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Chapter 1

Preliminaries

1.1. Introduction

Investors, individuals and institutions, hold various assets, such as cash (deposits), stocks,

bonds, commodities, and real estate. They must determine the best allocation of these assets.

Investing risky assets sometimes yields profits, but may also incur losses. In general, assets

with higher expected returns involve higher risks, that is, investing is a trade-off between risk

and return. Portfolio Theory in finance tells us how to determine the optimal combination

(portfolio) of assets (cf., for example, Ingersoll 1987 and Elton, Gruber, Brown, and Goetzmann

2007). The determination of optimal portfolio requires taking account of many factors, such

as investment purpose, investment horizon, amount of funds, and investors’ risk tolerance. A

numerous number of studies have discussed widely the optimal portfolio selection problem from

various perspectives. Mean-variance optimization, which was introduced by Markowitz (1952),

is one of the standard frameworks employed to determine optimal portfolio weights. In the

present thesis, we investigate the estimation problem of single period mean-variance optimal

portfolio weights for the case in which there are no constraints or linear equality constraints on

portfolio weights.
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The mean-variance optimization requires estimators for the mean vector and the covariance

matrix of excess returns on the risky assets over the risk-free rate. A classical approach adopts

the usual sample estimates for the mean vector and the covariance matrix. However, the

optimal portfolio weights obtained by the classical approach are instable and unreliable. For

example, Best and Grauer (1991) have shown that the estimation error of the mean vector

yields portfolios that are very different from the true optimal portfolio. Chopra and Ziemba

(1993) have suggested that the effect of the estimation error of the mean vector on the estimated

optimal portfolio is greater than that of the covariance matrix.

Klein and Bawa (1976, 1977), Brown (1979), Chen and Brown (1983), Alexander and Resnick

(1985), and Michaud (1989) have also pointed out this problem. Brandt (2009) has surveyed not

only these problems but also more general portfolio choice problems. In finance, these problems

are referred to as estimation risk problems (cf., Brown 1978 and Bawa, Brown, and Klein 1979).

In an attempt to reduce the estimation error for the optimal portfolio weights, application of

Stein-type shrinkage estimators of the mean vector has been proposed. James and Stein (1961)

first exhibited an estimator with uniformly smaller risk than that of the minimum variance

unbiased estimator when the number of variables is larger than 2. This estimator is referred

to as the James-Stein estimator in the literature. Since the breakthrough by James and Stein

(1961), the shrinkage estimators have been studied extensively in the field of mathematical

statistics. The minimum variance unbiased estimator is usually used to estimate the mean

vector. However if the restriction of unbiasedness is removed, the James-Stein estimator can

improve upon the minimum variance unbiased estimator for any set of true parameter values,

and its improvement is large near the origin. Although the James-Stein estimator has bias, its

gives an uniform improvement in terms of sum of mean squared errors.

Jobson, Korkie, and Ratti (1979) and Jobson and Korkie (1980, 1981) first applied the

James-Stein estimators in the mean-variance optimal portfolio selection problem. Jorion (1985,
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1986, 1991) proposed the adoption of an estimator that shrinks the sample mean toward the

grand mean based on the evidence of mean reversion in financial markets. Frost and Savarino

(1986) applied empirical Bayes type estimators. Michaud (1998) surveyed a number of estima-

tion methods for the optimal portfolio weights, including shrinkage techniques and re-sampling

methods. Grauer and Hakansson (1995, 2001) investigated the effectiveness of the Stein-type

estimators in the optimal portfolio selection. Recently, Kan and Zhou (2007) discussed the

problem of investing in two funds, namely a risk free asset and the tangency portfolio, and

proposed the combination of a sample tangency portfolio and a sample global minimum vari-

ance portfolio. Okhrin and Schmid (2007) compared several types of Stein-type estimators for

portfolio weights and showed that, for moderate sample sizes, Stein-type estimators improve

upon the classical estimator, which we obtain by plugging in the sample estimates.

In the estimation problem of the mean vector, the expectation of the quadratic loss is usually

used to evaluate the goodness of an estimator. In the field of mathematical statistics, a numerous

number of previous studies have presented dominance results of various shrinkage estimators

under the quadratic loss. However, the loss function used in the estimation problem of the

optimal portfolio weights is different from the quadratic loss function. One of the desirable loss

functions in this problem is defined as the difference between the utility of the true optimal

portfolio and that of an estimated portfolio (cf., for example, Brown 1976, 1978, Bawa, Brown,

and Klein 1979, Jorion 1986, Kashima 2001, 2005, and Mori 2004).

Most of the related studies have demonstrated the effectiveness of applying Stein-type shrink-

age estimators for the optimal portfolio weights by numerical simulations or empirical studies.

Since numerical simulations are usually performed only for some selected sets of parameter

values, these results do not guarantee the improvement of the Stein-type estimators upon the

classical estimator for any set of parameter values. Since actual data sets contain various dis-

tinctive characteristics, a successful result in one empirical study does not necessarily guarantee
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that in another empirical study. The problem of determining whether or not the Stein-type es-

timators dominate the classical estimator analytically is the fundamental one to be addressed.

There are a few studies that have addressed the problem of showing analytically the dom-

inance of the Stein-type estimators for the mean-variance optimal portfolio weights. Kashima

(2001, 2005) and Mori (2004) have shown some interesting analytical results under the loss func-

tion used in the estimation problem of the mean-variance optimal portfolio weights. Kashima

(2001, 2005) has shown that the estimation problem of the mean-variance optimal portfolio

weights reduces to the estimation problem of the mean vector under quadratic loss when the

covariance matrix is known. Therefore, when the covariance matrix is known, we can apply

the abundant existing results on Stein-type estimators provided in the mathematical statistics

literature (cf., for example, Lehmann and Casella 1998) to the mean-variance optimal portfo-

lio choice problem. However, the estimation problem of the mean-variance optimal portfolio

weights does not reduce to the estimation problem of the mean vector under quadratic loss

when the covariance matrix is unknown.

Mori (2004) presented a dominance result of a Stein-type estimator in the estimation problem

of the mean-variance optimal portfolio weights when the covariance matrix is unknown and is

estimated. Although another interesting class of Stein-type estimators has been proposed by

Baranchik (1970) and a similar class was adopted by Kashima (2001, 2005), the dominance for

the corresponding class has not been addressed when the covariance matrix is unknown. The

estimator given by Mori (2004) shrinks the sample mean toward the origin. However, in some

cases the other shrinkage targets are more appropriate, including a fixed point and a linear

subspace. One important property of the Stein-type estimators is that their improvements are

larger when the mean vector is close to the shrinkage target. This property implies that the

Stein-type estimators are effective, especially when we choose a shrinkage target pertinently,

taking account of a prior information concerning the mean vector. For example, Jorion (1985,

4



1986, 1991) selected the grand mean as a shrinkage target based on the evidence of mean

reversion in financial markets. Therefore, it is desirable for us to present the dominance results

for a broader class of Stein-type estimators in the mean-variance optimal portfolio selection

problem, which shrink not only toward the origin but also toward the other shrinkage targets.

1.2. Summary of the present thesis

In the present thesis, we describe the analytically obtained dominance results for a class of

Stein-type estimators for the mean-variance optimal portfolio weights and clarify the conditions

for some previously proposed estimators in finance to have smaller risks than the classical

estimator, which we obtain by plugging in the sample estimates.

Section 1.3 presents a brief review of the Stein-type shrinkage estimators for the mean

vector. In Section 1.4, we present the definition of the loss function to evaluate goodness of

an estimator for the mean-variance optimal portfolio weights and fundamental results for the

classical estimator.

Chapter 2 presents dominance results for the Stein-type estimators that shrink toward the

origin or a fixed point, which are based on Kinkawa and Shinozaki (2010). The class of estimators

considered in this chapter extends the estimator given by Mori (2004) in the following two ways.

First, we introduce a general class of estimators given by Baranchik (1970). Second, we consider

estimators that shrink not only toward the origin but also toward an arbitrary fixed point. The

obtained results enable us to clarify the conditions for Kan and Zhou’s (2007) two-fund rule

estimator and Garlappi, Uppal, and Wang’s (2007) estimator to have smaller risks than the

classical estimator. Furthermore, we propose an estimator using a prior information concerning

the Sharpe ratio, which also has smaller risk than the classical estimator. In this chapter, we

also present risk behaviors of the previous estimators by Monte Carlo simulation and the results
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of empirical studies.

Chapter 3 presents dominance results for the Stein-type estimators that shrink toward the

grand mean or a linear subspace, which are based on Kinkawa and Shinozaki (2009). Jo-

rion’s (1985, 1986, 1991) Bayes-Stein estimator, which is very popular in finance, and Kan and

Zhou’s (2007) three-fund rule estimator belong to this class of estimators. Thus, we clarify the

conditions for these estimators to have smaller risks than the classical estimator. Black and

Litterman’s (1992) estimator, which is also very popular in finance, also belongs to this class.

In Chapters 2 and 3, we also present dominance results for the case with linear constraints

on portfolio weights, which is similar to that considered by Mori (2004). Concluding remarks

are presented in Chapter 4.

1.3. Review of the Stein-type estimator for the mean vector

In the framework of statistical estimation theory, an estimator is considered to be desirable if

it has smaller expected loss than the other estimators. The quadratic loss function is usually

used in the estimation problem of the mean vector. Let x be a p × 1 random vector, which is

distributed as the multivariate normal distribution Np(µ, I). The quadratic loss function for an

estimator δ(x) of µ is defined as

L(µ; δ(x)) = (δ(x)− µ)′(δ(x)− µ).

The goodness of δ(x) is evaluated in terms of the expected loss:

R(µ; δ(x)) = E [L(µ; δ(x))] ,

which is generally a function of µ and is referred to as the risk function of δ(x). Although

a natural estimator of µ is x itself, James and Stein (1961) demonstrated that the following
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James-Stein estimator has smaller risk than x under the quadratic loss when p is larger than 2:

δJS(x) =
(

1− p− 2
x′x

)
x,

that is, R(µ; δJS(x)) < R(µ; x) for all µ. Note that an estimator δ1(x) is said to dominate an

estimator δ2(x) if for all µ, R(µ; δ1(x)) ≤ R(µ; δ2(x)) with strict inequality for some µ.

Although the James-Stein estimator is biased, it dominates the unbiased estimator x in

terms of expected loss. One important property of the James-Stein estimator is that it has

much smaller risk than x when the true parameter value is close to the origin, which is the

shrinkage target. The risk of the James-Stein estimator is less than that of x, even when the

true parameter value is far from the shrinkage target.

The mathematical statistics literature contains a considerable number of studies on Stein-

type estimators. The James-Stein estimator shrinks the unbiased estimator toward the origin,

but sometimes results in over-shrinkage and has the opposite sign of the unbiased estimator. The

positive-part James-Stein estimator overcomes this disadvantage by prohibiting the sign change

and dominates the crude James-Stein estimator, as shown in Baranchik (1964). Strawderman

(1971) and Berger (1976) have derived estimators that improve upon the James-Stein estimator

and are admissible. Estimators that shrink toward the grand mean, or more generally toward

a linear subspace, have also been reported (cf., for example, Lindley 1962 and Casella and

Hwang 1987). Furthermore, a considerable number of papers have been dedicated to Stein-type

estimation for various types of covariance matrices, loss functions, and distributions other than

the normal distribution (cf., for example, Saleh 2006).

In the present thesis, we investigate the estimation problem of the optimal portfolio weights.

The number of variables p corresponds to the number of risky assets included in an investor’s

portfolio. When we estimate the mean vector of risky asset’s returns using the James-Stein

estimator, the mean of each risky asset is estimated using not only the historical return data of
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its asset but also the data for the other assets. Although the James-Stein estimator may not

provide an improvement when each mean is estimated, this estimator provides an improvement

when we estimate all of the means simultaneously. This property leads to the idea of applying

the shrinkage estimators of the mean vector to determine simultaneously portfolio weights for

risky assets. Indeed, in Chapters 2 and 3, we demonstrate that the Stein-type estimators for

the mean-variance optimal portfolio weights dominate the classical estimator when p > 2.

1.4. Estimation problem of the mean-variance optimal portfolio

weights

In Section 1.3, we have made a review of the Stein-type estimator for the mean-vector. However,

the loss function used to evaluate the goodness of estimators for the mean-variance optimal

portfolio weights is different from the quadratic one. In this section, we give the definition of

the loss function in the estimation problem of the mean-variance optimal portfolio and discuss

some basic properties of the classical estimator.

1.4.1. Definitions and assumptions

We assume that an investor chooses portfolio weights w so as to maximize the mean-variance

objective function

u(w) = w′µ− τ

2
w′Σw, (1.1)

where µ and Σ are respectively the p× 1 mean vector and the p× p covariance matrix of excess

returns on the p risky assets over the risk free rate, and τ is the degree of risk aversion. Since

µ and Σ are unknown, we need to estimate them.

Let w(µ,Σ) be a true (but unknown) optimal portfolio weights based on µ and Σ. Letting

µ̂ and Σ̂ denote the estimators of µ and Σ respectively, let ŵ(µ̂, Σ̂) be an estimator for the
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mean-variance optimal portfolio weights based on the estimators µ̂ and Σ̂. We define the loss

function of the estimator ŵ(µ̂, Σ̂) as

L
(
µ, Σ; ŵ

(
µ̂, Σ̂

))
= u (w (µ,Σ))− u

(
ŵ

(
µ̂, Σ̂

))
, (1.2)

and define the risk function as R(µ, Σ; ŵ(µ̂, Σ̂)) = E[L(µ, Σ; ŵ(µ̂, Σ̂))]. Kashima (2001, 2005)

and Mori (2004) have defined the same loss. Brown (1976, 1978), Jorion (1986), Kan and Zhou

(2007), Okhrin and Schmid (2007), and Golosnoy and Okhrin (2007) have also adopted the

same or similar loss. In this context an estimator ŵ1(µ̂1, Σ̂1) is said to dominate an estimator

ŵ2(µ̂2, Σ̂2) if for all (µ,Σ), R(µ, Σ; ŵ1(µ̂1, Σ̂1)) ≤ R(µ, Σ; ŵ2(µ̂2, Σ̂2)) with strict inequality

for some (µ, Σ) (cf., Definition 3 of Kashima 2001).

When we have no constraints on portfolio weights, the solution for the maximization problem

of Equation (1.1) is given as

w(µ, Σ) =
1
τ
Σ−1µ. (1.3)

Thus, the loss (1.2) of the estimator ŵ(µ̂, Σ̂) = τ−1Σ̂−1µ̂ is written as

L(µ, Σ; ŵ(µ̂, Σ̂)) = (2τ)−1(Σ̂−1µ̂− Σ−1µ)′Σ(Σ̂−1µ̂− Σ−1µ). (1.4)

Furthermore, when Σ is known, the loss is written as (2τ)−1(µ̂−µ)′Σ−1(µ̂−µ). Therefore, as

shown in Kashima (2001, 2005), the estimation problem of the mean-variance optimal portfolio

weights reduces to the estimation problem of the mean vector under quadratic loss. However,

when the covariance matrix is unknown, the estimation problem of the mean-variance optimal

portfolio weights is not reduced in this way.

We also consider the case in which linear constraints A′w = b are imposed, where A is a

p×q matrix of rank A = q and b is a q×1 vector. In this case, the solution for the maximization

problem of Equation (1.1) is

wA(µ, Σ) =
1
τ
F1(A,Σ)µ + F2(A,Σ)b, (1.5)
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where, as in Mori (2004), we define

F1(A, Σ) = Σ−1 − Σ−1A(A′Σ−1A)−1A′Σ−1 and F2(A, Σ) = Σ−1A(A′Σ−1A)−1.

The loss function of ŵA(µ̂, Σ̂) based on the estimators µ̂ and Σ̂ is defined as

L(µ, Σ; ŵA(µ̂, Σ̂)) =u(wA(µ, Σ))− u(ŵA(µ̂, Σ̂))

=u(wA(µ, Σ))

− b′F2(A, Σ̂)µ + (τ/2)b′[F2(A, Σ̂)]′ΣF2(A, Σ̂)b− (1/τ)µ̂′F1(A, Σ̂)µ

+ 1/(2τ)µ̂′F1(A, Σ̂)ΣF1(A, Σ̂)µ̂ + µ̂′F1(A, Σ̂)ΣF2(A, Σ̂)b.

We notice that this loss function differs from not only the quadratic loss function but also

the loss function of Equation (1.4) which is derived when we have no constraints on portfolio

weights. Therefore, the improved estimators when we have no constraints do not necessarily

improve upon the classical estimator if we have some constraints on portfolio weights.

Hereafter, we assume that we have N observations on excess returns on p risky assets: xi,

i = 1, . . . , N , and that they are independently and identically distributed as the multivariate

normal distribution Np(µ,Σ). It is well recognized that actual asset returns deviate from

normality and are heterogeneous, especially for high frequency data. However, the dominance

for a wide class of Stein-type estimators is not investigated even under the normality and

independence assumption, so we believe that our results will provide useful insights for the

general case.

