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Abstract

This thesis presents development of 3D human body measurement system and its
application to biometric gait recognition. A triangulation-based structured light
system consisting of one camera and one projector obtains range data of a target
object. In recent years, the measurement accuracy, speed, and physical size of
the system have been dramatically improved, introducing a new class of products
known as 3D camera. Unlike a typical camera which acquires 2D pixel data, a 3D
camera captures range data as a large number of 3D points on an object’s surface.
The geometric model is defined such that the camera model is based on the pin-
hole model, and the projector model is based on the equation of a plane model.
Both camera and projector parameters are estimated by observing a planar ob-
ject from three arbitrary viewpoints. One 3D camera cannot completely cover the
entire body because of limited range and single view. In our system, four 3D cam-
eras are installed in a pole as a measuring unit. The pole unit measures the whole
body from head to toe and has a measurement range which is wider than a single
3D camera. We have built a human body measurement system consisting of three
pole units for a total of twelve 3D cameras which can capture up to one million
3D points on the human body in only 2 seconds with 1.88 mm measurement accu-
racy. This sophisticated system is available for security applications, in particular
for deriving the human gait from whole human body data. In our approach, we
first measure range data of the entire body which consists of representative poses
during a gait cycle and then extract gait features by fitting kinematic models to the
data set. Unlike attempts which utilize silhouette images which are affected by
clothing and self-occlusion, the positions of joints and body parts can be directly
inferred. The experimental results show high identification rates in recognizing a
human subject and his/her pose.
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Chapter 1

Introduction

1.1 Motivation

The human body has fascinated scientists for thousands of years. Studying the
shape of the human body offers opportunities to open up entirely new areas of
research. The shape of the human body can be used to infer personal charac-
teristics and features. Body type and muscle strength, for instance, can be used
to distinguish gender. The presence or absence of wrinkles around the eyes and
loose facial skin suggests a person’s age. In addition, the size and shape of a per-
son’s face, belly, thighs, and arms can determine a body habitus: slim, healthy, or
overweight. The length of individual limbs such as legs and their postural sway
when a person walks suggests an underlying misalignment of the bone structure.
It is in fact possible to identify people by their physical body shape of entire
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2 INTRODUCTION

body. Unlike traditional physical measures of height, width, and length of body
parts, the body shape is represented by a closed surface of the entire human body
as a 2-manifold. The surface is digitally captured and described by geometric
primitives such as vertices, lines, and curves. It is useful for health professionals
and technical experts to retrieve personal data from shared database whenever the
need arises. Using a large number of body shape measurements, valuable per-
sonal characteristics can be statistically analyzed. If there is a strong correlation
between body shape and medical disease, for instance, we can avoid invasive diag-
nostic procedures such as medical imaging methods which utilize electromagnetic
radiation. Measurement of the shape of the human body also plays a leading role
in medical diagnosis; it may even be possible to discover unexpected diseases
through studying body shape. The differences among people of both sexes, young
and old vary considerably in size and volume. In addition, the target is not only
body parts such as face, finger, and ear, but also entire body including all of them.
The focal issue involved in the use of entire body is how to exploit a vast amount
of information. Therefore, it is challenging to know human mechanism from the
appearance of human body and establish basic technologies for human under-
standing. A breakthrough in the fields of computer vision and pattern recognition
will cause a paradigm shift well known as the structure of scientific revolutions.

1.2 Objective

This thesis provides new techniques for 3D human body measurement and recog-
nition of walking humans. We address four sub-goals of the measurement and
recognition: system calibration, range sensing, body modeling, and feature recog-
nition. These tasks, illustrated in Fig. 1.1, are defined as follows:

System calibration aims to estimate intrinsic and extrinsic parameters represent-
ing the geometry of camera and projector and the relationships among the
projector-camera pairs.

Range sensing addresses shape recovery from images of the camera and lights of
the projector. Single or multiple projector-camera pairs are assigned around
a target depending on the size of object.
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Figure 1.1: Framework for range imaging of a human body.

Body modeling aims to approximate body data by a simplified body model indi-
cating the position, length, and volume of main parts of a human body used
as physical features.

Feature recognition addresses identifying individuals through the process of fea-
ture matching to retrieve personal information such as name, gender, age,
and ID number that is stored in the database.

The concept of four terms will be introduced throughout this thesis to form
a framework which contains four-tiered structure. Here, the terms/tiers are num-
bered in order of calibration, sensing, modeling, and recognition from bottom to
top. The upper tier task works properly when the lower tier tasks have been per-
formed.

1.3 Context

Three-dimensional shape measurement is a technique for recovering the surface
of a target object. Attempts have been successful in digitalizing the object rep-
resented by Cartesia coordinates in three dimensions. For shape reconstruction,
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the combination of camera and projector is known as a minimum configuration.
Source of light, i.e. projector, emits a plane of light which creates a narrow stripe
on the scene. Since line of sight, i.e. camera, intersects with the light stripe, coor-
dinates of all points along the stripe are obtained by triangulation principle. The
geometry of projector-camera pair is represented by parameters corresponding
to one side and two angles of a triangle. The parameters are estimated through
calibration process which is designed to obtain accurate measurement results.
The projection of light stripe offers several advantages in human body measure-
ment. Especially, noncontact system does not take psychological and psycho-
logical pressures for a subject. Without any severe pose restrictions, the subject
can change his/her pose and expression. Then, it is considered to finish the mea-
surement as soon as possible to avoid the effects of body sways or shaky hand
increasing every second. The measurement time is fast enough to cover for every-
one from children to the elderly. In addition, the body surface is represented by a
large number of points with high degree of accuracy. The points indicate not only
anatomical landmarks but also as 2-manifold, i.e. closed surface. Furthermore,
the light stripe has little adverse effect on the human body, in particular eyes. We
can repeat the measurement as many times as we want with a sense of security.

Subsequently, three-dimensional image processing is a technique for analyz-
ing the surface of a target object. Range data is comprised of range image whose
pixels obtain coordinates value and color image whose pixels obtain color value.
The resolution and accuracy depend on the number of pixels of the camera and
the number of light stripes of the projector. For human body measurement, this
type of system has targeted for small object such as face, finger, and ear. Re-
cently, whole body which has large amount of information is subjected to study
of sensing and modeling. Fig. 1.2 shows the range data of entire body for three
subjects: mannequin, man, and clothed man. The data has approximately one mil-
lion points, and also color information on every point. Of course, whole human
body data includes all of body parts which have been individually captured by a
range scanner. Biometrics system based on whole body comprises multimodal
biometrics approaches and enhances the performance of personal identification.
Especially, we focus on human gait consisting of combined physiological and be-
havioral features. The amount information of range data which includes depth
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Figure 1.2: Range data of entire body.

and color, i.e. three-dimensional data, is not half as much again as that of video
sequences which include only color, i.e. two-dimensional data. Intuitively, the
video sequences only grab a piece of information, but range data acquires all of
them, in other words, we can observe a target object from arbitrary viewpoints in
three dimensions. Although it has been challenging to advance from the research
and development stage, existing devices and applications do not become widely
used. The seeds of technology need to meet the needs of consumers by develop-
ing a new market and exploring the capability. We have to distinguish what one
really needs from what one thinks one needs. This thesis attempts to tackle range
imaging technology of measuring and processing.

1.4 Contributions

The primary contributions of this thesis are threefold:

• Structured light system is defined that the camera is based on the pinhole
model and the projector is based on the equation of a plane model. The pa-
rameters are estimated by observing a planar object from three viewpoints.
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The geometric model provides highly accurate range data and the calibra-
tion method facilitates the procedure of user’s task.

• Human body measurement system captures range data of entire body within
a couple of seconds with high resolution and high accuracy. The pole unit
consistes of four projector-camera pair to capture range data from head to
toe. Whole human body data is acquired by two or more independent pole
units placed around a subject.

• Human gait recognition is one of the most recent biometrics approaches for
personal identification by the manner of walking. 3D gait biometrics cap-
tured by the human body measurement system provides highly reliable au-
thentication unlike 2D gait biometrics approaches and motion capture meth-
ods using a single or multi-camera system.

1.5 Thesis Outline

The body of this thesis is divided into six chapters, the first of which is this intro-
duction.

Chapter2. This chapter investigates range imaging commercial products, repre-
sentative applications, coded structured light projections, and sensing and
modeling technologies.

Chapter3. This chapter describes geometric model and calibration method for
a structured light system which consists of one camera and one projector
through a planar object.

Chapter4. This chapter introduces compact, high speed, high resolution, and
high accuracy human body measurement system using multiple projector-
camera pairs.

Chapter5. This chapter presents 3D gait biometrics recognition based on interpo-
lation of continuous motion using whole human body data of representative
poses during walking.
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Finally, we conclude with a summary of the thesis and some suggestions of
future work.





Chapter 2

About Range Imaging

2.1 Applications

A triangulation-based structured light system consists of a camera and a projector.
The system is similar to passive stereo vision system whose camera is replaced
by the projector. Range data encapsulating range image and color image is ob-
tained by the camera observing a target object illuminated from the projector. The
commercialization of research achievements in range imaging has already been
realized. Fig. 2.1 is the examples of structured light systems. VIVID910 of KON-
ICA MINOLTA captures range data in 0.3 seconds with 8, 14, 25 mm focal length
and 640 × 480 pixels. The structured light based on light section method is made
by galvanometer mirror. This system provides 3D CAD software to edit and pro-
cess the data. Cartesia 3D Handy Scanner of SPACEVISION captures range data

9



10 ABOUT RANGE IMAGING

KONICA MINOLTA SPACEVISION
VIVID910 Cartesia

Figure 2.1: Examples of structured light systems. Courtesy of KONICA MI-
NOLTA and SPACEVISION.

in 0.5 seconds with 8 mm focal length and 640 × 480 pixels. The structured
light based on space encoding method is made by polygon mirror. This system is
slim and compact using one USB 2.0 cable instead of any AC power cables and
transmission cables.

While structured light system is designed for general use, some systems spe-
cialize in capturing range data of an entire body. Fig. 2.2 is the examples of
human body measurement systems. Model WBX of Cyberware captures whole
human body data in 17 seconds with 1.2 mm horizontal, 2.0 mm vertical, and
0.5 mm depth resolution. The data is represented by X, Y, and Z coordinates
for shape and RGB values for color. Bodyline Scanner of Hamamatsu Photonics
completes the measurement in 5 seconds using four scanning heads based on light
section method. This system takes subject’s size by detecting landmarks automat-
ically. They are applicable to offer custom-made clothes. VITUS Smart XXL of
HUMAN SOLUTIONS proposes to integrate avatars with real body dimensions
and attributes into design programs. This system is part of the program incorpo-
rating three separate stages: measurement, simulation, and integration. Cartesia
3D Body Scanner of SPACEVISION captures whole human body data including
one million points in 3.6 seconds using three pole units based on space encod-
ing method. This system is not divided by a wall or curtain, and the installation
space is reduced by independent measuring units. Here, the pictures in Fig. 2.1
and Fig. 2.2, which are the copyrights of Cyberware, Hamamatsu Photonics, HU-
MAN SOLUTIONS, KONICA MINOLTA, and SPACEVISION, are permitted to
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Cyberware Hamamatsu Photonics
Model WBX Bodyline Scanner

HUMAN SOLUTIONS SPACEVISION
VITUS Smart XXL Cartesia

Figure 2.2: Examples of human body measurement systems. Courtesy of Cyber-
ware, Hamamatsu Photonics, HUMAN SOLUTIONS, and SPACEVISION.

use for this thesis.

