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ABSTRACT 
 
Recent proliferation of embedded systems has generated a bold new paradigm, known 

as open embedded systems. While traditional embedded systems provide only closed 

base applications (natively-installed software) to users, open embedded systems allow 

the users to freely execute open applications (additionally-installed software) in order to 

meet various user requirements, such as user personalization and device coordination. 

Key to the success of platforms required for open embedded systems is the 

achievement of both the scalable extension of base applications and the secure 

execution of open applications. Most existing platforms, however, have focused on 

either scalable or secure execution, limiting their applicability.  

This dissertation presents a new secure platform using multi-core processors, which 

achieves both scalability and security. Four techniques feature the new platform: (1) 

seamless communication, by which legacy applications designed for a single processor 

make it possible to be executed on multiple processors without any software 

modifications; (2) secure processor partitioning with hardware support, by which 

Operating Systems (OSs) required for base and open applications are securely executed 

on separate processors; (3) asymmetric virtualization, by which many OSs over the 

number of processors are securely executed under secure processor partitioning; and (4) 

secure dynamic partitioning, by which the number of processors allocated to individual 

OSs makes it possible to be dynamically changed under secure processor partitioning.  
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1.  
CHAPTER 1                       

INTRODUCTION 
 
This chapter introduces the concept of open embedded systems, and clarifies our 

research contributions. 

 

1.1 OPEN EMBEDDED SYSTEMS 
Recent proliferation of embedded systems has generated a bold new paradigm, 

known as open embedded systems [Intel 06] [NTT 04a] [NTT 04b]. While traditional 

embedded systems provide only closed base applications (i.e., natively-installed 

software, such as mailer and browser in mobile phones) to users, open embedded 

systems allow the users to freely execute open applications (i.e., additionally-installed 

software that includes user-level programs, libraries, and device drivers) as well as base 

applications. Open applications may be downloaded from any web sites in order to add 

various functionalities to embedded systems. They also may communicate with other 

embedded systems in order to offer device coordination to users.  

FIGURE 1.1 shows three useful service examples of open embedded systems. The 

first service example is a driver-assist service, in which a drive recorder equipped with a 

car stores a lot of driving information in coordination with a notification event sent from 

a car navigation system when the car approaches an accident-prone area. The second 
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service example is a virtual-terminal service, in which a user makes it possible to 

virtually use multiple mobile terminals for private and business scenes on a physical 

terminal by means of the free install of carrier software packages. The last service 

example is an anti-crime service, in which a child’s mobile phone automatically calls an 

emergency contact number (e.g, a home number) in coordination with a notification 

event sent from town’s monitoring cameras when town’s monitoring cameras detect that 

a child is moving out of town. Leveraging open applications, open embedded systems 

make it possible to meet various user requirements, such as user personalization and 

device coordination, unlike traditional embedded systems. 
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Drive
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Caution:
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prone area
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PDA
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Parent
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Private Business
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FIGURE 1.1: EXAMPLES OF OPEN EMBEDDED SYSTEMS 

 

Open applications need to be executed on the same platform as base applications 

since the open applications that we target include device drivers as well as user-level 
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programs by definition. This requirement of open embedded systems indicate that open 

embedded systems need to support at least two isolated execution environments (i.e., 

domains) for the separate execution of base and open applications. A domain is here 

defined as an execution environment formed on a native OS. While a base domain 

executes base applications, an open domain executes a group of open applications. 

Further, additional open domains may be required in order to isolate many groups of 

open applications themselves. FIGURE 1.2 summarizes the features of open embedded 

systems. 
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FIGURE 1.2: FEATURES OF OPEN EMBEDDED SYSTEMS 

 

In order to deploy this new paradigm on traditional embedded systems, platforms 

used for open embedded systems require the achievement of the following design 

objectives: 
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• Scalable1 functionality for base applications: The major driving force of 

embedded systems still enriches the functionality of base applications in order to 

maximize user experience. The development costs of base applications, however, 

would seem to reach an extraordinarily-high value since the number of lines of 

source codes required for base applications rapidly increase [Morgan 04]. The 

platforms used for open embedded systems also need to support the scalable 

extension of base applications in a cost-effective way. 

 

• Hardened security for open applications: The flexibility of open embedded 

systems would seem to result in a two-edged blade because new groups of open 

applications might contain bugs or viruses. FIGURE 1.3 shows the recent trends 

in viruses for mobile terminals. As shown in this figure, the number of mobile 

viruses rapidly increases [Gostev 06] [Gostev 07]. This means that base 

applications must be clearly protected from malicious open applications in order 

to maintain the minimum functionality of embedded systems. In addition, open 

embedded systems need to securely isolate many groups of open applications in 

order to prevent mutual interference among the application groups. 