The sample estimates of µ and Σ are given as follows.

x̄ =
1
N

N∑

i=1

xi ∼ Np(µ, Σ/N), S =
1
N

N∑

i=1

(xi − x̄)(xi − x̄)′ ∼ Wp(N − 1, Σ/N),

where Wp(N − 1,Σ/N) denotes the Wishart distribution with N − 1 degrees of freedom and

covariance matrix Σ/N .
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1.4.2. A class of classical estimators

When we have no constraints on portfolio weights, substituting x̄ and S for µ and Σ in Equation

(1.3), we have an estimator of the mean-variance optimal portfolio weights τ−1S−1x̄. Slightly

more generally, we consider its scalar multiple and define the classical estimator as

ŵC(c; x̄, S) =
c

τ
S−1x̄. (1.6)

Letting θ2 denote µ′Σ−1µ and assuming N > p+4, as is the case for Equation (41) of Kan and

Zhou (2007), an expression for the risk of ŵC(c; x̄, S) can be expressed as

2τR (µ, Σ; ŵC(c; x̄, S))

=
(

1− 2cN

N − p− 2

)
θ2 +

c2N2(N − 2)
(N − p− 1)(N − p− 2)(N − p− 4)

(
θ2 +

p

N

)
. (1.7)

Note that the risk depends on µ and Σ only through θ2, that is, the risk has the same value

for any µ and Σ as long as θ2 has the same value. The unbiased estimator of w is given by

ŵub = τ−1(N − p − 2)N−1S−1x̄, because E
[
N−1S−1

]
= (N − p − 2)−1Σ−1 when N > p + 2

from Muirhead (1982, p.97). From the risk expression in Equation (1.7), we can easily see that

the unbiased estimator dominates ŵC(1; x̄, S) = τ−1S−1x̄. However, the unbiased estimator

is not admissible even if we restrict to the class of estimators ŵC(c; x̄, S). The value of c that

yields minimum risk is

c∗ =
(N − p− 1)(N − p− 4)

N(N − 2)
θ2

θ2 + p/N
. (1.8)

Since µ and Σ are unknown parameters, the classical estimator given by Equation (1.6) with

c = c∗ is not available in practice. A reasonable choice of c that does not depend on θ2 is given

by an upper bound of c∗. c∗ is bounded from above by

c∗∗ =
(N − p− 1)(N − p− 4)

N(N − 2)
, (1.9)

and ŵC(c∗∗; x̄, S) = c∗∗τ−1S−1x̄ dominates ŵub.

11



When we have linear constraints on portfolio weights A′w = b, similarly to Mori (2004), we

define the classical estimator as

ŵC,A(c; x̄, S) =
c

τ
F1(A,S)x̄ + F2(A,S)b.

Letting ϕ2 denote µ′F1(Σ, A)µ and assuming that N > max(p + 1, p− q + 4), from the proof of

Theorem 2.1 in Mori (2004), we can easily obtain the risk expression of ŵC,A(c; x̄, S) as

2τR (µ,Σ; ŵC,A(c; x̄, S))

=
(

1− 2cN

N − p + q − 2

)
ϕ2 +

c2N2(N − 2)
(N − p + q − 1)(N − p + q − 2)(N − p + q − 4)

(
ϕ2 +

p− q

N

)

+ terms which do not contain c. (1.10)

This is minimized when c is equal to

c† =
(N − p + q − 1)(N − p + q − 4)

N(N − 2)
ϕ2

ϕ2 + (p− q)/N
.

Although c† depends on the unknown parameters µ and Σ, it is bounded from above by

c†† =
(N − p + q − 1)(N − p + q − 4)

N(N − 2)
.

ŵC,A(c††; x̄, S) = c††τ−1F1(S,A)x̄ + F2(S, A)b dominates the unbiased estimator that corre-

sponds to the choice c = (N − p + q − 2)N−1.
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Chapter 2

Shrinkage toward the Origin or a

Fixed Point

2.1. Introduction

Jobson, Korkie, and Ratti (1979) have suggested the effectiveness of the James-Stein estimator

that shrinks toward the origin in the problem of the mean-variance optimal portfolio selection.

Recently, Kan and Zhou (2007) proposed an estimator for the mean-variance optimal port-

folio weights, which also shrinks toward the origin. However, they have not investigated the

effectiveness of these estimators analytically. Mori (2004) has shown analytically a dominance

result of a Stein-type estimator for the mean-variance optimal portfolio weights, which shrinks

toward the origin, when the covariance matrix is estimated by the sample estimator. However,

the dominance for another interesting class of Stein-type estimators proposed by Baranchik

(1970) has not been addressed. Furthermore, Mori (2004) has not considered estimators that

shrink toward an arbitrary fixed point. In this chapter, we extend the estimator described by

Mori (2004) and present dominance results for a broader class of estimators. Furthermore, we

propose an estimator using a prior information concerning the Sharpe ratio, which also has a
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smaller risk than the classical estimator.

For the case in which Σ is known, Baranchik (1970) has first introduced the following class

of estimators of µ

µ̂Stein =
(

1− r((x̄− µ0)′Σ−1(x̄− µ0))
(x̄− µ0)′Σ−1(x̄− µ0)

)
(x̄− µ0) + µ0, (2.1)

where r(·) is a nondecreasing function and µ0 is an arbitrary constant vector. Kashima (2001)

has also proposed an estimator of the same form under the assumption that returns on risky

assets are generated by a linear regression model and has introduced the function r(·) provided

by Berger (1976). Here we first consider the Stein-type estimators of the form (1− r(x̄′S−1x̄)

/(x̄′S−1x̄))x̄ as an estimator of µ, which we obtain by replacing Σ in Equation (2.1) by the

sample estimate S and setting µ0 = 0. Lin and Tsai (1973) have shown the dominance results

for this class under the quadratic loss function when the covariance matrix is unknown. One of

main differences between the class of estimators given in this chapter and the one given by Mori

(2004) is that we introduce a non-decreasing function r(·) instead of a constant. By introducing

the function r(·), we can evaluate analytically some estimators provided in previous studies.

Another is that we consider the estimators that shrink not only toward the origin but also

toward an arbitrary fixed point, which will be discussed later.

The remainder of this chapter is organized as follows. Section 2.2 gives the dominance results

of a class of Stein-type estimator for the mean-variance optimal portfolio weights when we have

no constraints on portfolio weights. In this section, we also show that some estimators provided

in previous studies belong to our class. Section 2.3 gives the dominance results when we have

linear constraints on portfolio weights. Section 2.4 gives the proofs of the theorems stated in

Sections 2.2 and 2.3. Section 2.5 illustrates the risk behaviors of the classical estimator and

various Stein-type estimators that belong to the class given in the theorems in Section 2.2.
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2.2. Case in which there are no constraints on portfolio weights

Denoting a+ = max(0, a), we have the following dominance result under the loss (1.2).

Theorem 2.1. Let p > 2 and N > p + 4. If cc ≥ cs ≥ (N − p− 1)(N − p− 2)N−1(N − 2)−1,

r(·) is nondecreasing and 0 ≤ r(·) ≤ 2(p− 2)(N − p− 2)−1, then ŵC(cc; x̄, S) = ccτ
−1S−1x̄ is

dominated by the following Stein-type estimator

ŵS(cs; x̄, S) =
cs

τ
S−1

(
1− r(x̄′S−1x̄)

x̄′S−1x̄

)
x̄. (2.2)

Furthermore, the estimator ŵS(cs; x̄, S) is dominated by its positive-part Stein-type estimator

ŵ+
S (cs; x̄, S) = (cs/τ)S−1(1− r(x̄′S−1x̄)/(x̄′S−1x̄))+x̄ if they are not identical.

The proof is given in Section 2.4.2.

Now, we present some remarks on Theorem 2.1. Similar remarks apply to the other theorems

in the present thesis.

1. The conditions p > 2 and N > p + 2.

The condition p > 2 implies that the Stein-type estimator ŵS(cs; x̄, S) improves upon the

classical estimator ŵC(cc; x̄, S) in terms of the expected loss, when the number of risky assets

included in portfolio is greater than 2. The condition N > p + 4 is required to guarantee the

existence of the expectation of S−1. However, since the number of observations is usually large

enough, this condition is not restrictive.

2. The condition cc ≥ cs ≥ (N − p− 1)(N − p− 2)N−1(N − 2)−1.

When cc satisfies the condition cc ≥ (N − p − 1)(N − p − 2)N−1(N − 2)−1, we can choose cs

satisfying cc ≥ cs ≥ (N − p − 1)(N − p − 2)N−1(N − 2)−1. However, note that the condition

cc ≥ (N − p− 1)(N − p− 2)N−1(N − 2)−1 is not satisfied for cc = c∗∗ given in Equation (1.9).

Actually, ŵS(cs; x̄, S) does not improve upon ŵC(cs; x̄, S) when cs < (N − p − 1)(N − p −
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2)N−1(N − 2)−1, as we will show in Section 2.4.2. In this case, ŵC(cs; x̄, S) also does not

improve upon ŵS(cs; x̄, S). That is, it depends on the value of θ2, the estimator of which has

a smaller risk than the other when cs < (N − p− 1)(N − p− 2)N−1(N − 2)−1.

3. Shrinkage factor as a function of x̄′S−1x̄.

x̄′S−1x̄ measures the difference between the zero vector, that is the shrinkage target, and the

sample mean. When the sample mean is far from the shrinkage target, the value of the shrinkage

factor (1− r(x̄′S−1x̄)/(x̄′S−1x̄))+ is close to 1, and thus the Stein-type estimator is also close

to the classical estimator. This partially explains one important property of the Stein-type

estimators that even if we set the shrinkage target incorrectly, the Stein-type estimators do not

have larger risks than the classical estimator.

4. The condition 0 ≤ r(·) ≤ 2(p− 2)(N − p− 2)−1.

Since the upper bound 2(p− 2)(N − p− 2)−1 is small when N À p, the value of the shrinkage

factor tends to be close to 1 and the Stein-type estimator is close to the classical estimator. This

is quite natural because the estimation error of the classical estimator is small when there are

large number of observations. Application of the Stein-type estimators is more effective when

a sufficiently large number of observations cannot be obtained.

We also notice that, as given in Theorem 2.1 of Lin and Tsai (1973), the estimator (1 −

r(x̄′S−1x̄)/(x̄′S−1x̄))x̄ of µ improves upon the sample estimator x̄ when 0 < r(·) < 2(p −

2)(N − p + 2)−1 under quadratic loss, which is different from the condition in Theorem 2.1.

5. The role of the function r(·).

By introducing the non-decreasing function r(·), we have succeeded in presenting general domi-

nance results for a class of shrinkage estimators for the mean-variance optimal portfolio weights.

As will be seen in the following examples, from the general results, we are able to clarify the

conditions for the previously proposed estimators to dominate the classical estimator. Further,
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general dominance results may enable us to develop new shrinkage estimators pertinently. We

first note that the risks of ŵC(cc; x̄, S) and ŵS(cs; x̄, S) depend on µ and Σ only through

θ2 = µ′Σ−1µ from the expression of the risk given by Equation (2.11) in Section 2.4.2. Since

x̄′S−1x̄ is an estimator of the squared Sharpe ratio µ′Σ−1µ, we may choose the function r(·)

using a prior information concerning the Sharpe ratio. We will present one example in this

direction in the following Example 2.4.

We, here, present some examples of the choice of the function r(·). Although some choices

have been given by Lin and Tsai (1973), which lead to generalized Bayes minimax estimators

under quadratic loss, we present others here. Although we give the results for the case with no

constraints on the portfolio weights, we have similar results for the case with linear constraints,

which will be given in Section 2.3.

Example 2.1. A simple choice of r(·) is given by r1(v) = d1v/(v + d2), v ≥ 0, where d1

and d2 are nonnegative constants. We see from Theorem 2.1 that the corresponding Stein-type

estimator improves upon ŵC(cc; x̄, S) if 0 < d1 ≤ 2(p− 2)(N − p− 2)−1 and d2 ≥ 0.

Example 2.2. Kan and Zhou’s two-fund rule estimator. One of the estimators provided by

Kan and Zhou (2007) is

ŵKZ2 =
1
τ

(N − p− 1)(N − p− 4)
N(N − 2)

S−1

(
1− p/N

θ̃2(θ̂2) + p/N

)
x̄, (2.3)

where

θ̃2(θ̂2) =
(N − p− 2)θ̂2 − p

N
+

2(θ̂2)p/2(1 + θ̂2)−(N−2)/2

NBθ̂2/(1+θ̂2)(p/2, (N − p)/2)
, θ̂2 = x̄′S−1x̄,

and Bx(a, b) =
∫ x
0 ya−1(1− y)b−1dy.

We see that θ̂2 ∼ p(N − p)−1Fp,N−p(Nθ2), where Fp,N−p(Nθ2) denotes the noncentral F

distribution with p and N − p degrees of freedom and noncentrality parameter Nθ2. Thus the

unbiased estimator of Nθ2 is (N − p − 2)θ̂2 − p. Kubokawa, Robert, and Saleh (1993) have,
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however, provided an estimator Nθ̃2(θ̂2) that improves upon the unbiased estimator under

squared error loss. The improvement is significant when θ2 is small. Kan and Zhou (2007)

obtained the two-fund rule estimator by substituting θ̃2(θ̂2) for θ2 in Equation (1.8).

If we set r(·) equal to rKZ2(θ̂2) = d1θ̂
2/(θ̃2(θ̂2) + d2/N), then ŵS given in Theorem 2.1

is of the same form as the two-fund rule estimator given in Equation (2.3). Therefore, the

two-fund rule estimator can be considered as a Stein-type estimator shrinking x̄ toward the

origin. Now, we show that rKZ2(·) is nonnegative and nondecreasing if d1 and d2 satisfy 0 <

d1 < 2(p − 2)N(N − p − 2)−1 and d2 ≥ p. Let v = x̄′S−1x̄. We first show that rKZ2(·) is

nondecreasing. Since

d
dv

(
d1v

θ̃2(v) + d2/N

)
= d1

θ̃2(v) + d2/N − v(dθ̃2(v)/dv)
(θ̃2(v) + d2/N)2

,

we only need to prove that v(dθ̃2(v)/dv) < θ̃2(v) + d2/N if d2 ≥ p.

Let f(v) = 2vp/2(1+v)−(m+p−2)/2/Bv/(1+v)(p/2,m/2). Since f(v) = 2vp/2(1+v)−(m+p−2)/2

×[
∫ v
0 tp/2−1(1 + t)−(m+p)/2dt]−1 as shown in the Appendix of Kan and Zhou (2007), we have

dθ̃2(v)/dv = (N − p− 2)N−1 − (1/2)v−1(1 + v)−1f(v)θ̃2(v) ≤ (N − p− 2)N−1 by direct differ-

entiation. Since Nθ̃2(v) = (N − p− 2)v − p + f(v) and f(v) > 0, we see that if d2 ≥ p,

v(dθ̃2(v)/dv) ≤ v(N − p− 2)N−1 = θ̃2(v) + (p− f(v))N−1 ≤ θ̃2(v) + d2N
−1.

Next, we prove that rKZ2(v) is nonnegative. As shown in the Appendix of Kan and Zhou

(2007), p−f(v) = (N−p−2)
∫ v
0 tp/2(1+t)−N/2dt/(

∫ v
0 tp/2−1(1+t)−N/2dt). From Equation (2.3)

of Kubokawa et al. (1993), we see that 0 ≤ p− f(v) ≤ p(N − p− 2)(p + 2)−1v ≤ (N − p− 2)v,

and thus Nθ̃2(v) = (N − p− 2)v − p + f(v) ≥ 0.

For the case of the two-fund rule estimator, d1 = p/N and d2 = p, and the corresponding

rKZ2(·) satisfies the condition given in Theorem 2.1, but the choice cs = (N − p− 1)(N − p−

4)N−1(N − 2)−1 does not. Therefore, from the argument given in Section 2.4.2, we see that
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ŵKZ2 with cs = (N − p − 1)(N − p − 4)N−1(N − 2)−1 does not uniformly improve upon the

classical estimator.

Example 2.3. Garlappi, Uppal, and Wang’s estimator. Garlappi, Uppal, and Wang (2007)

have proposed an estimator that shrinks toward the origin and has different shrinkage factors

for each subset of assets (Proposition 3). Setting the number of subsets equal to 1, the estimator

reduces to the following:

ŵGUW =
1
τ
S−1

[
1−min

( √
ε√
θ̂2

, 1

)]
x̄,

where ε = ep(N−p)−1 and e is a constant such that P [(N−p)p−1(x̄−µ)′S−1(x̄−µ) ≤ e] = 1−α,

that is, e = F−1
p,N−p(1− α), where F−1

p,N−p(·) is the inverse function of the central F distribution

function with p and N − p degrees of freedom. We note that θ̂2 ∼ (N − p)N−1Fp,N−p under

the null hypothesis that θ2 = 0. This estimator is based on the idea that an investor will not

invest in risky assets when the Sharpe ratio (cf., Sharpe 1966, 1994) of the estimated optimal

portfolio is not significantly different from 0, but he/she will do, according to his/her aversion

to uncertainty, which is reflected in α, when the Sharpe ratio is significantly different from 0.

Although their estimator is not designed to dominate the classical estimator, it belongs to our

class if we set r(·) equals to rGUW (θ̂2) = min(
√

εθ̂2, θ̂2). rGUW (·) is an increasing function, but

it will be larger than the upper bound 2(p− 2)(N − p− 2)−1 given in Theorem 2.1. Thus, we

may modify rGUW (·) as

r∗GUW (θ̂2) = min
(√

εθ̂2, θ̂2,
2(p− 2)

N − p− 2

)
.

Note that r∗GUW (·) reduces to

r∗GUW (θ̂2) = min
(

θ̂2,
2(p− 2)

N − p− 2

)
, (2.4)

when ε ≥ 2(p− 2)(N − p− 2)−1, as is the case if p = 10, N = 60, and α = 0.05.
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Example 2.4. Using prior information concerning the Sharpe ratio. As discussed in Section

1.4.2, the value of c that results in minimum risk for the classical type estimator is given by

Equation (1.8), which is a function of the squared Sharpe ratio θ2 = µ′Σ−1µ (cf., Sharpe 1966,

1994) of the tangency portfolio Σ−1µ(1′Σ−1µ)−1. Since θ2 is unknown, we consider constructing

an estimator by choosing a suitable function r(·) which reflects prior information about θ2 when

it is available. Wang (2005) and Garlappi et al. (2007) have also proposed utilizing information

concerning the Sharpe ratio to estimate the optimal portfolio. However, our estimator will also

have uniformly smaller risk than the classical estimator.

