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Chapter 1

Preliminaries

1.1 Introduction

Selective assembly (also called match gauging) is an effective approach for improving a

quality of an assembled product. Some statistical and mathematical issues arise in se-

lective assembly. This thesis studies optimal binning strategies under squared error loss

in selective assembly, based on the papers by Matsuura and Shinozaki (2007,2008,2009).

We consider a product composed of two mating components. Suppose that the

quality characteristic of the product is the difference of the relevant dimensions of

the mating components (i.e., the clearance) and that there is a target value for the

clearance. Note that, although we use the clearance as the assembly dimension of

interest, our discussion is equally valid for the case where we consider instead the sum

of the dimensions of the mating components. In any production process, variability is

inevitable and variation in the dimensions of component parts affects the quality of the

assembled product. Assembling mating components in a random fashion may lead to

an unacceptably large variance in the clearance. In these situations, selective assembly

should be effective in reducing the variance.

In this approach, the components are measured and sorted (or binned) into several

groups according to their dimensions, and the product is assembled by randomly se-

lecting mating components from corresponding groups, as shown in Figure 1.1. This

approach enables the assembly of high quality products from relatively low quality com-

ponents (i.e., components with a wide variation in size), which may lead to a reduction

in cost compared to the alternative of manufacturing the respective components with

a lesser tolerance.

A piston and cylinder assembly (Figure 1.2) is an example from an automobile

industry in Japan. There is a target value for the clearance, that is, the difference
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Figure 1.1. Selective assembly.

Figure 1.2. Piston and cylinder assembly.
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between the inner diameter of the cylinder and the outer diameter of the piston. There

is also a tolerance constraint on the clearance. If the clearance is too small, the oil film

between the cylinder wall and piston becomes too thin and piston scuffing occurs. If

the clearance is too large, the piston vibrates in the cylinder and abnormal noise occurs.

Random assembling of pistons and cylinders leads to an unacceptably large variance

in the clearance and also leads to an unacceptably large number of products which do

not satisfy the tolerance constraint. Thus, the automobile industry has used selective

assembly. Pistons and cylinders are sorted into several groups according to their outer

and inner diameters, respectively. The smaller pistons are matched with the smaller

cylinders and the bigger pistons with the bigger cylinders.

The second example (Figure 1.3) is a camshaft, valve, and valve lifter assembly,

which Mease et al. (2004) also described. According to the distance from the bottom

of a camshaft to the top of a valve, an appropriate valve lifter should be chosen to meet

a given clearance specification. The Japanese automobile industry has used selective

assembly and sorts the components into more than 20 groups.

Other applications of selective assembly include a valve body and spool assembly

(Robinson and Mazharsolook (1993)), a hole and shaft matching (see Asha et al. (2008),

for example), a gearbox shaft assembly (Kumar et al. (2007)), and a fan shaft assembly

(Kumar and Kannan (2007)).

1.2 Main topics

There are some important statistical and mathematical issues which arise in selective

assembly.

Determining optimal partition limits for the dimensional distributions of the com-

ponents is one of the important issues. Equal width partitioning schemes, in which the

dimensional distributions are partitioned so that all groups have equal widths, and equal

area partitioning schemes, in which all groups have equal probabilities, are commonly

used. However, these schemes are not necessarily optimal under some loss functions.
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Figure 1.3. Camshaft, valve, and valve lifter assembly.

There has been little research and development effort on the optimal partitioning

problem. Kwon et al. (1999) were the first to study optimal partitioning under squared

error loss when the two component dimensions are identically and normally distributed

after re-centering, and gave equations for the optimal partition limits. Mease et al.

(2004) discussed optimal partitioning under several loss functions and distributional

assumptions. They extensively developed optimal partitioning under squared error loss

when the two component dimensions are identically distributed after re-centering. They

gave equations for the optimal partition limits, and showed existence of unique solu-

tions provided that the dimensional distribution is strongly unimodal (i.e., the density

function of the dimensional distribution is log-concave). They also gave some numer-

ical results which show that the optimal partition considerably reduces the expected

squared error loss compared with equal width and equal area partitioning schemes.

Chapters 2 and 3 of this thesis present some extensions of the results of Mease et al.

(2004), based on the papers by Matsuura and Shinozaki (2007,2009).
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Chapter 2 studies optimal partitioning under squared error loss when error is present

in the measurements of component dimensions. The previous works implicitly assumed

that measurement error is absent. However, most measurement processes have inherent

variability which may not be negligibly small. Determining optimal partition limits is

discussed and the effect of measurement error on the expected squared error loss is

evaluated.

Chapter 3 studies optimal partitioning under squared error loss when the clearance

is constrained by a tolerance parameter. Kwon et al. (1999) and Mease et al. (2004)

did not deal with the problem of determining optimal partition limits under a tolerance

constraint on the clearance, although such a constraint is usually present in practice.

If some groups have larger widths than the tolerance limit in the case of unconstrained

optimal partitioning, we have unacceptable products with positive probability. If this

probability is not negligibly small and we remove the unacceptable products, additional

measurement and inspection will be necessary, with correspondingly high cost. Thus, it

is important to study optimal partitioning which minimizes the expected squared error

loss under the condition that no group width should exceed the tolerance limit.

Another important issue in selective assembly is how to handle the case in which

the two component dimensions have unequal variances. When the two component di-

mensions are identically distributed after re-centering, we can partition the dimensional

distributions so that the expected clearance of the product from any group is equal to

the target clearance. However, if there is a large difference between the variances of the

two component dimensions, then this causes large differences between the target clear-

ance and the expected clearances of the products that are assembled by selecting mating

components from groups in the tails of the distributions, which leads to a large variance

of the clearance. To cope with this difficulty, Mansoor (1961), Kannan et al. (1997),

and Kannan and Jayabalan (2002) proposed a method of manufacturing the compo-

nent with smaller variance in two (or more) versions, each version having a different

mean value for its dimension by shifting the process mean. Mansoor (1961) proposed

determining the number of versions according to the difference of the variances of the
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two component dimensions. Kannan et al. (1997) and Kannan and Jayabalan (2002)

proposed shifting the process mean so that the variance of the resulting dimensional

distribution is equal to that of the other component dimension.

However, the determination of the optimal mean shift under a certain criterion has

not been addressed in these papers. Based on the paper by Matsuura and Shinozaki

(2008), Chapter 4 studies the problem of determining the optimal mean shift under

squared error loss when the component with smaller variance is manufactured at two

shifted means.

1.3 Literature review

Other important issues in selective assembly have been discussed by many authors. A

literature review of the work on the issues is presented as follows.

Pugh (1986a) presented a computer program which generates an equal width par-

titioning and the desired number of groups. Using a simulation study, Pugh (1986b)

showed that equal area partitioning reduces the number of unacceptable products com-

pared with equal width partitioning when the number of groups is small. Pugh (1992)

studied equal area partitioning for the case of dimensions with dissimilar variances, and

proposed truncating the dimensional distribution with the larger variance to make the

two variances equal. Desmond and Setty (1962) proposed an equal probability parti-

tioning scheme in which corresponding groups have equal probabilities so that there are

no surplus components, and Fang and Zhang (1995) presented an algorithm for such

a scheme. Chan and Linn (1998) proposed rejecting components whose dimensions

are within a certain range in order to reduce the total number of surplus components

when the variances of the two component dimensions are very different. Kannan and

Jayabalan (2001a) proposed using equal width partitioning if the tolerance limit on the

clearance is smaller than the difference in the three times standard deviations of the

two component dimensions, and using equal probability partitioning otherwise. Kan-

nan and Jayabalan (2001b) proposed a partitioning method for a product assembled
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from three components.

Lee et al. (1990) studied the problem of determining optimal process means of the

two components to maximize the number of acceptable products when the components

are sorted into two groups. Iyama et al. (1995) described the behavior of the component

flow using a Markov model. Thesen and Jantayavichit (1999) addressed the problem of

limited buffer capacity. Mease and Nair (2006) studied optimal partitioning in one-sided

selective assembly in which only one component is sorted into several groups and the

other component is manufactured at the target means with negligibly small variance.

Recently, some authors have proposed methods for determining the best combination

of selective groups using genetic algorithms, as follows. Kannan et al. (2003) proposed a

method for minimizing the variation of a quality characteristic when three components

are assembled linearly. Kannan et al. (2005) proposed a method for reducing clearance

variation and the number of surplus components. Kumar and Kannan (2007) proposed

a method for obtaining optimum manufacturing tolerance to reduce manufacturing cost

and the number of surplus components. Kumar et al. (2007) proposed a new two-stage

method. The surplus components that result from an equal width partitioning scheme

in the first stage are sorted into three groups in the second stage and the best com-

bination of groups is obtained using a genetic algorithm. Ponnambalam et al. (2006)

proposed a Parallel Population Genetic Algorithm to minimize the variation of a qual-

ity characteristic, which is faster than normal genetic algorithms. Asha et al. (2008)

proposed a method using a non-dominated sorting genetic algorithm for minimizing

clearance variation in an assembled product with multiple quality characteristics. Kan-

nan et al. (2008) proposed a method using a genetic algorithm for obtaining the best

combination of selective groups under Taguchi’s loss function.

Some authors have discussed methods of applying matching algorithms for selec-

tive assembly. In the methods, the components are not sorted into groups, but the

best combination of components is determined according to their dimensions using a

matching algorithm. The methods are suitable when the information on the component

dimensions is available for a certain period of time. Fujino (1987) proposed a method
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for reducing computing time with little loss of matching ratio when lot size is large.

Yamada and Fujino (1992) showed that using a maximum matching algorithm con-

siderably increases the matching ratio compared with the grouping method. See also

Robinson and Mazharsolook (1993), Yamada and Kobayashi (1993), Yamada (1994),

Coullard et al. (1998), Iwata et al. (1998), Iyama et al. (2003), and Iyama et al.

(2007).

1.4 Summary of this thesis

In this thesis, we study optimal binning strategies under squared error loss in selective

assembly. Chapters 2, 3, and 4 are based on the papers by Matsuura and Shinozaki

(2007,2009,2008), respectively. The summary of this thesis is as follows.

Section 1.5 gives basic models, notation, and assumptions. Based on the paper by

Mease et al. (2004), equations and uniqueness results for the optimal partition are given

under the assumption that the two component dimensions are identically distributed

after re-centering.

Chapters 2 and 3 also assume that the two component dimensions are identically

distributed after re-centering.

Chapter 2 studies optimal partitioning when measurement error is present. Equa-

tions for the optimal partition limits are derived, and sufficient conditions under which

the set of optimal partition limits is unique are given. We establish a relationship be-

tween the expected squared error losses based on the optimal partition limits for the

cases when measurement error is present and not present. We give some numerical

results to evaluate the effect of measurement error.

Chapter 3 studies optimal partitioning when the clearance is constrained by a toler-

ance parameter. Conditions for a set of constrained optimal partition limits are given,

and uniqueness of the set is established provided that the dimensional distribution

is strongly unimodal. We show some relations between constrained optimal partition

limits and unconstrained optimal partition limits. Some numerical results are reported
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that compare constrained optimal partitioning, unconstrained optimal partitioning, and

equal width partitioning.

In Chapter 4, relaxing the assumption that the two component dimensions are iden-

tically distributed after re-centering, we discuss the case in which the variances of the

two component dimensions are different. We deal with the problem of determining the

optimal mean shift when the component with smaller variance is manufactured at two

shifted means. Assuming that the two component dimensions are normally distributed,

we show that the optimal mean shift is uniquely determined and also show some proper-

ties of the optimal mean shift. Some numerical results are given which show that using

the optimal mean shift considerably reduces the expected squared error loss compared

to the no shift case.

Chapter 5 gives conclusions and directions for future work.

1.5 Basic models, notation, assumptions

Let X and Y be continuous random variables which denote the two respective com-

ponent dimensions. Suppose that the process means of X and Y can be adjusted so

that their difference is equal to a given target clearance C. Since we can re-center the

distribution of X (or Y ) so that E[X] = E[Y ], we let C = 0 without loss of generality.

