuus 

et al. [03], which investigated that most people were willing to give up partial control 

over context-aware applications if the reward in usefulness was great enough. Another 

similar viewpoint came from Edwards et al. [01], where they suggested that in a utility 

model, most of the “intelligence” should be resided in the system itself, while only the 

most simple and minimal “front-end” functionality was needed to be administrated by 

end users. As shown in Table 2.2, visual-based programming systems are probably useful 

for part of advanced users. However, the constrained functionality and limited expression 

ability of these systems often inhibit them from building more interesting applications. 

Therefore, for a significant portion of advanced users, existing systems can not meet their 

requirement on “high-quality” and “functionality”.  

2.4 Robustness of Smart Artifact Systems 
Keeping the robustness of ubiquitous computing applications is important for end users to 

accept them and use them. There are several reasons that may influence the robustness of 

smart-artifact systems, such as fallible sensors and inconsistent contexts (or uncertainty). 

There have been previous some studies on how to handle uncertainty in context-aware 

systems. Chen et al. [04a] presented an assumption based reasoning method for resolving 

information inconsistency. Gaia project allowed context-aware services to reason about 

uncertainty using Bayesian networks [Ranganathan et al. 04]. CYSMN surveyed the 

causes of uncertainty in a location game and presented several strategies to deal with 
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them [Benford et al. 03]. These systems exploited different reasons that may cause 

uncertainty to context-aware systems, and explored nonmonotonic techniques to deal 

with inconsistent contexts. However, none of them concern the healthy of embedded 

sensors in smart homes. Benford et al. [03] had once suggested that for the technical 

problems that were difficult to solve, we could reveal them to users for their attention.  

But they didn’t provide any ways to detect the problems caused by sensors. 

2.5 Summary and Conclusions 
A range of characters, challenges and approaches for context-aware systems and user-

oriented programming tools has been surveyed and analysed in this chapter. The research 

surveyed also lead to the following observations. Based on these observations issues to 

take on in the course of this research were identified: 

• As existing smart artifact studies use “ad-hoc” approach to define and interpret 

contexts, there lacks a unified knowledge infrastructure to support rapid 

prototyping of smart artifact applications. To address this, we proposed a new 

system infrastructure, named Sixth-Sense, which explores the Semantic Web 

technologies to define a common ontology to assist the development of human-

artifact interaction systems. The Sixth-Sense Ontology (SS-ONT), expressed by 

OWL, provides standardized approaches and support tools for knowledge sharing 

and logical reasoning.  We present this infrastructure in Chapter 3. 

• As seen from previous programming toolkits for home users, diversity of user 

ability and interest is not considered in them. To deal with this issue, we have 

developed a new programming model, Open-Programming, which is based on 

two design principles, “functionality” and “simplicity”, and enables users with 

different abilities to exert control over smart home services. We will describe this 

model as well as some applications based on it in Chapter 4. 

• Existing smart home programming tools do not include an error-checking 

mechanism to deal with possible hardware and software errors in the programmed 

applications. In our work, we have proposed a rule-based mechanism to deal with 

fallible sensors in smart artifact systems, which explores physical and logical 

relations among objects, as will be described in Chapter 5. 
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Chapter 3. A Knowledge Infrastructure 
for Smart Artifacts 
To avoid having to start from scratch when building new human-artifact interaction 

systems, we developed an ontology-based knowledge infrastructure, which supports 

explicit representation of contexts and can easily work with generic querying and 

reasoning tools. In this chapter, we will first describe the structure of the whole system 

and then present the implementation of its knowledge infrastructure. 

3.1 An Overview of Sixth-Sense 
This section will give an overview of our system, Sixth-Sense, which is an ontology-

based programming platform for smart artifact systems. We call it Sixth-Sense because all 

applications created in our system follow a rule-based paradigm, and this word depicts 

well the intuition beyond rules, that is, the new facts derived from these rules. As shown 

in Fig. 3.1, Sixth-Sense consists of three different layers and an error-checking 

mechanism. 

 

Figure 3.1: Overview of Sixth-Sense system 

(1) Sixth-Sense Infrastructure. This is the foundation of our system, which can collect 

contexts from heterogeneous sources and interpret higher-level contexts from raw sensor 

data. It consists of several components. 



Chapter 3. A Knowledge Infrastructure for Smart Artifacts 

 19 

• Ontology Server: The core component of our infrastructure is an ontology server, 

which stores the ontology definition of smart artifact systems. It serves as a shared 

knowledge base from which all other layers can retrieve information. Our 

ontology definition, SS-ONT, is described in Section 3.2. 

• Wrappers: Our infrastructure includes many interfaces to acquire low-level 

context information from various context sources, such as smart artifacts, Web 

services, such as Yahoo Weather (see “http://developer.yahoo.com/weather/” for 

its introduction), and humans. With these wrappers, raw sensor data collected will 

be wrapped in a unique form, i.e., represented as OWL statements. Each wrapper-

derived context reflects a feature or attribute of a related physical entity (e.g., a 

cup) or an abstract concept (like weather). 

• Querying: The query engine enables applications to selectively access contexts 

defined in our ontology server. Different from traditional SQL queries, by making 

use of Semantic Web techniques, our system supports semantic querying of the 

defined ontology terms. We further clarify this in Section 3.3. 

• Reasoners: Ontology-based context reasoning is implemented at two levels. First, 

since OWL is rooted in description logic (DL), well-known DL reasoners such as 

Racer [Haarslev et al. 01], and also a set of predefined OWL-axiom-based rules 

can be used for ontology inference in our system. Reasoning tasks such as class 

subsumption and class consistency can be implemented at this level. Second, to 

derive information that cannot be directly inferred from ontology axioms (e.g., 

what the human is doing), users can define a set of inference rules and use an 

inference engine to deduce higher-level contexts. Both reasoning results are 

asserted into the ontology server. We describe our reasoning mechanisms in detail 

in Section 3.4. 

 (2) Open-Programming Model. This layer includes two programming modes for end 

users, they are, rule-based programming mode and customization mode. The prior mode 

allows advanced users to create rule-based, high-quality smart artifact applications, and 

the latter one empowers average home users to reprogram the shared applications in a 

simple fashion (according to their preferences). We will describe them in Chapter 4. 
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(3) Application Layer. This layer includes various applications that can be developed 

using our system, including human-centric services and artifact-based game applications. 

Some examples are presented in Chapter 4.5. 

(4) Error-Checking Mechanism. As a programming platform, an error-checking 

mechanism for users is also important. In Sixth-Sense, we also deployed several 

mechanisms to deal with software and hardware errors in smart artifact applications, as 

we present in Chapter 5.  

3.2 An Ontology-based Context Model 
A unified method for explicitly representing context semantics is crucial for sharing 

common understandings among independently developed smart-artifact systems. Our 

Sixth-Sense infrastructure explores the Semantic Web technology to model contexts. The 

ontology, called SS-ONT, is described using the OWL language. 

 

Figure 3.2: Three levels’ design of SS-ONT 

3.2.1 SS-ONT Design 

As shown in Fig. 3.2, we define SS-ONT at three levels. Definition of the first two levels, 

namely upper ontology and domain ontology, follows the general ontology design 
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strategy as reported by Wang et al. [04]. The upper ontology is a high-level ontology that 

provides a set of basic concepts common to different smart spaces (e.g., homes and 

offices). The domain-specific ontology is an extension of the upper ontology created by 

adding detailed concepts and their features in different application domains (e.g., “dinner 

table” class and “cabinet” class in home domain, as illustrated in Fig. 3.2). These two 

levels make SS-ONT more extensible, and enable developers to customize particular 

domain ontologies by inheriting the classes defined in the upper ontology. Different from 

previous systems, as a user-oriented system, we also introduce a third level, instance 

definition level or user-customization level, which allows home users to insert particular 

instances that exist in their home (e.g., a birthday cake and a bottle of beer, as shown in 

Fig. 3.2) to a shared domain ontology. In this way, each family can share a common 

knowledge structure and only adding the instances of their home, which helps to realize 

application sharing and customization. 

There have been many attempts in the ontology research field that try to bridge the 

gap between real world and computational world, such as SOUPA [Chen et al. 04b] and 

ULCO [Wang et al. 04]. In light of the advantage of knowledge reuse provided by using 

an ontology, we referenced several such consensus ontologies and standard specifications 

about home devices, such as ECHONET (please refer to “http://www.echonet.gr.jp/” for 

its information), borrowing some terms from them but not importing them directly. 

Different from previous ontology studies, our SS-ONT ontology is an attempt to model 

portion of knowledge in the domain of human-artifact interaction. From the various 

contexts, we selected 14 top-level classes, and a set of sub-classes, to form the skeleton of 

SS-ONT, i.e., the SS-ONT upper ontology (see Fig. 3.2). In next subsection, we will 

describe an extension of this upper ontology to the smart home domain. 

3.2.2 SS-ONT Domain Specific Ontology 

Part of an extension of the SS-ONT upper ontology for the smart-home domain is shown 

in Fig. 3.3. This specific ontology defines a number of concrete subclasses, properties, 

and individuals in addition to the upper classes. The current version of the SS-ONT (ver-

1.5) domain ontology consists of 108 classes and 114 properties, the whole definition of 

which is available at: “http://www.ayu.ics.eio.ac.jp/members/bingo/SS-ONT-v1.5.owl”). 

It models a portion of the general relationships and properties associated with artifacts, 
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people, sensors, behaviors as well as games in smart environments. In the following 

subsections we explain how to achieve this using OWL. 

 

Figure 3.3: SS-ONT domain ontology model (partial) 

 (1) Person 

The “Person” class defines typical vocabularies for describing a person. Besides the 

profile description, there are specific predicates for representing human locations, human 

behaviors, and activities. 

Location: The location of a human is modeled in several ways in response to varied 

references. For example, the predicate “isLocatedIn” denotes the spatial relation between 

a person and a room, the range of “isLocatedAt” is a skeleton object (such as a bed, 

explained later), and the predicate “isLocatedNear” represents a person’s location by 

nearby SmartObject individuals. Different representation formats deliver different 

contexts, which makes the reasoning task more effective. 

Human Behavior: In the course of human-artifact interactions, ongoing human 

behaviors are reflected by changes in smart-artifact states. As shown in Fig. 3.3, the class 
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“Behavior” has two subclasses, “CommonBehavior” and “CategoryBehavior”. The 

former denotes behavior types that exist among all object categories, for instance, pick up, 

put down, and move, while the latter indicates category-specific behaviors, such as the 

“drink” behavior to the cup category. The relation between persons and their behaviors is 

expressed by a “hasBehavior” property. In human-artifact interactions, each human 

behavior also implies that a potential object is being interacted with, and we use 

“hasInteractiveObject” to reflect this information. 

Human Activity: The OWL class “Activity” also has two subclasses: “InferredActivity” 

and “ScheduledActivity”. The former denotes activities derived from context reasoning, 

while the latter refers to activities retrieved from software services, such as Google 

Calendar API (available at: “http://code.google.com/apis/calendar/”). Two properties are 

available to distinguish them: “hasInferredActivity” and “hasScheduledActivity”. 

(2) Artifacts 

Explicit definitions of physical artifacts are important for smart-artifact applications. 

Defined artifact properties can be classified into four types: object profiles and status 

information, location description, relationships with humans and with other objects. 

Profile and Status: These describe, respectively, the static (e.g., hasName, hasShape) 

and dynamic properties (e.g., hasTiltAngle, isMoving) of an artifact. 

Location: We use a symbolic expression method to represent the location of objects. 

For example, the location of a key can be represented as “on (key, table)”, which means 

the key is on a table. Obviously, a symbolic expression provides an efficient way for 

humans to find things than using an absolute-location expression (i.e. raw coordinate 

data). To achieve this, we borrowed two subclasses from the Artifact class: 

SkeletonObject and SmartObject (see Fig. 3.3). Several large and mostly static artifacts 

(e.g., furniture) are selected to serve as skeleton objects, while other small, easily 

movable objects (e.g., keys, books) are categorized into the SmartObject class. In SS-

ONT, the property “isLocatedOn” is defined to represent the spatial relation between 

smart object A and skeleton object B (meaning A is located on B). There are also two 

OWL inverse properties terms, isOver and isUnder, defined to reflect the spatial relations 

between two SmartObject instances (e.g., a pen is placed on a book). 
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For the SkeletonObject instances, because they may act as reference objects for other 

smart objects, particular properties are needed to specify their coverage area. For example, 

the coverage area of a skeleton object with a rectangular surface can be expressed by four 

OWL data-type properties, hasMaxX, hasMinX, hasMaxY, hasMinY, which involve the 

maximum and minimum horizontal coordinate values. There is also another datatype 

property “hasHeight” to denote the height of this skeleton object, and a Boolean property 

“hasLoadedObject” to express whether there is any object located on this skeleton object. 

An OWL object property “isLocatedIn” is defined to specify in which room the skeleton 

object is placed. 

Relationships with humans: This mainly reflects the relations between artifacts and 

humans. isOwnedBy and isInteractedBy are two such properties.  

Relationships with objects: In addition to physical relations, there are also logical 

relations among artifacts (e.g., the functional relation between a toothbrush and a glass). 

Compared to physical relations, logical relations among objects can sometimes provide 

more precise and direct information (e.g. based on the known functional relationship, we 

can guess that the object placed in a glass is a toothbrush and not a pen). To the best of 

our knowledge, the logical relations between physical objects have not been discussed in 

previous smart-space studies. The current SS-ONT defines four types of logical relations. 

Definition 3.1 (Combinational Relation): Some objects act as components of, or 

accessories for, other objects, e.g., the relation between a mouse and a computer 

(reflected by the predicate “hasComponent” in SS-ONT). 

Definition 3.2 (Partner Relation): Several objects can cooperate as partners to 

perform human-centric tasks and are always arranged in the same way. Possible instances 

include tables and chairs, and foreign language books and electronic dictionaries. The 

partner relation between objects is symmetric, and a symmetric property 

“hasWorkPartner” is used to represent this relation. 

Definition 3.3 (Family Relation): Objects that belong to the same category 

sometimes have this relationship because, in daily life, similar operational modes exist 

when humans deal with objects in the same category (e.g., people deposit all their books 

on the bookshelf, or place all their umbrellas in the umbrella stand near the door). We use 

a Boolean property “hasFamilyRelation” to denote if the object class has such a relation. 
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Definition 3.4 (Functional Relation): Some objects are designed for a specific 

functional purpose, which is to serve the work of another object (e.g. a toothbrush and its 

supporting glass). We use “hasFunctionalPartner” to express this relation. 

(3) Security Filter 

As reported in Meyer et al. [03], if people prefer to live in a context-aware home for extra 

convenience, every measure should be taken to prevent information about their private 

life being accessed by anybody else. Otherwise, they will not find life in a smart house 

pleasant. In an artifact-rich environment, residents should have the authority to decide 

which artifacts can be publicly viewed and which cannot, and also the authority to allow 

access to different users, such as friends. 

To this end, we classify the “Person” class into four subclasses: Master, Familier 

(denotes a family member), Friend, and Guest. In addition, artifacts are classified into 

five types: Public (only available to guests, e.g., magazines), ProtectedFamily (objects 

shared by the whole family, such as a shoe cabinet), ProtectedFriend (an object that is 

privately owned but set by its owner to friend level), Private (personally owned objects, 

such as diaries), and Hidden (objects whose sensors do not work well, see Chapter 5). A 

Familier user can manage and view the private objects that belong to him (defined by the 

“isOwnedBy” property) and all the other three object types. As a specific Familier user, a 

Master user has intimate knowledge about home computers and is responsible for 

maintaining ProtectedFamily objects (e.g., insert an item about a new chair, or modify 

information about an existing object). If a Familier user A has a friend B, and A sets the 

level of a private object O to ProtectedFriend, then O will be accessible to B. In addition, 

for the sake of security, objects at the Hidden level can only be tracked by Master users. 

With this protection policy, if B wants to view an object owned by Familier user C, his 

access will be denied. 

(4) Sensor 

Our system uses various sensors, including U3D (ultrasonic 3D location) sensors, 

MICA2 mote sensors (see “http://www.xbow.com/”) and Kinotex pressure sensors (see 

“http://www.tactex.com/”). Such sensors are either attached to smart artifacts or placed 

on skeleton objects. The technical details of these sensors will be described in Section 

4.2. To reflect the various sensor types, we borrowed several subclasses from the top 
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class “Sensor”, like U3D and Mote (see Fig. 3.3). A number of properties that represent 

sensor values are also defined. For instance, “hasLxValue”, “hasLyValue” and 

“hasLzValue” denote the real-time coordinate values derived from U3D, whereas 

“hasOldLxValue”, “hasOldLyValue”, and “hasOldLzValue” represent the sensor data for 

the last update time (i.e., a historical data record). “hasAxValue” and “hasAyValue” denote 

the two axis acceleration sensor values. 

(5) Category Standard 

It is known that people always use the concept of category to distinguish between objects. 

Each category should have one or more particular attributes that distinguish it from other 

object categories. A definition of this artifact category principle is given here. 

Definition 3.5 (Category Standard): Each artifact category has its product or design 

standards, such as shape, size, color or weight, which are all endowed with specific or 

unified definitions (e.g., the size of a sheet of paper can be A4, B5; while the shape of the 

bottom of a cup is usually circular). We call this category standard. 

Use of category standard helps recognize objects (e.g., identity of a detected hidden 

object, see Chapter 5) and SS-ONT has a top class “Standard” to reflect this concept. The 

class Standard has a number of individuals (e.g., Cup-Standard, Key-Standard) that 

denote different category standards. A set of properties is defined to describe the 

standards. OWL datatype properties “hasMaxLength”, “hasMinLength”, “hasMaxWidth”, 

“hasMinWidth”, “hasMaxHeight”, and “hasMinHeight” are used to express the general 

dimension range of this object category. Properties such as “hasWeight” and “hasShape” 

are used to describe the common attributes of the same kind of object as well. 

Table 3.1: Definitions about the components of a game in SS-ONT 

Elements of a Pervasive Game Related Class Relation with Games 

Goals/Description Data type: String hasDescription 

Rules Rule (BaseRule, MyRule) hasRule 

Playing field Space hasPlayingField 

Outcome Data type: Int 

Outcome (Win, Loss, et al.) 

hasScore, 

hasOutcome 

Players/Actors Person hasPlayer 

Props/Resources Artifact hasProp 

Feedback/Virtual Elements Action (Animation, Sound, et al.) hasAction 
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(6) Games 

Pervasive gaming is an emerging and promising context-aware application area, and it is 

defined by several new elements. Table 3.1 lists the key elements of a pervasive game 

(referring to the definitions about games in Hinske et al. [07]) and their relevant 

representations in SS-ONT. To distinguish pattern rules (i.e., rules created by rule 

designers) and user-customized rules (users can reprogram a pattern rule to produce new 

rules), we defined two subclasses of class “Rule”, namely “BaseRule” and “MyRule”. 

Definitions in this way enable users to experience different gaming experiences by 

configuring the elements of an originally created game (or a pattern game). Outcome is 

another essential element of a game. In our system, both quantitative (e.g., scoring) and 

qualitative (e.g., win or loss) outcomes are available for games. Finally, the OWL object-

property “hasAction” describes the relation between a rule and the actions (e.g., playing a 

video clip) should be performed in response to events provided that stated conditions of 

the rule hold. 