By replacing c in Equation (1.6) with c∗ given by Equation (1.8), we obtain

ŵC =
c∗∗

τ

θ2

θ2 + p/N
S−1x =

c∗∗

τ

(
1− (p/N)θ̂2

θ2 + p/N

1

θ̂2

)
S−1x.

Thus, we may choose r(θ̂2) = (p/N)θ̂2(θ2
0 + p/N)−1, where θ2

0 is determined reflecting the prior

information of the squared Sharpe ratio. To take account of the condition for the dominance

given in Theorem 2.1, we modify it as

rsr(θ̂2) = min

(
(p/N)θ̂2

θ2
0 + p/N

,
2(p− 2)

N − p− 2

)
. (2.5)

We impose the upper bound 2(p − 2)(N − p − 2)−1 on rsr(·) so as not to allow the estimator

to have a larger risk than the classical estimator for some θ2, at least when we set cs = cc =

(N − p − 1)(N − p − 2)N−1(N − 2)−1. When the upper bound is not imposed, the estimator

ŵSharpe could have a larger risk than the classical estimator for some large value of θ2. When

θ2
0 ≤ (p/2)(N − p − 2)(p − 2)−1N−1θ̂2 − pN−1, that is, when the estimator θ̂2 = x̄′S−1x̄ of

θ2 has a much larger value than the prior θ2
0, then rsr = 2(p − 2)(N − p − 2)−1, and thus the

estimator ŵSharpe does not reflect the prior value θ2
0.

We expect that this estimator will significantly improve upon the classical estimator if the

prior information θ2 = θ2
0 is approximately correct. We also note that, when we set θ2

0 = 0,

Equation (2.5) reduces to Equation (2.4). Finally we note that the estimator using the prior
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information concerning the Sharpe ratio belongs to the class of estimators given in Theorems

2.1 and 2.3.

In the context of estimating the mean vector, Stein-type estimator shrinking toward an

arbitrary constant vector improves upon the sample mean vector. Furthermore, since some

investors have certain prior information about excess returns on the assets, it is reasonable

to consider estimators of the mean-variance optimal portfolio weights which reflect that prior

information. However, we have some technical difficulties in showing the general dominance

of the Stein-type estimators that shrink toward an arbitrary constant vector under the loss of

Equation (1.2). Nevertheless we can show the following.

Theorem 2.2. Let p > 2 and N > p+4. If cc ≥ cs = (N−p−1)(N−p−2)N−1(N−2)−1 and

d is a constant which satisfies 0 < d < 2(p− 2)(N − p− 2)−1, then ŵC(cc; x̄, S) = ccτ
−1S−1x̄

is dominated by the following Stein-type estimator

cs

τ
S−1

[(
1− d

(x̄− µ0)′S−1(x̄− µ0)

)
(x̄− µ0) + µ0

]
, (2.6)

where µ0 is a p× 1 arbitrary constant vector.

The proof is given in Section 2.4.3.

We notice that the condition cc ≥ cs = (N − p− 1)(N − p− 2)N−1(N − 2)−1 on cc and cs

differs from the one given in Theorem 2.1. When cc ≥ (N − p − 1)(N − p − 2)N−1(N − 2)−1,

the Stein-type estimator with cs = (N − p − 1)(N − p − 2)N−1(N − 2)−1 improves upon the

classical estimator.
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2.3. Case in which there are linear constraints on portfolio

weights

Now we turn to the case in which we have linear constraints on portfolio weights as discussed

in Mori (2004). By replacing µ and Σ in Equation (1.5) by c(1 − d/(x̄′F1(S,A)x̄))x̄ and S

respectively, where d is a positive constant, he has provided the following Stein-type estimator

for the mean-variance optimal portfolio weights:

ŵMori =
c

τ
F1(A,S)

(
1− d

x̄′F1(A,S)x̄

)
x̄ + F2(A,S)b. (2.7)

By replacing the constant d in Equation (2.7) with a non-decreasing function r(·), we give a

broader class of Stein-type estimators of wA(µ,Σ) in the following.

Theorem 2.3. Let p > q+2 and N > max(p+1, p−q+4). If cc ≥ cs ≥ (N−p+q−1)(N−p+

q− 2)N−1(N − 2)−1, rA(·) is nondecreasing and 0 ≤ rA(·) ≤ 2(p− q− 2)(N − p+ q− 2)−1, then

ŵC,A(cc; x̄, S) = ccτ
−1F1(A,S)x̄+F2(A,S)b is dominated by the following Stein-type estimator

ŵS,A(cs; x̄, S) =
cs

τ
F1(A,S)

(
1− rA(x̄′F1(A,S)x̄)

x̄′F1(A,S)x̄

)
x̄ + F2(A,S)b.

Furthermore, the estimator ŵS,A(cs; x̄, S) is dominated by its positive-part Stein-type estimator

ŵ+
S,A(cs; x̄, S) = csτ

−1F1(A,S)(1− rA(x̄′F1(A,S)x̄)/(x̄′F1(A,S)x̄))+x̄ + F2(A,S)b if they are

not identical.

The proof is given in Section 2.4.4.

When the function rA(·) is a constant and cs = cc, Theorem 2.3 reduces to Theorem 2.3

of Mori (2004) except for the upper bound of rA(·). The upper bound given by Mori (2004)

depends on c and is smaller than ours. Furthermore, he has not given the result when cs 6= cc.

We notice that p− q in Theorem 2.3 plays the same role with p in Theorem 2.1. This means

that when there are linear equality constraints on the portfolio weights, the effective range of
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the number of risky assets p and the function r(·) is narrower than that for the case with no

constraints. We need q more risky assets to expect that the Stein-type estimator behaves in the

same way with the case with no constraints.

Next, similarly to Theorem 2.2, we give the following.

Theorem 2.4. Let p > q+2 and N > max(p+1, p−q+4). If cc ≥ cs = (N−p+q−1)(N−p+q−

2)N−1(N−2)−1 and dA is a constant which satisfies 0 ≤ dA ≤ 2(p−q−2)(N−p+q−2)−1, then

ŵC,A(cc; x̄, S) = ccτ
−1F1(A,S)x̄+F2(A,S)b is dominated by the following Stein-type estimator

cs

τ
F1(A,S)

[(
1− dA

(x̄− µ0)′F1(A,S)(x̄− µ0)

)
(x̄− µ0) + µ0

]
+ F2(A,S)b,

where µ0 is a p× 1 arbitrary constant vector.

The proof is omitted, because we can show it by a similar argument to the proofs of Theorems

2.2 and 2.3.

In practice, a possible choice of µ0 is given by µ0 = α1 where α is a constant. However,

when there is a constraint that 1′w is equal to a constant value, the estimator given in Theorem

2.4 reduces to the estimator given in Theorem 2.3 because F (1, S)1 = 0. Thus, in this case,

the estimator given in Theorem 2.4 is meaningful only for the case in which we have a prior

information that returns of risky assets do not have a common value.

2.4. Proofs of Theorems 2.1, 2.2, and 2.3

2.4.1. Lemmas

First, we give some lemmas used to prove Theorems 2.1, 2.2, and 2.3 in the following subsection.

Throughout this section we suppose that y ∼ Np(η, I/N) and W ∼ Wp(N − 1, I/N) and that

y and W are independent.
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Lemma 2.1. Put ω11 = y′W−1y(y′y)−1, then ω11 is independent of y and Nω−1
11 ∼ χ2

N−p. If

the expectation of each term of the following equations exists, then

(i) E

[
r(y′W−1y)

y′W−2y

y′W−1y

]
=

N − 2
N − p− 1

E
[
r(y′yω11)ω11

]
,

(ii) E

[
r(y′W−1y)

a′W−1y

y′W−1y

]
= E

[
r(y′yω11)

a′y
y′y

]
,

(iii) E

[
r(y′W−1y)2

y′W−2y

(y′W−1y)2

]
=

N − 2
N − p− 1

E

[
r(y′yω11)2

y′y

]
,

(iv) E

[
r(y′W−1y)

a′W−2y

y′W−1y

]
=

N − 2
N − p− 1

E

[
r(y′yω11)

a′yω11

y′y

]
,

where a is a non-random p× 1 vector.

Proof. Let Q be an orthogonal matrix satisfying Qy = (y′y)1/2e1, where e1 = (1, 0, . . . , 0)′.

Denote U = QWQ′ and let it be partitioned as

U =




u11 u21
′

u21 U22


 ,

where u11 is a scalar, u21 is a (p − 1) × 1 vector and U22 is a (p − 1) × (p − 1) matrix. Since

Q′e1 = (y′y)−1/2y, we see that e1
′U−1e1 = y′W−1y(y′y)−1 and ω11 = e1

′U−1e1 = (u11 −

u21
′U−1

22 u21)−1. Nω−1
11 has χ2

N−p distribution from Theorem 3.2.10 of Muirhead (1982) because

U ∼ Wp(N − 1, I/N). From this and Theorem 3.2.12 of Muirhead (1982), we see that ω11 and

y are independent.

From Theorem 3.2.10 of Muirhead (1982), we also easily see that U
−1/2
22 u21 ∼ Np−1(0, I/N)

and U22 ∼ Wp−1(N − 1, I/N) and that U
−1/2
22 u21 and U22 are independent. Thus, we have

E[u21
′U−2

22 u21] = (p − 1)(N − p − 1)−1 for N > p + 1. From this and the fact that ω−1
11 and

U−1
22 u21 are independent from Theorem 3.2.12 of Muirhead (1982), we have

E

[
r(y′W−1y)

y′W−2y

y′W−1y

]
= E

[
r(y′yω11)

y′yω2
11(1 + u′21U

−2
22 u21)

y′yω11

]

=
N − 2

N − p− 1
E

[
r(y′yω11)ω11

]
.
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Since E[U−1
22 u21] = 0, we have

E

[
r(y′W−1y)

a′W−1y

y′W−1y

]
= E


r(y′yω11)

(y′y)1/2a′Q′

y′yω11




1

−U−1
22 u21


ω11




= E

[
r(y′yω11)

a′y
y′y

]
.

Similarly, we have

E

[
r(y′W−1y)2

y′W−2y

(y′W−1y)2

]
= E

[
r(y′yω11)2

y′yω2
11(1 + u′21U

−2
22 u21)

(y′yω11)2

]

=
N − 2

N − p− 1
E

[
r(y′yω11)2

y′y

]
,

and

E

[
r(y′W−1y)

a′W−2y

y′W−1y

]

= E




r(y′yω11)
y′yω11

(y′y)1/2a′Q′








1

−U−1
22 u21


 (1 + u′21U

−2
22 u21)ω2

11 +




0

−U−1
22 u21


ω11








=
N − 2

N − p− 1
E

[
r(y′yω11)
y′yω11

(y′y)1/2a′Q′e1ω
2
11

]
=

N − 2
N − p− 1

E

[
r(y′yω11)

a′yω11

y′y

]
.

Lemma 2.2. Let r(·) be differentiable, and denote its derivative by r′(·). If the expectation of

each term of the following equations exists, then

(i) (N − p− 2)E
[
r(y′yω11)ω11

]
= NE

[
r(y′yω11)

]
+ 2E

[
r′(y′yω11)y′yω2

11

]
,

(ii) E

[
r(y′yω11)

η′y
y′y

]
= E

[
r(y′yω11)

]− 2
N

E
[
r′(y′yω11)ω11

]− p− 2
N

E

[
r(y′yω11)

y′y

]
,

where ω11 = y′W−1y(y′y)−1.

Proof. Put ω0 = Nω−1
11 and h(ω0) = Nr(y′yNω−1

0 )ω−1
0 . Using integration by parts, we have

the identity E[h(ω0)ω0] = (N − p)E[h(ω0)] + 2E[h′(ω0)ω0] (cf., for example, Equation (2.15)
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of Efron and Morris 1976). Since h′(ω0) = −N2y′yr′(y′yNω−1
0 )ω−3

0 − Nr(y′yNω−1
0 )ω−2

0 , we

have (i).

Put z = (z1, . . . , zp)′ =
√

Ny, γ = (γ1, . . . , γp)′ =
√

Nη, and g(zk) = r(N−1
∑p

j=1 zj
2ω11)

zk(
∑p

j=1 zj
2)−1. Since z ∼ N(γ, I), from Stein’s lemma (cf., for example, Lemma 3.5.1 in

Anderson 2003), we have E[g(zk)(zk − γk)] = E[∂g(zk)/∂zk] and

∂g(zk)
∂zk

=2N−1ω11r
′


N−1

p∑

j=1

zj
2ω11


 zk

2

∑p
j=1 zj

2

+ r


N−1

p∑

j=1

zj
2ω11




(
1∑p

j=1 zj
2
− 2zk

2

(
∑p

j=1 zj
2)2

)
.

Since

E

[
r(y′yω11)

(y − η)′y
y′y

]
=

p∑

j=1

E [g(zj)(zj − γj)] =
p∑

j=1

E

[
∂g(zj)
∂zj

]
,

we have (ii).

Before providing Lemma 2.3, we let Ã = Σ−1/2A and define P as the orthogonal matrix

such that

PÃÃ′P ′ = Λ, Λ =




Λ1 O

O O


 , P =




P1

P2


 ,

where Λ is a diagonal matrix with eigenvalues of ÃÃ′ on its diagonal, Λ1 is a q × q diagonal

matrix with positive diagonal elements, P1 is a q × p matrix and P2 is a (p− q)× p matrix.

Denoting W = Σ−1/2SΣ−1/2, we define a matrix V and partition it as

V = PWP ′ =




P1WP ′
1 P1WP ′

2

P2WP ′
1 P2WP ′

2


 =




V11 V ′
21

V21 V22


 .

Then the inverse of V is partitioned and is expressed as

V −1 =




V (11) V (21)′

V (21) V (22)


 =




V −1
11·2 −V −1

11·2V
′
21V

−1
22

−V −1
22 V21V

−1
11·2 V −1

22 + V −1
22 V21V

−1
11·2V

′
21V

−1
22


 ,

26



where V11·2 = V11 − V ′
21V

−1
22 V21.

Lemma 2.3. Let L = P1Ã, then

(i) F1(Ã,W ) = P ′
2V

−1
22 P2,

(ii) F1(Ã,W )2 = P ′
2V

−2
22 P2,

(iii) F2(Ã,W ) = P ′
1(L

′)−1 − P ′
2V

−1
22 V21(L′)−1,

(iv) F1(Ã,W )F2(Ã,W ) = −P ′
2V

−2
22 V21(L′)−1.

Proof. (i) and (iii) are given by Lemma 3.1 in Mori (2004). (ii) and (iv) are easily obtained

from (i) and (iii).

2.4.2. Proof of Theorem 2.1

First, assuming that cc = cs = c, we provide an expression of the risk difference between the

classical type estimator ŵC(c; x̄, S) and the Stein-type estimator ŵS(c; x̄, S). Next, we derive

the conditions for the Stein-type estimator ŵS(cs; x̄, S) to improve upon the classical estima-

tor ŵC(cc; x̄, S). Finally, we prove that for any c > 0 the positive-part Stein-type estimator

ŵ+
S (c; x̄, S) improves upon the Stein-type estimator ŵS(c; x̄, S) if they are not identical.

For simplicity, we assume that the function r(·) is differentiable in the proofs. Even if r(·)

is not differentiable, the proofs go through by applying Riemann integration and replacing the

terms r′(x)dx by dr(x).

Risk difference

Putting y = Σ−1/2x̄, η = Σ−1/2µ and W = Σ−1/2SΣ−1/2, we see that y ∼ Np(η, I/N) and

W ∼ Wp(N − 1, I/N), and y and W are independent. The loss difference between ŵC(c; x̄, S)
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and ŵS(c; x̄, S) under the loss function given by Equation (1.2) is given as

2τ∆L

= 2c2r(x̄′S−1x̄)
x̄′S−1ΣS−1x̄

x̄′S−1x̄
− 2cr(x̄′S−1x̄)

µ′S−1x̄

x̄′S−1x̄
− c2r(x̄′S−1x̄)2

x̄′S−1ΣS−1x̄

(x̄′S−1x̄)2
(2.8)

= 2c2r(y′W−1y)
y′W−2y

y′W−1y
− 2cr(y′W−1y)

η′W−1y

y′W−1y
− c2r(y′W−1y)2

y′W−2y

(y′W−1y)2
.

Putting ω11 = (y′W−1y)(y′y)−1, we have from Lemmas 2.1 (i) and 2.2 (i) in Section 2.4.1

E

[
r(y′W−1y)

y′W−2y

y′W−1y

]

=
N − 2

N − p− 1
E

[
r(y′yω11)ω11

]
(2.9)

=
N(N − 2)

(N − p− 1)(N − p− 2)
E

[
r(y′yω11)

]
+

2(N − 2)
(N − p− 1)(N − p− 2)

E
[
r′(y′yω11)y′yω2

11

]
.

From Lemmas 2.1 (ii) and 2.2 (ii), we have

E

[
r(y′W−1y)

η′W−1y

y′W−1y

]

= E

[
r(y′yω11)

η′y
y′y

]
(2.10)

= E
[
r(y′yω11)

]− 2
N

E
[
r′(y′yω11)ω11

]− p− 2
N

E

[
r(y′yω11)

y′y

]
.

Finally, applying Lemma 2.1 (iii), we have the risk difference as

2τ∆R =2c
(

c
N(N − 2)

(N − p− 1)(N − p− 2)
− 1

)
E

[
r(y′yω11)

]
(2.11)

+ 2c
p− 2
N

E

[
r(y′yω11)

y′y

]
− c2 N − 2

N − p− 1
E

[
r(y′yω11)2

y′y

]
+ C,

where

C = 4c2 N − 2
(N − p− 1)(N − p− 2)

E
[
r′(y′yω11)y′yω2

11

]
+

4c

N
E

[
r′(y′yω11)ω11

] ≥ 0.

