
 

 

 

 

 

 

 

 

         

 

A Study on Automatic Welding System of 
Fixed Aluminum Pipes Using Vision Sensors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
July 2009 

 
 
 
 
 

Baskoro, Ario Sunar  
 



 

2 
 

 

 

 

 

A Study on Automatic Welding System of  
Fixed Aluminum Pipes Using Vision Sensors 

 
 

July 2009 
 
 
 
 
 
 

A thesis submitted in partial fulfilment of the requirements for the degree of 
Doctor of Philosophy in Engineering 

 
 

  
 
 

 
 
 

Keio University 
Graduate School of Science and Technology 

School of Integrated Design Engineering 
 
 

Baskoro, Ario Sunar



 

i 
 

Table of Contents 
 
 

Table of Contents ............................................................................................................ i 
List of Figures .................................................................................................................iv 

List of Tables ................................................................................................................. vii 
Nomenclatures .............................................................................................................. viii 
Acknowledgments ........................................................................................................... x 

Abstract  ..........................................................................................................................xi 
Chapter 1 ........................................................................................................................ 1 

1.1 Background .................................................................................................... 1 

1.2 Objectives ...................................................................................................... 2 

1.3 Literature Review ........................................................................................... 3 

1.3.1 TIG Welding ................................................................................................ 3 

1.3.2 Pipe Welding ............................................................................................... 5 

1.3.3 Aluminum Pipe Welding .............................................................................. 8 

1.3.4 Automatic Welding Process ...................................................................... 11 

1.3.5 Computational Intelligence ........................................................................ 12 

1.3.5.1 Artificial Neural Networks ....................................................................... 13 

1.3.5.2 Fuzzy Systems ....................................................................................... 15 

1.3.5.3 Evolutionary Computing ......................................................................... 16 

1.3.5.4 Swarm Intelligence ................................................................................. 18 

1.4 Original Contributions .................................................................................. 20 

1.5 Organization of Thesis ................................................................................. 21 

Chapter 2 ...................................................................................................................... 23 

2.1 Introduction .................................................................................................. 23 

2.2 Experimental Devices .................................................................................. 24 

2.3 Monitoring of Molten Pool ............................................................................ 25 

2.3.1 Image Processing Algorithm ..................................................................... 25 

2.3.2 Results of Image Processing Algorithm .................................................... 32 

2.4 Experiment ................................................................................................... 35 

2.4.1 Experiment Without Control ...................................................................... 35 

2.4.2 Welding Speed Control with Neural Network ............................................ 36 



 

ii 
 

2.5 Results and Discussion ................................................................................ 38 

2.6 Conclusions ................................................................................................. 42 

Chapter 3 ...................................................................................................................... 43 

3.1 Introduction .................................................................................................. 43 

3.2 Experiment ................................................................................................... 44 

3.2.1 Image Processing Algorithm ..................................................................... 45 

3.2.2 Preliminary Experiment ............................................................................. 47 

3.3 Experiment ................................................................................................... 47 

3.3.1 Modeling of Welding Process ................................................................... 48 

3.3.2 Fuzzy Controller Design ............................................................................ 50 

3.4 Results and Discussion ................................................................................ 54 

3.5 Conclusions ................................................................................................. 61 

Chapter 4 ...................................................................................................................... 62 

4.1 Introduction .................................................................................................. 62 

4.2 Experimental Device .................................................................................... 63 

4.3 Image Processing Algorithm ........................................................................ 64 

4.3.1 Omnidirectional Vision .............................................................................. 64 

4.3.2 Edge Detection of Molten Pool ................................................................. 68 

4.3.3 Result of Image Processing Algorithm ...................................................... 76 

4.4 Experiment with Control ............................................................................... 76 

4.5 Results and Discussion ................................................................................ 79 

4.6 Conclusions ................................................................................................. 80 

Chapter 5 ...................................................................................................................... 81 

5.1 Introduction .................................................................................................. 81 

5.2 Edge Detection of Molten Pool .................................................................... 82 

5.2.1 Monitoring of Molten Pool ......................................................................... 83 

5.3 Particle Swarm Optimization ........................................................................ 85 

5.4 Genetic Algorithm ........................................................................................ 88 

5.5 Edge Detection ............................................................................................ 89 

5.6 Experiment with Control ............................................................................... 96 

5.7 Results and Discussion ................................................................................ 97 

5.8 Discussion of Monitoring and Control Methods Used in this Study ........... 100 

5.9 Conclusions ............................................................................................... 104 

Chapter 6 .................................................................................................................... 105 



 

iii 
 

References ................................................................................................................. 108 

Curriculum Vitae ......................................................................................................... 116 

 



 

iv 
 

List of Figures 
 
 

Fig. 1.1 Schematic of TIG welding process .................................................................... 3 

Fig. 1.2 Schematic of welding polarity ............................................................................ 4 

Fig. 1.3 Circumferential TIG welding of pipe ................................................................... 6 

Fig. 1.4 Weld bead profiles during pipe welding ............................................................. 6 

Fig. 1.5 The Arch Machine model 15 (Arc Machine, Inc.) ............................................... 8 

Fig. 1.6 Illustration of CI paradigms .............................................................................. 13 

Fig. 1.7 Illustration of an artificial neuron ...................................................................... 14 

Fig. 1.8 Illustration of an artificial neural network .......................................................... 14 

Fig. 2.1 Defects in welding of pipe ................................................................................ 24 

Fig. 2.2 Schematic of experimental device ................................................................... 25 

Fig. 2.3 Monitoring system and backside image of molten pool ................................... 26 

Fig. 2.4 Flowchart of image processing algorithm ........................................................ 27 

Fig. 2.5 Results of image processing ............................................................................ 28 

Fig. 2.6 Method to find top and bottom brightness of edge detection ........................... 29 

Fig. 2.7 Example of detection of top and bottom position of molten pool’s edge .......... 31 

Fig. 2.8 Result of preliminary experiment ..................................................................... 34 

Fig. 2.9 Neural network model ...................................................................................... 37 

Fig. 2.10 Second degree polynomial regression of welding speed at θ = 216o ............ 37 

Fig. 2.11 Results of experiment without control ............................................................ 39 

Fig. 2.12 Result of estimated back bead width using neural network ........................... 40 

Fig. 2.13 Result of experiment using neural network control ........................................ 41 

Fig. 3.1 Monitoring of molten pool ................................................................................ 46 

Fig. 3.2 Results of preliminary experiment ................................................................... 47 

Fig. 3.3 Block diagram of welding speed control system .............................................. 48 

Fig. 3.4 Membership function of fuzzy modeling of back bead width ........................... 49 

Fig. 3.5 Error curve of the fuzzy modeling .................................................................... 50 

Fig. 3.6 Flowchart of control process ............................................................................ 51 

Fig. 3.7 Membership function of fuzzy control .............................................................. 52 

Fig. 3.8 Summary of input – output relationship ........................................................... 53 

Fig. 3.9 Result of simulation ......................................................................................... 54 



 

v 
 

Fig. 3.10 Results at different arc current and same frequency (f = 50 Hz) ................... 56 

Fig. 3.11 Results at different pulse current frequency .................................................. 58 

Fig. 3.12 Back bead appearance .................................................................................. 60 

Fig. 4.1 Hyperboloidal mirror ........................................................................................ 65 

Fig. 4.2 Monitoring of molten pool ................................................................................ 66 

Fig. 4.3 Detail of monitoring system ............................................................................. 67 

Fig. 4.4 Geometry of a hyperboloidal omnidirectional camera ..................................... 67 

Fig. 4.5 Flowchart of image processing ........................................................................ 69 

Fig. 4.6 Histogram analysis for edge detection ............................................................. 71 

Fig. 4.7 Edge detection of molten pool ......................................................................... 74 

Fig. 4.8 Comparison result of measured back bead width and detected molten pool .. 76 

Fig. 4.9 Fuzzy sets and decision table for fuzzy control of welding speed ................... 77 

Fig. 4.10 Result of experiment with control ................................................................... 79 

Fig. 5.1 Monitoring of molten pool ................................................................................ 85 

Fig. 5.2 Histogram analysis for edge detection ............................................................. 87 

Fig. 5.3 Flowchart of edge detection of molten pool using PSO and GA ...................... 88 

Fig. 5.4 Edge detection of molten pool in set window using PSO and GA at θ = 270o and 
10 iterations .................................................................................................... 90 

Fig. 5.5 Edge detection of molten pool in set window using PSO and GA at θ = 90o and 
20 iterations .................................................................................................... 91 

Fig. 5.6 The population size versus the fitness function cost in maximum iteration 
number is 10 ................................................................................................... 92 

Fig. 5.7 The population size versus the fitness function cost in maximum iteration 
number is 20 ................................................................................................... 92 

Fig. 5.8 The generation of population average, population best and global best at 
maximum iteration number is 20 and rotation angle is 270o in PSO ............... 93 

Fig. 5.9 The generation of population average and best at maximum iteration number is 
20 and rotation angle is 270o in GA ................................................................ 93 

Fig. 5.10 Result of image processing using PSO with ΔPout = 0.14% and ΔPin = 0.79%
 ........................................................................................................................ 94 

Fig. 5.11 Result of image processing using genetic algorithm with ΔPout = 0.04% and 
ΔPin = 0.69% ................................................................................................... 95 

Fig. 5.12 The result of measured back bead width from experiment, GA and PSO 
approximation, and both errors of detection ................................................... 95 



 

vi 
 

Fig. 5.13 Comparison results between manual judgment and optimization using PSO 
and GA ............................................................................................................ 96 

Fig. 5.14 Fuzzy sets and decision table for fuzzy control of welding speed ................. 97 

Fig. 5.15 Result of experiment with control using PSO ................................................ 99 

Fig. 5.16 Result of experiment with control using GA optimization ............................. 100 



 

vii 
 

List of Tables 
 
 

Table 1.1 The major alloying elements found in aluminum wrought alloys .................. 10 

Table 2.1 Rules of top and bottom brightness of edge detection ................................. 30 

Table 2.2 Material properties and welding conditions ................................................... 35 

Table 2.3 Notation of welding speed ............................................................................ 35 

Table 3.1 Material properties and welding conditions ................................................... 45 

Table 3.2 Decision table for the fuzzy modeling of back bead ..................................... 49 

Table 3.3 Decision table for the fuzzy control of welding speed ................................... 52 

Table 4.1 Material properties and welding conditions ................................................... 64 

Table 5.1 Material properties and welding conditions ................................................... 83 

Table 5.2 Comparison results of back bead width using plain mirror in different control 
methods ........................................................................................................ 101 

Table 5.3 Comparison results of image processing using plain mirror and 
omnidirectional camera ................................................................................. 101 

Table 5.4 Comparison results of back bead width using omnidirectional camera in 
different optimization methods ...................................................................... 102 

Table 5.5 Summary of control and optimization methods used in this study .............. 102 

 



 

viii 
 

Nomenclatures  
 
 

θ   : rotation angle (deg)  
v  : welding speed (cm/min) 
I  : welding current (A) 
q  : shielding gas (l/min) 
l  : back shielding gas (l/min) 
f   : pulse current frequency (Hz) 
W  : image parameter of width (pixels) 
L  : image parameter of length (pixels) 
A  : image parameter of area (pixels) 
gavg  : brightness average  
pavg  : percentage of brightness average  

)(if   : frequency of brightness at i 
ptop  : percentage of top brightness  
pbtm  : percentage of bottom brightness  
gv’(i,j)  : differential values of brightness along vertical axis 
gh’(i,j)  : differential values of brightness along horizontal axis 
g(i,j)   : brightness value of a pixel at (i,j) 
ytop   : maximum position 

ybtm   : minimum position  
Llmax   : left edge position  

Lrmax   : right edge position  

Llmax   : left edge position at maximum width 
Lrmax   : right edge position at maximum width  
∆v   : change of welding speed (cm/min) 
B   : estimated back bead width (mm) 
wr  : reference back bead width (mm) 
wn  : back bead width at the concerned time step n (mm) 
e  : error 
Δe  : change of error 
s  : welding distance (mm) 



 

ix 
 

tcont  : control time (s) 
vmin  : minimum welding speed (cm/min) 
vmax  : minimum welding speed (cm/min) 
A,B,C  : parameters of the hyperboloidal mirror shape 
D  : distance between lens to a center point of the camera (mm) 
p(u, v)  : image coordinate 
P(X,Y,Z)  : a real-world three-dimensional position  
pout   : percentage of outer brightness  

pin   : percentage of inner brightness 
Δpout  : difference percentage of outer brightness 

Δpin  : difference percentage of inner brightness 

gout   : outer brightness  

gin   : inner brightness 

vm,n   : particle velocity 
ω     : inertia weight  
pm,n   : particle variables 
r1,r2   : independent uniform random numbers 
Γ1, Γ2   : learning factors 

bestlocal
nmp ,   : best local solution 

bestglobal
nmp ,   : best global solution 

wc   : computed width (mm) 
wt   : corresponding target of width (mm) 

f   : fitness function cost  



 

x 
 

Acknowledgments 
 
 

All praise and glory are just for Allah SWT God Almighty, who provided me 
energy, courage and patients to carry out my studies and my life. Peace and blessing of 
Allah SWT be upon last prophet Muhammad SAW. 

This thesis is dedicated to my wife Lia Harnita and my daughters Fathimah 
Annisa Muthmainnah and Maryam Aisyah. With my infinite gratefulness and gratitude 
for my parents, especially my beloved mother in heaven, who have taught me the 
worthiness of hard work, patience, and the striving towards of excellence.  

My deep appreciation goes to my thesis supervisor Prof. Yasuo Suga, Ph.D for 
his support and encouragement throughout my studies in International Graduate 
Program for Doctoral Degree at Graduate School of Science and Technology, Keio 
University. My work with him has been both satisfying and challenging.  

I would like to acknowledge my thesis committee members: Prof. Kimiyuki 
Mitsui, Ph.D, Prof. Toshiyuki Murakami, Ph.D, and Prof. Masafumi Hagiwara, Ph.D for 
their interest, invaluable cooperation and support.  

Acknowledgment is due to Keio University for providing the good environment 
and facilities for this work. I also give my best appreciation to Ministry of Education, 
Culture, Sports, Science and Technology, Japan for supporting my doctoral study with 
the Monbukagakusho Scholarship during the period of 2007 – 2009. My appreciation 
also goes to my colleagues at the Suga Laboratory; my junior Masashi Kabutomori, 
Master 2nd year Rui Masuda and all members of Sugalab. They all made my studies at 
Keio University more fun and rewarding.  

Finally, I want to thank to all of my brothers and sisters, my friends in Keio 
University and other universities, and all my colleagues in Mechanical Engineering 
Department University of Indonesia, their prayers and support are always be with me. 
  

Ario Sunar Baskoro 
 

Keio University, Japan 
July 8, 2009 



 

xi 
 

Abstract 
 
 
Arc welding processes of aluminum alloys are important in the automotive and 

maritime sectors, and have potential for high strength aerospace alloys due to lighter 
and cheaper structures. One of the arc welding processes is Tungsten Inert Gas (TIG) 
welding that is widely used in the industries for welding of aluminum alloys. Since the 
arc welding process is nonlinear and multivariable-coupled because it involves many 
uncertainty parameters, it is very difficult to obtain a practical and useful controllable 
model of an arc welding process through classical modeling approaches. Therefore, 
intelligent control systems are necessary to be developed for modeling and controlling 
the welding process.  

In this study, automatic welding system for horizontally fixed aluminum pipe of 
6063S-T5 using a vision sensor is proposed. The welding of aluminum pipe is 
conducted by monitoring the backside image of molten pool and controlling the welding 
speed using Neural Network and Fuzzy Inference Systems. Furthermore, an 
omnidirectional camera, which can observe the entire area around the camera, is 
adopted for monitoring the molten pool. Finally, the optimization of image processing 
algorithm to search the edge detection range for detecting the edge of molten pool is 
conducted using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).  

Chapter 1 describes the background, literature review, original contributions and 
the outline of this work. 

Chapter 2 describes the welding penetration control of fixed aluminum pipes by 
monitoring the backside image of molten pool using vision sensor. Generally, the edge 
detection of the molten pool is difficult in aluminum welding, because the contrast of the 
image is much lower compared to steel welding. Accordingly, a new image processing 
algorithm to obtain the edge detection range for detecting the edge of the molten pool is 
proposed. Neural Network model for welding speed control is constructed to perform the 
welding process automatically.  
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Chapter 3 describes the automatic welding process of aluminum pipe by monitoring 
the backside image of the molten pool using Fuzzy Inference System. At first, a 
simulation system of the welding control using Fuzzy Inference System is constructed to 
confirm the validity of the control algorithm. Then a series of welding control 
experiments is conducted to evaluate the performance of the fuzzy controller. 

Chapter 4 describes the welding penetration control of aluminum pipe using an 
omnidirectional camera. A new image processing algorithm is constructed to process 
the omnidirectional image and to recognize the edge of the molten pool. Back bead 
width data as the result of detection are delivered into the Fuzzy Inference System to 
control welding speed. 