Let xL, yL and xU , yU denote the lower and upper limits for X and Y , respectively.

Components with X values in the intervals (−∞, xL] and (xU ,∞) and components

with Y values in the intervals (−∞, yL] and (yU ,∞) are rejected before the assem-

bly process. Let n denote the number of groups, and let (x0, x1, x2, . . . , xn−1, xn) and

(y0, y1, y2, . . . , yn−1, yn) be the partition limits for X and Y , respectively, where x0 = xL,

y0 = yL, xn = xU and yn = yU . Throughout this thesis, we let the number of groups n

and the lower and upper limits xL, yL, xU , yU be predetermined and not subject to op-

timization. Components with X values in the interval (xi−1, xi] and components with

Y values in the interval (yi−1, yi] are sorted into the ith group of X and Y , respec-

tively. Then, the product is assembled by randomly selecting mating components from
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corresponding groups as shown in Figure 1.1.

Throughout this thesis, we assume that Pr(xi−1 < X ≤ xi) = Pr(yi−1 < Y ≤ yi)

holds for i = 1, 2, . . . , n so that there are no surplus components. The probability of

the ith group,
Pr(xi−1 < X ≤ xi)

Pr(xL < X ≤ xU)
=

Pr(yi−1 < Y ≤ yi)

Pr(yL < Y ≤ yU)
,

is denoted by pi. Let Xi and Yi denote the truncated random variables of X and

Y defined on the intervals (xi−1, xi] and (yi−1, yi], respectively, that is to say, Xi ≡

[X|xi−1 < X ≤ xi] and Yi ≡ [Y |yi−1 < Y ≤ yi].

When mating components are randomly selected from corresponding groups, the

expected squared error loss is expressed as

n∑
i=1

E[(Xi − Yi)
2]pi. (1.1)

We note that (1.1) also expresses the variance of the clearance.

Assuming that X and Y are identically distributed and that (x0, x1, x2, . . . , xn−1, xn)

= (y0, y1, y2, . . . , yn−1, yn), Mease et al. (2004) showed that the set of partition limits

(x1, x2, . . . , xn−1) which minimizes (1.1) satisfies

xi =
E[Xi] + E[Xi+1]

2
=

E[X|xi−1 < X ≤ xi] + E[X|xi < X ≤ xi+1]
2

, i = 1, 2, . . . , n − 1. (1.2)

They gave the following algorithm for obtaining the partition limits which satisfy the

equations (1.2).

1. Begin with an initial set of partition limits (x0
0, x

0
1, x

0
2, . . . , x

0
n−1, x

0
n), where x0

0 = x0

and x0
n = xn.

2. Put x1
i = (E[X|x0

i−1 < X ≤ x0
i ] + E[X|x0

i < X ≤ x0
i+1])/2, i = 1, 2, . . . , n − 1.

3. Finish the iteration if

|x1
i − x0

i | < ϵ, i = 1, 2, . . . , n − 1,

where ϵ is a predetermined calculation error bound. Otherwise, repeat Step 2 with

(x1
1, x

1
2, . . . , x

1
n−1) in place of (x0

1, x
0
2, . . . , x

0
n−1).
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If the algorithm does converge, the resulting set of partition limits satisfies the equations

(1.2). However, the equations (1.2) are necessary conditions for the optimal partition.

In general the equations (1.2) have multiple solutions and the objective function (1.1)

has multiple local minima and local maxima. Mease et al. (2004) showed that the

solution to (1.2) is unique if the dimensional distribution satisfies

Condition (A) : E[X|t < X ≤ t + u] − t is nonincreasing in t for all u > 0,

which is guaranteed if the distribution is strongly unimodal (i.e., log f is concave where

f denotes the density function of X). Note that normal, logistic, gamma, and uniform

distributions are all strongly unimodal. Although strong unimodality may seem rather

restrictive, they have given examples which show that the solution to (1.2) is not unique

for some symmetric and unimodal distributions.
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Chapter 2

Optimal Partitioning of the Distributions
When Measurement Error Is Present

2.1 Introduction

Optimal partitioning of the dimensional distributions in selective assembly has been

discussed by Kwon et al. (1999) and Mease et al. (2004). These previous works

implicitly assumed that measurement error is absent. However, most measurement

processes have inherent variability which may not be negligibly small. This chapter

studies optimal partitioning when measurement error is present.

This chapter is organized as follows. After giving models, notation, and assumptions

in Section 2.2, we give equations for the optimal partition limits in Section 2.3. In Sec-

tion 2.4, it is shown that the solution to them is unique when the component dimension

and the measurement error are normally distributed. In Section 2.5, assuming normal

distribution, we give a relationship between the expected squared error losses based on

the optimal partition limits for the cases when measurement error is present and not

present. We also give some numerical results to evaluate the effect of measurement

error on the expected squared error loss in Section 2.6.

2.2 Models, notation, and assumptions

Since we assume that the two component dimensions are identically distributed through-

out this chapter, we let f denote the common density function of X and Y . Let the

measurement errors of the two component dimensions, denoted by WX and W Y , be

independent of X and Y , and let their distributions be continuous and common. g

denotes the common density function of WX and W Y . Let ZX and ZY be the ran-

dom variables which denote the observations of the two component dimensions, that is,

ZX ≡ X + WX and ZY ≡ Y + W Y . Therefore, ZX and ZY are identically distributed,
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and we denote their common density function by h. Note that

h(z) =

∫ ∞

−∞
f(x)g(z − x)dx. (2.1)

In selective assembly when measurement error is present, it is the distributions of ZX

and ZY , not those of X and Y that are partitioned into n groups because we only

observe ZX and ZY when each component dimension is measured. The two sets of

partition limits for ZX and ZY are the same so that there are no surplus components.

Then we let

(z0, z1, z2, . . . , zn−1, zn)

be the common partition limits, where z0 = xL and zn = xU . Components X and Y

with their observations ZX and ZY in the intervals (−∞, xL] and (xU ,∞) are rejected.

Components X and Y with their observations ZX and ZY in the interval (zi−1, zi] are

sorted into the ith group of X and Y , respectively. Here we put

pi =
P (zi−1 < ZX ≤ zi)

P (xL < ZX ≤ xU)
, i = 1, 2, . . . , n − 1.

Let ZX
i and ZY

i be the truncated random variables of ZX and ZY defined on the interval

(zi−1, zi], respectively. We further let Xi and Yi denote the true dimensions of the two

components X and Y conditioned so that the corresponding observations ZX and ZY

are on the interval (zi−1, zi], respectively. Note that, although ZX
i and ZY

i take values

in the interval (zi−1, zi], Xi and Yi may take values outside that interval.

Then the problem is to find the set of partition limits (z1, z2, . . . , zn−1) which mini-

mizes the expected squared error loss
∑n

i=1 E[(Xi − Yi)
2]pi.

2.3 Equations for the optimal partition limits

We give equations for the optimal partition limits in this section.

Since Xi and Yi are independently and identically distributed, we see that

n∑
i=1

E[(Xi − Yi)
2]pi = 2

n∑
i=1

{
E[X2

i ] − (E[Xi])
2
}

pi. (2.2)

13



We note that the probability pi is given as

pi =

∫ zi

zi−1

∫∞
−∞ f(x)g(z − x)dxdz∫ zn

z0

∫∞
−∞ f(x)g(z − x)dxdz

. (2.3)

We also note that

E[Xi] =

∫ zi

zi−1

∫∞
−∞ xf(x)g(z − x)dxdz∫ zi

zi−1

∫∞
−∞ f(x)g(z − x)dxdz

. (2.4)

From (2.2)-(2.4) and the equation
∑n

i=1 E[X2
i ]pi = E[X2|z0 < X + WX ≤ zn], the

expected squared error loss
∑n

i=1 E[(Xi − Yi)
2]pi is rewritten as

2E[X2|z0 < X + WX ≤ zn]

−2
n∑

i=1

{∫ zi

zi−1

∫∞
−∞ xf(x)g(z − x)dxdz

}2{∫ zi

zi−1

∫∞
−∞ f(x)g(z − x)dxdz

}{∫ zn

z0

∫∞
−∞ f(x)g(z − x)dxdz

} .

Thus, it is sufficient for us to maximize

n∑
i=1

{∫ zi

zi−1

∫∞
−∞ xf(x)g(z − x)dxdz

}2∫ zi

zi−1

∫∞
−∞ f(x)g(z − x)dxdz

. (2.5)

The partial derivative of (2.5) with respect to zi (1 ≤ i ≤ n − 1) is given by

2
{∫ zi

zi−1

∫∞
−∞ xf(x)g(z − x)dxdz

}∫∞
−∞ xf(x)g(zi − x)dx∫ zi

zi−1

∫∞
−∞ f(x)g(z − x)dxdz

−

{∫ zi

zi−1

∫∞
−∞ xf(x)g(z − x)dxdz

}2 ∫∞
−∞ f(x)g(zi − x)dx{∫ zi

zi−1

∫∞
−∞ f(x)f(z − x)dxdz

}2

−
2
{∫ zi+1

zi

∫∞
−∞ xf(x)g(z − x)dxdz

}∫∞
−∞ xf(x)g(zi − x)dx∫ zi+1

zi

∫∞
−∞ f(x)g(z − x)dxdz

+

{∫ zi+1

zi

∫∞
−∞ xf(x)g(z − x)dxdz

}2 ∫∞
−∞ f(x)g(zi − x)dx{∫ zi+1

zi

∫∞
−∞ f(x)g(z − x)dxdz

}2 .

Setting this partial derivative equal to 0, we obtain

2E[Xi]

∫ ∞

−∞
xf(x)g(zi − x)dx − (E[Xi])

2

∫ ∞

−∞
f(x)g(zi − x)dx

−2E[Xi+1]

∫ ∞

−∞
xf(x)g(zi − x)dx + (E[Xi+1])

2

∫ ∞

−∞
f(x)g(zi − x)dx = 0.

14



Thus, we see that the optimal partition limits satisfy

E[X|X + WX = zi] =
E[Xi] + E[Xi+1]

2
, i = 1, 2, . . . , n − 1, (2.6)

where E[X|X + WX = zi] =
∫∞
−∞ xf(x)g(zi − x)dx/(

∫∞
−∞ f(x)g(zi − x)dx).

It seems quite difficult for us to discuss the uniqueness of the solution to (2.6)

generally. However, we will show the uniqueness for the case when X (and Y ) and WX

(and W Y ) are normally distributed in the next section.

2.4 Uniqueness of optimal partition

The optimal partition limits satisfy the equations (2.6), and thus in general they are

dependent on both f and g, that is, the distributions of X and WX . However, as is

shown in the following proposition, the optimal partition limits depend only on the

distribution of the observation ZX if the conditional expectation of the component

dimension given the value of the observation is a linear function of the value. Using

this, we can show that the solution to the equations for the optimal partition limits

is unique when the component dimension and the measurement error are normally

distributed.

Proposition 2.1 Suppose that for some k ̸= 0 and b,

E[X|X + WX = z] = kz + b, for any z ∈ (z0, zn]. (2.7)

Then the equations (2.6) reduce to

zi =
E[ZX

i ] + E[ZX
i+1]

2
, i = 1, 2, . . . , n − 1. (2.8)

Proof From (2.1) and (2.3), we can rewrite the equations (2.6) as∫∞
−∞ xf(x)g(zi − x)dx

h(zi)

=
1

2

{∫ zi

zi−1

∫∞
−∞ xf(x)g(z − x)dxdz∫ zi

zi−1
h(z)dz

+

∫ zi+1

zi

∫∞
−∞ xf(x)g(z − x)dxdz∫ zi+1

zi
h(z)dz

}
.