Conditions for improving upon ŵC(c; x̄, S)

Assuming that c ≥ (N − p− 1)(N − p− 2)N−1(N − 2)−1 and 0 ≤ r(·) ≤ 2(p− 2)(N − p− 2)−1,

we first show that ŵS(c; x̄, S) improves upon ŵC(c; x̄, S).
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We note that since both r(y′yω11) and −1/(y′y) are nondecreasing functions of y′y, from

Lemma 6.6 of Lehmann and Casella (1998), we have E
[
r(y′yω11)(−(y′y)−1)

] ≥ E [r(y′yω11)]

×E
[−(y′y)−1

]
. Thus we have

E

[(
2
p− 2
N

− c
N − 2

N − p− 1
r(y′yω11)

)
r(y′yω11)

y′y

]

≥ E

[(
2
p− 2
N

− c
N − 2

N − p− 1
2(p− 2)

N − p− 2

)
r(y′yω11)

y′y

]

≥ 2
p− 2
N

(
c

N(N − 2)
(N − p− 1)(N − p− 2)

− 1
)

E
[
r(y′yω11)

]
E

[
− 1

y′y

]
.

Therefore, we have

2τ∆R ≥ 2c

(
c

N(N − 2)
(N − p− 1)(N − p− 2)

− 1
)(

1− p− 2
N

E

[
1

y′y

])
E

[
r(y′yω11)

]
.

Since Ny′y has the noncentral χ2 distribution with p degrees of freedom and noncentrality

parameter Nµ′Σ−1µ, we have E
[
(y′y)−1

]
= E

[
N(p− 2 + 2Z)−1

]
, where Z is a random vari-

able having the Poisson distribution with mean (N/2)µΣ−1µ. Thus, we see that 2τ∆R ≥ 0.

Here, we note that if N > p + 4, the risk of ŵC(c; x̄, S), which is given by Equation (1.7), is

finite, and that this condition is also necessary for the finiteness of the risk of ŵS(c; x̄, S).

Finally, from Equation (1.7), the risk of ŵC(c1; x̄, S) is larger than that of ŵC(c2; x̄, S)

when c1 > c2 ≥ (N − p − 1)(N − p − 4)N−1(N − 2)−1. Therefore, we see that if cc ≥ cs ≥

(N − p− 1)(N − p− 2)N−1(N − 2)−1, ŵS(cs; x̄, S) improves upon ŵC(cc; x̄, S).

Case in which c < (N − p− 1)(N − p− 2)N−1(N − 2)−1

Here we show that ŵS(c; x̄, S) does not dominate ŵC(c; x̄, S) when c < (N − p − 1)(N − p −

2)N−1(N − 2)−1. Using Equation (2.9), Equation (2.10), and Lemma 2.1 (iii), we express the

risk difference between ŵC(c; x̄, S) and ŵS(c; x̄, S) as

2τ∆R

=
2c2(N − 2)
N − p− 1

E
[
r(y′yω11)ω11

]− 2cE

[
r(y′yω11)η′y

y′y

]
− c2(N − 2)

N − p− 1
E

[
r(y′yω11)2

y′y

]
. (2.12)
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Let limu→∞ r(u) = b > 0. We see that when η′η → ∞, E
[
r(y′yω11)η′y(y′y)−1

] → b and

E [r(y′yω11)ω11] → bE [ω11] = bN(N − p − 2)−1. Therefore, when η′η → ∞, the sum of the

first and second terms of Equation (2.12) approaches

2c2b
N(N − 2)

(N − p− 1)(N − p− 2)
− 2cb = 2cb

(
c

N(N − 2)
(N − p− 1)(N − p− 2)

− 1
)

.

Therefore, we see that the risk difference given by Equation (2.12) is negative when η′η is

sufficiently large if c < (N − p − 1)(N − p − 2)N−1(N − 2)−1, and that ŵS(c; x̄, S) does not

improve upon ŵC(c; x̄, S).

Positive-part Stein-type estimator ŵ+
S (c; x̄, S)

Defining g(x̄′S−1x̄) = 1−r(x̄′S−1x̄)/(x̄′S−1x̄), we express the risk difference between ŵS(c; x̄, S)

and ŵ+
S (c; x̄, S) as

2τ∆R =c2E
[{

g(x̄′S−1x̄)
}2

x̄′S−1ΣS−1x̄− {
g(x̄′S−1x̄)+

}2
x̄′S−1ΣS−1x̄

]

+ 2cE
[{

g(x̄′S−1x̄)+ − g(x̄′S−1x̄)
}

µ′S−1x̄
]
.

The first term of the right-hand side is clearly nonnegative and is equal to zero if and only if

g ≡ g+. Therefore, we need only to show that the second term is nonnegative. In a similar way

to the proof of Lemma 2.1 (ii), the second term can be expressed as

E
[{

g(x̄′S−1x̄)+ − g(x̄′S−1x̄)
}

µ′S−1x̄
]

= E
[
E

[{
g(y′yω11)+ − g(y′yω11)

}
η′yω11|ω11

]]
,

which we can show is nonnegative by applying the proof of Lemma 3.5.2 of Anderson (2003).

2.4.3. Proof of Theorem 2.2

First, assuming cc = cs = c, we evaluate the risk difference between ŵC(c; x̄, S) and the

estimator ŵStein(c; x̄, S) ≡ cτ−1S−1[(1− r((x̄∗)′S−1x̄∗) ((x̄∗)′S−1x̄∗)−1) x̄∗ +µ0], where x̄∗ =

x̄− µ0 and r(·) is a nondecreasing function. Putting µ∗ = µ− µ0, we have the loss difference
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between ŵC(c; x̄, S) and ŵStein(c; x̄, S) under the loss function given by Equation (1.2) as

2τL =
2c2r((x̄∗)′S−1x̄∗)

(x̄∗)′S−1x̄∗
µ′0S

−1ΣS−1x̄∗ − 2cr((x̄∗)′S−1x̄∗)
(x̄∗)′S−1x̄∗

µ′0S
−1x̄∗ (2.13)

+
2c2r((x̄∗)′S−1x̄∗)

(x̄∗)′S−1x̄∗
(x̄∗)′S−1ΣS−1x̄∗ − 2cr((x̄∗)′S−1x̄∗)

(x̄∗)′S−1x̄∗
µ∗′S−1x̄∗

− c2r((x̄∗)′S−1x̄∗)2

((x̄∗)′S−1x̄∗)2
(x̄∗)′S−1ΣS−1x̄∗.

Since x̄∗ ∼ N(µ∗,Σ/N) and the last three terms of the right-hand side are of the same form

as Equation (2.8), the expectation of their sum is nonnegative when the conditions given in

Theorem 2.1 are satisfied.

We show that for the first and second terms of Equation (2.13), the expectation of their sum

is zero when r(·) is a constant and c = (N−p−1)(N−p−2)N−1(N−2)−1. Putting y = Σ−1/2x̄∗,

η = Σ−1/2µ∗, W = Σ−1/2SΣ−1/2, and η0 = Σ−1/2µ0, wee see that y ∼ N(η, I/N) and

W ∼ Wp(N − 1, I/N). From Lemma 2.1 (ii) and (iv), the expectation is written as

2cE

[
r(y′W−1y)
y′W−1y

(
cη′0W

−2y − η′0W
−1y

)]

= 2c2 N − 2
N − p− 1

E

[
r(y′yω11)

η′0yω11

y′y

]
− 2cE

[
r(y′yω11)

y′y
η′0y

]

= 2cE

[
r(y′yω11)

η′0y
y′y

(
cω11

N − 2
N − p− 1

− 1
)]

. (2.14)

Now we put r(·) = const. Since y and ω11 are independent and E[ω11] = N(N − p− 2)−1, we

can easily see that Equation (2.14) is zero for c = (N − p− 1)(N − p− 2)N−1(N − 2)−1.

Finally, from Equation (1.7), the risk of ŵC(c1; x̄, S) is larger than that of ŵC(c2; x̄, S)

when c1 > c2 ≥ (N − p − 1)(N − p − 4)N−1(N − 2)−1. Therefore, we see that if cc ≥ cs =

(N−p−1)(N−p−2)N−1(N−2)−1, the estimator ŵStein(cs; x̄, S) improves upon ŵC(cc; x̄, S).

2.4.4. Proof of Theorem 2.3

Putting Ã = Σ−1/2A and noting that F1(A, S) = Σ−1/2F1(Ã,W )Σ−1/2 and F2(A,S) = Σ−1/2

F2(Ã,W ), from Lemma 3.2 (iii) and (iv) of Mori (2004) , we have the loss difference between
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ŵC,A(c; x̄, S) and ŵS,A(c; x̄, S) under the loss function (1.2) as

2τ∆L

= −2crA(x̄′F1(A,S)x̄)
x̄′F1(A,S)µ
x̄′F1(A,S)x̄

− c2rA(x̄′F1(A,S)x̄)2
x̄′F1(A, S)ΣF1(A,S)x̄

(x̄′F1(A,S)x̄)2

+ 2c2rA(x̄′F1(A,S)x̄)
x̄′F1(A,S)ΣF1(A,S)x̄

x̄′F1(A,S)x̄
+ 2τcrA(x̄′F1(A,S)x̄)

x̄′F1(A, S)ΣF2(A,S)b
x̄′F1(A,S)x̄

= −2crA(y′F1(Ã,W )y)
y′F1(Ã,W )η
y′F1(Ã, W )y

− c2rA(y′F1(Ã,W )y)2
y′F1(Ã, W )2y

(y′F1(Ã, W )y)2

+ 2c2rA(y′F1(Ã,W )y)
y′F1(Ã, W )2y
y′F1(Ã,W )y

+ 2τcrA(y′F1(Ã,W )y)
y′F1(Ã, W )F2(Ã,W )b

y′F1(Ã,W )y
.

We put ỹ = P2y, η̃ = P2η, V21 = P2WP ′
1, and V22 = P2WP ′

2. Using Lemma 2.3 (i) ∼ (iv), we

have

2τ∆L =− 2crA(ỹ′V −1
22 ỹ)

ỹ′V −1
22 η̃

ỹ′V −1
22 ỹ

− c2rA(ỹ′V −1
22 ỹ)2

ỹ′V −2
22 ỹ

(ỹ′V −1
22 ỹ)2

+ 2c2rA(ỹ′V −1
22 ỹ)

ỹ′V −2
22 ỹ

ỹ′V −1
22 ỹ

− 2τcrA(ỹ′V −1
22 ỹ)

ỹ′V −2
22 V21(L′)−1b

ỹ′V −1
22 ỹ

.

Let vec(X) denote the operation that stacks the columns of a matrix X into a vector. Since

vec(V −1/2
22 V21) follows N(p−q)×q(0, I/N) and is independent of V22 and ỹ, the expectation of

the fourth term is zero. Therefore, we have the similar expression of the risk difference to the

expectation of Equation (2.8) except for the number of variables, and we have Theorem 2.3 by

a similar argument to the proof of Theorem 2.1. We note that if N > max(p + 1, p − q + 4)

the risk of ŵC,A(c; x̄, S), whose expression is given in Equation (1.10), is finite and that this

condition is also necessary for the finiteness of the risk of ŵS,A(c; x̄, S).

2.5. Comparison of estimators

2.5.1. Risk comparison by Monte Carlo simulation

In this section, we investigate the risk behaviors of six estimators by Monte Carlo simulation

for the case with no constraints. The six estimators are (i) the “optimal” estimator ŵopt(c∗) =
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c∗τ−1S−1x̄, with c∗ given by Equation (1.8), (ii) a classical estimator ŵC(c) = cτ−1S−1x̄,

which is a benchmark for the other estimators, (iii) a Stein-type estimator with r(·) = (p −

2)(N − p− 2)−1: ŵSD(c) = cτ−1S−1[(1− (p− 2)(N − p− 2)−1/ϕ̂2)+(x̄−µ0)+µ0], where ϕ̂2 =

(x̄− µ0)′S−1(x̄ − µ0), (iv) Kan and Zhou’s two-fund rule estimator: ŵKZ2(c) = cτ−1S−1[1−

pN−1θ̂2/(θ̃2(θ̂2) + pN−1)]x̄, (v) estimators that use prior information concerning the Sharpe

ratio: ŵSharpe(c) = cτ−1S−1[1−rsr(θ̂2)/θ̂2]+x̄, and (vi) Garlappi, Uppal, and Wang’s estimator:

ŵGUW (c) = cτ−1S−1[1 − rGUW (θ̂2)/θ̂2]+x̄, where we set α = 0.01 and 0.05. Although the

“optimal” estimator is not available in practice, we present its risk values in order to compare

them with the risks of the other estimators.

We generated N random vectors from the p-variate normal distribution N((θ2/p)1/21, I)

for some selected values of θ2. For the estimators, the averaged losses over 100,000 repetitions

were used to approximate their risks. As can be seen from Equation (1.7) and the expression

of Equation (2.11) in Section 2.4.2, risks of the classical estimators and the estimators of the

form of Equation (2.2) in Theorem 2.1 depend on µ and Σ only through θ2 = µ′Σ−1µ. That

is, the risk values are the same for any µ and Σ if the value of θ2’s is constant. The risks of

the estimators that have the form of Equation (2.6) in Theorem 2.2 depend on µ and Σ only

through θ2 and ϕ2 = (µ− µ0)′Σ−1(µ− µ0) when cs = (N − p− 1)(N − p− 2)N−1(N − 1)−1.

Although the risks of the estimators given in Theorem 2.2 depend on µ and Σ when cs 6=

(N − p − 1)(N − p − 2)N−1(N − 1)−1, we set µ0 = (a2/p)1/21 in ŵSD(c) where a is a scalar.

In this section we set the degree of risk aversion to τ = 3, following Kan and Zhou (2007). As

seen in Section 1.4, τ is just a scaling factor in the risk function, and the risk for other values

of τ can be obtained by simply scaling the risk for τ = 3.

Firstly, we report on the results for the case p = 10 and N = 60. The risk values of

ŵopt(c∗) are given at the top of Table 2.1. Panel A of Table 2.1 presents the risk values of

the six estimators for various values of θ2 = µ′µ for the choice c = c∗∗ = (N − p − 1)(N −
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Table 2.1: Risk values of estimators for the case p = 10 and N = 60

Risk × 10,000 Improvements(%)
θ2 0 0.05 0.1 0.5 1 5 10 0 0.05 0.1 0.5 1 5 10

ŵopt(c∗) 0 68 116 326 509 1801 3389

A: c = c∗∗ = (N − p− 1)(N − p− 4)N−1(N − 2)−1

ŵC(c∗∗) 224 240 256 383 541 1809 3393

ŵSD(c∗∗)
a2 = 0 34 100 150 356 533 1819 3405 85 58 41 7 1 -1 0
a2 = 0.05 82 50 77 329 524 1819 3406 64 79 70 14 3 -1 0
a2 = 0.1 113 58 66 307 518 1819 3406 49 76 74 20 4 -1 0
a2 = 0.5 187 169 162 193 438 1820 3408 17 30 37 50 19 -1 0
a2 = 1 204 205 211 253 351 1819 3409 9 15 18 34 35 -1 0
a2 = 5 220 233 248 367 516 1619 3413 2 3 3 4 5 11 -1
a2 = 10 222 236 252 375 530 1754 3203 1 1 2 2 2 3 6

ŵKZ2(c∗∗) 29 88 138 360 538 1822 3409 87 63 46 6 1 -1 0

ŵSharpe(c
∗∗)

θ2
0 = 0 4 83 152 404 567 1837 3422 98 65 41 -5 -5 -2 -1

θ2
0 = 0.05 14 72 128 399 567 1837 3422 94 70 50 -4 -5 -2 -1

θ2
0 = 0.1 32 76 120 390 567 1837 3422 86 68 53 -2 -5 -2 -1

θ2
0 = 0.5 126 146 166 330 541 1837 3422 44 39 35 14 0 -2 -1

θ2
0 = 1 165 182 199 337 511 1837 3422 27 24 22 12 6 -2 -1

θ2
0 = 5 210 226 242 369 528 1802 3417 6 6 6 4 2 0 -1

θ2
0 = 10 217 233 249 376 534 1803 3390 3 3 3 2 1 0 0

ŵGUW (c∗∗)
α = 0.01 0 83 163 620 888 2332 3984 100 66 36 -62 -64 -29 -17
α = 0.05 0 82 158 534 778 2198 3841 100 66 38 -40 -44 -22 -13

B: c = c̃∗∗ = (N − p− 1)(N − p− 2)N−1(N − 2)−1

ŵC(c̃∗∗) 244 260 276 404 564 1842 3439 -9 -8 -8 -6 -4 -2 -1

ŵSD(c̃∗∗)
a2 = 0 37 104 155 363 541 1837 3436 83 57 40 5 0 -2 -1
a2 = 0.05 89 53 79 330 528 1836 3436 60 78 69 14 2 -1 -1
a2 = 0.1 123 64 69 307 520 1835 3436 45 73 73 20 4 -1 -1
a2 = 0.5 203 187 180 197 432 1831 3435 9 22 30 48 20 -1 -1
a2 = 1 222 225 233 276 357 1826 3434 1 6 9 28 34 -1 -1
a2 = 5 239 254 270 394 549 1635 3412 -7 -6 -5 -3 -1 10 -1
a2 = 10 242 257 273 400 559 1816 3232 -8 -7 -7 -5 -3 0 5

ŵKZ2(c̃∗∗) 31 91 141 363 542 1837 3437 86 62 45 5 0 -2 -1

ŵSharpe(c̃
∗∗)

θ2
0 = 0 4 84 152 402 563 1841 3439 98 65 40 -5 -4 -2 -1

θ2
0 = 0.05 15 72 128 397 563 1841 3439 93 70 50 -4 -4 -2 -1

θ2
0 = 0.1 35 78 121 388 563 1841 3439 84 68 53 -1 -4 -2 -1

θ2
0 = 0.5 137 156 175 331 537 1841 3439 39 35 32 14 1 -2 -1

θ2
0 = 1 179 196 212 345 514 1841 3439 20 18 17 10 5 -2 -1

θ2
0 = 5 229 244 260 387 546 1815 3434 -2 -2 -2 -1 -1 0 -1

θ2
0 = 10 236 252 268 395 554 1826 3416 -5 -5 -5 -3 -2 -1 -1

ŵGUW (c̃∗∗)
α = 0.01 0 83 163 613 867 2236 3831 100 66 36 -60 -60 -24 -13
α = 0.05 1 82 157 526 757 2113 3709 100 66 39 -37 -40 -17 -9
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p − 4)N−1(N − 2)−1, which gives the smallest risk in the class of classical estimators as seen

in Equation (1.9) in Section 1.4.2. As we have already seen in Theorems 2.1 and 2.2, the

estimators given in Equations (2.2) and (2.6) with cs = (N − p− 1)(N − p− 2)N−1(N − 2)−1

have smaller risks than ŵC(c) with c = (N − p − 1)(N − p − 2)N−1(N − 2)−1 for any θ2.

