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Abstract

Radiologists diagnose emphysema based on the pulmonary function tests results and visual

recognition of the computed-tomography (CT) images of the lung. Based on the CT images,

radiologists have to imagine the three-dimensional visual representation of the distribution of

emphysema in the lung. Accuracy of the diagnosis depends significantly on the radiologist’s

experience and skill. Therefore, manual diagnosis of emphysema is subjective and laborious.

Classical CT-based methods for measuring emphysema include the pixel index (PI), the

mean lung density method (MLD), the bullae (a bulla is a continuous low attenuation area in

the CT) index (BI) and texture-based methods. However, these methods are subject to some

limitations. The goal of this research is to devise more effective and expressive emphysema

describing features. Three methods are proposed to describe the severity and distribution of

emphysema. The proposed methods complement the existing set of emphysema describing

features contributing to a more informative diagnosis of emphysema. A diagnostic tool that

encompasses all the proposed methods is implemented using graphical user interface.

The goal of the first method is to produce a more practical emphysema-quantification

algorithm that has higher correlation with the parameters of pulmonary function tests com-

pared to the classical methods. The use of the threshold range from approximately –900

Hounsfield Unit to –990 Hounsfield Unit for extracting emphysema from CT has been re-

ported in many papers. However, in this research, correlation analyses between PIs cal-

culated based on different thresholds and the parameters of pulmonary function tests show

that a threshold which is optimal for a particular CT data set might not be optimal for
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the other CT data sets due to the subtle radiographic variations in the CT images. Conse-

quently, the author proposes a multi-threshold method that utilizes ten thresholds between

and including –900 Hounsfield Unit and –990 Hounsfield Unit for identifying the different

potential emphysematous regions in the lung. Subsequently, the author divides the lung

into eight sub-volumes. From each sub-volume, the author calculates the ratio of the voxels

with intensity below a certain threshold. A total of ten thresholds are used. The respective

ratios of the voxels below the ten thresholds are employed as the features for classifying

the sub-volumes into four emphysema severity classes. Neural network is used as the clas-

sifier. The neural network is trained using 80 training sub-volumes. The performance of

the classifier is assessed by classifying 248 test sub-volumes of the lung generated from 31

subjects. Actual diagnoses of the sub-volumes are hand-annotated and consensus-classified

by radiologist. The four-class classification accuracy of the proposed method is 89.82%. The

sub-volumetric classification results produced in this study encompass not only the informa-

tion of the local emphysema severity but also the emphysema distribution from the top to the

bottom of the lung. The author hypothesizes that besides emphysema severity, the distribu-

tion of emphysema severity in the lung also plays an important role in the assessment of the

overall functionality of the lung. The author confirms his hypothesis by showing that the

proposed sub-volumetric classification results correlate with the parameters of pulmonary

function tests better than the classical methods. The author also visualizes emphysema us-

ing a technique called the transparent lung model that enables medical experts to observe

the distribution of emphysema inside the lung from any orientation.

Features generated from the former texture-based methods are not expressive for de-

scribing emphysema. Thus, the author proposes a method called low attenuation gap length

matrix (LAGLM) to produce features that are more closely related to the definition of em-

physema. The LAGLM method is inspired by but different from the former texture-based

methods. Features generated from the LAGLM method are more relevant to emphysema

and therefore easier to interpret. The LAGLM method is used to classify the regional
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radiographic lung regions into four emphysematous patterns distinguishing, in particular,

radiographic patterns that imply obvious or subtle bullous emphysema from those that im-

ply diffuse emphysema or minor destruction of airway walls. Neural network is used for

discrimination.

Classical methods including the former texture-based methods are not expressive for

describing the distribution of bullae in the lung. Consequently, the author proposes an

emphysema describing index called bullae congregation index (BCI) that describes whether

bullae gather in a specific area of the lung and form a nearly single mass, and if so, how

dense the mass of bullae is in the lung. The BCI is calculated based on the relative distance

between every pair of bullae and the sizes of bullae in the lung. The BCI ranges from

zero to ten corresponding to sparsely distributed bullae to densely distributed bullae. Four

bullae congregation classes are defined based on the BCI. The BCI is especially useful for

comparing the distribution of bullae for cases with approximately the same PI, BI or PI

and BI.
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Chapter 1

Introduction

1.1 Computed tomography

X-ray imaging is a transmission-based technique in which X-rays from a source pass through

the patient and are detected either by film or an ionization chamber on the opposite side

of the body [1]. Contrast in the image between different tissues arises from differential

attenuation of X-rays in the body. For example, X-ray attenuation is particularly efficient

in bone, but less so in soft tissues. X-ray attenuation is usually measured in Hounsfield Unit

(HU). The HU scale is a linear transformation of the original linear attenuation coefficient

measurement into one in which the radiodensity of distilled water at standard pressure and

temperature is defined as zero HU [1, 2]. Table 1.1 shows the HU of common substances from

the low to high attenuation substance. In planar X-ray radiography, the image produced is a

simple two-dimensional projection of the tissues lying between the X-ray source and the film.

Planar X-ray radiograph is used for a number of different purposes: intravenous pyelography

to detect diseases of the genitourinary tract including kidney stones; abdominal radiography

to study the liver, bladder, abdomen, and pelvis; chest radiography for diseases of the lung

and broken ribsl and X-ray fluoroscopy (in which images are acquired continuously over

a period of several minutes) for a number of different genitourinary and gastrointestinal

1
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Table 1.1: The HU of common substances.

Substance Hounsfield Unit (HU)

Air –1000

Fat –120

Water 0

Muscle +40

Contrast +130

Bone +400

diseases [1].

Planar X-ray radiography of overlapping layers of soft tissue or complex bone structures

can often be difficult to interpret, even for a skilled radiologist. In theses cases, X-ray

computed tomography (CT) is used. The basic principles of CT are shown in Fig. 1.1

[1]. The X-ray source is tightly collimated to interrogate a thin “slice” through the patient.

The source and detectors rotate together around the patient, producing a series of one-

dimensional projections at a number of different angles. These data are reconstructed to

give a two-dimensional image, as shown on the right of Fig. 1.1. CT images have a very high

spatial resolution (∼1mm) and provide reasonable contrast between soft tissues. The major

disadvantage of both X-ray and CT imaging is the fact that the technique uses inoizing

radiotion. Because ionizing radiation can cause tissue damage, there is a limit on the total

radiation dose per year to which a patient can be subjected [1].

Figure 1.2 shows an example of a CT image of the lung.

1.2 Emphysema

Chronic Obstructive Pulmonary Disease (COPD) is a respiratory disorder most commonly

caused by smoking. COPD involves progressive airway obstruction with breathlessness,
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X-ray detectors

X-ray source

Fig. 1.1: (Left) The principle of computed tomography with an X-ray source and detector

unit rotating synchronously around the patient. Data are essentially acquired continuously

during rotation. (Right) An example of the single-slice CT image of the brain.

Fig. 1.2: (a) An example of the CT image of the lung. The dark regions surrounded by the

bright mass in the center of the image represent the right and left lung.
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Fig. 1.3: An example of CT image with the examples of LAA outlined in red.

cough and sputum production and increasing frequency and severity of exacerbations [3].

COPD is a major cause of chronic morbidity and mortality throughout the world. Many

people suffer from this disease for years and die prematurely of it or its complications.

COPD refers to chronic bronchitis and emphysema, two commonly co-existing diseases

of the lung. Emphysema is defined histologically as the enlargement of the air spaces distal

to the terminal bronchioles, with destruction of their walls [4]. The destruction of airway

walls results in air-filled regions in the lung. These air-filled regions represent the emphyse-

matous regions. Since X-ray attenuation for air is low, the emphysematous regions appear

as continuous low-attenuation areas (LAAs) in CT image as shown in Fig. 1.3 where two

examples of LAAs are outlined in red. The appearances of LAAs in CT resemble dark holes.

An LAA is also called as a bulla [5, 6]. From the CT, three of the most important features

of LAAs are the size of LAAs, the pixel intensity of LAAs and the distribution of LAAs.

Emphysema is the physical destruction of lung tissue that results in obstruction to air

flow and development of enlarged air sacs [7, 8]. It is a smoking related disease that causes

progressive obstruction of the airways and destruction of lung tissue. Because the airway
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is obstructed, more energy is required to ventilate the lung. The patient will experience

shortness of breath, and as the disease progresses, will become progressively limited in the

ability to exercise [7].

1.3 Standard clinical diagnosis of emphysema

Spirometry (meaning the measuring of breath) [7, 8, 9, 10] is the most common of the pul-

monary function tests (PFTs). Spirometry parameters such as FEV1% predicted [Forced

Expiratory Volume in One Second (FEV1) divided by Forced Vital Capacity (FVC)] and

FEV1 (see Table A.3 in Appendix A.4) are often used as the guidelines for classifying em-

physema severity into five classes (see Table A.4 in Appendix A.5). Radiologists usually

diagnose emphysema based on the following four aspects:

1. Pulmonary function tests (PFTs) results.

2. Visual recognition of the radiographic patterns of emphysema in CT images.

3. Presence of chronic respiratory symptoms.

4. Medical knowledge about emphysema.

The following features are observed when radiologists recognize emphysema visually from

the lung CT:

1. Regional radiographic emphysematous patterns (micro observation).

2. Bullae sizes.

3. Bullae distribution in the lung (macro observation).

However, radiographic patterns observed from CT images are often varied and subtle and

that human observer does not usually see early abnormal lung pathology on CT images [11].

Since it is extremely laborious and time-consuming to examine all CT images in the patient’s
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data set, radiologists usually diagnose emphysema severity by gathering information from

just a few CT images that originate from the top, middle and bottom of the lung alongside

extensive reference to PFTs results augmented by medical knowledge. Most of the time,

radiologists have to imagine the distribution of emphysema severity over the entire lung in

three dimensions based on the mere 2D information gathered from a few CT slices. The

problems that arise from this standard practice of diagnosis are elaborated as follows.

1. The best tests for determining the presence of emphysema and managing its response

to treatment are PFTs. The gold standard test is spirometry. Spirometry test measures

the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled [9].

However, the maneuver of spirometry test is highly dependent on patient’s cooperation

and effort, and is normally repeated at least three times to ensure reproducibility. Since

spirometry test results are dependent on patient’s cooperation, the test values: FEV1

and FVC, can only be underestimated, never overestimated. Hence, review of just the

PFT’s parameters is not sufficient for an accurate diagnosis of emphysema.

2. There is always a possibility that radiologists might miss the CT slices where the

significant emphysematous destructions are located.

3. Accurate examination of CT images requires experience. Consequently, the variance

of accuracy between the diagnosis produced by an experienced radiologist and that

produced by an unexperienced radiologist can not be ignored.

Automated computer aided diagnosis of emphysema [12] is in demand because it helps

medical experts verify their findings and thus shorten the time and labor involved in the

diagnosis. Nowadays, researchers are making effort to devise not only new emphysema

describing indices and but new computer graphics that are more expressive and easy to

interpret to assist medical experts to achieve objective, accurate and informative diagnosis

of emphysema. The following are brief introductions of the classical methods and the author’s

proposed methods for diagnosing emphysema.
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1.4 Classical computer aided diagnosis of emphysema

Classical CT-based methods for quantifying emphysema include:

1. Pixel Index (PI).

2. Mean Lung Density (MLD).

3. Bullae Index (BI).

4. Texture-based methods.

5. Other approaches.

Among these methods, two of the most widely used methods for evaluating emphysema

severity are PI and BI. This is because these two emphysema describing indices are more

direct and easier to interpret.

1.4.1 Pixel Index (PI)

Many papers have proposed objective methods of quantification of emphysema by focusing on

the overall lung density histogram (number of pixels falling below a threshold) [13, 14, 15] in

the image. One of the most widely used classical CT-based methods for assessing emphysema

severity is PI. Figure 1.4 shows an example of the histogram of the lung area in the CT

image. PI represents the percentage of lung area that has pixel values lower than a certain

limit value [14]. Pixels below the limit are thought to be the air-filled regions [16] in the lung

and therefore represent the emphysematous regions. Continuous pixels below the limit are

considered as low attenuation areas (LAAs). LAAs represent the emphysematous lesions in

the CT. Consequently, PI describes the amount of air presented in the CT and thus detects

the extent of emphysematous lesions [15].

The advantage of PI is that it is a simple and direct emphysema describing index that

is easy to calculate and interpret. However, PI is susceptible to the problems of averaging
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Fig. 1.4: An example of the histogram of the lung area in the CT image.

effect [6]. For instance, PI of a lung with a large number of small-sized diffuse LAAs might

approximate that of a lung with a small number of big-sized LAAs. As a result, PI is unable

to discriminate the different sizes of bullae and the distribution of bullae in the CT. It is just

a general emphysema describing index that indicates the extent of emphysema severity.

1.4.2 Mean Lung Density (MLD)

MLD [17, 18, 19] represents the fifth or tenth percentile of the CT histogram data [20, 21].

Higher MLD indicates more severe emphysema. MLD is also an index that indicates em-

physema severity. It is unable to discriminate the different sizes of bullae and the distribution

of bullae.

1.4.3 Bullae Index (BI)

Bullae∗ index proposed by Blechschmidt [6], is derived by extending PI so that it is enabled

to differentiate between small, medium, and large bullae. Blechschmidt sorted bullae into

four size classes [22] and calculated how much area the different classes take up of all low-

∗Bullae are continuous low-attenuation areas in CT image. They represent the air-filled regions in the

lung. Bullae are regarded as emphysematous lesions.
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attenuation pixels in the lung region. BI is not a texture-based method. BI proposed by

Blechschmidt [6] used –930 HU as the threshold for extracting bullae. The calculation of BI

is described as follows:

BI = (
g2 + 2 × g3 + 3 × g4

2.4
), (1.1)

where

g2 =











PARC2 : 0 ≤ PARC2 ≤ 4,

4 : PARC2 > 4,

(1.2)

g3 =











PARC3 : 0 ≤ PARC3 ≤ 4,

4 : PARC3 > 4,

(1.3)

g4 =











PARC4 : 0 ≤ PARC4 ≤ 4,

4 : PARC4 > 4,

(1.4)

and

PARCk =
Area of bullae of size class k

Area of lung
× 100. (1.5)

k = 1, 2, 3 and 4, and PARCk equals the percentage of bullae of size class k. The bigger

the size class, the larger the bullae size range. Definition about the size class is usually

provided by radiologists based on the radiologist’s experience and knowledge. The 2D bullae

size classes proposed by Blechschmidt are: class 1: d ≤2.5mm, class 2: 2.5mm< d ≤5mm,

class 3: 5mm< d ≤7.1mm, and class 4: d > 7.1mm where d refers to the average diameter

of bulla. BI ranges from zero to ten, corresponding to no emphysema bullae to many

emphysema bullae in all size classes, respectively. BI applies higher weight for bigger sized

bullae as shown in Eq. (1.1). The weights are manually determined based on a particular

CT data set [6] and are fixed values.
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By inferring mathematically from Eq. (1.1), the author noticed that the calculation of

BI is susceptible to averaging effect. For instance, let us consider the following two cases:

1. A case with very high g2 coupled with very low g3 and g4.

2. A case with very low g2 coupled with low g3 and/or low g4.

The first case is likely to be diffuse emphysema which is less severe, even if the affected

areas are large, compared to the second case which is probably characterized by slightly

bullous emphysema. However, owing to averaging effect, it is possible that BI of the first

case approximates that of the second case. As a result, BI is unable to discriminate the

difference between these kinds of cases.

Besides BI, Blechschmidt [6] also introduced another emphysema describing index named

emphysema type (ET ). ET defines the relation of large emphysema bullae (PARC4) to small

emphysema bullae (PARC2). It varies from -1 to +1, corresponding to nonbullous type to

bullous type, respectively. The calculation of ET is shown as follow:

ET =











PARC4 − PARC2

s
: s > 1%,

not calculated : s ≤ 1%,

(1.6)

where

s =
4

∑

i=2

PARCi. (1.7)

1.4.4 Texture-based methods

Texture-based approach using image classification with evolutionary programming invented

by Uppaluri [23, 24] quantifies emphysema by detecting the radiographic texture in the lung

CT. Texture-based methods include the Spatial Gray Level Dependence Matrix (SGLDM),

Gray Level Gap Length Matrix (GLGLM), Gray Level Run Length Matrix (GLRLM) and

Gray Level Difference Matrix (GLDM) [25, 26, 27, 28, 29, 30, 31]. Xu et al [11] proposed
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multi-detector-CT-based 3D textures to classify the lung in the CT slice region-by-region

using Adaptive Multiple Feature Method (AMFM). Texture-based methods coupled with

evolutionary programming is a potential method for quantifying the radiographic patterns

of emphysema. However, these methods are computationally costly. Moreover, it is very hard

to find a generic texture feature subset for the quantification of emphysema [11, 32, 33]. This

is because a selected texture feature subset which is useful for the CT data set A might not be

useful for the CT data set B. These drawbacks encourage researchers to devise features that

are easier to interpret and correspond more closely to the particular radiographic patterns of

emphysema. The theories and calculations of SGLDM, GLGLM, GLRLM and GLDM are

illustrated in Appendix A.1.

1.4.5 Other approaches

Cederlund et al [34] devised a 2D-based method to indicate the heterogeneity of lung. The

method plotted the graph of emphysema index for 10 CT slices taken from the upper to

the lower lobe of the lung with 20mm of separation between each slice and the slope of the

best-fit line for the graph was proposed to be an indicator of the heterogeneity of the lung,

such as heterogeneous emphysema with upper lobe predominance, heterogeneous emphysema

with lower lobe predominance, intermediately heterogeneous emphysema and homogeneous

emphysema [34, 35]. Besides, measurement of airway dimensions for assessing emphysema

severity is reported in [36, 37, 38, 39].



Chapter 2

The Proposed System and

Pre-Processing

2.1 The proposed computer aided diagnostic system

The ultimate goal of this research is to produce a more informative diagnosis of emphysema

by devising new emphysema describing features. In order to achieve the goal, three methods

are invented. The methods are encompassed in the proposed computer aided diagnostic

system as shown in Fig. 2.1. The system allows user to assess both regional and total

emphysema severity in the lung. Besides, it also analyzes the distribution of emphysema

severity from the top to the bottom of the lung in a sub-volumetric-classification framework.

In addition, visual aids in both two and three dimensions are provided to assist radiologists to

verify their diagnoses. The system is also equipped with algorithms for navigating CT slices

in different planes and identifying emphysema severity in the CT slice based on different

colors.

Radiologists recognize the following features when performing a manual CT-based diag-

nosis of emphysema:

1. The different regional radiographic emphysema patterns in the lung CT [40].

12
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Fig. 2.1: The graphical user interface of the computer aided diagnosis of emphysema produced in this research.
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2. The sizes of bullae.

3. The 2D and 3D distribution of bullae in the lung [41, 42].

In this dissertation, the author proposes three efficient methods to create new emphysema

describing features:

1. The multi-threshold method and visualization of emphysema (see the lower left of Fig.

2.1).

2. The Low Attenuation Gap Length Matrix (LAGLM) (see the upper left of Fig. 2.1).

3. The bullae congregation index (BCI) (see the upper left of Fig. 2.1).

All three methods share the same final goal which is to further describe and/or quantify

emphysema to assist medical experts to realize more objective, thorough and informative di-

agnosis of emphysema. The proposed methods can be used in follow-up study for progressive

monitoring [43, 44] of emphysema. All algorithms in this research are written in Matlab.

2.2 Experiment data

The CT data sets of 41 subjects (29 males and 12 females) are used for the purpose of

this research. The number of CT images in each data set ranges from 80 to 258. The age

and height of the subjects are 67 ± 13 years and 164.50 ± 8.87cm, respectively. All the CT

images are captured from the transverse plane of human thorax using a General Electric

Multi-slice CT scanner. The images are provided by the Division of Pulmonary Medicine,

Department of Medicine, Keio University, Japan. The images are stored in digital image

and communications in medicine (DICOM) format and made anonymous beforehand. The

images are 16 bits in depth. The size of the images is 512 × 512 pixels. The thickness of the

CT slices ranges from 1mm to 7mm but most of the images are 1mm thick. The pixel size of

the images varies between and including 0.5918 × 0.5918mm2 and 0.7410 × 0.7410mm2. All
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the proposed algorithms in this dissertation are implemented based on the original signed

16-bit images.

2.3 Pre-processing

Pre-processing is applied to all three of the proposed methods to identify lung region(s) in

2D slices. The original DICOM images used in this research are signed 16 bits in depth. The

lung region(s) can hardly be seen in the original image as shown in Fig. 2.2(a).

To identify the lung region(s) in a 2D slice, the author first linearly converts the original

image to unsigned 8-bit representation. Pixel intensities from –1000 HU to 0 HU in the

original image are linearly converted to the range between and including 0 to 255. The

range of pixel intensities from -1000 HU to 0 HU is chosen because it includes all important

information of the substances in the lung like air, fat and water (see Table 1.1. Pixel

intensities below –1000 HU and above 0 HU are converted to 0 and 255, respectively. The

image after the linear conversion is shown in Fig. 2.2(b).

From Fig. 2.2(b), the author can visually divide the image into three different parts:

the dark borders, the bright mass that surrounds the lung regions and the lung regions. In

many images, the bright mass in the middle of the image cuts the dark border into two parts

(upper part and lower part) such as the image in Fig. 2.2(b). In order to make sure that the

upper border and the lower border of the image are connected, the author expands the left

border and the right border of the image by 10 pixels and pad the expanded areas with gray

level of zero [see Fig. 2.2(c)]. The purpose of doing this is to facilitate the process of labeling

[27] in the next step. After border expansion, the author computes the complement† of the

image. Then the author binarizes [45] the image using a threshold of 100 and finally label

[27] the image. The labeled image is shown in Fig. 2.2(d). Each white region in the labeled

†In the complement of an intensity image, each pixel value is subtracted from the maximum pixel value

supported by the class (such as 255 for unsigned 8-bit images) and the difference is used as the pixel value

in the output image.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.2: The procedure for lung region(s) identification: (a) original image, (b) image after

linear conversion of intensity, (c) image after border expansion, (d) image after intensity

complementation and binarization, (e) identified lung regions (before filling holes), and (f)

identified lung regions (after filling holes).
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image is regarded as a labeled region.