Chapter 5 describes Particle Swarm Optimization (PSO) and Genetic Algorithm 
(GA) to optimize the image processing algorithm for searching the edge detection range 
of the molten pool. Finally, the welding control experiments are conducted using the 
Fuzzy Inference System which controls the welding speed using the input data of the 
detected back bead width, and the effectiveness of the system is confirmed.  

Chapter 6 summarizes the results of this thesis and discusses future research.
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Chapter 1 

Introduction 
 

1.1 Background 
Recently, arc welding process of aluminum alloys is important in the automotive 

and maritime sectors, and has potential for high strength aerospace alloys due to lighter 
and cheaper structures. Aluminum alloys have been used in various industrial sectors 
because of such a desirable mechanical or metallurgical property as light weight, 
excellent corrosion resistance, high strength, high toughness, extreme temperature 
capability, versatility of extruding and recycling capabilities. One of the arc welding 
process is Tungsten Inert Gas (TIG) welding that is widely used in the industries for 
welding aluminum alloys because of optimum weld quality, minimum distortion, it can be 
done in all positions, the good visibility because the gas around the arc is transparent 
and weld pool is clean.  

Arc welding process is nonlinear and multivariable-coupled because it involves 
many uncertainties, such as, influences of metallurgy, heat transfer, chemical reaction, 
arc physics, and magnetization [1]. Therefore, it is very difficult to obtain a practical and 
useful controllable model of an arc welding process through classical modeling 
approaches. The weld bead width is difficult to be controlled due to the non-linearity and 
uncertainties of the process. Accordingly, intelligent control systems has been 
developed for modeling and controlling the welding process, as they derive the control 
performance based on human experience, knowledge, and logic techniques, instead of 
mathematical process models. Neural networks [2-7] and fuzzy techniques [8-12] have 
been studied for arc welding processes. Another difficulty in controlling an arc welding 
process is how to detect weld pool geometrical features, such as weld bead width and 
penetration, either from the topside of weld pool or back side, conveniently and in 
real-time. Various efforts have been made to sense weld pool sizes in real-time from the 
topside, such as ultrasonic detection, non-transfer plasma charge sensor, infrared 
sensing, pool image processing, and radiographic sensing to produce weld quality 
control [13-16]. In order to achieve better control of weld quality, it is important to use 
advanced real-time control methodologies. 
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There have been many studies on welding process of stainless steel [9] [17] and 
aluminum pipes [18-21] by rotating the pipe and welding torch was kept static. The 
experiment using the image sensing to control the TIG weld width for aluminum alloy 
plate was conducted with the algorithm of image processing and pattern recognition of 
molten pool’s edge [22]. The visual sensing system was analyzed from the point of the 
view of light intensity and recovers the shape and height of the weld pool by SFS (shape 
from shading) algorithm from the welding pool image [23]. In fact, experimental studies 
of welding of aluminum pipes have been conducted [18-21], unfortunately, the welding 
process was conducted in rotated pipe.  

However, compared to plate welding, welding of aluminum pipes is more difficult 
due to the characteristics of the welding process and aluminum properties. If the 
constant welding conditions are maintained over the full joint length, the bead width 
becomes wider as the circumferential welding of small diameter pipes progresses. In 
order to avoid these errors and to obtain the uniform weld bead over the entire 
circumference of the pipe, the welding conditions should be controlled as the welding 
proceeds. The precise control of bead width has been very difficult by constant welding 
conditions. The automation of bead width control requires the ability to adjust speed of 
welding torch or control welding arc current. Therefore, appropriate control model 
algorithm should be used in automatic welding process. 

Another difficulty in welding of aluminum pipes compared with stainless steel pipe 
is that the image of aluminum molten pool has very low brightness due to the low 
melting point. Therefore, new technique in detecting molten pool edge is necessary. 
Since the input of control system using vision sensors is the good parameter value of 
detected molten pool, the robust image processing algorithm is very important to be 
constructed.  

1.2 Objectives 
In order to study the automatic welding system of fixed aluminum pipes in TIG 

welding using vision sensors, the objectives of this thesis focused on: 
1. Automatic welding control of fixed aluminum pipes using neural network.  
2. Welding penetration control using fuzzy inference system. 
3. New monitoring system of backside image of molten pool using omnidirectional 

camera. 
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4. Improvement of image processing algorithm optimization of backside image of 
molten pool using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 

1.3 Literature Review 

1.3.1 TIG Welding  
The Tungsten Inert Gas (TIG) welding, or also know as Gas Tungsten Inert Gas 

Welding (GTAW) uses a permanent, nonconsumable tungsten electrode to create an 
arc to a workpiece. The electrode is shielded by an inert gas, such as argon or helium or 
mixture of the two to prevent electrode degradataion. TIG welding process can be 
performed with or without filler (autogeneously). The schematic of TIG welding process 
is presented in Fig. 1.1. In TIG welding, the current from the power supply is passed to 
the tungsten electrode of a torch through a contact tube to heat and melt the material. A 
welding power supply produces energy, which is conducted across the arc through a 
column between the electrode and the workpiece of highly ionized gas and metal 
vapors known as plasma. A shielding gas that flows through the gas nozzle protects the 
weld pool and the electrode. The key purpose of the shielding gas in TIG welding is to 
protect the hot and molten parts of the workpiece, the filler metal and the electrode from 
the deleterious influence of the surrounding air that can affect oxidation process. The 
shielding gas also affects the characteristics of the arc and the appearance of the weld 
[24-27]. 

Welding torch

Power

Shielding gas

Contact tube

Tungsten electrode

Weld bead

Shielding gas

Electrical arc

Welding 
direction

Base material

Welding wire

 

Fig. 1.1 Schematic of TIG welding process 
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Typical applications for TIG welding are welding of pipes, pressure vessels and 
heat exchangers. Since TIG welding can be used to weld thin metals and small objects, 
the method is also used in the electronic industry. In addition, TIG is often used to make 
root or first pass welds for piping of various sizes. In maintenance and repair work, the 
process is commonly used to repair tools and dies, especially components made of 
aluminum and magnesium. Because the welding products are highly resistant to 
corrosion and cracking over long time periods, TIG welding procedure is used for critical 
welding operations like sealing spent nuclear fuel canisters before burial. Some 
advantages of TIG welding which are very high weld quality, absence of slag and very 
little spatter. The method is extremely versatile, since most weldable materials can be 
welded, moreover many welding positions and joint configurations can be used [24-27].  
 

Electrode

Electric arc
Base 
material

Molten pool

+

-

 
 (a) Notation of welding process (b) Direct Current Electrode Negative (DCEN) 

+

-

+

- +

-

(c) Direct Current Electrode Positive (DCEP) (d) Alternating Current (AC) 

Fig. 1.2 Schematic of welding polarity 

 
TIG process can be operated in several different current modes, including Direct 

Current (DC), with the Electrode Negative (EN) or Positive (EP), or Alternating Current 
(AC). These different current result in different arc and weld characteristics [24]. Figure 
1.2 (a) shows the schematic of welding polarity. In TIG welding process using DC arc, 
the tungsten electrode has a negative polarity. The electrode thus becomes the cathode 
and the workpiece becomes the anode. The polarity is called Straight Polarity or Direct 
Current Electrode Negative (DCEN) as shown in Fig. 1.2 (b). In DCEN, electrons are 
emitted from the tungsten electrode and accelerated to very high speeds and kinetic 
energies while traveling through the arc. These high-energy electrons collide with the 
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workpiece, give up their kinetic energy and generate heat in the workpiece. These 
results in deep penetrating, narrow welds, but with higher workpiece heat input. About 
two-thirds of the net heat available from the arc after losses from various sources enters 
the workpiece [24].  

On the contrary, the Reverse Polarity, or Direct Current Electrode Positive (DCEP) 
is the reverse of DCEN as presented in Fig. 1.2 (c). DCEP is used for welding certain 
thin section and low melting point materials. In this polarity, the heating effect of the 
electrons is on the tungsten electrode rather than on the workpiece. Therefore, large 
water-cooled electrode holders are required, shallow welds are produced and 
workpiece heat input can be kept low. This operation is good for welding thin sections or 
heat-sensitive metals and alloys such as aluminum or magnesium [24].  

Alternating current (AC) that shown in Fig. 1.2 (d). The AC mode tends to result in 
some of the characteristics of both of the DC modes, during the corresponding half 
cycles, but with some bias toward the straight polarity half-cycle due to the greater 
inertia and greater resistance of large positive ions. During this half cycle, DCEP is used 
for the removing an oxide film from the surface of weld pool or workpiece. The oxide film 
promotes emission during the half-cycle (AC) when the workpiece is negative polarity. 
As the oxide is depleted, the emission moves to a new location that has a high enough 
oxide content to sustain the discharge of electrons. Because the arc root or cathode 
spot where the emission occurs is highly mobile in AC or DCEP, as a result, the arc is 
much less stable than in DCEN [24]. 

1.3.2 Pipe Welding 
Circumferential butt-welded pipes are frequently used in power stations, offshore 

structures, and process industries. The schematic of circumferential TIG welding of pipe 
is shown in Fig. 1.3. It is common that the pipe is maintained fixed during the welding 
process, although the rotated pipe also can be performed. During the welding process, 
the welding torch moves along the surface of pipe circumferentially, from 0o to 360o. The 
weld bead profiles that are produced from this process could be appeared in different 
form, especially if the welding condition remains unchanged from time to time, as shown 
in Fig. 1.4. The starting point, which the welding begins, has the higher temperature 
than the other places. And it influences the other part of pipe, so that the weld bead 
width becomes wider while the welding torch rotation angle increases.  
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270 °

180 °

90°

°360 0°

270 °

180 °

90°

Welding torch

Aluminum pipe

Welding arc

Welding line  

Fig. 1.3 Circumferential TIG welding of pipe 

 

θ = 0o θ = 90o

θ = 180 o θ = 360 o

Welding 
torch

Pipe

Molten 
pool

Welding torch 
movementElectric 

arc

 

Fig. 1.4 Weld bead profiles during pipe welding 

 
Piping is a frequent structure in the constructions of welding components such as 

for the petrochemical industry, power plant, power plant components energy storage, 
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etc. The fabrication includes welding of individual pipe components to each other and 
their subsequent heat treatment and nondestructive examination (NDE) to form a unit 
(piping subassembly) for installation. Piping for nuclear and fossil power plants, 
chemical plants, refineries, industrial plants, resource recovery, and cogeneration units 
are most often shop fabricated. Pipelines and other system involving long runs of 
essential straight pipe sections welded together are usually field assembled. In recent 
years, the use of new welding processes, new alloys, fracture toughness limitations and 
mandatory quality assurance (QA) program have made piping fabrication and 
installation much more complex [28].  

Procedure qualification for welding process has established a series of variables. 
These are base metal, filler metal, position, preheat, postweld heat treatment, shielding 
gases, joint configuration, electrical characteristics, and technique. Base metal must be 
also considered the diameter and thickness of the specimen. TIG welding process is 
one of the commonly used welding processes for fabrication of piping. TIG welding is 
considered to be the most desirable process for making root welds of highest quality. 
Techniques using added filler metal as inserts are effective in manual and automatic 
applications. In automatic TIG welding, welding head orbits the weld joint on a guide 
track motors and drive wheels need to move the head around the track, a torch to create 
the arc, and a spool of filler wire. Oscillation and arc energy are adjusted to permit 
greater dwell time and heat input into the side walls [28]. Orbital welding using TIG or 
GTAW, Gas Metal Arc Welding (GMAW), or Flux Cored Arc Welding (FCAW) is also 
used in industry to fabricate high-quality welds pipe-and-tube assemblies, such as 
tube-to-tube, tube-to-flange, tube-to-header, and nozzle-to-tube welds [29-31].   

 The example of pipe welding process is construction of welding component at 
petrochemical industry at Sirz Montaggi srl. The quality requirements are very high and 
the normal welding processes are TIG for welding the root and SMAW for filling layers 
[32]. At CIMTAS AS in Turkey, an international fabricator of power plants, power plant 
components and energy storage, ESAB orbital TIG welding units are used in 
tube-to-sheet, pipe-to-pipe and header-to-stub welding in the production of heat 
exchangers, boilers and pipe pre-fabrication [33]. At Zurn energy div., Erie, Pa., nine 
electronically controlled orbital GTAW machines turn out high-quality tube-to-tube welds 
that take up 2 miles of tubing, and field constructed boilers might contain over 10 miles 
of tubing. Tubing averages 2-inch o.d. with 0.165-inch-thick wall and goes into steam 
generators and auxiliary generator components-superheater, economizers, and 
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combustion air preheaters [34]. The pipeline project of Maui in New Zealand was also 
successfully welded and inspected to a high standard in an aggressive marine 
environment for which they were not originally intended. The process used GTAW and 
GMAW [35].   

The example of pipe welding machine is the Arc Machine’s Model 15 with low radial 
clearance for GTAW welding of all pipe sizes from 3 inch pipe (76 mm) up to an 
unlimited size, including flat plate. It is intended for field use in the nuclear, shipbuilding, 
chemical, petrochemical and construction industries where weld quality requirements 
are stringent and the use of the GTAW process is beneficial. These welding torch 
elements consist of rotation, wire feed, automatic voltage control and cross-seam 
steering and torch oscillation. The model is shown in Fig. 1.5 [36].  

 

Fig. 1.5 The Arch Machine model 15 (Arc Machine, Inc.) 

 
To reach faster and easier pipe welding, with exceptional weld quality, the 

automatic pipe welding called Autoweld system, by Lincoln Electric was developed. In 
pipeline projects that require many joints of uniform high quality to meet code 
requirements, the system provides dramatic improvements over existing methods [37].  

1.3.3 Aluminum Pipe Welding 
It is easy to understand that the use of aluminum is increasing in the welding 

fabrication industry. Manufacturers often adopt this material either through innovation or 
as a result of demand by their end-users. The unique characteristics of aluminum—light 
weight, excellent corrosion resistance, high strength, high toughness, extreme 
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temperature capability, versatility of extruding and recycling capabilities—make it one of 
the current favored choices of material for many engineers and designers for a variety of 
welding fabrication applications. Because of the increased use of aluminum as a 
manufacturing material, the conversion from steel to aluminum within the welding 
fabrication industry is becoming increasingly common. Some examples of aluminum 
pipe’s application are pipe railing, liquid ammonia heat pipe, architectural structure, 
irrigation pipe, pipelines, etc.  

Most aluminum alloys can be joined by either MIG or TIG, and the weldabilities of 
aluminum alloys are essentially the same for both processes. The most common alloys 
are grouped by weldability rating as follows [38]: 

a. Readily weldable  

- Wrought alloys: Pure aluminum, 1350, 1060, 1100, 2219, 3003, 3004, 5005, 5050, 
5052, 5083, 5086, 5154, 5254, 5454, 5456, 5652, 6010, 6061, 6063, 6101, 6151, 
7005, 7039 

- Casting alloys: 356.0, 443.0, 413.0, 514.0, A514.0 

b. Weldable in most applications 

- Wrought alloys: 2014, 2036, 2038, 4032 
- Casting alloys: 208.0, 308.0, 319.0, 333.0, 355.0, C355.0, 511.0, 512.0, 710.0, 

711.0, 712.0 

c. Limited weldability 

- Wrought alloys: 2024 
- Casting alloys: 222.0, 238.0, 295.0, 296.0, 520.0 

d. Welding not recommended 

- Wrought alloys: 7021, 7029, 7050, 7075, 7079, 7129, 7150, 7178, 7475 
- Casting alloys: 242.0 

Wrought and casting alloys are listed above by Aluminum Association designations. 
Wrought alloys most easily welded by gas shielded arc processes are those of the 
non-heat-treatable 1xxx, 3xxx, and 5xxx series; the alloys in the heat treatable 6xxx 
series are also easily welded. The major alloying elements found in aluminum wrought 
alloys are shown in Table 1.1.  
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The heat of welding removes part or all of the effects of strain hardening; 
consequently the strength of the heat-affected zone (HAZ) of the weld in a 
non-heat-treatable alloy may not exceed that of the annealed alloy. The size of the low 
strength zone depends primarily on the speed of welding. When a heat-treated alloy (T4 
or T6 condition) is arc welded, its strength in the as-welded condition is slightly less than 
that of the unwelded alloy in the T4 condition. Because of the high strength of the base 
metal and the low strength of the HAZ, weldments of alloys in the T6 condition have a 
low as-welded joint efficiency and often lack of ductility. Solution heat treatment and 
aging after welding may restore much of the strength, but ductility loss usually occurs 
[38].  

Table 1.1 The major alloying elements found in aluminum wrought alloys 

Major alloying element Designation 

99.0% min aluminum and over 1xxx 

Copper 2xxx 

Manganese 3xxx 

Silicon 4xxx 

Magnesium 5xxx 

Magnesium and silicon 6xxx 

Zinc 7xxx 

Other elements  8xxx 

 
TIG welding tends to be limited to the thinner gauges of aluminum, up to 6 mm in 

thickness. It has a shallower penetration into the base metal than Metal Inert Gas (MIG) 
welding and difficulty is sometimes encountered penetrating into corners and into the 
root of fillet welds. Manual TIG welding of aluminum is normally performed using AC 
where oxide film removal takes place on the electrode positive half cycle and electrode 
cooling and weld bead penetration on the electrode negative half cycle of the AC sine 
wave. By using square wave power resources, we can adjust the wave frequency and 
the balance of positive and negative current by shortening or extending the length of 
time spent on the positive or negative half cycle. Increasing the frequency produces in a 
more focused arc, increasing penetration, enabling faster travel speeds to be used and 
reducing distortion [39].  
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Compared to the plate welding, the pipe welding is more difficult. If the constant 
welding conditions are maintained over the full joint length, the bead width becomes 
wider as the circumferential welding of small diameter pipes progresses. 