However, when we set c = (N − p − 1)(N − p − 4)N−1(N − 2)−1, the corresponding classical

estimator and the Stein-type estimator do not improve upon each other as seen in Section 2.2.

Thus, we mainly investigate the risk behavior of the estimators when we choose c = c∗∗. The

improvement percentages are also given, which are defined as 1− ( the proportion of the risk

of an estimator to the risk of ŵC(c∗∗) ). The boldfaced figures in Panel A of Table 2.1 will be

used for comparison with those for the other settings of p and N later. The first row in Panel

A of Table 2.1 gives the risk values of ŵC(c∗∗). We see that the risk of ŵC(c∗∗) is an increasing

function of θ2, which is consistent with Equation (1.7).

The next seven rows give the risk values of ŵSD(c∗∗). In general, we may say that the smaller

θ2 and a2 are, the smaller the risk of ŵSD(c∗∗) is. However, we can confirm the effectiveness of

the estimators that shrink toward a fixed point µ0, since their improvements are larger when a2

is closer to θ2. The following row returns the risk values of ŵKZ2(c∗∗). Kan and Zhou (2007)

expected that the two-fund rule estimator would be better than ŵSD(c∗∗) when θ2 is small,

which is consistent with our simulation results. Finally, we note that ŵSD(c∗∗) and ŵKZ2(c∗∗)

have a slightly larger risk than ŵC(c∗∗), when θ2 = 5 and 10.

In the next seven rows, we present the risk values of ŵSharpe(c∗∗) for several values of

θ2
0. ŵSharpe(c∗∗) has sometimes slightly larger risk values than ŵC(c∗∗), except for the setting

θ2
0 = 10. The smallest risk value is attained when θ2

0 = θ2 for all values of θ2. We expect

that the estimator is effective when θ2
0 is closer to θ2, which is consistent with the simulation

results. However, the improvement is smaller when θ2 is larger, which can also be seen for the

other estimators. For some values of θ2, ŵSharpe(c∗∗) has larger risk values than ŵSD(c∗∗) for
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some choices of a. The difference between the risk behavior of ŵSharpe(c) and that of ŵSD(c)

arises from the investor’s prior information used in respective estimators. ŵSharpe(c) requires

only information about θ2. On the other hand, ŵSD(c) needs information about all elements of

µ, which is not directly linked to the information concerning the Sharpe ratio. Thus, we may

conclude that ŵSharpe(c) is useful when we have some rough information concerning the Sharpe

ratio of the optimal portfolio.

As is stated previously, the choice c = c∗∗ does not satisfy the condition given in Theorems

2.1 and 2.2. However, we have found that the estimators ŵSD(c∗∗), ŵKZ2(c∗∗), and ŵSharpe(c∗∗)

have much smaller risks than ŵC(c∗∗) for small θ2 and have only slightly larger risks than

ŵC(c∗∗) for some large θ2.

The last two rows give the risk values of ŵGUW (c∗∗). As discussed in Examples 2.3 and

2.4 of Section 2.2, ŵGUW (c∗∗) reduces to ŵSharpe(c∗∗) with θ2
0 = 0, if the upper bound 2(p −

2)(N − p− 2)−1 is imposed. We therefore present only the risk values of the original estimator

provided by Garlappi et al. (2007) except for the choice of c. When θ2 = 0, the risk value of

ŵGUW (c∗∗) is almost 0 for α = 0.01 and 1× 10−4 for α = 0.05, and these are smaller than the

others. However, the risk values of ŵGUW (c∗∗) are larger than those of ŵC(c∗∗) when θ2 ≥ 0.5.

We have also investigated the risk behavior of the estimators for the choice of c = c̃∗∗ =

(N −p−1)(N −p−2)N−1(N −2)−1. c̃∗∗ is the smallest value of cs which satisfies the condition

given in Theorems 2.1 and 2.2. The results for the case c = c̃∗∗ are given in Panel B of Table

2.1. We have found that the risks of ŵSD(c̃∗∗), ŵKZ2(c̃∗∗), and ŵSharpe(c̃∗∗) are sometimes

slightly larger than ŵC(c∗∗) when the shrinkage target is not closer to the true parameter θ2.

However, the estimators have much smaller risks than ŵC(c∗∗) when the shrinkage target is

closer to the true parameter. We can also confirm that the estimators ŵSD(c̃∗∗), ŵKZ2(c̃∗∗),

and ŵSharpe(c̃∗∗) have smaller risks than ŵC(c̃∗∗) for all θ2.

Next, we investigate the risk behaviors for other values of p and N . Table 2.2 presents the

36



Table 2.2: Risk values of estimators for some pairs of p and N

Risk × 10,000 Improvements(%)
a2, θ2

0 θ2 0 0.1 1 10 0 0.1 1 10

A: p = 10, N = 30
ŵC(c∗∗) 319 382 943 6549
ŵSD(c∗∗) a2 = 0 66 204 937 6597 79 47 1 -1

a2 = 0.1 132 128 903 6601 59 66 4 -1
a2 = 1 271 280 689 6613 15 27 27 -1
a2 = 10 314 369 907 6292 2 3 4 4

ŵSharpe(c
∗∗) θ2

0 = 0 14 172 1022 6656 96 55 -8 -2
θ2
0 = 0.1 29 155 1010 6656 91 59 -7 -2

θ2
0 = 1 182 251 881 6656 43 34 7 -2

θ2
0 = 10 299 362 924 6552 6 5 2 0

B: p = 10, N = 120
ŵC(c∗∗) 121 137 272 1625
ŵSD(c∗∗) a2 = 0 17 98 269 1627 86 28 1 0

a2 = 0.1 81 32 264 1627 34 77 3 0
a2 = 1 115 123 167 1628 5 10 39 0
a2 = 10 121 136 270 1518 0 1 1 7

ŵSharpe(c
∗∗) θ2

0 = 0 1 116 278 1631 99 15 -2 0
θ2
0 = 0.1 37 83 278 1631 69 39 -2 0

θ2
0 = 1 104 120 263 1631 15 12 4 0

θ2
0 = 10 119 135 270 1623 2 1 1 0

C: p = 10, N = 240
ŵC(c∗∗) 67 75 145 840
ŵSD(c∗∗) a2 = 0 9 61 144 841 87 18 1 0

a2 = 0.1 53 17 142 841 21 78 2 0
a2 = 1 65 71 86 841 3 5 40 0
a2 = 10 66 74 144 780 0 0 0 7

ŵSharpe(c
∗∗) θ2

0 = 0 1 74 146 841 99 0 -1 0
θ2
0 = 0.1 33 55 146 841 50 26 -1 0

θ2
0 = 1 61 70 142 841 8 7 2 0

θ2
0 = 10 66 74 144 839 1 1 0 0

D: p = 5, N = 60
ŵC(c∗∗) 125 144 301 1862
ŵSD(c∗∗) a2 = 0 38 114 302 1867 69 20 0 0

a2 = 0.1 94 56 300 1868 25 61 0 0
a2 = 1 122 134 212 1869 3 7 29 0
a2 = 10 125 143 298 1771 0 1 1 5

ŵSharpe(c
∗∗) θ2

0 = 0 12 118 311 1873 91 18 -3 -1
θ2
0 = 0.1 39 95 311 1873 69 34 -3 -1

θ2
0 = 1 107 126 295 1873 15 12 2 -1

θ2
0 = 10 123 142 299 1863 2 1 1 0

E: p = 25, N = 60
ŵC(c∗∗) 383 458 1133 7884
ŵSD(c∗∗) a2 = 0 34 186 1069 7911 91 59 6 0

a2 = 0.1 105 109 1012 7913 73 76 11 0
a2 = 1 290 295 784 7914 24 36 31 0
a2 = 10 371 439 1090 7535 3 4 4 4

ŵSharpe(c
∗∗) θ2

0 = 0 2 167 1186 7963 100 64 -5 -1
θ2
0 = 0.1 15 151 1172 7963 96 67 -3 -1

θ2
0 = 1 191 274 1021 7963 50 40 10 -1

θ2
0 = 10 353 428 1104 7868 8 7 3 0
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risk values of the three estimators for some paired values of p and N . In order to save space,

we present only the risks of ŵC(c∗∗), ŵSD(c∗∗), and ŵSharpe(c∗∗). Panels A, B, C, D, and

E in Table 2.2 contain results for (p,N) = (10, 30), (10, 120), (10, 240), (5, 60), and (25, 60),

respectively. The corresponding results for (p,N) = (10, 60) given in Panel A of Table 2.1 are

boldfaced for comparison.

From Panel A in Table 2.1 and Panels A, B, and C in Table 2.2, we see that the risks of

almost all estimators decrease when N increases. However, when a2 = θ2, the improvements

of ŵSD(c∗∗) increase as N increases. On the other hand, the improvements decrease generally

when a2 gets far away from θ2. Although we set c = c∗∗, the risk values of ŵSD(c∗∗) are smaller

than those of ŵC(c∗∗) for N = 120 and 240, even when θ2 = 10.

From the results given in Panel A of Table 2.1 and Panels D and E of Table 2.2, we see

that the improvements of ŵSD(c∗∗) and ŵSharpe(c∗∗) increase when p increases. In the case of

p = 25, ŵSD(c∗∗) has a smaller risk than ŵC(c∗∗) even though we set c = c∗∗. Thus, we find

that ŵSD(c∗∗) is more effective when p is large and when a2 is close to θ2. Similarly to the

results for (p, N) = (10, 60), we find that ŵSharpe(c∗∗) has a smaller risk than ŵSD(c∗∗) with

µ0 = 0 when θ2
0 = θ2. The improvements of ŵSharpe(c∗∗) increase when the number p increases,

similarly to ŵSD(c∗∗). Thus, we also confirm the effectiveness of the estimators ŵSharpe.

2.5.2. Comparison based on actual asset returns data

In Section 2.5.1, we examined the risk behaviors of Stein-type estimators under the normality

and independence assumptions. However, actual asset returns deviate from normality and

are heterogeneous to some extent. Here, we apply the Stein-type estimators to two actual

asset returns data sets and investigate their out-of-sample performance. One data set used

in this study consists of monthly returns from July 1985 to February 2008 of 33 stock price

indices by industry, which are constructed from stocks listed in the first section of the Tokyo
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Stock Exchange. The data is contained in the Nikkei NEEDS database. The other consists of

countries’ stock market monthly value-weighted dollar returns in French’s Data Library, which

is available on the web at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. We use

the Country Portfolios included in International Research Returns data from January 1975

through December 2007. We adopt uncollateralized overnight call rate as a risk free rate for

the 33 stock price indices, and 1-month Eurodollar deposit rate for the countries’ stock returns,

which are contained in the Nikkei NEEDS database. Table 2.3 presents summary statistics for

the two data sets.

We compared the following three estimators: ŵC(c∗∗), ŵSD(c∗∗), and ŵSharpe(c∗∗). The

procedure to evaluate the effectiveness of the estimators was as follows. Firstly, we estimated

the mean-variance optimal portfolio weights ŵt−1 using excess returns xi from i = t − N to

t − 1 periods for each t = 1, . . . , T . Next, we calculated ex post excess returns yt = ŵ′
t−1xt

for t = 1, . . . , T . Finally, we computed out-of-sample ex post averages ȳ = (1/T )
∑T

t=1 yt, the

standard deviation [V̂ (y)]1/2 = [1/(T − 1)
∑T

t=1(yt− ȳ)2]1/2, and the utility û = ȳ− (τ/2)V̂ (y),

where we set τ = 3. We used û to measure the effectiveness of the estimators. We set N = 60,

120, and 240.

Here, we present the results not only for the case with no constraints but also for the

case with the linear constraint 1′w = 1 on portfolio weights. For the latter case, setting

ζ̂2 = x̄′F1(S,1)x̄, we compared the following three estimators: ŵC,1(c) = cτ−1F1(1, S)x̄ +

F2(1, S), ŵSD,1(c) = cτ−1F1(1, S)[1−(p−3)(N−p−1)−1/ζ̂2]+x̄+F2(1, S), and ŵSharpe,1(c) =

cτ−1F1(1, S)[1 − rsr(ζ̂2)/ζ̂2]+x̄ + F2(1, S). When there is a linear constraint 1′w = 1, as

described in Section 2.3, Stein-type estimators that shrink toward a common value reduce

to the estimator that shrinks toward the origin. Therefore, we present the results only for

ŵSD,1(c), which shrinks toward the origin. For the case with the linear constraint, we set

c = c††1 ≡ (N − p)(N − p− 3)N−1(N − 2)−1. For comparison, we also present the results for the
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Table 2.3: Summary statistics of asset’s excess returns

avg.(%) SD(%) avg./SD (avg./SD)2

A. 33 Industry Indices
Fishery, Agriculture & Forestry −0.16 6.07 −0.027 0.0007
Mining 0.03 7.42 0.004 0.0000
Construction −0.08 6.10 −0.013 0.0002
Foods 0.12 4.46 0.027 0.0007
Textiles & Apparels −0.17 5.22 −0.032 0.0011
Pulp & Paper −0.15 5.95 −0.025 0.0006
Chemicals 0.19 6.65 0.028 0.0008
Pharmaceutical 0.18 4.32 0.042 0.0018
Oil & Coal Products 0.04 6.69 0.005 0.0000
Rubber Products 0.36 6.14 0.059 0.0035
Glass & Ceramics Products 0.10 5.81 0.018 0.0003
Iron & Steel 0.38 7.02 0.054 0.0029
Nonferrous Metals 0.04 6.58 0.006 0.0000
Metal Products 0.09 5.55 0.017 0.0003
Machinery 0.20 5.56 0.037 0.0014
Electric Appliances 0.12 5.63 0.021 0.0004
Transportation Equipments 0.41 4.95 0.082 0.0068
Precision Instruments 0.30 5.46 0.056 0.0031
Other Products 0.32 5.00 0.063 0.0040
Electric Power & Gas 0.14 5.38 0.027 0.0007
Land Transportation 0.23 5.47 0.042 0.0018
Marine Transportation 0.55 7.51 0.074 0.0055
Air Transportation −0.18 6.74 −0.027 0.0007
Warehousing & Harbor Transportation Services 0.16 6.25 0.026 0.0007
Information & Communication −0.19 7.32 −0.026 0.0007
Wholesale Trade 0.34 7.05 0.048 0.0023
Retail Trade 0.10 5.82 0.018 0.0003
Banks −0.18 6.99 −0.026 0.0007
Securities & Commodity Futures 0.20 9.42 0.021 0.0005
Insurance 0.22 6.24 0.035 0.0012
Other Financing Business −0.01 6.59 −0.002 0.0000
Real Estate 0.36 7.42 0.048 0.0023
Services 0.09 6.23 0.015 0.0002

B. French’s Country data
Australia 0.76 6.44 0.117 0.0138
Belgium 0.83 5.37 0.156 0.0242
Canada 0.57 5.38 0.106 0.0113
France 0.82 6.30 0.131 0.0171
Germany 0.63 5.87 0.108 0.0116
Hong Kong 1.06 8.65 0.122 0.0150
Italy 0.74 7.24 0.102 0.0105
Japan 0.38 6.40 0.060 0.0036
Netherlands 0.81 5.05 0.160 0.0257
Norway 0.86 7.29 0.119 0.0141
Singapore 0.70 7.26 0.096 0.0092
Spain 0.73 6.43 0.114 0.0130
Sweden 0.91 6.71 0.136 0.0184
Switzerland 0.60 4.97 0.121 0.0146
United Kingdom 0.78 5.23 0.150 0.0224

40



estimator ŵC,1(c) with c = c̃††1 ≡ (N − p)(N − p− 1)N−1(N − 2)−1.

Table 2.4 presents average and standard deviation of ex post returns, û, and ∆û, which is

the difference between the value of û of each estimator and that of ŵC(c∗∗) for the case with no

constraints or that of ŵC,1(c††1 ) for the case with the linear constraint 1′w = 1. Panels A and B

of Table 2.4 present the results for 33 Industry indices and French’s Country data respectively.

We see that in most cases Stein-type estimators have smaller risks than ŵC(c∗∗) or ŵC,1(c††1 ).