3.2.3 User-Oriented Ontology Customization 

 

Figure 3.4: A screenshot of the Protégé-OWL editor 

As mentioned in Section 3.2.1, the third level’s definition of SS-ONT allows users who 

have intimate knowledge about their homes and daily routines to customize an ontology 

for their home. As shown in Fig. 3.4, the tool we chose to support this user-oriented task 

is the Protégé-OWL editor, because it provides well-designed documents, user-friendly 

interfaces and error-checking mechanisms, which make it a good tool for home computer 

users. User-oriented ontology customization in our system is mainly about individuals, 
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i.e., the ABox definition of SS-ONT, which reflects things that are different among 

different homes. Following is the description of two such tasks. 

(1) Creating individuals. It is not possible for an ontology developer to predefine the 

instances (e.g., a story book about Harry Potter) of the defined classes within an 

individual home. Instead, this should be defined by end users. It is not difficult to 

achieve using Protégé. For example, to create an instance for a certain class, a user 

can first choose the targeted class (e.g., Book) from the ‘classes tree’ shown in the left 

frame of Fig. 3.4, and then press the ‘create instance’ button in the ‘instance 

browser’ frame (middle part of Fig. 3.4) to create an new instance (with a desired 

name) for the selected class. Users can repeat the above steps to create more 

individuals that exist in their home. Table 3.2 summarizes the types of individuals 

needed to be created by users. 

Table 3.2: Concepts needed to be configured by users 

Tasks Concepts to be Configured 

Creating 

individuals 

Person, Artifact (Smart artifact, Skeleton artifact), Device, Sensor, Space 

(City, Room) 

Human or object profiles (e.g., hasName, hasSize, hasRecidentCity) 

Sensor deployment information (e.g., hasSensor) 

Static human-artifact relations (e.g., isOwnedBy)  

Static artifact-artifact relations (e.g., hasFunctionalPartner, 

hasComponent) 

Static human-human relations (e.g., hasParent, hasFriend) 

 

 

Asserting 

properties 

Space settings (e.g., hasPart, isPartOf) 

 

Figure 3.5: A screenshot of the “hasSensor” property-setting dialog 

(2) Setting properties. Another task for ontology customization is to assign static-

property values (or static contexts) for new created individuals. As shown in Fig. 3.4, 

when an individual is created, all its properties will be listed in the ‘individual editor’ 
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frame (right part of Fig. 3.4). For an OWL datatype property like hasEmail, users can 

directly fill its value in the relevant form, while for an OWL object property like 

hasSensor, users should press the diamond-shaped buttons on the ‘resource widget’ 

of this property, and specify its value in the pop-upped resource dialog, where all 

available individuals within the range of this property are listed (see Fig. 3.5). A set 

of user-controlled properties are also listed in Table 3.2. 

3.2.4 SS-ONT Version Updating 

Current SS-ONT version reflects a range of common context categories and their 

properties in a smart home. However, as a unified context model, it should meet the 

dynamic changes of smart home techniques (e.g., a new kind of sensor is deployed) and 

user needs (e.g., one user requires a new property to represent that the yogurt is rotten). 

Benefitting from OWL ontology’s hierarchical structure, it is easy to extend SS-ONT to 

meet these new requirements. When a new SS-ONT version is published, our system can, 

at the same time, automatically update user-customized ontologies by inserting new 

defined terms and updating the changed ones. This is achieved by using the Protégé-

OWL API [Knublauch et al. 05], a programming-level API for parsing and updating 

OWL statements. In a word, when new SS-ONT versions are published, users can 

maintain the newest ontology definition with little manual effort. 

3.3 Context Querying Engine 
The query engine provides an abstract interface that enables applications or agents to 

extract desired context information from SS-ONT. We provide two query mechanisms, 

Protégé-OWL API based query and SPARQL based query. 

3.3.1 Two Query Methods 

For experts and programmers, a simple way to query SS-ONT is to use the Protégé-OWL 

API, which allows them to query the content of user-defined classes, properties or 

individuals from an OWL file by writing Java codes. However, the efficiency and 

expressive power of this kind of query is not high. To support advanced queries, we also 

adopted the SPARQL language [Prud’hommeaux et al. 06], the Semantic Web query 

language developed by W3C, as the context query language. A SPARQL query statement 

consists of a series of triple patterns (i.e., , ,subject predicate object< > ) and modifiers. 
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Different form traditional SQL queries, as the query language for the Semantic Web, 

SPARQL-based query approach allows users to perform “semantic querying” of defined 

concepts. Here we give an example to manifest the differences of different query methods.  

 

Figure 3.6: A partial graph model of SS-ONT 

Table 3.3: A sample query using three different query methods 

Query 
Method 

Query Expressions 

 
 
 
 

Protégé- 
OWL 
API 

Query 

JenaOWLModel owlModel = ProtegeOWL.createJenaOWLModelFromInputStream(SS-ONT_Path);

OWLNamedClass cls = owlModel.getOWLNamedClass("SmartObject");

Collection instances = cls.getInstances(true); //retrieve      

for (Iterator jt = instances.iterator(); jt.hasNext();) {

     OWLIndividual object = (OWLIndividual) jt.next();

     RDFProperty isLocatedOn = owlModel.getRDFProp

all instances of the SmartObject class

erty("isLocatedOn");

     RDFIndividual ske_Obj = (RDFIndividual) individual.getPropertyValue(isLocatedOn);

     if(ske_Obj.getBrowerText() = = "DinnerTable")

            System.out.println(object.getBrowerText());

}

 

 
SPARQL

Query 

PREFIX ssont: <http://~/SSONT.owl#> 

SELECT ?object 

WHERE{?object  ssont: isLocatedOn  ssont: DinnerTable .} 

 

 
 

SQL 
Query 

Select Object_Name 

From SmartObject, LocationRelation

Where SmartObject.ObjectID=LocationRelation.EntityID 

     and LocationRelation.Place=DinnerTable

 

Figure 3.6 shows a simple model that expresses the relations between several classes 

(extracted from SS-ONT). A simple query over this model, says, “List all the objects that 

are placed on the DinnerTable”, is listed in Table 3.3. This example clearly indicates that 

writing SPARQL query statements is easier and more intuitive than writing Java codes 

(i.e., API-based method), especially for non-programmers. But for expert users, the 

Protégé-OWL API based query method is sometimes more flexible because it can be 

seamlessly integrated into their Java-based projects. From this example we can also find 



Chapter 3. A Knowledge Infrastructure for Smart Artifacts 

 31 

that SQL-based query is mainly based on integer/string comparisons, which ignores any 

relationships between physical entities (i.e., objects, sensors, humans). In contrast, 

SPARQL-based query is founded on semantic mapping, and its WHERE clause consists 

of several “triple-formatted” semantic descriptions. For example, the triple pattern in this 

example (i.e., <?object  ssont: isLocatedOn  ssont: DinnerTable> ) denotes “what are 

placed on the dinner table”. It’s obvious that, for smart artifact systems, semantic 

querying is more intuitive and expressiveness, and it may traverse some hops in SQL 

querying.  

3.3.2 SPARQL-based Query Mechanism 

Here we explain in detail how SPARQL-based query engine works. As mentioned 

previously, the WHERE clause in a SPARQL query consists of several triple patterns. 

These triples together comprise what is known as a graph pattern, which can be used to 

identify the shape of the graph that we want to match against. That’s to say, a query in 

our system attempts to match the triples of the graph pattern to the SS-ONT context 

model (as shown in Fig. 3.3). Each matching binding of the graph pattern’s variables to 

the model’s nodes becomes a query solution, and the values of the variables named in the 

SELECT clause become part of the query results. The example mentioned previously 

used one triple pattern to match the two nodes (i.e., SmartObject and SkeletonObject) of 

the sample model given in Fig. 3.6. For a relatively complex query, says, “Whose objects 

are placed on the DinnerTable”, which relates to all three nodes in the sample model, we 

need to use a two-triple-formed graph pattern for its matching, as shown in Eq. (3.1). 

Therefore, for users who want to perform SPARQL-based query in our system, they have 

to firstly examine the graphical context model to identify which nodes (or what shape) 

are to be covered in the target query, and then they can combine the triples related to 

these nodes and create the graph pattern for this query. In our system, users are 

recommended to use the Protégé-OWL query panel to perform SPARQL-based queries 

over the SS-ONT context model. 

    

 : : // ~ / . #  

 ?  

{?  :   :  .

             ?  :  ?  .} 

PREFIX ssont http SSONT owl

SELECT person

WHERE object ssont isLocatedOn ssont DinnerTable

object ssont hasOwner person

< >

                                                 (3.1) 
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3.4 Context Reasoning Engine 
As discussed previously, Sixth-Sense infrastructure supports two reasoning levels: 

ontology reasoning based on OWL axioms and logic inference via user-defined rules. 

Below, we will explain these two reasoning levels in detail. 

3.4.1 Ontology Reasoning 

Since OWL is rooted in description logic (DL), in the design stage of SS-ONT, we used a 

well-known DL reasoner Racer [Haarslev et al. 01] to execute class subsumption (i.e., to 

compute the inferred class hierarchy) and consistency checking. Racer is capable of 

detecting inconsistencies as demonstrated in the following example: if a property like 

“isLocatedIn” is defined as an OWL functional property, and in the definition of the 

“Person” class, a minimum cardinality restriction “2” is added to this property, there will 

be a conflict between these two definitions according to the principles of OWL language. 

If we run Racer, it detects this inconsistency. In the course of SS-ONT’s extension, users 

are also suggested to use Racer to keep their ontology’s consistency. 

In current implementation of Sixth-Sense, we also provide a mechanism to perform 

rule-based ontology reasoning among the defined ontology concepts (i.e., classes, 

properties, and instances). It is implemented by combining the Protégé-OWL API and 

Jess inference engine [Friedman-Hill 07]. Our ontology reasoning mechanism supports 

both RDF Scheme (RDF-S) and OWL Lite (please refer to Smith et al. [03] for more 

details). The RDF-S reasoner supports all the RDF-S specifications (e.g., sub-class, sub-

property), while the OWL reasoner supports simple constraints on classes and properties 

(e.g., symmetry, cardinality and transitivity). All these rules are needed to be predefined, 

and some examples are listed in Table 3.4. 

Ontology reasoning is useful for context-aware systems, by which some implicit 

relationships among defined ontology concepts can be derived. For example, the 

Transitivity rule can be used in spatial reasoning. In SS-ONT, we use an OWL transitive 

property “isPartOf” to define relations between different “Place” instances. If two 

“isPartOf” relations between “Room412” and building “25#”, and between “25#” and 

“Yagami_Campus” are known, an implicit context that “Room412” is part of the 

“Yagami_Campus” can then be deduced. This is because the spatial relation “isPartOf” is 

transitive. Another example comes from two other properties called isOver and isUnder, 



Chapter 3. A Knowledge Infrastructure for Smart Artifacts 

 33 

which are defined as OWL inverse properties. If we know that “BookA” is placed on 

“BookB”, an implied context that “BookB” is under “BookA” can be derived according to 

the InverseOf rule listed in Table 3.4. 

Table 3.4: Instances of OWL ontology reasoning rules 

Name Rule 

SubClassOf (?a rdfs:subClassOf ?b) (?b rdfs:subClassOf ?c) (?a rdfs:subClassOf ?c)∧ ⇒  

SubPropertyOf (?a rdfs:subPropertyOf ?b) (?b rdfs:subPropertyOf ?c) (?a rdfs:subPropertyOf ?c)∧ ⇒  

Transitivity (?p rdf:type owl:TransitivityProperty) (?a ?p ?b) (?b ?p ?c) (?a ?p ?c)∧ ∧ ⇒  

InverseOf (?p1 owl:inerseOf ?p2) (?a ?p1 ?b) (?b ?p2 ?a)∧ ⇒  

 
DisjointWith (?c1 owl:disjointWith ?c2) (?a rdf:type ?c1) (?b rdf:type ?c2)

(?a owl:differentFrom ?b)

∧ ∧⇒  

Functional 
Property 

(?p rdf:type owl:FunctionalProperty) (?a ?p ?m) (?a ?p ?n) (?m owl:sameAs?n)∧ ∧ ⇒  

Symmetry (?p rdf:type owl:SymmetricProperty) (?a ?p ?b) (?b ?p ?a)∧ ⇒  

3.4.2 User-Defined Rule-based Reasoning 

In the logical reasoning level, the creation of user-defined inference rules is allowed, 

which makes the reasoning more flexible. A wide range of high-level contextual 

information, such as “what is the user going to do”, “how should the agent react to the 

current situation”, can be deduced at this level. 

Currently, SS-ONT supports rules in the form of the Semantic Web Rule Language 

(SWRL) [Horrocks et al. 04] and Jess [Friedman-Hill 07]. SWRL is based on a 

combination of the OWL DL and OWL Lite sublanguages, and it enables users to write 

Horn-like rules to reason about OWL individuals and to infer new knowledge about these 

individuals. We chose to use SWRL for several reasons: (1) SWRL is a standardized 

language to realize rule interoperation on the Web, that’s to say, to share rules among 

different rule-based systems, and it is designed to be the rule language of the Semantic 

Web. (2) The Protégé team from Stanford University has developed a full-featured editor 

for SWRL [O’Connor et al. 05]. The SWRL editor tightly integrates with Protégé-OWL 

(the editor we used to define SS-ONT), and also supports inference with SWRL rules 

using the Jess rule engine. The highly-interactive interfaces, well-designed 

documentation and error-checking support make it an ideal tool for experienced users to 

create, edit and test their rules. (3) One of the most powerful features of SWRL is its 



3.4 Context Reasoning Engine     

 34 

ability to support a range of built-ins. A built-in is a predicate that takes one or more 

arguments and evaluates them as true if the arguments satisfy the predicate. For example, 

an “equal” built-in is defined to accept two arguments and return true if the arguments 

are the same. Using the built-ins, users can create more flexible rules and more 

interesting applications. As an emerging rule language, there does not exist a standard 

rule engine that can directly execute SWRL rules. Therefore, we integrated a famous rule 

engine, Jess, into our infrastructure. We chose Jess as the rule engine, because it works 

seamlessly with Java (note that all our work builds upon the Java platform), has an 

extensive user base, is well documented, and is very easy to use and configure, as 

reported in O'Connor et al. [05]. Jess has its own rule language, so current 

implementation of Sixth-Sense also supports rules written in the Jess rule language. 

1. Defining Human-Artifact Interaction Rules 

Note that inference rules are used to deduce high-level, implicit contextual knowledge 

from low-level raw data, and that the premises of some inference rules might involve 

facts that are newly derived from other inference rules. That is, inference rules are 

designed and implemented at different levels, as illustrated in Fig. 3.7. 

 

Figure 3.7: Different reasoning levels 

• Basic Attribute Reasoning: The lowest reasoning level, the task of which is to read in 

the updated sensory data (or software data) to derive some state, attribute, or location 

information about the relevant entity (the entity might be an artifact, a person, or an 
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abstract concept like the weather). Inference rules at this level usually follow the form 

given in Eq. (3.2): 

       

(? )   [ _ (? ,  ? )]

(? ,  ? 1) { ,  ,  ,  ,  } 2

_ (? ,  ? 1)

entity x existed objectproperty x y

datatypeproperty x num num

inferred objectproperty x value

< > ∧ ∧

< > < = >= <= >

→< >

                                            (3.2) 

Where: 1 2, ,...,
n

x x x< > denotes that the formula can involve “1” or several such terms 

defined in this set; 1 2[ , ,..., ]
n

x x x  denotes that “0” or several such terms defined in this 

set can be used in this formula; and 1 2{ , ,..., }
n

x x x denotes that the formula can only 

select one term from the set. Two instances of rules (R3.1 and R3.2) at this level are 

given in Table 3.5. Note that some SWRL built-ins are used in these rules, preceded 

by the namespace qualifier: swrlb). 

Table 3.5: Instances of inference rules for human-artifact interaction 

Rule Type 
Name(Level) 

Inference rules represented by SWRL 

 
Weather 
R3.1 (L-1) 

(? ) (? ,  ? ) : (? ,  25)

(? ,  )

City x hasTemperature x y swrlb greaterThanOrEqual y

hasTemperatureDegree x Hot

∧ ∧ ∧

→
 

 
 
 
Location 
Near 
R3.2 (L-1) 

(? ) (? ,  ? 1) 3 (? 1) (? )

(? ,  ? 2) 3 (? 2) (? 1,  ? 1)

(? 2,  ? 2) : (? 3,  ? 1,  ? 2)

: (? 4,  ? 3) : (? 4

Person m hasSensor m s U D s SmartObject n

hasSensor n s U D s hasLxValue s x

hasLxValue s x swrlb subtract x x x

swrlb abs x x swrlb lessThanOrEqual x

∧ ∧ ∧ ∧

∧ ∧ ∧

∧ ∧

∧ ,  500)

(? 1,  ? 1) (? 2,  ? 2) : (? 3,? 1,? 2)

: (? 4,? 3) : (? 4,500) (? ,? )

hasLyValue s y hasLyValue s y swrlb subtract y y y

swrlb abs y y swrlb lessThanOrEqual y isLocatedNear m n

∧

∧ ∧ ∧

∧ →

 

 
 
 
Behavior 
Pick-Up 
R3.3 (L-2) 

(? ) (? ,  ? ) 3 (? ) (? )

(? ,  ? 1) (? ,  ? 2)

: (? 1,  ? 2) : (? 3,  ? 1,  ? 2)

: (? 3,  120) (? ,  

SmartObject A hasSensor A s U D s Person B

hasLzValue s z hasOldLzValue s z

swrlb greaterThan z z swrlb subtract z z z

swrlb greaterThan z isLocatedNear B

∧ ∧ ∧ ∧

∧ ∧

∧ ∧

∧ ? ) 

(? ,  ) (? ,  ? )

A

hasBehavior B PickUp hasInteractiveObject B A→ ∧

 

• Situation Reasoning: By reflecting changes in information relating to the state or 

location of smart artifacts, some higher level contexts, such as a human’s behavior or 

current activity in a room, can be deduced. A general form for this kind of rule is 

given in Eq. (3.3), and an instance (R3.3) is listed in Table 3.5. 
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(? ) (? ) _ (? ,? 1)

_ _ _ (? ,? )

[ _ _ _ (? ,? 2)]

{ _ _ (? ,? ) _ (? ,?

human x artifact y artifact property y value

human artifact location property x y

existed human behavior property x value

human behavior property x b behavior metadata b v

∧ < > ∧ < > ∧

< > ∧

→ ∧ 3),

_ _ (? ,? ) _ (? ,? 4)}

[ _ _ _ (? ,? )]

alue

human activity property x a activity metadata a value

other human artifact property x y

∧

∧

               (3.3) 

• Decision Making: How the application or agent reacts to the current situation or 

environment change is dealt with at this reasoning level. For instance, when a robot 

detects the resident is going to leave home, and also finds that his room-key is still on 

the table, the robot can generate an alert to the human, reminding him to take the key. 