(2.9)
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Since the condition E[X|X + WX = z] = kz + b can be rewritten as∫ ∞

−∞
xf(x)g(z − x)dx = kzh(z) + bh(z),

we can rewrite the equations (2.9) as the ones (2.8), which completes the proof. �

From Proposition 2.1, we see that if the condition (2.7) is satisfied, then the opti-

mal partition limits satisfy the equations (2.8) which are expressed by using only the

marginal distribution of ZX = X + WX . We notice that the equations (2.8) are of the

same form as those (1.2). Therefore, as is given in Mease et al. (2004), the solution to

(2.8) is unique provided that the distribution of ZX (and ZY ) is strongly unimodal.

Example 2.1

The most important example is the one when the component dimension X and the

measurement error WX are normally distributed. Let X (and Y ) be distributed as

N(µ, σ2) and let WX (and W Y ) as N(0, τ 2). Then we see that

E[X|X + WX = z] =
σ2

σ2 + τ 2
z +

τ 2

σ2 + τ 2
µ. (2.10)

From Proposition 2.1, we see that the optimal partition limits satisfy the equations

(2.8). Since the observation ZX = X + WX (and ZY ) follows N(µ, σ2 + τ 2), which is

strongly unimodal, the solution to (2.8) is unique.

We should also notice that, we need not specify the values of the variances σ2, τ 2

separately and we only need the values of the expectation and the variance of the

observation ZX , that is, the values of µ and σ2 + τ 2, to obtain the optimal partition

limits. Moreover, we see from Proposition 2.1 that replacing X by ZX , we can obtain

the optimal partition limits by solving the equations (1.2) using the algorithm given

in Section 1.5. As a matter of fact, this means that we can clearly obtain the optimal

partition limits without worrying about whether measurement error is present or absent.

Example 2.2

We consider the case when X (and Y ) and WX (and W Y ) are gamma distributed with

a common scale parameter. If X (and Y ) follows Ga(ν1, α) and WX (and W Y ) follows
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Ga(ν2, α) where the density of Ga(ν, α) is

f(x) =
1

ανΓ(ν)
xν−1e−

x
α , x > 0,

and Γ(ν) is the gamma function, then we obtain

E[X|X + WX = z] =
ν1

ν1 + ν2

z, z ≥ 0.

From Proposition 2.1, we see that the optimal partition limits satisfy the equations

(2.8). Since the observation ZX = X + W follows Ga(ν1 + ν2, α), which is strongly

unimodal, the solution to (2.8) is unique.

2.5 Some properties of optimal partition for normal distribu-

tion

Here we assume normal distribution and give a relationship between the expected

squared error losses when measurement error is present and not present.

For that purpose, we first consider the case when measurement error is not present

and assume that the component dimension X (and Y ) follows the normal distribution

N(0, σ2). Suppose that xL = −∞ and xU = ∞, and let the optimal partition limits

which satisfy the equations (1.2) be

(−∞, x∗
1, x

∗
2, . . . , x

∗
n−1,∞).

Also, we let X∗
i and Y ∗

i denote the truncated random variables of X and Y defined on

the interval (x∗
i−1, x

∗
i ], respectively. We denote P (x∗

i−1 < X ≤ x∗
i ) by p∗i . Then, the

expected squared error loss
∑n

i=1 E[(X∗
i − Y ∗

i )2]p∗i is given as

2
n∑

i=1

{E[(X∗
i )2] − (E[X∗

i ])2}p∗i = 2σ2 − 2
n∑

i=1

(E[X∗
i ])2p∗i . (2.11)

Turning now to the case with the measurement error WX (and W Y ), which is dis-

tributed as N(0, τ 2). Then, the optimal partition limits for ZX = X + WX (and ZY )
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are

(−∞, z∗1 , z
∗
2 , . . . , z

∗
n−1,∞)

=

(
−∞,

(σ2 + τ 2)
1
2

σ
x∗

1,
(σ2 + τ 2)

1
2

σ
x∗

2, . . . ,
(σ2 + τ 2)

1
2

σ
x∗

n−1,∞

)
.

(2.12)

This is easily seen because we can show that if (−∞, x∗
1, x

∗
2, . . . , x

∗
n−1,∞) satisfies the

equations (1.2), then (−∞, z∗1 , z
∗
2 , . . . , z

∗
n−1,∞) satisfies the equations (2.8) by using a

scale change.

In the following, we let ZX
i and ZY

i be the truncated random variables of ZX and

ZY defined on the interval (z∗i−1, z
∗
i ], respectively. We also let Xi and Yi be the random

variables X and Y conditioned so that the corresponding observations ZX and ZY are

on the interval (z∗i−1, z
∗
i ], respectively. From (2.10), we first notice that∫ ∞

−∞
xf(x)g(z − x)dx =

σ2

σ2 + τ 2
zh(z). (2.13)

From (2.3) and (2.13), we see that

E[Xi] =
σ2

σ2 + τ 2
E[ZX

i ]. (2.14)

Note that P (z∗i−1 < ZX ≤ z∗i ) = P (x∗
i−1 < X ≤ x∗

i ) = p∗i . Therefore, from (2.4)

and (2.14), we see that the expected squared error loss when the measurement error is

present is given as

n∑
i=1

E[(Xi − Yi)
2]p∗i =2E[X2] − 2

n∑
i=1

(E[Xi])
2p∗i

=2σ2 − 2
n∑

i=1

(
σ2

σ2 + τ 2
E[ZX

i ]

)2

p∗i

=2σ2 − 2
σ2

σ2 + τ 2

n∑
i=1

(E[X∗
i ])2p∗i ,

(2.15)

where in the last equality we have used the fact that

E[ZX
i ] = E[ZX |z∗

i−1 < ZX ≤ z∗i ]

= E

[
(σ2 + τ 2)1/2

σ
X
∣∣∣ x∗

i−1 < X ≤ x∗
i

]
=

(σ2 + τ 2)1/2

σ
E[X∗

i ].
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Comparing (2.11) with (2.15), we see that the expected squared error loss for the case

with the measurement error increases by

2τ 2

σ2 + τ 2

n∑
i=1

(E[X∗
i ])2p∗i (2.16)

compared to that for the case without measurement error. We note that (2.16) increases

when n increases since (2.11) (the expected loss when measurement error is not present)

decreases when n increases. Thus, we see that the difference between the expected

squared error losses when the measurement error is present and not present gets larger

when n gets larger.

The expected squared error loss for the case without measurement error converges

to 0 when n goes to infinity because we can show that
∑n

i=1(E[X∗
i ])2p∗i converges to σ2

when n goes to infinity. However, the expected loss of 2σ2τ2

σ2+τ2 remains even if n goes to

infinity in the case when the measurement error is present.

From the above argument, we see that, even if n increases, we cannot obtain much

loss reduction when considerable measurement error is present in contrast with the case

when measurement error is not present.

2.6 Numerical results

Here we give some numerical results on the optimal partition limits and the expected

squared error loss when the component dimension and the measurement error are nor-

mally distributed.

We let the component dimension be distributed as N(0, 1) without loss of generality.

We set xL = −∞ and xU = ∞.

Table 2.1 gives the results when measurement error is not present. Tables 2.2 and

2.3 give the results when the measurement error follows N(0, 0.01) and N(0, 0.1), re-

spectively. Figure 2.1 compares the expected squared error losses when measurement

error is present and not present.

Tables 2.1-2.3 show that the expected loss decreases when n increases, and endorse

that (2.12) is satisfied for the optimal partition limits. Figure 2.1 endorses that the
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difference between the expected squared error losses when measurement error is present

and not present gets larger when n gets larger. We see that even if n increases, much

loss reduction is not necessarily obtained when measurement error is present compared

to the case when measurement error is not present.

Table 2.1. Optimal partition for N(0, 1) (without measurement error).

n optimal partition limits expected loss

1 – 2.0000

2 0 0.7268

3 ±0.612 0.3803

4 0 ±0.982 0.2350

5 ±0.382 ±1.244 0.1599

6 0 ±0.659 ±1.447 0.1160

7 ±0.280 ±0.874 ±1.611 0.0880

8 0 ±0.501 ±1.050 ±1.748 0.0691

9 ±0.222 ±0.681 ±1.198 ±1.866 0.0557

10 0 ±0.405 ±0.834 ±1.325 ±1.968 0.0459

11 ±0.184 ±0.560 ±0.966 ±1.436 ±2.059 0.0384

12 0 ±0.340 ±0.694 ±1.081 ±1.534 ±2.141 0.0327

13 ±0.157 ±0.476 ±0.813 ±1.184 ±1.623 ±2.215 0.0281

14 0 ±0.294 ±0.596 ±0.918 ±1.277 ±1.703 ±2.282 0.0245

15 ±0.137 ±0.414 ±0.703 ±1.013 ±1.360 ±1.776 ±2.344 0.0215

Table 2.2. Optimal partition for N(0, 1) (with measurement error N(0, 0.01)).

n optimal partition limits expected loss

1 – 2.0000

2 0 0.7394

3 ±0.615 0.3964

4 0 ±0.986 0.2524

5 ±0.384 ±1.251 0.1781

6 0 ±0.662 ±1.454 0.1346

7 ±0.282 ±0.879 ±1.619 0.1069

8 0 ±0.503 ±1.055 ±1.757 0.0882

9 ±0.223 ±0.685 ±1.204 ±1.875 0.0750

10 0 ±0.407 ±0.838 ±1.331 ±1.978 0.0652

11 ±0.185 ±0.563 ±0.970 ±1.443 ±2.069 0.0579

12 0 ±0.342 ±0.698 ±1.087 ±1.542 ±2.151 0.0522

13 ±0.158 ±0.478 ±0.817 ±1.190 ±1.631 ±2.226 0.0477

14 0 ±0.295 ±0.599 ±0.923 ±1.283 ±1.712 ±2.293 0.0440

15 ±0.138 ±0.416 ±0.706 ±1.018 ±1.367 ±1.785 ±2.355 0.0411
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Table 2.3. Optimal partition for N(0, 1) (with measurement error N(0, 0.1)).

n optimal partition limits expected loss

1 – 2.0000

2 0 0.8425

3 ±0.642 0.5276

4 0 ±1.030 0.3954

5 ±0.401 ±1.305 0.3272

6 0 ±0.691 ±1.517 0.2872

7 ±0.294 ±0.917 ±1.689 0.2618

8 0 ±0.525 ±1.101 ±1.833 0.2446

9 ±0.233 ±0.714 ±1.256 ±1.957 0.2325

10 0 ±0.425 ±0.875 ±1.389 ±2.064 0.2235

11 ±0.193 ±0.587 ±1.013 ±1.506 ±2.160 0.2168

12 0 ±0.357 ±0.728 ±1.134 ±1.609 ±2.245 0.2115

13 ±0.165 ±0.499 ±0.852 ±1.242 ±1.702 ±2.323 0.2074

14 0 ±0.308 ±0.625 ±0.963 ±1.339 ±1.786 ±2.393 0.2041

15 ±0.144 ±0.435 ±0.737 ±1.062 ±1.427 ±1.863 ±2.458 0.2013

Figure 2.1. Expected squared error losses (◆ without error; ■ error N(0,0.01); ▲ error N(0,0.1)）.

Numerical example

Kannan and Jayabalan (2001a) have considered a hole and shaft assembly for analy-

sis when measurement error is not present. Although the variances of the inner and
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outer diameters of the hole and shaft are slightly different in their example, here we

set them equal. The inner diameter of the hole (X) and the measurement error (WX)

are distributed as N(35.006mm, (0.002mm)2) and N(0mm, (0.0002mm)2), respectively.

The outer diameter of the shaft (Y ) and the measurement error (W Y ) are distributed

as N(34.994mm, (0.002mm)2) and N(0mm, (0.0002mm)2), respectively. Then, the ob-

servation of the dimension of the hole (ZX) is distributed as N(35.006mm, (0.0022 +

0.00022)mm2), and that of the shaft (ZY ) as N(34.994mm, (0.0022 + 0.00022)mm2).