However, for some choices of a, ŵSD(c∗∗) has a slightly larger risk than ŵC(c∗∗). From Table 2.3,

it is reasonable for us to judge that the value of true θ2 for true optimal portfolio weights is less

than 0.01 for the 33 Industry Indices portfolio, and is between 0.01 and 0.1 for French’s Country

portfolio. We see that the improvements of ŵSharpe(c∗∗) and ŵSharpe,1(c††1 ) with θ2
0 = 0, 0.01,

0.1 are large. Thus, we have found that the estimator using a prior information concerning the

Sharpe ratio is effective for these data sets. However, we should mention that such a conclusion

does not necessarily apply to the other data sets. We need more thorough investigation based

on various actual data sets to reach a definite conclusion.
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Table 2.4: Comparison of estimators based on actual asset returns data

N = 60 N = 120 N = 240
avg. SD û ∆û avg. SD û ∆û avg. SD û ∆û
(%) (%) (%) (%) (%) (%)

A. 33 Industry Indices
A.1. no constraints
ŵC(c∗∗) −0.4 22.9 −820 0.4 17.5 −417 1.3 15.1 −207
ŵC(c̃∗∗) −0.3 24.9 −958 −138 0.4 17.9 −438 −21 1.4 15.3 −213 −5
ŵSD(c∗∗)

a2 = 0 0.8 10.8 −92 728 −0.8 4.2 −107 310 −0.3 6.4 −96 112
a2 = 0.01 0.4 17.4 −415 405 0.6 13.3 −203 215 2.5 11.4 52 260
a2 = 0.1 −0.7 22.4 −818 2 0.5 16.3 −349 68 1.9 14.4 −124 83
a2 = 1 −0.5 22.9 −836 −15 0.4 17.2 −398 19 1.5 14.9 −183 25
a2 = 10 −0.4 22.9 −826 −6 0.4 17.4 −412 5 1.4 15.1 −200 8

ŵSharpe(c
∗∗)

θ2
0 = 0 0.3 5.6 −21 799 0.0 0.0 0 417 0.0 0.0 0 207

θ2
0 = 0.01 0.2 5.6 −23 797 0.0 0.6 1 418 0.1 1.1 8 215

θ2
0 = 0.1 0.1 6.3 −52 768 0.1 4.8 −23 394 0.6 6.5 −5 202

θ2
0 = 1 −0.2 14.9 −357 463 0.3 13.8 −253 164 1.2 13.3 −147 60

θ2
0 = 10 −0.3 21.7 −741 79 0.4 17.0 −395 22 1.3 14.9 −200 7

A.2. 1′w = 1

ŵC,1(c††1 ) −0.7 22.4 −829 0.2 17.2 −419 2.2 14.6 −103

ŵC,1(c̃††1 ) −0.6 24.3 −952 −123 0.2 17.6 −439 −20 2.2 14.8 −108 −5

ŵSD,1(c††1 ) 0.4 12.2 −183 646 −0.7 6.3 −131 288 0.6 5.7 9 112

ŵSharpe,1(c††1 )
θ2
0 = 0 −0.1 7.0 −81 748 0.1 4.1 −16 403 0.8 3.2 69 172

θ2
0 = 0.01 −0.1 7.0 −83 746 0.1 4.1 −15 404 0.9 3.3 78 181

θ2
0 = 0.1 −0.2 7.4 −107 722 0.1 6.0 −40 379 1.4 6.7 75 178

θ2
0 = 1 −0.6 15.0 −396 433 0.2 13.7 −263 157 2.0 13.0 −49 54

θ2
0 = 10 −0.7 21.3 −756 73 0.2 16.7 −398 21 2.2 14.4 −96 6

B. French’s Country data
B.1. no constraints
ŵC(c∗∗) 1.0 16.9 −326 0.5 11.0 −134 0.3 7.6 −61
ŵC(c̃∗∗) 1.1 17.7 −363 −38 0.5 11.2 −140 −6 0.3 7.7 −62 −1
ŵSD(c∗∗)

a2 = 0 0.3 8.0 −67 259 −0.3 3.5 −45 89 −0.1 1.2 −14 47
a2 = 0.01 1.8 16.6 −231 94 1.1 12.0 −111 23 0.8 9.0 −47 14
a2 = 0.1 1.4 17.4 −314 12 0.7 11.6 −133 1 0.4 8.1 −59 2
a2 = 1 1.2 17.1 −323 2 0.5 11.2 −134 0 0.3 7.8 −61 0
a2 = 10 1.1 17.0 −325 1 0.5 11.1 −134 0 0.3 7.7 −61 0

ŵSharpe(c
∗∗)

θ2
0 = 0 0.1 2.9 1 326 0.0 0.6 −5 129 0.0 0.0 0 61

θ2
0 = 0.01 0.2 3.0 2 327 0.0 1.0 1 135 0.0 1.1 2 63

θ2
0 = 0.1 0.3 5.3 −11 314 0.2 5.1 −17 117 0.2 4.8 −18 43

θ2
0 = 1 0.8 13.7 −198 127 0.4 9.8 −103 31 0.2 7.2 −53 8

θ2
0 = 10 1.0 16.5 −309 17 0.5 10.9 −130 4 0.3 7.6 −60 1

B.2. 1′w = 1

ŵC,1(c††1 ) 1.5 16.4 −255 0.7 11.1 −118 0.4 7.5 −49

ŵC,1(c̃††1 ) 1.5 17.1 −288 −32 0.7 11.3 −124 −6 0.4 7.6 −50 −1

ŵSD,1(c††1 ) 0.8 8.7 −35 221 0.3 5.6 −13 104 0.5 4.2 24 73

ŵSharpe,1(c††1 )
θ2
0 = 0 0.7 4.8 33 288 0.6 4.3 30 148 0.6 4.2 37 85

θ2
0 = 0.01 0.7 4.9 35 290 0.6 4.4 30 148 0.6 4.4 31 80

θ2
0 = 0.1 0.9 6.6 24 279 0.6 6.5 −1 117 0.5 5.8 −5 44

θ2
0 = 1 1.3 13.6 −144 112 0.7 10.2 −88 29 0.4 7.3 −41 7

θ2
0 = 10 1.5 16.1 −241 15 0.7 11.0 −114 3 0.4 7.5 −48 1
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Chapter 3

Shrinkage toward the Grand Mean

or a Linear Subspace

3.1. Introduction

Jorion (1985, 1986, 1991) proposed the adoption of an estimator of the mean vector that shrinks

the sample mean toward the grand mean based on the evidence of mean reversion in financial

markets. His estimator is referred to as the Bayes-Stein estimator in a number of previous

studies in finance (cf., for example, Grauer and Hakansson 1995, 2001, Michaud 1998, Kashima

2001, 2005, Ledoit, O. and Wolf, M. 2003, Okhrin and Schmid 2007, Garlappi et al. 2007, Kan

and Zhou 2007, and Brandt 2009). Recently, Kan and Zhou (2007) developed a new estimator

by combining a sample tangency portfolio with a sample global minimum variance portfolio.

Their estimator also applies the shrinkage toward the grand mean. However, the effectiveness of

these estimators has not been investigated analytically. Shrinkage toward the grand mean is a

special case of shrinkage toward a linear subspace. In this chapter, we present dominance results

for the estimators of the mean-variance optimal portfolio weights, which apply the shrinkage

toward a linear subspace.
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Lindley (1962) first suggested the idea of modifying the James-Stein estimator and shrinking

x̄ toward the grand mean instead of a fixed point. More generally, we consider the James-Stein

type estimator, which shrinks toward a linear subspace (cf., Lehmann and Casella 1998, Example

6.2). Suppose that a prior information suggests that µ is close to the subspace N (Z) = {µ :

Zµ = 0}, where Z is an ` × p (` ≤ p) matrix of rank Z = `. Since the maximum likelihood

estimator of µ ∈ N (Z) is given by [I − ΣZ ′(ZΣZ ′)−1Z]x̄ when Σ is known, setting Y ∗ =

ΣZ ′(ZΣZ ′)−1Z, the Stein-type estimators of µ, which shrink the sample mean toward (I−Y ∗)x̄,

are given as µ̂ = [(I−Y ∗)+ (1−d/ζ2)+Y ∗]x̄, where ζ2 = x̄′(Y ∗)′Σ−1Y ∗x̄ = x̄′Z ′(ZΣZ ′)−1Zx̄,

d is a positive constant and a+ = max(0, a) (cf., Casella and Hwang 1987, Example 2). More

generally, we consider a class of estimators by replacing d with a function r(·) of x̄′(Y ∗)′Σ−1Y ∗x̄

(cf., Baranchik 1970). Since Σ is unknown, we replace Σ by its sample estimator S and write

Y = SZ ′(ZSZ ′)−1Z and ζ̂2 = x̄′Y ′S−1Y x̄. We thus obtain an estimator of µ as

µ̂ =

[
(I − Y ) +

(
1− r(ζ̂2)

ζ̂2

)+

Y

]
x̄.

Using this µ̂ and c−1S as estimators of µ and Σ, respectively, we obtain an estimator for the

mean-variance optimal portfolio weights τ−1Σ−1µ:

cs

τ
S−1

[
(I − Y ) +

(
1− r(ζ̂2)

ζ̂2

)
Y

]
x̄. (3.1)

In this chapter, first, we give a dominance result for the estimator given by Equation (3.1).

Next, we assume that a prior information suggests that µ = Bβ for some β, that is,

µ ∈ R(B) = {µ;µ = Bβ}, where B is a p × k non-random matrix of rank B = k and β is a

k × 1 vector. The generalized least squares estimator of Bβ is given as B(B′Σ−1B)−1B′Σ−1x̄

when Σ is known. By replacing Σ by its sample estimator S, we obtain Rx̄, where R =

B(B′S−1B)−1B′S−1. We may construct an estimator of µ that shrinks the sample mean toward
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Rx̄:

cs

τ
S−1

[
R +

(
1− r(ξ̂2)

ξ̂2

)
(I −R)

]
x̄, (3.2)

where ξ̂2 = x̄′(I − R)′S−1(I − R)x̄. In this chapter, we also give a dominance result for the

estimator given by Equation (3.2). When we set B = 1, the estimator reduces to the one that

shrinks toward the grand mean, and it is related to some estimators previously proposed in

finance.

The remainder of this chapter is organized as follows. Section 3.2 gives the dominance results

of a class of Stein-type estimators for the mean-variance optimal portfolio weights that shrinks

toward a linear subspace, when we have no constraints on portfolio weights. In this section, we

also show that some estimators provided in previous studies belong to our class. Section 3.3

gives the dominance results when we have linear constraints on portfolio weights. Section 3.4

gives the proofs of the theorems stated in Sections 3.2 and 3.3.

3.2. Case in which there are no constraints on portfolio weights

We have obtained the following theorem under the loss function given in Equation (1.2).

Theorem 3.1. Let Z be a non-random `× p matrix of rank Z = ` and Y = SZ ′(ZSZ ′)−1Z.

Let 2 < ` ≤ p and N > p + 4. If cc ≥ cs ≥ (N − `− 1)(N − p− 2)N−1(N − 2)−1, r(·) is non-

decreasing, and 0 ≤ r(·) ≤ 2(`− 2)(N − p− 2)−1, then ŵC(cc; x̄, S) = ccτ
−1S−1x̄ is dominated

by the following Stein-type estimator for the mean-variance optimal portfolio weights:

ŵSZ1(cs; x̄, S) =
cs

τ
S−1

[
(I − Y ) +

(
1− r(ζ̂2)

ζ̂2

)
Y

]
x̄,

where ζ̂2 = x̄′Y ′S−1Y x̄ = x̄′Z ′(ZSZ ′)−1Zx̄.

The proof is given in Section 3.4.1.
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From Theorem 3.1, we see that if ŵSZ1(cs; x̄, S) dominates ŵC(cc; x̄, S), its positive-part

Stein-type estimator ŵ+
SZ1(cs; x̄, S) = csτ

−1S−1{(I − Y ) + [1 − r(ζ̂2)/ζ̂2]+Y }x̄ also domi-

nates ŵC(cc; x̄, S). However, the question of whether the positive-part Stein-type estimator

ŵ+
SZ1(cs; x̄, S) improves upon ŵSZ1(cs; x̄, S) has not been settled. The same remark applies to

the theorems in the following.

For the case in which a prior information suggests that µ is close to the subset {µ : Zµ = a}

instead of N (Z), where a is a fixed non-zero vector, it is technically difficult to show the general

dominance of the estimators of the form similar to ŵSZ1. However, we can show the following

theorem.

Theorem 3.2. Let Z be a non-random `×p matrix of rank Z = `, x̃ = x̄−SZ ′(ZSZ ′)−1(Zx̄−

a), and ζ̂2 = (x̄− x̃)′S−1(x̄− x̃). Let 2 < ` ≤ p and N > p + 4. If cc ≥ cs = (N − `− 1)(N −

p − 2)N−1(N − 2)−1 and d is a constant that satisfies 0 < d < 2(` − 2)(N − p − 2)−1, then

ŵC(cc; x̄, S) = cτ−1S−1x̄ is dominated by the following Stein-type estimator for the mean-

variance optimal portfolio weights:

ŵSZ2(cs; x̄, S) =
cs

τ
S−1

[
x̃ +

(
1− d

ζ̂2

)
(x̄− x̃)

]
.

The proof is given in Section 3.4.1.

Example 3.1. Black-Litterman Approach. Black and Litterman (1992) have proposed the

combination of the equilibrium risk premiums and an investor’s views on the expected excess

returns for risky assets. In their approach, the equilibrium risk premiums xe are assumed to

follow N(µ, λΣ), where λ is a positive constant, and the investor’s views are represented as

Zµ = a + ε, where Z is an ` × p (` ≤ p) matrix of rank Z = `, a is an ` × 1 vector, and ε

is an ` × 1 vector of error terms distributed as N(0, Ω). Here, Ω represents the uncertainty

of the investor. Based on the mixed estimation (cf., Theil 1971), an estimator of µ is given
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as µ̂BL = xe − λΣZ ′(Ω + λZΣZ ′)−1(Zxe − a). Furthermore, since it is difficult to determine

all elements of Ω according to the views of the investor, Ω is replaced by γZΣZ ′ or by the

diagonal matrix with the same diagonal elements as γZΣZ ′, where γ is a positive constant.

By replacing xe, Σ, and Ω by x̄, S, and γZSZ ′, respectively, the estimator µ̂BL reduces to

x̄ − γ∗SZ ′(ZSZ ′)−1(Zx̄ − a) = x̃ + (1 − γ∗)(x̄ − x̃), where γ∗ = (γλ−1 + 1)−1 and x̃ =

x̄− SZ ′(ZSZ ′)−1(Zx̄− a).

If we replace γ∗ by min(1, d/[(Zx̄ − a)′(ZSZ ′)−1(Zx̄ − a)]), then we have the estimator

given in Theorem 3.2 for the mean-variance optimal portfolio weights. Usually, in the practical

application of the Black-Litterman approach, the investor must choose a pertinent value of γ∗

reflecting the confidence in his/her views. If the investor chooses a value of d, instead of λ and

γ, so as to satisfy the conditions given in Theorem 3.2, the estimator for the portfolio weights

has a smaller risk than the estimator ŵC .

Next, we give a dominance result for the estimator given by Equation (3.2). IfR(B) = N (Z),

then S−1/2RS1/2 and I − S−1/2Y S1/2 are the projection matrix onto R(S−1/2B) = N (ZS1/2).

Thus, we can show that R = I−Y if R(B) = N (Z), and we have essentially the same estimator

as that given in Theorem 3.1. Setting Y = I −R, we may state Theorem 3.1 as follows.

Theorem 3.1’. Let B be a p×k non-random matrix of rank B = k, and set R = B(B′S−1B)−1

×B′S−1. Let p > k+2 and N > p+4. If cc ≥ cs ≥ (N−p+k−1)(N−p−2)N−1(N−2)−1, r(·)

is non-decreasing, and 0 ≤ r(·) ≤ 2(p− k− 2)(N − p− 2)−1, then ŵC(cc; x̄, S) = ccτ
−1S−1x̄ is

dominated by the following Stein-type estimator for the mean-variance optimal portfolio weights:

ŵSB(cs; x̄, S) =
cs

τ
S−1

[
R +

(
1− r(ξ̂2)

ξ̂2

)
(I −R)

]
x̄,

where ξ̂2 = x̄′(I −R)′S−1(I −R)x̄.
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If we set B = 1, then the estimator ŵSB(c; x̄, S) reduces to

ŵSg(c; x̄, S) =
c

τ
S−1

[
µ̂g1 +

(
1− r(ϕ̂2)

ϕ̂2

)
(x̄− µ̂g1)

]

where µ̂g = 1′S−1x̄(1′S−11)−1 and ϕ̂2 = (x̄ − µ̂g1)′S−1(x̄ − µ̂g1). ŵSg is the estimator that

shrinks the sample mean toward its grand mean. The estimators proposed by Jorion (1986)

and Kan and Zhou (2007) belong to this class.

Example 3.2. Jorion’s Bayes-Stein Estimator. The estimator proposed by Jorion (1986) is

τ−1Σ̂−1x̂BS , where Σ̂ is an estimator of Σ and

x̂BS = µ̂g1 + (1− ŵ)(x̄− µ̂g1) with ŵ =
(p + 2)(N − 1)N−1(N − p− 2)−1

ϕ̂2 + (p + 2)(N − 1)N−1(N − p− 2)−1
.

Although he used an estimator other than S, setting Σ̂ = c−1
s S, Jorion’s estimator reduces to

ŵSg(cs; x̄, S) with r(ϕ̂2) = α1ϕ̂
2/(ϕ̂2 + α2) and α1 = α2 = (p + 2)(N − 1)N−1(N − p − 2)−1.

Since ŵSg(cs; x̄, S) with r(ϕ̂2) = α1ϕ̂
2/(ϕ̂2 + α2) improves upon ŵC(cc; x̄, S) when 0 < α1 ≤

2(p− 3)(N − p− 2)−1 and α2 ≥ 0, from Theorem 3.1, we see that when N(p− 8) + p + 2 ≥ 0

and cc ≥ cs ≥ (N − p)(N − p− 2)N−1(N − 2)−1, Jorion’s estimator improves upon the classical

estimator.