From the labeled image, the biggest labeled region is the border of the image. The area of

the image border is consistently at least twice larger than the lung region. This phenomenon

was verified using 200 randomly selected images from five subjects. If the area of the third

biggest labeled region is more than 20% of the area of the second biggest labeled region,

then the right lung region and the left lung region in the image are considered as separated.

Consequently, the union of the second and the third biggest labeled regions represents the

lung regions. Otherwise, the right lung region and the left lung region are considered as

being joined together where the second biggest labeled region represents the lung region.

The identified lung regions are shown in Fig. 2.2(e). Finally, the author fills [27] the dark

holes that are located within the lung regions. The final identified lung regions are shown

in Fig. 2.2(f). The accuracy of the lung region(s) identification procedure was successfully

verified using 2000 randomly selected transverse-plane images from 31 subjects.

Note that emphysema is represented by the air-filled regions in the lung. Since the HU of

air in CT is close to the lower end of the scale which is –1000 HU (see Table 1.1), therefore

emphysema appears as LAAs in the CT. The gray level threshold for extracting the LAAs

from CT ranges from –900 HU to –1000 HU [6, 11, 23, 24, 33, 46].



Chapter 3

Methodology 1: Multi-threshold

method

3.1 Background

The two significant factors that radiologists are considering when diagnosing emphysema

include local emphysema severity and emphysema distribution. To take into account these

two factors, the proposed method incorporates two notions: 1) multi thresholds, and 2) sub-

volumetric classification of the lung. By combining these two notions, the author managed

to meet the goal of the study which is to produce a more practical and effective emphysema-

quantification algorithm that correlates with the PFT’s parameters better than the classical

methods.

Emphysematous regions correspond to the regions in the lung where airway wall collapse.

When airway wall collapse, air-filled regions are formed. X-ray attenuation for air is low (see

Table 1.1 for the Hounsfied Unit of air). Thus, the air-filled regions appear as low-attenuation

areas (LAAs) in CT images (see Fig. 1.3). In short, emphysema is represented by LAAs

with pixel intensity towards the lower end of the Hounsfield Unit scale which is –1000 HU.

The use of the thresholds between –900 HU and –990 HU for extracting LAAs from CT

18
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Table 3.1: Correlation between PIs and the PFT’s parameters based on the CT data set A

that consists of 15 subjects.

method PFT’s parameters

FEV1% FEV1/FVC

correlation coefficient p-value correlation coefficient p-value

PI–900HU 0.3854 < 0.05 0.6392 < 0.01

PI–910HU 0.4128 < 0.05 0.6750 < 0.01

PI–920HU 0.4345 < 0.01 0.6965 < 0.01

PI–930HU 0.4483 < 0.01 0.7002 < 0.01

PI–940HU 0.4530 < 0.01 0.6866 < 0.01

PI–950HU 0.4521 < 0.01 0.6628 < 0.01

PI–960HU 0.4492 < 0.01 0.6364 < 0.01

PI–970HU 0.4444 < 0.01 0.6108 < 0.01

PI–980HU 0.4356 < 0.01 0.5867 < 0.01

PI–990HU 0.4057 < 0.01 0.5451 < 0.01
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Table 3.2: Correlation between PIs and the PFT’s parameters based on the CT data set B

that consists of 15 subjects.

method PFT’s parameters

FEV1% FEV1/FVC

correlation coefficient p-value correlation coefficient p-value

PI–900HU 0.5036 < 0.01 0.7638 < 0.01

PI–910HU 0.5288 < 0.01 0.7729 < 0.01

PI–920HU 0.5452 < 0.01 0.7655 < 0.01

PI–930HU 0.5484 < 0.01 0.7423 < 0.01

PI–940HU 0.5505 < 0.01 0.7105 < 0.01

PI–950HU 0.5515 < 0.01 0.6771 < 0.01

PI–960HU 0.5569 < 0.01 0.6447 < 0.01

PI–970HU 0.5467 < 0.01 0.6141 < 0.01

PI–980HU 0.5316 < 0.01 0.5851 < 0.01

PI–990HU 0.5081 < 0.01 0.5532 < 0.01
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images has been reported in many studies [6, 11, 23, 24, 33, 46]. However, the optimal or

generic threshold remains unknown. For this reason, the author initially hypothesized that

there was an optimal threshold for extracting LAAs. To verify the hypothesis, the author

collected two different CT data sets: the CT data set A and B. The CT data set A and B

consist of 15 subjects, respectively. The author carried out a series of correlation analyses

between PIs (see Section 1.4.1 for the theory of PI) that were calculated using different

thresholds and the PFT’s parameters (see Appendix A.4 for the explanation on the PFT’s

parameters). The correlation analyses results in Table 3.1 and 3.2 were computed based

on the CT data set A and B, respectively. From the correlation coefficients of PIs versus

FEV1%, the optimal PI for the CT data set A is PI–940HU while the optimal PI for the

CT data set B is PI–960HU. From the correlation coefficients of PIs versus FEV1/FVC, the

optimal PI for the CT data A is PI–930HU while the optimal PI for the CT data set B is

PI–910HU. In other words, a particular threshold, for instance, PI–940HU, which is optimal for

the CT data set A might not be optimal for the CT data set B. Based on this observation,

the author concludes that it is unlikely or extremely difficult to find the optimal or generic

threshold for extracting LAAs from CT images owing to the subtle radiographic variations.

The author hypothesizes that the entire threshold range from –900 HU and –990 HU con-

tains important emphysema related information and therefore choosing just one threshold

for quantifying emphysema is premature. Consequently, instead of finding a generic thresh-

old, the author proposes a multi-threshold method to fully extract all essential emphysema

related information from the entire spectrum of the lower threshold range (from –900 HU to

–990 HU). Again, the author chooses this lower threshold range because emphysema is rep-

resented by air-filled regions in the lung and air-filled regions appear as LAAs in CT images.

Therefore, the lower threshold range is more relevant to the definition of emphysema.

In order to facilitate a more insightful knowledge about the distribution of emphysema

severity across the entire lung (from the top to the bottom of the lung) [10, 38, 37, 34], the

author divides the lung into eight sub-volumes and classify the sub-volumes into four classes
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of emphysema severity using neural network [47]. The author hypothesizes that different

emphysema distributions might differently affect the overall functionality of the lung. Since

the sub-volumetric classification results encompass both the information of local emphysema

severity and the distribution of emphysema severity from the top to the bottom of the

lung, the author accordingly hypothesizes that the proposed sub-volumetric classification

results correlate with the PFT’s parameters better than the classical methods. Besides,

to help radiologists verify their diagnoses pertaining to the distribution of emphysematous

destruction [48] in the patient’s lung, the author proposes a transparent lung model that

allows users to visualize the distribution [49, 50, 51] of emphysema in the lung in three

dimensions.

3.2 Implementation of the multi-threshold method

The implementation of the proposed multi-threshold method is organized into three parts:

1. Color-coding processing.

2. Visualization of emphysema.

3. Sub-volumetric classification of emphysema using neural network.

3.2.1 Color-coding processing

Ten gray-level thresholds that correspond to ten confidence levels of emphysematous de-

struction are determined as shown in Table 3.3 [52]. The author supposes that the lower

the gray level, the higher the confidence level of emphysematous destruction becomes. The

author color-codes the lung based on the color-coding rules in Table 3.3. This idea is orig-

inally inspired by the notion of LAA owing to its effectiveness in detecting emphysematous

radiographic patterns in the CT image. The color-coding processing consists of the following

steps:
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Table 3.3: Color-coding rules.

Gray-level range (HU), α Color (emphysematous destruction)

α ≤–990 Red (level-10 severity)

α ≤–980 Blue (level-9 severity)

α ≤–970 Yellow (level-8 severity)

α ≤–960 Cyan (level-7 severity)

α ≤–950 Green (level-6 severity)

α ≤–940 Magenta (level-5 severity)

α ≤–930 Biege (level-4 severity)

α ≤–920 Dark green (level-3 severity)

α ≤–910 Purple (level-2 severity)

α ≤–900 Gray (level-1 severity)

1. From the pre-processed image, extract the pixels that correspond to the gray level

range of a particular color code (see Table 3.3).

2. Binarize the image by highlighting only the extracted pixels.

3. Filter the image with a 3 × 3 median filter to eliminate small noise.

4. Dilate the image with a disk-shaped structuring element of the size of two pixels in

radius.

5. Color-code the highlighted pixels.

6. Repeat step one to five for all other color codes listed in Table 3.3.

7. Overlap all ten colors in the image in such a manner that if two or more colors overlap,

priority will be given to the color that correspond to the lower or lowest gray-level

range.
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(a) (b) (c) (d) (e)

Fig. 3.1: Color-coding processing from (a) to (e) for an individual color: (a) pre-processed

image, (b) image after direct extraction of pixels that correspond to the gray level range of

blue (binarized iamge), (c) image after 3 × 3 median filtering, (d) image after dilation, and

(e) the individually color-coded image.

Fig. 3.1 shows an example of the flow of color-coding processing for the individual color of

blue. Fig. 3.2 shows the ten individually color-coded images. The product of the color-coding

processing is the multi-color-coded image as shown in Fig. 3.3(b).

By using the proposed color-coding processing, the author is able to extract the lung

areas that correspond to the potential emphysematous areas seen in the original CT image.

In a preliminary assessment, the author requested radiologists to visually compare 30 multi-

color-coded images with their original CT images. The extracted color-coded areas are

in good agreement with both the visually perceivable and fuzzy emphysematous areas in

the CT images not only in terms of locations but also sizes and shapes as shown in the

comparison between Fig. 3.3(a) and Fig. 3.3(b). From the multi-color-coded image, the

author accordingly computed the 2D gray-coded image as shown in Fig. 3.3(c) where the

darker area corresponds to lower gray-level range. The author stacks up the 2D gray-coded

images to build the 3D volume data for implementing the 3D visualization of emphysema.

3.2.2 Visualization of emphysema

Four 3D lung visualization techniques are implemented in this research:

1. 3D contour slices of the lung.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3.2: Individually color-coded images: (a) red-coded image (≤–990 HU), (b) blue-coded

image (≤–980 HU), (c) yellow-coded image (≤–970 HU), (d) cyan-coded image (≤–960 HU),

(e) green-coded image (≤–950 HU), (f) magenta-coded image (≤–940 HU), (g) biege-coded

image (≤–930 HU), (h) dark-green-coded image (≤–920 HU), (i) purple-coded image (≤–910

HU), and (j) gray-coded image (≤–900 HU).

(a) (b) (c)

Fig. 3.3: Comparison between the original image and the multi-color-coded image: (a)

image before color-coding processing (original image), (b) image after color-coding processing

(multi-color-coded image), and (c) the 2D gray-coded image.
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2. 3D solid lung model.

3. 3D sliced-away lung model.

4. 3D transparent lung model.

All 3D lung models in this research are programmed using Matlab graphics [53, 54] and

OpenGL [55]. 3D visualization techniques such as isosurfaces and patches [53] and Gouraud

lighting [53, 55] are utilized. Isosurface [56] is used to returns triangle vertices in a manner

similar to Delaunay triangulation [53] which plots the triangles. Isocaps are used to create the

faces on the outer surfaces of the lung volume [53]. A patch graphics object is composed of one

or more polygons that may or may not be connected [54]. Patches [55] are useful for modeling

real-world objects and for drawing 3D polygons of arbitrary shape. Isonormals modifies

properties of the drawn patches so that lighting works correctly [53]. Although the volume

data can be visualized quite clearly, the realism of the scene can be enhanced or diminished

by creating different lighting effects. In this research, the Gouraud lighting [53, 55] was

employed to enhance the user’s ability to visualize the volume data being analyzed.

The four proposed 3D lung models are shown in Fig. 3.4. The 3D contour slices of the

lung are computed from the patient’s 18th, 60th and 129th CT slice. On the other hand,

the 3D solid lung model is computed using 150 CT slices. The 3D sliced-away lung model

is generated by slicing the lung model at the 85th slice. The transparent lung model is

produced by first generating the transparent surface of the lung then overlapping the model

with the red- and blue-coded voxels where the blue-coded voxels are programmed to be

slightly transparent for a better overall visual display. The red and blue volumes in the

interior of the transparent lung model correspond to the level-10 and level-9 emphysematous

destruction, respectively, in the lung. Note that PFT-based class [class 1 (normal) to 5

(very severe)] is the diagnosis made based on the post-bronchodilator spirometry test where

spirometry test is one of PFTs (see Appendix A.4). All of the generated 3D lung models

can be viewed from any orientation.
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(a) (b) (c) (d)

Fig. 3.4: The 3D visualization techniques employed in this study: (a) the 3D contour slices of

lung, (b) the 3D solid lung model, (c) the sliced-away lung model, and (d) the 3D transparent

lung model (PFT-based class of class 4).

The proposed 3D transparent lung model is generated using all the available images in the

patient’s CT data set. The model is intended to be used to assist radiologists in realizing the

distribution of emphysematous destruction across the entire lung in a more comprehensive,

effective and time-efficient manner.

3.2.3 Sub-volumetric classification of emphysema using neural net-

work

Assuming that the transparent lung model is fitted tightly in a cube, the author divides

the 3D transparent lung model into eight sub-volumes by first halving the cube in the

coronal plane and consequently quartering the cube in the transverse plane. Then, the

author calculates the ratios of voxels that correspond to the ten different color codes in each

sub-volume. The divided 3D lung is shown in Fig. 3.5 where the locations of the eight

sub-volumes are described in Table 3.4. The author extracts ten features from each sub-

volume. The extracted features are illustrated in Table 3.5. Subsequently, the features are

pumped into the input layer of a neural network. The author chooses to use neural network

as the classifier after comparing its performance with other classifiers like k-nearest neighbor
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Right Left

R1

R2

R3

R4

L1

L2

L3

L4

Fig. 3.5: The 3D transparent lung model after being divided into eight sub-volumes.

Table 3.4: Locations of the sub-volumes.

Sub-volume Abbreviation Location of the sub-volume

sub-volume 1 R1 top right

sub-volume 2 L1 top left

sub-volume 3 R2 upper-middle right

sub-volume 4 L2 upper middle left

sub-volume 5 R3 lower-middle right

sub-volume 6 L3 lower-middle left

sub-volume 7 R4 bottom right

sub-volume 8 L4 bottom left
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Table 3.5: Sub-volumetric features.

Sub- Description of feature

volumetric

feature,

feat

feat(1) ratio of red voxels in the sub-volume

feat(2) ratio of blue voxels in the sub-volume

feat(3) ratio of yellow voxels in the sub-volume

feat(4) ratio of cyan voxels in the sub-volume

feat(5) ratio of green voxels in the sub-volume

feat(6) ratio of magenta voxels in the sub-volume

feat(7) ratio of biege voxels in the sub-volume

feat(8) ratio of dark-green voxels in the sub-volume

feat(9) ratio of purple voxels in the sub-volume

feat(10) ratio of gray voxels in the sub-volume

algorithm, support vector machine and discriminant analysis. The comparisons are included

in Section 3.3.2.

Neural network topology

The author implements a multilayer perceptron neural network as the classifier [57] (see

Appendix A.3 for the detailed explanation bearing on the implementation of a multi-class

neural network) for classifying the sub-volumes of the lung into four classes of emphysema

severity. The neural network consists of ten input nodes in the input layer to receive the ten

sub-volumetric features and four output nodes in the output layer that correspond to the

four classes of sub-volumetric emphysema severity. One hidden layer is implemented in the
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neural network because the author desires a neural network that is capable of approximating

any function that contains a continuous mapping from one finite space to another (see Table

A.1 in Appendix A.3.2 for the theory in determining the number of hidden layers [58, 59]).

There are many rule-of-thumb methods [59] for determining the correct number of neuron

to use in the hidden layer to avoid the problems of overfitting and underfitting [59]. In this

research, the number of neurons in the hidden layer is determined as the rounded value of

(2n/3+m) [59], respectively (see Table A.2 in Appendix A.3.2 for the rationale in determining

the number of neurons in the hidden layer [59]) where n is the number of input nodes in

the input layer and m is the number of output nodes in the output layer. Since the number

of input nodes, n, and the number of output nodes, m, are ten and four, respectively, the

number of neurons in the hidden layer equals to 11.

Neural network training

The author adopts the back-propagation learning algorithm [58] for the neural network

training. In this study, a total of 80 sub-volumes of the lung obtained from ten subjects

are used for neural network training. The author shall herefater refer these sub-volumes

as the training sub-volumes. These training sub-volumes are manually consensus-classified

into four classes of emphysema severity beforehand by radiologist based on the subjects’

PFT results, visual recognition of the subjects’ CT images and medical knowledge about

emphysema. In order to ease the manual classification of the training sub-volumes, the

author creates eight movie files per subject for the purpose of reference where each movie file

shows the particular region in the CT images that correspond to the sub-volume of interest.

The detailed explanation pertaining to the implementation of a multi-class neural network

is written in Appendix A.3.
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Stopping criteria

For stoping the neural network training, the author employs the automated stopping criteria

inspired by the Steady-State Identification algorithm (SSID) [60] (see Appendix A.3.8 for the

detailed explanation on the implementation of the SSID algorithm). After each epoch, about

25% of the data are randomly selected as the validation set for that epoch [60]. Therefore

this method enables the use of 100% of the data for training. The trained neural network is

used for classifying the sub-volumes of the lung into four emphysema severity classes. Since

the logistic function is adopted as the activation function in the input nodes, neurons and

output nodes (see Appendix A.3.5), the amplitude of the neural network output lies inside

the range of 0 ≤ output ≤ 1. The output node of the neural network that has the largest

output value corresponds to the emphysema severity class of the sub-volume in which output

node one to four correspond to emphysema severity class 1, 2, 3 and 4, respectively.

3.3 Results

For the visualization part, the author compared the implemented lung models with radiolo-

gists’ hand annotations and confirmed that the models are in good agreement with radiol-

ogists’ comments. The neural network is trained using 80 training sub-volumes of the lung

obtained from ten subjects. The author validated the predictive performance of the trained

neural network by classifying a total of 248 sub-volumes of the lung obtained from 31 sub-

jects. The author shall hereafter refer these 248 sub-volumes as the test sub-volumes. The

author compared the correlation between the proposed method and the PFT’s parameters

with those of the classical methods.

3.3.1 Visualization of emphysema

The implemented transparent lung models can be observed from any orientation as shown

in Fig. 3.6. Figure 3.7 shows the transparent model of a mildly [61] emphysematous lung
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(a) (b) (c)

Fig. 3.6: 3-D emphysema-based transparent lung model viewed from: (a) azimuth angle =

-45, elevation angle = 20, (b) azimuth angle = 0, elevation angle = 20 and (c) azimuth angle

= 45, elevation angle = 20. The red and blue voxels in the image correspond to the volume

below –990 HU and –980 HU, respectively.

(PFT-based class of class 2).

3.3.2 Four-class sub-volumetric classification results

The author classified the 248 test sub-volumes of the lung. The actual emphysema severity

of the sub-volumes are consensus-classified by radiologist. The classification results are

shown in Table 3.6. From Table 3.6, the four-class classification accuracy (average two-class

classification accuracy) of the classifier is 89.82%. The author compares the classification

accuracy of the neural network with those of other classifiers like the k-nearest neighbor

algorithm, the support vector machine and discriminant analysis based on the 248 test sub-

volumes of the lung. The two-class and four-class classification accuracies of the neural

network, k-nearest neighbor algorithm, support vector machine and discriminant analysis

are tabulated in Table 3.7. Although the performance of the support vector machine closely

approximates that of the neural network, the author chose neural network as the classifier

for this study.
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Fig. 3.7: An example of a mildly emphysematous lung (PFT-based class of class 2). The

blue, yellow, cyan and green voxels in the image correspond to the volume below –980 HU,

–970 HU, –960 HU and –950 HU, respectively.

Table 3.6: The contingency table of the four-class sub-volumetric classification of 248 test

sub-volumes of the lung.

Actual sub-volumetric class

1 (%) 2 (%) 3 (%) 4 (%)

(case) (case) (case) (case)

Predicted 1 (%) 95.00 5.00 0 0

sub- (case) (133) (2)

volumetric 2 (%) 5.00 85.00 3.57 0

class (case) (7) (34) (1)

3 (%) 0 10.00 89.29 10.00

(case) (4) (25) (4)

4 (%) 0 0 7.14 90.00

(case) (2) (36)
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Table 3.7: Comparisons of the classification accuracies of the neural network, k-nearest

neighbor algorithm, support vector machine and discriminant analysis based on the 248 test

sub-volumes of the lung.

Classification accuracy (%) of the classifier

neural k-nearest support discriminant

network neighbor vector analysis

algorithm machine

Class 1 95.00 94.29 79.29 93.57

Class 2 85.00 85.00 95.00 75.00

Class 3 89.29 89.29 89.29 85.71

Class 4 90.00 87.50 95.00 85.00

Four-class 89.82 89.02 89.65 84.82

classification

accuracy (%)

3.3.3 Correlation analyses

In order to validate how close the proposed sub-volumetric classification correlates with the

subjects’ PFT results, the author performed a series of correlation analyses between the sub-

volumetric classification results and the PFT’s parameters using multiple linear regression.

The author also calculated the correlations between the classical methods and the PFT’s

parameters and compare them with that of the proposed method. The classical meth-

ods evaluated are the MLD, PI–900HU, PI–910HU, PI–920HU, PI–930HU, PI–940HU, PI–950HU,

PI–960HU, PI–970HU, PI–980HU, PI–990HU, BI–900HU, BI–910HU, BI–920HU, BI–930HU, BI–940HU,

BI–950HU, BI–960HU, BI–970HU, BI–980HU, BI–990HU, the entire-lung multi-threshold PIs and

the entire-lung multi-threshold BIs. Note that the entire-lung multi-threshold PIs and BIs

are comprised of ten PIs and BIs, respectively, calculated using the thresholds of –900 HU,
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–910 HU, –920 HU, –930 HU, –940 HU, –950 HU, –960 HU, –970 HU, –980 HU and –990

HU.