Last decade, range imaging has proved as an emerging technology for a wide
variety of applications. In the medical field [1, 2], X-ray [3], i.e. radiography,
CT [4], i.e. computerized tomography, MRI [5], i.e. magnetic resonance imaging,
represent volume data of a subject and visualize body shape. Although internal or-
gans, vessels, and bones clarify health condition, some parts of that are diagnosed
by surface shape. For example, BMI [6], i.e. body mass index, which compares
subjects’ weight and height, provides a healthy body weight depending on the
body height. Range data from the neck to the waist derives such information. In
addition, the differences before and after surgery and body changes while dieting
are recorded. In the fashion field [7, 8], fashion designers measure body size with
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tools, such as a tape measure and a ruler. Their rich experiences through basic
practices also support to custom-made clothes. Range data is useful to remove
this laborious task and measure the size at different places without craftsmanship.
For example, some human body measurement systems obtain landmarks of a hu-
man body, and then compute body size automatically. In other cases, the systems
employ a semi-automatic approach using attached markers. After that, we virtu-
ally try on a lot of different clothes changing the size, color, and material. In the
graphics field [9, 10], aesthetically pleasing virtual mannequins are based on a
limited number of user-specific criteria such as a waist circumference, chest, and
weight. For example, whole human body data are grouped into a user-specified
number of clusters, which are formed through the clustering of the anthropometric
database. The body data whose shape is closest to the virtual mannequin is re-
trieved and subsequently used to adjust the virtual mannequin. In contrast, some
approaches employ simplified virtual models, e.g., stick figure model, cylinder
model, and blob model. These models are directly fitted to whole human body
data with/without a priori knowledge. In the security field [11, 12, 13], biomet-
rics systems generally use color images or video sequences, and extract features
for human recognition. Although they are successfully gaining and are available
for security applications, range data holds enormous potential for the improve-
ment of recognition rate and robustness. Biometrics approaches using range data
of face, finger, and ear have proven the effectiveness and reliability. In the near
future, whole human body data will be used for biometrics system.

2.2 Related Work

Related work is divided into two parts. In the first part, sensing technology covers
representative structured light patterns: light section method, binary coded pat-
tern, gray coded pattern, De Bruijn pattern, and M-array pattern. In the second
part, modeling technology targets humans, sculptures, status, and sites from small
object to large-scale environment.
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(a) Binary coded pattern

(b) Gray coded pattern

Figure 2.3: Binary coded pattern and gray coded pattern.

2.2.1 Sensing

Coded structured light projection is one of the highly reliable techniques for the
acquisition of range data. The projector emits a structured light to a target object
and encodes the scene captured by the camera. The pixels on the image are de-
coded by either zero or one. The range data is computed by triangulation principle
among the camera, projector, and target object. This type of device is called as
structured light system. In 1971, Shirai [14] proposed the light section method
which scans a light stripe from one side to the other. The projected light stripe is
approximated by line segments, the slope and distance of which are used for object
recognition. Y. Sato et al. [15] proposed a method for the acquisition of complete
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range data using a turntable. If both camera and projector observe a target ob-
ject from one direction, they cannot observe the sides and the back of the object.
Using the controlled turntable, one direction view is changed to omnidirectional
view. Araki et al. [16] proposed a method for high speed range imaging within a
few milliseconds. The integrated circuit consists of the optical part, control part,
and signal processing part. This system performs to scan a light stripe and com-
pute the position simultaneously. Kanade et al. [17] proposed the system based on
VLSI sensor array. Unlike most systems which perform step-and repeat process
of the camera and projector, the sensor includes both photosensitive and signal
processing circuits. This system achieves range data up to one thousand frames
per second. In stead of a single light stripe, several coding strategies have been
studied so far. Fig. 2.3 shows the binary coded pattern and the gray coded pattern.
In 1982, Posdamer and Altschuler [18] presented the binary coded pattern. The
projection of p patterns are the same as the projection of 2p light stripes. When we
use the eight patterns, the number of scanning times is dramatically reduced from
256 to 8. Altschuler et al. [19] presented the system using dot matrix of binary
light beams. Each column of the pattern is independently controlled to be either
lighted or obscured. It allows coding any pattern dot as a sequential projection
of different patterns. In 1984, Inokuchi et al. [20] presented the gray coded pat-
tern. The advantage of this pattern is robust to noise or encoding/decoding error,
because the consecutive codeword has the Hamming distance of one. The gray
coded pattern is adapted for practical use and used for the following systems. K.
Sato and Inokuchi [21] presented the system using an electrically controlled liq-
uid crystal device. The pattern is generated with speed and precision compared
to a slide projector. To improve the decoding error, reference image is used to
define dynamic thresholds for all of pixels. Y. Sato and Otsuki [22] presented
the system, called Cubicscope, using a semiconductor laser and a synchronized
scanned mirror. The pattern is generated by scanning and switching of one light
stripe. This system provides high power illumination with low heat radiation, and
also encourages the reduction of size and weight. Gunaratne et al. [23] developed
face measurement system, based on Cubicscope, consisting of two cameras and
one projector. While other systems consisting of one camera and one projector
fail to capture nose and face line, the system successfully acquires dense range
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(a) De Bruijn pattern

(b) M-array pattern

Figure 2.4: De Bruijn pattern and M-array pattern.

data of them. Hasegawa et al. [24] developed electronic endoscope system for
computer-aided diagnosis. This system captures range data of organ by emitting
the pattern from the endoscope tip through flexible tube. Appearance of the af-
fected part is represented by both shape and color. Aoki et al. [25] developed
tooth measurement system for the visualization of jaw movement. Range data of
upper and lower tooth are separately acquired, and then the positions of the data
are brought into occlusion using attached markers. Kouchi and Mochimaru [26]
developed foot measurement system for designing shoes. The foot scanner, which
is the product of INFOOT, is consisted of four projectors and eight cameras. It is
capable of acquiring range data of foot in 10 seconds at 1.0 mm intervals. Anatom-
ical landmarks are measured by using attached markers. As stated above, it has
been preferable to use light stripes to recover shape of an object with a high de-
gree of accuracy. Most systems which utilize structured light achieve dense data
compared to other type of range sensor.

Subsequently, pseudorandom sequence and array are used to encode patterns
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Table 2.1: Comparisons of structured light patterns for range sensing.

Technique Accuracy Speed Authors
Light section method ? ? ? [14, 15, 16, 17, 26]
Binary coded pattern ? ? ? ? [18, 19]
Gray coded pattern ? ? ? ? ? [20, 21, 23, 24, 25]
De Bruijn pattern ? ? ? ? [27, 28, 29, 30]
M-array pattern ? ? ? ? [31, 32, 33, 34]

for acquiring range data at once. Fig. 2.4 shows the De Bruijn pattern and the M-
array pattern. First, De Bruijn pattern is based on cyclic string to identify a fixed
length substring over the string. The string is constructed by searching Hamilto-
nian path or Eulerian path over De Bruijn graph. Boyer and Kak [27] proposed
three colored pattern consisting of vertical lines. This pattern is generated by a se-
quence of vertical lines which are colored with any combination of red, green, and
blue. Their specific hardware obtains the index and position of three colors peaks
in real time. Vuylsteke and Oosterlinck [28] proposed the monochrome pattern
using four primitives. This pattern structure is a checkerboard where grid points
are encoded by either bright or dark spot. The sequence which forms two rows is
compacted and insensitive to surface discontinuities. Salvi et al. [29] proposed
the six colored pattern consisting of vertical and horizontal lines. The vertical
lines are represented by magenta, cyan, and yellow, and the horizontal lines are
represented by red, green, and blue. The grid points are easily segmented, and also
neighbors are detected by tracking along the edges. L. Zhang et al. [30] proposed
the eight colored pattern consisting vertical lines. The correspondence between
points in the pattern and pixels in the image is resolved by multi-pass dynamic
programming. To increase the resolution, the pattern is shifted to the right in time
and located the lines with sub-pixel accuracy. Second, M-array pattern is based on
unique matrix to identify a fixed size submatrix over the matrix. Morita et al. [31]
presented the two monochrome patterns using black dots. The first pattern con-
tains all of black dots to determine their positions and the second pattern contains
M-array representation. Although this method is restricted to static scenes, it is
applicable to dynamic ones by only emitting the second pattern. Griffin et al. [32]
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presented the monochrome pattern using five primitives. This pattern matrix is a
special case of perfect maps which is made by a systematic process. Each ele-
ment has a unique codeword formed by its value and the values of four neighbors.
Morano et al. [33] presented the three colored pattern consisting red, green, and
blue dot array. This pattern growth of the matrix consists of a random assignment
of colors from the available palette for undefined elements adjoining the estab-
lished pattern. Kimura et al. [34] presented foot measurement system for motion
analysis during walking. The three colored pattern is represented by pixels and
cells assigned red, green, and blue. Since foot has smooth surface with uniform
reflectance, it is suitable as a target for the measurement.

Obviously, these systems which utilize colors and primitives sometimes fail
to decode the projected pattern on the surface of an object especially for colorful
and complex shapes, although they can obtain range data in real time. Table 2.1
compares five kinds of structured light patterns presented in this chapter. Here,
the number of symbol indicates three-star scale. The binary coded pattern and
the gray coded pattern provide high degree of accuracy because of the projection
of a large number of light stripes. Especially, the gray coded pattern whose light
stripe has the Hamming distance of one is robust to decoding error. The light
section method also provides high degree of accuracy, but background subtraction
which detects scanning light stripe is required. The De Bruijn pattern and the
M-array pattern depend on decoding process to extract colors and primitives of
the pattern. Their use is limited to neutral color scene or simple object, so that
the measurement accuracy is not stable enough. In contrast, the light section
method which scans a light stripe from one side to other takes a long time. The
binary coded pattern and gray coded pattern which usually emit eight or more
patterns are slightly better than the light section method. The De Bruijn pattern
and the M-array pattern have successfully captured range data in real time so far.
Definitely, we would argue for accepting the gray coded pattern. The first priority
for range imaging is to obtain range data with a high degree of accuracy. We
intend to derive valuable information about both inside and outside of the object
from the surface shape, and also develop them for various purposes including
anthropometric and archaeological applications. The accurate range data leads
to system performance enhancement and significantly boosts the reliability of its
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Figure 2.5: Modeling results of CAESAR subjects. Courtesy of Brett Allen [38].

results. The second priority is measurement time. Although the light section
method is slower than De Bruijn pattern and M-array pattern, this problem has
already been addressed by the integrated circuit implementation for sensing the
scene and computing the position. The gray coded pattern is overcoming through
increasing the shutter speed of the camera, projection speed of the projector, and
switching speed between the camera and the projector.

2.2.2 Modeling

The anthropometry has been emerging as leading-edge applications for range
imaging. Especially, human body attracts an awful lot of attention at the moment.
The dedicated device which captures range data of entire body is known as human
body measurement system. CAESAR project [35, 36] is a survey of whole body
measurements for people ages 18-65 in three countries: United States, Nether-
land, and Italy. Five types of data are recorded: demographic information, 40
measurements taken with a tape measure, 60 measurements captured by a body
scanner, complete range data of three postures, and 73 coordinates of specified
landmarks. The total number of samples is approximately fifteen thousand. For
data collection, two scanners which are built by Cyberware and Vitronic are used.
Both scanners use similar measurement principle based on light section method.
The projector emits a light stripe to the surface of a subject and moves from the
top to the bottom. Then, the camera observes the projected light stripe from two
directions at the same time. Whole human body data is recovered by triangula-
tion principle. AIST/HQL database [37] contains a total of 97 samples including
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(a) Scanning (b) Modeling

Figure 2.6: Digital Michelangelo project. Courtesy of Marc Levoy [40, 41].

49 men in the 20-30 age group and 48 women in the 20-35 age group in Japan.
Five types of data are recorded: demographic information, 91 anthropometrical
dimensions, 21 landmarks, 3D data, and 3D model. The demographic informa-
tion is measurement date, birth date, age, and sex. The dimensions and landmarks
are measured by two experts manually. Body data is collected by the commer-
cial product of Hamamatsu Photonics. This system based on light section method
captures body data in 11 seconds within±0.5 percent measurement accuracy. Af-
ter that, body model is represented by not only vertices and polygons but also 26
positions of cross-section. The database is used for statistical analysis and open to
the public on the website. However, starting from a range scan, we need to process
the noisy and incomplete surface into a complete model suitable for applications.
Further, the scanned data has holes caused by self-occlusions and grazing angle
views. Allen et al. [38] proposed a method for fitting high resolution template
meshes to detailed human body range scans with sparse markers. Fig. 2.5 is the
modeling results of CAESAR subjects. Affine transformation at each template
vertex is formulated as an optimization problem. The object function trades off fit
to the range data, fit to scattered markers, and smoothness of the transformations
over the surface. Anguelov et al. [39] introduced SCAPE method for building a
human shape model which incorporates both articulated and non-rigid deforma-
tions. The SCAPE model is used for shape completion, partial view completion,
and motion capture animation using just a single static scan and a marker mo-
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(a) Scanning (b) Modeling

Figure 2.7: Bayon digital archival project. Courtesy of Katsushi Ikeuchi [44, 45].

tion capture sequence of the person. This method generates realistic meshes with
muscle deformation for a wide range of subjects and their poses.