The target of the clearance is 0.012mm. Tables 2.4 and 2.5 give the optimal partition

limits, the expected squared error losses, and the probabilities of the groups for n = 6

and n = 9, respectively. We note that, since the ratio of the variance of the component

dimensions to that of the measurement errors is 1 : 0.01, the results can be obtained

from Table 2 (n = 6 and n = 9) by applying a location shift and a scale change. For

example, the optimal partition limits for shaft in Table 2.4 are obtained by

(the optimal partition limits for n = 6 in Table 2.2) × 0.002 + 34.994,

such as

0.662 × 0.002 + 34.994 = 34.99532 (the partition limit between 4th and 5th groups),

and the expected squared error loss is obtained as

0.1346 × (0.002)2 = 0.538 × 10−6.

Table 2.4. Optimal partition for the shaft and hole example (n=6).

group shaft (mm) hole (mm) expected loss probability

min max min max (10−6mm2)

1 -∞ 34.99109 -∞ 35.00309 1.299 0.0740

2 34.99109 34.99268 35.00309 35.00468 0.468 0.1810

3 34.99268 34.99400 35.00468 35.00600 0.361 0.2450

4 34.99400 34.99532 35.00600 35.00732 0.361 0.2450

5 34.99532 34.99691 35.00732 35.00891 0.468 0.1810

6 34.99691 ∞ 35.00891 ∞ 1.299 0.0740

average 0.538
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Table 2.5. Optimal partition for the shaft and hole example (n=9).

group shaft (mm) hole (mm) expected loss probability

min max min max (10−6mm2)

1 -∞ 34.99025 -∞ 35.00225 1.051 0.0311

2 34.99025 34.99159 35.00225 35.00359 0.355 0.0845

3 34.99159 34.99263 35.00359 35.00463 0.252 0.1323

4 34.99263 34.99355 35.00463 35.00555 0.217 0.1644

5 34.99355 34.99445 35.00555 35.00645 0.208 0.1755

6 34.99445 34.99537 35.00645 35.00737 0.217 0.1644

7 34.99537 34.99641 35.00737 35.00841 0.252 0.1323

8 34.99641 35.99775 35.00841 35.00975 0.355 0.0845

9 34.99775 ∞ 35.00975 ∞ 1.051 0.0311

average 0.300
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Chapter 3

Optimal Partitioning of the Distributions
When a Tolerance Constraint Is Given on
the Clearance

3.1 Introduction

The problem of determining optimal partition limits has not been addressed under a

tolerance constraint on the clearance, although such a constraint is usually present in

practice. For the unconstrained optimal partitioning, the group width is smaller near

the mode of the distribution and larger in the tails. If some groups in the tails have

larger widths than the tolerance limit in the case of unconstrained optimal partitioning,

we have unacceptable products with positive probability. If this probability is not

negligibly small and we remove the unacceptable products, additional measurement

and inspection will be necessary, with correspondingly high cost. This chapter studies

optimal partitioning of the dimensional distributions when a tolerance constraint is

given on the clearance. It is shown that the resulting constrained optimal partitioning is

the partitioning which constrains the widths of some groups in the tails to the tolerance

limit and which matches exactly the unconstrained optimal partitioning for the rest of

the distribution.

For example, we consider the case in which X (and Y ) follow N(0, 1), xL = −3,

xU = 3, the tolerance limit ∆ is 0.7, and the number of groups n is 10. If we use

the unconstrained optimal partition limits for X and Y (the common partition limits

are shown in Figure 3.1), then we have unacceptable products with positive probability,

since 1.134 (the width of the first right- and left-hand side groups) exceeds the tolerance

limit ∆ = 0.7. We also see that 2.196 (the sum of the widths of the outer 3 groups on

both sides) exceeds ∆ × 3 = 2.1. However, if we use the constrained optimal partition

limits (see Figure 3.2), then the widths of the outer 2 groups on both sides are equal
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to the tolerance limit and the partitioning of the inner 6 groups is the unconstrained

optimal partitioning for the distribution truncated at ±1.6.

Figure 3.1. Unconstrained optimal partitioning for n = 10 and ∆ = 0.7.

Figure 3.2. Constrained optimal partitioning for n = 10 and ∆ = 0.7.

This chapter is organized as follows. In Section 3.2, after presenting models, no-

tation, and assumptions, we describe two existing strategies: unconstrained optimal

partitioning and equal width partitioning schemes. In Section 3.3, conditions for a set

of constrained optimal partition limits are derived, and a numerical algorithm for finding

such a set is given. In Section 3.4, under the assumption that the dimensional distribu-

tion is strongly unimodal, we discuss some properties of unconstrained and constrained

optimal partitioning schemes and show the uniqueness of constrained optimal partition

limits. The final section gives some numerical results that enable us to compare the

three strategies.
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3.2 Models and two existing strategies

In this chapter, we use the notation given in Section 1.5. Let ∆ > 0 be the given

tolerance limit on the clearance X − Y . Then, the width of any group is necessarily

less than or equal to ∆, that is,

xi − xi−1 ≤ ∆, i = 1, 2, . . . , n.

We assume that xU −xL < n∆ so that the problem of choosing optimal partition limits

makes sense. Let f denote the common density function of X and Y after truncation

at xL and xU . We suppose that f(x) > 0 for x0 < x < xn, and f(x) = 0 otherwise.

The expected squared error loss is given by
∑n

i=1 E[(Xi −Yi)
2]pi. We now describe two

existing partitioning methods.

Equal width partitioning (EWP)

Equal width partition limits (EWP limits) are given by

xi − xi−1 =
xn − x0

n
, i = 1, 2, . . . , n.

Apparently any product will satisfy the tolerance constraint in this case. However,

EWP does not necessarily minimize the expected squared error loss.

Unconstrained optimal partitioning (UOP)

UOP is the partitioning which minimizes the expected squared error loss. Let

(x0, x
†
1, x

†
2, . . . , x

†
n−1, xn) denote the unconstrained optimal partition limits (UOP lim-

its). Recall that Mease et al. (2004) showed that the UOP limits satisfy the equations

(1.2) and also showed that the solution to (1.2) is unique if the distribution satisfies

Condition (A) : E[X|t < X ≤ t + u] − t is nonincreasing in t for all u > 0,

which is guaranteed if the density f is strongly unimodal. With UOP, some groups

have larger widths than the tolerance limit ∆ in some cases. When mating components

are randomly selected from the ith groups, the probability that the tolerance constraint
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is not satisfied (the probability of non-acceptance) is given by

Qi =


2
∫ x

†
i

x
†
i−1

+∆
f(x)

∫ x−∆

x
†
i−1

f(y)dydx(∫ x
†
i

x
†
i−1

f(x)dx

)2 , if x†
i − x†

i−1 > ∆,

0, if x†
i − x†

i−1 ≤ ∆.

The overall probability of non-acceptance for UOP is obtained by
∑n

i=1 Qipi.

In Sections 3.3 and 3.4, we study optimal partitioning to minimize the expected

squared error loss subject to the tolerance constraint. We show that constrained optimal

partitioning is the partitioning which constrains the widths of some groups in the tails

to the tolerance limit and which corresponds to UOP for the rest of the distribution.

We also establish the uniqueness of the constrained optimal partition limits.

3.3 Constrained optimal partitioning (COP) and conditions for

COP limits

COP is the partitioning which minimizes
∑n

i=1 E[(Xi−Yi)
2]pi subject to the restrictions

xi −xi−1 ≤ ∆, i = 1, 2, . . . , n. In this section, we derive conditions for COP limits, and

describe an algorithm for finding them.

Since Xi and Yi are independently and identically distributed,
∑n

i=1 E[(Xi − Yi)
2]pi

can be rewritten as

2

∫ xn

x0

x2f(x)dx − 2
n∑

i=1

(E[Xi])
2pi.

Thus we may simply

maximize g(x1, x2, . . . , xn−1) =
n∑

i=1

(E[Xi])
2pi =

n∑
i=1

(∫ xi

xi−1
xf(x)dx

)2∫ xi

xi−1
f(x)dx

,

subject to 0 ≤ xi − xi−1 ≤ ∆, i = 1, 2, . . . , n.

To derive necessary conditions for COP limits, we first note that the partial derivative

of g(x1, x2, . . . , xn−1) with respect to each xi (1 ≤ i ≤ n − 1) is given by

∂g(x1, x2, . . . , xn−1)

∂xi

= f(xi)(E[Xi+1] − E[Xi])(E[Xi] + E[Xi+1] − 2xi), (3.1)
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as is shown in Mease et al. (2004). Let

h(x|xi−1, xi+1) = E[X|xi−1 < X ≤ x] + E[X|x < X ≤ xi+1] − 2x. (3.2)

Then we see that the sign of (3.1) is the same as that of h(xi|xi−1, xi+1). For any fixed

x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn−1 such that xi+1 − xi−1 < 2∆, if xi = x◦
i maximizes

g(x1, x2, . . . , xn−1) subject to the constraints xi − xi−1 ≤ ∆ and xi+1 − xi ≤ ∆, then we

have the following.

(i) If xi+1 − ∆ < x◦
i < xi−1 + ∆, then h(x◦

i |xi−1, xi+1) = 0:

(ii) If x◦
i = xi+1 − ∆, then h(x◦

i |xi−1, xi+1) ≤ 0:

(iii) If x◦
i = xi−1 + ∆, then h(x◦

i |xi−1, xi+1) ≥ 0.

Therefore, we see that the COP limits, denoted by (x0, x
∗
1, x

∗
2, . . . , x

∗
n−1, xn), satisfy the

following conditions.

E[X|x∗
i−1 < X ≤ x∗

i ] + E[X|x∗
i < X ≤ x∗

i+1] = 2x∗
i , if x∗

i+1 − ∆ < x∗
i < x∗

i−1 + ∆, (3.3)

E[X|x∗
i−1 < X ≤ x∗

i ] + E[X|x∗
i < X ≤ x∗

i+1] ≤ 2x∗
i , if x∗

i+1 − ∆ = x∗
i < x∗

i−1 + ∆, (3.4)

E[X|x∗
i−1 < X ≤ x∗

i ] + E[X|x∗
i < X ≤ x∗

i+1] ≥ 2x∗
i , if x∗

i+1 − ∆ < x∗
i = x∗

i−1 + ∆, (3.5)

where we put x∗
0 = x0 and x∗

n = xn. We can obtain partition limits satisfying the

conditions (3.3)-(3.5) using the following iterative algorithm.

1. Begin with an initial set of partition limits (x0
0, x

0
1, x

0
2, . . . , x

0
n−1, x

0
n) which satisfies

x0
i − x0

i−1 ≤ ∆, i = 1, 2, . . . , n, where x0
0 = x0 and x0

n = xn.

2. Repeat the following sub-steps for k = 1, 2, . . . , n − 1 sequentially with x1
0 = x0.

(i) Compute E[X|x1
k−1 < X ≤ x0

k+1−∆], E[X|x0
k+1−∆ < X ≤ x0

k+1], E[X|x1
k−1 <

X ≤ x1
k−1 + ∆], and E[X|x1

k−1 + ∆ < X ≤ x0
k+1].

(ii) Put x1
k = x0

k+1 − ∆ if E[X|x1
k−1 < X ≤ x0

k+1 − ∆] + E[X|x0
k+1 − ∆ < X ≤

x0
k+1] ≤ 2(x0

k+1 − ∆).

Put x1
k = x1

k−1 + ∆ if E[X|x1
k−1 < X ≤ x1

k−1 + ∆] + E[X|x1
k−1 + ∆ < X ≤

x0
k+1] ≥ 2(x1

k−1 + ∆).

Put x1
k = (E[X|x1

k−1 < X ≤ x0
k] + E[X|x0

k < X ≤ x0
k+1])/2 otherwise.
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3. Finish the iteration if

|x1
i − x0

i | < ϵ, i = 1, 2, . . . , n − 1,

where ϵ is a predetermined calculation error bound. Otherwise, repeat Step 2 with

(x1
1, x

1
2, . . . , x

1
n−1) in place of (x0

1, x
0
2, . . . , x

0
n−1).