Table 3.8 shows the four-class sub-volumetric classification results and the corresponding

PFT-based classes (see Table A.4 in Appendix A.5 for the rules for determining the PFT-

based class of a subject) of 15 sample subjects. The PFT’s parameters, FEV1/FVC and

FEV1% predicted (see Table A.3 in Appendix A.4) of the sample subjects are shown in Table

A.5 in Appendix A.6. Table 3.9 shows the correlation coefficients and p-values of the proposed

method and the classical methods, respectively, in correlation with the PFT’s parameters

(see Table A.3 in Appendix A.4) including FEV1%, FEV1% and DLcoVA [Diffusing capacity

of the Lung for Carbon Monoxide (DLco) divided by the Alveolar Volume (VA)]. Three

conclusions are drawn from the results of the correlation analyses.

First conclusion drawn from the results of the correlation analyses

The author analyzed the correlation between the single-threshold PIs (PI–900HU, PI–910HU,

PI–920HU, PI–930HU, PI–940HU, PI–950HU, PI–960HU, PI–970HU, PI–980HU and PI–990HU) with the

PFT’s parameters. The author finds that PI–940HU achieves generally the highest correlation

with the PFT’s parameters compared to those of the other PIs. The author implemented

the same analysis on BI. The author finds that BI–950HU achieves generally the highest

correlation with the PFT’s parameters compared to those of the other BIs. These findings

suggest that the particular threshold value that yields the best correlation with the PFT’s

parameters for PI and BI is uncertain. Therefore, it is extremely difficult to find a generic

threshold for the CT-based quantification of emphysema owing to the subtle variations of ra-

diographic gray levels. Two of the PIs and BIs (PI–940HU, PI–950HU, BI–930HU and BI–950HU)

that achieve the highest correlation with the PFT’s parameters are shown in Table 5.6.

Second conclusion drawn from the results of the correlation analyses

The author also analyzed the correlations between the entire-lung multi-threshold PIs and
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Table 3.8: The four-class sub-volumetric classification and the corresponding PFT-based

class of 15 sample subjects.

Subject Sub-volumetric classification PFT-based

class

R1 L1 R2 L2 R3 L3 R4 L4

1 4 4 4 4 4 4 3 3 5

2 4 4 4 4 3 3 3 3 5

3 4 4 4 4 4 4 4 4 5

4 4 4 4 4 2 2 2 2 4

5 2 1 4 4 4 4 2 2 4

6 1 1 3 3 4 4 3 4 4

7 4 3 3 4 2 3 2 2 3

8 1 1 3 3 4 4 2 2 3

9 2 3 2 3 2 2 2 2 2

10 1 1 1 2 1 2 1 1 2

11 1 2 1 2 2 2 1 1 2

12 1 1 1 1 1 1 1 1 1

13 1 1 2 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1
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Table 3.9: Correlation of the proposed method, PI, BI, and MLD with the PFT’s parameters based on the

sub-volumetric classification results of 31 subjects.

method PFT’s parameters

FEV1% FEV1/FVC DLcoVA PFT-based class

correlation p-value correlation p-value correlation p-value correlation p-value

coefficient coefficient coefficient coefficient

MLD 0.4344 < 0.05 0.5716 < 0.01 0.7380 < 0.01 0.3382 < 0.1

PI–940HU 0.5785 < 0.01 0.7725 < 0.01 0.6646 < 0.01 0.5350 < 0.01

PI–950HU 0.5936 < 0.01 0.7505 < 0.01 0.6444 < 0.01 0.5124 < 0.01

BI–930HU 0.2023 < 0.5 0.3094 < 0.1 0.5168 < 0.01 0.2518 < 0.2

BI–950HU 0.4415 < 0.02 0.5585 < 0.01 0.7515 < 0.01 0.4058 < 0.05

Entire-lung multi 0.6814 < 0.01 0.8264 < 0.01 0.8505 < 0.01 0.6435 < 0.01

-threshold PIs

Entire-lung multi 0.5002 < 0.05 0.6933 < 0.01 0.8167 < 0.01 0.5246 < 0.05

-threshold BIs

proposed method 0.7748 < 0.01 0.8827 < 0.01 0.7835 < 0.01 0.7223 < 0.01

(sub-volumetric

classification results)
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the parameters of PFT, and between the entire-lung multi-threshold BIs and the parameters

of PFT. The entire-lung multi-threshold PIs and BIs from Table 5.6 are calculated based

on ten thresholds: –900 HU, –910 HU, –920 HU, –930 HU, –940 HU, –950 HU, –960 HU,

–970 HU, –980 HU and –990 HU. The correlation performance of the entire-lung multi-

threshold PIs is higher than those of the single-threshold PIs (PI–940HU and PI–950HU)

while the correlation performance of the entire-lung multi-threshold BIs is generally higher

than those of the single-threshold BIs (BI–930HU and BI–950HU). These suggest that multi-

threshold methods are more effective for quantifying emphysema compared to the classical

single-threshold methods.

Third conclusion drawn from the results of the correlation analyses

Finally, the author correlated the proposed sub-volumetric classification results with the

PFT’s parameters. From the results in Table 5.6, the proposed method achieves higher

correlation with the PFT’s parameters compared to the classical single-threshold methods

(PI–940HU, PI–950HU, BI–930HU and BI–950HU). This is within our expectation because the

proposed method is a multi-threshold-based method and therefore its performance is better

than the single-threshold methods. On the other hand, the proposed method also achieves

higher correlation compared to the entire-lung multi-threshold PIs and BIs. Note that the

entire-lung multi-threshold PIs and BIs do not include the information of emphysema dis-

tribution. In comparison, the proposed sub-volumetric classification results encompass both

the information of emphysema severity and the distribution of emphysema severity across

the entire lung. The author hypothesizes that besides emphysema severity, the distribution

of emphysema severity also plays an important role in diagnosing emphysema. The author

confirms his hypothesis based on the results of the correlation analyses in Table 5.6 in which

the proposed method performs better than the entire-lung multi-threshold PIs and BIs in

correlation with the PFT’s parameters.
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3.4 Discussion

Three subjects were avoided in this study due to the significant discrepancy between the

subjects’ CT-based visual recognition and PFT results. The volume thresholds used in the

calculation of BI are: class 0: ≥2mm3, class 1: ≥8mm3, class 2: ≥65mm3, and class 3:

≥120mm3 [62].

The best tests for determining the presence of emphysema and managing its response to

treatment are PFTs. The gold standard test is spirometry. Spirometry test measures the

amount (volume) and/or speed (flow) of air that can be inhaled and exhaled [9]. However, the

maneuver of spirometry test is highly dependent on patient’s cooperation and effort, and is

normally repeated at least three times to ensure reproducibility. Since spirometry test results

are dependent on patient’s cooperation, the test values such as FEV1 and FVC, can only be

underestimated, never overestimated. Hence, review of both the PFT’s parameters and CT

images by radiologist is necessary for accurate diagnosis of emphysema. In this study, the

emphysema severities of both the sub-volumes of lung and entire lung are consensus-classified

beforehand by radiologist from Keio University Hospital, Japan. In order to ease the process

of manual classification, the author collects all images from the patient’s data set and create

movie files that show the region in the CT images that correspond to the particular sub-

volume of interest. The movie files are used by radiologists as references when performing

manual classification of emphysema.

Based on the author’s experience, thresholds like -910 HU and -915 HU, for example,

usually result in just slight difference in the ratio of thresholded areas in the CT image.

Thus the author tries not to use thresholds that are too close to each other to prevent from

generating irrelevant features. Consequently, the ten thresholds utilized in this paper are

between and including -900 HU to -990HU with an interval of 10 HU.



Chapter 4

Methodology 2: Low Attenuation Gap

Length Matrix

4.1 Background

Features generated from the former texture-based methods like GLGLM, GLRLM, SGLDM

and GLDM [11, 23, 24, 25, 63, 64, 65, 66] are not expressive for describing emphysema because

the underlying rationales in these methods are not significantly related to the definition of

emphysema. Emphysema is defined as the low-attenuation areas in the CT. A continuous

low-attenuation area is called a bulla [6] or an LAA [14, 15].

Methodology 2 is created following the confirmation from the results of Methodology 1

that the use of multi-threshold method is more efficient than the classical single-threshold

method for the quantification of emphysema. To illustrate why the former texture-methods

are not efficient for describing emphysema, the author cuts out a region from the lung area

of a CT. The region is shown in Fig. 4.1. Then, the author analyzes the pixel intensity

profile of the highlighted horizontal line in the region as shown in Fig. 4.2. The pixel

intensity from pixel number 20 to 30 along the highlighted horizontal line is tabulated in

Table 4.1. The corresponding schematic diagram representing the change of pixel intensity

40



CHAPTER 4. METHODOLOGY 2: LOW ATTENUATION GAP LENGTH MATRIX 41

Fig. 4.1: The pixel intensity profile of the highlighted horizontal line in the region.
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Fig. 4.2: The pixel intensity profile of the highlighted horizontal line in the region.
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Table 4.1: Pixel intensity from pixel number 20 to 30 along the highlighted horizontal line

in the region.

Pixel 20 21 22 23 24 25 26 27 28 29 30

number

Hounsfield –890 –903 –923 –984 –962 –943 –962 –953 –953 –879 –873

Unit

-890

-903

-923

-984

-962

-943

-962

-953

-879
-873
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Pixel number
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Fig. 4.3: Schematic diagram of the pixel intensity from pixel number 20 to 30 along the

highlighted horizontal line.

from pixel number 20 to 30 is shown in Fig. 4.3. Please note that to analyze emphysema,

the continuous colinearly adjacent pixels with gray level below a certain threshold should

be taken into account. From Fig. 4.4(a), GLGLM calculates the gap length between two

pixels with the same gray level [25, 67]; GLRLM calculates the run length of colinearly

adjacent pixels with the same gray level [25, 68, 69]; SGLDM calculates the probability

of going from a certain gray level to the other gray level [25, 67, 70]; GLDM calculates

the gray level difference between two pixels given a certain inter-sample spacing [25, 67].

The underlying rationales in all the above mentioned former texture-based methods are not

sufficiently significant for measuring emphysema. Therefore, the texture features generated
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Fig. 4.4: (a) Explanation on GLGLM, GLRLM, SGLDM and GLDM using the schematic

diagram. (b) Explanation on LAGLM using the schematic diagram.

from these methods are difficult to interpret and use when it comes to diagnosing emphysema.

It is hard to know which feature is useful and which is not. Accordingly, when using these

former texture-based methods for measuring emphysema, feature subset selection is always

required as a pre-processing step to machine learning for reducing dimensionality, eliminating

irrelevant data and improving classifier performance [32]. However, the generic usefulness of

the selected texture feature subset is often dependent on the CT data set in use. For instance,

a selected texture feature subset which is useful for the CT data set A might not be useful

for the CT data set B. CT images are often varying and subtle. Thus, it is very hard to

find a generic texture feature subset [71] based on the former texture-based methods for the

quantification of emphysema [11, 32, 33]. As a result, the author proposes a method called

Low Attenuation Gap Length Matrix (LAGLM) that takes into account the varying gap

lengths of the continuous colinearly adjacent pixels withe gray level below a certain threshold.

For instance, from Fig. 4.4(b), there is one short gap length (highlighted as red line) below

the threshold of –980 HU; there is an addition of two short gap lengths (highlighted as

magenta lines) if the threshold is increased to –960 HU; and there is an addition of one

longer gap length (highlighted as blue line) if the threshold is further increased to –950
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HU. Following the confirmation from the results of Methodology 1 that the use of multi-

threshold method is more efficient than the classical single-threshold method for quantifying

emphysema, the author uses multiple thresholds from –900 HU to –1000 HU in the LAGLM.

The goal of the LAGLM is to produce texture features that are more relevant to the definition

of emphysema, more generic, easier to interpret and easier to use for diagnosing emphysema.

The author hypothesized that the features generated from the LAGLM are more efficient

for quantifying regional emphysematous patterns [50, 72, 73] as compared to the features

generated from the former texture-based methods. Please note that detailed explanations

on the former texture-based methods are written in Appendix A.1.

4.2 Implementation of the LAGLM

When analyzing a lung CT, radiologists visually divide the radiographic lung tissues pre-

sented in the CT into a few emphysema types before concluding the overall emphysema

severity of the lung. Consequently, the author proposes to use the features generated from

the LAGLM to discriminate four different regional emphysematous patterns. Neural network

is employed as the classifier. The characteristics of four regional emphysema patterns/types,

namely, N, DE, BEDE and BE, are defined as follows:

1. N (Normal) — visually smooth lung tissues without apparent bullae.

2. DE (Diffuse Emphysema) — visually smooth lung tissues but with diffuse small-sized

bullae [6, 61, 74].

3. BEDE (Bullous Emphysema and Diffuse Emphysema) — visually rough lung tissues

that imply moderate destruction of airway walls or with medium-sized bullae (with or

without concomitant small-sized bullae).

4. BE (Bullous Emphysema) — visually rough lung tissues that imply severe destruction

of airway walls or with big-sized bullae [6, 74].



CHAPTER 4. METHODOLOGY 2: LOW ATTENUATION GAP LENGTH MATRIX 45

Left lungRight lung

Bulla

BEDE
BEDE

BEDE BEDE

DE

DE

DE

DE

N

(a)

BE

BE

BE

BEBE

BE

NN

N

N

BEDE
BEDE BEDEDEDE

DE

DE

DE

(b)

Fig. 4.5: (a) An example of CT with an apparent big-sized bulla. (b) An example of CT

where the radiographic patterns of emphysema are visually harder to recognize.

Figure 4.5(a) shows a typical thoracic CT with regions being labeled as N, DE, BEDE and

BE. From the figure, the big-sized bulla in the left lung is visually easier to detect compared

to the right lung that has less obvious emphysematous patterns. Having said that, compared

to images that have apparent emphysematous pattern like the left lung in Fig. 4.5(a), most

of the images used in this research have rather varied and subtle radiographic patterns which

are visually harder to recognize like the CT in Fig. 4.5(b).

The flow of the implementation of the LAGLM is as follows:

1. Selection of 2D slices.

2. Region-by-region processing.

3. Regional feature calculation.

4. Classification of region using neural network.
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4.2.1 Selection of 2D slices

For each patient, 10 images captured from the upper to the lower lung are retrieved for

processing. A total of 27 subjects were evaluated. The selection of the 10 images is based

on Eq. (4.1):

index(β) =

(

β

10

)

× S, (4.1)

where S is the sum of CT images in the patient’s CT data set and index(β) represents

the index of the βth selected image for integer 1 ≤ β ≤ 10. index(β) is rounded toward

infinity. The author chooses 10 images as a result of trade-off between time of processing

and comprehensiveness of processing data.

4.2.2 Region-by-region processing

After pre-processing, region-by-region processing was implemented. The main goal of the

processing was to classify the selected regions in the image into four emphysema types: N,

DE, BEDE and BE, which were corresponded by four different colors: green, blue, magenta

and red, respectively.

The size of region under examination can be adjusted. The size of most 2D lung regions

used in this research ranged approximately between 60-by-60 pixels to 200-by-300 pixels.

Basically, the smaller the size of region under examination, the finer the classified regions

appear in the classified image. However, the selected size of region can not be too small

because if the size of region selected is as small as one diffuse emphysematous area, the region

showing a small diffuse emphysema will look the same as the region showing a partial bullous

emphysema and this makes the algorithm fail to discriminate between diffuse and bullous

emphysema. The author examined 270 images and concluded that small diffuse emphysema

consistenly appear in the size of smaller than 60-by-60 pixels. Thus, the author believes that

the size of 60-by-60 pixels is generally appropriate for capturing both the emphysematous

patterns of small diffuse emphysema and bullous emphysema without sacrificing the fineness
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of classified regions in the classified image. Accordingly, the author decided to use the size

of 60-by-60 pixels as the size of region under examination. For each image, the following

steps are implemented.

1. Starting from the top left corner of the image, overlap an empty 60-by-60-pixel mask

region on the image.

2. If more than 70% of the overlapped region comprises lung region, calculate regional

features for the region, classify the emphysema type of the region using the trained

neural network, paint the region with the color that corresponds to it’s emphysema

type, then slide the mask region by 10 pixels horizontally to the right. Otherwise, slide

the mask region to the right by one pixel.

3. If the mask region spans beyond the horizontal limit of the image, slide it horizontally

back to the leftmost position and then slide it vertically by 10 pixels down towards the

bottom. If the mask region spans beyond the vertical limit of the image, then proceed

to step 4. Otherwise, repeat step 2 and 3.

4. Calculate the area of green, blue, magenta and red regions in the image, respectively.

After gathering the area of green, blue, magenta and red regions for all 10 images, the author

computes the percentage of area of each of the colors across the 10 images. The detailed

algorithm of the region-by-region processing is described in Appendix A.2 where “{*/}”

denotes side notes, p represents subject number, s represents image number, c represents

color number from one to four corresponding to N- (green), DE- (blue), BEDE- (magenta)

and BE-oriented (red) regions, respectively, TA represents the area of each color on each

classified image for 27 subjects and MPA represents the percentage of total area of each

color across 10 images for the 27 subjects.
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4.2.3 Regional feature calculation

From the algorithm of region-by-region processing, regional feature calculation is imple-

mented in step 24 (see Appendix A.2). In order to calculate the regional features, the

algorithm scans a region from the first to the last row of pixels from the top to the bottom

of the region and for each row of pixels, it scans from left to right pixel-by-pixel. The al-

gorithm uses multiple thresholds between and including –1000 HU to –930 HU where pixels

less than a particular threshold are considered as the low-attenuation pixels. Figure 4.6(a)

and 4.6(b) show a highlighted horizontal line in sample region A and B, respectively. The

highlighted horizontal line represents the row of pixels being scanned in the region. Figure

4.6(c) and 4.6(d) show the pixel profile for the highlighted row of pixels in region A and B,

respectively. In this research, a gap is defined as some collinearly adjacent low-attenuation

pixels where the gap length of a single low-attenuation pixel that has no collinearly adjacent

low-attenuation pixels is one. For instance, the parts of the pixel profile in Fig. 4.6(d) that

are below the lower horizontal line are the thresholded gaps for the case of threshold = –960

HU. There are a total of six thresholded gaps in this case where the gap length of the first

gap is six pixels.

The detailed explanation bearing on the proposed regional feature calculations are de-

scribed in the following. For illustration, Table 4.2(b) shows an example of the element of

LAGLM, rLAGLM(t, g|θ), based on a simple image [see Table 4.2(a)]. rLAGLM(t, g|θ) specifies

the estimated number of times a region contains a thresholded gap length g, for threshold t,

in the direction of angle θ.

Emphysema in CT image is represented by low-attenuation areas. Therefore, to quantify

regional emphysematous patterns, two key factors are considered: gray level distribution

and low-attenuation (≤ –930) gap lengths. Basically, the lower the gray level and the longer

the low-attenuation gap length, the more extensive the severity of emphysema becomes.

Standard texture methods like GLGLM and GLRLM are not adequately relatable to the de-

scriptions of emphysema owing to their definitions. Therefore, the author proposes to use the
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Fig. 4.6: Region profile: (a) region A with a particular row of pixels being highlighted, (b)

region B with a particular row of pixels being highlighted, (c) pixel profile for the highlighted

row of pixels in region A, and (d) pixel profile for the highlighted row of pixels in region B.

The upper and lower horizontal lines in (c) and (d) represent the threshold levels of –940

HU and –960 HU, respectively.
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Table 4.2: An example of LAGLM based on a simple image.

(a) a 4 × 10 simple image

–942 –920 –945 –960 –980 –941 –888 –896 –950 –960

–946 –962 –958 –974 –971 –963 –982 –991 –963 –963

–934 –950 –943 –962 –974 –967 –984 –994 –962 –963

–923 –941 –922 –962 –953 –943 –963 –951 –958 –943

(b) LAGLM: rLAGLM (t, g|θ) for t =–1000,–990,...,–900

θ = 0◦ gap length, L

1 2 3 4 5 6 7 8 9 10

threshold, –1000 0 0 0 0 0 0 0 0 0 0

t –990 2 0 0 0 0 0 0 0 0 0

–980 0 2 0 0 0 0 0 0 0 0

–970 2 3 0 0 0 0 0 0 0 0

–960 4 0 0 0 0 0 2 0 0 0

–950 1 2 1 0 0 0 1 0 1 0

–940 2 1 0 1 0 0 1 0 1 1

–930 2 1 0 1 0 0 1 0 0 2

–920 1 1 0 1 0 0 0 0 0 3

–910 0 1 0 0 0 1 0 0 0 3

–900 0 1 0 0 0 1 0 0 0 3
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LAGLM for quantifying regional emphysematous patterns because features generated from

the LAGLM collectively takes into account both gray level distribution (multiple gray level

thresholds) and low-attenuation gap lengths. Features derived from LAGLM are expected

to be able to reflect the degree of regional severity of emphysema.