Large-scale environment in the archaeology field has been selectively tar-
geted by improving the sensing and modeling technologies. Digital Michelan-
gelo project [40, 41] is to involve in digitizing the sculptures and architectures of
Michelangelo. Fig. 2.6 is the scanning scene and the modeling result. The statue
of David is captured by a structured light system mounted on a motorized gantry.
Since, the focus of this project is to protect both physical shape and geometric rep-
resentation such as vertex coordinates, surface normals, and connectivity informa-
tion, the system acquires a total of two billion polygons and seven thousand color
images for three weeks. After scanning, pipeline processing aligns range data
taken from different positions, and then the range data are combined into a unified
surface mesh filling any holes automatically. Finally, the model containing eight
million polygons is rendered. While it is necessary to measure human body at high
speed, the resolution and accuracy are as important as the measurement time. This
way of thinking leads to trade-off problem. Great Buddha project [42, 43] focuses
on the preservation and restoration of Asuka, Kamakura, and Nara Buddha. The
framework of geometric modeling incorporates three separate steps: acquisition,
alignment, and merging. The first step is to acquire range data by laser range sen-
sors. The sensors capture a set of partial mesh models, overlapping each other and
covering the entire object surface. The second step is to align partial mesh models.
Each sensor is located at an arbitrary position on data acquisition, so that relative
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relations of these models are determined by considering resemblances in the data
set. The third step is to merge the aligned multiple mesh into a complete mesh
model. The entire object is represented by one surface from multiple overlapping
surface observations. Asuka, Kamakura, and Nara Buddha contain three million
meshes, ten million meshes, and seventy million meshes, respectively. Bayon dig-
ital archival project [44, 45] is to reconstruct the Bayon temple which is located
at the center of Angkor-Thom. This is a huge structure, i.e. more than 150 me-
ters long on all sides and up to 45 meters high, including 51 towers, 173 calm,
smiling faces carved on the towers, and double corridors carved in beautiful and
vivid bas-relief. Fig. 2.7 is the scanning scene and modeling result. Flying laser
range sensor which is suspended beneath a balloon measures structures invisible
from the ground. The obtained data has some distortion due to the movement of
the sensor during the scanning process, so that alignment algorithm estimates not
only rotation and translation but also motion parameters. The resulting 3D model
consists of twenty thousand range images and its total size is about two hundred
gigabytes.

2.3 Thesis Position

To clarify the position of this thesis in range imaging, sensing and modeling tech-
nologies including several levels are arranged in a treelike structure, as illustrated
in Fig. 2.8. First, sensing technology is classified according to passive and ac-
tive range sensing. In passive sensing, shape recovery techniques are called as
shape from X such as stereo, motion, shading, texture, focus. Using single or
multi-camera, they achieve range data in real time with low resolution and low
accuracy. In active sensing, representative techniques are triangulation, time of
flight, photometric stereo, and moiré topography. Combining camera and projec-
tor, they achieve range data in no real time with high resolution and high accuracy.
Although there are a variety of techniques, the first and foremost priority is to ob-
tain high resolution, highly accurate range data. In Chapter 3 and Chapter 4,
we employ active range sensing by triangulation principle. Especially, gray coded
pattern is the most reliable structured light pattern considering not only the resolu-
tion and accuracy but also the speed and robustness. Second, modeling technology
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Figure 2.8: Classification of sensing and modeling technologies.

is classified into two categories: anthropometry and archaeology. In the anthro-
pometry, the target is not only body parts Y such as face, finger, and ear, but also
entire body including all of them. The measurement of the human body is useful
for human understanding. In the archaeology, the target objects are sculpture and
architecture. It aims to protect cultural assets which have been deteriorated over
the centuries by digitalizing the object’s surface. Although biometrics systems
have used face, finger, ear, and their multimodal data, nobody tries security appli-
cation using whole human body data. In Chapter 5, we focus on anthropometry
covering entire body. Unlike detailed model which collect physical measures and
anatomical landmarks, simplified model is used to extract the position, length, and
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volume of main parts of a human body. In this thesis, these sensing and modeling
technologies are related to development of 3D human body measurement and its
application to biometric gait recognition.





Chapter 3

Structured Light System

3.1 Introduction

Pair of one camera and one projector, i.e. structured light system, is minimum
configuration for range imaging. The geometry of the structured light system is
approximated by either simple model or complex model. The simple model rep-
resents the system by simplifying the geometry with the small number of param-
eters. In contrast, the complex model represents the system by complicating the
geometry with the large number of parameters. Naturally, the geometric model is
designed for high accuracy measurement against the loss of versatility.

Typical geometric model encapsulates two separate models: camera model
and projector model [46]. Generally, the pinhole model is the most commonly
used representation [47, 48, 49]. The camera geometry is represented by a 3 × 4

25
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matrix having 11 degrees of freedom and the projector geometry is represented by
a 2 × 4 matrix having 7 degrees of freedom. The two projection matrices provide
range data by the principle of binocular stereo. Although the pinhole model is
suited for the camera geometry, it is not applicable to the projector geometry. For
example, light stripes do not always pass through the optical center of the projector
using a rotatable mirror, e.g., galvanometer mirror and polygon mirror.

Subsequently, the triangulation principle based on the baseline is also utilized.
Given one side and two angles of a triangle determine the position of a target ob-
ject. One side is the baseline which is defined as the distance between the camera
and the projector. One of the angles indicates camera view and the other indicates
projector view. The invariable baseline model [50, 51, 52] fails to represent some
projectors using a rotatable mirror, but the variable baseline model [53, 54, 55]
eases this problem. However, these models assume that all of light stripes are
vertical to the baseline. It is preferable to express the light stripe by a three-
dimensional plane disregarding the inner structure of the projector.

In this chapter, the problem of geometric model for a structured light sys-
tem is addressed. The geometric model is defined such that the camera model is
based on the pinhole model and the projector model is based on the equation of
a plane model. If light stripes are projected in different directions, their projec-
tions are expressed accurately. Furthermore, the camera and projector parameters
are estimated by observing a planar object from three viewpoints. Unlike other
approaches using cube objects [56, 57], it facilitates the procedure of user’s tasks
and provides a high degree of accuracy.

3.2 Geometric Model

A structured light system consists of a camera and a projector. The system cap-
tures a range data by the camera observing a target object illuminated from the
projector. Fig. 3.1 is the geometric model of a structured light system. The cam-
era model is based on the pinhole model and the projector model is based on the
equation of a plane model. The geometric model is represented in the camera
coordinate system and the reference plane is represented in the reference plane
coordinate system.
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Figure 3.1: Geometric model of a structured light system.

3.2.1 Camera Model

Pinhole model is defined that light rays from an object pass through the optical
center Oc for imaging. The principal point c at the intersection of the optical axis
with the image plane is denoted by [u0, v0]. Xc-axis, Yc-axis, and Zc-axis are
parallel to horizontal axis, vertical axis, and optical axis of the image plane. Here,
a 2D point, i.e. image coordinates, m is denoted by [u, v] in the image plane,
and a 3D point, camera coordinates, Mc is denoted by [xc, yc, zc] in the camera
coordinate system (Oc-Xc-Yc-Zc). In addition, Xp-axis, Yp-axis, Zp-axis, and Op

are defined as horizontal axis, vertical axis, orthogonal axis, and the coordinate
origin of the reference plane. Here, a 3D point, i.e. reference plane coordinates,
Mp is denoted by [xp, yp, zp] in the reference plane coordinate system (Op-Xp-Yp-
Zp). The perspective projection which maps the reference plane coordinates onto
the image coordinates is given by

m̃ ' A
[

R t
]

M̃p , (3.1)

with A =



α γ u0

0 β v0

0 0 1


 ,

where A is the camera intrinsic matrix with the scale factors, α, β, γ, and the prin-
cipal point, u0, v0, i.e. the intrinsic parameters, and [ R t ] combines the rotation
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matrix and the translation vector, i.e. the extrinsic parameters. The tilde indicates
the homogeneous coordinate by adding 1 for the additional element: m̃ = [u, v, 1]

and M̃p = [xp, yp, zp, 1]. The Euclidean transformation which transforms the ref-
erence plane coordinates to the camera coordinates is given by

Mc =
[

R t
]

M̃p , (3.2)

with R =
[

r1 r2 r3

]
,

where r1, r2, r3 correspond to unit vectors to indicate the directions of Xp-axis,
Yp-axis, Zp-axis, respectively. t is the direction vector from Op to Oc. Therefore,
camera parameters provide the perspective projection and the Euclidian transfor-
mation.

Let us consider camera lens distortion and its removal. The radial distortion
causes the inward or outward displacement of the image coordinates from their
ideal locations. This type of distortion is mainly caused by flawed radial curvature
curve of the lens elements [58, 59]. Here, a distorted 2D point, i.e. real image
coordinates, m̆ is denoted by [ŭ, v̆]. The discrepancy between the ideal image
coordinates and the real image coordinates considering first two terms of radial
distortion is given by

m̆ = m + [k1m̂T m̂ + k2(m̂T m̂)2](m− c) , (3.3)

where k1 and k2 are the coefficients of the radial distortion, the center of which
is the principal point. Here, a normalized 2D point, i.e. normalized image coor-
dinates, m̂ is denoted by [û, v̂], the focal length of which is defined by 1 as seen
in [60] is given by

m̂ = A−1m . (3.4)

Therefore, camera lens distortion can be corrected from captured images. For
more detail on camera geometry, refer to computer vision literatures [61, 62].
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3.2.2 Projector Model

The projector emits one to hundreds of light stripes for the measurement. We
consider the case in which the light stripes are projected in different directions. It
is difficult to assume that the projector model is based on the pinhole model, be-
cause they do not pass through the optical center. Therefore, we use the equation
of a plane model to accurately represent the projector instead of considering the
projection of the light stripes which depend on the type of projector. In the camera
coordinate system, the light stripe can be written as

aixc + biyc + cizc + di = 0 , (3.5)

where i is the light stripe number, and ai，bi，ci，di are the coefficients of the
equation. There are an equal number of the equations of planes and the light
stripes. Intuitively, the intersection of Xc-axis and the light stripe, p, moves from
the left to the right on the axis.

We define li is the baseline, i.e. the distance between the optical center of the
camera and the light stripe of the projector, θi is the projection angle, i.e. the angle
between Zc-axis and the light stripe, and φi is the tilt angle, i.e. the angle between
Yc-axis and the light stripe. From the coefficients of the equation, these explicit
parameters can be written as

li = di/ai , (3.6)

θi = arctan(−ci/ai) , (3.7)

φi = arctan(−bi/ai) . (3.8)

Projector parameters are expressed by both implicit and explicit representations.
The coefficients are used for computation of range data, but their values do not ex-
hibit distinct features. In contrast, the baselines, projection angles, and tilt angles
provide characteristic distributions.
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3.2.3 Triangulation Principle

To achieve range data, the projector emits light stripes to a target object, and then
the camera observes the illuminated object. So, the camera coordinates is the
intersection of the viewpoint of the camera and the equation of a plane of the
projector. The linear equation [xc/zc, yc/zc, 1/zc] which is derived from (3.1),
(3.2), and (3.6) is given by



α γ 0

0 β 0

ai bi di






xc/zc

yc/zc

1/zc


 =



u− u0

v − v0

−ci


 . (3.9)

Consequently, we have

xc =
(u− u0)− γ

β
(v − v0)

α
zc , (3.10)

yc =
v − v0

β
zc , (3.11)

zc =
di
ai

− ci
ai
− (u−u0)− γ

β
(v−v0)

α
− bi

ai

(v−v0)
β

. (3.12)

The coordinate zc is computed by the relationship between the viewpoint of the
camera and the equation of a plane of the projector. Then, the coordinate xc
and the coordinate yc are computed by the similar triangle related to the camera.
Therefore, the camera coordinates can be recovered by the camera and projec-
tor parameters. The coordinate zc which is expressed by the baseline, projection
angle, and tilt angle instead of the coefficients can be written as

zc =
li

tan θi − (u−u0)− γ
β

(v−v0)

α
+ tanφi

(v−v0)
β

. (3.13)

It indicates the triangulation principle based on one side and two angles of a tri-
angle.
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Figure 3.2: Calibration scene.