 

• Base features for embedded systems: Unlike traditional computing systems, 

embedded systems need to be able to operate with limited resources. Open 

embedded systems also require the careful consideration for base features, such 

as performance overhead and memory footprint. 
                                                  
1 The word “scalability” means the extensibility to various technical attributes, such as 
the number of processors, functionalities, and the number of clients. 
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FIGURE 1.3: TRENDS IN MOBILE VIRUSES 

 

1.2 SECURITY MODEL 
Two aspects help classify security required for embedded systems: data security 

and program security. The goal of data security is the protection of the integrity and 

privacy of confidential data. Much work on data security, such as XOM [Lie 00], 

AEGIS [Suh 05], TPM [TCG 06], and SENSS [Zhang 05] helps prevent untrusted 

software executed on a processor from stealing private keys or modifying applications 

and OSs. 

The goal of program security is the protection of the correct execution of programs. 

We classify attacks against program security into two directions: vertical attacks and 

horizontal attacks. Vertical attacks are ones that try to take control of programs on other 
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domains by exploiting the vulnerability of the underlying platform. For example, the 

vulnerability of the ptrace system call allowed processes to obtain root privileges on 

Linux OS (version 2.4.18). Horizontal attacks are ones that try to change control flows 

of programs on other domains by means of inter-program communication. For example, 

the vulnerability of Apache web servers (version 1.3.24) allowed web clients to modify 

web contents because the web servers had a software flow that misinterpreted invalid 

requests encoded using chunked encoding.  

 

Program A
Program B

Underlying platform
(e.g., OS)

Horizontal attacks via
inter-program 
communication

Vertical attacks via
underlying platform

 
FIGURE 1.4: SECURITY MODEL 

 

This dissertation focuses on the program security which blocks vertical attacks. A 

security capability which makes underlying platform more secure is most important for 

the execution of open applications. Without the security capability, open embedded 

systems would seem to fail to execute any class of open applications (e.g., device 
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drivers) on native OSs since vertical attacks launched from malicious open applications 

make it possible to compromise the native OSs. In addition, other security capabilities 

which help enhance both data security and program security against horizontal attacks 

would seem to fail to be trustworthily implemented without reliable underlying 

platform. 

 

1.3 CHALLENGES 
Various electric hardware components, such as processors, memories and I/Os, 

form the basis of platforms for open embedded systems. In particular, processor 

architecture becomes an important factor in meeting the above requirements of open 

embedded systems since the architecture directly involves with the execution of both 

base and open applications. 

In recent trends of processor architecture, multi-core processors would seem to be 

one promising technology direction. A multi-core processor is defined as a processor 

which contains multiple cores (processors) in a chip. Conventional single-core 

processors need to operate at a high clock frequency in order to provide sufficient 

performance to both base and open applications, which makes it difficult to reduce 

power dissipation. By way of contrast, multi-core processors enable the desired level of 

performance to be achieved with a number of processors that operate at moderate clock 

frequencies, which helps to keep power dissipation low [Torii 05]. 

From the software point of view, processing on multi-core processors is classified 

into two types (see FIGURE 1.5): (a) Asymmetric Multi-Processing (AMP) and (b) 

Symmetric Multi-Processing (SMP) [Sakai 07] [Sakai 08].  
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FIGURE 1.5: TWO TYPES OF MULTI-PROCESSING 

 

With AMP, multiple OSs are executed on different processors. Various tasks are 

fixedly assigned to each processor. While multiple OSs help separate the execution of 

base applications from that of open applications, the OSs make it difficult for legacy 

base applications designed for a single-core processor to be executed over multiple 

processors without any software modifications. This means that AMP improves the 

secure execution of open applications, sacrificing the scalable extension of base 

applications. It should be noted that AMP still provides vulnerable protection among 

OSs since malicious open applications make it possible to exploit the security holes of 

OSs. 

With SMP, a single OS manages multiple processors. The OS enables tasks to be 

transparently executed over multiple processors. While legacy base applications 

designed for a single-core processor are executed over multiple processors without any 
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software modifications, a single OS results in causing mutual interference among base 

and open applications. This means that SMP improves the scalable extension of base 

applications, limiting the secure execution of open applications. 