The previous researches have been conducted by rotating aluminum pipe and 
keep welding torch static [18-21]. The theoretical and experimental study of heat flow 
during welding of pipes with seam and girth welding method was carried out [18], which 
confirmed that under a constant heat input and welding speed, the size of the fusion 
zone remains unchanged in seam welding but continues to increase in girth welding of 
pipes with small diameters. The other researches study on parameter optimization in 
the circumferential GTA welding of aluminum pipes with numerical heat conduction 
model [19], and semi-analytical finite-element method [20]. Another mathematical 
method for the determination of the optimum heat input condition to control the 
temperature field was also conducted [21], which the algorithm was also applied to a 
circumferential aluminum pipe welding with Gas Tungsten Arc (GTA).  

1.3.4 Automatic Welding Process 
Arc welding process is nonlinear and multivariable-coupled, because it involves 

many uncertainties, such as, influences of metallurgy, heat transfer, chemical reaction, 
arc physics, and magnetization [1]. Therefore, intelligent control systems have been 
developed for modeling and controlling the welding process, as they derive the control 
performance based on human experience, knowledge, and logic techniques, instead of 
mathematical process models. Intelligent technologies for robotic welding which 
contains computer vision sensing, automatic programming for weld path and technical 
parameters, guiding and tracking seam, expert robot welding system, intelligent control 
of welding pool dynamic and quality have been investigated [40-43]. Since the early 
1960’s sensing and control systems have been successfully implemented in 
applications where the sensor could be placed on the backside of the weld and moved 
in synchronism with the welding torch [43]. The development of intelligent control 
systems has been conducted for modeling and controlling the welding process as they 
use neural networks [2-7] [44-45], fuzzy techniques [8-12] [46-47] and neuro-fuzzy [11] 
[48-49].  

Vision systems that can monitor weld pool in GTAW welding system have been 
developed [50-54]. The experiment using the vision sensors to control the TIG weld 
width for stainless steel [51-52] and aluminum alloy [22] plate was conducted with the 
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algorithm of image processing and pattern recognition of molten pool’s edge. The visual 
sensing system is analyzed from the point of the view of light intensity and recovers the 
shape and height of the weld pool by SFS (shape from shading) algorithm from the 
welding pool image [33] [53-54]. The previous research [45] was successfully conducted 
to weld stainless steel pipe, with the diameter of pipe was 42.7 mm and 2 mm in 
thickness. However, this research was conducted for welding aluminum material with 
smaller size of 37.8 mm in diameter and 2 mm in thickness. Compared with the 
detected stainless steels image, image of aluminum molten pool has very low 
brightness. 

1.3.5 Computational Intelligence 
Human has learned from studies of natural systems using what has been learnt to 

develop new algorithm to solve complex problems. Some successes have been 
achieved through the modeling of biological and natural intelligence, resulting 
“intelligent systems”. Intelligence is defined as the ability to comprehend, to understand 
and profit from experience, to interpret intelligence, having the capacity for thought and 
reason (especially to a high degree). Other keywords that describe aspects of 
intelligence include creativity, skill, consciousness, emotion and intuition [55-56].  

In the mid-1900s, Alan Turing gave much thought that can computers be intelligent. 
He believed that machine could be created that would mimic the process of the human 
brain. In 1950, Turing published his test of computer intelligence, referred to as the 
Turing test. In this research, we introduced a sub-branch of artificial intelligence (AI), 
namely computational intelligence (CI) – the study of adaptive mechanisms to enable or 
facilitate intelligent behavior in complex and changing environments. These 
mechanisms include the AI paradigms that exhibit an ability to learn or adapt to new 
situations, to generalize, abstract, discover, and associate. The following CI paradigms 
are covered: artificial neural networks (NN), fuzzy systems (FS), evolutionary computing 
(EC) and swarm intelligence (SI) [55].  

Figure 1.6 gives a summary of CI techniques. Soft computing, a term coined by 
Lotfi Zadeh, is a different grouping of paradigms, which usually refers to the collective 
set of CI paradigms and probabilistic methods. The arrows indicate that techniques from 
different paradigms can be combined to form hybrid systems. Each of CI paradigms has 
its origins in biological systems. NNs model biological neural systems, FS originated 
from studies of how organisms interact with their environment, EC models natural 
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evolution (including genetic and behavioral evolution) and SI models the social behavior 
of organisms living in swarms or colonies [55].  
 
 
 
 
 
 
 
 
 
 

Fig. 1.6 Illustration of CI paradigms 

1.3.5.1 Artificial Neural Networks 
As the brain is a complex, nonlinear and parallel computer, it has the ability to 

perform tasks much faster than any computer such as pattern recognition, perception 
and motor control. In addition to these characteristics, others such as the ability to learn, 
memorize and generalize, it encouraged research in algorithmic modeling of biological 
neural systems - referred to as artificial neural networks (NN) [55-56].  

An artificial neuron (AN) is a model of a biological neuron (BN). Each AN receives 
signals from the environment or other ANs, gathers these signals, and when fired, 
transmits a signal to all connected ANs. Figure 1.7 shows an illustration of artificial 
neuron. Input signals are inhibited or excited through negative and positive numerical 
weights associated with each connection to the AN. The firing of an AN and the strength 
of the exiting signal are controlled via a function, referred to as the activation function. 
The AN collects all incoming signals, and computes a net input signal as a function of 
the respective weights. The net signal serves as input to the activation function which 
calculates the output signal of the AN.  

An artificial neural network (NN) is a layered network of ANs. An NN may consist of 
an input layer, hidden layers and an output layer. ANs in one layer are connected, fully 
or partially, to the ANs in the next layer. Feedback connections to previous layers are 
also possible [55]. 
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Fig. 1.7 Illustration of an artificial neuron 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.8 Illustration of an artificial neural network 

 
NN have been used for a wide range of applications, including diagnosis of 

diseases, speech recognition, data mining, composing music, image processing, 
forecasting, robot control, credit approval, classification, pattern recognition, planning 
game strategies, compression and many others. A typical NN structure is depicted in 
Fig. 1.8 [55].  
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1.3.5.2 Fuzzy Systems 
Traditional set theory requires elements to be either part of a set or not. Likewise, 

binary-valued logic requires the values of parameters to be either 0 or 1, with similar 
constraints on the outcome of an inferencing process. Human reasoning is almost 
always not this exact. Our observations and reasoning usually include a measure of 
uncertainty [55-56].  

Fuzzy sets and fuzzy logic is referred to as approximate reasoning. With fuzzy sets, 
an element belongs to a set to a certain degree of certainty. Fuzzy logic allows 
reasoning with these uncertain facts to infer new facts, with a degree of certainty 
associated with each fact. Therefore, fuzzy sets and logic allow the modeling of 
common sense. The uncertainty in fuzzy systems is referred to as nonstatistical 
uncertainty, and should not be confused with statistical uncertainty. Statistical 
uncertainty is based on the laws of probability, whereas nonstatistical uncertainty is 
based on vagueness, imprecision and/or ambiguity. Statistical uncertainty is resolved 
through observations. Nonstatistical uncertainty, or fuzziness, is an inherent property of 
a system and cannot be altered or resolved by observations [55]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.9 The structure of FIS 
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The basic structure of a fuzzy system consists of four conceptual components as 
shown in Fig. 1.9 are [55]: 
1. a knowledge base, which consists of a database that defines the membership 

functions used in the fuzzy rules, a rule base that contains a selection of fuzzy 
rules;  

2. a fuzzifier, that translates crisp inputs into fuzzy values;  
3. an inference engine, which applies the fuzzy reasoning mechanism;  
4. defuzzifier, that extracts a crisp value from fuzzy output. 

Fuzzy systems have been applied successfully to control systems, gear 
transmission and braking systems in vehicles, controlling lifts, home appliances, 
controlling traffic signals and many others [55]. 

1.3.5.3 Evolutionary Computing 
Evolutionary computing has its objective of natural evolution, where the main 

concept is survival of the fittest: the weak must die. In natural evolution, survival is 
achieved through reproduction. Offspring, reproduced from two parents (sometimes 
more than two), contain genetic material of both (or all) parents - hopefully the best 
characteristics of each parent. Those individuals that inherit bad characteristics are 
weak and lose the battle to survive [55-56].  

In evolutionary computing a population of individuals is modeled, where an 
individual is referred to as a chromosome. A chromosome defines the characteristics of 
individuals in the population. Each characteristic is referred to as a gene. The value of a 
gene is referred to as an allele. For each generation, individuals compete to reproduce 
offspring. Those individuals with the best survival capabilities have the best chance to 
reproduce. Offspring is generated by combining parts of the parents, a process referred 
to as crossover. Figure 1.10 shows example of cross-over operator using one point 
cross-over. Each individual in the population can also undergo mutation which alters 
some of the allele of the chromosome. There are two type of mutation operators which 
are random mutate and inorder mutate. Figure 1.11 shows random mutation. The 
survival strength of an individual is measured using a fitness function which reflects the 
objectives and constraints of the problem to be solved. Genetic algorithm is one of the 
methods developed in EC algorithms [55-56].  
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Fig. 1.10 One-point cross over operator 
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Fig. 1.11 Mutation operator: random mutate 

 
Evolutionary computing has been used successfully in real-world applications, for 

example, data mining, combinatorial optimization, fault diagnosis, classification, 
clustering, scheduling and time series approximation [55]. 
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1.3.5.4 Swarm Intelligence 
Swarm intelligence originated from the study of colonies or swarms of social 

organisms. Studies of the social behavior of organisms (individuals) in swarms 
prompted the design of very efficient optimization and clustering algorithms. For 
example, simulation studies of choreography of bird flocks led to the design of the 
particle swarm optimization algorithm and studies of the foraging behavior of ants 
resulted in ant colony optimization algorithms [55]. 

Particle swarm optimization (PSO) is a method for global optimization, modeled on 
the social behavior of bird flocks. PSO is a population-based search procedure where 
the individuals, referred to as particles, are grouped into a swarm. Each particle in the 
swarm represents a candidate solution to the optimization problem. In a PSO system, 
each particle is "flown" through the multidimensional search space, adjusting its position 
in search space according to its own experience and that of neighboring particles. A 
particle therefore makes use of the best position encountered by itself and the best 
position of its neighbors to position itself toward an optimum solution. The effect is that 
particles "fly" toward the global minimum, while still searching a wide area around the 
best solution. The performance of each particle is measured according to a predefined 
fitness function which is related to the problem being solved [55].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Global best illustrated 
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(b) Local best – Initial swarm 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Local best – second swarm 
Fig. 1.12 gbest and lbest illustrated 
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Figure 1.12 shows the initial swarm of particles as represented by the dots [55]. 
The optimum point is indicated by a cross. Figure 1.12 (a) illustrates the global best 
(gbest) version of PSO. Particle a is the current global best solution. Initially the own 
best position (pbest) of each individual is its current point. Therefore, only particle a 
influences the movement of all the particles. The arrows indicate the direction and 
magnitude of the change in positions. All the particles are adjusted toward particle a.  

The local best (Ibest) version, as illustrated in Figure 1.12 (b), shows how particles 
are influenced by their immediate neighbors. In neighborhood 1, both particles a and b 
move toward particle c, which is the best solution within that neighborhood. Considering 
neighborhood 2, particle d moves toward f, so does e.  

For the next iteration, e will be the best solution for neighborhood 2. Now d and f 
move toward e as illustrated in Figure 1.12 (c) (only part of the solution space is 
illustrated). The blocks represent the previous positions. Note that e remains the best 
solution for neighborhood 2.  

Applications of PSO include function approximation, clustering, optimization of 
mechanical structures and solving systems of equations [55].  

1.4 Original Contributions 
In this thesis, we describe new approach to welding penetration control of fixed 

aluminum pipes using vision sensors. The following original contributions in intelligent 
welding system of aluminum pipes are proposed: 
1. Welding penetration control of fixed aluminum pipes by monitoring backside image 

of molten pool using vision sensors was proposed. An algorithm to obtain edge 
detection’s range to detect edge of molten pool was proposed. Image processing 
based on differential value of brightness was proposed to detect edge of molten pool 
and the validity of the system was confirmed. As a result of welding experiments, the 
effectiveness of automatic welding system was demonstrated and sound weld was 
obtained [57-65]. 

2. An automatic welding process of aluminum pipe welding system by monitoring 
backside image of molten pool using fuzzy inference system was constructed. 
Simulation of welding control using fuzzy inference system was constructed to 
simulate the welding control process. It shows that fuzzy controller was suitable for 
controlling the welding speed. As a result of automatic welding control using fuzzy 
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inference system, it shows the effectiveness of the control system that is confirmed 
by sound weld of experimental results [66-68]. 

3. Welding penetration control of aluminum pipes using omnidirectional camera was 
constructed. An algorithm to obtain to detect edge of molten pool from panorama 
image of molten pool was proposed. From the experimental results using fuzzy 
inference system, it shows the effectiveness of the control system [69-72]. 

4. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) of edge detection of 
molten pool in fixed pipe welding were proposed. GA & PSO optimized image 
processing algorithm was applied into the real time process using omnidirectional 
vision-based monitoring of molten pool. From the experimental results using fuzzy 
inference system, it shows the effectiveness of the control system [73-74]. 

1.5 Organization of Thesis  
Each of the original contributions described in the previous section is presented in 

the following separated chapters. 
Chapter 1 describes the background, literature review, contribution and the outline 

of this work. 
Chapter 2 describes the welding penetration control of fixed aluminum pipes by 

monitoring backside image of molten pool using vision sensors. An image processing 
algorithm to obtain edge detection’s range to detect the edge of molten pool is proposed. 
Neural network model for welding speed control are constructed to perform the process 
automatically.  

Chapter 3 describes the automatic welding process of aluminum pipes by 
monitoring backside image of the molten pool using fuzzy inference system. Simulation 
of welding control using fuzzy inference system is constructed to simulate the welding 
control process. The simulation result shows that fuzzy controller is suitable for 
controlling the welding speed and appropriate to be implemented into the welding 
system. A series of welding control experiments is conducted to evaluate the 
performance of the fuzzy controller. 

Chapter 4 describes welding penetration control of aluminum pipes using an 
omnidirectional camera. A new image processing algorithm is constructed to process 
the captured image and to recognize the edge of the molten pool. Back bead width data 
as the result of detection are delivered into the fuzzy inference system to control welding 
speed. 
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Chapter 5 describes PSO and GA optimization for the edge detection of the molten 
pool in fixed pipe welding. These methods of optimization determine brightness range 
values for edge detection of molten pool. Fuzzy inference system controls the welding 
speed using the input data of detected back bead width.  

In Chapter 6 the results of this thesis are summarized and future researches are 
discussed.  
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Chapter 2 

Automatic Welding System of 
Fixed Aluminum Pipes Using 

Neural Network 
 

2.1 Introduction 
Recently, arc welding process of aluminum alloys is very important in the 

automotive and maritime sectors, and has potential for high strength aerospace alloys 
due to lighter and cheaper structures [75]. Arc welding techniques such as Metal Inert 
Gas (MIG) and TIG are widely used in welding aluminum. If the joint is properly 
designed and suitable welding parameters have been established, result of joint 
integrity and quality will be high [76]. Compared to plate welding, welding of aluminum 
pipes is more difficult due to the characteristics of the welding process and aluminum 
properties. If the constant welding conditions are maintained over the full joint length, 
the bead width becomes wider as the circumferential welding of small diameter pipes 
progresses. Therefore, the control of bead width products has been very difficult to 
perform by constant welding conditions. The automation of bead width control requires 
the ability to adjust speed of welding torch or control welding arc current.  

There have been many studies on welding process of aluminum pipes by rotating 
the pipe and welding torch was kept static [18-21]. Unfortunately, the welding process 
was conducted in rotated pipe. Having welded pipe in fixed position, obviously, the 
excessive arc current yields burn through of metals; in contrary, insufficient arc current 
produces imperfect welding as shown in Fig. 2.1. In order to avoid these errors and to 
obtain the uniform weld bead over the entire circumference of the pipe, the welding 
conditions should be controlled as the welding proceeds, so that the system must be 
intelligent. For that purpose, this research proposes welding penetration control of fixed 
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aluminum alloy pipe A6063S-T5 using vision sensors. In this experiment, AC welding 
machine with square-wave current was used. 