3.3 Calibration Method

In this section, we present a calibration method for a structured light system by
observing a planar object from three viewpoints. Fig. 3.2 is the calibration scene
of a structure light system. The planar object, called reference plane, contains a
checkered pattern, so that calibration points are detected as the intersection of line
segments. To perform the calibration, the reference plane coordinates is assigned
to the calibration points. Three sets of color images and stripe images, which
capture calibration points and light stripes on the reference planes respectively,
are required. Our approach incorporates two separate stages: camera calibration
and projector calibration.

3.3.1 Camera Calibration

In the camera calibration stage, camera parameters are obtained by Zhang’s method
[63]. Fig. 3.3 shows the relationship between the reference plane and the im-
age plane. The camera parameters are estimated by the correspondence between
the reference plane coordinates and the image coordinates. Note that three color
images must be captured from different positions changing orientations. If the
reference plane undergoes pure translation, the camera parameters cannot be esti-
mated [64]. Here, the reference plane is on zp = 0 and the homography matrix Hp

is denoted by [ h1 h2 h3 ] . From (3.1), the perspective projection which maps
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Figure 3.3: Camera calibration.

the reference plane coordinates onto the image coordinates can be written as

m̃ = Hp



xp

yp

1


 , (3.14)

with Hp = A
[

r1 r2 t
]
.

Consequently, we have

[
h1 h2 h3

]
= λA

[
r1 r2 t

]
, (3.15)

where λ is the constant parameter. The homography matrix has eight degrees of
freedom which encapsulates five degrees of freedoms of intrinsic parameters and
three degrees of freedoms of extrinsic parameters. Then, the symmetric matrix B
can be written as

B = κA−TA , (3.16)

with B =



b11 b12 b13

b12 b22 b23

b13 b23 b33


 ,

where κ is the constant parameter and (−T ) indicates the transpose of an inverse
matrix. Thus, the intrinsic parameters are given by
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u0 = γv0/α− b13α
2/κ , (3.17)

v0 = (b12b13 − b11b23)/(b11b22 − b2
12) , (3.18)

α =
√
κ/b11 , (3.19)

β =
√
κb11/(b11b22 − b2

12) , (3.20)

γ = −b12α
2β/κ , (3.21)

κ = b33 − [b2
13 + v0(b12b13 − b11b23)]/b11 . (3.22)

After that, the extrinsic parameters are given by

r1 = λA−1h1 , (3.23)

r2 = λA−1h2 , (3.24)

r3 = r1 × r2 , (3.25)

t = λA−1h3 , (3.26)

with λ = 1/‖A−1h1‖ = 1/‖A−1h2‖ ,

where (−1) indicates the inverse of a matrix. Finally, we refine all of parame-
ters through maximum likelihood estimation based on Levenberg-Marquardt al-
gorithm [65, 66].

3.3.2 Projector Calibration

In the projector calibration stage, projector parameters are estimated by image-
to-camera transformation matrix based on the perspective projection and the Eu-
clidian transformation of the camera parameters which encapsulate the position
and orientation of the reference planes. Fig. 3.4 shows the relationship among the
reference plane, the image plane, and the light stripe. Here, the reference plane is
on zp = 0 and the coupled matrix Q is denoted by [ r1 r2 t ] . From (3.1), the
perspective projection which maps the reference plane coordinates onto the image
coordinates can be written as
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Figure 3.4: Projector calibration.

m̃ ' AQ



xp

yp

1


 . (3.27)

From (3.2), the Euclidean transformation which transforms the reference plane
coordinates to the camera coordinates can be written as

Mc = Q



xp

yp

1


 . (3.28)

Furthermore, the inverse of the coupled matrix is given by

Q−1 =
[

r1 r2 t
]−1

=
1

(r1 × r2)T t




(r2 × t)T

(t× r1)T

(r1 × r2)T




=
1

rT3 t




(r2 × t)T

(t× r1)T

rT3


 , (3.29)
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where (T ) indicates the transpose of a matrix. From (3.15), (3.16), and (3.17), the
transformation matrix which maps the image coordinates into the camera coordi-
nates is given by

M̃c =

[
Mc

1

]
=

[
Q
bT

]

xp

yp

1




'
[

Q
bT

]
Q−1A−1m̃

'
[

I
(rT3 t)−1rT3

]
A−1m̃ , (3.30)

with I = diag(1, 1, 1) b = [0, 0, 1] .

The image-to-camera transformation matrix is directly estimated by camera pa-
rameters unlike other methods which necessitate recalculations [67, 68, 69]. This
matrix has eight degrees of freedom which is similar to the homography matrix in
2D.

For each light stripe, the image coordinates is transformed to the camera co-
ordinates, so that the coefficients of the equation of a plane can be computed by
the least square method at least three image coordinates. If the image coordinates
of the light stripe are obtained from one reference plane, the equation of a plane
cannot be computed. This is how all the light stripes are estimated.

3.4 Experimental Results

The data is captured by a structured light system, Cartesia 3D Handy Scanner of
SPACEVISION. This system captures range data in 0.5 seconds with 8 mm focal
length, 640 × 480 pixels, and 256 light stripes by the space encoding method [53,
54]. Here, two light stripes are not used for measurement. The light stripes based
on the gray coded pattern are scanned by a single light stripe and a rotatable mirror.
The reference plane with the checkered pattern includes 48 calibration points with
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Color image 1 Color image 2 Color image 3

Stripe image 1 Stripe image 2 Stripe image 3

Figure 3.5: Three sets of color images and stripe images.

Table 3.1: Camera parameters.

A




1061.71 −0.562002 350.08
0 1064.09 286.547
0 0 1




k1 -0.140279
k2 -0.0916363

20 mm horizontal and vertical intervals. It is preferable to assign the reference
plane within the measurement range and capture a large number of calibration
points in the entire image.

3.4.1 Calibration

Three sets of color images and stripe images are used for calibration as shown
in Fig. 3.5. For the color images, one straight line is fitted to two horizontal
line segments and the other straight line is fitted to two vertical segments. The
calibration point is detected as the intersection of two straight lines. For stripe
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(a) Baselines

(b) Projection angles

(c) Tilt angles

Figure 3.6: Projector parameters.
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Figure 3.7: Evaluation spheres.

Table 3.2: Measurement accuracy of structured light system.

Sphere number No. 1 No. 2 No. 3 No. 4 No. 5
Measuring points 15,629 15,629 19,405 19,861 19,861
Approach ( i )

[mm2] 0.41 0.38 0.26 0.26 0.31
Approach ( ii )

[mm2] 0.22 0.31 0.19 0.13 0.20
Approach (iii)

[mm2] 0.23 0.32 0.21 0.15 0.21

images, luminance values from 1 to 254 correspond to the light stripe number.
The light stripes are projected to the reference plane vertically.

Table 3.1 shows the camera intrinsic matrix and the coefficients of the radial
distortion of the camera parameters. Fig. 3.6 shows the baselines, projection an-
gles, and tilt angles of the projector parameters. When the light stripe number
increases, the baselines gradually reduce, the projection angles increase, and the
tilt angles remains almost constant. The camera and projector parameters enable
the system to recover the camera coordinates of a target object.



STRUCTURED LIGHT SYSTEM 39

Approach ( i )

Approach ( ii )

Approach (iii)

Figure 3.8: Measurement results of five spheres.
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3.4.2 Evaluation

We evaluated the measurement accuracy using five spheres with 25 mm radius
placed in front of the system. Fig. 3.7 is the evaluation spheres. They are num-
bered from top left to bottom right. In our evaluation, the system captures range
data, and then fit the ideal spheres to them. The measurement accuracy which is
defined as the distance between the ideal radius r̂ and the real radius rj is given
by

Es =
1

Ns

Ns∑
j=1

(rj − r̂)2 , (3.31)

where Ns is the number of measuring points. To show the effectiveness, we eval-
uated our approach by comparing with two conventional approaches.

( i ) The pinhole model calibrated by slide stage: The camera is modeled by the
3× 4 projection matrix, and the projector is modeled by the 2× 4 projection
matrix. The camera and projector parameters are estimated using the slide
stage.

( ii ) The equation of a plane model calibrated by slide stage: The camera
model is based on the pinhole model, and the projector model is based on
the equation of a plane model. The camera parameters are obtained by
Tsai’s method [70], and the projector parameters are estimated using the
reference plane.

(iii) The equation of a plane model calibrated by reference plane: The camera
model is based on the pinhole model, and the projector model is based on
the equation of a plane model. The camera and projector parameters are
estimated using the reference plane.

Fig. 3.8 is the measurement results of five spheres. In the approach ( i ), left
two spheres, i.e. No. 1 and No. 4, and the ground are distorted in contrast to the
approach ( ii ) and (iii). Table 3.2 shows the measurement accuracy of the struc-
tured light system. In the approach ( i ), the measurement accuracy is lower than
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the approach ( ii ) and (iii). The approach ( ii ) and (iii) achieve similar perfor-
mance. Therefore, the equation of a plane model is applicable to the structured
light system. In addition, the reference plane as a planer object provides a high
degree of accuracy and has a high degree of availability compared to the slide
stage as a cubic object. The measurement accuracy is improved by 44, 16, 19,
42, and 32 percent for each sphere. The experimental results demonstrate the
effectiveness and efficiency of our approach.

3.5 Discussion and Conclusion

We presented a novel geometric model and calibration method for a structured
light system using a planar object. Typically, the geometry of the structured light
system which is modeled by two projection matrices fails to represent its projec-
tions when using a rotatable mirror for the projector. In our approach, the geomet-
ric model is defined such that the camera model is based on the pinhole model and
the projector is based on the equation of a plane model. Although the light stripes
do not exactly pass through the optical center, our model can approximate the sys-
tem geometry. In addition, the camera and projector parameters are estimated by
observing the planar object from three viewpoints. Unlike other approaches using
cube objects, it facilitates the procedure of user’s tasks. The camera parameters
are obtained by Zhang’s method and the projector parameters are estimated by us-
ing image-to-camera transformation matrix. Furthermore, we verify our approach
provides a high degree of accuracy in the experiments. The measurement accu-
racy is improved by 19 to 44 percent compared to traditional approach. To achieve
high reliability and effectiveness, tests changing the positions and orientations of
the reference plane are required thousands of times. The camera and projector pa-
rameters are statistically analyzed. Then, both parameters, in particular, baselines,
projection angles, and tilt angles, can be revised and interpolated.





Chapter 4

3D Human Body Measurement

4.1 Introduction

Human body measurement system is classified as either multi-camera system or
projector-camera system. We emphasize the advantages and drawbacks of both
systems. The multi-camera system captures whole human body data in real time
with low resolution and low accuracy. In contrast, the projector-camera system
captures whole human body data over a couple of seconds with high resolution
and high accuracy. These systems are used to make distinctions depending on
application needs. For example, motion tracking systems require real-time data
compared to biometrics recognition systems require high resolution and highly
accurate data. The following are representative human body measurement systems
using multiple cameras or projector-camera pairs.

43
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Moezzi et al. [71] proposed a system for generating and replying photoreal-
istic 3D digital video sequences of real events and performances by two or more
cameras. The volume intersection method recovers an object’s 3D shape by de-
termining whether the corresponding pixel location is part of the object or the
background. The model of a single person in any pose has about seventeen thou-
sand voxels or seventy thousand triangles. Tanaka et al. [72] proposed a system
for capturing time-series volume data of human body by eight cameras. The sub-
ject’s image regions are extracted by background subtraction and shadow removal.
Then, voxel-based visual hull algorithm is applied to reconstruct the volume data.
Saito et al. [73] proposed a method for shape reconstruction and virtual view
generation from multiple cameras. The multi-camera system, called 3D room,
is consisted of 49 cameras, ten of which are mounted on each of four walls and
nine of which are mounted on the ceiling in the room. The system acquires ten
thousand triangles in the mesh to represent a subject on the sofa in real time.

Koo et al. [74] presented a contour triangulation based shape reconstruction
from multiple projector-camera pairs. The projector-camera system, called 3D
Model Studio, is consisted of four projector-camera pairs. Each projector-camera
pair which is mounted in the pole moves from the top to the bottom. The sys-
tem acquires two hundred thousand triangles in the mesh to represent a standing
subject in 16.7 seconds. Funatomi et al. [75] presented a clustering based sur-
face reconstruction method for upright standing postures. The range data is cap-
tured by the projector-camera system with 2.0 mm depth resolution and 1.0 mm
measurement accuracy. The system exploits light section method which scans a
light stripe from head to toe, so that measuring time is longer than other systems.
Treleaven [76] reported a whole body scanner and its applications using multi-
ple projector-camera pairs. The projector-camera system, which is the product
of (TC)2, is consisted of six projector-camera pairs. Each projector-camera pair
is assigned around a subject. The system acquires two hundred thousand points
located on the subject’s surface within 10 seconds. However, there are not enough
viewpoints to capture whole human body data due to occlusion.