Moreover, both AMP and SMP have a common concern about the support of many 

domains (i.e., OSs) used for various groups of open applications. While AMP needs to 

increase the number of processors for the support of many OSs, SMP supports only a 

single OS in a system. In order to cope with this issue, virtualization would seem to be a 

good solution. Conventional virtualization technologies, however, have a degree of 

security vulnerability [Hacker 07]. In addition, the technologies unfit for embedded 

systems in terms of base features, such as performance overhead and memory footprint, 

since traditional virtualization technologies have been originally developed for 

computing systems.  

From the above discussion, use of traditional multi-core processors poses major 

challenges to the achievement of open embedded systems since neither AMP nor SMP 

is in itself satisfactory.  

 

1.4 STATE OF THE ART 
Existing research on multi-core processors, however, has satisfied the requirements 

on neither scalable nor secure execution. In terms of scalable execution of base 

applications, the techniques used for traditional platforms [Accetta 86] [Fleisch 86] 

[Maloy 04] [MPI 97] [Mullender 90] [OMG 04] [Paulin 06] [Rozier 88] [Sharif 99] 

[Steen 99] [Tan 02] require a wide range of software modifications for either OSs or 

applications. This software incompatibility prevents the scalable extension of base 

applications especially on AMP. Moreover, in terms of secure execution of open 
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applications, the techniques used for traditional platforms [Armstrong 05] [Barham 03] 

[Baratloo 00] [Chen 08] [Cowan 98] [Dike 00] [Evans 02] [Fortify 09] [Gondo 07] 

[Gong 03] [Johnson 07] [Loscocco 01] [Neiger 06] [Openwall 01] [Qualcomm 04] 

[Seshadri 07] [Shinagawa 09] [Sugerman 01] [Whitaker 02] still have potential 

vulnerability on both AMP and SMP because the platforms provide only software-based 

protection.  

 

TABLE 1.1: STATE OF THE ART 
Requirements Items AMP SMP 

Problem Unsolved Solved 
Scalable extension of 

base applications Reason 
A wide range of  

software modifications
 

Problem Unsolved Unsolved Secure execution of 
open applications Reason Only software-based protection 

 

1.5 CONTRIBUTIONS 
The primary contributions of this dissertation are the attainment of a multi-core 

processor platform for open embedded systems. Our multi-core processor platform 

addresses the challenges of both AMP and SMP in order to achieve both the scalable 

extension of base applications and the secure execution of open applications. FIGURE 

1.6 summarizes the qualitative advantage of our multi-core processor platform, 

compared with existing work. Four innovative techniques feature our platform: 
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FIGURE 1.6: CONTRIBUTIONS OF OUR MULTI-CORE PROCESSOR PLATFORM 

 

• We propose a software approach for seamless communication, by which legacy 

base applications designed for a single-core processor make it possible to be 

executed over multiple processors without any software modifications [Inoue 

09b]. In this way, our platform achieves the scalable extension of base 

applications even on AMP. 

 

• We present a hardware-supported approach for secure processor partitioning, by 

which OSs are mutually protected on separate processors [Inoue 06a] [Inoue 

08b]. For the secure execution of open applications, this processor partitioning 

bases our platform formed on SMP as well as AMP. 

 

• We provide a new type of virtualization, known as asymmetric virtualization, by 
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which many OSs over the number of processors are securely executed under 

secure processor partitioning [Inoue 06b] [Inoue 08a]. This virtualization helps 

provide many secure domains on AMP and SMP for the secure execution of 

many groups of open applications since it fits for embedded systems. 

 

• We propose secure dynamic partitioning as an extension of secure processor 

partitioning, by which the number of processors allocated to individual OSs 

makes it possible to be dynamically changed on SMP under secure processor 

partitioning [Inoue 07] [Inoue 09a]. In this way, our platform achieves the secure 

execution of open applications even on SMP. 

 

1.6 ORGANIZATION  
The remainder of this dissertation is structured as follows.  

Chapter 2 introduces our base platform for open embedded systems. It turns out 

that our platform enables the achievement of both the scalable execution of base 

applications and the secure execution of open applications.  

Chapters 3 through 6 present the detailed design of four innovative techniques with 

respect to (1) seamless communication, (2) secure processor partitioning, (3) 

asymmetric virtualization, and (4) secure dynamic partitioning. Evaluations also 

demonstrate the effectiveness of the four techniques.  

Chapter 7 concludes the research contributions presented in this dissertation. 