We note that the last equation of step 2 (ii) is the one yielding the UOP limits (see the

algorithm for finding UOP limits as given in Section 1.5). We can easily implement the

algorithm using any software package which implements numerical integration. If the

algorithm does converge, then the resulting set of partition limits satisfies the conditions

(3.3)-(3.5). We show in the next section that, under the assumption that Condition

(A) holds, the set of partition limits satisfying (3.3)-(3.5) is unique.

3.4 Some properties of COP and UOP and uniqueness of COP

limits

In this section, we assume that Condition (A) is satisfied. We give a property of COP

limits, which shows that the tolerance restriction is effective for the outer part of the

distribution. We use it to prove the uniqueness of COP limits. Before that we give the

corresponding property of UOP limits which shows that some groups in the tails of the

dimensional distribution may have larger widths than ∆.

Proposition 3.1 For some 0 ≤ a < b ≤ n, the UOP limits satisfy

x†
i − x†

i−1 ≥ ∆, i = 1, 2, . . . , a, (3.6)

x†
i − x†

i−1 < ∆, i = a + 1, a + 2, . . . , b, (3.7)

x†
i − x†

i−1 ≥ ∆, i = b + 1, b + 2, . . . , n. (3.8)

Note that some equations are vacuous when a = 0 or b = n. The proofs of Propositions

3.1 and 3.2 and the Remark to them are deferred to Appendix A, B, and E, respectively.
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Proposition 3.2 For some 0 ≤ a < b ≤ n, the COP limits satisfy

x∗
i − x∗

i−1 = ∆, i = 1, 2, . . . , a, (3.9)

x∗
i − x∗

i−1 < ∆, i = a + 1, a + 2, . . . , b, (3.10)

x∗
i − x∗

i−1 = ∆, i = b + 1, b + 2, . . . , n, (3.11)

and

2x∗
i < E[X|x∗

i−1 < X ≤ x∗
i ] + E[X|x∗

i < X ≤ x∗
i+1], i = 1, 2, . . . , a − 1, (3.12)

2x∗
a ≤ E[X|x∗

a−1 < X ≤ x∗
a] + E[X|x∗

a < X ≤ x∗
a+1], (3.13)

2x∗
i = E[X|x∗

i−1 < X ≤ x∗
i ] + E[X|x∗

i < X ≤ x∗
i+1], i = a + 1, a + 2, . . . , b − 1, (3.14)

2x∗
b ≥ E[X|x∗

b−1 < X ≤ x∗
b ] + E[X|x∗

b < X ≤ x∗
b+1], (3.15)

2x∗
i > E[X|x∗

i−1 < X ≤ x∗
i ] + E[X|x∗

i < X ≤ x∗
i+1], i = b + 1, b + 2, . . . , n − 1. (3.16)

Note that some equations are vacuous when a = 0, 1 or b = a + 1, n − 1, n.

Since the equations (3.14) are of the same form as those (1.2) which UOP limits

are required to satisfy, we see from Proposition 3.2 that COP is the partitioning which

constrains the widths of some groups in the tails (i = 1, 2, . . . , a and i = b+1, b+2, . . . , n)

to the tolerance limit ∆ and which yields UOP limits for the distribution truncated at

x∗
a and x∗

b . We may anticipate that if (3.6)-(3.8) hold for some 0 ≤ a < b ≤ n in UOP

and (3.9)-(3.11) with a, b replaced by c, d hold for some 0 ≤ c < d ≤ n in COP, then

a ≤ c and b ≥ d. This is true and is shown by the following.

Remark If x†
i − x†

i−1 ≥ ∆ holds for some 1 ≤ i ≤ n, then x∗
i − x∗

i−1 = ∆ holds.

Now we can show the uniqueness of COP limits using Proposition 3.2. Since (3.14) is

of the same form as (1.2) and the solution to (1.2) is unique, we see that for given x∗
a and

x∗
b , x∗

a+1, . . . , x
∗
b−1 are uniquely determined. Thus, we need only show the uniqueness of

the values of a and b for the COP limits. The proof is rather technical and deferred to

Appendix C.
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3.5 Numerical results

We present some numerical results for COP, UOP, and EWP applied to the standard

normal distribution truncated at ±3. We report on their partition limits and expected

squared error losses, and the probabilities of non-acceptance of UOP for two values of

the tolerance limit.

Table 3.1 gives the UOP limits and the expected squared error losses. Tables 3.2 and

3.3 give the COP limits and the expected squared error losses for ∆ = 1.3 and ∆ = 1,

respectively.

From Tables 3.2 and 3.3, we see that for COP, the tolerance restriction is effective

for the outer part of the distribution, as is shown analytically in Proposition 3.2.

Table 3.4 compares COP, UOP, and EWP in terms of expected squared error loss

when ∆ = 1.3. The overall probability of non-acceptance for UOP,
∑n

i=1 Qipi, is also

given in Table 3.4. We give the results for n = 5, 6, 7, 8 because for n ≤ 4 no set

of partition limits satisfies the tolerance constraint (xn − x0 > n∆ holds), and for

n ≥ 9 COP and UOP are the same (see Tables 3.1 and 3.2). Table 3.5 compares

the three methods when ∆ = 1. For the same reason, the results are given for n =

6, 7, 8, 9, 10 only. Based on these numerical results, we summarize the findings as follows.

Although UOP minimizes the expected squared error loss, its probabilities of non-

acceptance are not negligibly small in some cases. For EWP, the tolerance constraint

is strictly satisfied, but its expected squared error losses are generally greater than

the corresponding values for UOP. For COP, the tolerance constraint is also satisfied

and the expected squared error loss is considerably reduced, in comparison with EWP

(about 20-30% loss reduction for larger values of n).
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Table 3.1. UOP for N(0, 1) truncated at ±3.

n UOP limits expected loss

1 – 1.9467

2 0 0.6948

3 ±0.604 0.3579

4 0 ±0.964 0.2179

5 ±0.375 ±1.215 0.1464

6 0 ±0.643 ±1.405 0.1050

7 ±0.273 ±0.850 ±1.555 0.0789

8 0 ±0.486 ±1.017 ±1.677 0.0614

9 ±0.215 ±0.659 ±1.154 ±1.779 0.0491

10 0 ±0.391 ±0.804 ±1.271 ±1.866 0.0401

Table 3.2. COP for N(0, 1) truncated at ±3 (∆ = 1.3).

n COP limits expected loss

5 ±0.483 ±1.7 0.1895

6 0 ±0.745 ±1.7 0.1162

7 ±0.291 ±0.911 ±1.7 0.0809

8 0 ±0.491 ±1.027 ±1.7 0.0614

9 ±0.215 ±0.659 ±1.154 ±1.779 0.0491

10 0 ±0.391 ±0.804 ±1.271 ±1.866 0.0401

Table 3.3. COP for N(0, 1) truncated at ±3 (∆ = 1).

n COP limits expected loss

6 0 ±1 ±2 0.1540

7 ±0.323 ±1.022 ±2 0.0943

8 0 ±0.546 ±1.158 ±2 0.0678

9 ±0.232 ±0.713 ±1.261 ±2 0.0516

10 0 ±0.409 ±0.843 ±1.341 ±2 0.0409

Table 3.4. Comparison of the three methods for N(0, 1) truncated at ±3 (∆=1.3).

UOP COP EWP

n expected loss
∑n

i=1 Qipi (×10−3) expected loss expected loss

5 0.1464 5.057 0.1895 0.2145

6 0.1050 1.749 0.1162 0.1540

7 0.0789 0.410 0.0809 0.1155

8 0.0614 0.010 0.0614 0.0896
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Table 3.5. Comparison of the three methods for N(0, 1) truncated at ±3 (∆=1).

UOP COP EWP

n expected loss
∑n

i=1 Qipi (×10−3) expected loss expected loss

6 0.1050 8.919 0.1540 0.1540

7 0.0789 4.683 0.0943 0.1155

8 0.0614 2.372 0.0678 0.0896

9 0.0491 1.088 0.0516 0.0715

10 0.0401 0.399 0.0409 0.0583

Appendices

A Proof of Proposition 3.1

Since we prove this proposition by contradiction, we suppose that for some 1 ≤ c <

d ≤ n − 1,

x†
c − x†

c−1 < ∆,

x†
i − x†

i−1 ≥ ∆, i = c + 1, c + 2, . . . , d,

x†
d+1 − x†

d < ∆.

From the definition of h(x|xi−1, xi+1) given in (3.2), using Condition (A), we have

h(x†
c|x

†
c−1, x

†
c+1) = E[X|x†

c−1 < X ≤ x†
c] + E[X|x†

c < X ≤ x†
c+1] − 2x†

c

≥ E[X|x†
c−1 + (x†

d − x†
c) < X ≤ x†

d]

+E[X|x†
d < X ≤ x†

c+1 + (x†
d − x†

c)] − 2x†
d.

Noting that x†
d−1 < x†

c−1 + (x†
d − x†

c) and x†
d+1 < x†

c+1 + (x†
d − x†

c), we have

h(x†
c|x

†
c−1, x

†
c+1) > E[X|x†

d−1 < X ≤ x†
d] + E[X|x†

d < X ≤ x†
d+1] − 2x†

d

= h(x†
d|x

†
d−1, x

†
d+1).

However, from (1.2), we have h(x†
c|x

†
c−1, x

†
c+1) = h(x†

d|x
†
d−1, x

†
d+1) = 0, and this is a

contradiction. This completes the proof.

B Proof of Proposition 3.2

We first show that (3.9)-(3.11) hold for some 0 ≤ a < b ≤ n by contradiction. Suppose
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that for some 1 ≤ c < d ≤ n − 1,

x∗
c − x∗

c−1 < ∆,

x∗
i − x∗

i−1 = ∆, i = c + 1, c + 2, . . . , d,

x∗
d+1 − x∗

d < ∆.

Using Condition (A), we have

h(x∗
c |x∗

c−1, x
∗
c+1) = E[X|x∗

c−1 < X ≤ x∗
c ] + E[X|x∗

c < X ≤ x∗
c+1] − 2x∗

c

≥ E[X|x∗
c−1 + (d − c)∆ < X ≤ x∗

c + (d − c)∆]

+E[X|x∗
c + (d − c)∆ < X ≤ x∗

c+1 + (d − c)∆] − 2{x∗
c + (d − c)∆}.

Since x∗
d−1 < x∗

c−1 + (d− c)∆, x∗
d = x∗

c + (d− c)∆, and x∗
d+1 < x∗

c+1 + (d− c)∆, we have

h(x∗
c |x∗

c−1, x
∗
c+1) > E[X|x∗

d−1 < X ≤ x∗
d] + E[X|x∗

d < X ≤ x∗
d+1] − 2x∗

d

= h(x∗
d|x∗

d−1, x
∗
d+1).

Since h(x∗
c |x∗

c−1, x
∗
c+1) ≤ 0 from (3.4), we have h(x∗

d|x∗
d−1, x

∗
d+1) < 0. However, since

h(x∗
d|x∗

d−1, x
∗
d+1) ≥ 0 from (3.5), we have a contradiction. Thus, we have shown that

(3.9)-(3.11) are satisfied for some 0 ≤ a < b ≤ n.