In this chapter, a compact and high speed human body measurement system is
proposed. Four projector-camera pairs are installed in a pole as a measuring unit
which covers the range from head to toe. Each pair captures partial body data in
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Figure 4.1: Projector-camera pair.

0.5 seconds with 2.0 mm measurement accuracy. Three pole units which have a
total of twelve projector-camera pairs are assigned around a subject. Two of them
are positioned diagonally forward right and left, and the other one is positioned
backward. The system acquires whole human body data in 2 seconds with 1.88
mm measurement accuracy.

4.2 Human Body Measurement System

In this section, we present a method for shape reconstruction of entire body using
multiple projector-camera pairs. The small number of projector-camera pairs can-
not completely cover entire body and resolve occlusion problem. In addition, it is
preferable to finish the measurement in the shortest possible time, because body
sway of a subject affects measurement accuracy. In our system, whole human
body data is captured from multiple viewpoints by simultaneously measuring.

4.2.1 Projector-Camera Pair

Fig. 4.1 is the structured light system consisting of one camera and one projector.
This system captures range data in 0.5 seconds with 6 mm focal length, 640 ×
480 pixels, and 256 light stripes by the space encoding method [53, 54]. The light
stripes based on the gray coded pattern are generated by scanning and switching
of a single light stripe emitted from the semiconductor laser. The wavelength
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: 8-bit gray coded patterns.

and power of the laser light are 650 nm and 50 mW, respectively. Using 650 nm
bandpass filter, the projector-camera pair is insensitive to illuminations such as
fluorescent lights. The measurement error is within 2.0 mm when a target object
is located one meter ahead. Fig. 4.2 is the projection of 8-bit gray coded patterns.
From (a) to (h), lighted and obscured regions are decreased in width eight times.
To simplify the explanation of the algorithm, we indicate 4-bit gray coded patterns
in the Table 4.1. Pattern (a), (b), (c), (d) obtain two, three, five, nine horizontal
regions, either lighted or obscured region, and indicate first, second, third, fourth
bit as a bit sequence. Here, 0 is denoted by lighted region and 1 is obscured region.
This four-digit gray code is converted to decimal numbers corresponding to light
stripes from 0 to 15. It means that 4-bit gray coded patterns generate 16 light
stripes. Of course, 8-bit gray coded patterns generate 256 light patterns in the
same way. Each light stripe has the Hamming distance of one between adjacent
light stripes, so that it is robust to decoding error.
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Table 4.1: 4-bit gray encoding and decoding.

Patten (a) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Patten (b) 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
Patten (c) 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
Patten (d) 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
Light stripe 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4.2.2 Pole Unit

In our system, four projector-camera pairs are installed in a pole and they are used
as a measuring unit. Fig. 4.3 is the drawing of pole unit. For each projector-
camera pair, the projector is assigned over the camera. The baseline which is the
distance between the camera and the projector is 330 mm. The control computer
with Intel D865GRH motherboard, Pentium 4 2.4GHz, 512MB memory is in-
stalled in the pole unit. Fig. 4.4 is the pole unit and control computer. The pole
unit is 300 mm wide, 265 mm long, 2135 mm high, and 30 kg weight. The mea-
surement range is 800 mm wide and 1800 mm high when a target object is located
one meter ahead. It is much wider than the range of one projector-camera pair.
Each projector-camera pair is connected to control computer through two USB 2.0
cables. The computer synchronizes the actions of the camera and projector, and
generates range data from four sets of color images and stripe images. Fig. 4.5 is
the measurement result of a man by using one pole unit. Here, left figure shows
texture representation and right figure shows point cloud representation. The pole
unit acquires range data from head to toe. Therefore, range data of an entire body
can be captured by using two or more pole units.

4.2.3 System Configuration

Let us consider human body measurement and its occlusion problem. The large
number of projector-camera pairs can capture range data of an entire body, but
their measurement ranges are severely overlapped. In contrast, the small number
of projector-camera pairs cannot cover well particular body parts, such as the sub-
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Figure 4.3: Drawing of pole unit.

mental region, axillary region, groin region, and side of a human body. Therefore,
we appropriately assign multiple projector-camera pairs around a subject.

Fig. 4.6 is the human body measurement system consisted of three pole units.
Twelve projector-camera pairs allow shape reconstruction of entire body. The
system is 1200 mm wide and 2000 mm long to cover both men and women in
standard proportions. The distance between the pole unit and a subject is approx-
imately 1000 mm and the measurement range is 800 mm round. The number of
measuring points is about 1/2 to one million depending on the subject and its pose.
The three pole units are movable to change the measurement range. The measure-
ment accuracy is improved by increasing the number of pole units. In contrast, the



3D HUMAN BODY MEASUREMENT 49

Figure 4.4: Pole unit and control computer.

Figure 4.5: Measurement result of a man by one pole unit.

installation space is reduced by decreasing the number of pole units. Therefore,
we freely construct the system according to the circumstances.

4.2.4 Measurement Time

During the measurement, subjects need to retain posture as still as possible. The
body sways increase every second, so that the measurement should be finished
within one second, preferably in real time. If we operate a total of twelve projector-
camera pairs one by one, the measurement time will be lengthened. And if we
operate some projector-camera pairs simultaneously, range data will not be ac-
quired due to light interference. Fig. 4.7 is the timing diagram. Here, three pole
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Figure 4.6: Human body measurement system.

Figure 4.7: Timing diagram.

units are indicated by A, B, C, and four projector-camera pair of the pole unit are
numbered from top to bottom. Two or four projector-camera pairs are used simul-
taneously, so that whole human body data is captured only four times. In timing
I, four projector-camera pairs, i.e. A1, A3, C2, C4 differ in height and opposite
each other, so that we can avoid light interference. Since the measurement time
for each timing is 0.5 seconds, the measurement time is approximately 2 seconds.
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Figure 4.8: Integration into world coordinate system.

4.3 Calibration

In this section, we present calibration method of a projector-camera pair and its
coordinate system alignment. For the projector-camera pair, the camera parame-
ters are estimated by Tsai’s method and the projector parameters are determined
by mechanical specification. After that, coordinate systems of projector-camera
pairs are integrated together.

4.3.1 Projector-Camera Pair

The projector-camera pair consists of one camera and one projector. The cam-
era model is based on the pinhole model. The camera parameters, i.e. intrinsic,
extrinsic, and radial distortion parameters, are obtained by Tsai’s method [70].
The projector model is based on the baseline model. The baseline is defined by
product drawing and the projection angles are computed by clock speed of the
polygon mirror. Therefore, the projector-camera pair allows us to capture range
data by triangulation principle in the camera coordinate system.

4.3.2 Coordinate System Alignment

The human body measurement system is consisted of three pole units with twelve
projector-camera pairs. Each projector-camera pair is represented in the camera
coordinate system, so that twelve camera coordinate systems are integrated into
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the world coordinate system as shown in Fig. 4.8. For the coordinate system align-
ment, calibration object which is represented in the world coordinate system such
as a cylinder and a cube is required. Here, a 3D point, i.e. camera coordinates,
Mc is denoted by [xc, yc, zc] in the camera coordinate system (Oc-Xc-Yc-Zc), and
a 3D point, i.e. world coordinates, Mw is denoted by [xw, yw, zw] in the world
coordinate system (Ow-Xw-Yw-Zw). The affine transformation which transforms
the camera coordinates to the world coordinates is given by

M̃w = HaM̃c , (4.1)

with Ha =




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

0 0 0 1



,

where Ha is the affine transformation matrix. The tilde indicates the homoge-
neous coordinate by adding 1 for the additional element: M̃c = [xc, yc, zc, 1] and
M̃w = [xw, yw, zw, 1]. Affine transformation which has a total of 12 degrees of
freedom encapsulates Euclid transformation which has a total of 6 degrees of
freedom describing rotation and translation. The twelve parameters [h11, . . . , h34]

can be estimated by the least square method at least four camera coordinates. To
achieve accurate range data, it is necessary to use a lot of camera coordinates.
Since twelve camera coordinate systems are integrated into the world coordinate
system, the system captures whole human body data. The assignment and the
number of pole units have no constraints as long as all of projector-camera pairs
observe a calibration object.

4.4 Experimental Results

The data is captured by our human body measurement system consisting of three
pole units with twelve projector-camera pairs. We calibrated the system in two
separate steps, and then evaluated the system using representative projector-camera
pairs. Furthermore, three subjects are measured to indicate the performance of the
system.
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Figure 4.9: Calibration cylinder.

4.4.1 Calibration

The calibration method incorporates two separate stages: projector-camera pair
calibration and coordinate system alignment calibration. The camera and pro-
jector parameters of twelve projector-camera pairs are estimated, and then their
camera coordinate systems are integrated to the world coordinate system. The
world coordinate system need to be defined on a cubic object to perform Tsai’s
method and estimate the affine transformation matrix. Thus, we utilize the cali-
bration cylinder with 415 mm round and 1800 mm height as shown in Fig. 4.9.
The cylinder is slightly similar in form and size to a subject compared to cubes
and cones, so that it is expected to improve the measurement accuracy. The pole
units are located around the cylinder to observe the curved surface at any views.
The calibration cylinder contains a checkered pattern, i.e. line segments, with 50
mm horizontal and vertical intervals whose vertices are invisible by erasing a part
of lines. The calibration point is detected as the intersection of two straight lines,
one of which is fitted to two horizontal line segments and the other one of which
is fitted to two vertical segments. Finally, about 80 to 100 calibration points are
used for the calibration process.
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Figure 4.10: Measurement result of the cylinder.

Figure 4.11: Horizontal cross-section. Figure 4.12: Vertical cross-section.
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Table 4.2: Measurement accuracy of human body measurement system.

Calibration points 33
Average error [mm] 1.88
Standard deviation [mm] 0.79

4.4.2 Evaluation

We evaluated the measurement accuracy using the calibration cylinder. Fig. 4.10
is the measurement result of the cylinder captured by two projector-camera pairs.
In the figure, the symbol, a, indicates the horizontal cross-section and the symbol,
b, indicates the vertical cross-section. Here, a 3D point captured by left projector-
camera pair is denoted by Ml

w and a 3D point captured by right projector-camera
pair is denoted by Mr

w. The measurement accuracy which is defined by observing
same calibration points from two projector-camera pairs is given by

Eh =
1

Nh

Nh∑

k=1

‖Ml
w,k −Mr

w,k‖ , (4.2)

where Nh is the number of calibration points. Table 4.2 shows the measurement
accuracy of the human body measurement system. We used 33 calibration points
and obtained the result with 1.88 mm average error and 0.79 mm standard devia-
tion. The error is within 0.2 percent of the distance to a subject. Fig. 4.11 is the
horizontal cross-section of the cylinder. The overlapped range of two projector-
camera pairs is xw = −130 ∼ 130 mm. Subjectively, mapped points are depicted
as a smooth curve. Fig. 4.12 is the vertical cross-section of the cylinder. The ideal
value is yw = 0 mm. Almost mapped points are distributed around yw = −2 ∼ 2

mm. However, on both zw = 0 ∼ 200 mm and zw = 700 ∼ 900 mm, mapped
points are distorted due to radial lens distortion. It turns out that the maximum
error is approximately 6 mm.
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front

back

Figure 4.13: Measurement result of a mannequin.

4.4.3 Measurement

Three subjects, i.e. 165 cm tall mannequin, 175 cm tall man, and 173 cm tall
clothed man, are measured by our system. Fig. 4.13 is the measurement result of
a mannequin. The system successfully acquires range data of entire body, espe-
cially occluded parts, i.e. the submental region, axillary region, groin region, and
side of a human body. Fig. 4.14 is the measurement result of a man. The body
sways increase gradually when capturing, but the system remains nearly unaf-
fected because of simultaneously measuring. Fig. 4.15 is the measurement result
of a clothed man. The system mostly acquires range data of head hair and clothes
which are difficult to measure due to low reflectance of structured lights emitted
from the projector.
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front

back

Figure 4.14: Measurement result of a man.