Example 3.3. Kan and Zhou’s three-fund rule estimator. One of the estimators provided

by Kan and Zhou (2007) is

ŵKZ3 =
1
τ

(N − p− 1)(N − p− 4)
N(N − 2)

(
ϕ̃2(ϕ̂2)

ϕ̃2(ϕ̂2) + p/N
S−1x̄ +

p/N

ϕ̃2(ϕ̂2) + p/N
µ̂gS

−11
)

,

where

ϕ̃2(ϕ̂2) =
(N − p− 1)ϕ̂2 − (p− 1)

N
+

2(ϕ̂2)(p−1)/2(1 + ϕ̂2)−(N−2)/2

NBϕ̂2/(1+ϕ̂2)((p− 1)/2, (N − p + 1)/2)
.

The estimator Nϕ̃2 of Nϕ2 improves upon the unbiased estimator (N −p−1)ϕ̂2− (p−1) under

squared-error loss (cf., Kubokawa et al. 1993). If we set c = (N−p−1)(N−p−4)N−1(N−2)−1,
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r(ϕ̂2) ≡ rKZ3(ϕ̂2) = α1ϕ̂
2[ϕ̃2(ϕ̂2) + α2/N ]−1, α1 = p/N , and α2 = p, then the estimator

ŵSg(c; x̄, S) reduces to the estimator ŵKZ3. If N > p+2, p > 3, c ≥ (N−p)(N−p−2)N−1(N−

2)−1, 0 < α1 < 2(p − 3)N(N − p − 2)−1, and α2 ≥ p − 1, then ŵSg(c; x̄, S) with r = rKZ3

improves upon ŵC(c; x̄, S), because we can show that rKZ3(·) is non-decreasing under the above

conditions (cf., Example 2.2 in Chapter 2). For the specific choice of Kan and Zhou’s estimator,

α1 = p/N and α2 = p satisfy the conditions, but c = (N − p− 1)(N − p− 4)N−1(N − 2)−1 does

not.

The three-fund rule estimator is a weighted average of the sample tangency portfolio S−1x̄

×(x̄′S−11)−1 and the sample global minimum variance portfolio S−11(1′S−11)−1 and it is

shrinking the sample tangency portfolio toward the sample global minimum variance portfolio.

Kan and Zhou (2007) have proposed the three-fund rule estimator as a candidate which improves

the two-fund rule estimator (cf., Example 2.2 in Chapter 2). The two-fund rule estimator is

a scalar multiple of the sample tangency portfolio that is on the ex post minimum-variance

frontier. They have suggested to combine the sample tangency portfolio with another portfolio

on the same ex post minimum-variance frontier in order to reduce the estimation errors. They

have chosen the sample global minimum variance portfolio as the one. They have suggested

that the risk of the three-fund rule estimator is smaller than that of the two-fund rule estimator.

However, if the true optimal portfolio weights of risky assets are close to 0, the two-fund rule

estimator will perform better than the three-fund rule estimator. It depends on the accuracy

of the investor’s subjective information which estimator is superior and is to be chosen.
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3.3. Case in which there are linear constraints on portfolio

weights

We now consider the case in which we have linear constraints A′w = b, where A is a p × q

matrix of rank A = q. We derive the estimator shrinking toward a linear subspace under linear

constraints. We define the orthogonal matrix Q such that

QAA′Q′ = D, D =




D1 O

O O


 , Q =




Q1

Q2


 , (3.3)

where D is a diagonal matrix with eigenvalues of AA′ on the diagonal, D1 is a q × q diagonal

matrix with positive diagonal elements, Q1 is a q × p matrix, and Q2 is a (p − q) × p matrix.

Since F1(A,Σ) = Q′
2(Q2ΣQ′

2)
−1Q2 (cf., Mori 2004, Lemma 3.1), wA(µ, Σ) given in Equation

(1.5) is written as

wA(µ, Σ) =
1
τ
Q′

2(Q2ΣQ′
2)
−1Q2µ + F2(A, Σ)b. (3.4)

We assume that we have a prior information that µ is close to R(B). We set µ̃ = Q2µ, Σ̃ =

Q2ΣQ′
2, and B̃ = Q2B, and assume that the matrix B′F1(A, Σ)B = B′Q′

2(Q2ΣQ′
2)
−1Q2B =

B̃′Σ̃−1B̃ is non-singular. We will discuss the condition that guarantees this later. Then, we

have the generalized least squares estimator of µ̃ based on Q2x̄ as B̃(B̃′Σ̃−1B̃)−1B̃′Σ̃−1Q2x̄

when Σ is known. Thus, setting R∗ = B [B′F1(A, Σ)B]−1 B′F1(A,Σ), we may construct an

estimator of µ̃ that shrinks the sample estimator Q2x̄ toward B̃(B̃′Σ̃−1B̃)−1B̃′Σ̃−1Q2x̄ as

B̃
(
B̃′Σ̃−1B̃

)−1
B̃′Σ̃−1Q2x̄ +

(
1− r(ξ̃2

F1
)

ξ̃2
F1

)[
I − B̃

(
B̃′Σ̃−1B̃

)−1
B̃′Σ̃−1

]
Q2x̄,

=Q2

[
R∗x̄ +

(
1− r(ξ̃2

F1
)

ξ̃2
F1

)
(I −R∗)x̄

]
, (3.5)

where

ξ̃2
F1

= x̄′Q′
2[I − B̃(B̃′Σ̃−1B̃)−1B̃′Σ̃−1]′Σ̃−1[I − B̃(B̃′Σ̃−1B̃)−1B̃′Σ̃−1]Q2x̄

= x̄′(I −R∗)′F1(A,Σ)(I −R∗)x̄.
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By substituting Equation (3.5) into Q2µ in Equation (3.4), we have the following estimator for

w when Σ is known:

ŵ =
1
τ
F1(A, Σ)

[
R∗x̄ +

(
1− r(ξ̃2

F1
)

ξ̃2
F1

)
(I −R∗)x̄

]
+ F2(A, Σ)b. (3.6)

By replacing Σ with c−1
s S in Equation (3.6), we obtain the estimator given in Theorem 3.3.

Note that the condition R(A) ∩ R(B) = {0} is necessary to guarantee that B′F1(A,S)B is

non-singular.

Theorem 3.3. Let B be a p× k non-random matrix of rank B = k and assume that R(A) ∩

R(B) = {0}. Set RF1 = B(B′F1(A,S)B)−1B′F1(A,S). Let p > q + k + 2 and N > max(p +

1, p−q+4). If cc ≥ cs ≥ (N−p+q+k−1)(N−p+q−2)N−1(N−2)−1, r(·) is non-decreasing and

0 ≤ r(·) ≤ 2(p−q−k−2)(N−p+q−2)−1, then ŵC,A(cc; x̄, S) = ccτ
−1F1(A,S)x̄+F2(A, S)b is

dominated by the following Stein-type estimator for the mean-variance optimal portfolio weights:

ŵSB,A(cs; x̄, S) =
cs

τ
F1(A,S)

[
RF1 +

(
1− r(ξ̂2

F1
)

ξ̂2
F1

)
(I −RF1)

]
x̄ + F2(A,S)b,

where ξ̂2
F1

= x̄′(I −RF1)
′F1(A,S)(I −RF1)x̄.

The proof is given in Section 3.4.2.

Here, we present some remarks on Theorem 3.3. Although we have assumed that B′F1(A,S)B

is non-singular, we can apply Theorem 3.3 by replacing its inverse with its generalized in-

verse even when it is singular. If we set K = [I − S−1/2A(A′S−1A)−1A′S−1/2]S−1/2B, then

B′F1(A,S)B = K ′K. Thus, by setting (K ′K)− to be a generalized inverse of K ′K, we have

F1(A,S)RF1 = S−1/2K(K ′K)−K ′S−1/2, where K(K ′K)−K ′ is the projection matrix onto

R(K) and does not depend on the choice of (K ′K)−. Since ŵSB,A depends on RF1 only

through F1(A, S)RF1 , Theorem 3.3 holds even when B′F1(A,S)B is singular, if we set the con-

ditions on c and r(·) appropriately. Since rank Q2B = rank (B)−dim[R(A)∩R(B)], by setting

k′ = k − dim[R(A) ∩ R(B)], it is sufficient to replace the conditions on cs and r(·) as follows:
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cs ≥ (N−p+q+k′−1)(N−p+q−2)N−1(N−2)−1 and 0 ≤ r(·) ≤ 2(p−q−k′−2)(N−p+q−2)−1.

Note that if R(B) ⊆ R(A), the estimator ŵSB,A(cs; x̄, S) reduces to that shrinking toward

the origin. Since F1(A,S)B = O if R(B) ⊆ R(A), the estimator ŵSB,A(cs; x̄, S) reduces to

csτ
−1F1(A,S)[1− r(x̄′F1(A, S)x̄)/(x̄′F1(A,S)x̄)]x̄ + F2(A,S)b.

When we have a constraint 1′w = 1, the effectiveness of applying µ̂g1+ (1− r(ϕ̂2)/ϕ̂2)(x̄−

µ̂g1) with ϕ̂2 = (x̄ − µ̂g1)′S−1(x̄ − µ̂g1) as an estimator of µ has been shown by simulation

and empirically (e.g., Jorion 1986). However, this can be shown analytically. Substituting the

estimator into ŵC,A instead of x̄, we have the following estimator:

cs

τ
S−1

(
1− r(ϕ̂2)

ϕ̂2

)
(x̄− µ̂g1) +

S−11
1′S−11

.

This is exactly the estimator ŵSB,A(cs; x̄, S) when we have the constraint 1′w = 1 and B = 1.

Note that when we have the constraint 1′w is equal to a constant and B = 1, the estimator

ŵSB,A(cs; x̄, S) reduces to that shrinking toward the origin, as discussed above.

Finally, we note that obtaining results similar to Theorems 3.1 and 3.2 when there are linear

constraints on portfolio weight is technically difficult. This problem is left for future research.

3.4. Proofs of Theorems 3.1, 3.2, and 3.3

In the proofs given below, for simplicity, we assume that the function r(·) is differentiable. If

r(·) is not differentiable, the proofs proceed by applying Riemann integration and replacing the

term r′(x)dx by dr(x).

3.4.1. Proofs of Theorems 3.1 and 3.2

Setting x̃ = x̄− SZ ′(ZSZ ′)−1(Zx̄− a), ζ̂2 = (x̄− x̃)′S−1(x̄− x̃), and

ŵSZ(cs; x̄, S) =
c

τ
S−1

[
x̃ +

(
1− r(ζ̂2)

ζ̂2

)
(x̄− x̃)

]
,
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and assuming that cc = cs = c, we first evaluate the risk difference between ŵC(c; x̄, S) =

cτ−1S−1x̄ and ŵSZ(c; x̄, S). Note that when a = 0, ŵSZ is the estimator ŵSZ1 given in

Theorem 3.1 and that when a 6= 0 and r(·) = d (const), ŵSZ is the estimator ŵSZ2 given in

Theorem 3.2. We have the loss difference between ŵC(c; x̄, S) and ŵSZ(c; x̄, S) under the loss

function given in Equation (1.2) as

2τ∆L =2c
r(ζ̂2)

ζ̂2
(cS−1x̄− Σ−1µ)′ΣZ ′(ZSZ ′)−1(Zx̄− a) (3.7)

− c2

(
r(ζ̂2)

ζ̂2

)2

(Zx̄− a)′(ZSZ ′)−1ZΣZ ′(ZSZ ′)−1(Zx̄− a).

Setting W = Σ−1/2SΣ−1/2, y = Σ−1/2x̄, η = Σ−1/2µ, and Z̃ = ZΣ1/2, Equation (3.7) is written

as

2τ∆L =2c2 r(ζ̂2)

ζ̂2
y′W−1Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a)− 2c

r(ζ̂2)

ζ̂2
η′Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a)

− c2

(
r(ζ̂2)

ζ̂2

)2

(Z̃y − a)′(Z̃WZ̃ ′)−1Z̃Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a), (3.8)

where ζ̂2 = (Z̃y − a)′(Z̃WZ̃ ′)−1(Z̃y − a).

Next, we present lemmas that are used to evaluate the expectation of Equation (3.8). Here,

we define the orthogonal matrix P such that

PZ̃ ′Z̃P ′ = Λ =




Λ1 O

O O


 and P =




P1

P2


 ,

where Λ is a diagonal matrix with eigenvalues of Z̃ ′Z̃ on its diagonal, Λ1 is an ` × ` diagonal

matrix with positive diagonal elements, P1 is an ` × p matrix, and P2 is a (p − `) × p matrix.

Setting ỹ = P1y, η̃ = P1η, Vij = PiWP ′
j for P = (P ′

1 P ′
2)
′, L = P1Z̃

′, ã = (L′)−1a, and

ω = (ỹ − ã)′V11(ỹ − ã)[(ỹ − ã)′(ỹ − ã)]−1, we see that ỹ ∼ N`(η̃, P1ΣP ′
1), Nω−1 ∼ χ2

N−`,

and ω is independent of ỹ. Using the fact that (Z̃WZ̃ ′)−1 = L−1V −1
11 (L′)−1, we can see that

ζ̂2 = (ỹ − ã)′V −1
11 (ỹ − ã) = (ỹ − ã)′(ỹ − ã)ω, and we have the following lemmas.

Lemma 3.1. If the expectation of each term of the following equation exists, then
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E

[
r(ζ̂2)

ζ̂2
y′W−1Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a)

]
=

N − `− 2
N − p− 2

E

[
r(ζ̂2)

ζ̂2
ỹ′V −2

11 (ỹ − ã)

]
.

Proof. Note that Nω−1 ∼ χ2
N−`, ỹ ∼ N(η̃, I/N) because y ∼ N(η, I/N), and ω and ỹ are in-

dependent. Since (L′)−1Z̃y = (L′)−1Z̃P ′Py = (L′)−1(Z̃P ′
1 Z̃P ′

2)(P
′
1 P ′

2)
′y = (I O)(P ′

1 P ′
2)
′y =

P1y = ỹ, and W−1Z̃ ′(Z̃WZ̃ ′)−1 = [P ′
1(V

−1
11 +V −1

11 V ′
21V

−1
22·1V21V

−1
11 )−P ′

2V
−1
22·1V21V

−1
11 ]V −1

11 (L′)−1,

we have ζ̂2 = (Z̃y−a)′(Z̃WZ̃ ′)−1(Z̃y−a) = (ỹ− ã)′V −1
11 (ỹ− ã), where ã = (L′)−1a. Further-

more, we have ζ̂2 = (ỹ−ã)′(ỹ−ã)ω from the definition of ω, and setting V22·1 = V22−V21V
−1
11 V ′

21,

we have

W−1Z̃ ′(Z̃WZ̃ ′)−1 = P ′V −1PZ̃ ′(Z̃WZ̃ ′)−1 = P ′V −1




L

O


L−1V −1

11 (L′)−1

= [P ′
1(V

−1
11 + V −1

11 V ′
21V

−1
22·1V21V

−1
11 )− P ′

2V
−1
22·1V21V

−1
11 ]V −1

11 (L′)−1.

Thus, we have

r(ζ̂2)

ζ̂2
y′W−1Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a)

=
r(ζ̂2)

ζ̂2

[
ỹ′(V −1

11 + V −1
11 V ′

21V
−1
22·1V21V

−1
11 )− y′P ′

2V
−1
22·1V21V

−1
11

]
V −1

11 (ỹ − ã). (3.9)

Let vec(X) denote the operation that stacks the columns of a matrix X into a vector. Since

V11 ∼ W`(N − 1, I/N), vec(V −1/2
11 V ′

21) ∼ N`×(p−`)(0, I/N), and V22·1 ∼ Wp−`(N − `− 1, I/N),

and they are all independent (cf., Muirhead 1982, Theorem 3.2.10), we have the expectation of

the second term of Equation (3.9) as

E

{
r(ζ̂2)

ζ̂2

[
−y′P ′

2V
−1
22·1E(V21V

−1/2
11 )V −1/2

11

]
V −1

11 (ỹ − ã)

}
= 0.

Denote the column vectors of V
−1/2
11 V12 by vj , j = 1, 2, . . . , p − `, then vj , j = 1, 2, . . . , p − `

are all independently normally distributed with mean 0 and covariance matrix I/N . Since

E[V −1
22·1] = N(N −p−2)−1I and E[V −1/2

11 V12V
′
12V

−1/2
11 ] = E[

∑p−`
h=1 v`v

′
`] = (p− `)N−1I, we have
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the expression of the expectation of the first term of Equation (3.9) as

E

{
r(ζ̂2)

ζ̂2
ỹ′

{
V −1

11 + V
−1/2
11 E[V −1/2

11 V ′
21E[V −1

22·1]V21V
−1/2
11 ]V −1/2

11

}
V −1

11 (ỹ − ã)

}

=
N − `− 2
N − p− 2

E

[
r(ζ̂2)

ζ̂2
ỹ′V −2

11 (ỹ − ã)

]
.

Lemma 3.2. Let α be a non-random ` × 1 vector. If the expectation of each term of the

following equations exists, then

(i) E

[
r((ỹ − ã)′V −1

11 (ỹ − ã))
(ỹ − ã)′V −2

11 (ỹ − ã)
(ỹ − ã)′V −1

11 (ỹ − ã)

]
=

N − 2
N − `− 1

E
[
r((ỹ − ã)′(ỹ − ã)ω)ω

]
,

(ii) E

[
r((ỹ − ã)′V −1

11 (ỹ − ã))
α′V −2

11 (ỹ − ã)
(ỹ − ã)′V −1

11 (ỹ − ã)

]

=
N − 2

N − `− 1
E

[
r((ỹ − ã)′(ỹ − ã)ω)

α′(ỹ − ã)ω
(ỹ − ã)′(ỹ − ã)

]
,

(iii) E

[
r((ỹ − ã)′V −1

11 (ỹ − ã))
α′V −1

11 (ỹ − ã)
(ỹ − ã)′V −1

11 (ỹ − ã)

]

= E

[
r((ỹ − ã)′(ỹ − ã)ω)

α′(ỹ − ã)
(ỹ − ã)′(ỹ − ã)

]
,

(iv) E

[
r((ỹ − ã)′V −1

11 (ỹ − ã))2
(ỹ − ã)′V −2

11 (ỹ − ã)
[(ỹ − ã)′V −1

11 (ỹ − ã)]2

]

=
N − 2

N − `− 1
E

[
r((ỹ − ã)′(ỹ − ã)ω)2

(ỹ − ã)′(ỹ − ã)

]
.