A general form for this kind of rule is given in Eq. (3.4). 

       

(? ) (? ) _ (? ,? 1)

_ _ (? ,? ), _ _ (? ,? )

[ _ (? ,? 2), _ (? ,? 3)]

_

human x artifact y artifact property y value

human behavior property x b human activity property x a

behavior property b value activity property a value

reaction property

∧ < > ∧ < > ∧

< > ∧

→ (? ,? 4)x value

             (3.4) 

2. Integration with an Inference Engine 

We used the SWRL factory mechanism to integrate the Jess rule engine with user-defined 

SWRL rules. Jess is a forward-chaining rule engine, with which users can run SWRL 

rules interactively to create new OWL concepts and then insert them into the OWL 

knowledge base. In our system, the interaction between SWRL rules and the Jess rule 

engine is implemented through the SWRL-Jess Bridge API [O’Connor et al. 05]. 

To allow Jess to integrate with SWRL rules, our Sixth-Sense infrastructure performs 

the following four steps: (1) represents relevant OWL knowledge defined in SS-ONT as 

Jess facts; (2) represents SWRL rules as Jess rules; (3) performs inference using those 

rules; and (4) reflects the resulting Jess facts back to the SS-ONT knowledge base. The 

interaction between Jess and SWRL is data-driven in our system. That is, when the 

system receives updated data from a sensor node, the four-step interaction process will be 

triggered to see if some new facts can be deduced. An example of the overall inference 

process is shown in Fig. 3.8. In this example, if a smart book, called BookA, was 

previously on the table and, in the next instant, picked up by a nearby person (called Bob), 

the sensed location value (read from U67) for BookA will change. Rule R3.3 (see Table 

3.5) will be triggered then and a new fact – Bob picks up BookA – will be generated. A 
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detailed description about the cooperation between the reasoner and other components 

(e.g., context acquisition module, ontology server) is clarified in the next section. 

 

Figure 3.8: Rule-based reasoning process 

3.5 Run-Time Process of Sixth-Sense 

 

Figure 3.9: Sixth-Sense working process 

The process used by our system is partially illustrated in Fig. 3.9. Because reasoning and 

querying operations are performed in the memory, when Sixth-Sense starts running, it 

first loads the ontology model and SWRL rules (from OWL files) into the main memory. 

Meanwhile, all the sensors start working and their data is acquired by the data acquisition 
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component of our system. The acquired data is stored in a MySQL database, thus 

providing a record of data history and enabling us to compare newly acquired sensor data 

with the last update time data recorded in the database to see whether its value has 

changed. As there is some sensor noise, we use predefined thresholds to measure these 

changes. For example, for U3D (ultrasonic 3D location) sensors, the threshold value is set 

to 10; that is, if the differences in the 3D coordinate values between two U3D sensor 

updates are all below 10, i.e., 1 2 1 2 1 2( 10) & &( 10) & &( 10)x x y y z z− < − < − < , we consider 

that its value has not changed. The inference engine is activated once our system detects a 

change in a sensor value. This decision policy helps improve the performance of our 

system because we do not have to trigger the rule-reevaluation process if all the contexts 

in the physical world remain stable. 

The newly inferred facts are asserted into the context model residing in the memory. 

All running applications can retrieve the up-to-date contextual data from the memory and 

react to the changing world. It should be noted that the ontology repository (stored in 

OWL files) is not updated with the newly inferred facts in the meantime because these 

logically inferred facts (e.g., object locations, human activities) are not persistent contexts 

and thus change dynamically from one second to another. Incorporating backup 

operations like this would overburden our system and do nothing to help the future use of 

our ontology. However, these inferred facts are stored in our database server with their 

timestamps. They thus act as historical contexts and allow other applications to query 

past information. 
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Chapter 4. Open-Programming Model 
For the reasons such as privacy, controllability and personality, end users should be 

empowered to exert control over the enabled smart home services, or to create some new 

ones if they find that current applications can not meet their needs. To address diverse 

user requirements and interest, we developed a new programming model based on our 

Sixth-Sense infrastructure. The ontology-based programming approach, called Open-

Programming, is a well-working blend of the two design goals, “simplicity” and 

“functionality”. In this chapter, we will present the design and implementation of our 

Open-Programming model. Some enabled applications will also be described. 

4.1 Open-Programming Platform: an Overview 
This section will give an overview of our Open-Programming model. Because it is a 

programming toolkit for smart artifact applications, we will first describe the combination 

of a typical smart artifact application in our system. 

4.1.1 Combination of a Smart-Artifact Application 

 

Figure 4.1: Combination of a smart-artifact application 

Following the consensus from previous studies that most context-aware applications are 

built upon a rule-based paradigm [Dey et al. 06], our system allows users to create rule-

based applications. In view of advanced users’ characters that they are willing to 

experience a relatively high technology if it can produce considerably high rewards to 

them, the rules in our system are expressed by a normalized, expressive rule language, 

Jess (one rule language that is supported by Sixth-Sense, see Section 3.4). That’s to say, 
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comparing with visual programming toolkits, the Open-Programming model empowers 

advanced users to create more complex and flexible services. 

As illustrated in Fig. 4.1, a smart artifact application consists of four main parts: a 

working environment (e.g., a smart home), physical interaction (between humans and 

everyday objects), event detection/decision making (based on a set of inference rules), 

and reaction/outcome (i.e., displaying animations to real-world surfaces or playing a 

music clip). A platform for programming smart artifacts should provide an integrated 

solution that can combine different elements (e.g., smart objects, action devices, rules, 

virtual characters) and make them work as a whole. In Section 4.2, we will describe the 

hardware configuration as well as the controlling mechanism of our prototypical smart 

home environment. The connection between “physical interaction” and “event detection” 

parts are handled by the Sixth-Sense infrastructure presented in last chapter. The Open-

Programming model, which copes with creation of rules and the connection between 

rules and actions, will be described in Section 4.3 and 4.4. 

4.1.2 Open-Programming Model and Users 

The Open-Programming model is an ontology-based, user-oriented model, which imports 

the ideas like “free” and “sharing” from the open-source culture. It is aimed at providing 

a collaborative programming environment where users with different technical abilities 

can perform different-level’s programming work. For example, for novices, it seems to 

be difficult for them to create rules in a rule language. However, because in the Open-

Programming model, all services created by advanced users can be shared on the Web, 

novice users can browse them and perform “second-development” upon these shared 

services. In total, there are four kinds of entities shared in this model, they are, ontology, 

rules, context-aware services and actions. Users with different abilities can perform 

different operations over these entities, as illustrated in Fig. 4.2. 

(1) Ontology: To support sharing of context-aware rules and services, one key aspect is 

that every user should follow a unified method to represent contexts and facts. In 

Chapter 3, we have described SS-ONT, an ontology-based context model for smart 

environments, which defines a series of general relationships associated with artifacts, 

humans and sensors in a typical smart home. Before using our system, a user should 

first customize an ontology for their home, as we described in Section 3.2.3. 
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Figure 4.2: User operations in the Open-Programming model 

(2) Rules: All services in our system are rooted in rules. An environment that asks users 

to create rules using a specific rule-language implies a longer period of time to grasp 

it. However, as all user-created rules are shared through the Open-Programming 

model, the learning process could be greatly speeded up. First, our system provides a 

“basic rule” repository, which consists of rules at the fundamental reasoning level, or 

perception level, such as object or human localization (e.g., Bob is near a cup), basic 

human behavior perception (e.g., Bob picks up something), as well as object status 

measurement (e.g., a cup is tilted), etc. These rules are common and frequently used 

in all kinds of applications. For end users, the basic rules we offered can be directly 

integrated into their services or, alternatively, be good examples for them to learn 

how to create rules using the terms defined in SS-ONT. Second, various rules created 

by users are also shared through the Web server, which are good references for others 

as well. All these benefits ensure that, when creating a new service, a developer can 

utilize mostly existing resources and only create a few new rules to meet his 

particular needs.  

(3) Services: For users who have no ability or will to develop services, they can search 

the shared services developed by advanced users from the Web server and customize 

the ones that interest them. Considering that a service developed by one user may not 

meet others’ needs, we allow the service developer to design a simple “front-end” for 

other users to configure it. In this way, both advanced users and novice users are 

allowed to program smart artifacts in our system. 
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(4) Actions: Our system allows a user to define related actions (e.g., animations, audios, 

etc) for each inference rule defined in his application. Interactive devices, such as 

projectors and speakers (see Section 4.2), are utilized to make the digital content 

information available to home users. For advanced users, they can give a default 

action setting for the application they created; while for other users, they can either 

follow the default settings or change it to their preferences. 

With the Open-Programming model we proposed, the two contradictory-seemingly 

design principles, “functionality” and “simplicity” (because a toolkit that allows users to 

create high quality, powerful applications usually indicates that it is not easy to master), 

is well balanced in our system.  

4.2 Establishing a Smart Artifact Environment 
Our system is an exploration of smart artifact applications within smart homes. Ideally, 

smart homes should be filled with small, cheap and interconnected sensors and 

interactive devices, as envisioned in Weiser [99]. To investigate the prospects of artifact-

based applications in future homes, we established an experimental smart home 

environment in our lab using a combination of sensing and action techniques. 

4.2.1 Indoor Sensing Techniques 

We created numerous sensor-augmented smart artifacts in our prototypical experiment 

environment. Three types of sensors were employed for this, namely ultrasonic 3D tags 

(or U3D for short, see top left of Fig. 4.3), and MICA2 Mote sensors (top right of Fig. 

4.3), and Kinotex pressure sensors (see Fig. 4.5).  

U3D is one kind of location sensor, which consists of an ultrasonic transmitter, a 

wireless communication unit and a microcomputer. The ultrasonic pulses emitted from a 

U3D’s ultrasonic transmitter will be received by the ultrasonic receivers deployed in our 

experimental environment (see Fig. 4.4). Based on the time-of-flight (the travel time of 

the signal from transmission to reception) measuring results from more than three 

receivers, the position of this U3D tag can be calculated. Our experimental room is about 

4.0 4.0 m×  in size, where we embedded 16 ultrasonic receivers on the ceiling. U3D tags 

were attached to various indoor objects, including a cup and a pen shown in bottom of 

Fig. 4.3. Both absolute location (i.e., raw coordinate values) and symbolic location (see 
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Section 3.2.2) of indoor objects are supported by our U3D positioning system.  For more 

details about this positioning technique, please refer to Nishida et al. [03]. 

  

  

Figure 4.3: U3D tags (top left), Mote sensors (top right) and prototypical smart artifacts (bottom) 

 

Figure 4.4: Ultrasonic receivers on the ceiling 

MICA2 Mote sensor, a product of Crossbow, is a combination of a two-axis 

acceleration sensor, a light sensor, and a sound sensor. The Mote provides compact 

design, low power consumption, computational ability, and programmability, which 

makes it ideal for making smart artifacts. By interpreting the data acquired from the 

equipped Mote sensor, the status of a smart artifact (e.g., is tilt or not) as well as the 

change of this object’s surrounding environment (e.g., a human passes by) can be 

derived. An example of a Mote-equipped book is given in bottom right of Fig. 4.3. 

From Fig. 4.5 we can see that Kinotex is formed by sixty (10 6rows lines× ) sensor 

cells (size: 2.4 3.2cm cm× ). When an object A is placed on it, the corresponding cells 

under A will generate sensory value for the pressure, by which we can get some valuable 
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attributes of A, such as shape and size. Right of Fig. 4.5 shows the output of Kinotex (of 

the three loaded objects). 

 

Figure 4.5: A working example of the Kinotex pressure sensor 

4.2.2 Augmented Reality Techniques 

The most technically advanced ubicomp applications use augmented reality techniques 

(e.g., handheld devices [Benford et al. 06] and head-mounted displays [Cheok et al. 02, 

04]) as a basis. Augmented reality is also implemented as part of our experimental 

environment, which deals with the combination of real-world and computer-generated 

data. The action module of our system, called Prot, consists of a projector, a mirror, an 

ultrasonic directional speaker [Nakadai et al. 05], and a 3-DOFs rotating base, as shown 

in left of Fig. 4.6. 

   

Figure 4.6: The Prot action device (left) and a working example (right) 

• Rotating base. Over the three rotating units of the rotating base, two are used to 

define the vertical direction of the mirror and the ultrasonic directional speaker, and 

the third one determines the horizontal direction of these two action parts. With the 
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support of the rotating base, the direction of the ultrasonic directional speaker and the 

mirror can be changed to arbitrary directions. 

• Projector & mirror. The mirror reflects the projected video signal from the projector 

to real-world surfaces, such as the floor, walls, and objects. In this way, virtual 

characters that typically reside in computers are available to users as they move into 

the physical world. An example is shown in right of Fig. 4.6, where an “on-wall” 

agent is prompting the user to pick up the object under it. Note that this technology 

enables users to view “real-world” agents without using any head-mounted devices, 

which prohibits the issues relevant to them, such as occlusion [Magerkurth et al. 05] 

and uncomfortable feelings from users [Cheok et al. 02]. 

• Ultrasonic directional speaker. As reported in Ishii et al. [07], ultrasonic wave 

transmitted by an ultrasonic directional speaker can go straight through the air, and be 

converted to audible sound when reflected by real-world objects. Because humans 

can not hear ultrasonic sound, they feel as if the sound is made by these physical 

objects. This property helps us to insert new interaction and entertainment elements 

when designing smart artifact applications, such as anthropomorphosis and 

interactivity. As shown in right of Fig. 4.6, the ultrasonic wave from the directional 

speaker is reflected by the wall and changes to audible sound of an “on-wall” agent. 

4.2.3 Action Control Mechanism 

The control structure of Prot is illustrated in Fig. 4.7. The control commands are 

generated after interpretation of the sensory data and then sent out to three different 

control modules. 

(1) Motor control. This module handles exact motion of the three rotating units. There 

are two main control modes. The first one can adjust the rotating base to an optimal status 

where other action devices relied on it can perform their tasks well. (e.g., a predefined 

rotation angle which ensures the agent can be projected to the best place for viewing). In 

the second mode, the rotating base can change its pose according to the position of a 

target object. For example, in a treasure hunting game, the agent projected from Prot can 

appear at a nearby place of the treasure and navigate the player to it.  

(2) Projection control. As summarized in Table 4.1, both animations and images are 

supported in our projection system. All these files are shared in a Web server and can be 
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viewed through a 3D Web browser — uBrowser (see “http://www.ubrowser.com” for its 

information). We chose uBrowser not only because it is open source, but also due to the 

fresh and cool 3D experience it can bring to users. We have published a series of 

animation files on the Web server, including 34 behaviors of the Coron agent (see right 

of Fig. 4.6) in the form of Flash files. User generated contents, such as recorded video 

clips, photos, self-made Flash files, are another important source of video materials. 

 

Figure 4.7: The control structure of Prot 

Table 4.1: Different action elements 

Type Sources 

Flash movie clips 

Captured videos     

Movie clips 

 

 

Animation 
Coron agents (34 behaviors, provided by 

iFun) Cartoon pictures           
 

 

 

Video Image Photos      
Self recorded files (using a microphone) 

Using a TTS (Text-to-Speech) service  

 

Audio 

Music files 
(3) Sound control. As mentioned previously, utilizing the ultrasonic directional speaker, 

a sound clip played by a computer can finally be changed to the voices of a real-world 

object. User generated contents are also acceptable. As listed in Table 4.1, there are 

several ways to create sound files. First, users can record their own voices using a 
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microphone. Second, they can simply utilize a text-to-speech (TTS) system (e.g., the 

online AT&T Natural Voices system, which is available at: “http://www.naturalvoices. 

att.com”). The video or audio files supplied by users can be used to create or customize 

applications, as we depict later. 

4.3 Designing Customizable Services 
From this section, we will present the implementation of our Open-Programming model. 

As mentioned in Section 3.1, our programming model involves two programming modes, 

rule-based programming mode and customization mode. In this section, we firstly 

describe the prior one, i.e., the programming mode that allows advanced users to create 

high-quality, reconfigurable smart artifact applications. 

4.3.1 Creating a New Service 

The main interface (i.e., the service-center page) of our Open-Programming model is 

shown in Fig. 4.8 (c), which consists of four parts: the search area, where users can 

browse the shared services in the service repository and subscribe the ones that interest 

them; two management areas for published services and subscribed services, where users 

can manage the services they created or configure the services they subscribed; the 

service creation area, which is the starting point for new service creation. 

 

Figure 4.8: The Open-Programming model interfaces 
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To create a new service and publish it as a public service for sharing, there are four 

steps to perform: (1) create a new service; (2) select useful rules from the shared rule 

repository and, if necessary, create some new rules; (3) give a default action setting; (4) 

design a front-end that can help other users to configure this service. 

Following we will use a simple example to manifest the above development process. 

The service, called WeatherReporter, can give suggestions to a resident according to the 

local weather information when it detects that he is going to leave home, for example, 

reminding him to take an umbrella when it rains. We can easily create a new service at 

the bottom area of the service-center page (see Fig. 4.8 (c)). When a new service is being 

created, a brief description about this service is also necessary, since it includes a 

summary introduction of this service that can help others to quickly understand the uses 

of the service. 

Typically, to build a service, there are three rule sources available: basic rules from the 

“basic rule” repository, shared user rules, and new-created rules. As mentioned 

previously, basic rules are frequently used in various applications and are good references 

to service developers. There are preliminary 16 basic rules provided by our system, and 

we hope to keep on enlarging the scale of the rule repository. Rules created by other users 

may either be directly used or be good references (i.e., modifying some parts to meet a 

new need) to a service developer. However, since shared rules (basic rules and shared 

user rules), in most cases, can not meet all the requirements of a new service, the service 

developer often has to create some new rules to fulfill his particular needs. 

WeatherReporter is a situation-triggered service. The specific situation it concerns is 

that the resident is going to leave home. Assume that in a developer’s perspective, most 

users usually take something (e.g., a briefcase or a wallet) when leaving home. He can 

then define a rule to predict the leaving-home activity using the following premise: a 

person is situated at the doorway with the object he usually takes when leaving home. 

Several contexts need to be derived before this situation-detection rule works, they are, 

the person’s location in the room, his behavior relevant to the target object. As these 

perceptions belong to the fundamental-reasoning level, we can find them from the “basic 

rule” repository (the rule-selection page is illustrated in Fig. 4.8 (a)) and directly import 
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them into the new service. Table 4.2 lists all the basic rules chosen for the 

WeatherReporter service, some of them have been presented in Chapter 3.   

Table 4.2: Basic rules used in the WeatherReporter service 

Rule ID Description 

Human_Localization_At 

Rule 

It can report a human’s position relative to the indoor skeleton 

objects (e.g., on the bed, at doorway). 

Human_Location_Near 

Rule (R3.2) 

It determines whether a human is near to a particular smart object. 

Behavior_PickUp Rule 

(R3.3) 

It detects if a human picks up a particular smart object. 

Behavior_PutDown Rule It detects if a human puts down a particular smart object. 

With the four selected rules, we can infer whether a human is situated at the doorway 

with the object he usually takes. In detail, if a human picks up an object and does not put 

it down, we infer that he is carrying it (note that we assume that the human should be 

near to the object if he is performing an object-related behavior). Based on the four basic 

rules, we can create a new rule, Leaving_Home_Rule, to detect if a human is going to 

leave home. This rule, Rule 4.1, is formalized as a Jess rule in Eq. (4.1).  