 
 

 
 
 
 
 
 
 
 
 
 
 
The previous research [45] was successfully conducted to weld stainless steel pipe, 

with the diameter of pipe was 42.7 mm and 2 mm in thickness. However, this research 
was conducted for welding aluminum material with smaller size of 37.8 mm in diameter 
and 2 mm in thickness. Compared with the detected stainless steel’s image, image of 
aluminum molten pool has very low brightness. Therefore, new technique in detecting 
molten pool edge was proposed in this research. In order to show the validity of the 
image processing algorithm, the results of detected image of molten pool and measured 
back bead data were compared. Several experiments without control were conducted to 
provide the training data for control system. In this study, neural network model was 
utilized to control the welding penetration by modifying speed as welding parameter.  

2.2 Experimental Devices 
The experimental device, which was used in this experiment, is shown in Fig. 2.2. 

The overall system used the circumferential welding system, CCD camera and the 
image digitizer (256×220pixels, 8bit), the personal computer (CPU: 700 MHz), two 
stepping motors which are used for the revolution and longitudinal movement of the 
welding torch, the small-sized stepping motor which was used for arc length control, arc 
current measurement equipment, the gearbox, and the TIG welding machine.  

(a) Melt down (b) Imperfect 

Fig. 2.1 Defects in welding of pipe 

Defect Defect
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Fig. 2.2 Schematic of experimental device 
 

A CCD camera was used for monitoring of molten pool and sent the image data to 
personal computer through the image digitizer. Time required for capturing a single 
frame was 1/30s. The backside image of molten pool was processed in the personal 
computer to detect the image parameter of molten pool. Base metal used in this 
experiment was aluminum alloy pipe A6063S-T5. Pulsed TIG AC welding machine with 
square-wave current and pure argon shielding gas was used. To obtain good image of 
molten pool, the back shield gas with pure argon was utilized. The method of the study 
was conducted using several experimental works, which are: image processing 
algorithm construction to recognize the molten pool, welding process without control for 
determining welding and image parameters to train the neural network system, and 
finally conducting the experiment with control using neural network control system. 

2.3 Monitoring of Molten Pool 
In this section, the image processing algorithm to recognize the molten pool image 

and result of preliminary experiment using the image processing algorithm are 
described. 

2.3.1 Image Processing Algorithm 
In order to capture the backside molten pool image, CCD camera was used for 

acquisition of reflected image from the mirror. The arrangement of mirror and camera is 
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shown in Fig. 2.3 (a). The mirror with the size of 29 x 20 mm was set with 60o about the 
horizontal axes. The mirror rotates along the welding torch during the pipe welding 
process and reflects the image into the CCD camera. The example result of backside 
image of molten pool is shown in Fig. 2.3 (b). 

 

CCD camera

Fixed Pipe
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Reflected Image
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(a) Schematic of monitoring system 
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(b) Backside image of molten pool 

Fig. 2.3 Monitoring system and backside image of molten pool 

 
Figure 2.4 presents the flowchart of image processing algorithm. According to the 

low brightness of aluminum’s molten pool due to the low melting point, the stable and 
robust image processing algorithm must be constructed. Applying ellipse approximation 
(top and bottom ellipse) as an improvement of previous algorithm (only top ellipse) [57] 
[59], this process produced the improved image parameters of width (W), length (L) and 
area (A).  
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Fig. 2.4 Flowchart of image processing algorithm 
 

The detail of image processing algorithm will be discussed as follows.  
(1) Rotation of image: The first process of the recognition was to rotate the original 

image into uniform position as shown in Fig. 2.5 (a), (b), and (c). After reading the image, 
the histogram process was conducted. With threshold value produced from minimum 
scan of histogram frequency, the binarization was conducted as shown in Fig. 2.5 (b). In 
order to eliminate noises, the pick noise process was performed. Then the center of 
gravity of the bright area was obtained from the binary image. The image was aligned 
by rotating the center of gravity to the center of image to produce the image as shown in 
Fig. 2.5 (c).  

(2) Histogram analysis and scan the edge detection’s range: From the histogram 
analysis, the frequency of brightness value of the image was obtained. The brightness 
average, gavg and accumulation of the percentage of brightness average, pavg were 
obtained by the Eqs. (2.1) and (2.2), respectively. 
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where )(if is the frequency of brightness at i.  

(c) Rotated Image
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Fig. 2.5 Results of image processing 
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(a) Brightness frequency of molten pool image 

 

 
(b) Percentage of brightness frequency to find top and bottom brightness of edge detection 

Fig. 2.6 Method to find top and bottom brightness of edge detection 
 

By evaluating the frequency of brightness at 255, brightness average, gavg and 
percentage at brightness average, pavg, the range of threshold value could be 
determined. Several rules that have been determined from the observation and 
experience were applied to obtain the percentage of top threshold, ptop and bottom 
threshold, pbtm as shown in Table 2.1. Then the value of brightness at that percentage 
could be determined. Figure 2.6 shows the example of method to find top and bottom 
brightness of edge detection. With the brightness average of 67 in Fig. 2.6 (a) and 
applying the rules in Table 2.1, top brightness of 75 and bottom brightness of 58 could 
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be determined as shown in Fig. 2.6 (b). This process improved the previous process 
[57][59] that used contrast enhancement. 

Table 2.1 Rules of top and bottom brightness of edge detection 

Brightness 
Average  

(gavg) 

Percentage at 
Brightness 

Average  

(pavg) 

Histogram 
Frequency at 

Brightness of 255 

(f(255)) 

Percentage of 
Top Brightness 

(ptop) 

Percentage of 
Bottom Brightness 

(pbtm) 

< 35 All values < 1000 ptop = pavg + 2.0% pbtm = pavg + 1.0% 

> 35 and < 48 < 90.0%  < 1000 ptop = pavg + 1.0% pbtm = pavg - 1.0% 

> 35 and < 48 > 90.0%  < 1000 ptop = pavg + 0.5% pbtm = pavg – 0.5% 

> 48 and < 70 < 90.0%  > 1000 ptop = pavg + 2.0% pbtm = pavg – 2.0% 

> 48 and < 70 > 90.0%  > 1000 ptop = pavg + 1.0% pbtm = pavg – 1.0% 

> 70 All values > 1000 ptop = pavg + 0.5% pbtm = pavg – 0.5% 

 

(3) Maximum and Minimum Position: The differential values of brightness along 
vertical axis gv’(i,j) were obtained with the following formula.  

),()1,(),(' jigjigjig v −+=       (2.3) 

where g(i,j) is the brightness value of a pixel at (i,j)  
Because the position of top and bottom position was very difficult to be decided 

from differential value of brightness distribution, the top and bottom threshold values 
were utilized as range of edge scanning. Figure 2.7 shows the example of detection of 
top and bottom position of molten pool’s edge. In Fig. 2.7 (a) and (b) the brightness 
distribution at x = 136 and differential value of brightness distribution was shown, 
respectively. The top position was detected from the edge detection’s range with the 
biggest value of differential value as shown in Fig. 2.7 (c). On the contrary, the bottom 
position was detected as the smallest value of differential value as shown in Fig. 2.7 (d). 
The process was repeated along x position inside the set window as shown in Fig. 2.5 
(e). Finally, by comparing the highest and lowest position of top and bottom as shown in 
Fig. 2.5 (f), we could find the maximum position ytop and minimum position ybtm as shown 
in Fig. 2.5 (g).  
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(4) Left and Right Edges: The process to detect left and right edges was same as 
the process to find maximum and minimum position described at previous section. The 
differential values of brightness along horizontal axis gh’(i,j) were obtained, with the 
formula below.  

),(),1(),(' jigjigjig h −+=       (2.4) 

By applying the top threshold and bottom threshold as the edge detection’s range, 
the left and right edges were detected. This process was repeated along the y position 
inside the set window from the maximum position until the minimum position as shown 
in Fig. 2.5 (h). Finally, all of the left and right edges were detected as shown in Fig. 2.5 
(i). 
 

Molten pool

x
y

(0,0)

 
(a) Brightness distribution at x = 136 (b) Differential value of brightness distribution at x = 136

(c) Determination of top position (d). Determination of bottom position

Fig. 2.7 Example of detection of top and bottom position of molten pool’s edge 
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(5) Error Correction: Detected edges from previous process may have the error 
possibility due to reflection image that occurs usually at above of 350o, so that the error 
correction must be performed. The detected error occurred below the ytop and above 
ybtm for some certain range. With the error filtering process, the new ytop and ybtm were 
obtained.  

(6) Maximum Width Detection: In order to find the maximum width, the scanning of 
widest value of left and right edges below ytop was conducted. At the maximum width, 
the left edge Llmax and right edge Lrmax were determined. These points were used for the 
building of ellipse approximation. 

(7) Ellipse Approximation: The detected edges were not used directly to get the 
image parameters of molten pool. The more robust image processing algorithm by 
ellipse approximation was constructed to avoid the error possibilities and unsteady of 
detected edge. The inputs to build the ellipse approximation were: (1) Maximum position, 
ytop, (2) Minimum position, ybtm, (3) Left edge at maximum width, Llmax, and (4) Right 
edge at maximum width, Lrmax. With the construction of ellipse along the detected edge, 
it overcame the lack of detected edges. The result of ellipse approximation is shown in 
Fig. 2.5 (j). 

2.3.2 Results of Image Processing Algorithm 
In order to show the validity of the proposed image processing algorithm, the 

algorithm was applied to the current system. Figure 2.8 shows the result of preliminary 
experiment without control to examine the image processing algorithm. Result of 
detected edge is shown in Fig. 2.8 (a). The relation between welding speed, measured 
back bead width and detected molten pool width are shown in Fig. 2.8 (b). Image 
resolution is 0.06 mm/pixel. It is clearly seen that that image processing algorithm could 
detect the molten pool width with good approximation. However, some errors still occur 
during the monitoring process with the average error is 0.3 mm and standard deviation 
is 0.6 mm.  

The cause of the errors might come from the detected threshold values as the 
brightness range for scanning the edge of molten pool. The judgment of rules to obtain 
top and bottom brightness of edge detection could provide error in judgment of edge 
detection. Very low brightness of molten pool due to higher welding speed also 
generated poor detection of threshold values; therefore the edge detection could be 
failed.  
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θ = 22.5o

θ = 117o

θ = 207o

θ = 292.5o

θ = 4.5o

θ = 99o

θ = 184.5o

θ = 270o

θ = 49.5o

θ = 139.5o

θ = 229.5o

θ = 319.5o

θ = 72.5o

θ = 117o

θ = 252o

θ = 360o

(a) Results of edge detection 
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(b) Comparison between detected and measured back bead width 

 
(c) Error of detected back bead width 

Fig. 2.8 Result of preliminary experiment 
 

At the end of the rotation, some errors might occur due to reflection from the 
surface of welded back bead to the molten pool image. Another reason of this error 
came from the error of the measurement of back bead width using digital vernier caliper. 
Although the image processing algorithm had some errors, the algorithm with ellipse 
approximation was considered as the good approach. It could be assured that the 
ellipse approximation detected edge of molten pool robustly. Compared with previous 
research [57] [59], this image processing algorithm has improved the detection. 
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2.4 Experiment  
Experiments were conducted in two ways: experiment without control to collect 

training data and experiment with control using neural network control system. 

2.4.1 Experiment Without Control 
The material properties and welding conditions of this study is shown in Table 2.2. 

Welding experiments were conducted in TIG welding to find the training data by welding 
the pipe with several different welding speeds. The welding speed of 12 – 20 cm/min 
was implemented at four range of rotation angle, which notated as shown in Table 2.3. 

 

Table 2.2 Material properties and welding conditions  

Base metal Al-6063S-T5 
Diameter of pipe (mm) 37.8 
Thickness of pipe (mm) 2.0 

Density (g/cm3) 2.69 
Melting point (oC) 615-655 

Thermal conductivity (W/m.K at 25oC) 209 
Welding machine AC 

Electrode 2% Th-W (∅ 2.4 mm) 
Nominal arc length (mm) 1.5 

Welding current, I (A) 50 ~ 70 
Pulse current frequency (Hz) 50 

EN ratio 0.5 
Welding speed, v (cm/min) 12 ~ 26 

Shielding gas 100% Ar 
Shielding gas, q (l/min) 8 ~ 15 

Back shielding gas, 1 (l/min) 8 ~ 10 
 

Table 2.3 Notation of welding speed 

Notation Range of rotation angle

v1 0o – 90o 

v2 90o – 180o 

v3 180o – 270o 

v4 270o – 360o 
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Welding process was conducted autogenously for 360o of circumference and in 
fixed position of pipe. To begin with, the torch started to initiate the arc until the initial 
penetration was produced. Then by controlling the welding speed, v1 – v4, the 
experiment without control was conducted. In constant welding current of 60 A, all the 
training data consisted of the image parameters: width (W), length (L) and area (A), 
rotation angle (θ), and welding speed (v) were obtained. 

2.4.2 Welding Speed Control with Neural Network 
The experiment with control is conducted with the neural network model as control 

system. Neural network is a biologically inspired computational model that consists of 
processing elements (neurons) and connections between them, as well as of training 
and recall algorithms. The structure of neural network is defined by inputs, an input 
function and a signal function. Inputs have weight bound to them. An input function 
calculates the aggregated net input signal to a neuron coming from all its inputs.  A 
signal function calculates the activation level of a neuron as a function of its aggregated 
input signal and its previous state. An output signal equal to the activation value is 
emitted through the output of the neuron. A multilayer feedforward network is an 
important class of neural networks that typically consists of a set of sensory units 
(source nodes) that constitute the input layer, one or more hidden layers of computation 
nodes, and an output layer of computation nodes. The input signal propagates through 
the network in a forward direction, on a layer by-layer basis. These neural networks are 
commonly referred to as multilayer perceptrons (MLPs), which represent a 
generalization of the single-layer perceptrons. Multilayer perceptrons have been applied 
successfully to solve some difficult and diverse problems by training them in a 
supervised manner with a highly popular algorithm known as the errors 
back-propagation algorithm [77]. 

The back propagation neural network model is shown in Fig. 2.9. The input data 
from experiment without control were used to train the process and outputted the weight 
of neural network. There were three layers structure consisted of six units in the input 
layer, eleven units in the hidden layer, and two units in the output layer.  
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Change of welding
speed, Δv

Estimated back
bead width, B

 

Fig. 2.9 Neural network model 

 

Fig. 2.10 Second degree polynomial regression of welding speed at θ = 216o 
 

At the constant welding current of 60 A, the welding speed was controlled by the 
input data of welding torch rotation angle (θ), welding speed (v), arc current (I), image 
width (W), image length (L), and image area (A). From the collected data from the 
experiment without control, the process to find the change welding speed (∆v) was 
performed for every 4.5o of rotational increment using linear regression or second 
degree of polynomial regression of the data. The equation of regression was used to 
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find the change of welding speed to the target of back bead width. Figure 2.10 shows 
the example of second degree of polynomial regression of welding speed at θ = 216o. If 
the real back bead width was 5.3 mm and the polynomial coefficients were: a = - 0.0228, 
b = 0.4843, and c = 3.2641, then we could calculate the real speed at width of 5.3 mm 
yielded 15.47 cm/min. If the target back bead width was 5 mm, then with same 
procedure above we could find the real speed was 16.68 cm/min. As the result, we 
obtained the difference of welding speed was, ∆v = 16.68 - 15.47 = 1.21 cm/min. In this 
experiment, the target of back bead width was 5±1 mm. 

The first output of neural network ∆v was inputted directly into the motor control to 
rotate the welding torch. The second output of neural network B was used to estimate 
the back bead width using neural network. The 387 pairs of data were composed and 
processed into neural network training. Finally, the result of control welding was 
measured and analyzed. 

2.5 Results and Discussion 
During the experiment, pipe welding system exactly performed the decided 

sequence of welding torch movement which shows a very flexible aspect of the system. 
For experiment without control, detection of molten pool image was conducted for every 
4.5o of rotation angle. The results of experiment without control by monitoring backside 
image of molten pool are shown in Fig. 2.11.  

In Fig. 2.11 (a), three kind of welding speed with same values of v1 – v2 and 
different values of v3 – v4 were observed. In this experiment, by increasing the values of 
v3 and v4 at 16 and 17 cm/min, respectively, the back bead width could be decreased 
until 6 mm. In contrary, by inputting v3 – v4 with the value around 13 – 14 cm/min 
produced the final back bead width of about 8 mm. However, for achieving the target 
value of back bead width of 5 mm, the welding speed was still not enough. Therefore, it 
was necessary to observe the last three value of welding speed of v2 – v4. 

Figure 2.11 (b) shows the welding result with different welding speed of v2 – v4. At 
the beginning of welding process with θ = 0o – 180o, all of the different welding speed 
showed the same values around the target value of back bead width. However, by 
increasing the welding speed at v3 – v4, the back bead width showed the different result 
at the range of 6 – 7 mm. The smallest value of welding speed of v4 was set at 19.5 
cm/min. From these experiments, it was shown that the value of welding speed of v2 
was very important. Although by increasing the value of v2 produces almost the same 
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back bead width at θ = 90o – 180o, but it influenced the next welding result at θ = 180o – 
360o. 