Next, we show that (3.12)-(3.16) are also satisfied for the same a and b for which

(3.9)-(3.11) are satisfied. From (3.10) and (3.3), we have (3.14). When a ≥ 1, from

x∗
a+1 − ∆ < x∗

a = x∗
a−1 + ∆ and (3.5), we have

h(x∗
a|x∗

a−1, x
∗
a+1) = E[X|x∗

a−1 < X ≤ x∗
a] + E[X|x∗

a < X ≤ x∗
a+1] − 2x∗

a ≥ 0, (3.17)

that is, we have (3.13). When a ≥ 2, using Condition (A) and (3.9) and (3.10), we have

E[X|x∗
a−1 < X ≤ x∗

a] + E[X|x∗
a < X ≤ x∗

a+1] − 2x∗
a

≤ E[X|x∗
a−1 − ∆ < X ≤ x∗

a − ∆] + E[X|x∗
a − ∆ < X ≤ x∗

a+1 − ∆] − 2(x∗
a − ∆)

< E[X|x∗
a−2 < X ≤ x∗

a−1] + E[X|x∗
a−1 < X ≤ x∗

a] − 2x∗
a−1.

Thus, from (3.17), we have

E[X|x∗
a−2 < X < x∗

a−1] + E[X|x∗
a−1 < X < x∗

a] − 2x∗
a−1 > 0.
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Using this argument repeatedly, we obtain (3.12). Similarly we have (3.15) and (3.16),

and this completes the proof.

C Continued proof of uniqueness of COP limits

Suppose that (x0, x
A
1 , xA

2 , . . . , xA
n−1, xn) is a set of COP limits. From Proposition 3.2, we

see that for some 0 ≤ a < b ≤ n, (3.9)-(3.11) and also (3.12)-(3.16) are satisfied with

x∗
i replaced by xA

i . Let (x0, x
B
1 , xB

2 , . . . , xB
n−1, xn) be another set of COP limits. We see

that for some 0 ≤ c < d ≤ n, (3.9)-(3.11) and also (3.12)-(3.16) are satisfied with a, b,

and x∗
i replaced by c, d, and xB

i , respectively. We notice that although some equations

are vacuous when a = 0, 1 or b = a+ 1, n− 1, n or c = 0, 1 or d = c + 1, n− 1, n, we can

apply the following argument. We show that if d ̸= b, then we have a contradiction.

Without any loss of generality, we suppose that b < d. Then we have xA
d = xB

d and

xA
d−1 < xB

d−1 or Dd−1 > 0, where Di = xB
i − xA

i . From Condition (A), we have

E[X|xB
d−1 < X ≤ xB

d ] − xB
d−1 ≤ E[X|xA

d−1 < X ≤ xB
d − Dd−1] − xA

d−1

< E[X|xA
d−1 < X ≤ xA

d ] − xA
d−1.

(3.18)

Now we need the following lemma whose proof is given in Appendix D.

Lemma 3.1 If for some 1 ≤ i ≤ n − 1,

xA
i < xB

i ,

xB
i − E[X|xB

i < X ≤ xB
i+1] > xA

i − E[X|xA
i < X ≤ xA

i+1], (3.19)

2xB
i ≤ E[X|xB

i−1 < X ≤ xB
i ] + E[X|xB

i < X ≤ xB
i+1], (3.20)

and

2xA
i ≥ E[X|xA

i−1 < X ≤ xA
i ] + E[X|xA

i < X ≤ xA
i+1], (3.21)

then

xA
i−1 < xB

i−1

and

xB
i−1 − E[X|xB

i−1 < X ≤ xB
i ] > xA

i−1 − E[X|xA
i−1 < X ≤ xA

i ]. (3.22)
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We now return to the proof of uniqueness. Since (3.14)-(3.16) are satisfied when we

replace x∗
i with xA

i , (3.21) is satisfied for i = d− 1, d− 2, . . . , a + 1. Since (3.12)-(3.14)

are satisfied when we replace a, b, and x∗
i with c, d, and xB

i , respectively, (3.20) is

satisfied for i = d − 1, d − 2, . . . , a + 1. Thus, from Dd−1 > 0 and (3.18), we can apply

Lemma 3.1 repeatedly for i = d− 1, d− 2, . . . , a + 1, and we obtain xA
a < xB

a . However,

xA
a = x0 + a∆ ≥ xB

a , and we have a contradiction. Therefore, we have b = d. In the

same way, we have a = c. Thus we have shown that the set of COP limits is unique.

D Proof of Lemma 3.1

Using (3.20), (3.19), and (3.21), we see that

E[X|xB
i−1 < X ≤ xB

i ] − xB
i−1 = E[X|xB

i−1 < X ≤ xB
i ] − xB

i + (xB
i − xB

i−1)

> E[X|xA
i−1 < X ≤ xA

i ] − xA
i + (xB

i − xB
i−1)

= E[X|xA
i−1 < X ≤ xA

i ] − (xB
i−1 − Di).

Using Condition (A) and this inequality, we obtain

E[X|xB
i−1 − Di < X ≤ xA

i ] − (xB
i−1 − Di) ≥ E[X|xB

i−1 < X ≤ xB
i ] − xB

i−1

> E[X|xA
i−1 < X ≤ xA

i ] − (xB
i−1 − Di).

From this, we see that xB
i−1 − Di > xA

i−1, and we have

Di−1 = xB
i−1 − xA

i−1 > Di > 0. (3.23)

Using Condition (A) and (3.23), we have

E[X|xB
i−1 < X ≤ xB

i ] − xB
i−1 ≤ E[X|xA

i−1 < X ≤ xB
i − Di−1] − xA

i−1

< E[X|xA
i−1 < X ≤ xA

i ] − xA
i−1,

which can be rewritten as (3.22). This completes the proof.

E Proof of the Remark to Propositions 3.1 and 3.2

Since we use Lemma 3.1 in the following by letting xA
i = x†

i and xB
i = x∗

i , we let
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(x0, x
A
1 , xA

2 , . . . , xA
n−1, xn) be the UOP limits, and also let (x0, x

B
1 , xB

2 , . . . , xB
n−1, xn) be

the COP limits. Then we have (1.2) with x†
i replaced by xA

i , and we also have (3.6)-(3.8)

with x†
i replaced by xA

i for some 0 ≤ a < b ≤ n. Furthermore, we have (3.9)-(3.11)

and (3.12)-(3.16) with a, b, and x∗
i replaced by c, d, and xB

i , respectively, for some

0 ≤ c < d ≤ n. We need only to show b ≥ d and a ≤ c. Here, we only show b ≥ d by

contradiction. Suppose that b < d. Then we easily see that xA
d ≤ xB

d . Let Di = xB
i −xA

i .

Since xA
d − xA

d−1 ≥ ∆ > xB
d − xB

d−1, we have xA
d−1 < xB

d−1 and Dd−1 > Dd ≥ 0. Thus,

using Condition (A), we easily see that (3.18) holds. Applying Lemma 3.1 repeatedly

i = d − 1, d − 2, . . . , a + 1, we obtain xA
a < xB

a . However, since xA
a ≥ x0 + a∆ ≥ xB

a , we

have a contradiction. This completes the proof.
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Chapter 4

Optimal Mean Shift of the Dimensional
Distribution of the Component with Smaller
Variance

4.1 Introduction

In this chapter, relaxing the assumption that the two component dimensions are iden-

tically distributed after re-centering, we discuss the case in which the variances of the

two component dimensions are different. In selective assembly, if there is a large differ-

ence between the two variances, then this causes large differences between the target

clearance and the expected clearances of the products that are assembled by selecting

mating components from groups in the tails of the distributions. This leads to a large

variance of the clearance.

To give an example, consider X ∼ N(0, 1), Y ∼ N(0, 0.32), xL = −∞, xU = ∞,

and n = 10. Then (0.3x1, 0.3x2, . . . , 0.3x9) = (y1, y2, . . . , y9) holds so that pi = qi,

i = 1, 2, . . . , 10. Since Mease et al. (2004) showed that the partition limits for X

which minimize the expected squared error loss also satisfy the equations (1.2) when

the distributions of X and Y differ only by a scale parameter, we see from Table 2.1

that the optimal partition limits for X are given as

(x1, x2, x3, x4, x5, x6, x7, x8, x9)

= (−1.968,−1.325,−0.834,−0.405, 0, 0.405, 0.834, 1.325, 1.968).

The resulting expected squared error loss is 0.5038, which is much larger than the

expected squared error loss 0.0459 for Y ∼ N(0, 1). This deterioration is caused by

the differences between the target clearance C = 0 and the expected clearances of the

products, especially for groups in the tails of the distributions, as seen from Figure 4.1.

The expected clearances of the products from the 1st and 10th groups are E[X1−Y1] =

−2.345 − (−0.704) = −1.641 and E[X10 − Y10] = 2.345 − 0.704 = 1.641, respectively.

38



Figure 4.1. Selective assembly in the case of unequal variances.

Mansoor (1961), Kannan et al. (1997), and Kannan and Jayabalan (2002) proposed a

method of manufacturing the component with smaller variance in two (or more) variants

by shifting the process mean, as shown in Figure 4.2. However, the determination

of the optimal mean shift under a certain criterion has not been addressed in these

papers. This chapter deals with the problem of determining the optimal mean shift

under squared error loss in selective assembly when the component with smaller variance

is manufactured in two variants at two shifted means. It turns out that we can reduce

the expected squared error loss from 0.5038 to 0.1301 by manufacturing the component

Y at the two means ±0.7963 (the resulting distribution of Y is the mixture distribution

of the two normal distributions N(−0.7963, 0.32) and N(0.7963, 0.32)) in the above

example.

This chapter is organized as follows. Section 4.2 presents models, notation, and

assumptions. Note that we assume normal distributions in this chapter. In Section

4.3, we show uniqueness and some properties of the optimal mean shift. Section 4.4

presents some numerical results which suggest that using the optimal mean shift can
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Figure 4.2. Selective assembly in the case with two shifted means.

considerably reduce the expected squared error loss compared to the situation of no

shift, especially in the case where the variances of the two component dimensions are

very different.

4.2 Models, notation, and assumptions

Let X and U denote the dimensions of the components with larger and smaller vari-

ance, respectively. The ratio of the smaller standard deviation to the larger one,

SD[U ]/SD[X], is denoted by τ (0 < τ ≤ 1). We assume that X and U are normally

distributed throughout this chapter.

Without loss of generality, we may assume that E[X] = 0 and SD[X] = 1. Then,

X is distributed as N(0, 1). Let ϕ(x) and Φ(x) denote the density and cumulative

distribution functions of N(0, 1), respectively. The component with smaller variance

is manufactured at two shifted means, and we let ±b be the two means. Then, the

dimension of the component with smaller variance, denoted by Y , follows a mixture
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distribution of U ′s with the means ±b. Its density and cumulative distribution functions

are expressed as

fY (y) =
1

2τ

{
ϕ

(
y − b

τ

)
+ ϕ

(
y + b

τ

)}
,

FY (y) =
1

2

{
Φ

(
y − b

τ

)
+ Φ

(
y + b

τ

)}
,

respectively. Suppose that xL = yL = −∞ and xU = yU = ∞.

In this chapter, we assume that the partition limits for X are given and symmetric.

The set of partition limits for X is denoted by (−xk−1, . . . ,−x1,−x0, x0, x1, . . . , xk−1)

where

k =

 n−1
2

, when n is odd,

n
2
, when n is even.

We note that x0 > 0 holds if n is odd, and that we put x0 = 0 if n is even. The

set of partition limits for Y is denoted by (−yk−1, . . . ,−y1,−y0, y0, y1, . . . , yk−1). In

selective assembly, the components X ∈ (xi−1, xi] are matched with the components

Y ∈ (yi−1, yi], X ∈ (−xi,−xi−1] are matched with Y ∈ (−yi,−yi−1], and X ∈ (−x0, x0]

are matched with Y ∈ (−y0, y0] (if n is odd), as shown in Figure 4.2. We note that

xk = ∞ and yk = ∞.

Φ(xi) = FY (yi), that is,

Φ(xi) =
1

2

{
Φ

(
yi − b

τ

)
+ Φ

(
yi + b

τ

)}
, i = 0, 1, . . . , k − 1 (4.1)

must hold so that there are no surplus components. Therefore, the partition limits

for Y , (−yk−1, . . . ,−y1,−y0, y0, y1, . . . , yk−1), are functions of b, denoted by yi(b), i =

0, 1, . . . , k − 1, since we fix (−xk−1, . . . ,−x1,−x0, x0, x1, . . . , xk−1).