TABLE 1.2 summarizes the overview of our four new techniques, clarifying the 

requirements of open embedded systems, the issues that traditional multi-core processor 

platforms have, and the effects of the innovative techniques. 
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TABLE 1.2: SUMMARY OF FOUR NEW TECHNIQUES 
Requirements Items AMP SMP 

Issue 
A wide range of  

software modifications
 

Technique
Seamless  

communication 
 

Effect 
No need for  

software modifications
 

Scalable extension of 
base applications 

Chapter Chapter 3  
Issue Security holes exploited by open applications 

Technique
Secure processor 

partitioning 
Secure dynamic 

partitioning 

Effect 
Hardware-level  

secure protection 

multiple domains under
hardware-level  

secure protection 

Secure execution of 
open applications 
(for new groups) 

Chapter Chapter 4 Chapter 6 
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2.  
CHAPTER 2                         

BASE PLATFORM 
 
This chapter describes the structures of our base platform for open embedded systems, 

and clarifies how our new techniques work on multi-core processors. 

 

2.1 OVERVIEW 
FIGURE 2.1 illustrates the structural overview of our base platform featured by 

both hardware and software. The hardware structure uses a multi-core processor. By 

definition, while a base domain executes base applications, maintaining at least one 

processor; an open domain executes a group of open applications, based on the 

classification of open applications. 

Our base platform supports two execution modes: a highly-functional mode and a 

multi-functional mode. A highly-functional mode executes only a base domain in order 

to maximize user experience of an embedded system. By way of contrast, a 

multi-functional mode executes a base domain and open domains in order to add 

various functionalities to the embedded system. In response to user requests and 

environmental events, the platform dynamically switches the two execution modes, 

coordinating with the hardware and software structures. In this way, our base platform 

achieves the functions required for open embedded systems.  
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FIGURE 2.1: BASE PLATFORM 

 

2.2 HARDWARE STRUCTURE 
FIGURE 2.2 shows an example of a multi-core processor used for our hardware 

structure. By definition, a multi-core processor provides multiple processors (e.g., four 

processors in the figure) in a chip. Most importantly, all processors contained in a chip 

share the same memories and I/Os due to stern constraints on the number of chip pins. 

The sharing results in allowing a processor to access the memories and I/Os that 

software executed on another processor uses. In order to solve the issue of this 

competitive access, our hardware structure equips with a new unit, called a bus 

management unit, on a processor bus. This unit allows each processor to access only 

specified address ranges of memories and I/Os, monitoring bus access at hardware level. 
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In this way, our bus management unit helps achieve secure processor partitioning for 

both AMP and SMP. Chapter 4 illustrates the detailed design of the hardware unit. 
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FIGURE 2.2: HARDWARE STRUCTURE 

 

2.3 SOFTWARE STRUCTURE 
Our software structure supports two types of both AMP and SMP, utilizing the 

above hardware structure. This software structure may employ heterogeneous OSs as 

well as homogeneous OSs to support multiple domains.  

FIGURE 2.3 describes an example of a software structure on AMP. By definition, a 

processor executes an OS designed for a single-core processor.  

In order to cope with the issue on scalable extension of base applications, we 

introduce user-level software, referred as to seamless communication software, to the 
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base domain. The communication software enables legacy base applications designed 

for a single-core processor to be executed on multiple processors without any software 

modification, by hooking OS system calls and handling them at the user level. This is 

especially important because, from the viewpoint of base application developers, 

separate OSs will appear to be a single, uniform OS. Chapter 3 illustrates the detailed 

design of seamless communication software. 

An individual OS forms an open domain on AMP. In this figure, while open 

domain A and B may execute applications validated by separate software manufacturers, 

open domain C may execute untrusted applications.  
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FIGURE 2.3: SOFTWARE STRUCTURE ON AMP 

 

Asymmetric virtualization helps support multiple domains for the secure execution 

of many groups of open applications without any increase of processors in this structure. 
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The virtualization allocates processors to individual domains, utilizing our bus 

management unit. In response to user requests, the virtualization invokes transitions 

between a state with only the base domain and a state with both the base domain and 

two open domains (i.e., transition (1) in FIGURE 2.3). Moreover, the virtualization 

invokes transitions between states with different states (i.e., transition (2) in FIGURE 

2.3). Chapter 5 illustrates the detailed design of asymmetric virtualization. 

The support of many domains (e.g., seven OSs in FIGURE 2.3), however, results in 

increasing the total memory requirements. In general, embedded systems employ the 

XIP (eXecute-In-Place) technique [Bird 04], which places read-only data (e.g., 

instructions) on ROM and copies only other data to RAM in order to reduce the total 

memory requirements. We apply the XIP technique to multiple homogenous OSs. 

FIGURE 2.4 shows OS memory images of both ROM and RAM in this structure. While 

both a boot loader and the kernel text (i.e., OS instructions) are shared among OSs, only 

kernel data are copied into individual areas of RAM.  