 
(a) Welding result with different welding speed of v3 – v4 

 
(b) Welding result with different welding speed of v2 – v4 

Fig. 2.11 Results of experiment without control 
 

From the experiment to evaluate the neural network system, the comparison 
between back bead width obtained from the neural network and measurement is shown 
in Fig. 2.12. In this experiment, to produce stable arc condition, the welding speed of 12 
cm/min at θ = 0o – 45o was kept constant. Figure 2.12 (a) shows the comparison 
between estimated back bead width using neural network and measured back bead 
width. In Fig. 2.12 (b) presents the error of back bead width estimation. At θ = 45o – 135o 
estimated back bead width error was about –1 mm, and at θ = 270o – 360o, error was 
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more than 1 mm. Nevertheless, most of the errors were aligned in the tolerance value of 
4 – 6 mm and the average error of the estimation was –0.1 mm. The possible cause of 
errors could come from the error of measurement of back bead width. Another reason of 
these errors was the training data for neural network were not sufficient. 

 
(a) Comparison between estimated and measured back bead width 

 
(b) Error of the estimation of back bead width 

Fig. 2.12 Result of estimated back bead width using neural network 
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(a) Back bead 

 

 
(b) Welding speed and back bead width 

Fig. 2.13 Result of experiment using neural network control 
 

The experiment result using neural network is shown in Fig. 2.13. Figure 2.13 (a) 
shows sound weld of back bead. The cleaning area in with and without control results 
were almost same at 10 – 12 mm in width. Having this result, the cleaning area was not 
influence greatly in the control process. The welding speed and measured back bead 
width is shown in Fig. 2.13 (b). At θ = 45o – 135o, the welding speed increased slowly 
from 12 – 15 cm/min and the error of back bead width increased and exceeded 1 mm. 

Welding direction 
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However, by increasing the welding speed until 17.5 cm/min, the error of back bead 
width decreased to 0 mm at θ = 180o. Then, the welding speed was reduced to 14 
cm/min at θ = 180o and increased again up to 26 cm/min to saturated value of welding 
speed at θ = 270o. This welding speed has decreased error of back bead width less than 
0 mm and more than -1 mm. In general, the average error and standard deviation of 
back bead with using neural network model was 0.3 mm and 0.6, respectively. 

This experiment result shows a good agreement with previous experiment without 
control that the welding speed at θ = 90o – 180o was very important to affect next 
welding result. Accordingly, by proper control of welding speed, it will produce excellent 
back bead width. The experiment result shows that the bead was smooth in appearance 
and there was no crack, porosity, undercut and burn through along the circumference. 
The back bead width also aligned in the range target of 4 – 6 mm in width. In this study, 
the welding condition was changed during the welding proceeded along the 
circumference of the pipe. However, the suitable welding condition for producing the 
good result was obtained at welding current, I = 60 A, pulsed current frequency, f = 50 
Hz, minimum welding speed, vmin = 12 cm/min, and maximum welding speed, vmax = 26 
cm/min. In general, the proposed automatic welding system produced sound weld of 
aluminum pipes by monitoring backside image of molten pool.  

2.6 Conclusions  
Main results obtained by the investigation are summarized as follows. 

1. An automatic welding process of aluminum pipe welding system by monitoring 
backside image of molten pool using vision sensors was constructed. 

2. An algorithm to obtain edge detection’s range to detect edge of molten pool was 
proposed. Image processing based on differential value of brightness was 
proposed to detect edge of molten pool and the validity of the system was 
confirmed. 

3. As a result of welding experiments, the effectiveness of automatic welding system 
using neural network was demonstrated and sound weld was obtained. 
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Chapter 3 

Welding Penetration Control 
of Fixed Aluminum Pipes Using 

Fuzzy Inference System 
 

3.1 Introduction 
Improved automation of welding process has become increasingly important in the 

need for higher weld quality and reduced manufacturing cost. Advanced welding robot 
technology offers the reduced manufacturing cost however its use requires a means of 
sensing and monitoring the errors of the workpiece and the robot itself. 

Among the variety of welding processes, Tungsten Inert Gas (TIG) welding is 
frequently used, primarily because of its optimum weld quality, minimum distortion, 
operatively in all positions, and good visibility because the gas around the arc is 
transparent and weld pool is clean. A number of problems in automating arc welding 
processes include sensing, monitoring, joint tracking, and lack of adequate 
mathematical model for parameter prediction and quality control. Moreover, the welding 
penetration control is essential to the production quality welds with a specified geometry. 
Problems with parameter setting and quality control occur frequently in the TIG welding 
process, because welding process is nonlinear and multivariable-coupled which 
involves many uncertainties, such as, influences of metallurgy, heat transfer, chemical 
reaction, arc physics and magnetization [1].  

Therefore, it is very difficult to obtain a practical and useful controllable model of an 
arc welding process through classical modeling approaches. Welding bead width 
accuracy is difficult to be controlled due to the non-linearity and uncertainties of the 
process. As a result, intelligent control systems have been developed for modeling and 
controlling the welding process, as they derive the control performance based on 
human experience, knowledge, and logic techniques, instead of mathematical process 



 

44 
 

models. Hence, an approach adapted to provide modeling difficulties is Fuzzy Inference 
System that provides an approximate but effective means of describing the behavior of 
the system. A fuzzy inference system is a rule-based system that uses fuzzy set and 
fuzzy logic to reason about data. Fuzzy logic is a computational paradigm that provides 
a mathematical tool for representing information in a way that resembles human 
linguistic information and reasoning processes [77-83] 

Many industrial applications in arc welding process using fuzzy inference system 
have been reported [8-12] [46-47] [78]. An important application field where fuzzy 
inference system may play a significant role is in the control of welding speed under 
constant arc current in pipe welding. Compared to plate welding, obviously, welding of 
fixed pipe is more difficult due to the characteristics of the welding process and material 
properties. For fixed pipe welding, if the constant welding conditions are maintained 
over the full joint length, the bead width becomes wider as the circumferential welding of 
small diameter pipes progresses. Therefore, the control of bead width products has 
been very difficult to perform by constant welding conditions. 

The previous research was successfully conducted to weld stainless steel pipes 
[45] and aluminum pipes [57-61] [63-65] using neural network. The same material with 
neuro and fuzzy controller was also observed [62]. However, by using neural network 
great number of training data was necessary. In this research, welding penetration 
control of fixed aluminum alloy pipe A6063S-T5 using fuzzy inference system was 
proposed. By using this control system, the experimental data used in this study were 
less than in previous experiment using neural networks [57-65]. AC welding machine 
with square-wave current was used. The constant current of TIG welding process was 
considered with the controlled welding speed derived from the back bead width of 
molten pool image. Simulations were conducted to assess the performance of fuzzy 
modeling and fuzzy controller. A series of experiment were conducted to investigate the 
effectiveness of fuzzy controller.    

3.2 Experiment  
The pipe welding system developed in this study is same as in Section 2.2. Material 

properties and welding condition is shown in Table 3.1. 
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Table 3.1 Material properties and welding conditions  

Base metal Al-6063S-T5 
Diameter of pipe (mm) 37.8 
Thickness of pipe (mm) 2.0 

Density (g/cm3) 2.69 
Melting point (oC) 615-655 

Thermal conductivity (W/m.K at 25oC) 209 
Welding machine AC 

Electrode 2% Th-W (∅ 2.4 mm) 
Nominal arc length (mm) 1.5 

Welding current, I (A) 50 ~ 70 
Pulse current frequency (Hz) 50 ~ 70 

EN ratio 0.5 
Welding speed, v (cm/min) 12 ~ 24 

Shielding gas 100% Ar 
Shielding gas, q (l/min) 8 ~ 15 

Back shielding gas, 1 (l/min) 8 ~ 10 

3.2.1 Image Processing Algorithm 
 

A mirror with the size of 29 x 20 mm was set with 60o about the horizontal axes 
reflected the backside molten pool image into the CCD camera as shown in Fig. 3.1 (a). 
The mirror rotates along the welding torch during the pipe welding process. Backside 
image of molten pool is shown in Fig. 3.1 (a). 

Fig. 3.1 (b) - (g) presents the results of image processing algorithm. According to 
the low brightness of aluminum’s molten pool due to the low melting point, the stable 
and robust image processing algorithm must be constructed as follows. 
1. The image of molten pool was captured by CCD camera. The center of image was 

obtained and it was rotated along the center of image to get uniform image.  
2. Edge detection was performed using the differential value of brightness distribution. 

Firstly, histogram analysis was performed to find the edge detection’s range 
consists of top and bottom threshold values. Secondly, edge position was 
determined within this range.  

3. The vertical scanning within the defined set window obtained the maximum and 
minimum position of edge. And then the horizontal scanning determined the left and 
right edges.  
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4. Finally the width of molten pool (w) was determined as a largest width of the left and 
right edges. 

 
Welding torch
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Fixed pipe

Welding
direction Edge of molten pool
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(a) Schematic of monitoring   
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Fig. 3.1 Monitoring of molten pool 
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3.2.2 Preliminary Experiment 
Preliminary experiments were conducted to find the preliminary data by welding the 

pipe with several different welding speeds. The welding speed of 12 – 20 cm/min was 
implemented at four range of rotation angle: θ1 = 0o – 90o, θ2 = 90o – 180o, θ3 = 180o – 
270o, and θ4 = 270o – 360o. 

Welding process was conducted autogenously for 360o circumference of fixed pipe. 
In constant welding current of 60 A, the torch started to initiate the arc until the initial 
penetration was produced. Then by controlling the welding speed, vθ1 – vθ4, the 
preliminary experiment was conducted. The relationship between welding speed, 
rotation angle and back bead width is shown in Fig. 3.2. The result shows that at the 
constant welding speed, the more rotation angle, the larger back bead width.  

 

Fig. 3.2 Results of preliminary experiment 

3.3 Experiment 
To evaluate process control in pipe welding, the simulation of welding speed control 

system was proposed as shown in Fig. 3.3. The output from the fuzzy modeling, which 
is the estimated back bead width (w) will be compared to the reference back bead width 
(wr) to produce error (e). Together with the change of error (Δe), correction of welding 
speed (Δv) was determined. For simulating the welding process model, the process was 



 

48 
 

constructed by considering the welding distance (s) and control time (tcont) that includes 
image processing time and control process time which was set to 0.08 s. To initiate the 
welding speed, v0 of 12 cm/min was set. By adding the correction of speed to the 
previous welding speed, the new welding speed was determined. Welding distance and 
rotation angle (θ) will be determined by multiplying welding speed with control time. This 
process will be repeated for the welding distance that set from initial point until reach the 
end of the circumference of pipe. 

3.3.1 Modeling of Welding Process 
In pipe welding using constant arc current, welding speed is an important process 

parameter. Understanding the relationship between welding speed and rotation angle is 
essential to exercise the level of back bead width desired. In general, this is a difficult 
task because of the problems associated with many uncertainties of welding process. 
The objective of this work is to develop a model of welding process by means of fuzzy 
inference system. In this work, the back bead width is estimated from the welding speed 
and rotation angle of welding torch. The data from preliminary experiments without 
control have been used to perform the modeling process. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 3.3 Block diagram of welding speed control system 

 
First input to the fuzzy modeling is welding speed (v). At constant welding speed for 

every degree of rotation angle produces different back bead width. Hence, the rotation 
angle (θ) was adopted as another input to the fuzzy modeling. Five kinds of membership 
(Z – Zero, S – Small, M – Medium, L – Large, VL – Very Large) and triangular 
membership functions were used to fuzzify the inputs. Figure 3.4 illustrates the 
membership functions and ranges for each fuzzy variable. The optimization of the 

Fuzzy modeling

Target of back
bead width, wr

Estimated back
bead width, w

v

+

+

Δv

Fuzzy controller

v

Δe

e

−

+

z-1

Welding process model

tcont

stot

z-1

θ
360/(πd)+

+

s

1-z-1



 

49 
 

assignment was done through trial and error for achieving optimum performance of 
fuzzy inference system. 
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0
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Fig. 3.4 Membership function of fuzzy modeling of back bead width 
 

Table 3.2 Decision table for the fuzzy modeling of back bead 

v

θ

M S Z Z Z

L M S Z Z

L L M S Z

VL L L M S

VL VL L L M

L VL

L

VL

Z S M

Z

S

M

 
 

A set of rules that describe the operation of the fuzzy inference system should be 
constructed to specify which action to be taken under which conditions. These rules 
usually take the form of IF-THEN rules and can be obtained from a human expert. The 
decision table matrix for fuzzy modeling of back bead width is shown in Table 3.2. 
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Fig. 3.5 Error curve of the fuzzy modeling 
 

The heuristics guidelines in establishing this matrix are based on the following 
statements. 
1. When welding speed increases, the back bead width will decrease. 
2. When rotation angle increases, the back bead width will increase. 

Most common and simplest way to define the rule is the “max-min” inference 
method which is used here. These bring to the final step, defuzzification of the fuzzy 
output. And the weighted average method was used to convert the output values into a 
nonfuzzy result. 

For the purpose of validating the models, the data set was set randomly split into 
1245 training samples and 400 test samples. The partitioning is repeated 10 times 
independently. The precision (mean square error) of the method is 0.5 mm. Figure 3.5 
shows the error curves of the method. The modeling results shows that the fuzzy 
modeling has good performance and suitable to estimate back bead width. 

3.3.2 Fuzzy Controller Design 
The flowchart of control process is shown in Fig. 3.6. First, when the program 

executed, the arc will be started. In order to get the penetration at the starting point and 
stable arc, the welding torch must be kept static for a certain time. Then, the welding 
torch starts to move along the pipe. During the welding process, the rotational angle is 
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monitored and checked whether more than 360o or not. If the rotation angle less than 
360o, then the backside image of molten pool is captured by CCD camera and send to 
the PC to be processed. 

The output of the image processing is the width of molten pool, w. This value 
becomes the input of fuzzy controller. The output of fuzzy control is the correction of 
welding speed. After adjusting the welding speed, motor waits for several milliseconds 
to make sure the CCD camera captures the molten pool image. All of the processes will 
be repeated until the rotation angle reaches 360o. Finally, the program commands to 
stop the motor and the welding arc will stop. 

Start

Arc start

Wait

Motor start

Acquisition of
rotational angle

Rotational
angle < 360o

No

Yes

Acquisition of
image

Edge detection

Acquisition of
back bead width

Calculation of welding speed
by fuzzy control

Control of
welding speed

Wait

Motor stop

Arc stop

End  

Fig. 3.6 Flowchart of control process 
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Fig. 3.7 Membership function of fuzzy control 

Table 3.3 Decision table for the fuzzy control of welding speed 

 

e

Δe

N N Z

N Z P

Z P P

P

N

Z

P

N Z

1) 4) 7)

2) 5) 8)

3) 6) 9)

 
 
 

In this step, the proposed fuzzy control took two variables to be fuzzified. One was 
an error (en), which was the difference of back bead width (wn) at the concerned time 
step (n) from the reference back bead width (wr):  

en = wr – wn       (3.1) 
and wr was set at 5 mm. 
The other was the change of an error defined as: 

Δen+1 = wn+1 – wn      (3.2)  
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Fig. 3.8 Summary of input – output relationship 

 
Three kind of membership (N – Negative, Z – Zero, P – Positive) and triangular 

membership functions were used to fuzzify the inputs. Figure 3.7 shows the 
membership functions and ranges for each fuzzy variable. The decision table for fuzzy 
control of welding speed is shown in Table. 3.3. The following knowledge was utilized to 
determine a new welding speed.  
1. If back bead width error is negative, (e(n) < 0) and becomes smaller (Δe(n) < 0), 

then back bead width should be increased and set much lower of welding speed (Δv 
< 0). 

2. If back bead width error is negative, (e(n) < 0) and not changed (Δe(n) = 0), then 
back bead width should be increased and set much lower of welding speed (Δv < 0). 

3. If back bead width error is negative, (e(n) < 0) and becomes larger (Δe(n) > 0), then 
back bead width should be decreased and set no change of welding speed (Δv = 0). 

4. If back bead width error is zero, (e(n) = 0) and becomes smaller (Δe(n) < 0), then 
back bead width should be increased and set much lower of welding speed (Δv < 0). 

5. If back bead width error is zero, (e(n) = 0) and not changed (Δe(n) = 0), then back 
bead width should be decreased and set no change of welding speed (Δv = 0). 

Target width

Back bead width
w [mm]

wn

wn+1

Δv -> Positive (+)

wn wn+1

Δv -> Positive (+)

wn

wn+1

Δv -> Zero (0)

wn wn+1

Δv -> Negative (-)

wn

wn+1
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wn
wn+1

Δv -> Zero (0)

wn

wn+1

Δv -> Negative (-)

Rotation angle θ [deg]

wn

wn+1

Δv -> Zero (0) Δv -> Negative (-)

wn

wn+1

Error = 0

Error < 0

Error > 0

Error =  w
r
 - w

n
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6. If back bead width error is zero, (e(n) = 0) and becomes larger (Δe(n) > 0), then back 
bead width should be decreased and set much higher welding speed (Δv > 0). 

7. If back bead width error is positive, (e(n) > 0) and becomes smaller (Δe(n) < 0), then 
back bead width should be decreased and set no change of welding speed (Δv = 0).  

8. If back bead width error is positive, (e(n) > 0) and not changed (Δe(n) = 0), then back 
bead width should be decreased and set much higher welding speed (Δv > 0). 