We let Xi and Yi be the truncated random variables of X and Y defined on the

intervals (xi−1, xi] and (yi−1(b), yi(b)], i = 1, 2, . . . , k, respectively, and also let X0 and

Y0 (if n is odd) be the truncated random variables of X and Y defined on the intervals

(−x0, x0] and (−y0(b), y0(b)], respectively. Pr(xi−1 < X ≤ xi) = Pr(yi−1(b) < Y ≤

yi(b)) is denoted by pi and Pr(−x0 < X ≤ x0) = Pr(−y0(b) < Y ≤ y0(b)) is denoted

by p0. If n is even, then p0 = 0.
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Then, the expected squared error loss can be expressed as

G(b) = 2
k∑

i=1

E[(Xi − Yi)
2]pi + E[(X0 − Y0)

2]p0.

We discuss determining the optimal mean shift b∗ which minimizes G(b) in the next

section.

4.3 Optimal mean shift

The problem is to minimize G(b) subject to b ≥ 0. We first present the following

lemma.

Lemma 4.1 Let g(b) be the derivative function of G(b) and g′(b) be the derivative

function of g(b), and put

hi(b) =
4ϕ(yi(b)−b

τ
)ϕ(yi(b)+b

τ
)

ϕ(yi(b)−b
τ

) + ϕ(yi(b)+b
τ

)
, i = 0, 1, . . . , k − 1.

Then, it follows that

g(b) = 2b − 2

τ

k∑
i=1

E[Xi]

{∫ yi(b)−b

yi−1(b)−b

ϕ
(y

τ

)
dy −

∫ yi(b)+b

yi−1(b)+b

ϕ
(y

τ

)
dy

}
and

g′(b) = 2 − 2

τ

{
E[X1]h0(b) +

k−1∑
i=1

(E[Xi+1] − E[Xi])hi(b)

}
.

Further, g′(b) is increasing in b > 0, g(0) = 0, and g′(0) = 2 − 4τ−1
∑k

i=1(E[Xi])
2pi.

The proof of this lemma is deferred to Appendix A. Using this lemma, we prove the

following proposition, which shows that the optimal mean shift b∗ is uniquely deter-

mined.

Proposition 4.1 Let τ0 = 2
∑k

i=1(E[Xi])
2pi. If τ satisfies τ0 ≤ τ ≤ 1, then G(b)

is increasing in b > 0 and b∗ = 0 holds. If τ satisfies 0 < τ < τ0, then the equation

g(b) = 0 has a unique solution in b > 0 and b∗ is that solution.

Proof From Lemma 4.1, we see that g(0) = 0 holds and that g′(b) is increasing in

b > 0.
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In the case that τ0 ≤ τ ≤ 1 holds, that is, g′(0) ≥ 0 holds, we see that G(b) is

increasing in b > 0 since g(b) > 0 holds for any b > 0. Thus, we have b∗ = 0.

In the case that 0 < τ < τ0 holds, that is, g′(0) < 0 holds, the equation g(b) = 0

has a unique solution in b > 0 since limb→∞ g(b) = ∞ holds. (For illustration, we show

a graph of g(b) (and G(b)) for 0 < τ < τ0 in Figure 4.3 (and Figure 4.4).) Letting the

solution be denoted by b0, we see that g(b) < 0 for 0 < b < b0 and g(b) > 0 for b0 < b.

Thus, we see that b∗ = b0. �

b

gHbL

Figure 4.3. A graph of g(b) for 0 < τ < τ0.

b

GHbL

Figure 4.4. A graph of G(b) for 0 < τ < τ0.

Note that the optimal mean shift b∗ can be easily obtained using a numerical software

package, such as Mathematica. We see that if the variances of the two component

dimensions are not very different (τ > τ0 holds), then we do not need to shift the

process mean (b∗ = 0), and if they are very different (τ < τ0 holds), then we do need

43



to shift the process mean (b∗ > 0).

From the following proposition, we see that the optimal mean shift b∗ increases as

the difference between the variances of the two component dimensions increases. Its

proof is deferred to Appendix C.

Proposition 4.2 b∗ is decreasing in τ when 0 < τ < τ0.

4.4 Numerical results

We give the values of the optimal mean shift b∗, G(b∗) (the expected squared error loss

for b = b∗), G(0) (the expected squared error loss for b = 0), and the improvement ratio

1 − G(b∗)/G(0) for τ = 0.8, 0.5, 0.3 and n = 1, 2, . . . , 10.

Let the set of partition limits for X be the solution to the equations (1.2). Recall

that it is the optimal partition when b = 0, as is shown in Mease et al. (2004).

Tables 4.1-4.3 contain the numerical results for τ = 0.8, 0.5, 0.3, respectively. Figure

4.5 illustrates the results presented in Table 4.2. From Tables 4.1-4.3, we see that using

the optimal mean shift b∗ considerably reduces the expected squared error loss G(b)

compared to the situation of no shift (b = 0).

Conversely, we can achieve a required accuracy of the clearance with a smaller num-

ber of groups by using the optimal mean shift. As an example, we consider the case

in which τ = 0.5 and the expected squared error loss is required to be less than 0.25.

We see from Table 4.2 that, although the required accuracy is not achieved even when

n = 10 if we do not shift the process mean, it is achieved for n = 4 if the component

with smaller variance is manufactured at the two means ±0.7324.

We see from Tables 4.1-4.3 that the improvement ratio is large especially for the case

in which the two variances are very different (τ = 0.5, 0.3). It is about 50 ∼ 80% for

τ = 0.5, 0.3 when the number of groups n ≥ 4. We also see that the optimal mean shift

b∗ is about 0.5 for τ = 0.8 and about 0.75 ∼ 0.8 for τ = 0.5, 0.3 when n ≥ 4.

Table 4.4 gives the values of τ0 = 2
∑k

i=1(E[Xi])
2pi for n = 1, 2, . . . , 10. We see that

τ0 = 0.6366 for n = 2. We also see from Tables 4.1-4.3 that b∗ = 0 holds for τ = 0.8
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and b∗ > 0 holds for τ = 0.5, 0.3 when n = 2. These results are compatible with the

assertions in Proposition 4.1 that, b∗ = 0 holds if τ0 ≤ τ and b∗ > 0 holds if τ < τ0.

The results of Tables 4.1-4.3 are also compatible with the assertion in Proposition 4.2

that the optimal mean shift b∗ is decreasing in τ .

We notice that the value of τ0 depends on the number of groups n and the partition

limits (−xk−1, . . . ,−x1,−x0, x0, x1, . . . , xk−1). From Table 4.4, we see that τ0 is increas-

ing in n. We can show that τ0 converges to 1 when n goes to infinity. Therefore, when

n is large, even if the variances of the two component dimensions are not very different,

b∗ > 0 holds, that is, we can reduce the expected squared error loss by manufacturing

the component with smaller variance at two shifted means.

Table 4.1. Numerical results for τ = 0.8.
n b∗ G(b∗) G(0) Ratio (%)

1 0 1.64 1.64 0

2 0 0.6214 0.6214 0

3 0.1635 0.3441 0.3443 0.05

4 0.4225 0.2190 0.2280 3.95

5 0.4878 0.1508 0.1679 10.19

6 0.5192 0.1102 0.1328 17.03

7 0.5374 0.0840 0.1104 23.87

8 0.5491 0.0663 0.0953 30.42

9 0.5571 0.0537 0.0846 36.53

10 0.5629 0.0444 0.0767 42.13

Table 4.2. Numerical results for τ = 0.5.
n b∗ G(b∗) G(0)) Ratio (%)

1 0 1.25 1.25 0

2 0.6351 0.5625 0.6134 8.29

3 0.6464 0.3242 0.4402 26.35

4 0.7324 0.2075 0.3675 43.52

5 0.7292 0.1539 0.3299 53.35

6 0.7542 0.1182 0.3080 61.62

7 0.7540 0.0976 0.2940 66.79

8 0.7637 0.0824 0.2845 71.03

9 0.7644 0.0724 0.2779 73.95

10 0.7689 0.0646 0.2729 76.34
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Table 4.3. Numerical results for τ = 0.3.
n b∗ G(b∗) G(0) Ratio (%)

1 0 1.09 1.09 0

2 0.7912 0.4522 0.7080 36.14

3 0.6616 0.3608 0.6041 40.28

4 0.7942 0.2239 0.5605 60.05

5 0.7417 0.2135 0.5380 60.31

6 0.7953 0.1658 0.5249 68.41

7 0.7671 0.1645 0.5164 68.15

8 0.7959 0.1421 0.5107 72.17

9 0.7785 0.1425 0.5067 71.88

10 0.7963 0.1301 0.5038 74.17

Table 4.4. The value of τ0 = 2
∑k

i=1(E[Xi])
2pi.

n k τ0

1 0 0

2 1 0.6366

3 1 0.8098

4 2 0.8825

5 2 0.9201

6 3 0.9420

7 3 0.9560

8 4 0.9655

9 4 0.9721

10 5 0.9771

46



Figure 4.5. Numerical results for τ = 0.5 (■ G(0); ◆ G(b∗); ▲ Improvement ratio).

Numerical example

We consider a pin and bushing assembly, which Pugh (1986b) also considered for anal-

ysis. The outer diameter of the pin is distributed as N(2.500cm, 0.0752cm2). The inner

diameter of the bushing is distributed as N(2.750cm, 0.1502cm2). The target clear-

ance is 0.250cm. The number of groups is 4. The partition limits for the dimensional

distribution of the bushing are obtained by solving the equations (1.2) or by using

(the partition limits for n = 4 given in Table 2.1) × 0.150 + 2.750.

Since τ = 0.075/0.150 = 0.5, we can obtain the optimal mean shift and the expected

squared error loss from the results of Table 4.2 for n = 4 by applying a scale change.

If we do not shift the process mean, then the expected squared error loss is calculated

as 0.3675×0.1502 = 8.268×10−3cm2. On the other hand, if the pin is manufactured at

two shifted means, the optimal mean shift is obtained as 0.7324 × 0.150 = 0.10986cm.

Then, the outer diameter of the pin follows the mixture distribution of N((2.500 −

0.10986)cm, 0.0752cm2) and N((2.500 + 0.10986)cm, 0.0752cm2). The partition limits

for the mixture distribution are calculated so that the probability of any group is equal

to that of the corresponding group of the bushing (pi = qi). Table 4.5 gives the results.
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The expected squared error loss is 4.670 × 10−3cm2.

Thus, using the optimal mean shift gives a 43.52% reduction in the expected squared

error loss compared to the no shift case.

Table 4.5. Partition when we use b∗ = 0.10986.
group bushing (cm) pin (cm) expected loss probability

min max min max (10−3cm2)

1 -∞ 2.6028 -∞ 2.3563 7.228 0.1631

2 2.6028 2.7500 2.3563 2.5000 3.431 0.3369

3 2.7500 2.8972 2.5000 2.6437 3.431 0.3369

4 2.8972 ∞ 2.6437 ∞ 7.228 0.1631

average 4.670

Appendices

A Proof of Lemma 4.1

Noting that E[Y 2] = τ 2 + b2 and E[X0] = E[Y0] = 0, the expected squared error loss is

rewritten as

G(b) = E[X2] + E[Y 2] − 4
k∑

i=1

E[Xi]E[Yi]pi

= (1 + τ 2) + b2 − 4
k∑

i=1

E[Xi]E[Yi]pi.

Since

E[Yi]pi =
1

2τ

{∫ yi(b)−b

yi−1(b)−b

(y + b)ϕ
(y

τ

)
dy +

∫ yi(b)+b

yi−1(b)+b

(y − b)ϕ
(y

τ

)
dy

}
, i = 1, 2, . . . , k,

we see that

G(b) = (1 + τ2) + b2 − 2
τ

k∑
i=1

E[Xi]

{∫ yi(b)−b

yi−1(b)−b

(y + b)ϕ
(y

τ

)
dy +

∫ yi(b)+b

yi−1(b)+b

(y − b)ϕ
(y

τ

)
dy

}
.