(  ?  ? ) (  ?  ? ) (  ?  )

(  (  ?  )) 

isLocatedAt x y hasInteractiveObject x z hasBehavior x PickUp

assert hasActivity x LeavingHome⇒            (4.1) 

Having prepared the rules for situation-detection, following we define the rules for 

decision-making. The decision process can be described as this: the service agent first 

sends a request to the Yahoo Weather Service for today’s weather information; if the 

result predicts a rainy day, the agent will suggest that the person takes an umbrella. 

Another rule, Umbrella_Rule (Rule 4.2) is created for this, as formulated by Eq. (4.2). 

(  (  ? )) (  (  ? )) (  ?  ) 

(  ?  ? ) (  ?  ) (  (  ?  ? )) 

Person name x Umbrella name y hasActivity x LeavingHome

hasResidentCity x z hasWeather z Rainy assert needTakeAlong x y⇒             (4.2) 

The above six rules, including four basic rules and two new created rules, jointly 

constitute the WeatherReporter service. The interface where users can create new rules 

and manage existing rules is shown in Fig. 4.8 (b).  

4.3.2 Default Action Settings 

A significant function of our Open-Programming model is that it allows users to define 

related actions (e.g., animations, audios, etc) for the inference rules they created. As 

mentioned previously, we exploit the Prot device to assert actions on the environment. 

That’s to say, we allow users to build a connection between a rule-detected event and an 

action that Prot should perform. For example, a user can specify a video clip, an image, 
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an audio clip or a combination of these different forms to be played or displayed when a 

specific rule is triggered. For an application developer, he can assign a default value for 

the action to be taken when a rule is created. Other users may either follow the default 

setting or change its value in terms of their preferences. This task is performed in the 

action-setting page (see Fig. 4.9), where developers can browse all available action-

resources, such as audio files shown in Fig. 4.9 (a), and animation and image files shown 

in Fig. 4.9 (b) (c). For WeatherReporter service, an “umbrella” image and an audio clip, 

“You need to take an umbrella”, are defined as the default actions for the Umbrella_Rule.  

 

Figure 4.9: Default action setting interfaces 

4.3.3 Designing a Configuration Front-End 

One of the important aims of our system is to empower average users to exert control 

over smart home services in terms of their needs. That’s to say, we should support the 

development of user-configurable services. To achieve this, we have integrated a “front-

end-design” widget in our system, which allows service developers to design a user-

oriented front-end for others to perform “second-development” over the services they 

created. This is implemented by the following two steps. 

(1) Creating dynamic rules. Since services are rooted in rules, controlling of a service 

should be mapped to the configuration of its rules. That’s to say, we should make the 

rules configurable. In our Open-Programming model, we call the rules created by service 

developers (e.g., R4.1 and R4.2) pattern rules. A pattern rule involves several elements 
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whose value can be assigned by other users according to their preferences and domestic 

resources (e.g., assign a specific value of ‘BlackBriefcase’ to variable ‘?z’ in R4.1), and 

therefore addresses the diversity of user considerations. In this way, when a rule is 

created, its developer should meanwhile specify the user-configurable elements in it. A 

typical Jess rule consists of four types of elements, namely predicates (e.g., ‘isLocatedAt’ 

in R4.1), functions (e.g., ‘subtract’ in R3.2), constants (e.g., ‘25’ in R3.1) and variables. 

Since it may easily influence or damage the logic design when allowing users to change 

the values of predicates and functions in a rule, in most cases, only the latter two types of 

elements are allowed to be manipulated by users.  

In our system, elements selected for end-user configuration are called “rule-interfaces”. 

For basic rules, their rule-interfaces are predefined by our system; but for user-created 

rules, they are specified by rule developers. To create more flexible rules, a service 

developer can change some static premises (e.g., preferences or habits of him) into 

“programmable” variables. For example, for the Leaving_Home_Rule, though the 

developer always takes his briefcase when leaving home, he didn’t define it as a fixed 

value in this rule; oppositely, he used a variable “?z” instead of a fixed setting, which 

enables other users to “configure” it according to their own habits. 

Table 4.3: Rule-interface settings for the WeatherReporter service  

Rule name User 

Variable 

Variable1 

(Range) 

Variable1 

Nickname  

Variable2 

(Range) 

Variable2 

Nickname 

Leaving_Home_ 

Rule 

?x ?y  

(Skeleton Object) 

Which place ?z  

(Smart Object) 

Which object 

you take Umbrella_Rule ?x ?y 

(Umbrella) 

Select an 

umbrella  

_ _ 

When creating a new rule, the rule developer should decide how many rule-interfaces 

are to be defined, and specify them clearly in the “Create New Rules” area shown at the 

bottom of Fig. 4.9 (a). There are two items related to this setting: “Variable” and 

“Var_User”. The latter one is used for defining which variable represents a human in the 

rule, and all other programmable variables and constants can be specified in the 

“Variable” item. We separate the user-variable from other variables because the identity 

of a user can be previously learned by our system (because the user has to firstly login 

our platform). All rule interfaces designed for the WeatherReporter service are listed in 

Table 4.3. 
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Table 4.4: Front-end design and background information 

 Rule Question 

Technical Terms A→B ?x, 25 

Simple Words A configuration 

introduction 

Nickname 

(Range setting) 

Table 4.5: Front-end settings for the WeatherReporter service  

Rule name Question 

 

Leaving_Home_Rule 

Do you always take something (e.g., your room-key) when leaving 

home? Which place in your room is most near to the door and you 

must pass it when leaving home? Umbrella_Rule Which umbrella do you want to take when it rains? 

(2) Designing a configuration front-end. Even though clearly indicating the rule-

interfaces, it is still difficult for average users to configure a rule written in a rule 

language, partially due to the unfamiliar syntax or lacking of interest to read rules in this 

form. Therefore, there still needs a simple way for users to perform these settings.  

Preference setting is a common user-oriented service supplied by most Web-based 

systems, such as language setting in Google and city selection in Yahoo Weather. Most of 

the setting-items in these systems consist of a simple question or introduction and a set of 

candidate answers for users to choose from, and average users have been familiar with 

such a simple way to customize their services. To enable novice users to configure rules 

in a simple fashion, service developers are also asked to design a configuration front-end 

for users. In this front-end, all technical terms in an application will be changed to simple 

words that can be easily understood by average users, as listed in Table 4.4. In this way, 

each configurable rule can be represented as a gap-filling question, which consists of a 

configuration-task introduction and sets of optional values for its rule-interfaces. All 

available values for a rule-interface are determined by its range setting from the rule-

developer. Technically speaking, an interface-range is an OWL class (e.g., Umbrella) 

defined in SS-ONT, which restricts the acceptable values of this rule-interface. To help 

users easily understand and perform the value-setting task, a nickname, or a label for the 

rule-interface is also supposed to be provided. We list the front-end settings for the 

WeatherReporter service in Table 4.3 and Table 4.5.  

The main interface for user-oriented front-end design (including configuration 

introduction, ranges and nicknames for rule-interfaces) is illustrated in Fig. 4.8 (d). We 

support two configuration-item types: simple question and multiple choice question. One 



Chapter 4. Open-Programming Model 

 53 

simple question corresponds to one rule in a service, while a multiple choice question 

consists of several simple questions that have a similar reasoning purpose. For example, 

there might be several rules that can detect a person is going to leave home (in different 

ways, such as the person puts on his coat, takes up his briefcase, or opens the door), and a 

multiple choice question allows a person to customize one or several such rules to deal 

with the same reasoning task according to his habits. The front-end design task is 

completed when each rule in the service has a related configuration-item created. The 

enabled configuration front-end, shown in Fig. 4.8 (e), can greatly ease novice users’ 

effort to customize services, as we mentioned later. 

4.4 Customizing Services 
Having described the process for advanced users to create configurable services, we will 

present how our Open-Programming model allows novice users to reprogram the shared 

services in a simple fashion. 

 

Figure 4.10: A screenshot of the service-browsing page  

In the service-center page (Fig. 4.8 (c)), users can input keywords to search interested 

services or simply click the “View All” link to browse all shared services. Figure 4.10 

shows the service-browsing page, which includes all services published by different users. 

Here we choose WeatherReporter, the service we created in Section 4.3, to manifest how 

a service can be customized. Figure 4.8 (e) illustrates the configuration front-end of the 

WeatherReporter service. It consists of several gap-filling questions, which have the 

similar form as the preference-setting page of Google. Each gap-filling question consists 

of an introduction and several choice-boxes, which match well the front-end settings 

mentioned in Section 4.3.3. It should be noted that because the OWL instances listed in 
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an answer-choice box are read from different user-customized ontologies (according to 

the identity of current user), there will be different candidate answers for different users. 

In other words, only the resources owned by the user will be listed here. 

Our user-oriented front-end is natural, simple and easy to operate by average users. 

For example, for Q4 (Leaving_Home_Rule), he can easily choose one from all his smart 

objects that he usually takes when leaving home (e.g., his briefcase). After performing his 

choice, a user can press the “Add” button to submit his selection. This, at the background 

level, generates a new user-customized rule. In some cases, there may be more than one 

answer to a configuration item. For example, for Q4, a user may take both his briefcase 

and wallet when leaving home. A customizer can re-execute the adding-operations to 

submit all his answers. Hence, there will be several customized rules added for this 

question. There are also two configuration items about actions (see Fig. 4.8 (e)), by which 

a customizer can easily change the default action settings to his preferences. Figure 4.8 (f) 

shows the browsing page for a user-customized service, which consists of a set of user 

customized rules. Note that all rule-interfaces in these rules have been changed to specific 

OWL instances specified by its customizer. 

Our front-end based user programming mechanism empowers end users to customize 

services according to their home resources and everyday habits. Furthermore, since our 

user-oriented front-end is easy to understand and operate, the increased control doesn’t 

bring a heavy burden to end users. In fact, as its simplicity, an average user can generally 

carry out the reprogramming work in several minutes. 

4.5 Enabled Applications 
To demonstrate the feasibility of our programming platform, we prototyped a smart-home 

application platform called Home-Explorer, which involves various applications related 

to human-artifact interaction, such as context-aware services and pervasive games. Both 

customizable services (developed by end users) and professional services (developed by 

experts) are enabled using our programming platform. In this section, we will describe 

two such services: an artifact-based game and the real-world search service. 
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4.5.1 Treasure Game 

Benefited from the ubiquitous, intelligent, and tangible natures, we believe that smart 

artifacts can become the most significant resources for designing pervasive games in 

future homes. However, there lacks a study on how to design entertainment applications 

by making use of indoor smart artifacts. In contrast, our Open-Programming platform 

enables users to design and play artifact-based games in future homes. In our system, 

smart artifacts are mainly used as interactive game props, for example, a pen can be used 

to act as a magic wand. Utilizing smart artifacts and other smart devices (e.g., speakers, 

projectors), users can create a wide variety of games in our system, such as smart toys, 

storytelling games and location-aware games. Following I will give an example to show 

how this is achieved using our programming platform. 

This is a game about treasure hunting (called Treasure). In this game, a smart home is 

imagined to be an old castle and players hunt for the hidden treasure in it. Both a treasure 

box and the key for it have to be found to win this game. A few other objects can also be 

selected to give hints about the positions of target objects or be utilized to provide other 

funny or risky gaming experiences (e.g., when a drawer is opened, a monster who resides 

in it appears on the wall and shouts, “Don’t disturb me, I am now sleeping”).  

Treasure is a multiplayer game, where one player hides the pre-specified objects and 

another one or two players act as treasure hunters. We explored a technical shortcoming 

of U3D tagging system to detect whether or not an object is found. As presented in Harter 

et al. [05], the ultrasonic signal emitted from ultrasonic tags can not be received by 

ultrasonic receivers subject to the “limited coverage” problem (e.g., when a U3D-tagged 

object is placed in a desk drawer). Therefore, in Treasure, all hidden objects can not be 

detected at the beginning of a game session until they are found by a player. Two basic 

rules, R4.3 and R4.4 (see Table 4.6), are used to measure whether a smart object is 

detected or not. The derived conclusions can be used by R4.5 to infer which object is 

found by a player. The outcome of this game, i.e., the rule to determine if the player wins, 

is expressed by R4.6. The latter two rules (R4.5 and R4.6) are particularly designed for 

this game, and they need to be defined by end-user developers.  
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Table 4.6: The Treasure game rules 

Rule 

Type 

Rule Name 

(Rule ID) 

Rule Content 

 

Sensor_Not_ 

Updated_Rule 

(R4.3) 

(  (  ? )) ( 3  (  ? )) (  ?  ? ) 

(  ?  ? & : (  ?  : 2))

(  (  ?  " "))

SmartObject name x U D name y hasSensor x y

hasUpdateTime y t intervalGreaterThan t Int

assert notUpdate x true⇒  

 

 

 

Basic 

Rules 
 

Sensor_Updated

_Rule (R4.4) 

(  (  ? )) ( 3 (  ? )) (  ?  ? ) 

(  ?  ? & : (  ?  :1))

(  (  ?  " "))

SmartObject name x U D name y hasSensor x y

hasUpdateTime y t intervalLessThan t Int

assert notUpdate x false⇒  

 

Object_Find_ 

Rule (R4.5) 

(  (  ? )) (  ?  " ")

(  (  ?  " "))

SmartObject name x notUpdate x false

assert find x true⇒  

 

 

New 

Rules  

Game_Win_ 

Rule (R4.6) 

(  (  ? )) (  (  ? )) (  ?  " ") (  ?  " ")

(  (  )) (  (   " "))

Key name x Box name y find x true find y true

Game name Treasure assert isGameWin Treasure true⇒  

To allow novice users to reprogram the games they created, game developers should 

define a configuration “front-end” for others. The “front-end” settings for the Treasure 

game are illustrated in the upper part of Fig. 4.11 and Table 4.7. For each rule in the 

game, the developer can give a default action setting for it. For example, according to the 

settings in Fig. 4.11, once an object is found, a “smiling” agent will be displayed on the 

wall and tells the player “You have found a target object”. 

Table 4.7: Front-end settings for the Treasure game 

Rule name Introduction 

 

Object_ 

Find_Rule 

Which object(s) do you want to hide? (1) You must specify a box and a key to act 

as treasure-box and treasure-box-key. (2) You can additionally select some other 

objects for giving hints (e.g., speaking “the treasure-box is under a table”), or 

transmitting other funny or risky information (e.g., speaking “don’t touch me, I 

am sleeping now”) to game players. 

Game_ 

Win_Rule 

The player wins if he finds the following objects that you chose to act as treasure 

box and treasure box key in Q1. 

Novice users can reprogram the shared “Treasure” game through its configuration 

front-end. For example, the first configuration-item for Treasure (see Table 4.7) asks 

users to specify several objects to play the roles (e.g., a treasure box) of this game. A 

customizer can easily choose the ones he prefers (e.g., a used gift box) from the optional-

answer list for this item (where all available smart artifacts in his house are listed). In the 

example of a customized Treasure game shown in the lower part of Fig. 4.11, there are 

four objects selected, where a room-key and a used keyboard-box were used to play the 
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roles of the treasure-box-key and the treasure-box, and two other objects, a bicycle-key 

and a wallet, were respectively used to confuse players (because it was not the real key 

for the “treasure box”) or to give hints to players, as mentioned later. 

  

Figure 4.11: Programming the Treasure game in the Open-Programming model 

As illustrated in Fig. 4.11, a user can either follow the default actions defined by a 

game developer or change the settings (partially or totally) according to his imagination. 

For example, if a customizer imagines that a wallet can cue the player of treasure-box-

key’s location when this wallet is found, he can set the video to be played to an image of 

a cardboard box (assume the treasure-box-key is placed in it) and the sound to be played 

to “Thanks for saving me from the dark drawer. I will give you a hint about the key”, as 

depicted in Fig. 4.11.  

From the description of Treasure game, several features of our programming platform 

can also be derived, they are: 

• Different families have different resources (e.g., everyday objects, user generated 

contents like photos), and they can give different settings to a shared game. 

• Different user-settings lead to different gaming experiences, which indicates that 

our system also enables novices to author games in terms of their imagination. 
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• The same game can be reprogrammed many times to generate different gaming 

experiences. 

4.5.2 Real-World Search 

Our programming platform also facilitates experts to create professional smart artifact 

services, or public services that can work for different families (i.e., they don’t have to be 

customized). One of them is the real-world service, which can help a user quickly locate 

his belongings in his house. We use the following scenario to describe the functionality 

of this service: Assume it is 7:50 in the morning, and Bob is going to work and must 

catch the bus at 8:00. He always wears his watch to work, but has forgotten where he put 

it last night. As a result, he takes too much time to find it and misses the bus. 

Situations like this are common and cause us considerable inconvenience in our daily 

lives. However, a real-world search system will make it possible to solve this problem. 

Using the U3D sensor data from smart artifacts and the following rule R4.7 (formulated 

in Eq. (4.3)), we developed an indoor-object search system. 

(? ) (? ) (? ,? ) 3 (? )

(? ,? ) (? ,? 1) (? ,? 2) : (? ,? 1)

: (? ,? 2) (? ,? )

(?

SmartObject A SkeletonObject B hasSensor A h U D h hasLxValue

h x hasMaxX B x hasMinX B x swrlb lessThanOrEqual x x

swrlb greaterThanOrEqual x x hasLyValue h y

hasMaxY

∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧

,? 1) (? ,? 2) : (? ,? 1)

: (? ,? 2) (? ,? )

(? ,? 1) : (? ,? 1) (? ,? )

B y hasMinY B y swrlb lessThanOrEqual y y

swrlb greaterThanOrEqual y y hasLzValue h z

hasHeight B z swrlb greaterThanOrEqual z z isLocatedOn A B

∧ ∧ ∧

∧ ∧

∧ →

    (4.3) 

This rule can be explained as this: For smart object A and skeleton object B, if the 

downward projection of A is within the range of B, we conclude that A is placed on B. 

The main interfaces of this service are given in Fig. 4.12. To ensure security, a user must 

first login to our system via an authorized account, including user type (e.g., Master or 

Friend), user name, and password (see Fig. 4.12 (a)). In terms of the security policy 

defined in our ontology, different user types can only search objects in the relevant level 

(e.g., a Friend user cannot search a FamilyProtected level object). This policy is reflected 

in the search results. The main search interface (see Fig. 4.12 (b)) is presented after the 

user logs in. The user can then input a certain keyword to search for objects. We provide 

three search modes: (1) Search by object names: an individual object (e.g., Bob’s wallet) 

can be searched for using this mode; (2) Search by category: in some cases, people may 

want to find a series of objects that belong to the same category (e.g. Bob may want to 
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choose an interesting book to read from among his books). From the ontology’s point of 

view, this mode can be interpreted as returning all the OWL individuals that belong to a 

targeted OWL class; and (3) Search by particular locations: this can list all the smart 

objects placed on a specific skeleton object (e.g. what objects are placed on the dinner 

table). Figure 4.12 (c) illustrates the search results for books obtained via the category 

search mode, where the relative locations of these searched books are listed. 