FIGURE 2.5 describes an example of a software structure on SMP. Unlike the 

software structure on AMP, seamless communication software is not employed for the 

base domain since the OS used for a base domain itself manages multiple processors.  

Secure dynamic partitioning helps support multiple domains for the secure 

execution of many groups of open applications in this structure, coordinating with our 

bus management unit and asymmetric virtualization. The dynamic partitioning allows 

processors to be de-allocated from the base domain and allows the processors to be 

allocated to open domains, and vice versa. The base domain maintains at least one 

processor.  
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FIGURE 2.4: KERNEL XIP FOR OSS 
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FIGURE 2.5: SOFTWARE STRUCTURE ON SMP 
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In the same way as the transitions of the software structure on AMP, the dynamic 

partitioning invokes transitions between a state with only the base domain and a state 

with both the base domain and two open domains (i.e., transition (1) in FIGURE 2.5). 

Moreover, the virtualization invokes transitions between states with different states (i.e., 

transition (2) in FIGURE 2.5). Chapter 6 illustrates the detailed design of secure 

dynamics partitioning. 

It should be noted that our software structure needs software modifications for the 

secure execution of open applications in spite of no software modifications for the 

scalable extension of base applications. The software modifications are, however, not a 

practical problem since the modifications create new additional values, costing for 

newly added applications (i.e., not for legacy applications). 

 

2.4 SUMMARY 
Both hardware and software structures feature our platform. The most important 

feature of the hardware structure is our bus management unit, which supports the secure 

execution of open applications at the hardware level. Moreover, three important 

techniques feature the software structure: seamless communication software, 

asymmetric virtualization, and secure dynamic partitioning. While seamless 

communication software addresses the issue of AMP in terms of the scalable extension 

of base applications, secure dynamic partitioning asymmetric addresses the issue of 

SMP in terms of the secure execution of new groups of open applications. Finally, our 

asymmetric virtualization helps support many domains on both AMP and SMP for the 

secure execution of many groups of open applications. 
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3.  
CHAPTER 3                         

SEAMLESS COMMUNICATION 
 
This chapter describes seamless communication software, which enables legacy base 

applications designed for a single-core processor to be executed on AMP without any 

software modifications. 

 

3.1 MOTIVATION 
Current high-end embedded systems, such as mobile terminals, contain millions of 

lines of source codes for OSs, application platforms (i.e., MOAP [Tsuji 05] by NTT 

DoCoMo), and base applications. A wide range of software modifications would seem 

to be required for AMP since the whole software has been designed for single-core 

processors. This software incompatibility prevents the scalable extension of base 

applications on AMP. 

Conventional distributed OS and distributed middleware approaches help resolve 

the above software compatibility issue. Distributed OS approaches (partially) support 

the application compatibility, modifying single-core OSs in order to equip with system 

calls extended to multi-core processors. By way of contrast, distributed middleware 

approaches achieve the OS compatibility, modifying applications in order to use 

middleware APIs designed for multi-core processors. In other words, neither distributed 
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OS nor distributed middleware approaches are satisfactory since both approaches 

require software modifications.  

The limitation of conventional approaches, however, indicates that one promising 

solution would seem to be the application of an approach intermediate between 

distributed OS and distributed middleware approaches, that is, distributed middleware 

that equips with system calls extended to multi-core processors. As the equipped system 

calls, this dissertation focuses on system calls associated with two Inter-Process 

Communications (IPCs): System V IPC and UNIX Domain Sockets (UDSs) [Stevens 

98]. This is because the two IPCs were most frequently used in actual Linux-based 

mobile terminal software.  

Thus, we introduce seamless communication software (i.e., middleware), achieving 

inter-core communication through the same APIs as intra-core communication, hooking 

OS system calls and executing them at the user level. In this way, legacy base 

applications designed for a single-core processor make it possible to be executed on 

AMP without any software modifications. TABLE 3.1 summarizes the qualitative 

advantages of our approach, compared with others. 

 

TABLE 3.1: ADVANTAGES OF SEAMLESS COMMUNICATION SOFTWARE 

Feature 
Distributed OS

approaches 

Distributed 
middleware
approaches 

Our approach 

OS compatibility No Yes Yes 
Application compatibility Partially, yes No Yes 

 

3.2 RELATED WORK 
Our research differs in a number of respects from the current body of research on 
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communication software. 

