主 論 文 要 旨

報告番号	甲第号	氏 名	稲森真美子

主 論 文 題 目:
Digital Compensation Schemes for Signal Distortion in OFDM Receivers
（OFDM 受信機における信号歪みのディジタル補正法）

（内容の要旨）
現在、時間や場所を問わずにネットワークに接続するためブロードバンド無線システムが求められ発展し続けている。これらの無線システムの変調方式として Orthogonal Frequency Division Multiplexing (OFDM)が検討されている。一方、受信機側はできるだけ低コストかつ低消費電力で構成する必要がある。しかし、帯域域信頼に対応する受信機はアナログ回路部分の精度が要求され、コストおよび消費電力が増加する。コスト及び消費電力の要求と帯域域性を両立するためにディジタル信号処理による歪み補正が必要である。そこで本論文では OFDM 受信機の高周波部、サブリング部およびベースバンド部において発生する信号歪みを補正するためのディジタル信号処理方程式を検討している。

第 1 章は序論であり、本研究の背景および OFDM 受信機構成とその問題点の概要、並びに本研究の目的と意義を示している。

第 2 章はダイレクトコンバージョン受信機における信号歪み補正について検討している。この受信機は DC オフセット、周波数オフセット、IQ インバランスなどの歪みによりその特性が劣化する。本研究では微分フィルタを使う DC オフセットの影響を軽減する方法を提案する。周波数オフセットは微分フィルタの出力を用いて自己相関により求められる。IQ インバランスは、DC オフセットおよび周波数オフセット存在下において時間軸上で簡易な演算により求められる。しかしながらこの IQ インバランス推定方法では周波数オフセットが小さいときにその推定精度劣化する。そこでこの問題を解決するため、周波数軸上の信号を用いた IQ インバランス推定方法を提案する。IQ インバランス実データ送信部に挿入されたノイズ信号により求められる。シュレーダー結果より提案方法は周波数オフセットが小さい場合にも推定精度及び誤り率特性を改善することを明らかにしている。そこで、これら二つの時間軸上及び周波数軸上の IQ インバランス推定法を組み合わせることにより低コストかつ低消費電力な受信機の構成することが可能である。

第 3 章では Radio Frequency (RF) サンプリング受信機のタイムミングジャックの影響を解析している。新しい受信機構成として、近年アナログ信号を直接処理する RF サンプリング受信機が提案されている。この受信機では位相同期ループ回路の位相ノイズによって発生するタイムミングジャックが信頼信号及 Q 相信号間のクロストーク成分を発生させる。そこで第 3 章ではこの位相ノイズをモデル化し、タイムミングジャック発生信号と補正信号および影響を計算機シュレーダーにより解析している。

第 4 章では、Fractional Sampling (FS) OFDM 受信機における信号歪み補正について検討している。FS を用いた OFDM システムはシングルアンテナでダイバーシチ利益を得ることができる。しかししながら、サブキャリア数とオーバーサンプリング比が増えるにつれて、異なるサブキャリア間のノイズ成分の相関が誤り率特性を悪化させる。そこで、Orthogonal Frequency and Code Division Multiplexing (OFCDM) システムにおいてノイズ成分の相関による影響を緩和するため Alternative Spreading Code (ASC) を適用する。これ拡散符号は正と負の成分を交互に持つ、それゆえ ASC を用いた OFCDM システムは相関のあるノイズ成分をキャンセルすることができる。しかし ASC の適用は利用できる拡散符号の数を半減させてしまう。またこの方法は OFDM システムには適用できない。そこでこの方法で無効な符号成分の影響を緩和するため、FS OFDM システムにおけるパルス形フィルタのインパルス応答の影響を評価している。また符号化 FS OFDM システムにおいてメトリックの重み付け方法を提案し特性を改善する。

第 5 章では結論として各章で得られた内容をまとめ、本研究の成果を要約している。