 

Figure 4.12: Real-world search interfaces 

In summary, an indoor-object search system can save us much time and effort in 

organizing and managing our physical belongings. The context used in this application, 

i.e., one object is placed on another object, fits in the category of artifact-artifact 

relationships. The relationships between artifacts are significant for most artifact-

managing or home-monitoring systems. Our system can be used to implement other 

similar applications in these two fields. For example, Smart Toolbox [Lampe et al. 03], 

which sends alerts if an operator forgets to put the tools he used back in a toolbox; an 

application that can send a message to a mother that her children have not put their toys 

in order after playing with them; and a monitoring application that can generate a 

warning if it detects that a cup of tea is placed near a notebook PC or on a book. The 

logical relations between artifacts (defined in Section 3.2.2) are also crucial to smart-

artifact systems, as we report in the next chapter. 
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Chapter 5. Error Checking Mechanism 
As a programming platform, an error-checking mechanism is very important for users. In 

this chapter, we will survey the possible causes of errors of a smart artifact program and 

present some approaches to deal with them. 

5.1 Causes of Errors in a Smart Artifact Program 
According to our work on smart-artifact applications and games, we find that there are 

mainly five causes of weaknesses to a smart artifact application, which can be grouped 

into either software errors or hardware errors:  

• Software errors. (1) user-supplied information is inaccurate subjected to human 

errors, for example, a wrong input in the rule, incomplete or incorrect logic design 

of a service, reprogramming errors and deployment errors (e.g., in a Treasure 

game play, an object is not placed to the pre-specified place by the game 

customizer). (2) contexts acquired from distinct sources may be inconsistent with 

each other (e.g., “Bob is picking up a cup” vs. “Bob is sleeping”, these two 

contexts are inferred from different rules). 

• Hardware errors. (1) the raw data collected from sensors is inaccurate as a result 

of sensor noise, which may lead to incorrect inference results (e.g., a cup on the 

table is wrongly inferred to be on the floor); (2) sensor data is unavailable because 

of limited coverage (e.g., the “sensor blockage” problem mentioned in Section 

4.5.1) and sensor failure (e.g., the sensor is broken or has a dead battery); (3) 

problems relevant to action devices, such as communication failure or a broken 

working part (e.g., a broken rotating unit of the Prot device). 

Naturally, it can be very harmful to a smart artifact application if incongruous 

behaviors are performed or it fails to work sometimes. Although the sensor-enhanced 

smart artifact strategy has been the subject of many studies, little attention has been paid 

to the robustness of smart objects. To address this, we present some mechanisms to debug 

the programmed smart object applications. As mentioned previously, there have been 

many causes of errors, and our system mainly concerns two of them, they are, 

programming errors and the hidden object problem. The latter problem is probably 

caused by sensor faults and sensor blockage. As shown in Fig. 5.1, the smart book Book-



Chapter 5. Error Checking Mechanism 

 61 

C is not detected by its ultrasonic sensor signal because it is blocked by Book-A. Objects 

in situations like this are called “hidden objects” and locating them is sometimes very 

important. For instance, for the real-world search service, the target object might be a 

hidden object and cannot be reflected in the search result. In this way, if the programmer 

tries to identify some errors in his programming codes, it would be a waste of time. 

Therefore, detecting hidden objects like Book-C is important to our system.  

 

Figure 5.1: A hidden object scenario 

5.2 Software Error Checking 
Similar to the development of other computer applications, users, especially service 

developers, should test the service they created and remove any errors in it before it is 

published. As shown in top of Fig. 5.2, we provide two ways for service evaluation: First, 

since a real context sensing environment may not be available, we support pure 

simulation interface, which allows a user to pre-specify the sensing inputs in the ontology 

he customized through the Protégé-OWL editor (bottom left of Fig. 5.2); the second way 

is a real context sensing mode, which acquires inputs from the real world. 

The simulation mode is mainly designed for service developers, through which a 

developer can quickly specify some simulation values and test whether the service he 

created works. For example, to test a customized WeatherReporter service, the following 

two facts should be true: a user takes up his briefcase, and he is located at the doorway 

place. The service developer can simulate these two facts by predefining the related 

sensor inputs (e.g., the coordinate values of the U3D sensor which is equipped to the 

briefcase, see bottom left of Fig. 5.2) or by simply defining the relevant dynamic 

properties (e.g., the “isLocatedAt” property of a user). After all the relevant context 

values are specified, the developer can press the “Simulation Test” button (see top of Fig. 
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5.2) to evaluate this service. One example of the evaluation result is shown in Fig. 5.2 

(bottom right), which consists of the newly inferred facts and a reasoning result message. 

The developer can check the derived information then to see whether there is something 

wrong with his application. 

 

Figure 5.2: Simulation checking process  

The simulation mode, compared to the real context sensing mode, is a much easier and 

quicker way for users to test and debug the newly created applications. After passing the 

simulation test, we can evaluate the application under a real sensing environment. 

Benefiting from our Open-Programming environment, if a customizer finds some errors 

or problems that he can not solve, he can seek help from the service developer or an 

online discussion forum for possible reasons and solutions. 

5.3 Hardware Error Checking 
We also developed a mechanism to deal with application errors caused by fallible sensors. 

As shown in Fig. 5.3, this rule-based mechanism can help users detect and locate hidden 

objects, and it also provides methods to identify the detected hidden objects.  

5.3.1 Physical Relations among Objects 

Similar to other smart artifact applications mentioned previously, detection of hidden 

objects is also based on a set of user-defined rules. The rules are mainly abstracted from 

various physical relations among objects.  
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Figure 5.3: A diagram of our error-checking mechanism 

 

Figure 5.4: Physical relations among objects 

As shown in Fig. 5.4, there are different kinds of physical relations among objects, 

including location (or spatial) relations, force relations, etc. By making use of predefined 

rules and our context infrastructure mentioned in Chapter 3, these relations can be 

accurately derived. For example, in Section 4.5.2, we have described a rule that can 

determine the “On” relation between a smart object and a skeleton object (see R4.7). 

Following we will give another example, which can detect the “Under” relation between 

two smart objects. 

Using U3D sensors to determine if one object is under another one is not an easy thing. 

As Fig. 5.5 shows, owing to the relatively fixed spatial relations between the object and 

its sensors, and different locations of two objects X and Y, the horizontal distance, (x4, 

y4), i.e., ( 1 2 , 1 2 )x x y y− − , between them will be different (because the data from their 

location sensors only represent two object locations in the real world but do not represent 

whole object spaces). For simplicity, we merely specify that all U3D sensors are attached 

to the top surface of smart objects. In Fig. 5.5, it can be seen that, although the value of 

the pair (x4, y4) is changing, it cannot exceed the range of (l, w), where l and w separately 

denote the sums of object X and Y’s lengths and widths. This condition can, to a certain 
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extent (an exceptional case is discussed in Section 6.2.2), ensure that there is an overlap 

between X and Y. The second condition comes from the difference in height between 

these two U3D sensors, i.e., if the Z-coordinate value difference (z1-z2) is larger than the 

height of object X, we can conclude that Y is under X. This rule (R5.1), represented in the 

form of SWRL, is given in Eq. (5.1). 

(? ) (? ) (? ,? 1)

(? ,? 1) (? ,? 1) (? ,? 2)

(? ,? 2) (? ,? 2) (? ,? )

(? ,? ) 3 (? ) 3 (? ) (?

SmartObject X SmartObject Y hasLength X l

hasWidth X w hasHeight X h hasLength Y l

hasWidth Y w hasHeight Y h hasSensor X c

hasSensor Y d U D c U D d hasLxValue

∧ ∧ ∧

∧ ∧ ∧

∧ ∧ ∧

∧ ∧ ∧ ,? 1)

(? ,? 2) : (? 3,? 1,? 2) : (? 4,? 3)

: (? ,? 1,? 2) : (? ,? 4)

(? ,? 1) (? ,? 2) : (? 3,? 1,? 2)

:

c x

hasLxValue d x swrlb subtract x x x swrlb abs x x

swrlb add l l l swrlb greaterThanOrEqual l x

hasLyValue c y hasLyValue d y swrlb subtract y y y

swrlb

∧

∧ ∧ ∧

∧ ∧

∧ ∧ ∧

(? 4,? 3) : (? ,? 1,? 2) :

(? ,? 4) (? ,? 1) (? ,? 2)

: (? 3,? 1,? 2) : (? 3,? 1) 

(? ,? )

abs y y swrlb add w w w swrlb

greaterThanOrEqual w y hasLzValue c z hasLzValue d z

swrlb subtract z z z swrlb greaterThanOrEqual z h

isUnder Y X hasNoUnderObject

∧ ∧

∧ ∧ ∧

∧

→ ∧ (? ,  )X false

                   (5.1) 

 

Figure 5.5: Spatial relations between smart objects 

5.3.2 Hidden Object Detection 

Look back to Fig. 5.1 to see how physical relations among objects can be used to detect 

hidden objects. By analyzing the physical relations between smart object Book-A and 

skeleton object Table-B, we can infer that Book-A is not placed directly on the desktop 

because there is a height difference between them, then the knowledge of physics 

indicates that there must be something between Book-A and the desktop; however, by 

executing R5.1 for smart objects, we find that none of them is located under Book-A, so 

we may conclude that there is a hidden object. Based on this analysis we can conclude 

two things about the hidden object: first, that it is present and second, its approximate 
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location. In other words, physical-relation based reasoning can effectively and 

simultaneously detect and locate hidden objects. 

All the inference rules derived from physical relations among objects are represented 

as SWRL rules and stored in the Inference Rule Base (see Fig. 5.3). Based on the 

different types of relations the rules concern, we formulated four types, examples of 

which are presented below. 

(1) Spatial relation 

Rule 5.2: If smart object A is on skeleton object B and is laid flat (i.e., not tilted), there 

is no touch point between A and B, and there is no other smart object under A, then we 

infer that there is a hidden object C between them (as illustrated in Fig. 5.1). This is 

formulated in Eq. (5.2). 

(? ,  ? ) (? ,  ) (? ,  ? )

(? ,  ? ) (? ,  ? ) (? ,  ? )

: (? ,  ? ,  ? ) : (? ,  ? ,  ? )

: (? ,  

isLocatedOn A B hasTiltAngle A false hasSensor A a

hasHeight A b hasHeight B c hasLzValue a d

swrlb subtract e d c swrlb subtract f e b

swrlb greaterThanOrEqual f

∧ ∧ ∧

∧ ∧ ∧

∧ ∧

10) (? ,  )

(? ,  ) (? ,  ? ) (? ,  ? )

(? ,  ) (? ,? )

hasNoUnderObject A true

isDetected C false isLocatedOn C B isNear C A

isDetected C true hasHeight C f

∧

∧ → ∧ ∧

∧

                    (5.2) 

Several comments should be made about Eq. (5.2). First, the height (size) of A and B is 

separately represented as b and c, and A’s real-time z-coordinate value (data from its 

sensor) is represented as d, then the symbol f ( f d c b= − − ) denotes the height of a 

potential object C. If this height value is above a threshold M (in Eq. (5.2), M = 10 mm), 

then we conclude that hidden object C exists, otherwise not. Threshold M is used to 

reduce the influence of sensor noise, which causes fluctuations in sensor values even 

when the object does not move. 

Second, the SWRL rules can not deduce that there is some new individual that has not 

been defined in the OWL ontology (though they can derive, assign, and update the 

property values of existing individuals), we must define an individual HiddenObject (e.g., 

Hidden01) in our ontology but set its hasDetected property to false before a search using 

the SWRL rules is attempted. When, by some inference rule such as R5.2, a new hidden 

object is detected, the present individual HiddenObject’s (Hidden01’s) hasDetected 

property will be set to true. Meanwhile, a new individual HiddenObject (like Hidden02) 
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will be created in our ontology. Of course, its hasDetected property will again be set to 

false when it is created.  

Third, by using this rule, we not only detect the hidden object, but also get its relative 

location, which is reflected by isLocatedOn and isNear in Eq. (5.2). 

Fourth, the hasTiltAngle property determines whether the relative object is laid flat or 

tilted, the value of which can be determined by the two axis acceleration values from the 

Mote sensor the object equipped. This determining process is also implemented 

according to several rules, and one rule that asserts that the object is laid flat is given in 

R5.3 (see Eq. (5.3)). 

(? ) (? ,? ) (? ) (? ,? 1)

(? ,? 1) : (? 1,-1.1) : (? 1,-0.7)

: (? 1,0.5) : (? 1,0.75) 

 (

SmartObject x hasSensor x y Mote y hasAxValue y x

hasAyValue y y swrlb greaterThan x swrlb lessThan x

swrlb greaterThan y swrlb lessThan y

hasTiltAngle

∧ ∧ ∧

∧ ∧ ∧

∧ ∧

→ ? , )x false

          (5.3)  

The main principle is that different tilt angles can yield different acceleration values. 

First, we measured the acceleration value when the object was laid flat. Because there 

was noise, the measured results were bounded in two intervals (the x-axis 

in[ 1.1 , 0.7 ]g g− − , and the y-axis in [0.5 ,0.75 ]g g (the available range is 2g±  in the Mote 

sensor we used). This result is reflected in R5.3.  

Another rule for detecting a hidden object using spatial relations is given below. 

Rule 5.4: If smart object A is located on skeleton object B, A is tilted, there is no other 

smart object under A, and nobody is using it, then we infer that there is an object C 

between A and B, as illustrated in Fig. 5.6 (a). This is formulated in Eq. (5.4). 

(? ,? ) (? , ) (? , )

(? , ) (? ,  )

 (? ,? ) (? ,? ) (? , )

isLocatedOn A B hasTiltAngle A true isInteractedBy A NoPerson

hasNoUnderObject A true isDetected C false

isLocatedOn C B isNear C A isDetected C true

∧ ∧ ∧

∧ ∧

→ ∧ ∧

      (5.4) 

It should be noted about this rule that, because some human action may have caused 

the object to tilt, we added the premise that nobody is using the object. The value of the 

property isInteractedBy will be assigned to a certain individual Person when human 

behavior is detected (NoPerson is a special individual Person defined in SS-ONT to 

indicate that nobody is present).  
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Figure 5.6: Hidden object detection scenarios 

(2) Force relation 

Rule 5.5: If skeleton object A is subject to downward pressure in scope Sp (action zone 

of the force) and there is no smart object x located in Sp, then there will be a hidden 

object B on A, as shown in Fig. 5.6 (b). This is formulated in Eq. (5.5). 

(? ) (? ) (? ,? )

(? ,? ) (? )

(? , ) (? ,  )

 (? ,? ) (? , )

SkeletonObject A PressureSensor p hasSensor A p

hasActionZone p Sp SkeletonObject Sp

hasLoadedObject Sp false isDetected B false

isLocatedOn B A isDetected B true

∧ ∧ ∧

∧ ∧

∧ ∧

→ ∧

                              (5.5) 

In Eq. (5.5), the action zone of force Sp (derived from the pressure sensor values) is 

represented as an individual SkeletonObject. In this way, we can easily use the smart 

object localization rules, such as R4.7, to determine whether a smart object is placed on it, 

i.e., to derive the value of hasLoadedObject (see Eq. (5.5)). Using this rule, the system 

can both detect hidden objects and determine some of the properties of the object, such as 

its size (by action zone) and weight (by pressure intensity). 

(3) Change of motion state 

Rule 5.6: If smart object A is located on skeleton object B, A’s state changes during 

period P (from rest to horizontal motion), and there is no human interacting with A, then 

there will be a moving object C near A, as shown in Fig. 5.6 (c) (formulated by Eq. (5.6)). 
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(? ) (? ) (? ,? )

(? ,? ) 3 (? ) (? , )

(? ,? 1) (? ,? 1) (? ,? 2)

(? ,? 2) :

SmartObject A SkeletonObject B isLocatedOn A B

hasSensor A s U D s isInteractedBy A NoPerson

hasLxValue s x hasLzValue s z hasOldLxValue s x

hasOldLzValue s z swrlb subtr

∧ ∧ ∧

∧ ∧ ∧

∧ ∧ ∧

∧ (? ,? 1,? 2) : (? ,? )

: (? ,100) : (? ,? 1,? 2)

: (? ,  ? ) : (? ,10) (? , )

 (? ,? ) (? ,? )

act a x x swrlb abs x a

swrlb greaterThanOrEqual x swrlb subtract b z z

swrlb abs z b swrlb lessThanOrEqual z isDetected C false

isLocatedOn C B isNear C A isDet

∧ ∧

∧ ∧

∧ ∧

→ ∧ ∧ (? , )ected C true

      (5.6) 

In Eq. (5.6), if the x-coordinate value difference between two U3D sensor updates 

( 1 2x x− ) is above some threshold M (in Eq. (5.6) it is assigned to 100 mm) and the z-

coordinate value difference ( 1 2z z− ) is below another threshold N (set to 10 mm in Eq. 

(5.6)), then we conclude that there is movement toward A. Thresholds M and N are also 

used to reduce the influence of sensor noise. However, Eq. (5.6) only makes an assertion 

based on the object’s displacement relative to the x-coordinate, so a symmetric rule that 

relative to the y-coordinate is also required. As these two rules are very similar (they 

merely change the relative x variables in Eq. (5.6) to y variables), we don’t list the second 

one in detail.  

(3) Senders and Receivers 

The term, sender-receiver pair, refers to several smart objects cooperating to monitor 

the environment. In such a pair, one object acts as the physical signal sender (e.g., a light 

source), and others act as signal receivers by using equipped sensors (e.g., a light sensor). 

Rule 5.7, given below, illustrates how to use smart object pairs to detect a hidden object. 

Rule 5.7: Of smart objects A and B, B is a stable light source, and A can sense the light 

B transmits. If A’s light sensing value changes during period P (from bright to dark) and 

A is not acted upon by any person, then there is an object C between A and B, as shown in 

Fig. 5.6 (d). This is formulated in Eq. (5.7). 

(? ) (? ) (? )

(? ,? 1) (? 1) (? ,? 2) (? 2)

(? , ) (? 1,? 1)

(? 1,? 2) : (? ,?

SmartObject A SmartObject B isLuminous B

hasSensor A s Mote s hasSensor B s Mote s

isInteractedBy A NoPerson hasLightValue s x

hasOldLightValue s x swrlb subtract a x

∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧

∧ 2,? 1)

: (? ,30) (? 2,? 1)

(? 2,? 2) : (? ,? 1,? 2)

: (? ,? ) : (? ,20) (? , )

 (? ,? )

x

swrlb greaterThanOrEqual a hasLightValue s y

hasOldLightValue s y swrlb subtract b y y

swrlb abs c b swrlb lessThanOrEqual c isDetected C false

isNear C A isN

∧

∧ ∧

∧ ∧

∧ ∧

→ ∧ (? ,? ) (? , )ear C B isDetected C true∧

               (5.7) 
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In Eq. (5.7), 2 1x x− and 1 2y y− separately denote the change in A and B’s light 

sensing value between two Mote sensor updates. 2 1x x− is above some threshold M (set to 

30 mm in Eq. (5.7)), but 1 2y y− is less than another threshold N (set to 20 mm in Eq. 