9. If back bead width error is positive, (e(n) > 0) and becomes larger (Δe(n) > 0), then 
back bead width should be decreased and set much higher welding speed (Δv > 0). 
The summary of input-output relationship is shown in Fig. 3.8. 
The simulation result of back bead width and welding speed is shown in Fig. 3.9. It 

shows that the fuzzy control maintained the back bead width over the reference within 
the range of 5±1 mm. The root mean square error (RMSE) and mean square error 
(MSE) of fuzzy control are 0.3 mm and 0.6 mm, respectively. The welding speed 
gradually increased to keep the back bead width under the certain tolerance. Based on 
this result, the fuzzy control was suitable for controlling the welding speed and 
appropriate to be implemented into the real automatic control system. This control 
system also performed the process more effective, because it used the experimental 
data 70 percent less than in the study using neural network [65]. 

 

Fig. 3.9 Result of simulation 

3.4 Results and Discussion 
In this experiment, to produce stable arc condition, the welding speed of 12 cm/min 

at θ = 0o – 45o was kept constant. Figure 3.10 shows the experiment result at different 
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arc current and same pulse current frequency. At constant arc current, I = 60 A, and 
pulse current frequency, f = 50 Hz, the result shows that the back bead width could be 
kept in the target range of 5±1 mm with the average error and standard deviation are 
-0.1 mm and 0.4 mm, respectively as shown in Fig. 3.10 (a).  

This setting was set as baseline to the next experiment. Welding speed was 
increased by fuzzy controller to reach the target of back bead width. On the other hand, 
by increasing the arc current, obviously the higher heat input was delivered. Therefore 
the system designed to produced back bead width conformed to the reference back 
bead width by increasing welding speed. The welding speed at increased arc current is 
higher as shown in Fig. 3.10 (b). The correction welding speed was kept higher by fuzzy 
control, although the values were saturated to the 0.25 cm/min as shown in Fig. 3.10 (c). 
The result after increasing arc current at I = 62.5 A and f = 50 Hz yields the average 
error and standard deviation are -0.3 mm and 0.5 mm, respectively. 

 
(a) Back bead width 
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(b) Welding speed 

 
(c) Correction of welding speed 

Fig. 3.10 Results at different arc current and same frequency (f = 50 Hz) 
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(a) Back bead width 

 
(b) Welding speed 
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(c) Correction of welding speed 

Fig. 3.11 Results at different pulse current frequency 

 
Figure 3.11 shows the experimental result at same arc current and different pulse 

current frequency. At I = 60 A and f = 100 Hz, it is clearly understood that the heat input 
also increased. It shows that the back bead width could be maintained in the target 
range of 5±1 mm with the average error and standard deviation are -0.1 mm and 0.6 
mm, respectively as shown in Fig. 3.11 (a). 

However, back bead width decreased because the welding speed increased and it 
increased gradually after welding speed was corrected as shown in Fig. 3.11 (b). The 
correction of welding speed was kept higher by fuzzy controller, although some 
corrections were saturated to the ±0.25 cm/min as shown in Fig. 3.11 (c). 

These experimental results indicate that fuzzy controller can perform the correction 
of welding speed to get the target of back bead width. However the results of back bead 
width using increased arc current and increased pulse current frequency were not as 
good as the baseline’s result. Some errors occurred may correspond to the error of 
image processing and welding speed control. By adjusting the membership function of 
fuzzy controller, target back bead width can be obtained. 

Figure 3.12 shows four pictures illustrating each result of experiment without and 
with welding penetration control, respectively. Figure 3.12 (a) shows the result of the 
welding for welding speed of vθ1 – vθ4 = 12.1 – 12.8 – 14.8 – 16.7 cm/min and the 
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standard deviation is 0.66 mm. On the contrary, the welding process with fuzzy control 
provides sound weldment as shown in Fig. 3.12 (b), (c) and (d). 

 

 
(a) Experiment without control 

(I = 60 A, f = 50 Hz) 
 

 
(b) Experiment with control 

(I = 60 A, f = 50 Hz) 
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(c) Experiment with control, at different arc current and same frequency 

(I = 62.5 A, f = 50 Hz) 
 

 
(d) Experiment with control, at same arc current and different frequency 

(I = 60 A, f = 100 Hz) 

Fig. 3.12 Back bead appearance 
 

The experiment results show that there were no crack, porosity, undercut and burn 
through along the circumference and the bead was smooth in appearance. Moreover, 
the back bead width also aligned in the range target of 5±1mm in width. In this study, the 
welding condition was changing during the welding proceeded along the circumference 
of the pipe. However, the suitable welding condition for producing the good result was 
obtained at welding current, I = 60 A, pulse current frequency, f = 50 Hz, minimum 
welding speed, vmin = 12 cm/min, and maximum welding speed, vmax = 24 cm/min.  
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In general, the proposed automatic welding system using fuzzy inference system 
produced sound weld of aluminum pipes by monitoring backside image of molten pool. 

3.5 Conclusions  
Main results obtained by the investigation are summarized as follows. 

1. An automatic welding process of aluminum pipes by monitoring backside image of 
molten pool using fuzzy inference system was constructed. 

2. Simulator of welding control using fuzzy inference system was constructed to 
simulate the welding control process. It shows that the fuzzy controller was suitable 
for controlling the welding speed. 

3. As a result of automatic welding control using fuzzy inference system, it shows the 
effectiveness of the control system that is confirmed by sound weld of experimental 
results. 
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Chapter 4 

New Monitoring System of 
Backside Image of Molten Pool 
Using Omnidirectional Camera 

 

4.1 Introduction 
For many applications in automation of welding process, the need for higher weld 

quality and reduced manufacturing cost has become increasingly important. Advanced 
welding technology takes part to reduce manufacturing cost, however its use requires a 
means of sensing and monitoring of error in the process. As the application of pipe 
welding in power stations, offshore structures, and process industries, it is important to 
investigate the characteristic of the welding process.  

There have been problems in automating arc welding processes such as sensing, 
monitoring and line tracking. The difficulty in welding process related to nonlinear and 
multivariable-coupled which involves many uncertainties, such as influences of 
metallurgy, heat transfer, chemical reaction, arc physics, and magnetization [1].  

Therefore, to achieve full automation of aluminum pipe welding, the welding 
penetration should be controlled. Intelligent control systems have been developed for 
modeling and controlling the welding process as they derive the control performance 
based on human experience, knowledge, and logic techniques. Many industrial 
applications and welding processes have been studied using neural networks [2-7] 
[44-45] [57-65] and fuzzy techniques [8-12] [46-47] [65-68]. Another difficulty in 
controlling an arc welding process is how to detect weld pool geometrical features, such 
as weld bead width and penetration, either from the topside or backside, conveniently 
and in real-time. Various efforts have been made to sense weld pool sizes in real-time 
from the topside, such as ultrasonic detection, infrared sensing, pool image processing, 
and radiographic sensing to produce weld quality control [13-16]. The experiment using 
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the vision sensing to control the TIG weld width for stainless steel [45] and aluminum 
alloy [57-68] pipe has been conducted with the algorithm of image processing to detect 
molten pool’s edge.  

In order to avoid the defects during aluminum pipe welding and to obtain the 
uniform weld bead over the entire circumference of the pipe, the welding conditions 
should be controlled as the welding proceeds. The previous research was successfully 
conducted to weld stainless steel pipes [45] and aluminum pipes [57-68] using plain 
mirror that rotates along the welding torch during the pipe welding process. This 
research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in 
fixed position using the AC welding machine. The proposed monitoring system used 
new monitoring system backside image of molten pool by using an omnidirectional 
camera. Recently, an omnidirectional camera which provides a wide view of 360o has 
been popularly applied to mobile robots [84-89]. The omnidirectional camera consists of 
a perspective camera and a curved mirror to allow a central projection by reflected rays 
such as by paraboloidal, ellipsoidal and hyperboloidal mirrors. A geometry model and 
design method for an omnidirectional camera with a hyperboloidal mirror is presented 
[84]. In [86], the geometry of image formation of an omnidirectional camera with 
paraboloidal and hyperboloidal mirror was developed. A general framework was 
described for computing ego-motion using the optical flow in an omnidirectional camera. 
The image velocity vectors were mapped into a sphere using the Jacobian of the 
transformation to estimate ego-motion [87].   

AC welding machine with square-wave current was used. The constant current of 
TIG welding process was used and controlled welding speed derived from the back 
bead width of molten pool image was performed. Panorama image of molten pool was 
developed and image processing algorithm was constructed to detect edge of molten 
pool. In this experiment, the fuzzy inference system was used to control welding 
penetration by modifying speed. Automatic welding process was conducted to evaluate 
the performance of the system.     

4.2 Experimental Device 
The pipe welding system developed in this study is same as Section 2.2. The major 

functional elements of the experimental system are a circumferential welding 
manipulator, CCD camera and the image board (256×220pixels, 8bit), the personal 
computer (CPU: 700 MHz), A/D board to measure arc current and voltage, TIG welding 
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machine, and motor board to control stepping motors. Material properties and welding 
conditions is shown in Table 4.1.  

4.3 Image Processing Algorithm 

4.3.1 Omnidirectional Vision 
Omnidirectional vision developed in this research consists of a CCD camera and a 

hyperboloidal mirror. This system improved the previous design of monitoring which 
used plain mirror that rotated along the welding torch [57-68]. With this mirror, there is 
no rotated part in the monitoring system. Figure 4.1 (a) presents the top view of the 
hyperboloidal mirror used in this study. The dimension of the mirror is shown in Fig. 4.1 
(b).  

 
 

Table 4.1 Material properties and welding conditions  

  
Base metal Al-6063S-T5 

Diameter of pipe (mm) 37.8 
Thickness of pipe (mm) 2.0 

Density (g/cm3) 2.69 
Melting point (oC) 615-655 

Thermal conductivity (W/m.K at 25oC) 209 
Welding machine AC 

Electrode 2% Th-W (∅ 2.4 mm) 
Nominal arc length (mm) 1.5 

Welding current, I (A) 50 ~ 70 
Pulse current frequency, f (Hz) 50 ~ 100 

EN ratio 0.5 
Welding speed, v (cm/min) 12 ~ 20 

Shielding gas 100% Ar 
Shielding gas, q (l/min) 8 ~ 15 

  
 



 

65 
 

 
(a) Top view 

 
(b) Size of hyperboloidal mirror [mm] 

Fig. 4.1 Hyperboloidal mirror 
Welding torch

PipeHyperboloidal
Mirror

Welding
direction

Molten
pool

 
(a)  Schematic of monitoring 
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(b)  Example of original image of molten pool. 

Fig. 4.2 Monitoring of molten pool 

 
The schematic of monitoring and example result of original image of molten pool 

are shown in Fig. 4.2 (a) and (b), respectively. The detail geometry of the hyperbolic 
omnidirectional camera is shown in Fig. 4.2. Hyperboloidal mirror reflects the backside 
image of molten pool circumferentially to the CCD camera. Omnidirectional vision used 
in this research was developed from [89]. The origin of the coordinate system (x, y, z) is 
the center point of camera. An omnidirectional image on an image plane u–v is 
generated through the following process. First, a light ray goes ahead to the mirror focal 
point Om(0, 0, 2C + D) from any object point P(X,Y,Z) in the real-world. Next, a light ray 
is reflected toward a camera lens focal point Oc(0, 0,D) from a mirror intersection point 
as shown in Fig. 4.4. 
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Fig. 4.3 Detail of monitoring system 
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Fig. 4.4 Geometry of a hyperboloidal omnidirectional camera 
 

The hyperboloidal equation of the proposed mirror is represented as: 
( )( ) 122
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A
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    (4.1) 

where A and B are parameters of the hyperboloidal mirror shape, 22 YXC += , 
and D is the distance between lens to a center point of the camera. The relationship 
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equation between an image coordinate p(u, v) and a real-world three-dimensional 
position P(X,Y,Z) is presented as follows:  
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where f is the focal length of a CCD camera. Relationship equations between Z and 
X, Z and Y in the image coordinate p(u, v) are described as follows: 
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For the proposed omnidirectional camera, A = 1, B = 2, D = 16 mm, f = 1.6 mm and 
the size of CCD is 6.59 mm × 4.94 mm. 

4.3.2 Edge Detection of Molten Pool  
Figure 4.5 presents the flowchart of image processing algorithm. Due to the low 

melting point of aluminum, brightness of molten pool is low; therefore the stable and 
robust image processing algorithm must be constructed. The detail of edge detection of 
molten pool will be discussed as follows.  

(a) Histogram Analysis: First, the image of molten pool will be analyzed to get the 
histogram information. Compared to the stainless steel, the edge of molten pool in 
aluminum is very difficult to be detected. After the observation to find the exact position 
of molten pool and compared to the real back bead width, it is found that the edge of 
molten pool aligned between the edge detection range. This range defined as the range 
between inner and outer brightness as shown in Fig. 4.6 (a). In this study, the same 
method of [65] to find the edge was applied. 
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Histogram analysis
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Fig. 4.5 Flowchart of image processing 
 
 

Edge of molten pool

Inner brightness

Average brightness

Outer brightness

Vertical scanning  
(a) Illustration image of molten pool 
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(b) Frequency of average brightness (θ=180o) 

 
(c) Inner and outer brightness frequency (θ=180o) 
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(d) Cumulative percentage of brightness (θ=180o) 

Fig. 4.6 Histogram analysis for edge detection 

 
From the histogram analysis, the frequency of brightness value of the image was 

obtained. The average brightness, gavg and accumulation of the percentage of average 
brightness, pavg were obtained by the Eqs. (4.5) and (4.6), respectively. 
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where )(if is the frequency of brightness at i.  
Figure 4.6 (b) presents the location of brightness average in brightness frequency. 

Unlike the previous method which applied some rule to obtain the percentage of top 
threshold or outer brightness, pout and bottom threshold or inner brightness, pin [65], the 
new method directly add the constant into the value of those percentages, which are 
defined as:  

(%)outavgout ppp Δ+=     (4.7) 

(%)inavgin ppp Δ+=      (4.8) 
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In this experiment as shown in Fig. 4.6 (c), the value of Δpout and Δpin are 0.3% and 
0.8%, respectively. Then the value of outer brightness, gout  = 45 and outer brightness, 
gin = 41 can be obtained as shown in Fig. 4.6 (d). 

 

 
(a) Original image 
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(b) Panorama transformed image 
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(c) Detection of set window from center of gravity after binarization at brightness of 40 
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(d) Set window at θ = 180o 

 

 
(e) Brightness at x=261 

 
(f) Differential brightness at x=261 
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(g) Bottom edge position 

 
(h) Top edge position 
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(i) Detected edge and width of molten pool 

Fig. 4.7 Edge detection of molten pool 
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(b) Panorama Transformation: Figure 4.7 (a) shows the omnivision image of molten 
pool. Every image will be transformed into panorama transformed image using Eqs (4.1) 
– (4.4) as shown in Fig. 4.7 (b).  

(c) Set Window: After finding the center of gravity, set window was created 
automatically to locate the scanning area and reduce the time of edge detection as 
shown in Fig. 4.7 (c). The set window was created from the points of left, right, top and 
bottom as shown in Fig. 4.7 (d). Maximum size of set window was 150 x 100 pixels. 

(d) Top and Bottom Edge Detection: From the panorama transformed image inside 
set window, the vertical scanning was performed to find top and bottom edge detection 
as shown in Fig. 4.7 (b). Figure 4.7 (e) shows the brightness frequency at x = 261. It is 
shown that there are two peaks of brightness distribution which are molten pool and its 
reflection. 

Edge detection was performed on the differential value of brightness along vertical 
axis g’(i,j) : 

),()1,(),(' jigjigjig −+=      (4.9) 
 

where g(i,j) is the brightness value of a pixel at (i,j) as shown in Fig. 4.7 (f). Edge 
position was determined within this range of searching. By applying the inner brightness 
and outer brightness, the bottom edge position can be detected by finding the minimum 
position within the range as shown in Fig. 4.7 (g). In contrary, the top edge position was 
detected from maximum position within the range as shown in Fig. 4.7 (h). This process 
was repeated along x position inside the set window.  

(d) Width Detection: In order to find the width of molten pool, the scanning of widest 
value of top and bottom edges was conducted. Figure 4.7 (i) shows the detected edge 
and width of molten pool.  
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Fig. 4.8 Comparison result of measured back bead width and detected molten pool 

4.3.3 Result of Image Processing Algorithm  
Figure 4.8 shows the comparison of measured back bead width and detected 

molten pool width using proposed image processing algorithm in preliminary experiment 
without control. Image resolution is 0.093 mm/pixel. It is clearly seen that image 
processing algorithm could detect the molten pool width with good approximation. 
However, some errors still occur during the monitoring process with the average error is 
0.0 mm and standard deviation is 0.4 mm. The cause of the errors might come from the 
detected inner and outer threshold brightness as the range for scanning the edge of 
molten pool. Another reason of this error came from the error of the measurement of 
back bead width.  

Although the image processing algorithm had some errors, edge detection using 
panorama transformation from omnivision image were considered as the good 
approach. With this result, the algorithm is appropriate to the real time monitoring of the 
welding process. 