The major distributed OS approaches include Mach [Accetta 86], Amoeba 

[Mullender 90], Corus [Rozier 88] and TIPC [Maloy 04]. These approaches provide 

new OS system calls that are used for both intra-core and inter-core communication. 

This means that the approaches make it necessary to modify base applications as well as 

single-core OSs. In particular, distributed OS approaches for System V IPC include 

Distributed System V IPC in Locus [Fleisch 86] and DIPC [Sharif 99], which provide 

full compatibility with System V IPC. They, however, require a wide range of OS 

modifications. Moreover, UDSs are originally designed for intra-core communication at 

the OS level. This means that base applications need to be modified to use network 

sockets, such as TCP/IP and UDP/IP, for inter-core communication, instead of UDSs. 

The major distributed middleware approaches include CORBA [OMG 04], Globe 

[Steen 99], MPI [MPI 97] and DSOC [Paulin 06]. While these approaches support 

inter-core communication at the user level, they require extensive modification of base 

applications because APIs for the inter-core communication are different from OS 

system calls used for intra-core communication. In particular, distributed middleware 

approaches for System V IPC include SHOC IPC [Tan 02], which provides the same 

API as System V IPC at the user level. It, however, fails to support System V IPC 

message queues. Moreover, no distributed middleware approaches in terms of UDSs are 

unknown. 

By way of contrast, our approach requires no modification of legacy base 

applications in terms of System V IPCs and UDSs because the approach hooks OS 

system calls at the user level.  
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3.3 SYSTEM V μ-IPC 
System V μ-IPC extends the function of System V IPC to both intra-core and 

inter-core communication. It provides the same IPC objects: semaphores, messages 

queues and shared memories, supporting the same APIs as System V IPC. Here, “μ” 

(i.e., mu) stands for the respective initials: “multi-core” and “user-level.” 

 

3.3.1 OVERVIEW 

FIGURE 3.1 illustrates two important components of System V μ-IPC: a System V 

μ-IPC library and a System V μ-IPC process.  
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FIGURE 3.1: SYSTEM μ-IPC COMPONENTS 

 

A System V μ-IPC library is linked to the base applications which need inter-core 
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communication. The user-level library hooks system calls with respect to System V IPC, 

executing the system calls within it. Here, the library manages IPC objects in a shared 

RAM. For example, shared memories of System V IPC are directly mapped into part of 

the shared RAM. Control blocks required for both semaphores and message queues of 

System V IPC are stored in another part of the shared RAM. A System V μ-IPC process 

is a process which helps wake up sleeping processes at the user-level instead of an OS. 

For example, System V μ-IPC process α wakes up sleeping process A, which waits for a 

semaphore or a message queue. 

FIGURE 3.2 describes how two components of System V μ-IPC work on a 

multi-core processor.  
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FIGURE 3.2: SYSTEM μ-IPC SEMAPHORE OBJECTS 

 

Two typical cases are shown with semaphore objects: 1) when process D issues a 
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semop system call to do an up operation to a semaphore, a System V μ-IPC library 

hooks the system call. Then, the library directly wakes up process C executed on the 

same processor since the library notices that process C has been waiting for the 

semaphore; and 2) when process B issues a semop system call to do an up operation to a 

semaphore, the System V μ-IPC library hooks the system call in a similar way. Next, the 

library requests System V μ-IPC process α to wake up process A executed on a different 

processor since the library notices that process A has been waiting for the semaphore. 

Finally, System V μ-IPC process α receives the wake-up request, waking up process A. 

 

3.3.2 DESIGN 

FIGURE 3.3 shows the internal design of our System V μ-IPC library. A System V 

μ-IPC library consists of four components: an API adaptor, a mutual exclusion 

component, a memory allocator, and a process controller. An API adaptor provides 

System V APIs for semaphore, message queue, and shared memory objects. A mutual 

exclusion component offers the function of a swap-based mutual exclusion mechanism 

to the API adaptor so that the API adaptor can correctly access shared data. A memory 

allocator implements a buddy memory allocation technique [Knuth 97], which provides 

any size of memory from a shared RAM to the API adaptor. A process controller sends a 

System V μ-IPC process a control message through Inter-Processor Interrupt (IPI) so 

that the System V μ-IPC can wake up a sleeping process. Here, a control message 

contains the process ID of a sleeping process. 
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FIGURE 3.3: INTERNAL DESIGN OF SYSTEM μ-IPC LIBRARY  

 

FIGURE 3.4 and FIGURE 3.5 show detailed operation flows of a System V μ-IPC 

Process. In these figures, process 3 wakes up two sleeping processes executed on a 

different processor, process 1 and 2, through two semaphore objects. 