(5.7)). Therefore, it can be concluded that B does not change but that A’s light sense 

value does change. 

5.3.3 Hidden Object Identification 

In last section, we have presented the mechanism to detect hidden objects. However, 

when hidden objects are detected, there still needs a way to inform their information and, 

if possible, their identities to programmers and users. To this end, we made an extension 

to our real-world search service (presented in Section 4.5.2) by adding several search 

modes for hidden objects, as shown in Fig. 5.7. 

 

Figure 5.7: A screenshot of the extended real-world search service 

Search All: This method lists all the detected hidden objects. In the ontology’s view, 

this mode can be interpreted as returning all individuals that belong to the HiddenObject 

class. This search mode is useful for a programmer, who can get a global view of hidden 

objects and check if there are any hardware errors to his application. 

Search by Attribute Matching: One general way to recognize an unknown object is by 

its attributes. The more attributes the system recognizes, the more easily it can determine 

its identity. Therefore, to the system should acquire as much of the hidden object’s 

attributes as possible. In reality the system acquires attribute information during the 

hidden object detection process, such as the height value in R5.2 and the weight and size 

attributes in R5.5. A novel way of recognizing hidden objects can be implemented based 

on the derived attributes and the category standard (see 3.2.2) defined in SS-ONT. Figure 

5.8 shows two entities: Key Category (the key category standard) and Hidden06 (a hidden 

object). Key Category consists of five specific attributes, while Hidden06 has four 
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derived attributes. Note that Hidden06’s attributes all drop in the relative intervals or 

have the same value in comparison with those in Key Category. This means that we can 

assign a degree of probability or match rate, 0.8, to the proposition that Hidden06 is a key. 

 

Figure 5.8: One example for attribute matching 

The idea of this approach is similar to the topological or fingerprint mapping used for 

robot navigation and localization [Lamon et al. 03], which compares perceptional object-

features with known database data (for place description) to estimate a robot’s current 

position. It’s also similar to the role-based classification approach mentioned by Beer et 

al. [Beer et al. 03], which classifies an unknown object by comparing its attribute sets 

with the known attribute templates. Approaches like these all work with uncertainty, 

mainly informing users of the probability of each hidden object being the target, leaving 

the truth to be determined by the user. 

Search by Associated Rules: This approach is based on the logical relations among 

objects that we discussed in 3.2.2. A summary of these relations and their examples are 

illustrated in Fig. 5.9. A definition of how the logical relations work is given below. 

 

Figure 5.9: Logical relations among objects 
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Definition 5.1 (Associated Rules): there are various logical relations existing among 

objects. According to the natural qualities and functions of objects, or humans’ daily 

habits or intentions, the objects with such relations are usually close to each other in the 

real world. We call these the associated rules. 

According to our system, since the hidden objects are detected by nearby smart objects, 

according to Def. 5.1, associated rules may exist among them. Thus we can conjecture 

what the hidden object is using smart object information. For instance, when a hidden 

object Hidden01 is detected by a smart object Book-A, since the Boolean 

“hasFamilyRelation” property is set to true for the Book category (see Fig. 3.3), we may 

conclude that Hidden01 is also an individual Book. It should be noted that this kind of 

estimate is a low probability one (lower than attribute matching). However, because it is 

simple and efficient, we can still treat it as an effective method for our system. 

5.4 Other Approaches to Deal with Uncertainties 
Having presented an approach to deal with hidden objects, in this section we will give an 

outlook of several other ways to deal with the errors mentioned in Section 5.1.  

(1) For technical problems that are difficult or impossible to solve, we should reveal 

them to end-user developers. In this way, users can understand it and will pay attention to 

it when creating and utilizing the services.  

(2) Similar to the suggestions from previous reports [Benford et al. 03], programmers 

can tailor the created applications around the technical shortcomings or even explore 

them as part of our application. One example can be found in the Treasure game (see 

Section 4.5.1), which explores the “limited coverage” weakness of ultrasonic sensors to 

“hide” objects.  

(3) More inconsistencies are induced by conflicting conclusions from different rules. 

As mentioned in Section 3.4.2, the SWRL rule language that we used in our system, is a 

combination of the OWL DL and OWL Lite sublanguages, and it has been given a 

strictly monotonic interpretation, i.e., once asserted a statement is never retracted. As a 

result, contradictory conclusions are allowed to be drawn under current Semantic Web 

semantics. To deal with this issue, we can explore the defeasible logic [Pollock 87] or the 

answer-set-programming technique [Eiter et al. 04] to introduce well-founded 
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nonmonotonic semantics into ontology-based context-aware reasoning. Preliminary 

progress has been reported in Antoniou et al. [03] and Eiter et al. [04].  

(4) Finally, we need further error-checking and recommendation mechanisms that can 

periodically alert users to update the ontology definition, remind them of frequently-

occurring problems, and inform them of the errors in their application settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6. Evaluation Study 

 73 

Chapter 6. Evaluation Study 
Having presented the implementation of our system, in this chapter, we will give an 

evaluation of it to measure its performance, effectiveness as well as usability. 

6.1 Evaluation Tasks 
The usability of Sixth-Sense is determined by several aspects. To take an ordinary user, 

called Bob, for example (because Sixth-Sense is a user-oriented platform), before he 

decides to use our system, there are several things to be examined. First, the performance 

of this system, for example, “can it respond to my action in time”, “can it in reality detect 

my interaction with everyday objects”. These questions can be answered by evaluating 

the knowledge infrastructure we described in Chapter 3. Second, before using our system, 

Bob has to firstly customize an ontology for his home. Therefore, he needs to check if he 

can fulfill this task utilizing the method presented in Section 3.2.3. Third, there are two 

programming modes (rule-based mode mentioned in Section 4.3 and customization mode 

mentioned in Section 4.4) in our Open-Programming model, and Bob will experience 

both of them to determine a suitable mode for him. If he can perform well the operations 

in the prior three steps, our system is usable to him. Finally, he wants to check if the 

enabled applications (see Section 4.5) of our system are attractive to him. If they are very 

interesting to him, he will be willing to use our system. 

 

Figure 6.1: Evaluation tasks 

As shown in Fig. 6.1, during our two and a half years’ development experience 

(2006.4~2008.11) of Sixth-Sense system, we set out to evaluate it (according to the above 
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four aspects) through a series of events, including in-lab demonstrations, out-lab 

exhibitions, and user studies with subjects from Keio University. Mixed methods were 

used, including hands-on operations, demonstrations, questionnaires, observations during 

user experiences, as well as interviews and discussions at the end of each session. 

We used our workspace, a 4.0 4.0 m× portion of our laboratory, as the test bed (see its 

layout in Fig. 6.2). It can be seen that there are several skeleton objects in our test space 

(e.g., Neptune-Table), and the floor is also virtually divided into several parts (e.g., 

Doorway, FloorScopeA) to represent different skeleton objects. 

 

Figure 6.2: The test environment for Sixth-Sense 

6.2 Performance Study 
This section evaluates the performance our Sixth-Sense infrastructure described in 

Chapter 3, which involves two aspects: (1) its runtime performance; (2) the effectiveness 

of our rule-based reasoning mechanism. 

6.2.1 Evaluation of Runtime Performance 

(1) Performance of Context Reasoning 

We identified context reasoning (the reasoning mechanisms are presented in Section 3.4) 

as a potential performance bottleneck of our infrastructure, so we did a series of 

experiments to evaluate its runtime performance. These experiments were conducted on 

two Windows workstations with different hardware configurations (1.0 GB RAM with 
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P4/1.0GHz, and P4/2.6GHz). We used three context data sets to evaluate our system’s 

scalability. These three test data sets, including the real one we used in our test 

environment, i.e., SS-ONT-v1.5, which can be parsed into about 2000 RDF triples, and 

two other simplified versions of SS-ONT (with fewer classes and instances), amount to 

about 1000 triples and 500 triples, respectively. We used four rule sets to test the 

performance of our context reasoner. The smallest rule set includes only one rule, and the 

biggest set has twenty rules. 

 

Figure 6.3: Performance of reasoning with the changes of ontology scale (left) and CPU speed (right) 

The results of the experiments are illustrated in Fig. 6.3 (results are calculated as the 

average of five runs.). From these results, it is not difficult to conclude that logic-based 

context reasoning depends on four major factors: size of ontology, CPU speed, number of 

rules applied, and complexity of rules. More concretely, the size of ontology is 

determined by its TBox definition － definitions about OWL classes and properties，and 

ABox definition － definitions about instances, i.e., the number of smart objects and 

persons in a smart home. The prior part is almost the same in different homes while the 

latter part changes among different families. The complexity of a rule is in essence 

determined by the number of atoms in this rule. From the above observations, we further 

derive an estimation model that can be used to anticipate the reasoning time for different 

scales of smart spaces, as shown in formula Eq. (6.1). 

    

exp1 exp 2

1 1

( ( _ _ )) ( _ )
M N

TBox i i i

i i

cpu

Size Class Num ProNum Obj Comp Rule

ReasoningTime
Speed

µ = =

+ + ∗

≈

∑ ∑
  (6.1) 

Where: SizeTBox denotes size (in triples) of the TBox definition of SS-ONT; M and N 

denote, respectively, the number of individuals (e.g., smart objects and persons) and the 
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number of rules; _
i

Class Num and _
i

ProNum Obj denote the number of parent classes and 

the number of properties for a specific individual i; Complexity of a rule i is denoted 

by _
i

Comp Rule ; exp1 and exp2 are two exponents whose values are between 0 and 1 

(according to the results shown in Fig. 6.3, their values can not be bigger than 1), which 

reflect the rate of change of the reasoning time with the growth of ontology size and 

complexity of rules; µ is a positive coefficient that relates the change in reasoning time to 

the change in its influence factors (e.g., ontology size, number of rules, etc.). 

Let exp1 = 1 and exp2 = 1, we can get the upper-limit value of reasoning time, i.e., 

the anticipated maximum reasoning time. Suppose there is a 1000 triple-sized ontology, 

and 10 rules with a mean complexity of 8, we can read from Fig. 6.3 that its reasoning 

time is about 680 ms (P4/1.0 GHz). Using these values to replace the related variables in 

Eq. (6.1), we can derive an approximate value for µ : 0.085µ = . The proposed estimation 

model is useful for us to anticipate the computational overhead for a given-sized problem. 

As listed in Table 6.1, for a middle-scaled smart space (a space with 50 smart objects and 

50 rules), the anticipated maximum reasoning time is about 1.7s; whereas for a large-

scale one (100 smart objects and 100 rules involved), this value increases to 2.8s. 

Table 6.1: Anticipated maximum reasoning time in different scales of smart spaces. 

Smart 

Spaces 

Size of TBox 

definition 

(in triples) 

Number of 

Individuals 

Parent 

Classes 

(Mean) 

Number of 

Properties 

(Mean) 

Number 

of Rules 

Complexity 

of Rules 

(Mean) 

CPU 

Speed 

Maximum 

Reasoning 

Time 

Middle- 

Scale 

500 50 3 7 50 8 2.0 GHz 1.7s 

Large- 

Scale 

500 100 2 6 100 7 3.0 GHz 2.8s 

The performance study results reveal that rule-based context reasoning is a 

computation-intensive task, and the reasoning time will be human-perceivable if the scale 

of the smart space increases. However, for most non-time-critical applications (e.g., 

searching for smart objects), as their real-time requirement is not likely to be critical, a 

perceivable delay (one or two seconds) caused by context reasoning is acceptable. The 

evaluation results also suggest that, with a suitably scaled ontology size and rule-set 

complexity, our rule-based context reasoning mechanism can also work in some time-

critical applications, for example, security and emergency situations. 

 (2) Performance of Context Querying 
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We used SPARQL query statements like Eq. (3.1) to test the performance of context 

querying (the querying mechanism is described in Section 3.3). The experiment result, 

shown in Fig. 6.4, clearly demonstrates that the increase of matched facts results in a 

corresponding increase of the querying response time. This is mainly because a bigger 

number of matched facts imply that there are more contexts (in SS-ONT) defined in the 

graph pattern of the query statement applied, which cost more matching time. Size of the 

ontology applied becomes another factor that influences the querying performance of our 

system. We also measured the loading time (time cost from OWL files to the main 

memory) of different-scaled ontology data sets. The result shown in Fig. 6.4 indicates 

that the loading time of an ontology data set is, to some extent, proportional to its size. 

 

Figure 6.4: Performance of querying 

Above experiment results and the proposed computational model also suggest several 

possible ways to improve the performance of our system. Controlling the scale of context 

dataset seems to be one good way to significantly reduce the context reasoning time. For 

example, we can separate the SS-ONT ontology into several sub-domain ontologies (e.g., 

kitchen domain and bathroom domain), and provide several resource-rich devices to 

process them respectively. Designing optimized rules and utilizing high-performance 

processors are two other effective ways to achieve a better reasoning performance. 

6.2.2 Evaluation of Effectiveness 

Because our context reasoning mechanism (including the error-checking mechanism 

mentioned in Section 5.3) is layered on a series of inference rules, the effectiveness of the 

defined rules will directly influence the performance of our system. In the following, we 

evaluate the usability of our system by testing the defined rules. 
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Eight typical inference rules explained in this thesis are tested (including several rules 

for hidden object detection). The experiments were performed as follows: For each 

inference rule Ri, we set the test time as 45 minutes, during which a situation similar to 

Ri’s scenario recurred 50 times. However, to test Ri’s performance in different situations, 

the 50 tests were performed alternately using object pairs in two different places (i.e. 25 

times for each). For example, for R5.2, there are three objects referred (expressed as (A, B, 

C)), so, in the test, the two test-groups can be set as (book, table, book) and (box, floor, 

book). Following we introduce three terms to distinguish different test results. 

Definition 6.1 (Diverse Test Types): In our system, an accurate test is one in which 

an object property (e.g., location) or a hidden object is detected at the right time by the 

right rule, it scores a true positive (TP). An incorrect claim scores a false positive (FP), 

and it’s an error test. A failed test is one in which an inference rule should have been 

triggered but was not, which scores a false negative (FN). 

We then used two standard metrics to summarize our system’s effectiveness. Precision 

is the probability that a given inference about an object property (or a hidden object) is 

correct. Recall is the probability that our system will correctly infer a given true event (or 

a hidden object situation). They can be expressed in formula Eq. (6.2): 

;  
TP TP

Precision Recall
TP FP TP FN

= =
+ +

                                                                     (6.2) 

Table 6.2: Experiment results of effectiveness 

Rule Name (Rule ID) True 

positives 

False 

positives 

False 

negatives 

Precision 

(%) 

Recall 

(%) 

Is_Located_On (R4.7) 48 0 2 100 96 

Is_Under (R5.1) 47 5 3 90 94 

Hidden_Spatial_1 (R5.2) 45 7 5 87 90 

Is_Tilted (R5.3) 44 3 6 94 88 

Hidden_Spatial_2 (R5.4) 42 10 8 81 84 

Hidden_Force_1 (R5.5) 46 0 4 100 92 

Hidden_Motion_1 (R5.6) 40 12 10 77 80 

Hidden_SenderReceiver (R5.7) 42 11 8 79 84 

Total 354 48 46 88 89 

The results are shown in Table 6.2, where it can be seen that Sixth-Sense correctly 

inferred that an event occurs 88 percent of the time. For two inference rules (R4.7 and 

R5.5), there were no false positives. Of the totally 400 tests (50 tests for each rule 
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multiplied by 8) that actually happened, Sixth-Sense detected 89 percent correctly. Rules 

for smart objects (R4.7, R5.1 and R5.3) performed better than the hidden object detection 

rules (the other five rules). This is mainly because most of the hidden object detection 

rules are founded on the rules about smart objects. For example, to use R5.4, we must 

first derive information about the related smart object A that is referred to in this rule. 

This includes its location, its status, and whether there is any other smart object under it, 

which should be previously deduced by smart object rules.  

The results indicate that our rule-based detection mechanism is technically sound, and 

the rule-based hidden-object detection mechanism can, to a certain extent, detect the 

hardware errors caused by fallible sensors. By analyzing the real-time testing data, we 

generalized the following reasons that a failed or error test may occur. 

 (1) Sensor noise: sometimes sensor noise exceeds the threshold value we set in the 

rules, which may trigger an inference rule, causing an error test. 

(2) Object movement: when a smart object is moving, it will take more time for the 

sensor receivers to relocate it, which may require a longer sensor update time and induce 

loss of important process data. 

(3) Sensor delay and data loss: when more sensors are working, the sensor receivers 

have to cope with them one by one, resulting in more delays. Moreover, as the number of 

sensors increases, the processing capacity of the sensor system decreases. According to 

our experimental statistics, when 15 U3D sensors are working simultaneously, about 4% 

of the sensor data will be lost. 

 

Figure 6.5: An exception case for R5.1 

(4) Inference rule defects: some other reasons for failure may originate from the 

inference rules themselves. Because of the imprecise common sense knowledge 

background, it is sometimes difficult to create a faultless inference rule. Figure 6.5 gives 
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an example of an exception to R5.1. If the three objects X, Y, and Z (Z is under X and is a 

hidden object) are placed in this way, the horizontal distance between X and Y (i.e., (x4, 

y4)) still does not exceed the range of (l, w), and, since Z is under X, the height difference 

(z1-z2) is also larger than the height of object X. Therefore, R5.1 will be triggered and 

will assert that Y is under X. With this incorrect conclusion, the detection of hidden object 

Z will also fail (as the hasUnderObject property value to X is true, R5.2 cannot be 

triggered). 

In summary of the above evaluations, to further improve our system’s performance, 

better sensor technologies, transmission protocols, underlying common sense knowledge, 

and reasoning technology still need to be used. 

6.3 Ontology Customization 
To use our system, users should firstly customize an ontology for their home. This 

section validates the feasibility of the customization method depicted in Section 3.2.3. 

We set out to evaluate this with 14 students from Keio University (ages ranging from 23 

to 33), all of which have at least four years’ computer experiences. During the evaluation 

sessions, we asked subjects to complete three hands-on tasks using the Protégé-OWL 

editor. The three tasks, listed in Table 6.3, involve several basic operations that are 

frequently used in ontology customization, for example, creating new subclasses (or 

individuals), specifying property domains and ranges, and specifying individual 

properties. We believe that if users can correctly complete these operations without or 

with little aid, they will be able to configure the SS-ONT ontology by themselves. 

Table 6.3: Tasks for ontology customization  

Task ID Description 

1 Assume you want to develop a new smart-artifact application, where a 

subclass to class “Cup”, named “CoffeeCup”, is required. Please add this 

subclass via the Protégé-OWL editor. 

2 Please add a new object property named “hasSensor”, and set its “Domain” 

to “Object” and “Range” to “Sensor”. 

 

3 

Please add a new instance named “BlueCoffeeCup” for class “CoffeeCup”. 

Assume “BlueCoffeeCup” is equipped with a “U3D” sensor (named “U67”), 

please specify this property in the “Individual Editor” panel. 