4.4 Experiment with Control  
Welding process was conducted autogenously for 360o of circumference and in 

fixed position of pipe. In constant welding current of 60 A, the torch started to initiate the 
arc until the initial penetration was produced. The experiment with control was 
conducted using fuzzy inference system as control system [66-68]. The output of the 
image processing which is the width of molten pool, w will become the input of fuzzy 
control. The output of fuzzy control is the correction of welding speed. After adjusting 
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the welding speed, motor waits for several millisecond to make sure the CCD camera 
capture the molten pool image. All of the processes will be repeated until the rotation 
angle reaches 360o. Finally, the program commands to stop the motor and the welding 
arc will stop. 

In this step, the proposed fuzzy control took two variables to be fuzzified. One was 
an error (en), which was the difference of back bead width (wn) at the concerned time 
step (n) from the reference back bead width (wr):  

en = wr – wn       (4.10) 
and wr was set at 5 mm. 
The other was the change of an error defined as: 

Δe n+1 = wn+1 – wn      (4.11)  
Three kind of membership (N – Negative, Z – Zero, P – Positive) and triangular 

membership functions were used to fuzzify the inputs. Figure 4.9 (a), (b) and (c) show 
the membership functions and ranges for each fuzzy variable. The decision table for the 
fuzzy control of welding speed is shown in Fig. 4.9 (d). 

1

-1.0 0
0

N Z P

1.00.5-0.5

(c) Output: welding speed
correction, Δv [cm/min]

1

-0.5 0
0
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(a) Input: back bead width
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1

-0.5 0
0
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(b) Input: back bead width
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e
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(d) Decision table

 

Fig. 4.9 Fuzzy sets and decision table for fuzzy control of welding speed 
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(a) Back bead width and welding speed 

 
(b) Correction of welding speed 
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(c) Back bead appearance 

Fig. 4.10 Result of experiment with control 
 

4.5 Results and Discussion  
In control experiment, to produce stable arc condition, the welding speed of 7 

cm/min at θ = 0o – 45o was kept constant. Figure 4.10 (a) shows the experiment result of 
back bead width and welding speed using fuzzy controller. Figure 4.10 (b) presents that 
fuzzy control determined the correction of welding speed to keep the back bead width in 
the target range of 5±1 mm. The result of experiment with control yields the average 
error, root mean square error (RMSE), and standard deviation are -0.3 mm, 0.3 mm is 
0.5 mm, respectively. At θ = 45o – 135o, the welding speed increased from 5 – 10 
cm/min and the back bead width increased. 

However, by maintaining and increasing the welding speed until 14 cm/min, the 
back bead width was kept to 5 mm at θ = 180o. Accordingly, by proper control of welding 
speed, it will produce excellent back bead width. The experiment result shows that the 
bead was smooth in appearance and there was no crack, porosity, undercut and burn 
through along the circumference as shown in Fig. 4.10 (c). The back bead width also 
aligned in the range target of 4 – 6 mm. In this study, the welding condition was changed 
during the welding proceeded along the circumference of the pipe. However, the 
suitable welding condition for producing the good result was obtained at welding current, 
I = 60 A, pulsed current frequency, f = 50 Hz, minimum welding speed, vmin = 7 cm/min, 
and maximum welding speed, vmax = 15 cm/min. In general, the proposed automatic 
welding system produced sound weld of aluminum pipes by monitoring backside image 
of molten pool using omnidirectional camera. 
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4.6 Conclusions  
The conclusions of this chapter are summarized as follows.  

1. Welding penetration control of aluminum pipes using omnidirectional camera was 
constructed. 

2. An algorithm to obtain to detect edge of molten pool from panorama image of molten 
pool was proposed. As a result of the experiment using fuzzy inference system, the 
effectiveness of the control system was confirmed. 
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Chapter 5 

Particle Swarm Optimization 
(PSO) and Genetic Algorithm 

(GA) Optimization of Edge 
Detection of Molten Pool in Fixed 

Pipe Welding 
 

5.1 Introduction 
Advanced welding technology offers the reduced manufacturing cost, however its 

use requires a means of sensing and monitoring of error of the workpiece. Tungsten 
Inert Gas (TIG) welding is one of the frequently used. In welding fixed pipe, to obtain the 
uniform weld bead over the entire circumference of the pipe, the welding conditions 
should be controlled as the welding proceeds.  

The difficulty to control arc welding process is how to detect weld pool geometrical 
features, such as weld bead width and penetration in real-time. The previous 
researches using the welding system with plain mirror to reflect the backside image of 
molten pool have been successfully conducted to weld stainless steel pipes [45], and to 
aluminum pipes [57-68]. In this study we propose new method using omnidirectional 
vision-based molten pool monitoring. The monitoring system was constructed by 
hyperboloidal mirror and CCD camera. However, compared to the detected stainless 
steel’s image, image of aluminum molten pool has very low brightness. Therefore, new 
technique of optimization in detecting edge of molten pool was proposed in this 
research.  
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Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are two kinds of 
widely used optimization method in evolutionary computation (EC). PSO [90-93] is a 
population-based search algorithm and is initialized with a population of random 
solution, called particles. Unlike the other evolutionary computation techniques, each 
particle in PSO is also associated with a velocity which is dynamically adjusted 
according to the flying experience of its own and its companions. Therefore, a 
population of particles is updated on a basis of information about each particles 
previous best performance and the best particle in the population [94]. A lot of research 
results have been reported in the literature [90-92]. The genetic algorithm (GA) is an 
optimization and search technique based on the principles of genetics and natural 
selection. A GA allows a population composed of many individuals to evolve under 
specified selection rules to a state that maximizes the “fitness” (i.e., minimizes the cost 
function) [94-95]. GA combined with neural network trained with convective heat flow 
calculations is used to adapt GTAW geometry. Good agreement between the model 
predictions and the experimental data of weld pool penetration and width for various 
welding conditions shows that the approach is promising [96]. Other application of GA to 
optimize welding parameters was investigated. A welding economic design has been 
developed to recognize welding quality at different ranges of welding parameters at 
minimum cost. This approach integrates neural network and GA to study the welding 
economic design as a mathematical model [97].  

In this experiment, automatic welding system of fixed aluminum alloy pipe 
A6063S-T5 using omnidirectional vision-based molten pool monitoring was conducted. 
New image processing algorithm was developed by transforming the original image of 
molten pool into panorama image. In application of the edge detection of molten pool, a 
method for determining brightness range values for edge detection using PSO or GA 
was proposed. This new search method could reduce the computational cost and error 
of detection. The constant current of TIG welding process was used in the controlled 
welding speed using fuzzy inference system derived from the back bead width of molten 
pool image.  

5.2 Edge Detection of Molten Pool  
The experimental device, which was used in this experiment, is same as in Section 

2.2. The material properties and welding conditions used are given in Table 5.1.  
 



 

83 
 

5.2.1 Monitoring of Molten Pool 
In order to capture the backside molten pool image, a hyperboloidal mirror was 

used for acquisition of reflected image. The schematic of monitoring system is shown in 
Fig. 5.1 (a). The hyperboloidal mirror reflected the molten pool image into the CCD 
camera as shown in Fig. 5.1 (b). Figure 5.1 (c) presents the result after transformation 
process into panorama image using proposed equation in [87]. According to the low 
brightness of aluminum’s molten pool due to the low melting point, the stable and robust 
image processing algorithm must be constructed. The focus of the optimization was in 
the histogram analysis process.  

Table 5.1 Material properties and welding conditions 

  

Base metal Al-6063S-T5 
Diameter of pipe (mm) 37.8  
Thickness of pipe (mm) 2.0 
Density (g/cm3) 2.69 
Melting point (oC) 615-655 
Thermal conductivity (W/m.K at 25oC) 209 
Welding machine AC 
Electrode 2% Th-W (∅ 2.4 mm) 
Nominal arc length (mm) 1.5 
Welding current, I (A) 50 ~ 70 
Welding speed, v (cm/min) 7 ~ 25 
Shielding gas 100% Ar  
Shielding gas, q (l/min) 8 ~ 15 
  

 
In the histogram analysis process, the brightness average (gavg) and accumulation 

of the percentage of brightness average (pavg) were obtained by the Eq. (5.1) and (5.2), 
respectively [45].  
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where: 
)(if  = the frequency of brightness at i. 

By adding the percentage at brightness average (pavg) with some values which are 
difference percentage of outer brightness (Δpout) and difference percentage of inner 
brightness (Δpin), the value of percentage of outer brightness (pout) and inner brightness 
(pin) could be determined as shown in Eq. (5.3) and (5.4), respectively.  

outavgout ppp Δ+=       (5.3) 

inavgin ppp Δ+=       (5.4) 
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(a)  Schematic of monitoring. 

 

0o

90o

180o

270o

W
e
ld

in
g 

di
re

c
ti
o
n

Molten pool Reflection

Mirror

 

 

(b)  Example of original image of molten pool. 
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(c)  Panorama image of molten pool. 

Fig. 5.1 Monitoring of molten pool 

 

Figure 5.2 (a) illustrates the image of molten pool. The edge of molten pool aligns 
between the outer and inner brightness. The cumulative percentage of brightness 
frequency is shown in Fig. 5.2 (b). From Eq. (5.3) and (5.4), we can find the outer 
brightness (gout) and inner brightness (gin) as shown in Fig. 5.2 (c). The range between 
gout and gin defined as brightness range for determining edge of molten pool. To detect 
the edge of molten pool, the set window as shown in Fig. 5.1 (c) was constructed 
automatically. Then, vertical scanning in this set window was performed to find the edge. 
In this study, the values of pout and pin were optimized using PSO and GA to find the 
minimum error of detected width. 

5.3 Particle Swarm Optimization  
PSO was developed by Edward and Kennedy in 1995 [90]. The process behind the 

algorithm was inspired by the social behavior of animals, such as bird flocking or fish 
schooling. PSO is similar to the continuous GA in that it begins with a random 
population matrix. However, unlike the GA, PSO has no evolution operators such as 
crossover and mutation. The rows in the matrix are called particles that contain the 
variable values and are not binary encoded. Each particle moves about the cost surface 
with a velocity. The particles update their velocities and positions based on the local and 
global best solutions [94]: 
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where 
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vm,n = particle velocity 
ω  = inertia weight  
pm,n = particle variables 
r1,r2 = independent uniform random numbers 
Γ1 = Γ2 = learning factors 

bestlocal
nmp ,  = best local solution 

bestglobal
nmp ,  = best global solution 

The algorithm updates the velocity vector for each particle then adds that velocity to 
the particle position or values. Velocity updates are influenced by both the best global 
solution associated with the lowest cost ever found by a particle and the best local 
solution associated with the lowest cost in the present population. If the best local 
solution has a cost less than the cost of the current global solution, then the best local 
solution replaces the best global solution. The particle velocity is reminiscent of local 
minimizers that use derivative information, because velocity is the derivative of position. 
The constant Γ1 and Γ2 is called the cognitive parameter and the social parameter, 
respectively. The advantages of PSO are that it is easy to implement and there are few 
parameters to adjust [94]. 

Edge of molten pool

Inner brightness

Average brightness

Outer brightness

Vertical scanning  
(a) Illustration image of molten pool 
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(b) Cumulative percentage of brightness frequency (θ=180o) 

 
(c) Inner and outer brightness (θ=180o) 

Fig. 5.2 Histogram analysis for edge detection 
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Fig. 5.3 Flowchart of edge detection of molten pool using PSO and GA 

 

5.4 Genetic Algorithm  
The genetic algorithm (GA) is an optimization and search technique based on the 

principles of genetics and natural selection. The method was developed by John 
Holland over the course of the 1960s and 1970s and finally popularized by one of his 
students, David Goldberg, who was able to solve a difficult problem involving the control 
of gas-pipeline transmission for his dissertation. GA encodes the decision variables (or 
input parameters) of the underlying problem into (solution) strings. Each string, called 
individual or chromosome, represents a candidate solution. Characters of the string are 
called genes. A fitness function is needed for differentiating between good and bad 
solutions. The fitness function of GA may be presented in a mathematical term, or as a 
complex computer simulation. Fitness generates a differential signal in accordance 
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which GA guides the evolution of solution to the problem. Three basic genetic operators, 
selection, crossover, and mutation, are applied to generate new individuals. The 
strength of GA is the exploration of different regions of the solution space 
simultaneously, which makes them perform well when considering large search spaces 
[94-95].  

The GA simulates the continuous model of the generation, which eliminates and 
generates a few individuals in a generation (iteration). A candidate solution (individual) 
is composed of numerical parameters of the cumulative percentage of brightness 
frequency. In this study, we use the percentage outer brightness (pout) and inner 
brightness (pin).   

5.5 Edge Detection 
In order to apply PSO or GA for edge detection, each particle in PSO or GA 

represents the percentage outer (pout) and inner brightness (pin). The fitness function 
cost is defined as error of edge detection is calculated by the following equation, 
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t

c

w
wf        (5.7) 

where wc and wt are the computed width and corresponding target of width, 
respectively. Therefore, the problem result is the minimization problem. The 
dimensional search space for PSO or GA was limited to the percentage of brightness 
from 90% to 100% which the value of brightness values of 25 – 255 were aligned. As 
shown in Fig. 5.3, based on their fitness, agents in population guided by position and 
speed of PSO or Eq. (5.5) and (5.6) and guided by genetic operators of GA. New pout 
and pin generated by PSO or GA. The algorithm was stopped when satisfied by two 
conditions: 1) Minimum error of edge detection – the detection value of the best agent 
was below the given threshold (1x10-3%), or 2) the maximum iteration number was 
reached.   
The experiment condition for optimization: 
- Original image size is 256 x 220 pixels 
- Panorama image size is 512 x 186 pixels 
- Maximum set window size is150 x 100 pixels 
PSO condition: 
- Γ1 = Γ2 = learning factors = 2 
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GA condition:  
- Crossover operator is single point crossover 
- Mutation rate is 0.15 
- Fraction of the population is 0.5 

 

 
Pop = 4, err = 

6.69% 
Pop = 8, err = 

4.68% 
Pop = 16, err = 

3.38% 
(a) Particle swarm optimization 

 

 
Pop = 8, err = 

6.69% 
Pop = 16, err = 

4.68% 
Pop = 36, err = 

3.38% 
(b) Genetic algorithm 

Fig. 5.4 Edge detection of molten pool in set window using PSO and GA at θ = 270o and 10 iterations 
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Pop = 4, err = 

4.33% 
Pop = 12, err = 

2.86% 
Pop = 16, err = 

0.74% 
(a) Particle swarm optimization  

 

  
Pop = 4, err = 
16.92% 

Pop = 12, err = 
15.13% 

Pop = 16, err = 
7.93% 

(b) Genetic algorithm 

Fig. 5.5 Edge detection of molten pool in set window using PSO and GA at θ = 90o and 20 iterations 

 
Figure 5.4 shows the comparison of experiment results using PSO and GA at  θ = 

270o and 10 iterations. Both PSO and GA can determine low error of detection. 
However, GA needs higher population to get the same error as in PSO. The same 
results also show the good detection of molten pool edge as shown in Fig. 5.5.  The 
detection is conducted at θ = 90o and 20 iterations. Both methods can detect the edge 
with low error of edge detection; however, the error of PSO is lower than GA. 
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Fig. 5.6 The population size versus the fitness function cost in maximum iteration number is 10 

 

Fig. 5.7 The population size versus the fitness function cost in maximum iteration number is 20 

 
Figure 5.6 shows the graphics of population size – cost of fitness function in 

maximum iteration is 10. The PSO achieves the lower cost at 3.38% faster than GA. 
PSO also reaches the minimum cost at the population size is 16, lower than GA which is 
36. 

Figure 5.7 shows the graphics of population size – cost of fitness function in 
maximum iteration is 20. It is shown that PSO can achieve the lower cost faster than GA. 
At minimum cost of 3.38%, PSO reaches faster at population size is 8 and GA is 12. 
However, by increasing the maximum iteration number, GA can obtain the minimum 
cost faster than in small iteration.  
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Fig. 5.8 The generation of population average, population best and global best at maximum iteration 
number is 20 and rotation angle is 270o in PSO 

 

Fig. 5.9 The generation of population average and best at maximum iteration number is 20 and rotation 
angle is 270o in GA 

 
From the optimization process, the result shows that PSO and GA can optimize the 

brightness range. The example of generation of population average, population best 
and global best at maximum iteration number is 20 and rotation angle is 270o in PSO is 
shown in Figure 5.8. Figure 5.9 shows the example result of generation of population 
average and best at maximum iteration number is 20 and rotation angle is 270o.  
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After optimizing 10 data of pout and pin generated by PSO and GA, the values of Δpout 
and Δpin calculated from Eq. (5.3) and (5.4) were averaged. The average values of Δpout 
and Δpout from PSO were 0.14% and 0.79%, respectively. And the average values of 
Δpout and Δpout from GA optimization were 0.04% and 0.69%, respectively. These values 
were used for the proposed image processing algorithm. Results of detected edge using 
PSO and GA optimization are shown in Fig. 5.10 and Fig 5.11, respectively. Figure 5.12 
shows the relation between measured back bead width and detected molten pool width. 
Image resolution is 0.093 mm/pixel. It is clearly seen that image processing algorithm 
using both PSO and GA optimization could detect the molten pool width with good 
approximation. PSO achieved the lower RMSE of 1 mm and the standard deviation was 
0.5 mm. And also GA had RMSE of 1 mm with the standard deviation was 0.5 mm. The 
cause of the errors might come from the detected threshold values as the brightness 
range for scanning the edge of molten pool. Very low brightness of molten pool also 
generated poor detection of threshold values; therefore the edge detection could be 
failed.  