A System V μ-IPC process sleeps through an ioctl system call, waiting for an 

interrupt. Then, process 3 issues a semop system call to do an up operation to a 

semaphore. The System V μ-IPC library linked to process 3 hooks the system call. After 

that, the library puts a control message into a shared RAM with an IPI in order to wake 

up process 1. Further, process 3 issues a semop system call to do an up operation to 

another semaphore. In a similar way, the System V μ-IPC library puts another control 

message into the shared RAM in order to wake up process 2. The second control 

message is simply linked to the previous control message without any IPIs. This means 

that multiple IPIs are not simultaneously sent to the System V μ-IPC process in order to 
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avoid overlapping interrupts. Once an IPI driver receives an IPI, it wakes up the System 

V μ-IPC process through a signal. In this way, the System V μ-IPC library wakes up a 

sleeping System V μ-IPC process. 
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FIGURE 3.4: OPERATION FLOW OF SYSTEM μ-IPC PROCESS (PART I) 

 

Second, the awakened System V μ-IPC process retrieves two control messages 

from a linked list in the shared RAM, waking up two sleeping processes, process 1 and 

process 2. When the System V μ-IPC process has finished retrieving any control 

messages, it re-issues an ioctl system call in order to wait for an interrupt. In this way, 

process 3 wakes up two sleeping processes, process 1 and process 2, through a System 

V μ-IPC process. 
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FIGURE 3.5: OPERATION FLOW OF SYSTEM μ-IPC PROCESS (PART II) 

 

3.4 μ-UDS 
μ-UDS extends the function of UDSs to both intra-core and inter-core 

communication. This user-level software supports the same APIs as UDSs. Here, “μ” 

(i.e., mu) stands for the respective initials: “multi-core” and “user-level.” 

 

3.4.1 OVERVIEW 

FIGURE 3.6 illustrates two important components of μ-UDS: a μ-UDS library and 

a μ-UDS process. A μ-UDS library is linked to the base applications which need 

inter-core communication (i.e., server applications). The user-level library hooks two 

system calls, bind and close, notifying μ-UDS processes executed on different 

processors of the hooked system calls. A μ-UDS process is a process which helps 
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handle system calls notified from a μ-UDS library at the user level. For example, a 

μ-UDS process binds a new socket in response to bind notifications and closes a socket 

in response to close notifications. In addition, μ-UDS processes support data transfer 

between different processors. 
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FIGURE 3.6: μ-UDS COMPONENTS 

 

FIGURE 3.7 shows how two μ-UDS components work for a bind system call. 

When process A issues a bind system call to a UDS, a μ-UDS library hooks the system 

call. Next, the library notifies μ-UDS processes on different processors of the system 

call. μ-UDS process β issues a bind system call in order to receive data from client 

processes (e.g., process C). Finally, the library executes a bind system call in order to 

bind a socket to process A. 

 



CHAPTER 3: SEAMLESS COMMUNICATION 

 

31

Linux OS

CPU

Process
B

Linux OS

CPU

Process
C

μ-UDS Library

Process
A

1.
 H

oo
k 

a 
bi

nd
 

sy
st

em
 c

al
l

2.
 N

ot
ify

3.
 Is

su
e 

a 
bi

nd
sy

st
em

 c
al

l

μ-UDS
Process

α

μ-UDS
Process

β

4. Issue a bind
system call

Domain 0 Domain 1

 

FIGURE 3.7: BIND SYSTEM CALL OF μ-UDS 

 

FIGURE 3.8 shows how two μ-UDS components work for data transfer among 

processes. Here, two typical cases are shown: 1) when process B sends data to a UDS of 

an OS, process A receives the data from the OS; and 2) when process C sends data to an 

OS, μ-UDS process β receives the data from the OS. Next, μ-UDS process β transfers 

the data to μ-UDS process α. Finally, μ-UDS process α sends the data to process A. 

FIGURE 3.9 shows how two μ-UDS components work for a close system call. 