All subjects but one had none prior knowledge about ontology or the editing tool. One 

subject, whose major is computer science, told us that he had ever studied the Protégé-

OWL editor in class. The hands-on tasks were carried out on a notebook pc that installed 
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the Protégé-OWL editor. A typical test process advanced in this way: one of our team 

members firstly started the Protégé-OWL editor, loaded the SS-ONT ontology file and 

switched to the “Classes Tab”, the subject in this session was then asked to finish the first 

task. When this task was finished, the editor interface was switched to the “Properties 

Tab” and the “Individuals Tab” for the other two tasks. 

We didn’t teach anything about the use-method of the ontology editor and subjects had 

to find out how to use the buttons on the control panel to complete their tasks. Benefited 

from the rich experience accumulated from many years’ computer usage and well-

designed interfaces of the Protégé-OWL editor, most users easily performed the first two 

tasks with few promptings. However, the relatively complicated “Individuals Tab” 

control panel confused several subjects. Though it was still easy for them to create a new 

“CoffeeCup” instance, it was a little difficult for them to specify a property for this new 

added object. Most subjects didn’t know how to specify a property and they looked 

through the interface for “U3D” or “U67”. Some promptings were provided here, such as 

“All the properties are listed in this area”, “In the second task, you have just added a new 

property called …” Most subjects successfully completed this task under these 

promptings. Two subjects failed because they clicked a wrong button on the panel. 

Additional promptings were provided here, “Maybe you have clicked a wrong button, 

why not try the adjacent one?” Both subjects succeeded in this task after this prompting. 

      

Figure 6.6: Evaluation results for ontology customization 

All subjects completed the three tasks within eight minutes and for the subject who had 

ever learned this editor, the process shortened to be about 1.5 minutes (85 seconds). 

Detailed elapsed time information is illustrated in left of Fig. 6.6. Having obtained an 

initial impression about ontology customization, subjects were then given a detailed 

description about the components of the ontology model and the reasons it had to be 
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configured. Note that we expressed these details in a simple language instead of using 

obscure technical-terms (e.g., “ontology” was replaced by “knowledge base” during the 

introduction). Afterwards, subjects were asked to answer the questions listed on a 

questionnaire sheet. One of our central aims was to find out how subjects thought about 

the configuration operations on the Protégé-OWL editor. Four options were given and the 

results are shown in right of Fig. 6.6. Two subjects believed the operations were easy and 

almost half the subjects thought they could complete the tasks with a few promptings. All 

the others felt that they could be familiar with this editor in a few days’ use. What’s more, 

none of them counted it as a difficult tool to master.  

These results demonstrate that experienced computer users are able to customize the 

SS-ONT ontology by themselves. Though positive evaluation results, we still consider 

that there is some difficulty for users who have little computer experience to use this 

method, which is further proved by the feedback from the subject who has ever learned 

the Protégé editor. He argued that this editor was somewhat professional that his parents 

cannot easily use it. To address this, in Section 7.4.1, we suggest another possible way for 

user-oriented ontology customization.   

6.4 Open-Programming Model 
To understand the effectiveness of our Open-Programming platform (see Chapter 4) as a 

programming toolkit for both advanced users and novice users, we asked two questions: 

(1) Can users construct a new application by searching and using the shared rules and 

creating new rules? 

(2) Can they reprogram a shared application of interest? If so, how do they think about 

the solution we provide? 

We set out to evaluate the above questions with 15 participates from Keio University 

(ages ranging from 21 to 34). The testing period extended from August to September in 

2008. The subjects vary widely in gender (three are females), discipline (13 of them are 

non-computer students), and programming ability (11 of them have none or only a little 

knowledge about programming). It lasted for approximately 60 ~ 80 minutes for each 

subject’s test session. Each session event started by an introduction for a subject, 

describing him (or her) the emerging smart artifacts, artifact-based games, as well as the 

purpose of our programming platform. Afterwards, we handed out a four-page 
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questionnaire and asked the subject to perform the tasks and answer the questions written 

on it. Noting that to make a comparison with the two programming modes of our system 

(i.e., the rule-based mode for advanced users and the customization mode for novices), 

subjects were asked to participate in all the experiments designed for these two modes. 

6.4.1 Evaluation of Rule-based Programming 

To examine the rule-based programming mode presented in Section 4.3, we designed 

three tasks for the subjects to complete.  

• We listed several rules written in the Jess language on the questionnaire to test 

whether they can understand them.  

• To test whether the subjects can utilize existing resources, we described three 

events  needed to be detected in a smart toy game (e.g., one event might be “a 

player approaches this toy”), and asked them to select three relevant rules from 

the shared-rule-browsing page (see Fig. 4.8 (a)) and give a default action setting 

for the selected rules. 

• To determine whether the subjects can create rules by themselves, we described a 

scenario and asked them to create a rule accordingly. The scenario we chose is the 

same as rule R4.2’s (see Section 4.3.1), that is, “if it rains today, alert the user to 

take an umbrella when detecting that he is going to leave home”. 

Following we will describe the evaluation process and the results for the three tasks. 

(1) Reading rules. Two typical rules we described in Section 3.4.2 (R3.1, R3.2) were 

selected to work for this testing. As the questionnaire fragment shows (see left of 

Fig. 6.7 (a)), we listed the two rules at the beginning of the related question and 

asked subjects if they could understand it. Furthermore, to determine if they really 

understood a rule, we additionally asked them to write out the meaning of a specific 

constant in that rule, for example, “What does ‘25’ mean in this rule (R3.1)?”, “Do 

you know what does ‘500’ mean in this rule (R3.2)?”. The testing results are shown 

in Fig. 6.8. For rule R3.1, almost 80% subjects could totally or basically understand 

it; and for the relatively complex rule R3.2, the percentage still arrived at a high 

value of 64%. The results reveal that most subjects can have a general 

understanding of the smart home rules written in Jess, even though they have no 

prior knowledge about this language. This conclusion is further validated in 
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subjects’ answers to the meanings of the selected constants. All subjects succeeded 

in finding out the relation between “temperature degree” and the constant ‘25’ in 

R3.1. One subject failed to give an answer to the meaning of ‘500’ in R3.2, but all 

the others more or less indicated its relation with distance (some answers are 

coarse-grained, for example, “near or not”, “near”, and others are fine-grained, e.g., 

“threshold of near”). 

 

Figure 6.7: Fragments of the questionnaire for rule-based mode testing 

          

Figure 6.8: Testing results for rule R3.1 (left) and R3.2 (right) 

(2) Selecting shared resources. The questionnaire design for this task is shown in Fig. 

6.7(b). According to the given information (e.g., name, description) about the rules, 

all subjects except two successfully chose the three right rules from among fifteen 

candidates in a mean time of five minutes. This reveals that it is not a very difficult 

work for users to utilize shared resources when creating applications. The action-

setting task seemed to be the easiest one, where testers were asked to define the 

sound and animation files to be played when a game event is detected. Both 
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resources shared in our repository and the ones created by users are allowed to be 

used, and a lot of interesting actions were created. For example, for the “pick-up” 

interaction in the game, one subject defined the audio content to be played by the 

toy as “Be careful! I don’t want to be hurt”. 

 

Figure 6.9: Testing result for rule creation 

(3) Creating rules. This part was designed in the gap-filling format (see Fig. 6.7 (c)). 

Among the five premises of R4.2, only the first one, i.e., (  (  ? ))Person name x , was 

listed on the questionnaire. Subjects were asked to fill in the other four premises by 

choosing the right ones from a candidate list (thirteen candidates in total). The 

result for this test is shown in Fig. 6.9. Almost half the subjects (six in number) 

gave the right answer without any guidance. Three subjects corrected their answers 

after the discussion at the end of their test session. The frequently asked questions 

during the discussions were about variables, for example, “What does ‘?x’ mean?”, 

“What’s the difference between ‘?x’ and ‘?y’?”. After our explanations, they 

realized the errors in their answers and corrected them by themselves.  

   

Figure 6.10: User feelings about rule-based programming 

After completing the three tasks, subjects were asked about their feelings about game 

creation in our system. As shown in left of Fig. 6.10, about one-third subjects (R > 3) felt 
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that it was easy to construct an application using shared rules. There are, however, about 

40% of them regarded it as a difficult task (R < 3). This result is somewhat beyond our 

anticipation according to our observations during hands-on testing sessions, so we asked 

them for possible reasons. Most subjects said that they didn’t like reading rules written in 

this format. One subject suggested that we should provide more information about rules 

(such as the principles used to design them and their use cases), which can help users 

understand and use them. The data illustrated in middle of Fig. 6.10 indicates that about 

60% subjects thought it was a little difficult to create new rules, but at the same time they 

believed that they could create their own rules after a few hours’ study. Five subjects 

(33%) considered it as difficult work and wanted to give it up, while one subject counted 

it as an easy task to perform. In summary, most subjects believed that they could learn to 

create rules after doing a few exercises. When asking testers about their confidence to 

game creation in our system, only 27% subjects (see right of Fig. 6.10) expressed their 

positive opinions (R > 3). This result on one hand meets the facts that advanced users 

only make up a small section of all users and, on the other hand, implies that we should 

further improve the rule-based programming method to attract more users to use it. 

6.4.2 Evaluation of Customization Mode  

   

Figure 6.11: Users in the gaming experiment (left) and the reprogramming experiment (right) 

In this testing, we wanted to determine whether users, especially novice users, can 

reprogram a shared application by using the customization mode described in Section 4.4. 

To this end, we asked the subjects to customize the shared Treasure game (see Section 

4.5.1) according to their imagination. This testing was performed on Treasure’s 

configuration front-end (see right of Fig. 6.11). Subjects were asked to complete their 
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reprogramming task following the introductions written on this page. During the test 

sessions, we observed that most testers could perform this task without any guidance. But 

there were still several testers (four in number) who didn’t perform the task according to 

the given requirements. For example, the requirement in Q1, “You must specify a box and 

a key to act as treasure-box and treasure-box-key”, is omitted by some of them. After 

finishing this, we navigated to the game-browsing page to show the tester the 

automatically generated rules during his (or her) customization. Many testers were 

surprised at this and asked us how it was realized. We then explained them our rule-

interface-based customizing mechanism. Afterwards, subjects were asked to answer some 

questions about the customization work listed on a questionnaire. 

   

Figure 6.12: Testing results for the front-end based reprogramming 

It can be seen from right of Fig. 6.10 that 80% subjects thought it was easy to 

reprogram a game in our system, which reflects that the configuration front-end designed 

for end users is simple to use. Compared to the survey result (27%) for the rule-based 

mode, this result suggests that much more users are enabled to participate in the activity 

of application creation through the customization mode. There are also 80% subjects (left 

of Fig. 6.12) agreed that the reprogramming manner could produce different gaming 

experiences, which suggests that our programming model in reality empowers novice 

users to create applications. To further determine the usefulness of our system, we asked 

testers whether they were willing to participate in the customization process. The result, 

shown in middle of Fig. 6.12, describes that two-thirds of them had interest in it. We 

finally asked testers to give an overall evaluation of our Open-Programming model, by 

comparing with the ones with a single-purpose (e.g., designed for novices or experts). As 

shown in right of Fig. 6.12, almost 75% users believed this model is very useful and 
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promising. This result indicates that a programming model with multi-level’s 

participation is more acceptable than single-purposed ones. 

To understand why some testers didn’t follow our front-end introductions during the 

testing, we made a short discussion with them after answering the above questions. Here 

are some of their answers, “There are too many texts displayed on this page, which makes 

it easy to omit one or two sentences”, “Does this system have multi-language support. I 

think it is much easier for me to use it when written in my native language”, “There 

should be a help file”, “Is there a flowchart to show me how to perform my task”, “There 

should be more graphics while not texts”. From these answers, we found that the main 

problem arose from the design of the customization-interface, which seemed to be 

imperfect and unable to meet all users’ requirements. This finding is further verified 

during the interview sessions, as mentioned in Section 6.6. 

6.5 User Experiences 
To determine whether users are interested in the smart artifact applications we developed, 

we asked them to participate in some enabled applications of our system mentioned in 

Section 4.5, for example, the real-world search service and the artifact-based game. 

6.5.1 User Experience of the Real-World Search Service 

We did a series of in-lab and out-lab demonstrations of our real-world search service. In 

general, most attendees’ feedback was positive. As the survey result (questionnaire 

survey from 18 visitors, ages ranging from 20 to 55) from Keio Techno-Mall shows (see 

Fig. 6.13), more than 80% users were interested in the services we demonstrated. This 

evaluation result also implies that they expect to live in such a smart home environment. 

People’s interest about smart home services also reflects well during our demo sessions. 

For example, one user was interested in our service, and after our demo, he, by himself, 

put a smart key to another place to see if this service still worked (i.e., to see if our 

service could detect the new place of this key). After getting the right information again, 

he said that it was a good service, but he was surprised at how this was realized. We then 

talked him some basic knowledge about indoor positioning.  

Users also raised several critical issues as well as suggestions about our system. One 

user stated that the smart home was very appealing, but the current implementation of it 
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seemed to be complex and the cost was high to average families, because users had to 

deploy lots of ultrasonic receivers on the ceiling, and equipped sensors to various 

everyday artifacts. He thought that a simple, low cost technical implementation would 

greatly help for the proliferation of smart homes. We agree with his comment strongly 

and we believe that, with the development of wireless sensor network technology, the 

deployment of sensors in a home environment will be much easier and the cost of it will 

be greatly reduced as well. Another user (an IT engineer) suggested that to deliver 

“anytime, anywhere” services, more natural interaction media, while not computer 

screens, should be explored to transmit information to users. For example, in the real-

world search service, physical interfaces, e.g., a movable spotlight on the ceiling, can be 

used to convey the target object’s location information to a user (i.e., the spotlight can 

move to the target object and project a beam of light on it). 

 

Figure 6.13: User feedback about real-world search service 

6.5.2 User Experience of the Treasure Game 

To investigate the prospects of artifact-based entertainments, we asked some users to 

participate in a predefined Treasure game (see Section 4.5.1) in our experimental gaming 

environment. To make it not too difficult for players to find objects, we restricted the 

game space to a 1.5 1.5 m× area, as shown in left of Fig. 6.11. The predefined game 

follows the settings we depict in bottom of Fig. 4.11. Besides the four selected “hidden” 

objects, there were several other objects within this game field, such as a chair, a 3-tire 

shelf, a cup and several books, which are good places for hiding other objects. At the 

beginning of a testing, all the four smart artifacts were hid by our team-members in 

undetectable places. Subjects were asked to place the object he found on the table to 

ensure that it could be detected by our system. 
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On the whole, most testers successfully completed this game. However, there were 

also some failure situations. For example, one tester didn’t place the room-key’s U3D tag 

upright on the table, which makes it still unable to be detected by our location system. 

Another source of failure is caused by the ultrasonic-signal interference between our 

positioning system and the directional speaker, which sometimes results in error readings 

to the U3D location system. In this way, a hidden object may be wrongly asserted to have 

been found by a player. Failures like this happened twice during all the experiments. 

After an experience of the game, subjects were asked about their feelings about this 

game. The overall impression of the game was crucial because we wanted to evaluate if 

people like playing artifact-based games. The results shown in left and middle of Fig. 

6.14 indicate that about 80% testers were excited about this game and more than 90% of 

them were willing to play such games at home. Another of our aims was to evaluate the 

immersive factors of this game. Fig. 6.14 (right) illustrates how testers judged the mixed-

reality aspects of the game. It appears that most players felt that our system provided 

them with an adequate and well-balanced mixture of the physical and virtual elements. 

   

Figure 6.14: Testing results for user experience of a game 

Some issues were also raised by the testers after the game session. For example, two 

testers were worried about our projection system, and they mentioned that the images 

projected on the wall would be obscure in a very bright room. Another tester stated that 

our Prot system might suffer from the occlusion problem when there were obstacles on 

the projection path. As the mean response time to players is about 1.5 seconds (latency 

caused by positioning and context reasoning), one player suggested that, before real 

actions were performed, there should be a “Seeking…” like message displayed to players 

to inform them that the objects they found had been detected by our system.  
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6.6 Interviews and Findings 
Interviews and further discussions were made after each testing session, during which we 

asked subjects about their feelings on the concept of our system and their suggestions on 

how to improve it. Several findings were obtained during the interview sessions. 

(1) Most users believed that there would be a market for our system. During the 

interviews, most subjects’ feedback was positive. For example, after participating in the 

Treasure game, at least five subjects mentioned the commercially successful product — 

Wii, which also integrates physical activity into games. However, they meanwhile stated 

that our system would be more popular, because it enables users to play games in an 

anywhere, anytime fashion and more importantly, allows end-user programming of 

games, which is not supported in Wii. Testers also described several possible situations 

for using our system, for example, “On my daughter’s birthday, I can hide the birthday 

present and ask her to find it out”, “Such games can bring us much funny at family 

parties”. When asking subjects about the commercialization possibility of our system, 

many of them expressed their certainty and confidence about it, “If the operations are 

simple enough, this system will be prevalent among users”, “The customization process 

can bring my family much funny”. As smart homes are still not part of our daily life, one 

subject suggested that our system could be firstly installed and commercially used in 

specially-designed game halls. The potential of using our system as a tool for users to 

learn to program and a means to increase their knowledge about smart homes was proved 

by most testers, such as “Learning to program by creating games is very interesting”, “It 

can help me to learn new techniques”, etc. 

(2) Not only advanced users, but also third parties could be good application 

creators. One tester pointed that, besides advanced users, participation of third parties, 

such as sensor producers, smart artifact makers and service providers, could greatly 

enrich the quantity and quality of smart artifact applications and games. This is a 

commercially sound advice, considering that third parties can also adverse their products 

to home users utilizing our platform. 

(3) There is a need to include more graphical elements in the customization model. 

Many criticisms about our Open-Programming model came from our literal-based front-

end design for novice users, which is thought to be unattractive to people. As a user-
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oriented platform, they considered that its interface should be designed in a more natural, 

intuitive and amusing way. Some suggestions on how to improve it were also offered. For 

example, one subject recommended us to visit Lively (its information is available at 

“http://www.lively.com/”), a second life platform recently developed by Google, where 

users can design and customize their room and avatar, and virtually interact with others 

on the Web. He stated that if our system could also introduce a virtual house for users to 

customize applications and games, it will attract much more users. This seems to be a 

good idea, which could be one way to improve our interface design. Moreover, we 

consider that, comparing with using the Protégé-OWL editor, a virtual-house-based tool 

also suggests a new way to help users intuitively customize the ontology for their house. 

(4) Real-time response to players is important to smart artifact applications. 

According to the user feedback mentioned in Section 6.5.2 and the comments we 

gathered during the interview sessions, a user might be confused or frustrated if a smart 

artifact application could not respond to his actions in time. “When there was no change 

of displayed images after I performed a task, I didn’t know whether there was something 

wrong with my actions or with the system”. This will further decrease users’ enthusiasm 

to smart artifact applications. There are two possible ways to improve this. First, we can 

improve our context-reasoning mechanism to shorten the required response time. Second, 

making a compromise between “long” response time and real-time requirement, for 

example, we can display a “Seeking…” like message (a transitional response between two 

reaction outputs) once a user-action is detected, following the suggestions from a subject 

(see Section 6.5.2). 