 

 
θ = 90o θ = 135o θ = 180o 

  
θ = 225o θ = 270o θ = 315o 

Fig. 5.10 Result of image processing using PSO with ΔPout = 0.14% and ΔPin = 0.79% 
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θ = 90o θ = 135o θ = 180o 

  
θ = 225o θ = 270o θ = 315o 

Fig. 5.11 Result of image processing using genetic algorithm with ΔPout = 0.04% and ΔPin = 0.69% 

 

Fig. 5.12 The result of measured back bead width from experiment, GA and PSO approximation, and both 
errors of detection 
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(a) Manual, error = 13.33% (b)PSO, error = 0.74% 

(c) Manual, error = 3.38% (d) GA, error = 1.13% 

Fig. 5.13 Comparison results between manual judgment and optimization using PSO and GA 

 
To compare the robustness of optimization results, the manual judgment of pout and 

pin was conducted by simply chose Δpout = 0.3% and Δpin = 0.8% and added into the Eq. 
(5.3) and (5.4). Then the edge detection results were compared to the optimized results 
using PSO and GA as shown in Fig. 5.13. It is shown that the optimization results using 
PSO and GA can perform the brightness range to detect of molten pool better than 
manual decision.  

5.6 Experiment with Control  
This section presents experiment with control using a fuzzy inference system. 

Welding process was conducted autogenously for 360o of circumference and in fixed 
position of pipe. In constant welding current of 60 A, the torch started to initiate the arc 
until the initial penetration was produced. The experiment with control was conducted 
using fuzzy inference system as control system [66-68]. The output of the image 
processing which is the width of molten pool, w will become the input of fuzzy control. 
The output of fuzzy control is the correction of welding speed.  
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Fig. 5.14 Fuzzy sets and decision table for fuzzy control of welding speed 

 
In this study, the proposed fuzzy control had two variables to be fuzzified. One was 

an error (en), which was the difference of back bead width (wn) at the concerned time 
step (n) from the reference back bead width (wr):  

en = wr – wn       (5.8) 
where wr was set at 5 mm. 
 
The other variable was the change of an error defined as: 

Δen+1 = wn+1 – wn      (5.9)  
Three kind of membership (N – Negative, Z – Zero, P – Positive) and triangular 

membership functions were used to fuzzify the inputs. Figure 5.14 (a), (b), (c) shows the 
membership functions and ranges for each fuzzy variable. Figure 5.14 (d) presents the 
decision table for the fuzzy control of welding speed. 

5.7 Results and Discussion  
In control experiment, to produce stable arc condition, the welding speed of 7 

cm/min at θ = 0o – 45o was kept constant. Figure 5.15 and 5.16 show the experiment 
result using control with PSO and GA Optimization, respectively.  
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In PSO, result of back bead width and welding speed using fuzzy controller is 
shown in Fig. 5.15 (a). It is shown that fuzzy control could determine the correction of 
welding speed to keep the back bead width in the target range of 5±1 mm. The result of 
experiment with control has the average error is 0.3 mm and standard deviation of 0.4 
mm. The back bead width increases slightly due to the starting speed. Back bead width 
is kept stable by maintaining the welding speed around 8 – 12.5 cm/min. Back bead 
appearance is shown in Fig. 5.15 (b).  

In GA optimization, result of back bead width and welding speed is shown in Fig. 
5.16 (a). It is also shown that the correction of welding speed has kept the back bead 
width in the target range of 5±1 mm. The result of experiment with control has the 
average error is 0.3 mm and standard deviation of 0.6 mm. At the beginning, the back 
bead width decreases due to the starting speed. But after θ = 45o the back bead width 
increases while the welding speed also increases. Back bead width is kept stable by 
maintaining the increased welding speed until 20 cm/min. Figure 5.16 (b) shows the 
back bead appearance.  

Accordingly, by proper control of welding speed, it will produce excellent back bead 
width as shown in Fig. 5.15 (b) and 5.16 (b). The back bead width also aligned in the 
range target of 4 – 6 mm in width. In this study, the welding condition was change during 
the welding proceeded along the circumference of the pipe. However, the suitable 
welding condition for producing the good result was obtained at welding current, I = 60 A, 
pulsed current frequency, f = 50 Hz, minimum welding speed, vmin = 7 cm/min, and 
maximum welding speed, vmax = 20 cm/min. In general, the proposed automatic welding 
system produced sound weld of aluminum pipes by monitoring backside image of 
molten pool using omnidirectional camera. 
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(a) Back bead width and welding speed 

 

 
(b) Back bead appearance 

Fig. 5.15 Result of experiment with control using PSO 
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(a) Back bead width and welding speed 

 

 
(b) Back bead appearance 

Fig. 5.16 Result of experiment with control using GA optimization 

5.8 Discussion of Monitoring and Control Methods Used in this Study  
From the Chapter 2 – 5, the different monitoring and control methods have been 

presented. In the monitoring of backside image of molten pool using plain mirror, the 
system used two control methods which are neural network and fuzzy inference system. 
The new design of omnidirectional camera has been proposed to improve the previous 
monitoring method. And 3 methods of image processing optimization using 
manual/experience, PSO and GA have been described. The following discussion will 
summarize the characteristics of monitoring and control methods used in this study.  
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The summary of comparison results of back bead width using plain mirror in 
different control methods is shown in Table 5.2. It is shown that the experiment using 
fuzzy inference system produces lower error compared to neural network. Moreover, by 
using neural network, it is necessary to collect training data from experiment without 
control. It needs huge effort and number of pipes to be welded. By using fuzzy inference 
system, we can reduce training data 70% less than in neural network as shown in 
Section 3.3.2. 

 The summary of comparison results of image processing using different 
monitoring methods is shown in Table 5.3. It is shown that both monitoring methods 
provide almost same error in detection. However, in experiment using omnidirectional 
camera provides less error than using plain mirror. The modification of hyperboloidal 
mirror and proper magnification of lens will increase image resolution and reduce the 
error of detection. 

Table 5.4 shows the comparison results of back bead width using omnidirectional 
camera in different optimization methods. It is shown that optimization method using 
PSO achieves lowest error compared to optimization method using manual/experience 
or GA, although all the results are still in the target range. Moreover, PSO and GA 
methods provide good approach in optimization to reduce time consumption.  

The summary of control and optimization methods used in this study is shown in 
Table 5.5. All of the methods provide advantages and disadvantages. By appropriate 
design of the method and proper parameter setting, the process can achieve good 
welding products.  

Table 5.2 Comparison results of back bead width using plain mirror in different control methods 

No Control Method 
Average Error 

(mm) 
Standard Deviation 

(mm) 

1 Neural network 0.3 0.6 

2 Fuzzy inference system -0.1 0.4 

Table 5.3 Comparison results of image processing using plain mirror and omnidirectional camera 

No Monitoring  
Average Error

(mm) 
Standard Deviation

(mm) 
1 Plain mirror (Resolution = 0.06 mm/pixels) 0.3 0.6
2 Omnidirectional camera (Resolution = 0.093 mm/pixels) 0.0 0.4
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Table 5.4 Comparison results of back bead width using omnidirectional camera in different optimization 
methods 

No Optimization Method 
Average Error 

(mm) 
Standard Deviation 

(mm) 

1 Manual/experience -0.3 0.5 

2 PSO 0.3 0.4 

3 GA 0.3 0.6 

Table 5.5 Summary of control and optimization methods used in this study 

No Method Advantages Disadvantages 

1 Neural network - Neural networks are applicable to 
multivariate non-linear problems. 

- The process provides very fast 
performance in recall phase. 

- There is no need to assume an 
underlying data distribution such as 
usually is done in statistical 
modeling. 

- The individual relations between the 
input variables and the output 
variables are not developed by 
engineering judgment so that the 
model tends to be a black box or 
input/output table without analytical 
basis. 

- The experiment using neural 
network control model provides 
sound weld product.  

- Training phase is very time 
consuming 

- The sample size has to be 
large. It is difficult to collect 
good training data from 
experiment without control.

- The neural network 
construction (e.g. hidden 
layer number) and 
parameter setting for 
training phase have to be 
set for proper result and it 
needs experience.  

2 Fuzzy inference 
system 

- Fuzzy controllers are more robust 
than PID controllers because they 
can cover a much wider range of 
operating conditions than PID can, 
and can operate with noise and 
disturbances of different natures. 

- Developing a fuzzy controller is 
cheaper than developing a 
model-based or other controller to 
do the same thing. 

- Fuzzy controllers are customizable, 
since it is easier to understand and 
modify their rules, which not only 
use a human operator’s strategy but 
also are expressed in natural 
linguistic terms. 

- It is easy to learn how fuzzy 
controllers operate and how to 
design and apply them to a concrete 
application. 

- From experiment using fuzzy 
inference system, it shows good 
result of back bead width and has 
lower error compared to control 
model using neural network. 

- Since the rule set and 
membership functions are 
codependent, they should 
be defined simultaneously. 
This can lead to more 
optimal solutions.  

- Since the performance of a 
fuzzy system is more 
dependent on fuzzy rules 
rather than membership 
functions, fine tuning of the 
fuzzy system is better 
possible by tuning of 
membership functions. So it 
seems that it is better first 
to select the optimal rule set 
and then tune the 
membership functions.  
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No Method Advantages Disadvantages 

3 Particle swarm 
optimization 
(PSO) 

- PSO is effective in nonlinear 
optimization problems and it is easy 
to implement. There are few 
parameters to adjust. Because the 
update process in PSO is based on 
simple equations, 

- Take real numbers as particles. 
- PSO can be efficiently used on 

large data sets. 
- The particle swarm operates 

through the cooperation of 
individuals. No particles are killed 
off; all members of the population 
survive throughout, participating as 
both learners and teachers in the 
social problem-solving endeavor. 

- In image processing optimization, it 
is shown that PSO can optimize the 
process and obtain low error of 
detection. Compared to GA, PSO 
can reach the minimum cost at 
lower population and same 
iteration. 

- From experiment using fuzzy 
inference system, it shows good 
result of back bead width. 

- The appropriate fitness 
function can be obtained by 
using proper setting of PSO 
parameters. 

- If the swarm size is small, 
then PSO algorithm has a 
disadvantage of getting 
stuck at a position where 
velocity might approach to 
zero. It tends to be trapped 
in a local optimum under 
some initialization 
conditions. 

4 Genetic 
algorithm (GA) 

- GA efficiently search the large 
model space and work on a wide 
range of problems 

- GA can quickly scan a vast solution 
set.  

- The inductive nature of the GA 
means that it doesn’t have to know 
any rules of the problem - it works 
by its own internal rules. This is very 
useful for complex or loosely 
defined problems. 

- In image processing optimization, it 
is shown that GA can optimize the 
process and obtain low error of 
detection. By increasing the 
maximum iteration number, GA can 
obtain the minimum cost faster than 
in small iteration. 

- From experiment using fuzzy 
inference system, it shows good 
result of back bead width. 

- GA is slow, therefore it is 
not suitable for real time 
applications and take long 
to converge to the optimal 
solution 

- No guaranteed 
convergence even to local 
minimum. 

- The convergence of the 
process depends on proper 
setting of GA parameters. 

- In image processing 
optimization, at same 
iteration and same 
population, GA can achieve 
the lower cost but slower 
than PSO. 
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5.9 Conclusions  
The conclusions of this chapter are summarized as follows: 

1. This research proposes edge detection of molten pool in fixed pipe welding using 
PSO and GA. The brightness range for edge detection was constructed using the 
percentage of outer brightness (pout) and inner brightness (pin).  

2. The experimental results shows that the both proposed method can detect edge of 
molten pool with minimum error. The method can perform the optimization of 
brightness range; reduce the computational cost and time consumption. 
Experiments on two different maximum iteration number show that PSO is more 
suitable for this problem than GA.  

3. PSO and GA optimized image processing algorithm was applied into the real time 
process using omnidirectional vision-based monitoring of molten pool. From the 
experimental results using fuzzy inference system, it shows the effectiveness of the 
control system. 

4. The monitoring and control methods used in this study have been discussed. Fuzzy 
inference system produces lower error compared to neural network. The experiment 
using omnidirectional camera provides less error than using plain mirror. The 
optimization method using PSO achieves lowest error compared to optimization 
method using manual/experience or GA, although all the results are still in the target 
range. By appropriate design of the monitoring and control method, the automatic 
welding process can achieve good welding products. 
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Chapter 6 

Conclusions 
 
In this thesis, we present automatic welding system for fixed aluminum pipes in TIG 

welding using vision sensors. Our main concern is to develop robust image processing 
algorithm, appropriate control system, new monitoring system using plain mirror and 
omnidirectional camera, and to optimize image processing algorithm using PSO and GA. 
This research constructed the intelligent welding process of aluminum alloy pipe 
6063S-T5 in fixed position using the AC welding machine. The monitoring system used 
a charge-coupled device (CCD) camera to monitor backside image of molten pool. The 
captured image was processed to recognize the edge of molten pool by image 
processing algorithm. 

The recognition of molten pool during aluminum pipe welding Al6063S-T5 to control 
welding penetration was performed. Owing to the low brightness of aluminum’s molten 
pool, due to low melting point, the stable and robust image processing algorithm must 
be constructed. The image rotation was performed to make the image uniform. The 
histogram analysis and scan of brightness range were implemented to obtain top and 
bottom threshold used in edge detection. Error correction of maximum position was 
performed to eliminate the error. From the preliminary welding, the proposed image 
processing algorithm constructs good approximation of detection.  Hence, the 
recognition of molten pool using vision sensors provides an effective method of 
monitoring process. 

Neural network model for welding speed control was constructed to perform the 
process automatically. This experimental result shows a good agreement with previous 
experiment without control that the welding speed at θ = 90o – 180o was very important 
to affect next welding result. Accordingly, by proper control of welding speed, it will 
produce excellent back bead width.  

Simulation of welding control using fuzzy inference system was constructed to 
simulate the welding control process. The simulation result shows that fuzzy controller 
was suitable for controlling the welding speed and appropriate to be implemented into 
the welding system. A series of experiments was conducted to evaluate the 
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performance of the fuzzy controller. From the experimental results it shows the 
effectiveness of the control system that is confirmed by sound weld of experimental 
results.  

New method of welding penetration control for aluminum pipes in Tungsten Inert 
Gas (TIG) welding using omnidirectional vision-based monitoring of molten pool was 
proposed. This camera consists of a perspective camera and a hyperboidal mirror 
allowing a central projection by reflected rays. The detection of molten pool during 
aluminum pipe welding Al6063S-T5 to control welding penetration was performed. All of 
the image will be transformed into panorama extended image. After finding the center of 
gravity, set window was created automatically to locate the scanning area and reduce 
the time of edge detection. From the original image, the vertical scanning was 
performed to find top and bottom edge detection. In order to find the width of molten 
pool, the scanning of widest value of top and bottom edges was conducted. After 
implementing the image processing algorithm into the experimental without control, it is 
clearly seen that image processing algorithm could detect the molten pool width with 
good approximation.  

Edge detection of molten pool in fixed pipe welding using PSO and GA was 
proposed. The brightness range for edge detection was constructed using the 
percentage of outer brightness (pout) and inner brightness (pin). The experimental results 
shows that the both proposed method can detect edge of molten pool with minimum 
error. The method can perform the optimization of brightness range; reduce the 
computational cost and time consumption. Experiments on two different maximum 
iteration number show that PSO is more suitable for this problem than GA. The faster 
results are obtained by using PSO, although GA can also reach the same minimum cost 
but in large number of population size. Therefore, PSO can achieve search 
performance more effective than GA. In large population size and iteration number, both 
PSO and GA work better than small population size and iteration number. PSO and GA 
optimized image processing algorithm was applied into the real time process using 
omnidirectional vision-based monitoring of molten pool. From the experimental results 
using fuzzy inference system, it shows the effectiveness of the control system.  

The monitoring and control methods used in this study have been discussed. By 
appropriate design of the monitoring and control method, the automatic welding process 
can achieve good welding products. 
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As future work, it is necessary to develop new method to collect training data for 
control system by constructing the heat simulation model. The new design of 
omnidirectional mirror and new image processing algorithm are also necessary to make 
the monitoring system more robust. The application of new control model and 
optimization method will improve the capability of automatic welding system. The 
application of fuzzy inference system using an extended Support Vector Machine (SVM), 
an extended Feature Vector Selection (FVS) and an extended Relevance Vector 
Machine (RVM) will generate the number of fuzzy rules and the parameter values of 
membership function automatically. The optimization method using ant colony 
optimization (ACO) or hybrids with other computational intelligence techniques will 
provide different approaches to solve optimization problems. 
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