We consider the effect of a structured light on retina of the eye. In our system,
the structured light is emitted from class 3B semiconductor laser. Even if the
distance between the laser and the eye is 50 mm, the energy density incident upon
the pupil is thousandth less legal standard. Since the structured light is generated
by expanding the laser beam and scanning it at high speed, the irradiance level per
unit area per unit time is substantially below.

4.5 Discussion and Conclusion

We developed a human body measurement system using multiple viewpoints. Al-
though the projector-camera pair captures accurate range data, the measurement
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front

back

Figure 4.15: Measurement result of a clothed man.

range cannot cover entire body. In addition, it is difficult to measure occluded
parts, especially the submental region, axillary region, groin region, and side of a
human body. Therefore, we use multiple projector-camera pairs to obtain whole
human body data. First, four projector-camera pairs are installed in pole unit.
Then, human body measurement system consists of three pole units with twelve
projector-camera pairs. The system captures range data of entire body including
about 1/2 to one million points in 2 seconds with 1.88 mm average error. The
result is within 0.2 percent of the distance to a subject. Unlike other human body
measurement systems, the system configuration can be changed freely. Specifi-
cally, the pole units are movable to change the measuring range depending on the
subject and its pose. The measurement accuracy is improved by increasing the
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number of pole units, and also the installation space is reduced by decreasing the
number of pole units. However, it is required to perform the calibration whenever
the pole units are moved. The operator takes much time and energy for this task.
Therefore, a robust and fully automatic calibration method is needed for accurate
measurement.





Chapter 5

Human Gait Recognition

5.1 Introduction

Gait recognition aims for personal identification based on walking style. Recog-
nition based on human gait has several advantages as a contactless, exposed,
and characteristic biometrics. If the habit of walking is changed consciously,
the motion seems unnatural. In addition, gait involves not only surface shape,
called static feature, but also continuous motion, called dynamic feature. Nixon
et al. [77, 78] introduced a total walking cycle defined that the action of walk-
ing can be thought of as a periodic signal. The gait cycle is the time interval
between instances of initial foot-to-floor contact, called heel strike, for the same
foot. Each leg has two periods: swing phase, when the foot is off the floor moving
forward to the next step, and stance phase, when the foot is in contact with the

61
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floor. In the medical field, Murray et al. [79] introduced standard movement pat-
terns of healthy subjects compared to disabled subjects pathologically. For data
collection, required markers are attached to anatomical landmarks of human body.
They advocate that the pelvic and thorax rotations are highly variable from one
subject to another.

Single-camera based gait recognition methods have been investigated. Usu-
ally, they use a silhouette image extracted by background subtraction. Liu and
Sarkar [80] developed hidden Markov model-based gait representation by esti-
mating the stance state and then averaging silhouette images. Goffredo et al. [81]
developed view-independent markerless gait analysis based on the anthropometric
propositions of human limbs and the characteristics of gait. To overcome the non-
frontal pose problem more recently multi-camera based gait recognition methods
have also been developed. These methods exhibited higher recognition accuracy
for multi views than that of a single view. Zhao et al. [82] presented gait tracking
and recognition by matching 3D body model to video sequences. Gait feature is
defined by the lengths of key segments and the motion trajectory of lower limbs
which is obtained from the inferred model. Huang et al. [83] presented the ex-
ploitation of the availability of multi views in a gait recognition system. The com-
bination of the results of different views is evaluated to find the improvement in
the recognition accuracy. Seely et al. [84] presented the University of Southamp-
ton Multi-Biometrics Tunnel. The subject’s gait is recorded by eight synchronized
cameras, and also the face and ear are captured by two videos separately.

Similarly, full body motion capture methods extract a gait feature by identify-
ing joint angles and lengths of body parts. Unlike gait recognition methods, the
effectiveness and correctness of the inference and extraction are verified across
time. Mikić et al. [85] generated a fully automated system for human body model
acquisition and tracking using multiple cameras. The system performs the track-
ing on 3D voxel reconstructions computed from silhouette images. Kalman filter
estimates body model parameters based on the measurements made on the labeled
voxel data. Deutscher and Reid [86] generated a modified particle filter for search-
ing high-dimensional configuration spaces encountered in visual tracking. Artic-
ulated body motion is estimated from simple image features, which are combined
with the edge and the silhouette likelihood measures, in video sequences. Yang
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and Lee [87] generated a hierarchical search method for recovering human body
pose from stereo image sequences. The method searches a cluster for the best
matching silhouette image with an input silhouette history image. Human body
pose is reconstructed with a linear combination of input range data of a subject.
Cheung et al. [88, 89] proposed the theory and algorithms for performing tem-
poral shape-from-silhouette in the applications of human modeling and motion
tracking. The algorithm is based on the Visual Hull alignment algorithm and uti-
lizes both color and silhouette video sequences. Kehl and Gool [90] proposed an
algorithm capable of tracking a person’s full body pose during complex motions.
The algorithm performs volumetric reconstruction using edges and color infor-
mation. The articulated model built from super ellipsoids is matched against the
image edges and color to overcome ambiguous situations such as touching limbs
or strong occlusion. Caillette et al. [91] proposed a full body tracker based on
Monte-Carlo Bayesian framework. The volumetric reconstruction method follows
shape-from-silhouette paradigm. The appearance model represented by Gaussian
blobs is fitted onto voxels using the K-means algorithm. The voxels are assigned
to the nearest blob using Mahalanobis distances between blobs and voxels using
both color and position. Horaud et al. [92] proposed a new metric to register a
model surface to body data. The model surface of ellipsoids is used to represent
body parts, and the body data include point and normal vectors. The metric is
defined by the Euclidean distance from the ellipsoid-point to the data-point under
the constraint that the ellipsoid-normal and the data-normal are parallel. While
multi-camera systems can obtain 3D gait biometrics in real time, the low resolu-
tion, low accuracy, and the small number of measuring points are not well suited
and qualified to make precise models. In addition, it is important to determine the
number of cameras and its assignment in the system.

5.2 Related Work

Biometrics systems generally use single or multi-camera, and extract individual
features for human recognition. They are successfully gaining ground and are
available for security applications. Recently, biometrics modalities with depth
information are an attractive resource. Range scanners have become popular in-
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Table 5.1: Comparisons of biometrics approaches for human recognition.

Authors System Dimension Biometrics
Mul-Cam Pro-Cam 2D 3D

Liu and Sarkar [80]
√ √

Gait
Goffredo et al. [81]

√ √
Gait

Zhao et al. [82]
√ √

Gait
Huang et al. [83]

√ √
Gait

Seely et al. [84]
√ √

Gait
Kakadiaris et al. [93]

√ √
Face

Samir et al. [94]
√ √

Face
Woodard and Flynn [95]

√ √
Finger

Malassiotis et al. [96]
√ √

Finger
Chen and Bhanu [97]

√ √
Ear

Yan and Bowyer [98]
√ √

Ear
Tsalakanidou et al. [99]

√ √
Face & Finger

Theoharis et al. [100]
√ √

Face & Ear
This thesis

√ √
Gait

creasing the measurement accuracy and speed. The following are representative
recognition approaches using 3D biometrics.

Kakadiaris et al. [93] developed a fully automatic 3D face recognition sys-
tem based on a composite alignment algorithm to register 3D facial scans with
a 3D facial model. The geometry image and normal map image are created by
the deformed facial model. They are analyzed by a wavelet transform and the
coefficients are used for authentication. Samir et al. [94] developed a geomet-
ric approach for comparing the shapes of facial surfaces via the shapes of facial
curves. The facial surface is represented by a union of level curves of the height
function. The metric on shapes of facial surfaces is derived by accumulating dis-
tances between corresponding facial curves.

Woodard and Flynn [95] presented a approach for personal identification and
identity verification which utilize 3D finger surface features. Three fingers, i.e.
the index, middle, and ring finger, are used for comparison to determine subject
similarity. To compute a match score, curvature based shape index is used to
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represent the finder’s surface. Malassiotis et al. [96] presented an authentication
system based on measurements of 3D finger geometry using a real-time and low-
cost sensor. The similarity between training and testing set are computed by the
finger width and curvature measurements sampled by the finger length.

Chen and Bhanu [97] proposed a complete human recognition system using
3D ear biometrics. The ear helix/antihelix representation and the local surface
patch representation are used to estimate the initial rigid transformation between
a gallery-probe pair. A modified iterative closest point algorithm is performed to
iteratively refine this transformation. Yan and Bowyer [98] proposed a fully auto-
matic ear biometrics system including automated ear region segmentation and 3D
ear shape matching for recognition. The system uses an improved interactive clos-
est point method, combined with point-to-point and point-to-surface approaches,
to align a probe surface with a gallery surface.

Multimodal 3D biometrics approaches have been developed in recent years.
Tsalakanidou et al. [99] presented an authentication system based on the fusion of
3D face and finger biometrics. Theoharis et al. [100] presented a unified approach
to fuse 3D facial and ear data. These methods achieve high recognition rate when
compared to a single modality approach.

As compared to all the works presented in Table 5.1, there are various ap-
proaches for 2D and 3D biometrics. Here, Mul-Cam indicates a single or multi-
camera system and Pro-Cam indicates a projector-camera system. While bio-
metrics approaches using 3D face, finger, ear, and their multimodal data have
been proposed, gait recognition methods still utilize video sequences. Therefore,
we attempt to tackle human recognition using 3D gait biometrics where both the
modeling and the test data are obtained in 3D.

In this chapter, we present a recognition method using 3D gait biometrics
from a projector-camera system. 3D human body data consisting of represen-
tative poses over one gait cycle are captured. 3D human body model is fitted to
the body data using a bottom-up approach. Since the body data is dense and it
is at a high resolution, we can interpolate the entire sequence to fill in between
gait acquisitions. Gait features are defined by both dynamic features and static
features. The similarity measure based on gait features is used for recognition of
a subject and its pose.
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Figure 5.1: Gait cycle expressed by swing phase and stance phase.

5.3 3D Human Body Data

Gait has two distinct periods: a swing phase, when the foot does not touch the
ground moving the leg forward, and a stance phase, when the foot touches the
ground. Fig. 5.1 is the gait cycle expressed by the swing phase and the stance
phase. The cycle begins with foot touch which marks the start of the swing phase.
The body weight is transferred onto the other leg and the leg swings forward to
meet the ground in front of the other foot. The cycle ends with the foot touch. The
start of stance phase is when the heel strikes the ground. The ankle flexes to bring
the foot flat on the ground and the body weight transferred onto it. The end of
stance phase is when the heel leaves the ground.

We measure four poses during the cycle by a projector-camera system. The
human body measurement system captures high resolution and highly accurate
range data of entire body. It includes approximately one million points in a cou-
ple of seconds. Here, a 3D point, i.e. model coordinates, Mm is denoted by
[xm, ym, zm] in the model coordinate system (Om-Xm-Ym-Zm). A subject has the
following posture conditions:

1. Right foot touches the ground. Right leg (left hand) is in front of the torso
and left leg (right hand) is at the back of the torso. The length of stride is
the longest during walking.

2. Right foot touches the ground and left foot leaves the ground. Right leg is
vertical to the ground and left leg is at the back of the torso. Both hands are
along the sides.
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(a) Tapered cylinder (b) Kinematic model (c) Hierarchical structure

Figure 5.2: 3D human body model.

3. Left foot touches the ground. Left leg (right hand) is in front of the torso
and right leg (left hand) is at the back of the torso. The length of stride is
the longest during walking.

4. Left foot touches the ground and right foot leaves the ground. Left leg is
vertical to the ground and right leg is at the back of the torso. Both hands
are along the sides.

Currently, gait databases have tens of images during a gait cycle [101, 102].
We assumed that the measured poses are four of them.

5.4 3D Human Body Model

The model of the human body is based on a kinematic tree consisting of 12 seg-
ments, as illustrated in Fig. 5.2. The body segment, r, is approximated by a 3D
tapered cylinder which has one free parameter, ιr: the cylinder length. It has two
degrees of freedom rotational joint, [θrx, θ

r
z], in the local coordinate system (Or-

Xr-Yr-Zr). Upper torso is the root segment, i.e. the parent of lower torso, right
upper leg, and left upper leg. Similarly, other segments are linked to parent seg-
ments by the rotational joints. Table 5.2 shows the bounding angles of rotational
joints. The constraints are enforced under the form of bounding values on the
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Table 5.2: Bounding angles of rotational joints.