(5) A third programming mode is needed. Some testers expressed their desires to 

introduce graphical elements into rule creation, for instance, “It is complex to write text-

based rules. I think a graphical-connection method is better”, “Can I create rules using a 

wizard-like method”, “Is there a simple way to write rules without using variables”. From 

these comments, we learned that there existed another requirement about programming in 

our system, that is, a method that has lower functionality, better operability than the text-

based mode, and higher freedom than the customization mode, similar to graphical-based 

methods used in visual programming systems. A possible way to implement this is 

described in Section 7.4.3. 
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Chapter 7. Discussions 
In this chapter, we will give a comparison of our system with related studies, and present 

several possible ways to improve this system. 

7.1 Comparison with Related Studies 
A survey of comparison of our work with other related studies (all have been introduced 

in Chapter 2) appears in Table 7.1. Different sensing techniques are used by them to 

acquire information from the physical world, including several different ways to locate 

physical entities (e.g., people, artifacts, and devices), they are, U3D, RFID, and pressure 

sensors for locating people and smart artifacts, and the Bluetooth and Ethernet 

technology for locating smart devices (e.g., mobile phones, faxes). Different locating 

technique has different merits and limitations, comparison of them lies outside the scope 

of this paper, detailed discussions can be found in Hightower et al. [01].  

Table 7.1: Comparison with other related systems 

System 

name 

Program-

ming 

platform 

Smart 

artifact  

system 

Context 

infra-

structure 

End-user 

support 

Inference 

engine 

Real 

world 

search 

Artifact-

based 

games 

Robust-

ness of 

sensors 

Media-

Cup 

− √ − − − − − − 

Smart 

Toolbox 

− √ − − − − − − 

Active 

Bats 

− √ − − − − − − 

MAX − √ Database − − √ − − 

CoBrA − − COBRA-

ONT 

Experts Jess − − − 

Semantic 

Space 

− − ULCO-

ONT 

Experts Jena2 − − − 

iCAP Context- 

aware apps 

− Database Advanced 

users 

Ad hoc − − − 

Story-

Room 

Game 

creation 

− Database Novice 

users 

Ad hoc − − − 

Sixth-

Sense 

Games, smart 

object apps 

 √ 

 

SS-ONT 

Experts, 

advanced, 

novices 

 

SWRL, Jess 

 √ 

 √ 

 √ 

Besides Sixth-Sense, smart artifacts are also the focus of several other listed systems, 

however, all these systems are based on ad-hoc context infrastructures, which makes it 

difficult to share and reuse knowledge in them. Furthermore, the context reasoning tasks 

of them are implemented at the programming level, that’s to say, they don’t use any 
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inference engines, which, inevitably, reduces their extendibility and increases their 

maintenance costs. Finally, among the listed smart artifact systems, the robustness of 

sensor network is only addressed in our system, as we clarified in Chapter 5. 

CoBrA and Semantic Space are two existing systems that use a normalized ontology 

as their underlying knowledge infrastructure. These systems also provide effective 

context reasoning mechanisms by using inference engines. However, our system differs 

from and perhaps outperforms theirs in several respects. (1) These two systems are 

mainly designed for experts, and they don’t provide any toolkit or interface for end users. 

(2) Their ontology definitions focus more on contexts acquired from mobile devices and 

software applications, while the domain knowledge of human-artifact interaction is not 

concerned in their systems. Therefore, they don’t support rapid prototyping of smart 

artifact systems. (3) The techniques used in Sixth-Sense are more promising. Our work 

was conducted by the Protégé resource, including the Protégé-OWL editor for ontology 

editing, the Protégé-OWL API for manipulating the ontology at the programming level, 

and the SWRL factory mechanism to integrate with inference engines. That’s to say, the 

Protégé team provides a free, mature and full-featured way for building and maintaining 

ontology-based systems. As the rule language of Semantic Web, SWRL supports rule 

interoperation (or sharing of rules) among different rule engines, which implies that our 

system can be extended to work with a variety of rule engines for different reasoning 

tasks (e.g., forward-chaining, backward-chaining, non-monotonic, etc). In contrast, this 

is not supported by the previous two studies. (4) Runtime performance was little 

discussed in previous work. However, we concluded several factors that could influence 

the performance of ontology-based context reasoning and proposed a computational 

model to estimate the maximum reasoning time under different scales of smart 

environments. 

Over several user-oriented programming systems that supports context-aware service 

creation mentioned in Chapter 2 (e.g., Alfred, Jigsaw, CAMP and iCAP), we will make a 

comparison of our system with iCAP. First, our programming platform is founded on the 

Open-Programming model, which allows users with different abilities (e.g., advanced 

users and novices) to create applications in our system. However, iCAP’s visual 

programming environment is still difficult and time-consuming for average home users to 
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use. Second, comparing with iCAP’s database-scheme-based model, our ontology-based 

model is more normalized and promising for knowledge definition, as we discussed in 

Chapter 2. Third, benefited from our ontology-based context modeling method, our 

Open-Programming model supports the sharing of context-aware rules and services 

among different users, which is not supported by iCAP. Fourth, because all users share a 

common context structure, end users only need to perform a few simple operations to 

create instances and specify their properties through a mature, easy-to-use ontology editor. 

However, in iCAP, users have to design the context structure by themselves, such as 

drawing icons, specifying context categories and output types, which is difficult, error-

prone and time-consuming for average users. Finally, there lacks a mechanism to detect 

hardware errors in iCAP, but we proposed a rule-based mechanism to deal with this. 

StoryRoom is another system that supports user-oriented pervasive game design. 

However, our system differs from it in the following respects. First, utilizing easily-found 

resources in smart homes, such as everyday artifacts and user-generated contents, users of 

different ages can develop a wide variety of games in terms of their imagination in our 

system. However, StoryRoom is designed for a specific game genre — storytelling, and 

the props used in it are needed to be manually made by users, which somewhat restricts 

its prevalence. Second, our Open-Programming model addresses different user abilities 

and interests. In contrast, StoryRoom is designed for children, and the simplified 

programming mode it explores prohibits the creativity of many users. Third, we provide 

an ontology-based sharing and cooperation environment for end users, where a pervasive 

game created by one user can be shared and reprogrammed by others. Compared to 

previous systems’ unshared modes, our approach greatly facilitates the development of 

games, and furthermore provides a stepwise learning environment for programming, that 

is, learning from merely playing, simple configuration to rule-based programming.  

7.2 Open-Programming and OWL-S 
OWL-S (Ontology Web Language for Services) [Martin et al. 04] is an effort of W3C 

that also seeks to construct and manipulate services based on Semantic Web techniques.  

By giving rich semantic specifications to Web services, OWL-S enables flexible 

automation of service discovery, invocation, and composition.  A comparison of our 
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Open-Programming model and OWL-S based studies (like [Mokhtar et al. 05]) is given 

in Fig. 7.1 and Table 7.2.  

It’s clear that these two approaches are different in their objectives. As a user-oriented 

programming platform, the Open-Programming model mainly concerns service sharing, 

end-user programming and service customization. However, OWL-S advocates placing 

less demand on user attention, and one of the objectives of it is to automatically enable 

software applications by dynamically composing services of the pervasive environment. 

In other words, Open-Programming addresses “controllability” and “personality”, while 

OWL-S emphasizes “high intelligence”, “autonomy” and “self-adaptation”. 

 

Figure 7.1: Service construction in Open-Programming and OWL-S 

Table 7.2: Open-Programming and OWL-S 

Parameters Open-Programming OWL-S 

Purpose Service sharing among different families,  

programming, and customization 

Service discovery, autonomous 

composition, self-adaptation 

Nature Static services Dynamic services 

Semantics of a service A smart home application A task or a function of a device/software 

Design Paradigm Rule-based Dynamical service composition 

For End-Users Programmable, personality, controllability High intelligence, less user-effort 

All services created in the Open-Programming model follow a rule-based paradigm, 

and the function of a service in our system is implemented by evaluating the predefined 

rules of it.  That’s to say, all running services (including user-customized ones) of our 

system are static services. OWL-S, by contrast, supports dynamical composition of 
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services. As shown in right part of Fig. 7.1, by using OWL-S, each device or software 

application can be viewed as a service provider that uses Web ontologies to describe (or 

advertise) the offered and required capabilities (or functions) of it. The description of the 

behavior of a user task or a service can be represented in the form of an OWL-S process 

model, which consists of a set of atomic processes (see Fig. 7.1). A discovery algorithm 

based on OWL-S can compare semantically the atomic processes of a user task with 

networked services (e.g., device-services), and a service composition algorithm can 

automatically integrate the processes of the selected services to reconstruct the process of 

the target user task [Mokhtar et al. 05]. In summary, different design paradigms of Open-

Programming and OWL-S lead to different application fields of them. For example, the 

prior one can be better used in applications that concern personality and customizability, 

while the latter one can be explored by applications that address automated service 

discovery and composition. As a middle-term plan of our system, we intend to combine 

the advantages of these two approaches to provide high-level intelligent services for users 

who have little interest to control their smart homes.  

7.3 Evolution of Sixth-Sense 
In our work, we employed several sensing and interaction technologies to establish a 

prototypical smart environment. To popularize the use of Sixth-Sense among people, one 

basic hypothesis is that different smart homes are established using the same standards 

(or protocols) and sensing technologies. Today, smart home is far from having become a 

reality. However, given the trends of wireless sensor networking, low-power computing 

and tangible interaction, we can reasonably expect that sensors and interactive interfaces 

in the near future will be ubiquitously deployed in our living environment. Mature or 

emerging standards and products such as X10 [Helal et al. 05], OSGi [Gu et al. 04, Helal 

et al. 05], FIPA [O’Brien et al. 98], and RFID [Yap et al. 05, Gu et al. 04, Helal et al. 05], 

are speeding up the growth of it. Therefore, we can envision that, in future homes, 

artifacts will be equipped with unified sensing and interacting parts and can communicate 

with each other using standardized protocols. Benefiting from the openness, extendibility 

and interoperability of our ontology-based model, Sixth-Sense can easily be extended to 

reflect the contexts acquired from newly-applied technical objects, and provide interfaces 
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to communicate with these devices. In other words, our system possesses the capability to 

evolve as a new technology emerges or as an application domain matures. 

7.4 Potential Improvement Areas 
There are several potential areas to improve our system, and we describe some of them in 

the following subsections. 

7.4.1 User Ontology Customization 

The evaluation results on ontology customization (see Section 6.3) indicate that 

experienced computer users can customize an ontology for their home via the Protégé-

OWL editor. However, when the scale of objects and their properties enlarges, it will 

become a time-consuming task for users. Moreover, for users with little computer 

experiences, it is still difficult for them to master this tool. In light of these flaws, we are 

seeking for a more natural and labor-saving way for users to customize ontologies.  

One way that inspires us is the barcode-based system, including traditional barcode 

systems prevalently used in supermarkets and 2D-barcodes (e.g., QR Codes [Kato et al. 

05]) explored in mobile tagging systems. Taking QR-Codes for example, one such code 

can store at a maximum of 2953 bytes or 1817 Japanese characters (Kanji). QR Codes 

storing addresses and URLs may appear in magazines, buses, business cards or just about 

any object that users might need information about. Users with a camera phone equipped 

with the correct reader software can scan the image of the QR Code causing the phone's 

browser to launch and redirect to the programmed URL. This act of linking from physical 

world objects can be viewed as “physical world hyperlinks”.  

Owing to the “high data capacity”, “simplicity” and “physical interactivity” merits 

mentioned above, we envision that a mobile 2D-barcode scanning system integrated into 

the Open-Programming model can help users quickly customize ontologies. Comparing 

with ontology developers and home users, the manufactures have the most intimate 

knowledge about their products. Most basic information about an artifact, such as its 

category, color, size, shape, weight, as well as performance parameters of its embedded 

sensors, can be encoded as barcodes when it is produced. End users can simply use a 

barcode-reader-equipped mobile phone to acquire the digital information of a barcode-

attached object. We can also develop a client-side API to interpret the gathered object 
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information and automatically insert them into a user ontology utilizing Protégé- OWL 

API. In this way, most of the indoor objects and their properties can be automatically 

imported into the knowledge base, and there will be only a few properties that can not be 

specified by manufactures, such as the ownership of an object, privacy level of an object 

and human profiles, should be manually inputted by end users.  

We believe that the mobile barcode-based mechanism is much simpler and can greatly 

ease users’ burdens, and we plan to explore it in our next-step’s work. However, under 

current technical conditions, our Protégé-OWL editor based method is still a normalized 

and user-friendly way for user-oriented ontology customization. 

7.4.2 Artifact-based Human Behavior Recognition 

Inferring human behaviors or activities using sensor networks is a crucial yet difficult 

application area for ubiquitous computing. In principle, current research on monitoring 

human behavior can be grouped into two sets: recognizing human behaviors that do not 

involve interactions with objects (e.g., cups, books) [Bao et al. 04], and recognizing those 

that do [Beigl et al. 01, Philipose et al. 04]. Numerous studies have performed high-level 

inferencing from low-level, coarse sensor data. However, progress towards rigorous 

activity detection has been slow, and only a few researchers have reported the results of 

any preliminary user testing. An emerging consensus is that fine-grained measurement of 

object use is a good indicator of human activities [Beigl et al. 01, Philipose et al. 04]. In 

view of this, Sixth-Sense infrastructure would be useful for supporting object-based 

activity inferencing. In prototyping studies of our system, we use ultrasonic location 

sensors, and a series of heuristic rules to infer simple human behaviors, such as picking 

up something and moving something. This is just a test bed to evaluate the approaches 

taken in our research. As one of our short-term objectives, we would like to integrate 

other kinds of sensors such as acceleration sensors [Bao et al. 04], and extend our domain 

ontology to support recognition of more artifact-based human behaviors. 

7.4.3 A Third-Programming Mode 

We learned from our evaluation that a third programming mode, which has lower 

functionality, better operability than the text-based mode, and higher freedom than the 

reprogramming mode, is required by users (as discussed in Section 6.6). Figure 7.2 
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illustrates a possible way for this mode, which integrates the physical, intuitive nature of 

the physical programming mode and the code-free merit of the visual programming mode. 

In this mode, when a user is going to create a rule, he can firstly demonstrate the situation 

as this rule describes. For example, to design a rule that can give a hint when a person is 

carrying a key near his bed, he can firstly perform this action in his room (as shown in 

Fig. 7.2). At the same time, all detected real-time events and facts will be displayed on 

the screen of his handheld device (see bottom of Fig. 7.2). The user can then select the 

necessary premises from the listed events and also specify an action (e.g., displaying an 

image on TV) to perform.  Once this is finished, a new rule is created. 

 

Figure 7.2: A scenario of the third programming mode 
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Chapter 8. Conclusions and Future Work 
In this chapter, we conclude this thesis by (1) summarizing its main contributions and (2) 

suggesting directions for future work. 

8.1 Summary 
Computing is moving towards pervasive, context-aware everyday artifacts. In this thesis, 

we have reported our study on building a user-oriented, ontology-based programming 

platform for smart artifact systems. 

Chapter 1 outlined the research area and main challenges in smart artifact research. 

Current approaches, related studies were reviewed in Chapter 2. Related work involves 

context-aware computing, knowledge representation, and end-user programming in smart 

homes. We also discussed the shortcomings in current studies in this chapter, which then 

lead to the motivations for the research described in this thesis. The following 

requirements were identified: 

• A common knowledge infrastructure that supports rapid prototyping of human-

artifact interaction systems is required; 

• Diversity of user abilities and interest should be considered in our programming 

platform; 

• As a programming platform, there should be strategies to deal with programming 

errors and fallible sensors in smart artifact applications. 

These areas provide the focus of later chapters as well as our major contributions. 

In Chapter 3, we described our efforts to incorporate Semantic Web technologies into 

the development of human-artifact interaction systems. By providing explicit ontology 

representation, expressive context querying, and flexible reasoning mechanisms, the 

Sixth-Sense infrastructure facilitates the development of a wide variety of smart artifact 

applications.  

Based on the infrastructure, in Chapter 4, we described our effort on the programming 

environment for end users. By exploring an ontology-based programming model, called 

Open Programming, our system can support both the “functionality”, “in-depth” 

requirement from advanced users and the “simplicity”, “high intelligence” requirement 
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from average home users. We described in detail the implementation of this 

programming model, including service creation, front-end design, service customization 

and action setting. The enabled applications, including an artifact-based game and an 

object search service are described to exemplify the usability of our system. 

The error-checking module of Sixth-Sense is discussed in Chapter 5, where we 

described a rule-based mechanism to deal with fallible sensors in smart homes. In this 

approach, physical relations and logical relations among objects are explored to detect 

and identify hidden objects.  

We also reported the experiments to evaluate the usability, performance and 

effectiveness of Sixth-Sense in Chapter 6. The evaluation study results suggest that our 

system can help users with different abilities to create smart artifact based context-aware 

services and games in our system.  

Besides the two main contributions, namely a knowledge infrastructure for smart 

artifact systems and the Open-Programming model, there are also several minor 

contributions of our work: 

• We proposed a physical-relation based approach to deal with fallible sensors in 

smart artifact applications; 

• A rear-world search service is developed, which can help users quickly locate his 

belongings and monitor hidden objects at home; 

• We made a series of user studies on smart home control and ontology use; 

• Finally, our system investigates the prospects of artifact-based entertainment 

design and play in future homes. 

8.2 Future Work 
The area of smart artifact systems is a broad one and still largely undeveloped. This thesis 

has investigated some issues that may occur when living with smart artifacts in future 

homes. It is envisaged that some appropriate areas for future work are: 

• Ontology Storage 

In current implementation, the SS-ONT ontology is stored as OWL files. 

Operations related to this ontology, such as query and update, are implemented by 

loading, updating, and saving these files, which reduces the execution efficiency to 
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lower than that achieved using traditional databases. We therefore need to 

investigate more efficient methods of OWL storage and retrieval, such as Sesame 

[Broekstra et al. 02] and DLDB [Pan et al. 03]. 

• Ontology Customization 

We plan to build a mobile 2D-barcode scanning system, which can help users 

quickly customize ontologies, as we discussed in Section 7.4.1.  

• Rule Editor in Open-Programming Model 

In the rule-based programming mode, users write Jess rules in a textual manner, 

which is unfriendly and error-prone. Therefore, we intend to develop a better 

Web-based Jess editor, where users can directly refer to OWL classes, properties, 

and individuals within an OWL knowledge base, and also have direct access to the 

full set of Jess functions. We believe that the improved editor will be more 

intuitive to users. 

• A Virtual House Interface 

As mentioned in Section 6.6, the literal-based front-end is stated to be unattractive 

to end users, so we want to design a virtual-house-like interface for users to 

intuitively customize services and games. We believe that this will attract more 

users to the reprogramming process. 

• A Third Programming Mode 

As discussed in Section 7.4.3, we intend to develop a third programming mode 

which can integrate the physical, intuitive nature of the physical programming 

mode and the code-free merit of the visual programming mode. 

• Long-Term Evaluation 

Finally, we plan to conduct a long-term evaluation of our system’s effectiveness as 

an end-user programming tool in real-life house settings, during which we want to 

learn the challenges in terms of different domestic settings, diverse lifestyles and 

needs of users. We expect this can, in addition, help us to better understand the 

effect of Open-Programming model on user learning and collaboration. 
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