For comparison purposes, two categories of features were derived from LAGLM. The

first category of features were texture-based features which consisted of thresholded short

gap emphasis (TSGE), thresholded long gap emphasis (TLGE), threshold distribution

(TD), thresholded gap length distribution (TGLD), thresholded gap percentage (TGP ),

low threshold gap emphasis (LTGE) and high threshold gap emphasis (HTGE). The cal-

culations of these features are shown in the following:

TSGE =
1

Tg

–900
∑

t=–1000

IS
∑

g=1

rLAGLM(t, g|θ)

g2
, (4.2)

TLGE =
1

Tg

–900
∑

t=–1000

IS
∑

g=1

g2rLAGLM(t, g|θ), (4.3)

TD =
1

Tg

–900
∑

t=–1000

[

IS
∑

g=1

rLAGLM(t, g|θ)

]2

, (4.4)

TGLD =
1

Tg

IS
∑

g=1

[

–900
∑

t=–1000

rLAGLM(t, g|θ)

]2

, (4.5)

TGP =
1

Tp

–900
∑

t=–1000

IS
∑

g=1

rLAGLM(t, g|θ), (4.6)

LTGE =
1

Tg

–900
∑

t=–1000

IS
∑

g=1

t2rLAGLM(t, g|θ), (4.7)

HTGE =
1

Tg

–900
∑

t=–1000

IS
∑

g=1

rLAGLM(t, g|θ)

t2
, (4.8)

where IS is the maximum possible gap length in the region and

Tg =

–900
∑

t=–1000

IS
∑

g=1

rLAGLM(t, g|θ), (4.9)



CHAPTER 4. METHODOLOGY 2: LOW ATTENUATION GAP LENGTH MATRIX 52

where t =–1000,–995,–990,...,–900, and Tp is the number of points in the image. In this

research, Tp = 360 because the size of region under examination is 60-by-60 pixels.

As compared to texture features generated from GLGLM and GLRLM, LAGLM-based

texture features are more direct, more relevant and easier to interpret when it comes to

describing radiographic emphysematous patterns. Thus, this makes the selection of optimal

feature subset easier. For instance, TSGE and TLGE indicate the distribution of short and

long low-attenuation gap lengths in the region, respectively. Higher TSGE indicates less

severe type of emphysema, usually diffuse and smaller-sized emphysema while higher TLGE

indicates more severe type of emphysema, usually bullous emphysema. LTGE and HTGE

indicate how extensive the low-attenuation gap lengths are toward the lower end and upper

end, respectively, of the range of gray-level threshold. Higher LTGE indicates more severe

emphysema owing to the more extensive low-attenuation areas toward the lower end of the

range of gray-level threshold while higher HTGE indicates milder emphysema owing to the

low-attenuation areas toward the upper end of the range of gray-level threshold. From the

seven texture features derived from LAGLM, the author selects TLGE, LTGE and HTGE

as the features for the first category because the author hypothesizes that these features

are more relevant to the descriptions of emphysema. The author shall hereafter refer these

features as the LAGLM-based texture features.

The second category of features were directly derived from rLAGLM(t, g|θ). The features

consisted of the average frequency of gap lengths based on two thresholds and four gap length

classes. For each row of pixels in a region, the algorithm identifies the low-attenuation gap

lengths and divides the gap lengths into four gap length classes as shown in Table 4.3. After

that, the algorithm calculates the average frequency of gap lengths across all rows of pixels

within the region based on the gap length classes. For each region, the same calculation was

executed from four principle directions: θ = 0◦, 45◦, ; 0◦ and 135◦, and the average values

across the four directions became the features for the region. Consequently, let f(n, c|t, θ)

be the frequency of gap lengths that belong to gap length class c along the nth row of pixels
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Table 4.3: Gap length classes for the case of threshold equals –940 HU and –960 HU.

gap range of gap range of gap

length length, L, for length, L, for

class, c threshold = –940 HU threshold = –960 HU

1 2≤L≤4 1≤L≤3

2 5≤L≤7 4≤L≤6

3 8≤L≤11 7≤L≤9

4 L>11 L>9

in an image which has been rotated by an angle = θ given threshold = t, the author defines

M(c|t, θ) as the average frequency of gap lengths across all rows of pixels that belong to gap

length class c in an image which has been rotated by an angle = θ given threshold = t, for

integers 1 ≤ n ≤ N , 1 ≤ c ≤ 4, t = –960 and –940, and θ = 0◦, 45◦, 90◦ and 135◦ where N

is the sum of row of pixels in the rotated image. Pixels on the border of the rotated image

that were not part of the image were ignored in the calculation. The calculation of M(c|t, θ)

is shown in Eq. (4.10):

M(c|t, θ) =
1

N

N
∑

n=1

f(n, c|t, θ). (4.10)

feature1 and feature2 are row vectors containing the first and the second four regional

features, respectively, as shown in Eq. (4.11) and (4.12):

feature1(c) =

∑135
θ=0 M(c|–940, θ)

4
, (4.11)

feature2(c) =

∑135
θ=0 M(c|–960, θ)

4
. (4.12)

Hence, a total of eight regional features were produced. These features were then directly

fed into the neural network for classification. The author shall hereafter refer these features

as the LAGLM-based two-threshold features.
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The reason why the author separates gap lengths into multiple classes instead of just

calculating the overall average gap length is to avoid the problem of averaging effect that

originates from the difference between small gap lengths and large gap lengths. The range

of threshold that reflects the existence of emphysema is from and including –1000 HU to

–930 HU. The author defines the gap length classes based on the reasoning that generally,

the lower the threshold, the smaller the low-attenuation gap length becomes. Therefore,

the gap length classes defined for –960 HU is just slightly smaller than that of the case

of –940 HU. Despite the small difference, the effects are significant. For instance, see the

significant difference between the gap length distribution for threshold –960 HU and –940

HU in Table 4.2(b). The purpose of calculating the frequency of gap length in a row-by-row

manner within a region from four different angles is to gather the small detail bearing on

the radiographic emphysematous patterns along each row of pixels within the 60-by-60-pixel

region meticulously.

The author proposes a two-threshold algorithm because the author has learned from

Methdology 1 (see Table 3.1 and 3.2) that a threshold which is optimal for a particular CT

data set might not be optimal for the other CT data sets. Therefore, the author employs two

thresholds, –940 HU and –960 HU, for generating the second category of features. –940 HU

and –960 HU are chosen because these thresholds are the optimal thresholds for CT data

set A and B, respectively, in the author’s experiment in the previous chapter (see Table 3.1

and 3.2).

4.2.4 Classification of region using neural network

From the algorithm of region-by-region processing, classification of region using neural net-

work is implemented in step 25 (see Appendix A.2).
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Neural network topology

The author adopted a four-class multilayer perceptron neural network [57] (see Appendix A.3

for the detailed explanation bearing on the implementation of a multi-class neural network)

as the classifier for classifying the 60-by-60-pixel regions of lung into four emphysema types.

The neural network consists of eight input nodes in the input layer to receive the eight

regional features, and four output nodes in the output layer that correspond to the four

regional emphysema types: N, DE, BEDE and BE, respectively. Based on trial and error,

two hidden layers are implemented in the neural network. The underlying rationale for using

two hidden layers is to produce a neural network that is capable of representing an arbitrary

decision boundary to arbitrary accuracy with rational activation functions as illustrated

in Table A.1 [58, 59]) in Appendix A.3.2. There are many rule-of-thumb methods [59] for

determining the correct number of neurons to use in the hidden layer. The number of neurons

in the hidden layer is determined as the rounded value of (2n/3 + m) [59] (see Table A.2 in

Appendix A.3.2 for the rationale in determining the number of neurons in the hidden layers

[59]) where n is the number of input nodes in the input layer and m is the number of output

nodes in the output layer. Since the number of input nodes, n, and the number of output

nodes, m, is eight and four, respectively, the number of neurons in the two hidden layers

equals to seven, respectively.

Neural network training

In this study, a total of 55 60-by-60-pixel regions, which had been consensus-classified into

N, DE, BEDE, and BE by radiologists, were used as the training regions for neural network

classification. The 55 training regions were gathered from a total of 40 images from the data

sets of 4 subjects. Please refer to Appendix A.3 for the detailed implementation of neural

network as a multi-class classifier. Figure 4.7 shows the training regions.
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(a) (b)

(c) (d)

Fig. 4.7: The four emphysema types: (a) N-oriented training regions, (b) DE-oriented train-

ing regions, (c) BEDE-oriented training regions, and (d) BE-oriented training regions. All

regions are 60-by-60 pixels in size.
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Stopping criteria

The author employs automated stopping criteria inspired by the Steady-State Identification

algorithm (SSID) [60] for stopping the neural network training (see Appendix A.3.8 for

the detailed explanation on SSID). After each epoch, about 25% of the data are randomly

selected as the validation set for that epoch [60]. Therefore this method enables the use of

100% of the data for training. The trained neural network is used for classifying the regions.

Since the logistic function is adopted as the activation function in the input nodes, neurons

and output nodes (see Appendix A.3.5), the amplitude of the neural network output lies

inside the range of 0 ≤ output ≤1. The output node of the neural network that has the

largest output value corresponds to the emphysema type of the region in which output node

one to four correspond to N, DE, BEDE and DE, respectively.

4.3 Results

In order to evaluate the LAGLM, the author first validated the 55 training regions of the

lung using cross validation method. Again, the 55 training regions were gathered from a total

of 40 images from the data sets of 4 subjects. Then, the author evaluated the predictive

performance of the trained neural network by classifying 105 regions that were randomly

selected from 270 images. The 270 images were obtained from the data sets of 27 subjects.

The author shall hereafter refer these regions as the test regions. The 55 training regions

were excluded from the 105 test regions. The author also showed some examples of the

classified images produced by the algorithm along with their corresponding original images.

To validate the correlation of the classification results to PFT-based results, the author

carried out a series of correlation analyses.
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Table 4.4: The contingency table of the cross-validation of 55 regions using LAGLM-based

two-threshold features.

Actual regional emphysema type

N (%) DE (%) BEDE (%) BE (%)

(case) (case) (case) (case)

Predicted N (%) 93.75 0 0 0

regional (case) (15) (0)

emphy- DE (%) 6.25 92.31 11.11 0

sema (case) (1) (12) (1)

type BEDE (%) 0 7.69 88.89 0

(case) (1) (8)

BE (%) 0 0 0 100.00

(case) (17)

4.3.1 Cross-validation of 55 regions

The author cross-validated 55 training regions to validate the effectiveness of the proposed

regional features. All the regions for the cross-validation were visually consensus-classified

into four classes of emphysematous severity by radiologists in advance. Table 4.4 and Table

4.5 are the contingency tables that show the cross-validation results of using LAGLM-based

two-threshold features and LAGLM-based texture features, respectively. For compar-

ison purpose, the author cross-validated the same regions by using: PI-based features,

GLRLM-based features and GLGLM-based features. For PI-based features, the author

used PI–940HU , PI–950HU and PI–960HU as the regional features. For GLRLM-based features,

the author used short run emphasis, long run emphasis, gray level distribution, run length

distribution, run percentages, low gray level run emphasis and high gray level run emphasis

as the regional features. For GLGLM-based features, the author used the features that are

comparable to LAGLM-based texture features such as long gap emphasis, low gray level gap
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Table 4.5: The contingency table of the cross-validation of 55 regions using LAGLM-based

texture features.

Actual regional emphysema type

N (%) DE (%) BEDE (%) BE (%)

(case) (case) (case) (case)

Predicted N (%) 87.50 15.38 0 0

regional (case) (14) (2)

emphy- DE (%) 12.50 84.62 11.11 0

sema (case) (2) (11) (1)

type BEDE (%) 0 0 88.89 0

(case) (0) (8)

BE (%) 0 0 0 100.00

(case) (17)

emphasis and high gray level gap emphasis, as the regional features.

The four-class cross-validation accuracies in the form of LAGLM-based two-threshold

features /LAGLM-based texture features /PI /GLRLM /GLGLM were: N: 93.75% /87.50%

/100% /62.50% /75.00%; DE: 92.31% /84.62% /84.62% /30.77% /23.08%; BEDE: 88.89%

/88.89% /66.67% /55.56% /44.44%; and BE: 100% /100% /94.12% /76.47% /82.35%. The

average four-class cross-validation accuracies in the form of LAGLM-based two-threshold

features /LAGLM-based texture features /PI /GLRLM /GLGLM were: 93.74% /90.25%

/86.35% /56.32% /56.22%. These results show that the proposed features, LAGLM-based

two-threshold features and LAGLM-based texture features, are more expressive than the

conventional methods in classifying regional radiographic emphysematous patterns into four

classes especially in discriminating BEDE from DE and BE.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.8: Four examples of original and classified images: (a) original image no. 1 — little

mildly bullous emphysema along with substantial normal lung tissue, (b) classified image

no. 1, (c) original image no. 2 — the radiographic patterns suggest a severe destruction of

airway walls, (d) classified image no. 2, (e) original image no. 3 — both severe and mild

destruction of airway walls can be visually recognized, (f) classified image no. 3, (g) original

image no. 4 — severe destruction of airway walls in the right lung and diffuse emphysema

in the left lung and (h) classified image no. 4.

4.3.2 Classified images

The author trained the neural network using 55 training regions then by using the trained

neural network, the author classified a total of 270 images from 27 subjects. Figure 4.8 shows

four examples of classified images produced by using LAGLM-based two-threshold features.

Green, blue, magenta and red regions correspond to N-, DE-, BEDE- and BE-oriented re-

gions, respectively. The comments about the different radiographic emphysematous patterns

in the original images in Fig. 4.8 were hand-annotated by radiologists. Figure 4.9 shows

the comparison between original CT image with diseased areas annotated by radiologist

and classified image produced by LAGLM-based two-threshold features and LAGLM-based

texture features, respectively. By visual comparison, the author can see that the labeled dis-
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eased areas in the original images correspond fairly to the classified regions in the classified

images. Besides, the author can also see that there is a slight difference in classified regions

between the classified images produced by LAGLM-based two-threshold features and the

classified images produced by LAGLM-based texture features.

The author plotted the classification results, MPA, of five sample subjects which have

significantly different emphysema severities in Fig. 4.10. From the figure, the author can

relate the distribution of the percentage of different emphysematous lung tissues to the extent

of the subject’s emphysema severity. By looking at Fig. 4.10, there is an obvious increase in

MPA(:, 4) from the case of severe to very severe emphysema and there is a general increase

in MPA(:, 3) from normal to severe emphysema. This implies that MPA(:, 3) (BEDE-

oriented lung tissues) and MPA(:, 4) (BE-oriented lung tissues) are significant indicators for

the extent of the subjects’ emphysema severity. Note that in Fig. 4.10, there are cases where

the sum of MPA does not equal to 100% because some of the small edges of the lung in the

images were not classified.

4.3.3 Classification of 105 test regions

In order to assess the accuracy of the classification results, the author randomly selected 105

regions from 270 images as the test regions and classified the regions. These regions had

been carefully consensus-classified by radiologist in advance. The four-class classification

accuracies of the 105 randomly selected regions in the form of LAGLM-based two-threshold

features /LAGLM-based texture features /PI /GLRLM /GLGLM were: N: 92.31% /88.46%

/96.15% /57.69% /61.54%; DE: 84.21% /78.95% /73.68% /31.58% /15.79%; BEDE: 85.71%

/89.29% /71.43% /53.57% /50.00%; and BE: 93.75% /96.88% /90.62% /68.75% /78.12%.

The average four-class classification accuracies in the form of LAGLM-based two-threshold

features /LAGLM-based texture features /PI /GLRLM /GLGLM were: 89.00% /88.40%

/82.97% /52.90% /51.36%. While LAGLM-based features apparently outperformed PI,

GLRLM and GLGLM, the evaluation results also showed that LAGLM-based texture fea-
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Left lungRight lung

(a) (b) (c)

Left lungRight lung

(d) (e) (f)

Fig. 4.9: A comparison between original image with diseased areas annotated by radiologist

using colored arrows and the corresponding classified images produced by LAGLM-based

two-threshold features and LAGLM-based texture features, respectively: (a) original image

A — the radiographic patterns suggest moderate to severe destruction of airway walls along

with diffuse emphysema where more destruction is observed in the left lung, (b) classified

image A produced by LAGLM-based two-threshold features, (c) classified image A produced

by LAGLM-based texture features, (d) original image B — obvious emphysematous bulla in

the left lung and considerable concomitant diffuse emphysema in both the right and left lung,

(e) classified image B produced by LAGLM-based two-threshold features and (f) classified

image B produced by LAGLM-based texture features. The color green, blue, magenta and

red correspond to N, DE, BEDE and BE, respectively.
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Fig. 4.10: The classification results of five sample subjects with significantly different em-

physema severity.

tures are almost as effective as LAGLM-based two-threshold features for classifying regional

emphysema into four classes as illustrated in Table 4.6 and Table 4.7.

4.3.4 Correlation analyses

For correlation analyses, the author focused on the classification results of 270 images pro-

duced by LAGLM-based two-threshold features and performed a series of correlation analyses

between the classification results (MPA) and spirometry‡ test results such as FEV1% pre-

dicted [Forced Expiratory Volume in One Second (FEV1) divided by Forced Vital Capacity

(FVC)], FEV1 (see Table A.3 in Appendix A.4) and PFT-based class (see Table A.4 in Ap-

pendix A.5). The correlation analyses were implemented using multiple linear regression.

FEV1% predicted and FEV1 are usually used as the guidelines for determining the PFT-

based class (severity) of subject (see Table A.4 [9] in Appendix B). The p-values of correlation

of MPA to FEV1% predicted, FEV1 and PFT-based class, based on three different combi-

nations of the percentage of classified regions: (1) BEDE and BE, (2) DE, BEDE and BE,

‡spirometry (meaning the measuring of breath) is the most common of the PFTs.
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Table 4.6: The contingency table of the classification of 105 randomly selected regions from

270 images using LAGLM-based two-threshold features.

Actual regional emphysema type

N (%) DE (%) BEDE (%) BE (%)

(case) (case) (case) (case)

Predicted N (%) 92.31 5.26 0 0

emphy- (case) (24) (1)

sema DE (%) 7.69 84.21 14.29 0

type (case) (2) (16) (4)

BEDE (%) 0 10.53 85.71 6.25

(case) (2) (24) (2)

BE (%) 0 0 0 93.75

(case) (30)

Table 4.7: The contingency table of the classification of 105 randomly selected regions from

270 images using LAGLM-based texture features.

Actual regional emphysema type

N (%) DE (%) BEDE (%) BE (%)

(case) (case) (case) (case)

Predicted N (%) 88.46 5.26 0 0

regional (case) (23) (1)

emphy- DE (%) 11.54 78.95 7.14 0

sema (case) (3) (15) (2)

type BEDE (%) 0 15.79 89.29 3.12

(case) (3) (25) (1)

BE (%) 0 0 3.57 96.88

(case) (1) (31)
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Table 4.8: p-values of the correlation of MPA(:, 3 : 4), MPA(:, 2 : 4) and MPA(:, 1 : 4) to

FEV1% predicted, FEV1 and PFT-based class.

Classified regions (%) FEV1% FEV1 PFT-based

predicted class

BEDE and BE 0.6374‡ 0.5282‡ 0.3746‡

[MPA(:, 3 : 4)]

DE, BEDE and BE 0.6389‡ 0.5415‡ 0.3748†

[MPA(:, 2 : 4)]

N, DE, BEDE and BE 0.6743‡ 0.5524‡ 0.3930†

[MPA(:, 1 : 4)]

†p < 0.05

‡p < 0.01 (significant)

and (3) N, DE, BEDE and BE, were generally less than 0.01 as shown in Table 4.8. This

implies that the region-by-region classification results correlated fairly well to PFT-based

results.

4.4 Discussion

Former texture-based methods include GLGLM, GLRLM, SGLDM and GLDM (see Ap-

pendix A.1 for the detail of these methods). Among these methods, the two methods that

are more similar to the proposed LAGLM are GLGLM and GLRLM. The following elaborate

the differences that separate LAGLM from GLGLM and GLRLM.

GLGLM defines a gap as a peak or a valley between two pixels having the same gray level

[63]. On the other hand, GLRLM defines a run length as some collinearly adjacent pixels

having the same gray value [63, 25]. In this research, the proposed LAGLM defines a gap as

some collinearly adjacent low-attenuation pixels where low-attenuation pixels refer to pixels
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below a certain threshold. Therefore, LAGLM is different from GLRLM and GLGLM.

Assume that rGLGLM(i, v|θ) is a GLGLM [see Table 4.9(b)] that specifies the estimated

number of times a region contains a gap length v, for gray level i, in the direction of angle θ,

rGLRLM(i, j|θ) is a GLRLM [see Table 4.9(c)] that specifies the estimated number of times a

region contains a run length j, for gray level i, in the direction of angle θ, and rLAGLM(t, g|θ)

is an LAGLM [see Table 4.9(f)] that specifies the estimated number of times a region contains

a thresholded gap length g, for threshold t, in the direction of angle θ, the author showed the

differences among GLGLM, GLRLM and LAGLM based on a simple image [see Table 4.9(a)]

in Table 4.9. The results in Table 4.9(c), 4.9(b) and 4.9(f) were calculated by assuming the

run length of a pixel which has no adjacent pixels of the same gray value as one for GLRLM,

the gap length of two neighboring pixels with identical gray level as one for GLGLM, and

the gap length of a low-attenuation pixel which has no collinearly adjacent low-attenuation

pixels as one for LAGLM.

The calculations of GLGLM-based and GLRLM-based texture features basically corre-

spond to the calculation of LAGLM-based texture features [see Eq. (4.2) to (4.9)]. The only

difference is the use of element, namely rLAGLM(t, g|θ), rGLGLM(i, v|θ) and rGLRLM (i, j|θ) for

LAGLM, GLGLM and GLRLM, respectively. For example, the calculation of GLGLM’s

short gap emphasis and GLRLM’s short run emphasis correspond to the calculation of

LAGLM’s thresholded short gap emphasis, and so on. However, owing to the apparent

conceptual difference among GLGLM, GLRLM and LAGLM, it results in different values

for each corresponding feature.

The underlying rationale of the effectiveness of the proposed algorithm lies in the fact

that LAGLM collectively takes into account both of the two key factors for discriminating

regional emphysematous severity such as gray level distribution toward the lower end of

the range of gray level and the extent of low-attenuation gap lengths in the region. For

instance, LTGE derived from LAGLM indicates how extensive the low-attenuation gap

lengths are toward the lower end of the range of the gray level threshold and therefore it is
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Table 4.9: The differences between the proposed LAGLM and the classical texture-based

methods such as GLGLM, GLRLM, SGLDM and GLDM, based on a simple image. The

inter-sample spacing, d, for SGLDM is one.