Parts ID Description Xr-axis Yr-axis Zr-axis Parent
0 Whole body [−π, π] [−π, π] [−π, π] Root
1 Upper torso [−π/2, π/2] [−0, 0] [−π/2, π/2] 0
2 Neck [−0, 0] [−0, 0] [−0, 0] 1
3 Head [−π/2, π/2] [−0, 0] [−π/2, π/2] 2
4 Right upper arm [−π/6, π/6] [−0, 0] [−π/18, π/18] 1
5 Right lower arm [−π/4, π/4] [−0, 0] [−π/18, π/18] 4
6 Left upper arm [−π/6, π/6] [−0, 0] [−π/18, π/18] 1
7 Left lower arm [−π/4, π/4] [−0, 0] [−π/18, π/18] 6
8 Lower torso [−π/2, π/2] [−0, 0] [−π/2, π/2] 0
9 Right upper leg [−π/4, π/4] [−0, 0] [−π/18, π/18] 8

10 Right lower leg [−π/6, π/6] [−0, 0] [−π/18, π/18] 9
11 Left upper leg [−π/4, π/4] [−0, 0] [−π/18, π/18] 8
12 Left lower leg [−π/6, π/6] [−0, 0] [−π/18, π/18] 11

joint angles. But, the model has enough range of movement to represent various
poses. The whole body is rotated around three axes and other segments are rotated
around two axes. Here, neck is the fixed segment between head and upper torso,
so that we do not consider the neck joint angles.

The articulated structure of the human body has a total of 40 degrees of free-
dom (DOFs). The pose is described by a 6-D vector, p, representing global po-
sition and rotation, a 22-D vector, q, representing the joint angles, and a 12-D
vector, r, representing the lengths of body part as follows.

p = [τ 0
x , τ

0
y , τ

0
z , θ

0
x, θ

0
y, θ

0
z ] , (5.1)

q = [θ1
x, θ

1
z , θ

3
x, θ

3
z , θ

4
x, θ

4
z , θ

5
x, θ

5
z , θ

6
x, θ

6
z , θ

7
x, θ

7
z ,

θ8
x, θ

8
z , θ

9
x, θ

9
z , θ

10
x , θ

10
z , θ

11
x , θ

11
z , θ

12
x , θ

12
z ] , (5.2)

r = [ι1, ι2, ι3, ι4, ι5, ι6, ι7, ι8, ι9, ι10, ι11, ι12] . (5.3)

The combination of the representative four poses is denoted by s. Joint DOF
values concatenated along the kinematic tree define the kinematic pose, k, as a
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tuple, [p, q, r, s], where p ∈ R6, q ∈ R22, r ∈ R12, s = {s1, s2, s3, s4}. In the
previous works, segments are linked to parent segments by either 1-DOF (hinge),
2-DOF (saddle) or 3-DOF (ball and socket) rotational joints [103]. We use only
2-DOF rotational joints, because the 3D tapered cylinder has rotational symmetry
along the direction orthogonal to the radial direction. As a result, we eliminate the
twist of body parts as a unnecessary variable.

5.5 Model Fitting

Let us consider human body modeling and its problems. Modeling methods,
which use ideal data, sometimes fail when applied to real data [104]. The real
data captured by projector-camera systems have some problems. For example,
the projector-camera system cannot cover well particular body parts, such as the
submental region, axillary region, groin region, and side of a human body, so
that the real data are not independently and identically distributed [105]. In addi-
tion, the body sways and deep color clothes also have detrimental effects such as
holes and gaps. In this section, a modeling method for dealing with the problems
occurring in real data is proposed. Our approach to modeling a walking human
incorporates four separate steps: body axes estimation, torso detection, arms/legs
detection, and head/neck detection.

5.5.1 Body Axes

The intuition behind the principal component analysis (PCA) is to find a set
of base vectors, so that they explain the maximum amount of variance of the
data [106]. PCA is applied to determine coronal axis (Xm-axis), vertical axis
(Ym-axis), and sagittal axis (Zm-axis), as illustrated in Fig. 5.3. Our approach to
determining the three axes and the centroid incorporates two separate steps. First,
we compute the eigenvectors and the mean vector using whole human body data.
The first eigenvector, e1, and the mean vector, e0, define the vertical axis and the
centroid. The range data of arms and legs do not affect the estimation of the ver-
tical axis and the centroid adversely because they are at symmetric positions in
a horizontal direction. Second, we compute the eigenvectors using the extracted
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Figure 5.3: Body axes estimation by PCA.

range data of torso after torso detection. The second eigenvector, e’2, and the
third eigenvector, e’3, define the coronal axis and the sagittal axis, respectively.
The range data of torso is convex and has symmetrical shape even if a subject is
walking, so that the two axes can be estimated robustly.

Here, a captured 3D point which is obtained by the human body measure-
ment system is world coordinates and a normalized 3D point which is defined by
the three axes and the centroid is model coordinates. The normalization which
transforms world coordinates to model coordinates can be written as

Mm =
[

e’2 u2 e’3

]−1 [
u1 e1 u3

]−1

(Mw − e0) , (5.4)

with u1 = [1, 0, 0] u2 = [0, 1, 0] u3 = [0, 0, 1] .

Regardless of subject’s pose, head and torso face forward and arms and legs swing
back and forth. In addition, the model coordinate system is represented by asso-
ciating the coronal axis, the vertical axis, the sagittal axis, and the centroid with
Xm-axis, Ym-axis, Zm-axis, and the origin Om.

5.5.2 Torso

We use the cross-section of a human body to detect upper torso and lower torso.
Usually, body data has some holes and gaps, so that the sampling and interpolation
process for the extraction of cross-section are required. First, the cross-section is
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divided into R regions radiating from a 3D point, wh, which is the intersection
of the Ym-axis, with the Xm-Zm plane. Here, the index h corresponds to the
body height. For each region, the closest point from the intersection point is left
and the others are removed. If there are no points, one linear interpolated point
is calculated using the neighbors. Next, the sample points are connected by the
line segments. The area inside the line segments defined by al are used for the
detection of upper torso and lower torso. The height of the centroid is denoted
by g. We assume the cross-sectional area, ag, is the boundary between the upper
torso and lower torso.

The cross-sectional area of the top of upper torso, aξ, and the cross-sectional
area of the base of lower torso, aζ , are given by

aξ = δutag , (5.5)

aζ = δltag , (5.6)

where δut and δlt are height parameters. We compute all the cross-sectional areas,
and then search for the similar values in a vertical direction. When al is smaller
than aξ (or aζ), l is the height of the top of the upper torso (or the base of the lower
torso). Then, directional vectors, nut and nlt, of upper torso and lower torso are
given by

nut = median(
wh − wg

‖wh − wg‖) g < h ≤ ξ , (5.7)

nlt = median(
wh − wg

‖wh − wg‖) ζ ≤ h < g . (5.8)

The joint angles of upper torso and lower torso are obtained by the directional
vectors. One is the angle between nut (or nlt) and the Xm-axis, and the other is
the angle between nut (or nlt) and the Zm-axis. Therefore, tapered cylinders can
be fitted along the directional vectors.



72 HUMAN GAIT RECOGNITION

5.5.3 Arms and Legs

We use the fitting of tapered cylinders to detect arms and legs. In this subsection,
right/left-upper/lower-arm and right/left-upper/lower-leg are detected by using the
same method. Thus, the detection of two of them, which are called the upper part

and the lower part (e.g. right upper arm and right lower arm), takes place. The line
segments between the top and base of the cylinders of the upper part and lower
part are defined as Lup = {oup+λnup | λ ∈ R3} and Llp = {olp+λnlp | λ ∈ R3}.
Here, oup and olp are joint points (shoulder and elbow, or hip and knee). nup and
nlp are the corresponding directional vectors, which are used as nrua and nrla for
the right arm, and nrul and nrll for the right leg. The distance between the line
segment and model coordinates can be written as

dup =
∑

Mup∈upper part(Mm)

‖Mup − oup +
Mupnup − oupnup

nupnup
nup‖2 , (5.9)

dlp =
∑

Mlp∈lower part(Mm)

‖Mlp − olp +
Mlpnlp − olpnlp

nlpnlp
nlp‖2 , (5.10)

where Mup and Mlp are the model coordinates within each of the parts. We first
seek the direction vectors to minimize each of the functions, and then two sets of
two joint angles are estimated from the directional vectors. Accordingly, tapered
cylinders can be fitted to the arms and legs along the directional vectors.

5.5.4 Head and Neck

Let us consider the difference between head and the other body parts. In the
measurement of the head, it is sometimes difficult to capture the shape of hair
on the head, because of the low sensitivities to deep color. Therefore, face shape
and neck shape are used for the detection. First, the sizes of head and neck are
estimated from the distribution of mapped points in the Xm-Ym plane and Ym-Zm
plane. Next, the directional vector of head, denoted by nh, is determined, and then
tapered cylinder is fitted to the head. As stated above, neck does not rotate in our
model independently, so that neck’s tapered cylinder is placed on upper torso.
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5.6 Gait Reconstruction

Gait sequence composed of tens or hundreds of poses is required to analyze and
recognize. The representative four poses obtained by fitting body models to body
data are used to recover the other poses. Assuming that the motion between pose
α and pose β varies linearly, kinematic pose, kf = [pf ,qf , rf , s], at frame f
(α < f < β) can be written as

pf = pα + (f − α)v , (5.11)

qf = qα +
f − α
β − α(qβ − qα) , (5.12)

rf = (rs1 + rs2 + rs3 + rs4)/4 , (5.13)

where v is velocity vector which includes speed and direction, and combination
of α and β is expressed by {α, β} ∈ {{s1, s2}, {s2, s3}, {s3, s4}, {s4, s1}}. The
equations allow interpolation of joint angles and lengths of body parts. Therefore,
arbitrary poses between representative poses can be recovered.

5.7 Feature Matching

Gait features are divided into two types: (a) dynamic features and (b) static fea-
tures. For example, the length of stride is one of significant features of human
gait. It can be computed by the leg length and its varying angles between poses.
In addition, all of joint positions can be computed by using the same method.
Therefore, both dynamic feature and static feature are used for recognition. We
define the dynamic feature as joint angles, qm,n, and static feature as lengths of
the body parts, rm,n. Here, m is the personal identification number, and n is the
pose index. To transform these values into a common domain, the normalization
is given by
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q′m,n =
qm,n − µq

σq
, (5.14)

r′m,n =
rm,n − µr
σr

, (5.15)

where µq =
1

M

1

N

M∑
m

N∑
n

qm,n µr =
1

M

1

N

M∑
m

N∑
n

rm,n ,

σq = (
1

M

1

N

M∑
m

N∑
n

(qm,n − µq)(qm,n − µq)T · E)1/2 · d ,

σr = (
1

M

1

N

M∑
m

N∑
n

(rm,n − µr)(rm,n − µr)T · E)1/2 · d .

In the formulations, µq, µr are the arithmetic means of dynamic and static fea-
tures, and σq, σr are the standard deviations of dynamic and static features, M , N
are the numbers of people and poses, with the matrix E = diag(1, 1, 1, . . . , 1) and
the vector d = [1, 1, 1, . . . , 1]. Both features are concatenated on a feature vector
φm,n = [q′m,n, r′m,n]. If dynamic feature is only used, a feature vector is defined
as φm,n = [q′m,n]. Suppose that unknown feature vector, φU , is one of M × N

feature vectors, φm,n. The minimum value of matching scores can be written as

Er = min
m,n
‖φU − φm,n‖ . (5.16)

The matching score is computed as L2 distance. For unknown data, the personal
identification number and pose index are recognized.

5.8 Experimental Results

The experiments were performed on the body data set collected by the human
body measurement system. It contains twenty-four body data from the represen-
tative four poses of six subjects X ∈ {A,B,C,D,E, F}.
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Subject A Subject B

Subject C Subject D

Subject E Subject F

Figure 5.4: 3D human body data of walking humans.