Differentiating both sides of the equations (4.1) with respect to b, we have(
dyi(b)

db
− 1

)
ϕ

(
yi(b) − b

τ

)
+

(
dyi(b)

db
+ 1

)
ϕ

(
yi(b) + b

τ

)
= 0, i = 0, 1, . . . , k − 1.

(4.2)

Thus, we see that the derivative of G(b) is given as

g(b) = 2b − 2

τ

k∑
i=1

E[Xi]

{∫ yi(b)−b

yi−1(b)−b

ϕ
(y

τ

)
dy −

∫ yi(b)+b

yi−1(b)+b

ϕ
(y

τ

)
dy

}
.
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We easily see that g(0) = 0.

It follows from the equations (4.2) that

dyi(b)

db
=

ϕ(yi(b)−b
τ

) − ϕ(yi(b)+b
τ

)

ϕ(yi(b)−b
τ

) + ϕ(yi(b)+b
τ

)
, i = 0, 1, . . . , k − 1. (4.3)

Putting hk(b) = 0 and using the equations (4.3), the derivative of g(b) is given as

g′(b) = 2 − 2

τ

k∑
i=1

E[Xi]

{(
dyi(b)

db
− 1

)
ϕ

(
yi(b) − b

τ

)
−
(

dyi(b)

db
+ 1

)
ϕ

(
yi(b) + b

τ

)
−
(

dyi−1(b)

db
− 1

)
ϕ

(
yi−1(b) − b

τ

)
+

(
dyi−1(b)

db
+ 1

)
ϕ

(
yi−1(b) + b

τ

)}
= 2 − 2

τ

k∑
i=1

E[Xi]{−hi(b) + hi−1(b)}, (4.4)

which can be rewritten as

g′(b) = 2 − 2

τ

{
E[X1]h0(b) +

k−1∑
i=1

(E[Xi+1] − E[Xi])hi(b)

}
.

Since we can show that hi(b) is decreasing in b > 0, whose proof is given in Appendix B,

we see that g′(b) is increasing in b > 0. Using (4.4), yi(0) = τxi, and ϕ(xi−1)− ϕ(xi) =

E[Xi]pi, we see that

g′(0) = 2 − 4

τ

k∑
i=1

E[Xi]{ϕ(xi−1) − ϕ(xi)}

= 2 − 4

τ

k∑
i=1

(E[Xi])
2pi.

This completes the proof.

B Proof of the statement: hi(b) is decreasing in b > 0.

We first note that the derivative of hi(b) is given as

h′
i(b) =

4
τ

(
dyi(b)

db
− 1
)

ϕ′(yi(b)−b
τ

)
(
ϕ(yi(b)+b

τ
)
)2

+ 4
τ

(
dyi(b)

db
+ 1
)

ϕ′(yi(b)+b
τ

)
(
ϕ(yi(b)−b

τ
)
)2

(
ϕ(yi(b)−b

τ
) + ϕ(yi(b)+b

τ
)
)2 .
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Using the equations (4.3), we see that

h′
i(b) =

8

τ

ϕ(yi(b)−b
τ

)ϕ(yi(b)+b
τ

)(
ϕ(yi(b)−b

τ
) + ϕ(yi(b)+b

τ
)
)3

[{
ϕ

(
yi(b) − b

τ

)}2 ϕ′(yi(b)+b
τ

)

ϕ(yi(b)+b
τ

)

−
{

ϕ

(
yi(b) + b

τ

)}2 ϕ′(yi(b)−b
τ

)

ϕ(yi(b)−b
τ

)

]
.

Therefore, it is sufficient for us to show that{
ϕ

(
yi(b) − b

τ

)}2 ϕ′(yi(b)+b
τ

)

ϕ(yi(b)+b
τ

)
−
{

ϕ

(
yi(b) + b

τ

)}2 ϕ′(yi(b)−b
τ

)

ϕ(yi(b)−b
τ

)
< 0.

It follows from yi(b) ≥ 0 that ϕ(yi(b)+b
τ

) ≤ ϕ(yi(b)−b
τ

). Since ϕ′(x)/ϕ(x) = −x is decreas-

ing in x, we see that{
ϕ

(
yi(b) − b

τ

)}2 ϕ′(yi(b)+b
τ

)

ϕ(yi(b)+b
τ

)
−
{

ϕ

(
yi(b) + b

τ

)}2 ϕ′(yi(b)−b
τ

)

ϕ(yi(b)−b
τ

)

<
ϕ′(yi(b)+b

τ
)

ϕ(yi(b)+b
τ

)

[{
ϕ

(
yi(b) − b

τ

)}2

−
{

ϕ

(
yi(b) + b

τ

)}2
]

≤ 0.

Thus, we have shown that hi(b) is decreasing in b > 0.

C Proof of Proposition 4.2

Let σ = 1/τ . Since we do not need the derivative of yi(b) with respect to b in the proof,

we simply denote yi(b) by yi.

We note that yi is a function of σ since the equations (4.1) are rewritten as

Φ(xi) =
1

2
{Φ(σ(yi − b)) + Φ(σ(yi + b))} , i = 0, 1, . . . , k − 1. (4.5)

The partial derivatives of both sides of the equations (4.5) with respect to σ are given

as

0 =
1

2

{
(yi − b)ϕ(σ(yi − b)) + σ

dyi

dσ
ϕ(σ(yi − b)) + (yi + b)ϕ(σ(yi + b))

+σ
dyi

dσ
ϕ(σ(yi + b))

}
, i = 0, 1, . . . , k − 1.

Therefore, letting ϕ(σ(yi − b)) = Ai and ϕ(σ(yi + b)) = Bi, we have

σ
dyi

dσ
= −(yi − b)Ai

Ai + Bi

− (yi + b)Bi

Ai + Bi

, i = 0, 1, . . . , k − 1. (4.6)
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It follows from the equations (4.6) that

(yi − b)Ai + σ
dyi

dσ
Ai − (yi + b)Bi − σ

dyi

dσ
Bi = −bhi, i = 0, 1, . . . , k − 1, (4.7)

where hi = 4AiBi/(Ai + Bi), i = 0, 1, . . . , k − 1.

Now, we can prove Proposition 4.2. Since g(b∗) = 0 and g′(b∗) > 0 hold when τ < τ0,

it is sufficient for us to show that g(b) is increasing in τ (that is, g(b) is decreasing in

σ). We have

g(b)

= 2b − 2

τ

k∑
i=1

E[Xi]

{∫ yi−b

yi−1−b

ϕ
(y

τ

)
dy −

∫ yi+b

yi−1+b

ϕ
(y

τ

)
dy

}

= 2b − 2
k∑

i=1

E[Xi] {Φ(σ(yi − b)) − Φ(σ(yi−1 − b)) − Φ(σ(yi + b)) + Φ(σ(yi−1 + b))} .

Putting hk = 0 and using the equations (4.7), we see that

dg(b)

dσ
= −2

k∑
i=1

E[Xi]

{
(yi − b)Ai + σ

dyi

dσ
Ai − (yi−1 − b)Ai−1 − σ

dyi−1

dσ
Ai−1

− (yi + b)Bi − σ
dyi

dσ
Bi + (yi−1 + b)Bi−1 + σ

dyi−1

dσ
Bi−1

}
= −2b

k∑
i=1

E[Xi](hi−1 − hi)

= −2b

{
E[X1]h0 +

k−1∑
i=1

(E[Xi+1] − E[Xi])hi

}
< 0.

Thus, we have shown that b∗ is decreasing in τ ∈ (0, τ0).
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Chapter 5

Concluding Remarks

5.1 Conclusions

Selective assembly is a cost-effective approach to improve the quality of a product as-

sembled from two components when the quality characteristic is the clearance between

the mating components (or the sum of the relevant dimensions of the mating compo-

nents). In this thesis, we have studied optimal binning strategies under squared error

loss in selective assembly.

In Chapter 2, we have studied optimal partitioning of the distributions of the ob-

servations when measurement error is present and the two component dimensions are

identically distributed after re-centering. It has been shown that if the component di-

mensions and the measurement errors are normally distributed, then the set of optimal

partition limits is unique and we can obtain it without worrying about whether or not

measurement error is present. It has also been shown that even if the number of groups

increases, we cannot obtain much loss reduction when considerable measurement error

is present compared to the case in which measurement error is not present.

In Chapter 3, we have studied optimal partitioning of the dimensional distributions

when a tolerance constraint is given on the clearance and the two component dimensions

are identically distributed after re-centering. We have shown that the set of constrained

optimal partition limits is unique provided that the dimensional distribution is strongly

unimodal. It has turned out that the resulting constrained optimal partitioning is the

partitioning which constrains the widths of some groups in the tails of the distribution

to the tolerance limit and which matches exactly the unconstrained optimal partition-

ing for the rest of the distribution. Some numerical results have shown that we have

unacceptable products with positive probability in some cases of the unconstrained

optimal partitioning, and we have also shown that for the constrained optimal parti-
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tioning, the tolerance constraint is strictly satisfied and the expected squared error loss

is considerably reduced in comparison with the equal width partitioning.

In Chapter 4, we have discussed the case in which the two component dimensions

are normally distributed with unequal variances. We have dealt with the problem

of determining the optimal mean shift when the component with smaller variance is

manufactured at two shifted means. It has been shown that we can determine the

optimal mean shift uniquely. It has also been shown that the optimal mean shift

increases when the difference between the variances of the two component dimensions

becomes larger. Some numerical results have shown that using the optimal mean shift

considerably reduces the expected squared error loss compared to the situation of no

shift, especially for the case where the two variances are very different.

5.2 Discussion and future work

There still remain some important issues to be addressed.

Although we have dealt with the squared error loss function, an alternative loss

function is more appropriate in some cases. For example, in a piston and cylinder

assembly, we should assume an asymmetric loss function since two different assemblies,

with clearances above the target value and below the target value, result in different

problems, as is described in Section 1.1.

We have fixed acceptable limits of the dimensional distributions (xL, xU , yL, and yU).

Taking into account the quality loss of a sold product, the selling price of the assembled

product, the manufacturing cost of the components, and the income from rejected

components, the problem of choosing optimal acceptable limits should be considered.

Recently, Matsuura and Shinozaki (to appear) have addressed this problem, assuming

that the two component dimensions are identically distributed after re-centering.

We have assumed that the number of groups is predetermined. However, since the

expected squared error loss decreases when the number of groups increases, a cost

optimal choice of the number of groups will be possible by balancing out the cost of
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partitioning with one more group against the reduction in expected loss that results

from adding a group.

We have assumed that the probability distributions of the component dimensions

(and the measurement errors) are known. However, we may estimate them using data

of measurements of component dimensions in practice.

In Chapter 3, we have discussed the case in which a tolerance constraint is given,

assuming that measurement error is not present. If it is present, then we will have some

unacceptable products even when all group widths are less than the tolerance limit. We

should choose the set of partition limits so that the probability of non-acceptance is

not more than a certain specified value.

In Chapter 4, we have discussed the problem of determining the optimal mean shift

under squared error loss when the component with smaller variance is manufactured at

two shifted means. However, the determination of the optimal mean shift has not been

addressed under a tolerance constraint on the clearance. We also note that Mansoor

(1961), Kannan et al. (1997), and Kannan and Jayabalan (2002) proposed a method of

manufacturing the component with smaller variance at three (or more) shifted means.

Although normal distributions have been assumed in Chapter 4, extending the results

to handle other distributions is an important issue.

Finally, we note that the optimal binning strategy for selective assembly of an as-

sembled product with multiple quality characteristics may also be an important topic.

These topics are subjects for future research.
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