(a) a simple image

2 0 2 1

0 1 3 2

2 2 1 0

1 0 0 2

(b) GLGLM: rGLGLM(i, v|θ)

θ = 0◦ gap length, v

1 2 3 4

gray 0 1 0 0 0

level, 1 0 0 0 0

i 2 1 1 0 0

3 0 0 0 0

(c) GLRLM: rGLRLM(i, j|θ)

θ = 0◦ run length, j

1 2 3 4

gray 0 3 1 0 0

level, 1 4 0 0 0

i 2 4 1 0 0

3 1 0 0 0

(d) SGLDM: rSGLDM (i, j|d, θ)

with inter-sample spacing, d =

1

θ = 0◦ gray level, j

0 1 2 3

gray 0 1 1 2 0

level, 1 2 0 0 1

i 2 1 2 1 0

3 0 0 1 0

(e) GLDM: rGLDM (i, j|d, θ)

θ = 0◦ gray level difference, dif

0 1 2 3

inter-sample 1 2 6 4 0

spacing, 2 1 4 2 1

d, 3 0 2 2 0

(f) LAGLM: rLAGLM (t, g|θ)

θ = 0◦ thresholded gap length, g

1 2 3 4

gray 0 0 0 0 0

level 1 3 1 0 0

threshold, 2 2 2 1 0

t 3 1 1 0 3
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able to reflect the extent of regional emphysematous severity. Similarly, LAGLM-based two-

threshold features also have approximately the same effect as LAGLM-based texture features

in terms of describing the severity of emphysema. It is because LAGLM-based two-threshold

features extract the low-attenuation gap length distribution by separating gap lengths into

four gap length classes based on a two thresholds: a lower threshold and an upper threshold

(–940HU and –960HU). Therefore, the four-class classification accuracies of LAGLM-based

texture features and LAGLM-based two-threshold features are approximately the same (see

Table 4.6 and Table 4.7).



Chapter 5

Methodology 3: Bullae Congregation

Index

5.1 Background

Figure 5.1 shows two simulated images of the lung with different bullae distributions [75]

where Fig. 5.1(a) shows sparsely distributed bullae while Fig. 5.1(b) shows densely dis-

tributed bullae. Assuming that the lung area is highlighted in black, bullae in the lung

area are highlighted in white, the bullae pixel intensities and the bulla sizes are identical

in Fig. 5.1(a) and 5.1(b), classical emphysema describing indices like MLD, PI and BI

would produce the same values for both of the cases. In other words, classical emphysema

describing indices are not expressive for discriminating bullae distribution because these in-

dices are not originally devised for measuring bullae distribution but emphysema severity.

To further confirm the usefulness of the standard emphysema describing indices, standard

statistical dispersion-based methods and standard texture-based methods for discriminating

bullae distribution, the author simulated four images with almost the same bullae sizes but

different bullae distributions as shown in Fig. 5.2 and recorded the results of these meth-

ods in response to the different bullae distributions in the simulated images as shown in

69
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bulla

lung

(a)

a cluster of bullae

lung

(b)

Fig. 5.1: Different distributions of bullae in the lung regions: (a) bullae congregate in a clus-

ter, and (b) sparsely distributed bullae. Grey and dark regions represent lung parenchyma

and bullae, respectively.

(a) (b) (c) (d)

Fig. 5.2: Four simulated cases of different distributions of bullae in 2D images: case #a, #b,

#c, #d, #e, #f, #g and #h. Areas marked white and black are bullae in the lung and lung

parenchyma, respectively.
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Table 5.1. The standard statistical dispersion-based methods comprise of second moment

of distance distribution (SM) [76]and root-mean-square distance (RMSD) [77]. The stan-

dard texture-based methods comprise of the features generated from SGLDM (see Appendix

A.1.3 for the detailed explanation on SGLDM) which is one of the most successful methods

for texture discrimination [25]. The features are angular second moment (ASM), contrast

(CNT ), variance (V AR), sum of variance (SV ), sum of entropy (SEP ) and entropy (EPY ).

As expected, the author finds that there is almost no change of values in PI and BI

from image #a to #d despite the obvious change of bullae distribution in these images.

This means that PI and BI are not expressive for discriminating bullae distribution. The

results of the standard statistical dispersion-based methods, SM and RMSD, in image

#c and #d suggest that the change of values in these methods is not in good agreement

with the visual recognition of the bullae congregation rate in the images. The results of

the standard texture-based methods in image #c and #d are almost the same despite the

obvious change of bullae distribution in these images. This suggests that these methods are

not sufficiently expressive for discriminating bullae distribution. Consequently, the author

proposes a new emphysema describing index called bullae congregation index (BCI) that

indicates whether bullae gather in a specific area of the lung and form a nearly single mass,

and how extensive the mass/cluster of bullae is in the lung. In other words, BCI describes

the bullae congregation rate in the lung. BCI is not a texture-based method. The author

hypothesizes that BCI correlates to the parameters of PFT (see Appendix A.4 for the

explanation on the parameters of PFT) better than the standard emphysema describing

indices, standard statistical dispersion-based methods and standard texture-based methods.

The goal of the BCI is to complement the existing set of emphysema describing indices to

further approximate CT-based visual radiological diagnosis and produce a more informative

emphysema diagnosis. BCI is expected to be especially useful when it comes to distinguish-

ing the bullae congregation rate in the lung for cases with approximately the same PI, BI
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Table 5.1: The results of the standard emphysema describing indices, standard statistical dispersion-based methods

and standard texture-based methods for the four simulated images.

Image standard emphysema standard statistical dispersion-based methods

describing indices and standard texture-based methods

PI BI SM RMSD ASM CNT V AR SV SEP EPY

a 3.38 4.22 0.1496 88.56 0.93 0.0053 0.0322 0.1236 0.0739 0.0755

b 3.34 4.18 0.0495 50.34 0.9309 0.0054 0.0319 0.1222 0.0733 0.0749

c 3.35 4.19 0.1132 76.47 0.93 0.0052 0.0320 0.1228 0.0734 0.0749

d 3.35 4.19 0.1899 98.97 0.9308 0.0053 0.0320 0.1227 0.0733 0.0749
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or PI and BI. Note that the BCI is not a specific index for describing emphysema severity.

5.2 Implementation of the BCI

For implementing the BCI, the author first extracts the pixels below –960 HU within the

lung regions of the original image. The extracted areas are regarded as the LAAs. Each

continuous LAA is regarded as a bulla. Then, the author labels the bullae in the image. In

this research, bullae smaller than 2mm2 are ignored. Note that emphysema is represented

by the air-filled regions in the lung and air-filled regions appear as the LAAs in the CT

(see Table 1.1). Therefore, the pixel intensity of emphysema in the CT generally ranges

from –1000 HU to –900 HU. The gray level threshold for extracting emphysema is usually

determined within the range from –900 to –990 HU. In this study, the threshold, –960 HU,

is chosen based on the author’s experience.

The author calculates the relative distance among the bullae. The distance between

bullae m and n is defined as Lm,n as shown in Eq. (5.1) where Qm,n is the distance between

the centroids of bullae m and n as shown in Fig. 5.3 and rm is the approximate radius of

bullae m. Let N be the number of bullae that are larger than 2mm2 in the image, assume

all bullae in the lung are pure circle in shape, the calculations of Qm,n and rm for all integers

1 ≤ m ≤ N and 1 ≤ n ≤ N are shown in Eq. (5.2) and (5.3), respectively:

Lm,n = Qm,n − rm − rn, (5.1)

where

Qm,n =
√

(xm − xn)2 + (ym − yn)2, (5.2)

rm =

√

vm

π
, (5.3)

where centroids of bullae m and n are (xm, ym) and (xn, yn), respectively, and vm is the area

of bullae m. Q is a N ×N square matrix. Assuming that the 2D lung region is tightly fitted
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Fig. 5.3: Distance between the centroids of two bullae.

in a rectangle, l is the longest distance from any corner to the other corner of the rectangle,

the author defines the distance between a pair of bullae as the ratio of Lm,n to l multiplied

by 100 as shown in Eq. (5.4):

Sm,n =
Lm,n

l
× 100, (5.4)

where S is a N × N square matrix with all right diagonal entries of the matrix assigned

with NaN (Not-a-Number). All non-NaN entries in S that are less than zero are assigned

with zeros. Hence, S ranges between and including 0 to 100, corresponding to very close

proximity between the pair of bullae and to very far distance between the pair of bullae.

The author adopts Lm,n instead of just Qm,n in Eq. (5.4) to avoid inter-bullae-size variance.

The underlying rationale of dividing Lm,n by l is to standardize the bulla-to-bulla distance

to avoid inter-lung-size variance.

Next, the author generates a vector of 201 linearly spaced points between and including 0

and 100, representing the 200 distance classes of S. For example, 0 ≤ Sm,n < 0.5 corresponds
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to distance class 1 and 99.5 ≤ Sm,n ≤ 100 corresponds to distance class 200. Theoretically,

the larger the number of distance class, the smaller the averaging effect which is caused by

the varying distances in each distance class. The author defines 200 distance classes because

the author hypothesizes that by using 200 distance classes, the distance class interval of

Sm,n becomes 0.5 and this interval is already sufficiently small for reducing the variance of

distance in each distance class. The validation of the author’s hypothesis for the selection

of the number of distance class is elaborated in the next chapter: Results and Discussions.

The author defines Hc,β as the average area of the βth pair of bullae that are separated by

distance class c where integer c = 1, 2, 3, ..., 200. For example, H2,3 represents the average

area of the 3rd pair of bullae that belongs to distance class 2. Let totalc be the number

of pairs of bullae that are separated by distance class c and a be the area of the lung, the

author computes the percentage of area of bullae pairs that are separated by distance class

c, Pc, as follows:

Pc =

∑totalc
β=1 Hc,β

a
× 100. (5.5)

Next, the author defines D as the weighted sum of Pc across the 200 distance classes as

shown in Eq. (5.6):

D =

∑200
c=1(Pc × wc)

N − 1
, (5.6)

where w is the weighting function as defined in Eq. (5.7):

wc =
t3c + t2c

40
, (5.7)

where tc represents the cth value in the 200 linearly spaced points between and including

seven to one and wc represents the value of weight that corresponds to distance class c.

The weighting function is illustrated in Fig. 5.4. The underlying rationale of the weighting

function is that the closer the distance between the bullae, the higher weight is assigned.

Note that instead of using just a few distance classes, the author uses 200 distance classes.
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Fig. 5.4: Weighting function.

By doing this, the author substantially reduces the effect of averaging problem, which is

caused by the varying bullae sizes in each distance class, on Pc.

Since D is the weighted sum of Pc (the distance-class-based percentage of area of bullae

in the lung region), the author infers that using D alone to quantify the congregation of

bullae in the lung region is premature because lung with different PI should have different

reference value of D for deciding whether bullae congregate in the lung region. In other

words, the reference value of D for deciding whether bullae congregate in the lung region is

dependent on PI. Accordingly, based on an experiment using 114 images, the author defines

BCI as follows:

BCI =



























D × cf : PI > 1,

D × (4/15) : 0 < PI ≤ 1,

0 : PI = 0,

(5.8)

where

cf =
1 + 3/PI

15
. (5.9)

If BCI is greater than ten, then BCI equals ten. BCI ranges from zero to ten corresponding

to sparsely distributed small bullae and to densely distributed big bullae that congregate in
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Fig. 5.5: PI versus correction factor, cf .

cluster(s) in the lung region. The relation between PI and cf is illustrated in Fig. 5.5. Note

that D is related to the percentage of area of bullae based on 200 bulla-to-bulla distance

classes. It is not related to the percentage of bulla-to-bulla distance. This notion originates

from the fact that a big emphysematous lesion in the lung is formed by the collapse of a few

or many nearby airway walls. Hence, the proposed algorithm treats big bullae as a dense

cluster of bullae that have gathered very closely into a mass. Therefore, BCI for two big

bullae is higher than that of two small bullae assuming that the bulla-to-bulla distances

for both cases are the same. The author defines four bullae congregation classes based on

BCI as shown in Table 5.2. These four BCI-based bullae congregation classes are used to

compare with the four radiological consensus-classified bullae congregation classes (BCC§)

as elaborated in the next section.

5.3 Results

To verify the proposed BCI, the author carried out two experiments using simulated images

§BCC is the abbreviation for radiological hand-annotated and consensus-classified bullae congregation

class. BCC is based on radiologist’s manual observation on the degree of bullae congregation in 2D slices.

BCC ranges between and including one to four, corresponding to sparsely distributed bullae to densely

distributed bullae.
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Table 5.2: Four bullae congregation classes based on BCI.

class range of BCI interpretation of

bullae congregation class

1 BCI ≤ 3.4 bullae are sparsely distributed in the

lung region

2 3.4 < BCI ≤ 4.8 bullae slightly congregate and are

moderately close to each other

3 4.8 < BCI ≤ 6.5 bullae congregate and are close to each

to each

4 BCI > 6.5 bullae congregate and are very close to

each other forming dense cluster of

bullae

and real images, respectively. To compare the author’s results with standard statistical

dispersion-based methods, the author computed a total of 47 features from spatial gray level

dependence method (SGLDM) [25] (15 features), gray level difference method (GLDM) [25]

(10 features), gray level run length method (GLRLM) [25] (11 features), gray level histogram

method (GLHM) (seven features), second moment of distance distribution (SM) [76] (one

feature), root-mean-square distance (RMSD) [77] (one feature), PI and BI. 10 out of the 47

features that showed higher correlation to BCC were chosen to be used to compare with BCI.

These 10 features can be divided into three categories: 1) standard emphysema describing

indices: PI and BI, 2) standard statistical dispersion-based methods: SM and RMSD,

and 3) texture-based methods: SGLDM: angular second moment (ASM), contrast (CNT ),

variance (V AR), sum of variance (SV ), sum of entropy (SEP ) and entropy (EPY ).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.6: Eight simulated cases of different distributions of bullae in 2D images: case #a,

#b, #c, #d, #e, #f, #g and #h. Areas marked white and black are bullae in the lung and

lung parenchyma, respectively.

5.3.1 Experiment results based on eight simulated images

Figure 5.6 shows eight simulated 2D images with different bullae distributions. BCI for

the simulated images are tabulated in Table 5.3. Case #a, #b, #c and #d show four

lungs that have almost the same PI and BI. Among these lungs, the lung with bullae

that congregate has higher BCI than the lung with sparsely distributed bullae (see Table

5.3). The author noticed that the outputs of PI, BI, ASM , V AR, SV , SEP and EPY

from case #a to #d are almost the same despite the different bullae distributions in these

cases. Therefore without manual visual recognition, one can not distinguish the differences

of bullae distribution across these four lungs by simply referring to PI, BI, ASM , V AR,

SV , SEP or EPY (see Table 5.3). Besides, SM and RMSD do not seem to agree with the
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Table 5.3: Standard emphysema describing indices, BCI, standard statistical dispersion-based methods and standard

texture-based methods for the simulated cases.

standard emphysema proposed standard statistical dispersion-based methods

describing indices method and standard texture-based methods

# PI BI D BCI SM RMSD ASM CNT V AR SV SEP EPY

a 3.38 4.22 12.37 1.56 0.1496 88.56 0.93 0.0053 0.0322 0.1236 0.0739 0.0755

b 3.34 4.18 20.46 2.59 0.0495 50.34 0.9309 0.0054 0.0319 0.1222 0.0733 0.0749

c 3.35 4.19 27.01 3.41 0.1132 76.47 0.93 0.0052 0.0320 0.1228 0.0734 0.0749

d 3.35 4.19 14.00 1.77 0.1899 98.97 0.9308 0.0053 0.0320 0.1227 0.0733 0.0749

e 10.20 5.00 35.87 3.10 0.0166 89.05 0.8102 0.0087 0.0906 0.3535 0.1589 0.1616

f 14.72 5.00 107.33 8.61 0.0081 87.57 0.7410 0.0109 0.1241 0.4856 0.2009 0.2042

g 1.46 1.22 13.04 2.66 0.1433 43.18 0.9686 0.0030 0.0142 0.0537 0.0388 0.0397

h 2.38 1.98 20.22 3.05 0.0689 37.86 0.9492 0.0050 0.0229 0.0868 0.0578 0.0593
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visual recognition of bullae congregation rate. This is because for both SM and RMSD,

outputs for case #1 are higher than that of case #3 although case #1 apparently has lower

bullae congregation rate compared to case #3. Consequently, among the methods in Table

5.3, BCI is the most effective index for describing the distributions of bullae from case #a

to #d.

Case #a and #e have different PI and BI but the locations of bulleas in both lungs are

almost the same. Case #e has much higher BCI compared to case #a owing to its bigger

bullae. Also, bullae in case #c and #f are separated by approximately the same relative

distances but BCI in case #f is much higher than that of case #c owing to its bigger bullae.

Although case #g and #h have smaller bullae compared to case #a and #b, case #g and

#h both have higher BCI compared to case #a and #b owing to their more densely located

bullae. On the other hand, case #h has higher BCI compared to case #g because of its

bigger mass/cluster of bullae.

5.3.2 Experiment results based on 18 sample CT images

18 samples (see Fig. 5.7) drawn from 114 image data set were assessed and the results

are tabulated in Table 5.4. Note that PI and BI are indices that indicate the severity of

emphysema. BCI is not a specific index for indicating emphysema severity. The purpose of

BCI is to provide information about the distribution or congregation rate of bullae in the

lung region.

From Table 5.4, BCI increases from case #a to #i indicating increasing bullae congre-

gation rate across the cases (see the distribution of bullae from case #a to #i in Fig. 5.7).

Case pairs: #e and #f, #d and #p, #c and #o, and #j and #k, each shows cases with

approximately the same PI but different BCI. For instance, in case pair #e and #f, the

cluster of bullae located at approximately the upper left of the lung region in case #f is

radiologically more obvious and denser than the cluster of bullae located at approximately

the middle of the lung region in case #e. Therefore, case #f has higher BCI than case #e.
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Fig. 5.7: 18 samples of 2D images: case #a to case #r. Areas marked white in in the figures

with dark background are areas below –960 HU (bullae). Bullaes smaller than 2mm2 are not

displayed and are ignored in all calculations.



CHAPTER 5. METHODOLOGY 3: BULLAE CONGREGATION INDEX 83

In case pair #d and #p, case #d has higher BCI than case #p owing to its more densely

located and bigger bullaes. The same situation happens to case pair #c and #o where the

former case has higher BCI than the latter case owing to its more densely located and bigger

bullaes. As for case pair #j and #k, case #j has higher BCI than case #k although both

cases have almost the same PI. This is because bullae in case #j gather into a small mass

while bullae in case #k are sparsely distributed in the lung region.

On the other hand, case pairs: #l and #g, #g and #f, #d and #c, #m and #h, and

#n and #h, each shows cases with roughly the same BI but different BCI. For instance,

in case pair #l and #g, one can see the formation of a big cluster of bullae in both cases.

Case #l has higher BCI than case #g because the cluster in case #l is denser and it covers

a bigger ratio of area in the lung region compared to that of case #g. In case pair #g and

#f, case #g has higher BCI than case #f owing to its more densely located and bigger

bullae. In case pair #d and #c, although bullae sizes in both cases are approximately the

same, the congregation of bullae in case #d forms a slightly bigger mass than that of case

#c. Therefore case #d has slightly higher BCI than case #c.

In this study, since BCI is derived from D (the weighted sum of the percentage of area

of bullae in the lung region based on 200 bulla-to-bulla distance classes), consequently, a

bigger bulla is conceptually considered as a dense cluster of bullae that have gathered into

a mass. Hence, bigger bulla contributes to higher BCI.

In conclusion, without doing visual examination on lung images and with just the stan-

dard emphysema describing indices: PI and BI, of two subjects, one can approximate only

the differences in emphysema severity and bullae size between the subjects. BCI blends in

to provide more information regarding how densely the bullae are distributed in the lung

region. A dense cluster of bullae implies that a significant amount of airway walls in that

specific area of the lung are destroyed. BCI is devised to be used along with the existing

set of emphysema describing indices (PI and BI) for a more thorough knowledge about

the sizes and distribution of bullae in the lung. This knowledge is potentially helpful for
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Table 5.4: Standard emphysema describing indices, BCI, standard statistical dispersion-based methods and texture-

based methods for the sample cases.

standard emphysema indices proposed standard statistical dispersion-based methods and texture-based methods BCC

MLD PI BI D BCI SM RMSD ASM CNT V AR SV SEP EPY (1–4)

# (0–100) (0–10) (0–10)

a -860 0.77 0 4.35 1.16 9.0800 62.72 0.9663 0.0130 0.0104 0.0286 0.0415 0.0454 1

b -865 3.94 0.13 23.02 2.70 0.8059 47.86 0.8392 0.0656 0.0498 0.1336 0.1463 0.1660 1

c -798 4.24 3.79 28.10 3.20 0.4329 51.85 0.8965 0.0210 0.0414 0.1447 0.1066 0.1130 1

d -861 4.95 3.53 31.55 3.38 0.3328 61.97 0.8622 0.0398 0.0498 0.1594 0.1344 0.1464 1

e -881 9.94 1.94 54.52 4.73 0.3822 59.68 0.6938 0.1175 0.1013 0.2879 0.2468 0.2822 2

f -885 10.90 5.21 60.50 5.14 0.2093 63.68 0.7027 0.1005 0.1035 0.3136 0.2448 0.2751 3

g -901 16.57 5.91 94.06 7.41 0.0669 57.22 0.6417 0.0863 0.1398 0.4729 0.2856 0.3116 4

h -901 23.63 8.49 108.10 8.12 0.0936 61.62 0.4389 0.2366 0.1906 0.5259 0.3932 0.4644 4

i -912 32.43 9.90 168.46 10.00 0.0483 84.83 0.3875 0.2053 0.2249 0.6941 0.4309 0.4927 4

j -823 2.66 1.17 16.75 2.38 0.8930 43.59 0.9304 0.0179 0.0260 0.0862 0.0775 0.0829 1

k -858 2.55 0.25 13.31 1.93 3.0495 103.74 0.8885 0.0449 0.0343 0.0924 0.1095 0.1230 1

l -864 28.42 5.71 167.51 10.00 0.0424 112.22 0.4540 0.1589 0.2063 0.6662 0.3958 0.4437 4

m -928 43.49 6.97 306.51 10.00 0.0123 41.12 0.3176 0.2568 0.2464 0.7289 0.4653 0.5426 4

n -942 52.03 7.18 280.55 10.00 0.0092 82.52 0.3365 0.2087 0.2494 0.7891 0.4594 0.5222 4

o -866 4.64 0.46 23.92 2.63 1.4659 71.58 0.8332 0.0629 0.0540 0.1530 0.1531 0.1720 1

p -870 4.94 0.63 25.51 2.73 1.1966 84.76 0.8330 0.0610 0.0549 0.1587 0.1539 0.1723 1

q -861 2.22 0.09 15.84 2.49 1.2900 43.38 0.9256 0.0275 0.0238 0.0678 0.0801 0.0884 1

r -855 3.67 0.34 19.12 2.32 1.0718 67.91 0.8514 0.0587 0.0467 0.1281 0.1384 0.1561 1
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a followup study on progressive monitoring of emphysema, especially for subjects with the

same PI or BI or PI and BI. Note that although the calculation of BCI is related to PI

and bullae size, BCI is not proportional to PI or to BI.