5.8.1 Sensing and Modeling

The body data of representative poses are captured by a human body measurement
system, Cartesia 3D Body Scanner of SPACEVISION. The system consisted of
nine projector-camera pairs, which acquires nine range data in 3.6 seconds with
640 × 480 pixels, 3 mm depth resolution, and 3 mm measurement accuracy. We
have developed this commercial product based on research results achieved up
to now. Projector-camera pairs are calibrated by the proposed geometric model
and calibration method in Chapter 4 and their camera coordinate systems are in-
tegrated by the improved alignment approach in Chapter 5. Fig. 5.4 is the mea-
surement results of walking humans. The number of measuring points is about
1/2 to one million depending on the subject and the pose. Fig. 5.5 is the results of
human body modeling. For the modeling in the experiment we used three param-
eters: R = 36, δut = 0.25, and δlt = 0.5. The body model is fitted to the captured
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Subject A Subject B

Subject C Subject D

Subject E Subject F

Figure 5.5: 3D human body model fitted to four poses.

body data, so that their joint angles and lengths of body parts are obtained.

5.8.2 Gait Reconstruction

Fig. 5.6 is the results of gait reconstruction. We define that the one gait cycle is
composed of twenty frames Y ∈ {1, 2, . . . , 20}. The speed is given by dividing
the stride length by the number of poses and the direction is given manually. Four
of them are representative poses, indicated by the frame index 1, 6, 11, and 16, and
the others are interpolated poses, indicated by the frame index 2-5, 7-10, 12-15,
and 17-20.
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Subject A

Subject B

Subject C

Subject D

Subject E

Subject F

Frame # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5.6: Gait sequence composed of twenty frames.

5.8.3 Recognition

The representative poses s = {s1, s2, s3, s4} and their symmetric poses s̄ =

{s̄1, s̄2, s̄3, s̄4} are used for the experiment. The symmetric poses s̄1, s̄2, s̄3, s̄4

are symmetric to s3, s4, s1, s2, respectively. They are synthesized by allocating
right (or left) side parameters of representative poses to left (or right) side param-
eters of symmetrical poses.

For the training data, two gait sequences are recovered by using two com-
binations of representative poses and symmetrical poses. Fig. 5.7(a) shows the
training data of six subjects. One gait sequence is recovered by four poses η1 =

{s1, s̄2, s3, s̄4}, and the other one is recovered by four poses η2 = {s̄1, s2, s̄3, s4}.
Each subject has 40 poses, so that training data contains a total of 240 kinematic
poses.

For the testing data, one gait sequence is recovered by representative poses
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Subject A

Subject B

Subject C

Subject D

Subject E

Subject F

(a) Training data (b) Testing data

Figure 5.7: Examples of training data and testing data.

η3 = {s1, s2, s3, s4}. Fig. 5.7(b) shows the testing data of six subjects. This
sequence includes the representative four poses and sixteen interpolated poses.
The sixteen interpolated poses are unique and also they are not included in the
training data. Therefore, we utilize 96 kinematic poses of six subjects for testing.
There is absolutely no overlap between the training and testing data.

In order to evaluate the proposed method, identification rate and average pose
error are obtained. The identification rate is obtained by dividing the number of
recognized subject by the number of testing data. The pose error is the frame
difference between the estimated pose and the ideal pose. Table 5.3 shows that
we achieve 98.96 percent using dynamic feature and 100.0 percent using both
dynamic and static features for the identification rate. When only dynamic fea-
ture is used, the method fails to recognize testing data Subject D with pose 14
who should not be recognized as the training data for Subject B with pose 13.
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Table 5.3: 3D gait biometrics performance.

Features Identification rate Average pose error
(%) (frame)

Dynamic 98.96 0.41
Dynamic & Static 100.0 1.31

Although body types between two subjects are different, their joint angles, i.e.
leg and arm swings, are quite similar. In contrast, we achieve 0.41 frame using
dynamic feature and 1.31 frame using both features for the average pose error.
The experiment using dynamic feature has acceptable results, because it focuses
on estimating poses, i.e. dynamic feature cannot consider lengths of body parts.
Therefore, both dynamic and static features are useful for gait recognition.

5.8.4 Comparisons

Most of the existing gait recognition methods rely on a single view, i.e. 2D gait
biometrics. To compare 3D gait biometrics with 2D gait biometrics, frontal view
and side view are synthesized from the training data and testing data by ortho-
graphic projection. Fig. 5.8 is the virtual frontal view and side view. For the
frontal view, body segment has one free parameter in the Xm-Ym plane. It has
one degree of freedom rotational joint rotating around Zm-axis. For the side view,
body segment has one free parameter in the Ym-Zm plane. It has one degree of
freedom rotational joint rotating around Xm-axis. Each pose is described by an
11-D vector representing the joint angles, i.e. dynamic feature, and a 12-D vector
representing the lengths of body parts, i.e. static feature. 2D gait biometrics is
used for the following experiment.

Table 5.4 shows that we achieve 93.75 percent, 95.83 percent using dynamic
feature and 100.0 percent, 100.0 percent using both dynamic and static features
for the identification rate. In addition, we achieve 1.42 frame, 0.57 frame using
dynamic feature and 1.49 frame, 1.29 frame using both features for the average
pose error. The experiment using dynamic feature exhibits higher identification
rate for 3D gait biometrics which misclassifies 1 subject than that of 2D gait bio-



80 HUMAN GAIT RECOGNITION

Figure 5.8: Virtual frontal view and side view.

Table 5.4: 2D gait biometrics performance.

View Features Identification rate Average pose error
(%) (frame)

Frontal Dynamic 93.75 1.42
Dynamic & Static 100.0 1.49

Side Dynamic 95.83 0.57
Dynamic & Static 100.0 1.29

metrics, i.e. the frontal view and side view, which misclassifies 6 and 4 subjects,
respectively. In addition, it indicates lower average pose error for 3D gait biomet-
rics, which expresses 29 and 72 percent of the frontal view and side view, than that
of 2D gait biometrics. In contrast, the experiment using dynamic feature and static
feature exhibits the same identification rate and similar average pose error for 3D
gait biometrics and 2D gait biometrics which misclassify 0 subjects with over 1
frame. Although pose estimation is not improved, it indicates both dynamic and
static features provide highly reliable authentication compared to dynamic feature.

5.9 Discussion and Conclusion

We proposed a new approach for biometric authentication based on 3D human
gait. One of the significant weaknesses of current gait recognition methods and
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tracking methods has been lack of enough pixels on the human body to fit the body
model accurately in the video sequences or the range data obtained by a multi-
camera system. In our approach, the body data are captured by a sophisticated
projector-camera system. Unlike the multi-camera passive stereo systems used
to date, the range data including one million points is high resolution and high
accuracy. As a result, the fitted body models and the reconstructed gait sequences
are quite accurate, so that the joint angles and lengths of body parts in a gait cycle,
i.e. dynamic and static features, possess high reliability. Using training and testing
experiments we verified that 3D gait biometrics provide high identification rate to
recognize a human subject and his/her pose. Currently, we focus on the issues of
modeling and database. In the human body modeling, the fitting approach does
not provide matching score, so that we cannot judge whether the fitted model is
appropriate or not. It is necessary to evaluate the fitted model or incorporate the
notation of uncertainty. In the database, there are a total of twenty-four body
data which are consisted of four poses of six subjects. The small size of database
used for the evaluation is insufficient to convince about the efficacy. We intend to
expand our database to collect one hundred subjects at least and make it publicly
available.





Chapter 6

Conclusion and Future Work

6.1 Summary of the Thesis

We presented a framework for range imaging of a human body. The study of this
thesis performed a series of tasks related to calibration, sensing, modeling, and
recognition. Basically, technical parts, i.e. Chapter 3, Chapter 4, and Chapter 5,
are organized in order of four tiers. The first tier is system calibration to estimate
intrinsic and extrinsic parameters representing the geometry of camera and pro-
jector and the relationships among the projector-camera pairs. The second tier is
range sensing to address shape recovery from the images and the lights of single
or multiple projector-camera pairs which are assigned around a target object. The
third tier is body modeling to approximate body data by a simplified body model
indicating the position, length, and volume of main parts of a human body used

83
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as physical features. The fourth tier is feature recognition to address identifying
individuals and their looks through the process of feature matching to retrieve
personal information that is stored in the database. The following are individual
achievements for each part.

The first part of this thesis is the mechanism for calibration of structured light
system. A structured light system consists of one camera and one projector. The
geometric model is defined such that the camera model is based on the pinhole
model and the projector model is based on the equation of a plane model. The
measurement accuracy is improved by 19 to 44 percent compared to traditional
approach. Next, both camera and projector parameters are estimated by observing
a planar object from three arbitrary viewpoints. Unlike other approaches using
cube objects, it facilitates the procedure of user’s tasks.

The second part of this thesis is the formulation of human body measurement
system for acquiring range data of entire body. Projector-camera pair is one of so-
phisticated structured light systems. In our system, four projector-camera pairs are
installed in the pole as a measuring unit. Human body measurement system con-
sists of three pole units with twelve projector-camera pairs. This system obtains
whole human body data including about 1/2 to one million points in 2 seconds
with 1.88 mm average error. We advocate that the high resolution, highly accurate
range data is well suited for security applications.

The third part of this thesis is the introduction of gait biometrics for identifi-
cation of individuals and their poses. Whole human body data which comprises
of representative poses during a gait cycle are captured, and then the positions of
joints and body parts are inferred by fitting kinematic models to data set. Unlike
attempts which utilize silhouette images have been affected by clothing and self-
occlusions, we use range data of entire body to directly extract gait features. In the
experiments, we achieve 98.96 percent using dynamic feature and 100.0 percent
using both dynamic and static features for the identification rate.

We demonstrated human body measurement system consisting of multiple
projector-camera pairs. System calibration is applicable to all of them if refer-
ence plane can be seen from three viewpoints. This flexible calibration does not
depend on the type of projector as far as light stripes are used for the projection.
In addition, range sensing provides high degree of accuracy as experimental re-
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sults verified. The gray coded pattern is utilized for the measurement because
of high speed encoding process and robust decoding process. We proposed gait
recognition method using range data of walking human. Body modeling extracts
physical features by fitting body model to the body data. Our simplistic model fo-
cuses on feature extraction unlike detailed model in the computer graphics field.
Furthermore, feature recognition is performed based on similarity measure for in-
dividual human recognition. Both static feature and dynamic feature are used as a
continuous motion of human gait.

6.2 Future Work and Possible Extensions

Using a large number of projector-camera pairs, the measurement system covers
wide range of the target from small object to large-scale environment. It is appli-
cable to preventing product failures such as car parts which are checked by single
camera against resolution or probe against time. It is also appropriate for protect-
ing cultural assets like sculptures that have been deteriorated over the centuries.
If one hundred or more pairs are assigned in public spaces such as airports and
offices, spatiotemporal recognition based on range data of the scene is realized.
At the same time, it is difficult to capture the data in real time and measure the
target under the sun. The measurement time is improved by increasing the speed
of emitting light stripes of the projector and setting the maximum shutter speed of
the camera. To avoid increased illuminations, we intend to seek out solutions by
using high power laser at various wavelength bands. Overcoming mechanical lim-
itations on the system, the ideas of system calibration and range sensing need to
be changed. Imaginarily, artificial darkness which can be controlled will achieve a
tremendous breakthrough. Unlike switching on the light in a dark room, we push
the button to darken the place in bright light. This way of thinking is unrealizable
in the modern world of technology and science.

As for recognition of walking humans, we are building a large-scale database
of body data, called UCR 3D gait database. The database contains range data,
name, gender, age and assigned ID number. The range data of five selected poses,
i.e. one standing posture and four walking postures, are captured by Cartesia 3D
Body Scanner of SPACEVISION. Currently, we have a total of 150 body data
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Figure 6.1: UCR 3D gait database.

of 30 subjects. Fig. 6.1 is the measurement results of twelve subjects which are
stored in the database. Body data has not only three-dimensional coordinates but
also color information every coordinate. They are used for the study of body mod-
eling and gait recognition to verify the effectiveness of our approach using one
hundred subjects at least. We intend to dismiss some claims that identification
rate on a small database is not appropriate for biometrics authentication. Then,
proposed recognition algorithm based on similarity measure is needed to revise in
several respects. Although dynamic feature and static feature are simply combined
as a feature vector, the extraction of valuable elements, based on principal compo-
nent analysis, overcomes limitations of the algorithm. In addition, linear/multiple
discriminant analysis which distinguishes between two or more groups is useful
for classification of input data. Human gait is attractive modality for recognizing
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people and becoming widely used in surveillance systems. Therefore, the goal is
to establish an automatic gait recognition algorithm on the large-scale database.
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