Proof. We can show (i) through (iv) by applying arguments similar to the proofs of Lemma 2.1

in Section 2.4.1 of Chapter 2.

Lemma 3.3. Let r(·) be differentiable, and denote its derivative by r′(·). If the expectation of

each term of the following equations exists, then

(i) (N − `− 2)E
[
r((ỹ − ã)′(ỹ − ã)ω)ω

]

= NE
[
r((ỹ − ã)′(ỹ − ã)ω)

]
+ 2E

[
r′((ỹ − ã)′(ỹ − ã)ω)(ỹ − ã)′(ỹ − ã)ω2

]
,
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(ii) E

[
r((ỹ − ã)′(ỹ − ã)ω)

(η̃ − ã)′(ỹ − ã)
(ỹ − ã)′(ỹ − ã)

]

= E
[
r((ỹ − ã)′(ỹ − ã)ω)

]− 2
N

E
[
r′((ỹ − ã)′(ỹ − ã)ω)ω

]

−`− 2
N

E

[
r((ỹ − ã)′(ỹ − ã)ω)

(ỹ − ã)′(ỹ − ã)

]
.

Proof. We can show (i) and (ii) by applying arguments similar to the proofs of Lemma 2.2 in

Section 2.4.1 of Chapter 2.

Using Lemmas 3.1 through 3.3, we evaluate the expected loss given by Equation (3.8). Using

Lemmas 3.1, 3.2 (i), 3.2 (ii), and 3.3 (i), the expectation of the first term of Equation (3.8) is

written as

E

[
r(ζ̂2)

ζ̂2
y′W−1Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a)

]

=
N − `− 2
N − p− 2

{
E

[
r(ζ̂2)

ζ̂2
(ỹ − ã)′V −2

11 (ỹ − ã)

]
+ E

[
r(ζ̂2)

ζ̂2
ã′V −2

11 (ỹ − ã)

]}

=
(N − `− 2)(N − 2)

(N − p− 2)(N − `− 1)

{
E

[
r(ζ̂2)ω

]
+ E

[
r(ζ̂2)

a′(ỹ − ã)ω
(ỹ − ã)′(ỹ − ã)

]}

=
(N − 2)

(N − p− 2)(N − `− 1)

×
{

NE[r(ζ̂2)] + 2E[r′(ζ̂2)(ỹ − ã)′(ỹ − ã)ω2] + (N − `− 2)E
[
r(ζ̂2)

ã′(ỹ − ã)ω
(ỹ − ã)′(ỹ − ã)

]}
.

From Lemmas 3.2 (iii) and 3.3 (ii), we have the expectation of the second term of Equation

(3.8) as

E

[
r(ζ̂2)

ζ̂2
η′Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a)

]
= E

[
r(ζ̂2)

ζ̂2
η̃′V −1

11 (ỹ − ã)

]
= E

[
r(ζ̂2)

η̃′(ỹ − ã)
(ỹ − ã)′(ỹ − ã)

]

= E[r(ζ̂2)]− 2
N

E[r′(ζ̂2)ω]− `− 2
N

E

[
r(ζ̂2)

(ỹ − ã)′(ỹ − ã)

]
+ E

[
r(ζ̂2)

ã′(ỹ − ã)
(ỹ − ã)′(ỹ − ã)

]
.

Finally, using the fact that (Z̃WZ̃ ′)−1Z̃Z̃ ′(Z̃WZ̃ ′)−1 = L−1V −2
11 (L′)−1 and Lemma 3.2 (iv), we
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have the expectation of the third term of Equation (3.8) as

E




(
r(ζ̂2)

ζ̂2

)2

(Z̃y − a)′(Z̃WZ̃ ′)−1Z̃Z̃ ′(Z̃WZ̃ ′)−1(Z̃y − a)




= E




(
r(ζ̂2)

ζ̂2

)2

(ỹ − ã)′V −2
11 (ỹ − ã)


 =

N − 2
N − `− 1

E

[
r(ζ̂2)2

(ỹ − ã)′(ỹ − ã)

]
.

Therefore, we have the expectation of the loss difference given in Equation (3.8) as

2τE[∆L] = 2c
(

c
N(N − 2)

(N − p− 2)(N − `− 1)
− 1

)
E[r(ζ̂2)] (3.10)

+ 2c
`− 2
N

E

[
r(ζ̂2)

(ỹ − ã)′(ỹ − ã)

]
− c2 N − 2

N − `− 1
E

[
r(ζ̂2)2

(ỹ − ã)′(ỹ − ã)

]

+ 2c2 (N − `− 2)(N − 2)
(N − p− 2)(N − `− 1)

E

[
r(ζ̂2)

ã′(ỹ − ã)ω
(ỹ − ã)′(ỹ − ã)

]

− 2cE

[
r(ζ̂2)

ã′(ỹ − ã)
(ỹ − ã)′(ỹ − ã)

]
+ C,

where

C = 2c2 2(N − 2)
(N − p− 2)(N − `− 1)

E[r′(ζ̂2)(ỹ − ã)′(ỹ − ã)ω2] +
4c

N
E[r′(ζ̂2)ω] ≥ 0.

First, we consider the case in which a = 0. We show that if

c ≥ (N − `− 1)(N − p− 2)N−1(N − 2)−1 and 0 ≤ r(ζ̂2) ≤ 2(`− 2)(N − p− 2)−1,

ŵSZ(c; x̄, S) improves upon ŵC(c; x̄, S). We see that the fourth and fifth terms on the right-

hand side of Equation (3.10) are zero when a = 0. Note that since both r(ζ̂2) and −1/(ỹ′ỹ) are

non-decreasing functions of ỹ′ỹ, E[−r(ζ̂2)/(ỹ′ỹ)] ≤ E[r(ζ̂2)] E[−1/(ỹ′ỹ)] (cf., Lehmann and

Casella 1998, Lemma 6.6). Thus, we have

E

[(
2
`− 2
N

− c
N − 2

N − `− 1
r(ζ̂2)

)
r(ζ̂2)
ỹ′ỹ

]

≥ E

[(
2
`− 2
N

− c
N − 2

N − `− 1
2(`− 2)

N − p− 2

)
r(ζ̂2)
ỹ′ỹ

]

≥ 2
`− 2
N

(
c

N(N − 2)
(N − `− 1)(N − p− 2)

− 1
)

E
[
r(ζ̂2)

]
E

[
− 1

ỹ′ỹ

]
.
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Thus, we have

2τE [∆L] ≥ 2c

(
c

N(N − 2)
(N − `− 1)(N − p− 2)

− 1
)(

1− `− 2
N

E

[
1

ỹ′ỹ

])
E

[
r(ζ̂2)

]
.

Since N ỹ′ỹ has the non-central χ2 distribution with ` degrees of freedom and non-centrality

parameter µ′Σ−1/2P ′
1P1Σ−1/2µ, we have E[(ỹ′ỹ)−1] = E[N(`−2+2X)−1], where X is a random

variable having the Poisson distribution with mean (N/2)µ′Σ−1/2P ′
1P1Σ−1/2µ. Thus, we see

that 2τE [∆L] ≥ 0. Note that from the expression of the risk function of ŵC(c; x̄, S) (cf., Kan

and Zhou 2007, Equation (23)), the risk of ŵC is finite if N > p+4, and that this condition is also

necessary for the finiteness of the risk of ŵS . Furthermore, we see that the risk of ŵC(c1; x̄, S)

is larger than that of ŵC(c2; x̄, S) when c1 > c2 ≥ (N − p − 1)(N − p − 4)N−1(N − 2)−1.

Therefore, when we allow c in ŵC(c; x̄, S) and ŵSZ(c; x̄, S) to take different values and set

them as cc and cs, respectively, we see that if cc ≥ cs ≥ (N − p− 1)(N − p− 2)N−1(N − 2)−1,

ŵSZ(cs; x̄, S) improves upon ŵC(cc; x̄, S). Thus, we have Theorem 3.1.

Next, we consider the case in which a 6= 0. The sum of the fourth and fifth terms of

Equation (3.10) is written as

2c2 (N − `− 2)(N − 2)
(N − p− 2)(N − `− 1)

E

[
r(ζ̂2)

ã′(ỹ − ã)
(ỹ − ã)′(ỹ − ã)

(
c

(N − `− 2)(N − 2)ω
(N − p− 2)(N − `− 1)

− 1
)]

.

Since ỹ and ω are independent and E[ω] = N(N − ` − 2)−1, we can easily see that the sum

of the fourth and fifth terms is zero when c = (N − ` − 1)(N − p − 2)N−1(N − 2)−1 and

r(·) = const. From arguments similar to those presented for the case in which a = 0, we

see that sum of the first, second, and third terms of Equation (3.10) is non-negative when

0 ≤ r(ζ̂2) ≤ 2(`− 2)(N − p− 2)−1, and thus we have Theorem 3.2.

3.4.2. Proof of Theorem 3.3

First, we show that the condition R(A) ∩ R(B) = {0} guarantees that B′F1(A, S)B is non-

singular. Let Q′ = (Q′
1, Q′

2) be the orthogonal matrix defined by Equation (3.3). Since rank
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(B′F1(A,S)B) = rank (Q2B), B′F1(A,S)B is non-singular if and only if rank (Q2B) = rank B.

In general, rank (XY ) = rank Y if and only if N (X) ∩R(Y ) = {0}. Since N (Q2) = R(Q′
1) =

R(A), we see that rank (Q2B) = rank B if and only if R(A) ∩R(B) = {0}.

Next, assuming R(A) ∩ R(B) = {0}, we give the expression of the loss difference between

ŵC,A(c; x̄, S) and ŵSB,A(c; x̄, S) under the loss function given in Equation (1.2). Then, we

obtain the loss difference as

2τ∆L =2c
r(ξ̂2

F1
)

ξ̂2
F1

[cΣF1(A,S)x̄− µ]′ F1(A,S)(I −RF1)x̄

− c2

(
r(ξ̂2

F1
)

ξ̂2
F1

)2

x̄′(I −RF1)
′F1(A,S)ΣF1(A,S)(I −RF1)x̄

+ 2τc
r(ξ̂2

F1
)

ξ̂2
F1

x̄′(I −RF1)
′F1(A,S)ΣF2(A,S)b. (3.11)

Since F1(A,S)ΣF2(A,S) = Σ−1/2F1(Σ−1/2A, W )F2(Σ−1/2A,W ), we can show that the expec-

tation of the third term of Equation (3.11) is 0 by an argument similar to that used in the

proof of Lemma 5.2 of Mori (2004). Thus, we evaluate only the expectation of the first and

second terms of Equation (3.11). Setting U22 = Q2SQ′
2, we have F1(A,S) = Q′

2U
−1
22 Q2 and

F1(A,S)(I − RF1) = (I − RF1)
′F1(A,S) = Q′

2F1(Q2B,U22)Q2. Therefore, setting y∗ = Q2x̄

and η∗ = Q2µ, the first and second terms of Equation (3.11) are written as

2c
r(ξ̂2

F1
)

ξ̂2
F1

[
c(Q2ΣQ′

2)U
−1
22 y∗ − η∗

]′
F1(Q2B, U22)y∗

− c2

(
r(ξ̂2

F1
)

ξ̂2
F1

)2

(y∗)′F1(Q2B, U22)(Q2ΣQ′
2)F1(Q2B, U22)y∗, (3.12)

and ξ̂2
F1

= x̄′(I −RF1)
′F1(A,S)(I −RF1)x̄ = (y∗)′F1(Q2B, U22)y∗. Choosing a matrix Z∗ that

satisfies the conditionN (Z∗) = R(Q2B), we have U
−1/2
22 Q2B[B′Q′

2U
−1
22 Q2B]−1B′Q′

2U
−1/2
22 = I−

U
1/2
22 (Z∗)′ [Z∗U22(Z∗)′]−1Z∗U1/2

22 , and thus we see that F1(Q2B, U22) = (Z∗)′[Z∗U22(Z∗)′]−1Z∗.
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Therefore, Equation (3.12) is written as

2c
r(ξ̂2

F1
)

ξ̂2
F1

[
cU−1

22 y∗ − (Q2ΣQ′
2)
−1η∗

]
(Q2ΣQ′

2)(Z
∗)′[Z∗U22(Z∗)′]−1Z∗y∗

− c2

(
r(ξ̂2

F1
)

ξ̂2
F1

)2

(y∗)′(Z∗)′[Z∗U22(Z∗)′]−1Z∗(Q2ΣQ′
2)(Z

∗)′[Z∗U22(Z∗)′]−1Z∗y∗, (3.13)

and ξ̂2
F1

= (y∗)′(Z∗)′[Z∗U22(Z∗)′]−1Z∗y∗. Since, independently, y∗ ∼ N(η∗, Q2ΣQ′
2/N) and

U22 ∼ Wp−q(N − 1, Q2ΣQ′
2/N), we see that the first and second terms of Equation (3.13) are

of essentially the same form as in Equation (3.7). Therefore, from Theorem 3.1, we obtain

Theorem 3.3. Here, note that if N > max(p + 1, p − q − 4), the risk of ŵC,A(c; x̄, S) is finite

and that this condition is also necessary for the finiteness of the risk of ŵSB,A(c; x̄, S).
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Chapter 4

Concluding Remarks

We have evaluated analytically the Stein-type estimators for the mean-variance optimal portfolio

weights when the covariance matrix is unknown and is estimated by the sample estimator. Mori

(2004) demonstrated analytically a dominance result of a Stein-type estimator for the mean-

variance optimal portfolio weights, which shrinks toward the origin. However, we have presented

dominance results for a broader class of estimators. Furthermore, we have also presented the

dominance results of the estimators that shrink toward an arbitrary fixed point and a linear

subspace. From these dominance results, we have clarified the conditions for the estimators

proposed previously to have smaller risks than the classical estimator. We have also presented

general dominance results for the case in which there are linear constraints on portfolio weights,

as discussed by Mori (2004).

In Chapter 2, we have considered the estimators that shrink toward the origin or a fixed

point. We have found that the conditions for the shrinkage estimators to have smaller risks

than the classical estimator differs from that for the Stein-type estimators of the mean vector.

Although the condition p > 2 on the number of risky assets p is common, the range of the

function r(·) in the shrinkage estimators is wider than that for the Stein-type estimators of

the mean vector. We have demonstrated that some previously proposed estimators belong to
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our class and have clarified the conditions for the estimators to dominate the classical estima-

tor. Furthermore, we have proposed a new estimator that uses a prior information concerning

the Sharpe ratio and have shown that the estimator has a much smaller risk than the classi-

cal estimator when the true value of the Sharpe ratio is close to that suggested by the prior

information.

In Chapter 2, we have also given the dominance results for the case with linear constraints

on portfolio weights. In this case, the Stein-type estimators dominate the classical estimator

when p > q + 2 and 0 ≤ rA(·) ≤ 2(p− q − 2)(N − p + q − 2)−1, where q is the number of linear

constraints and N is the number of observations. Therefore, we have found that when there

are linear constraints, the effective range of the number of risky assets and the function r(·) is

narrower than that for the case with no constraints.

In Chapter 3, we have presented the dominance results for the estimators that shrink toward

a linear subspace and have obtained the conditions for Black and Litterman’s (1992) estimator,

Jorion’s (1986) Bayes-Stein estimator, and Kan and Zhou’s (2007) three-fund rule estimator

to have smaller risks than the classical estimator. To apply Black and Litterman’s estimator

effectively, we need a pertinent prior distribution of the mean vector. However, in practice, it

is difficult for portfolio managers to construct a reasonable prior distribution. It is expected

that results presented in the present thesis will be helpful for portfolio managers to determine

parameters in the prior distribution. Although Jorion’s Bayes-Stein estimator is very popular

in finance, there have been no studies that have addressed its effectiveness analytically. Since

this estimator belongs to the proposed class of estimators that shrink toward a linear subspace,

we have found the conditions for this estimator to have smaller risk. Kan and Zhou (2007)

proposed the three-fund rule estimator, which is a shrinkage estimator toward the grand mean.

Although its form is somewhat complicated, we have also presented the dominance result for

this estimator. Kan and Zhou (2007) anticipated that the risk of the three-fund rule estimator
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is smaller than that of the two-fund rule estimator. Note, however, that if the true optimal

portfolio weights of risky assets are close to 0, then the two-fund rule estimator performs better

than the three-fund rule estimator.

In the present thesis, we have studied not only the case with no constraints on the portfolio

weights but also the case with linear constraints on portfolio weights. However, in practice,

constraints other than linear equality constraints may be imposed on portfolio weights, such as

linear inequality constraints on portfolio weights or an upper bound constraint on the variance

of the optimal portfolio. The Stein-type estimators obtained for the case with no constraints

or the case with linear constraints may not be effective when there are constraints other than

linear equality constraints. Thus, better estimators should also be explored for these cases.

In the present thesis, we have estimated the covariance matrix by the sample covariance

matrix. However, Ledoit and Wolf (2003, 2004), Jorion (1986), Frost and Savarino (1986), and

Jobson, Korkie, and Ratti (1979) have adopted another type of estimator for the covariance

matrix. Recently, Ledoit and Wolf’s (2003, 2004) estimators have been applied in numerous

studies in the finance literature. However, their estimators are not intended to improve under the

loss function used in the estimation problem of the optimal portfolio weights. The effectiveness

of these estimators has also been shown only by numerical simulations or empirical studies. We

should address the problem of improving the classical estimator by using such estimators of the

covariance matrix.

Finally, we note that the results of the present thesis have been obtained under the normality

and independence assumptions. These assumptions are rather restrictive, and we hope that

similar results will be obtained for a broader class of distributions.
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