5.3.3 Initial investigation: assessment of the BCI using 114 tho-

racic CT images

To verify whether BCI agrees with BCC, the author compared the BCI-based bullae con-

gregation classes with BCC using 114 CT images which were obtained from the data sets

of 31 subjects. The images were hand-annotated and consensus-classified by radiologists

into four bullae congregation classes in advance based on the visual impression of bullae

congregation rate in the lung region. The author classified the bullae congregation rate of

the images into four classes based on BCI. Figure 5.8 shows the relationship between BCI

and BCC. Table 5.5 shows the contingency table of the four-class classification results based

on the BCI-based bullae congregation classes (see Table 5.2) of the 114 CT images. The

four-class classification accuracy using the BCI-based bullae congregation classes is: class

1: 93.10%, class 2: 81.25%, class 3: 82.35% and class 4: 96.15%. The average four-class

classification accuracy using BCI is 88.21%. By the way, the author investigated the effect

of changing the number of distance classes on the four-class classification accuracy of BCI.

The author calculated the four-class classification accuracy of BCI for the case of using 50,

100, 150, 200 and 250 distance classes, respectively. The results showed that the four-class

classification accuracy of BCI does not change for the cases of 100, 150, 200 and 250 dis-

tance classes; meanwhile, it slightly decreases for the case of 50 distance classes. The author

concluded that the problem of averaging effect due to the varying distances in each distance

class has an effect on the performance of BCI although the effect is small. Therefore, the

author chose 200 as the number of distance class.



CHAPTER 5. METHODOLOGY 3: BULLAE CONGREGATION INDEX 86

0 1 2 3 4 5
0

2

4

6

8

10

Radiological consensus−classified bullae congregation class (BCC)

B
ul

la
e 

co
ng

re
ga

tio
n 

in
de

x 
(B

C
I)

Fig. 5.8: BCC versus BCI.

Table 5.5: The contingency table of the classification of bullae congregation rate of 114 CT

images using BCI.

actual bullae congregation class

1 (%) 2 (%) 3 (%) 4 (%)

(case) (case) (case) (case)

predicted 1 (%) 93.10 0 0 0

bullae (case) (27) (0)

congregation 2 (%) 6.90 81.25 5.88 0

class (case) (2) (13) (1)

3 (%) 0 18.75 82.35 3.85

(case) (3) (14) (2)

4(%) 0 0 11.77 96.15

(case) (2) (50)
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Table 5.6: Correlation analyses and assessment of the average four-class classification accu-

racy of BCI and other methods using 114 CT images.

method correlation analyses AFC (%)

BCC (1–4) ES (1–4)

correlation coefficient p-value correlation coefficient p-value

BCI 0.9288 < 0.001 0.8468 < 0.001 88.21

PI 0.7821 < 0.001 0.7069 < 0.001 32.69

BI 0.9004 < 0.01 0.9200 < 0.001 72.42

SM 0.3521 < 0.01 0.3342 < 0.01 22.42

RMSD 0.3588 < 0.001 0.4212 < 0.001 32.64

ASM 0.7691 < 0.001 0.6643 < 0.001 13.97

CNT 0.8610 < 0.001 0.7063 < 0.001 65.99

V AR 0.9181 < 0.001 0.8180 < 0.001 84.70

SV 0.9053 < 0.001 0.8271 < 0.001 70.93

SEP 0.9183 < 0.001 0.8085 < 0.001 74.88

EPY 0.9162 < 0.001 0.7988 < 0.001 76.35

Table 5.6 shows two correlation analyses: 1) correlation of BCI and other standard

methods with BCC, and 2) correlation of BCI and other standard methods with ES¶. In

the first correlation analysis, the correlation coefficient and p-value of BCI were 0.9388

and less than 0.001, respectively. This shows that BCI significantly correlates with BCC.

Besides, BCI’s correlation performance with BCC is the highest among all the methods

in Table 5.6. Four texture-based methods that are worth notice included V AR, SV , SEP

and EPY . Their correlation performances with BCC approach that of BCI. In the second

correlation analysis, the author finds that BCI has the second highest correlation with ES

after BI among all the methods in Table 5.6. The author concludes that although the

¶ES is the abbreviation for emphysema severity class based on pulmonary function tests (PFT) results.
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calculation of BCI is related to bullae size, as compared to BI, BCI is not a specific index

for indicating emphysema severity.

The author calculated the average four-class classification accuracy, AFC‖, of BCI and

other standard methods based on the BCC of 114 CT images. The results are tabulated in

Table 5.6. While the cutoff points for dividing the values of BCI into four classes are 3.4,

4.8 and 6.5, the cutoff points for other standard methods are hand-optimized based on a

trial and error basis. From Table 5.6, V AR achieves the highest AFC among the standard

methods. This is within the author’s expectation because V AR is a measure that provides

evidence on the statistical dispersion [78] in the image. The author finds that the proposed

non-texture-based method, BCI, is able to perform as good as the texture-based feature,

V AR, in terms of classifying bullae congregation rate in 2D images. In fact, based on the

author’s evaluation using 114 images, BCI achieves slightly higher correlation with BCC and

higher AFC as compared to V AR. Besides, BCI evidently outperforms V AR in discerning

the different distributions of bullae from case #a to #d of the simulated images (see Fig.

5.6 and Table 5.3 in Section 3.1). V AR is inexpressive for these cases. Hence, this shows

the weakness of V AR in quantifying the congregation rate of bullae.

On the other hand, standard statistical dispersion-based methods, SM and RMSD, fail

to achieve good results in both correlation with BCC and evaluation of AFC (see Table 5.6).

This is because SM and RMSD are supposed to measure distance-based statistics between

pairs of equivalent objects [77]. However, bullae in the images used in this research are

of different shapes and sizes. Hence, they are not supposed to be perceived as equivalent

objects. Thus, SM and RMSD are not expressive for measuring the congregation rate of

bullae.

In conclusion, BCI is a non-texture-based method for assessing the distribution of bullae

in the lung region. The calculation of BCI is computation-wise easier to implement com-

‖AFC is the abbreviation for average four-class classification accuracy based on radiological hand-

annotated bullae congregation class (BCC).
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pared to texture-based methods. BCI is devised to range from zero to ten corresponding

to sparsely distributed bullae to densely distributed bullae. As compared to texture-based

methods, BCI is an index that is much easier to interpret and more ready to be used by all

users including those with minimum knowledge about statistics.

5.3.4 Further investigation: additional comparison between the

BCI and V AR

The author’s goal is to devise a user-friendly index that is able to discriminate the difference

in bullae distribution particularly among cases with approximately the same PI. From

Table 5.6 in Section 3.3, the author learned that, in terms of quantifying bullae congregation

rate, V AR derived from SGLDM stands out the most among all standard statistical methods

examined in this study. Therefore, it is important that the author compares the performance

of the proposed method, BCI, with V AR, from this perspective.

Although V AR seems to perform equally well compared to BCI in the framework of

four-class classification of bullae distribution, the author learned from the experiments in

Fig. 5.6 and 5.7 that V AR, in some cases, produces undesirable values when it comes to

discriminating the difference of bullae distribution among cases that belong to the same

BCC and among cases with approximately the same PI. For example, bullae distributions

in case #a, #b, #c and #d in Fig. 5.6 are apparently different but V AR for these cases are

almost the same. This implies that V AR is not able to discriminate the difference of bullae

distribution among these cases. The same scenario can be observed in real images such as

case #b and #d in Fig. 5.7. These two cases belong to the same BCC. Based on radiologist’s

visual recognition, case #d has higher bullae congregation rate compared to that of case #b.

However, V AR for these cases are almost the same. The same situation happens in case #d

and #o in Fig. 5.7 where the former case has denser and bigger cluster of bullae compared

to the latter case. However, V AR for case #d is doubtfully lower than that of case #o.

While V AR performs poorly in discriminating the difference of bullae distribution among
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the above mentioned cases, BCI consistently agree with radiologist’s visual impression on

bullae congregation rate in these cases. For example, radiologist’s visual impression on bullae

congregation rate for case #a, #b, #c and #d in Fig. 5.6 in descending order is case #c

> #b > #d ≥ #a. The order of BCI in these cases agree with the order annotated by

radiologist. In addition, radiologist’s visual comparisons of bullae congregation rate between

case #b and #d, #j and #k, and #d and #o in Fig. 5.7 are case #d > #b, #j ≥ #k, and

#d > #o. Note that, the order of BCI in these cases agree with radiologist’s annotations.

Based on the above observations, the author hypothesizes that the performance of BCI

is significantly better than that of V AR when it comes to discriminating finer or less obvious

difference of bullae distribution among cases that belong to the same BCC and among cases

with approximately the same PI. In order to verify the author’s hypothesis, the author

carried out a series of correlation analyses. The author divided the cases in each class of

BCC into two sub-classes and correlated BCI and V AR, respectively, to the sub-classes.

Since it is laborious and time consuming for radiologist to manually divide images into more

than four bullae congregation classes, the author gathered the cases that belong to the same

BCC (class 1, 2, 3 and 4) and requested radiologist to divide the cases in each class into

two sub-classes: upper sub-class (higher bullae congregation rate) and lower sub-class (lower

bullae congregation rate). For example, both case #b and #d in Fig. 5.7 belong to class

1 of BCC and based on radiologist’s annotation, case #d is categorized as upper sub-class

while case #b is categorized as lower sub-class. The author evaluated the performance

of correlation of BCI and V AR, respectively, to the sub-classes annotated by radiologist.

The results of the correlation analyses are shown in Table 5.7. Based on the correlation

coefficients in Table 5.7, BCI outperforms V AR in correlation to radiologist-annotated sub-

classes especially in cases that belong to class 1, 2 and 3 of BCC, respectively. Next the

author gathered two groups of cases with approximately the same PI from the lower end

(3% to 5%) and the higher end (15% to 20%) of the range of PI, respectively. The author

requested radiologist to divide the cases in each group into two sub-classes: upper sub-class
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Table 5.7: Correlation of BCI and V AR, respectively, to the two sub-classes in each BCC

(class 1, 2, 3 and 4) and to the two sub-classes in cases with approximately the same PI.

radiologist-annotated BCI (0–10) V AR

sub-classes in a correlation p-value correlation p-value

certain class of BCC coefficient coefficient

class 1 of BCC (29 cases) 0.8384 < 0.001 0.6876 < 0.001

class 2 of BCC (16 cases) 0.5783 0.0189 0.4166 0.1084

class 3 of BCC (17 cases) 0.6637 0.0037 0.4421 0.0756

class 4 of BCC (52 cases) 0.8836 < 0.001 0.8315 < 0.001

approximately same-PI cases 0.6817 0.0431 0.5734 0.1065

(lower PI) (14 cases)

approximately same-PI cases 0.6073 0.0475 0.5023 0.1153

(higher PI) (14 cases)

(higher bullae congregation rate) and lower sub-class (lower bullae congregation rate). The

author evaluated the performance of correlation of BCI and V AR, respectively, to the sub-

classes annotated by radiologist. The results of the correlation analyses are shown in Table

5.7. Based on the correlation coefficients in Table 5.7, BCI outperforms V AR in correlation

to radiologist-annotated sub-classes in both lower-PI and higher-PI groups.

Table 5.8 describes the general conceptual differences between the calculation of BCI

and V AR. Note that, in this study, the images used for calculation are binary images that

contain only two values: zero or one. To further confirm that BCI performs better than

V AR in corresponding to radiologist’s visual recognition of bullae distribution among cases

that belong to the same BCC such as case #b and #d in Fig. 5.7 and among cases with

approximately the same PI, the author simulated five simple images as shown in Table 5.9

and calculated the BCI and V AR of the images. Pixel with the value of one in the images

represents bullae pixel while pixel with the values of zero represents the background of the
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Table 5.8: The general conceptual differences between the calculation of BCI and V AR.

concept BCI V AR

the definition of one one element is one element is

element in the method represented by one bullae represented by one pixel

the kind of distance bulla-to-bulla distance pixel-to-pixel distance

considered in the method

other considerations 1. size of bulla 1. number of bullae

2. number of bullae pixels in the image

image. Note that bulla in the images is represented by continuous pixels of the value of

one. For example, there are four, four, two, two, and four bullae in image #1, #2, #3, #4

and #5, respectively. BCI and V AR of the images are shown in Table 5.10. Radiologist’s

visual impression on the bullae congregation rates of the five images in descending order

is image #3 ≈ #4 > #2 ≈ #1 > #5. BCI in descending order for the five images is

image #3 ≈ #4 > #2 ≈ #1 > #5. V AR in descending order for the five images is

image #1 ≈ #2 ≈ #3 ≈ #4 > #5. Therefore, the order of BCI agrees with the the

order annotated by radiologist. On the contrary, V AR corresponds poorly to the order

annotated by radiologist. In other words, V AR corresponds poorly to the variations of

bullae distribution across the images. Note that V AR is irresponsive to the variations in

bullae distribution from image #1 to #4.

From the results of correlation analyses in Table 5.7 and the results of experiment in

Table 5.10, the author concludes that BCI is more expressive than V AR when it comes

to discriminating the difference in bullae congregation rate among cases that belong to the

same BCC and among cases with approximately the same PI.
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Table 5.9: The five images simulated for experiment purposes (bullae pixel is represented by

one in the images).

(a) image #1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(b) image #2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(c) image #3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(d) image #4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(e) image #5

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0
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Table 5.10: Comparing BCI and V AR based on five simulated images.

image # BCI (0–10) V AR PI (0%–100%)

1 4.6686 0.0810 8

2 4.6449 0.0810 8

3 5.3360 0.0810 8

4 5.3360 0.0810 8

5 1.8672 0.0717 8

(a) (b)

Fig. 5.9: Distance calculation based on the center point of the lung region for case #a and

case #b.

5.4 Discussion

The author did not calculate the distance between bullae based on the center point of the

lung region. Assuming that bullae in Fig. 5.9(a) and 5.9(b) are located at equal distance

from the center point of the lung region, BCI calculated based on the distance of bullae from

the center point of the lung region are the same for both cases despite the different bullae

distributions. In fact, the bullae congregation rate in Fig. 5.9(b) is generally considered as

slightly higher than that of Fig. 5.9(a) because there is somewhat a formation of two clusters

of bullae, in the upper and lower regions of the lung in Fig. 5.9(b).



Chapter 6

Conclusion

In order to facilitate a more thorough knowledge about emphysema for the purpose of diag-

nosis, the total computer aided diagnostic system is implemented (see Fig. 2.1 in Chapter

2). The system encompasses all three of the proposed methods including the multi-threshold

method, the LAGLM and the BCI. Consequently, the system is capable of:

1. Classifying sub-volumetric emphysema severity and visualizing emphysema in three

dimensions using the proposed multi-threshold method.

2. Classifying regional radiographic emphysematous patterns using the proposed LAGLM

method.

3. Describing emphysema distribution uisng the proposed BCI and the multi-threshold

method.

The proposed methods have different goals as mentioned above but they share the same

motive which is to further describe and/or quantify the features of emphysema to assist

medical experts to realize more objective and informative diagnosis of emphysema. It is

essential to acquire more knowledge about emphysema before making a diagnosis due to the

limitations of pulmonary function tests and the variance of the accuracy of diagnosis between

experienced and inexperienced radiologists. The author is confident that the proposed system

95
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is practical and efficient enough to help radiologists to verify their diagnoses and to facilitate

follow-up study on progressive monitoring of the disease. Besides, the proposed system can

be used to navigate CT slices in different planes and to identify both local (regional) and

global (total) emphysema severity in the lung. Different color are employed to correspond

to the different level of emphysema severities/patterns. For example, user can access to the

2D bullae congregation rate of a particular CT slice based on the BCI. User can also access

to the regional emphysema severity based on the classified image produced by the LAGLM

method (the classified image is located in the upper left of Fig. 2.1). In addition, user can

easily interpret the distribution of emphysema severity in the entire lung by referring to the

sub-volumetric classes generated by the multi-threshold algorithm as shown in the lower left

of Fig. 2.1. The following are the separate conclusions of the proposed methods that are

included in the total computer aided diagnostic system.

6.1 The multi-threshold method and visualization of

emphysema

From the author’s experiments (see Table 3.1, 3.2 and 5.6), the author finds that single-

threshold method is premature for quantifying emphysema due to the subtle variations in

radiographic gray levels. Therefore, the author proposes a multi-threshold method that uti-

lizes ten thresholds chosen from the emphysema-related threshold range (from –900 HU to

–990 HU) to extract the different potential emphysematous areas from CT images. Along-

side the use of a neural network as the classifier, the author divides the lung into eight sub-

volumes and classify the sub-volumetric emphysema severity into four classes. In conclusion,

the author has presented an automated 3D-based multi-threshold method for quantifying

emphysema. The author’s method is practical and is intended to be used as a computer

aided diagnostic tool to facilitate not only the knowledge of emphysema severity but also

the knowledge of the distribution of emphysema severity across the entire lung in a more ef-
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ficient manner. The author also implements a visualization technique called the transparent

lung model for visualizing emphysema in three dimensions. Thus, the proposed algorithm

incorporates both 3D quantitative analysis and visualization for producing a more compre-

hensive, easy-to-interpret (see Table 3.8) and effective medical assistant tool. It has higher

correlation with the PFT’s parameters compared to the classical emphysema-quantification

methods.

The four-class classification accuracy of the proposed method based on the 248 test sub-

volumes of the lung obtained from 31 subjects is 89.82%. We hypothesize that both the

information of emphysema severity and the distribution of emphysema severity in the entire

lung are essential for quantifying emphysema. We validate our hypothesis by showing that

the correlation of the proposed method with the parameters of PFT is higher than those of

the entire-lung multi-threshold PIs and BIs, and other classical single-threshold methods

(see Table 5.6). In short, the author’s method integrates the multi-threshold notion with

the neural-network-based sub-volumetric classification to produce an algorithm that achieves

higher correlation with the parameters of PFT compared to the classical methods.

The relationship between emphysema location and emphysema types (heterogeneity of

emphysema) was reported in [34]. Even though, in this study, the author did not inves-

tigate the correlation between the location of emphysema and the PFT’s parameters, the

proposed method can be used to facilitate follow-up study bearing on the correlation between

emphysema location and the overall functionality of the lung.

On the other hand, the preliminary assessment based on 30 multi-color-coded images

suggests that the extracted color-coded areas in these image are in good agreement with

both the visually perceivable and fuzzy emphysematous areas in the original CT images not

only in terms of locations but also sizes and shapes [see the comparison between Fig. 3.3(a)

and Fig. 3.3(b)]. Consequently, the author believes that the multi-color-coded 2D images

can be used for 2D-based assessment of emphysema in follow-up study.
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6.2 The LAGLM

The LAGLM aims at quantifying the regional emphysematous patterns in the CT. It takes

into account the entire emphysema-related threshold range (from –900 HU to –1000 HU)

and the bullae sizes. It is inspired by, but different, from the former texture-based methods.

The LAGLM classifies the regional radiographic emphysematous patterns into four classes

of severity automatically. Two categories of features were derived from LAGLM: LAGLM-

based two-threshold features and LAGLM-based texture features. The effectiveness of these

features were verified through cross validation of 55 training regions and classification of 105

test regions that were randomly selected from 270 images (27 subjects).

The algorithm focuses on the regional radiographic patterns in the image and recognizes

whether the region is comprised of BE-, BEDE-, DE- or N-oriented lung tissue. The author

showed that the proposed algorithm is more expressive in classifying regional radiographic

emphysematous patterns into four classes compared to other similar systems such as PI,

GLRLM and GLGLM. The proposed algorithm is found to be significantly more effective

in discriminating BEDE-oriented tissues from DE- and BE-oriented tissues as compared

to PI, GLRLM and GLGLM. Classifying the 2D images in a subject’s CT data set using

the proposed algorithm facilitates the access to the knowledge about the distribution of

the different types of emphysematous tissues across the entire lung. This is particularly

interesting for a follow-up study on improving the monitoring of radiographic morphological

changes with progression of pulmonary disease. The LAGLM is published in [79].

6.3 The BCI

A new emphysema describing index, namely the bullae congregation index (BCI) is pro-

posed. The BCI quantifies the congregation rate of bullae in 2D thoracic CT. The BCI

ranges from zero to ten corresponding to sparsely distributed small bullae and to densely

distributed big bullae that congregate in cluster(s) in the lung region. Standard emphysema
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describing indices such as the MLD method, the PI and the BI are not expressive for

describing the distribution of bullae. Consequently, the BCI is devised to complement the

existing set of emphysema describing indices by providing information regarding the distri-

bution of bullae in the lung. Along with the MLD method, the PI and the BI, the BCI

helps to produce a more comprehensive description of the emphysematous conditions in the

lung. The BCI is particularly useful when it comes to comparing subjects with approxi-

mately the same PI or BI or PI and BI. In addition, the implementation of the BCI can

be easily extended from 2D to 3D. Hence, the author believes that the BCI may provide po-

tentially helpful information for 3D-based comparison study of emphysema and progressive

monitoring of emphysema.

The author evaluated the BCI by comparing the performance of the BCI with those of

the standard statistical methods using correlation analyses. Since the V AR derived from the

SGLDM method stands out the most among the standard statistical methods in the initial

investigation (see Table 5.6 in Section 3.2.3), the author further compared the performance

of the BCI with that of the V AR in terms of distinguishing bullae congregation rate among

cases that belong to the same BCC and among cases with approximately the same PI. Based

on the further investigation (see Table 5.7 and Table 5.10 in Section 3.4), the author finds

that the BCI performs better than the V AR among cases that belong to the same BCC and

among cases with approximately the same PI. Since the goal is to develop a user-friendly

index that is able to discriminate the difference in bullae distribution particularly among

cases with approximately the same PI, thus the author concludes that the BCI performs

better than the V AR in meeting the goal.

Although the author did not verify as to what extent the difference in bullae distribution

could result in the overall lung impairment in this study, the author believes that in order to

fully describe the morphology and distribution of emphysema of different sizes in the lung,

it is important that the author further explores other emphysema describing indices that

describe not only the bullae sizes or the percentage of low attenuation areas but also the
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distribution of bullae in the lung to approximate visual radiological diagnosis. The BCI is

published in [80].



Appendix A

Appendices

A.1 Classical texture-based methods

A.1.1 GLGLM

The GLGLM method defines a gap as a peak or a valley between two pixels having the same

gray level [63]. The GLGLM is a 2D array, A(g, l|θ), where g is the gray level, l is the gap

length, and θ is the search direction. Given an image of M×N pixels with G gray levels from

0 to G− 1, and L be the maximum gap length, the element of GLGLM at angle θ, A(g, l|θ),

is defined as the frequency of encounter of gap length l of gray level g in the direction of θ.

Several texture features can be extracted from the GLGLM method. Define that

• A(g, l|θ) is the (g, l)th element of the gap length matrix for a direction θ

• G is the number of gray levels,

• L is the longest gap length,

• l0 is the start gap length, l0 = 0 or 1,

• n is the number of pixels in the image.
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Number of Gaps, m00 = NG, (A-1)

NG =

G−1
∑

g=0

{

L
∑

l=l0

A(g, l|θ)
}

, (A-2)

Center of Mass 1, µl =

∑G−1
g=0

{
∑L

l=l0
lA(g, l|θ)

}

NG
, (A-3)

Center of Mass 2, µg =

∑G−1
g=0

{
∑L

l=l0
gA(g, l|θ)

}

NG
, (A-4)

Central Moments 1, m20 =

∑G−1
g=0

{
∑L

l=l0
(l − µl)

2A(g, l|θ)
}

NG
, (A-5)

Central Moments 2, m02 =

∑G−1
g=0

{
∑L

l=l0
(g − µg)

2A(g, l|θ)
}

NG
, (A-6)

Central Moments 3, m11 =

∑G−1
g=0

{
∑L

l=l0
(l − µl)(g − µg)A(g, l|θ)

}

NG
. (A-7)

The above moment parameters give a good description of the shape of the GLGLM. The

features that can be extracted from GLGLM are as follows:

SGE =

∑G−1
g=0

{
∑L

l=l0

A(g, l|θ)

l2
}

NG
, (A-8)

LGE =

∑G−1
g=0

{
∑L

l=l0
l2A(g, l|θ)

}

NG
, (A-9)

GLF =

∑G−1
g=0

{
∑L

l=l0
A(g, l|θ)

}2

NG
, (A-10)

GLN =

∑L

l=l0

{
∑G−1

g=0 A(g, l|θ)
}2

NG
, (A-11)

GP = NG/n, (A-12)

LGGE =

∑G−1
g=0

{
∑L

l=l0

A(g, l|θ)

g2

}

NG
, (A-13)

HGGE =

∑G−1
g=0

{
∑L

l=l0
g2A(g, l|θ)

}

NG
, (A-14)

where

• SGE — Short Gap Emphasis,

• LGE — Long Gap Emphasis,
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• GLF — Gray Level Fluctuation,

• GLN — Gap Length Non-uniformity,

• GP — Gap Percentage,

• LGGE — Low Gray Level Gaps Emphasis,

• HGGE — High Gray Level Gaps emphasis.

A.1.2 GLRLM

The GLRLM method defines a run length as some collinearly adjacent pixels having the

same gray value [63, 25]. In GLRLM, the gray level runs are characterized by the gray level

of the run, the length of the run and the direction of the run. The GLRLM is based on

computing the number of gray level runs of various lengths. The element, [r′(i, j|θ)], of the

gray level run length matrix specifies the estimates number of times a picture contains a run

of length j, for gray level i, in the direction of angle θ. The four principal directions are 0◦,
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45◦,90◦ and 135◦. The features [66, 25] that can be extracted from GLRLM are as follows:

SRE =

∑NG−1
i=0

∑NR

j=1

r′(i, j|θ)

j2

TR

, (A-15)

LRE =

∑NG−1
i=0

∑NR

j=1 j2r′(i, j|θ)

TR

, (A-16)

GLD =

∑NG−1
i=0

{
∑NR

j=1 r′(i, j|θ)
}2

TR

, (A-17)

RLD =

∑NR

j=1

{
∑NG−1

i=0 r′(i, j|θ)
}2

TR

, (A-18)

RP =

∑NG−1
i=0

∑NR

j=1

r′(i, j|θ)

j2

TP

, (A-19)

LGRE =

∑NG−1
i=0

∑NR

j=1

r′(i, j|θ)

i2

TR

, (A-20)

HGRE =

∑NG−1
i=0

∑NR

j=1 i2r′(i, j|θ)

TR

, (A-21)

SRLGE =

∑NG−1
i=0

∑NR

j=1

r′(i, j|θ)

i2j2

TR

, (A-22)

SRHGE =

∑NG−1
i=0

∑NR

j=1

r′(i, j|θ)i2

j2

TR

, (A-23)

LRLGE =

∑NG−1
i=0

∑NR

j=1

r′(i, j|θ)j2

i2

TR

, (A-24)

LRHGE =

∑NG−1
i=0

∑NR

j=1 i2j2r′(i, j|θ)

TR

, (A-25)

where NG is the number of gray levels, and NR is the number of run lengths in the matrix,

TR is shown below,

TR =

∑NG−1
i=0

∑NR

j=1 r′(i, j|θ)

TR

. (A-26)

TP is the number of points in the image and the descriptions of the abbreviations used in

the calculation are as follows:
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• SRE — Short Run Emphasis,

• LRE — Long Run Emphasis,

• GLD — Gray Level Distribution,

• RLD — Run Length Distribution,

• RP — Run Percentage,

• LGRE — Low Gray Level Run Emphasis,

• HGRE — High Gray Level Run Emphasis,

• SRLGE — Short Run Low Gray Level Emphasis,

• SRHGE — Short Run High Gray Level Emphasis,

• LRLGE — Long Run Low Gray Level Emphasis,

• LRHGE — Long Run High Gray Level Emphasis.

A.1.3 SGLDM

The SGLDM method has been reported as one of the most successful methods for texture

discrimination [25]. It is based on the estimation of the second order join conditional proba-

bility density function, P (i, j|d, θ): where θ = 0◦, 45◦, 90◦ and 135◦. Each P (i, j|d, θ) is the

probability of going from gray level i to gray level j, given that the inter-sample spacing is
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d and the direction is given by the angle θ. Given L the number of gray levels,

Px(i|d, θ) =

L−1
∑

i=0

P (i, j|d, θ), (A-27)

Py(j|d, θ) =
L−1
∑

j=0

P (i, j|d, θ), (A-28)

Px−y(k|d, θ) =

L−1
∑

i=0

L−1
∑

j=0

P (i, j|d, θ) (0 ≤ k = |i − j| ≤ L − 1), (A-29)

Px+y(k|d, θ) =

L−1
∑

i=0

L−1
∑

j=0

P (i, j|d, θ) (0 ≤ k = i + j ≤ 2L − 2), (A-30)

µx =
L−1
∑

i=0

iP (i, j|d, θ), (A-31)

µy =

L−1
∑

j=0

jP (i, j|d, θ), (A-32)

σ2
x =

L−1
∑

i=0

(i − µx)
2Px(i|d, θ), (A-33)

σ2
y =

L−1
∑

j=0

(j − µy)
2Py(j|d, θ). (A-34)
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By using the above equations, the features of SGLDM are calculated as follows:

ASM =

L−1
∑

i=0

L−1
∑

j=0

{P (i, j|d, θ)}2, (A-35)

CNT =
L−1
∑

k=0

Px−y(k|d, θ), (A-36)

CRR =

∑L−1
i=0

∑L−1
j=0 ijP (i, j|d, θ) − µxµy

σxσy

, (A-37)

V AR =

L−1
∑

i=0

L−1
∑

j=0

(i − µx)
2P (i, j|d, θ), (A-38)

IDM =
L−1
∑

i=0

L−1
∑

j=0

P (i, j|d, θ)

1 + (i − j)2
, (A-39)

SAV =
2L−2
∑

k=0

kPx+y(k|d, θ), (A-40)

SV R =
2L−2
∑

k=0

(k − SAV )2Px+y(k|d, θ), (A-41)

SEP =

2L−2
∑

k=0

Px+y(k|d, θ)log{Px+y(k|d, θ)}, (A-42)

EPY =
L−1
∑

i=0

L−1
∑

j=0

P (i, j|d, θ)log{P (i, j|d, θ)}, (A-43)

DV R =
L−1
∑

k=0

{

k −
L−1
∑

k=0

kPx−y(k|d, θ)
}2

Px−y(k|d, θ), (A-44)

DEP = −
L−1
∑

k=0

Px−y(k|d, θ)log
{

Px−y(k|d, θ)
}

, (A-45)

IM1 =
EPY − HXY 1

max
{

HX, HY
} , (A-46)

IM2 =
√

[1 − exp
{

− (HXY 2 − EPY )
}

], (A-47)
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where

HX = −

L−1
∑

i=0

Px(i|d, θ)log
{

Px(i|d, θ)
}

, (A-48)

HY = −

L−1
∑

j=0

Py(j|d, θ)log
{

Py(j|d, θ)
}

, (A-49)

HXY 1 = −
L−1
∑

i=0

L−1
∑

j=0

P (i, j|d, θ)log
{

Px(i|d, θ)Py(j|d, θ)
}

, (A-50)

HXY 2 = −

L−1
∑

i=0

L−1
∑

j=0

Px(i|d, θ)Py(j|d, θ)log
{

Px(i|d, θ)Py(j|d, θ)
}

, (A-51)

where

• ASM — Angular Second Moment,

• CNT — Contrast,

• CRR — Correlation,

• V AR — Variance,

• IDM — Inverse Difference Moment,

• SAV — Sum Average,

• SV R — Sum Variance,

• SEP — Sum Entropy,

• EPY — Entropy,

• DV R — Difference Variance,

• DEP — Difference Entropy,

• IM1 — Information Measure of Correlation,

• IM2 — Information Measure of Correlation.
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A.1.4 GLDM

GLDM describes the gray level difference in the image. Let f ′(r, j) be the gray level difference

density function given inter-sample spacing distance, r and gray level difference, j, and search
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direction θ [64],

DGD(j) =

nr
∑

r=1

f ′(r, j), (A-52)

DOD(r) =

nj−1
∑

j=0

jf ′(r, j), (A-53)

DAD(j) =
nr
∑

r=1

rf ′(r, j), (A-54)

LDE =

nj−1
∑

j=0

DGD(j)ln(K/j), (A-55)

SHP =

nj−1
∑

j=0

j3DGD(j), (A-56)

SMG =

nj−1
∑

j=0

DGD(j)2, (A-57)

SMO =

nr
∑

r=1

DOD(r)2, (A-58)

LDEL =

nj−1
∑

j=0

j2DAD(j), (A-59)

CNT =

nj−1
∑

j=0

j2f ′(r, j), (A-60)

ASM =

nj−1
∑

j=0

{

f ′(r, j)
}2

, (A-61)

EPY =

nj−1
∑

j=0

f ′(r, j)log
{

f ′(r, j)
}

, (A-62)

MEAN =

nj−1
∑

j=0

jf ′(r, j), (A-63)

IDM =

nj−1
∑

j=0

f ′(r, j)

j2 + 1
, (A-64)

where
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• nr = the maximum inter-sample spacing distance of r given the search direction θ,

• nj is the number of gray levels in the image,

• K is a constant (assigned as 1 in this research),

• DGD — Distribution of Gray Level Difference,

• DOD — Distribution of Average Difference,

• DAD — Distribution of Average Distance,

• LDE — Large Difference Emphasis,

• SHP — Sharpness,

• SMG — Second Moment of DGD,

• SMO — Second Moment of DOD,

• LDEL — Long Distance Emphasis for Large Difference.

• CNT — Contrast,

• ASM — Angular Second Moment,

• EPY — Entropy,

• MEAN — Mean,

• IDM — Inverse Difference Moment.

A.2 Algorithm for region-by-region processing

1: for p = 1 to 27 do {∗/integer p represents subject number}

2: for s = 1 to 10 do {∗/integer s represents image number}



APPENDIX A. APPENDICES 112

3: A(s) ⇐ Area of the lung in image no. s

4: Si = 59 {∗/Si + 1 = height of the region}

5: Sj = 59 {∗/Sj + 1 = width of the region}

6: i = 1 {∗/initial x-coordinate for the scan of qualified region}

7: j = 1 {∗/initial y-coordinate for the scan of qualified region}

8: slide1 = 10 {∗/vertical sliding range of mask region}

9: slide2 = 10 {∗/horizontal sliding range of mask region}

10: size1 = number of row in the image {∗/vertical limit}

11: size2 = number of column in the image {∗/horizontal limit}

12: run = 1

13: while run = 1 do

14: if (Si + 1) > size1 then

15: break {∗/if the vertical limit of the image is smaller than (Si + 1) then break}

16: else {(Sj + 1) > size2}

17: break {∗/if the horizontal limit of the image is smaller than (Sj + 1) then

break}

18: else {(i + Si) > size1}

19: break {∗/if the mask region spans beyond the vertical limit of the image then

break}

20: end if

21: I ⇐ image no. s {∗/store image no. s in variable I}

22: if I(i to (i+Si), j to (j +Sj)) is covered by lung region by more than 70% then

23: R ⇐ I(i to (i + Si), j to (j + Sj)) {∗/store the qualified region in variable R}

24: Calculate regional features for region R

25: Classify region R into four emphysema types using neural network

26: Paint region R with the color that corresponds to its emphysema type

27: j = j + slide2 {∗/slide the mask region to the right by slide2 pixels}
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28: else

29: j = j + 1 {∗/slide the mask region to the right by one pixel}

30: end if

31: if j + Sj > size2 then {∗/if the mask region spans beyond the horizontal limit of

the image}

32: j = 1 {∗/slide the mask region back to the leftmost position}

33: i = i + slide1 {∗/slide the mask region vertically towards the bottom by slide1

pixels}

34: end if

35: end while

36: for c = 1 to 4 do {∗/four colors corresponded by interger c}

37: TA(s, c, p) ⇐ Area of color no. c in image no. s for subject no. p {∗/calculate

the area of each color on each classified image for the subject}

38: end for

39: end for

40: for c = 1 to 4 do {∗/four colors corresponded by interger c}

41: MPA(p, c) =

∑s=10
s=1 TA(s, c, p)
∑s=10

s=1 A(s)
× 100 {∗/calculate the percentage of area of each

color across 10 images for subject no. p}

42: end for

43: end for
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A.3 Implementation of neural network as a multi-class

classifier

A.3.1 Introduction of neural network

A neural network is a computing paradigm that is loosely modeled after cortical structures of

the brain. It consists of interconnected processing elements called neurons that work together

to produce an output function. The output of a neural network relies on the cooperation of

the individual neurons within the network to operate. Processing of information by neural

networks is often done in parallel rather than in series (or sequentially). Since it relies on its

member neurons collectively to perform its function, a unique property of a neural network

is that it can still perform its overall function even if some of the neurons are not functioning.

That is, they are very robust to error or failure (i.e., fault tolerant). Neural networks are

applied to:

1. Function approximation, or regression analysis, including time series prediction and

modeling.

2. Classification, including pattern and sequence recognition, novelty detection and se-

quential decision making.

3. Data processing, including filtering, clustering, blind signal separation and compres-

sion.

Application areas include system identification and control (vehicle control, process control),

game-playing and decision making (backgammon, chess, racing), pattern recognition (radar

systems, face identification, object recognition and more), sequence recognition (gesture,

speech, handwritten text recognition), medical diagnosis, financial applications, data mining

(or knowledge discovery in databases), visualization and e-mail spam filtering
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A.3.2 Network topology

Multilayer feedforward network is an important class of neural networks. Typically, the

network consists of a set of sensory units (source nodes) that constitute the input layer, one

or more hidden layers of computation nodes, and an output layer of computation nodes.

The input signal propagates through the network in a forward direction, on a layer-by-layer

basis. These neural networks are commonly referred to as multilayer perceptrons (MLPs),

which represent a generalization of the single-layer perceptron.

The author chose a multilayer perceptron neural network as the classifier for his algorithm

because over the past years, multilayer perceptrons have been applied successfully to solve

some difficult and diverse problems by training them in a supervised manner with a highly

popular algorithm known as the error back-propagation algorithm. This algorithm is based

on the error-correction learning rule. As such, it may be viewed as a generalization of

an equally popular adaptive filtering algorithm: the ubiquitous least-mean-square (LMS)

algorithm for the special case of a single linear neuron.

A multilayer perceptron has three distinctive characteristics [58]:

1. The model of each neuron in the network includes a nonlinear activation function. The

important point to emphasize is here is that the nonlinearity if smooth (i.e., differen-

tiable everywhere). A commonly used form of nonlinearity that satisfies this require-

ment is a sigmoidal nonlinearity defined by the logistic function: yj =
1

1 + exp(−vj)
where vj is the induced local field (i.e., the weighted sum of all synaptic inputs plus the

bias) of a neuron j, and yj is the output of the neuron. The presence of non-linearities

is important because otherwise the input-output relation of the network could be re-

duced to that of a single-layer perceptron. Moreover, the use of the logistic function

is biologically motivated, since it attempts to account for the refractory phase of real

neurons.

2. The network contains one or more layers of hidden neurons that are not part of the
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input or output of the network. These hidden neurons enable the network to learn

complex tasks by extracting progressively more meaningful features from the input

patterns (vectors).

3. The network exhibits a high degree of connectivity, determined by the synapses of

the network. A change in the connectivity of the network requires a change in the

population of synaptic connections or their weights.

It is through the combination of these characteristics together with the ability to learn

from experience through training that the multilayer perceptron derives its computing power.

Figure A.1 shows an example of the architectural graph of the three-layer (one input layer,

one hidden layer and one output layer) neural network. The multilayer perceptron neural

network for the first proposed method (the multi-threshold method) consists of one input

layer, one hidden layer and one output layer while the multilayer perceptron neural network

for the second proposed method (the LAGLM method) consists of one input layer, two hidden

layers and one output layer. There are n inputs in the input layer depending on the number

of input features and m outputs in the output layer depending on the number of output

classes. The number of hidden layers are determined based on the underlying rationale

elaborated in Table A.1 [59] and the author’s experience from trial and error. Deciding the

number of hidden neuron layers is only a small part of the problem compared to determining

how many neurons to be used in these hidden layers. Deciding the number of neurons in the

hidden layers is a very important part of deciding the overall neural network architecture.

Though these layers do not directly interact with the external environment, they have a

tremendous influence on the final output [58, 59]. Both the number of hidden layers and the

number of neurons in each of these hidden layers must be carefully considered. Using too

few neurons in the hidden layers will result in something called underfitting. Underfitting

occurs when there are too few neurons in the hidden layers to adequately detect the signals

in a complicated data set. Using too many neurons in the hidden layers can result in several

problems. First, too many neurons in the hidden layers may result in over fitting. Overfitting
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Table A.1: Determining the number of hidden layers.

Number of Result

hidden layers

none Only capable of representing linear separable functions or decisions.

1 Can approximate any function that contains a continuous mapping

from one finite space to another.

2 Can represent an arbitrary decision boundary to arbitrary accuracy

with rational activation functions and can approximate any smooth

mapping to any accuracy.

occurs when the neural network has so much infomation processing capacity that the limited

amount of information contained in the training set is not enough to train all of the neurons

in the hidden layers. A second problem can occur even when the training data is sufficient.

An inordinately large number of neurons in the hidden layers can increase the time it takes

to train the network. The amount of training time can increase to the point that it is

impossible to adequately train the neural network. Obviously, some compromise must be

reached between too many and too few neurons in the hidden layers. There are many rule-

of-thumb methods, as shown in Table A.2, for determining the correct number of neuron to

use in the hidden layers as shown in Table A.2 [58, 59]. These three rules provide a starting

point for consideration. Ultimately, the selection of an architecture for neural network will

come down to trial and error. In this research, the number of neurons in the hidden layer(s)

is determined as the rounded value of (2n/3 + m) based on the rule number 2 in Table A.2.

The network is fully connected. This means that a neuron in any layer of the network is

connected to all the nodes or neurons in the previous layer. Signal flow through the network

progresses in a forward direction, from left to right and on a layer-by-layer basis.

Figure A.2 depicts a portion of the multilayer perceptron. Two kinds of signals are
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Table A.2: Determining the number of neurons in the hidden layers.

Rule Description

number

1 The number of hidden neurons should be between the

size of the input layer and the size of the output layer.

2 The number of hidden neurons should be 2/3 the size of

the input layer, plus the size of the output layer.

3 The number of hidden neurons should be less than twice

of the size of the input layer.

identified in the network.

1. Function Signals — A function signal is an input signal (stimulus) that comes in at the

input end of the network, propagates forward (neuron by neuron) through the network,

and emerges at the output end of the network as an output signal. It is worthwhile

to refer to such a signal as a function signal for two reasons. First, it is presumed to

perform a useful function at the output of the network. Second, at each neuron of the

network through which a function signal passes, the signal is calculated as a function

of the inputs and associated weights applied to that neuron. The function signal is

also referred to as the input signal.

2. Error Signals — An error signal originates at the output neuron of the network, and

propagates backward (layer by layer) through the network. It is worthwhile to refer to

it as an error signal because its computation by every neuron of the network involves

an error-dependent function in one form or another.

The output neurons (computational nodes) constitute the output layers of the network. The

remaining neurons (computational nodes) constitute hidden layers of the network. Thus the
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y1

Hidden layer

(! 2n/3 + m

neurons)

x1

x2

x3
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y2

y3
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Output layer

(m output

nodes)

Input layer

(n input

nodes)

Fig. A.1: An example of a three-layer network topology.

hidden units are not part of the output or input of the network hence their designation as

hidden. The first hidden layer if fed from the input layer made up of sensory units (source

nodes); the resulting outputs of the first hidden layer are in turn applied to the next hidden

layer; and so on for the rest of the network. Each hidden or output neuron of a multilayer

perceptron is designed to perform two computations:

1. The computation of the function signal appearing at the output of a neuron, which is

expressed as a continuous nonlinear function of the input signal and synaptic weights

associated with that neuron.

2. The computation of an estimate of the gradient vector (i.e., the gradients of the error

surface with respect to the weights connected to the inputs of a neuron), which is

needed for the backward pass through the network.
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Fig. A.2: Illustration of the directions of two basic signal flows in a multilayer perceptron:

forward propagation of function signals and back-propagation of error signals.

A.3.3 Neural network training using the back-propagation learn-

ing algorithm

Basically, error back-propagation learning consists of two passes through the different layers

of the network: a forward pass and a backward pass [58]. In the forward pass, an activity

pattern (input vector) is applied to the sensory nodes of the network, and its effect propagates

through the network layer by layer. Finally, a set of outputs is produced as the actual

response of the network. During the forward pass the synaptic weights of the networks

are all fixed. During the backward pass, on the other hand, the synaptic weights are all

adjusted in accordance with an error-correction rule. Specifically, the actual response of the

network is subtracted from a desired (target) response to produce an error signal. This error

signal is then propagated backward through the network, against the direction of synaptic

connections hence the name error back-propagation. The synaptic weights are adjusted to

make the actual response of the network move closer to the desired response in a statistical

sense. The error back-propagation algorithm is also referred to in the literature as the

back-propagation algorithm, or simply back-prop. The process performed with the back-

propagation algorithm is called back-propagation learning.
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The notation for implementing the back-propagation learning algorithm is illustrated as

follows:

• The indices i, j and k refer to different neurons in the network; with signals propagating

through the network from left to right, neuron j lies in a layer to the right of neuron

i, and neuron k lies in a layer to the right of neuron j when neuron j is a hidden unit.

• In iteration (time step) n, the nth training pattern (example) is presented to the net-

work.

• The symbol ξ(n) refers to the instantaneous sum of error squares or error energy at

iteration n. The average of ξ(n) over all values of n (i.e., the entire training set) yields

the average error energy ξav(n).

• The symbol ej(n) refers to the error signal at the output of neuron j for iteration n.

• The symbol dj(n) refers to the desired response for neuron j and is used to compute

ej(n).

• The symbol yj(n) refers to the function signal appearing at the output of neuron j at

iteration n.

• The symbol wji(n) denotes the synaptic weight connecting the output of neuron i to

the input of neuron j at iteration n. The correction applied to this weight at iteration

n is denoted by ∆wji(n).

• The induced local field (i.e., weighted sum of all synaptic inputs plus bias) of neuron

j at iteration n is denoted by vj(n); it constitutes the signal applied to the activation

function associated with neuron j.

• The activation function describing the input-output functional relationship of the non-

linearity associated with neuron j is denoted by ϕj(·).
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• The bias applied to neuron j is denoted by bj ; its effect is represented by a synapse of

weight wj0 = bj connected to a fixed input equal to +1.

• The ith element of the input vector (pattern) is denoted by xi(n).

• The kth element of the overall output vector (pattern) is denoted by ok(n).

• The learning-rate parameter is denoted by η.

• The symbol ml denotes the size (i.e., number of nodes) in layer l of the multilayer

perceptron; l = 0, 1, , L, where L is the depth of the network. Thus m0 denotes the

size of the input layer, m1 denotes the size of the first hidden layer, and mL denotes

the size of the output layer. The notation mL = M is also used.

The error signal at the output of neuron j at iteration n (i.e., presentation of the nth

training example) is defined by

ej = dj(n) − yj(n), (A-65)

where neuron j is an output node. We define the instantaneous value of the error energy for

neuron j as
1

2
e2

j (n). Correspondingly, the instantaneous value ξ(n) of the total error energy

is obtained by summing
1

2
e2

j(n) over all neurons in the output layer; these are the only visible

neurons for which error signals can be calculated directly. Thus,

ξ(n) =
1

2

∑

j∈C

e2
j(n), (A-66)

where the set C includes all the neurons in the output layer of the network. Let N denote

the total number of patterns contained in the training set. The average squared error energy

is obtained by summing ξ(n) over all n and then normalizing with respect to the set size N ,

as shown by

ξav =
1

N

N
∑

n=1

ξ(n). (A-67)
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The instantaneous error energy ξ(n), and therefore the average error energy ξav, is a function

of all the free parameters (i.e., synaptic weights and bias levels) of the network. For a given

training set, ξav represents the cost function as a measure of learning performance. The

objective of the learning process is to adjust the free parameters of the network, which

are the synaptic weights of the network, to minimize ξav. To do this minimization, an

approximation similar in rationale to that used for the derivation of the least-mean-square

algorithm. Specifically, a simple method of training in which the weights are updated on

a pattern-by-pattern basis until one epoch, that is, one complete presentation of the entire

training set has been dealt with. The adjustments to the weights are made in accordance

with the respective errors computed for each pattern presented to the network.

A.3.4 The two passes of computation

In the application of the back-propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to

as the backward pass [58].

In the forward pass the synaptic weights remain unaltered throughout the network, and

the function signals of the network are computed on a neuron-by-neuron basis. The function

signal appearing at the output of neuron j is computed as

yj(n) = ϕ(vj(n)), (A-68)

where vj(n) is the induced local field of neuron j, defined by

vj(n) =

m
∑

i=0

wji(n)yi(n), (A-69)

where m is the total number of inputs (excluding the bias) applied to neuron j, and wji(n) is

the synaptic weight connecting neuron i to neuron j, and yi(n) is the input signal of neuron

j or equivalently, the function signal appearing at the output of neuron i. If neuron j is in

the first hidden layer of the network, m = m0 and the index i refers to the ith input terminal
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of the network, for which

yi(n) = xi(n), (A-70)

where xi(n) is the ith element of the input vector (pattern). If, on the other hand, neuron

j is in the output layer of the network, m = mL and the index j refers to the jth output

terminal of the network, for which

yj(n) = oj(n), (A-71)

where oj(n) is the jth element of the output vector (pattern). This output is compared with

the desired response dj(n), obtaining the error signal ej(n) for the jth output neuron. Thus

the forward phase of computation begins at the first hidden layer by presenting it with the

input vector, and terminates at the output layer by computing the error signal for each

neuron of this layer.

The backward pass, on the other hand, starts at the output layer by passing the error

signals leftward through the network, layer by layer, and recursively computing the δ (i.e.,

the local gradient) for each neuron. This recursive process permits the synaptic weights of

the network to undergo changes in accordance with the delta rule equation as shown below:

(Weight correction, ∆wji(n)) = (learning-rate parameter, η)·(local gradient, δj(n))·(input

signal of neuron j, yi(n)).

∆wji(n) = η · δj(n) · yi(n). (A-72)

For a neuron located in the output layer, the δ is simply equal to the error signal of that

neuron multiplied by the first derivative of its nonlinearity. Eq. (A-72) is used to compute

the changes to the weights of all the connection feeding into the output layer.

δj(n) = ϕ′
j(vj(n))

∑

k

δk(n)wkj(n), (A-73)

where neuron j is hidden. Given the δs for the neurons of the output layer, Eq. (A-73) is

used to compute the δs for all the neurons in the penultimate layer and therefore the changes
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to the weights of all connections feeding into it. The recursive computation is continued,

layer by layer, by propagating the changes to all synaptic weights in the network.

A.3.5 Activation function

The computation of the δ for each neuron of the multilayer perceptron requires knowledge of

the derivative of the activation function ϕ(·) associated with that neuron. For this derivative

to exist, the function ϕ(·) is required to be continuous. In basic terms, differentiability is

the only requirement that an activation function has to satisfy. An example of a continu-

ously differentiable nonlinear activation function commonly used in multilayer perceptrons

is sigmoidal nonlinearity [58]; two terms are described:

1. Logistic Function — this form of sigmoidal nonlinearity in its general form is defined

by

ϕj(vj(n)) =
1

1 + exp(−avj(n))
, (A-74)

where vj(n) is the induced local field of neuron j. According to this nonlinearity, the

amplitude of the output lies inside the range 0 ≤ yj ≤ 1. Differentiating Eq. (A-74)

with respect to vj(n),

ϕ′
j(vj(n)) =

a[exp(−avj(n))]

[1 + exp(−avj(n))]2
. (A-75)

With yj(n) = ϕj(vj(n)), the exponential term exp(−avj(n)) is eliminated from Eq.

(A-75), and so the derivative ϕ′
j(vj(n)) is expressed as

ϕ′
j(vj(n)) = ayj(n)[1 − yj(n)], (A-76)

2. Hyperbolic tangent function — another commonly used form of sigmoidal nonlinearity

is the hyperbolic tangent function, which in its most general form is defined by

ϕj(vj(n)) = a tanh(bvj(n)), (A-77)
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where (a, b) > 0, a and b are constants. In reality, the hyperbolic tangent function is

just the logistic function rescaled and biased.

The logistic function was adopted in the author’s algorithm as the activation function

for the multilayer perceptron neural network.

A.3.6 Rate of learning

The back-propagation algorithm provides an approximation to the trajectory in weight space

computed by the method of steepest descent. The smaller the learning-rate parameter η is

made, the smaller the changes to the synaptic weights in the network will be from one

iteration to the next, and the smoother will be the trajectory in weight space. This improve-

ment, however, is attained at the cost of a slower rate of learning. If, on the other hand,

the learning-rate parameter η is made too large in order to speed up the rate of learning,

the resulting large changes in the synaptic weights assume such a form that the network

may become unstable (i.e., oscillatory). A simple method of increasing the rate of learn-

ing yet avoiding the danger of instability, is by introducing a positive number so called the

momentum constant α into the delta rule equation [58].

In the author’s algorithm, a learning rate parameter of 0.3 and a momentum constant of

1 × 10−6 were used to achieve an acceptable rate of learning.

A.3.7 Mode of learning

For a given training set, back-propagation learning may proceed in one of two basic ways:

1. Sequential Mode — The sequential mode of back-propagation learning is also referred

to as on-line, pattern, or stochastic mode. In this mode of operation weight updating is

performed after the presentation of each training example [58]; this is the very mode of

operation for which the derivation of the back-propagation algorithm presented applies.

To be specific, consider an epoch consisting of N training examples (patterns) arranged
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in the order (x(1), d(1)), , (x(N), d(N)). The first example pair (x(1), d(1)) in the epoch

is presented to the network, and the sequence of forward and backward computations

described previously is performed, resulting in certain adjustments to the synaptic

weights and bias levels of the network. Then, the second example pair (x(2), d(2))

in the epoch is presented, and the sequence of forward and backward computation is

repeated, resulting in further adjustments to the synaptic weights and bias levels. This

process is continued until the last example pair (x(N), d(N)) in the epoch is accounted

for.

2. Batch Mode — In the batch mode of back-propagation learning, weight updating is

performed after the presentation for all the training examples that constitute an epoch.

In the author’s algorithm, the sequential mode of training was selected because the

sequential mode of training is simple to implement and it provides effective solutions to

large and difficult problems.

A.3.8 Stopping the neural network training

In the author’s algorithm, the Steady-State Identification (SSID) algorithm [60] was used

to stop the neural network training automatically. In this method, the entire 100% of the

data gathered is presented for training at each epoch. After each epoch, about 25% of the

data is randomly selected as the validation set for that epoch. Therefore, each epoch has a

unique validation set. Consequently, if the validation error is plotted versus epoch number,

the graph would appear as a noisy signal which approached a steady-state (convergence in

the error) as the neural network learns the data. A computationally efficient, automated

SSID algorithm [60] can determine when the noisy sum of squares signal stops improving

relative to the noise. When this happens, training is terminated.

The SSID algorithm is based on the ratio of variances (R), as measured on the same set

of data by two different methods. More precisely, it is the ratio of an estimate of variance
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based on the sum of squared differences from the mean (average) to an estimate of variance

based on the sum of squared differences between successive data. The relevant equations

are:

Xf,i = λ1Xi + (1 − λ1)Xf,i−1, (A-78)

v2
f,i = λ2(Xi − Xf,i−1)

2 + (1 − λ2)v
2
f,i−1, (A-79)

δ2
f,i = λ3(Xi − Xi−1)

2 + (1 − λ3)δ
2
f,i−1, (A-80)

Ri =
(2 − λ1)v

2
f,i

δ2
f,i

, (A-81)

where

• Xi : Current value of the noisy variable,

• Xi−1 : Previous value of the noisy variable,

• Xf,i : Filtered value of the variable,

• Xf,i−1 : Previous filtered value of the variable,

• v2
f,i : Current value of the estimate of variance from average,

• v2
f,i−1 : Previous value of the estimate of variance from average,

• δ2
f,i : Current value of the estimate of variance from successive data,

• δ2
f,i−1 : Previous value of the estimate of variance from successive data,

• λ1, λ2, λ3 : Filter constants,

• Ri : Ratio of variances.

If the process data is at steady-state, Ri will be near unity. A not at steady-state condition

is implied by Ri being much greater than unity. The author assigned λ1 = 0.05, λ2 = 0.05,

λ3 = 0.05 and Rcrit = 1, since the combination of these values of the parameters improve
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the performance of the algorithm. Rcrit is the threshold value of Ri. The hypothesis that

the variable is at steady-state is accepted, if Ri < Rcrit, five times in a row. As a move to

improve the speed of response of the algorithm, the value of Ri is not allowed to rise beyond

five. This is done by putting a clamp on the value of v2
f,i as:

v2
f,i =

5δ2
f,i

(2 − λ1)
. (A-82)

This measure ensures that as soon as the variable stops changing relative to the noise, the

algorithm does not take a long time to identify steady-state, by decreasing Ri from the value

five [60]. Figure A.3(b) shows a plot of validation set error (noisy and filtered), steady-state

(SS) counter and average squared error energy versus epoch of training where the green line

represents the noisy error, the red line represents the filtered value, the dark line represents

the SS counter and the blue line represents the average squared error energy. Figure A.3(a)

shows a plot of the rate of change of squared error energy versus number of epochs. In this

study, the neural network training is stopped when

1. The noisy sum of squared signal stops improving relative to the “noise”, which is

reflected by the SS counter hitting “1” five times consecutively [60] [see an example in

Fig. A.3(a)].

2. The rates of change of squared error energy over the past 10 epochs are less than one

[81] [see an example in Fig. A.3(b)].

The noisy error reached a steady state when the SS counter hit “1” five times in a row.

A.3.9 Summary of the back-propagation algorithm

The summary of the back-propagation algorithm is illustrated as follows:

1. Initialization — The synaptic weights and thresholds from a uniform distribution whose

mean is zero and whose variance is chosen to make the standard deviation of the induced
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Fig. A.3: Examples of neural network training results using the SSID stopping criteria: (a)

change of average squared error energy versus number of epoch of training, and (b) rate of

change of average squared error energy versus number of epoch of training.

local fields of the neurons lie at the transition between the linear and saturated parts

of the sigmoid activation function was picked. Each input variable to the multilayer

perceptron neural network was normalized to a range of [-1 1].

2. Presentation of Training Examples — The network was presented with an epoch of

training examples. For each example in the set, ordered in some fashion, the sequence

of forward and backward computations described under point three and four, was

performed respectively.

3. Forward Computation — Let a training example in the epoch be denoted by (x(n),

d(n)), with the input vector x(n) applied to the input layer of sensory nodes and the

desired response vector d(n) presented to the output layer of computations nodes. The

induced local fields and function signals of the network were computed by proceeding

forward through the network, layer by layer. The induced local field v
(l)
j for neuron j
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Fig. A.4: Signal-flow graphical summary of a back-propagation learning.

in layer l is

v
(l)
j =

m0
∑

i=0

w
(l)
ji (n)y

(l−1)
i (n), (A-83)

where y
(l−1)
i (n) is the output (function) signal of neuron i in the previous layer l − 1

at iteration n and w
(l)
ji is the synaptic weight of neuron j in layer l that is fed from

neuron i in layer l − 1. For i = 0, y
(l−1)
0 (n) = +1 and w

(l)
j0 = b

(l)
j (n) is the bias applied

to neuron j in layer l. The logistic function was used as the activation function and is

denoted by ϕ(·). The output signal of neuron j in layer l is

y
(l)
j = ϕj(vj(n)). (A-84)
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If neuron j is in the first hidden layer (i.e., l = 1), then

y
(0)
j (n) = xj(n), (A-85)

where xj(n) is the jth element of the input vector x(n). If neuron j is in the output

layer (i.e., l = L, where L is referred to as the depth of the network), then

y
(L)
j = oj(n). (A-86)

The error signal was computed as follow:

ej(n) = dj(n) − oj(n), (A-87)

where dj(n) is the jth element of the desired response vector d(n).

4. Backward Computation — The δs (i.e., local gradients) of the network, defined by

δl
j(n) =











e
(L)
j (n)ϕ′

j(v
(L)
j (n)), for neuron j in output layer L,

ϕ′
j(v

(l)
j (n))

∑

k δ
(l+1)
k (n)w

(l+1)
kj (n), for neuron j in output layer l,

(A-88)

where the prime in ϕ′(·) denotes differentiation with respect to the argument. The

synaptic weights of the network in layer l was adjusted according to the generalized

delta rule:

w
(l)
ji (n + 1) = w

(l)
ji (n) + α[w

(l)
ji (n − 1)] + ηδ

(l)
j (n)y

(l−1)
i (n), (A-89)

where η is the learning-rate parameter and α is the momentum constant.

5. Iteration — The forward and backward computations under points three and four

were iterated by presenting new epochs of training examples to the network until

the stopping criteria was met. The order of presentation of training examples was

randomized from epoch to epoch. The momentum and learning-rate parameter were

typically adjusted as the number of training iterations increased.

The order of the output node, oj , that has the greatest output value corresponds to the

output class. For example, if o2 has the greatest output value among the output values, the

output class is class two.
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A.4 The parameters of pulmonary function test

Spirometry test is one of the many pulmonary function tests. Explanation on the common

test values in a spirometry test is shown in Table A.3 [9].

A.5 Diagnosis of COPD

The severity of COPD can be classified using post-bronchodilator spirometry as shown in

Table A.4 [7, 8, 9].

A.6 The parameters of pulmonary function test for 15

sample subjects

Table A.5 shows the PFT-based parameters, FEV1/FVC and FEV1% predicted, and classes

of the 15 sample subjects based on the guidelines in Table A.4. Note that the content of

Table A.5 corresponds to that of Table 3.8 in Chapter 3.
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Table A.3: Explanation on the common test values in a spirometry test.

Abbreviation Name Description

FVC Forced Vital Capacity This is the total amount of air that

can forcibly be blown out after full

inspiration, measured in liters.

FEV1 Forced Expiratory Volume This is the amount of air that you

in One Second can forcibly blow out in one second,

measured in liters. Along with FVC,

it is considered one of the primary

indicators of lung function.

FEV1/FVC FEV1% This is the ratio of FEV1 to FVC. In

healthy adults this should be

approximately 75 − 80%.

DLCO Diffusing capacity of the Lung This is a measurement of the lung’s

for Carbon Monoxide ability to transfer gases.

VA Alveolar Volume Lung capacity or the volume of gas

per unit time that reaches the alveoli,

the respiratory portions of the lungs

where gas exchange occurs.

DLCOVA Diffusing capacity of the Lung This is a measurement of the lung’s

for Carbon Monoxide divided ability to transfer gases divided by

by Alveolar Volume lung capacity.
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Table A.4: Diagnosis of COPD using post-bronchodilator spirometry.

PFT-based Post- FEV1% predicted

class (severity) bronchodilator

FEV1

Normal (1) > 0.7 ≥ 80

Mild COPD (2) ≤ 0.7 ≥ 80

Moderate COPD (3) ≤ 0.7 50-79

Severe COPD (4) ≤ 0.7 30-49

Very severe COPD (5) ≤ 0.7 < 30 or 30-50 with

Chronic Respiratory

Failure symptoms
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Table A.5: Diagnoses of the 15 sample subjects based on spirometry test values (FEV1/FVC

and FEV1%).

Patient FEV1/ FEV1% Presence of PFT-based

no. FVC predicted chronic respiratory class

failure symptoms

1 0.18 18 Yes 5

2 0.30 40 Yes 5

3 0.32 42 Yes 5

4 0.29 35 No 4

5 0.40 45 No 4

6 0.34 36 No 4

7 0.41 54 No 3

8 0.70 78 No 3

9 0.67 115 No 2

10 0.64 88 No 2

11 0.64 85 No 2

12 0.83 98 No 1

13 0.86 100 No 1

14 0.78 100 No 1

15 0.73 91 No 1
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