When process A issues a close system call to a UDS, a μ-UDS library hooks the system 

call. Next, the library notifies μ-UDS processes on different processors of the system 

call. μ-UDS process β issues a close system call. Finally, the library executes a close 

system call in order to close a socket bound to process A. 
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FIGURE 3.8: DATA TRANSFER OF μ-UDS 
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FIGURE 3.9: CLOSE SYSTEM CALL OF μ-UDS 
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3.4.2 DESIGN  

FIGURE 3.10 depicts the internal design of our μ-UDS library. A μ-UDS library 

consists of four components: an API adaptor, a database manager, a μ-UDS 

communicator, and a system call handler. An API adaptor provides two same APIs as 

bind and close system calls. A database manager manages a database based on both a 

shared memory object and a semaphore object of System V μ-IPC. Each entry in the 

database contains the ID of a server process using a UDS, the name bound to the UDS, 

and the socket file descriptor corresponding to the UDS. A μ-UDS communicator sends 

μ-UDS processes the arguments given from bind and close system calls via message 

queue objects of System V μ-IPC. A system call handler executes system calls requested 

from an API handler. 
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FIGURE 3.10: INTERNAL DESIGN OF μ-UDS 
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FIGURE 3.11, FIGURE 3.12, and FIGURE 3.13 show the detailed operation flows of 

a μ-UDS process. A μ-UDS process consists of two components: a main controller, and 

communication threads. Here, the operation flows are corresponding to the examples 

shown in FIGURE 3.7, FIGURE 3.8, and FIGURE 3.9, respectively.  

FIGURE 3.11 illustrates how a μ-UDS process internally handles a bind system call 

(see FIGURE 3.7). First, μ-UDS process β receives the notification of a bind system call 

from a μ-UDS library. The main controller of μ-UDS process β creates a new 

communication thread. After that, the thread issues a bind system call in order to receive 

data from process C.  
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FIGURE 3.11: OPERATION FLOW OF μ-UDS (BIND SYSTEM CALL) 

 

FIGURE 3.12 describes how μ-UDS processes internally transfer data between 
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processors (see FIGURE 3.8). A communication thread created by μ-UDS process 

β receives data from process C, transferring the data to the main controller of μ-UDS 

process α. Then, the main controller of μ-UDS process α sends the data to process A. 
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FIGURE 3.12: OPERATION FLOW OF μ-UDS (DATA TRANSFER) 

 

FIGURE 3.13 depicts how a μ-UDS process internally handles a close system call 

(see FIGURE 3.9). First, μ-UDS process β receives the notification of a close system call 

from a μ-UDS library. After that, the main controller of μ-UDS process β destroys a 

communication thread corresponding to a socket bound to process A. Finally, the main 

controller issues a close system call in order to close the socket. 
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FIGURE 3.13: OPERATION FLOW OF μ-UDS (CLOSE SYSTEM CALL) 

 

3.5 EVALUATION 
TABLE 3.2 summarizes our AMP evaluation environment, called MP211 [Torii 05]. 

MP211 is a mobile application processor which equips with three ARM processors. 

Interestingly, the area of three processors occupies only 15% of this whole SoC, as 

shown in FIGURE 3.14. 

 

TABLE 3.2: AMP EVALUATION ENVIRONMENT 
Item Feature 

Processors ARM926EJ-S x 3 
Cache I: 16KB, D: 16KB 

Frequency ARM: 200MHz, Bus: 100MHz 
OS Linux 
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FIGURE 3.14: MP211 AS AMP EVALUATION ENVIRONMENT  

 

Evaluations show that our seamless communication software actually worked on 

AMP (see Section 3.5.1). Further, both System V μ-IPC and μ-UDS achieved higher 

performance (see Section 3.5.2, and 3.5.3) and lower code size (see Section 3.5.4) than 

did other approaches. 

 

3.5.1 SUCCESSFUL EXAMPLE FOR SEAMLESS IPCS 

As a successful example of the application of our seamless communication 

software, FIGURE 3.15 demonstrates that the menu screen of an in-house Linux-based 

mobile terminal on MP211.  
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FIGURE 3.15: LINUX-BASED MOBILE TERMINAL ON AMP 

 

This means that the seamless communication software enabled actual in-house 

Linux-based mobile terminal software designed for a single processor to be run on three 

processors without software modifications. This result is especially remarkable because 

it cannot be achieved with other approaches. Further, the performance overhead of the 

seamless communication software was small enough because its performance overhead 

was only 0.1% for the original in-house mobile terminal software. 

 

3.5.2 SYSTEM V μ-IPC PERFORMANCE 

In order to study the performance effectiveness of our System V μ-IPC, we 

measured the execution time of System V IPC systems calls. We compared our System 

V μ-IPC with a distributed System V IPC of SHell Over a Cluster (SHOC) [Tan 02] as 
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an available reference. This comparison must be interpreted very carefully because 

SHOC is implemented on PC clusters.  

FIGURE 3.16 shows the normalized execution time of three system calls: a semop 

system call to a remote semaphore object, a shmat system call to a shared memory 

object, and a shmdt system call to a shared memory object. Here, the execution time of a 

semop system call to a local semaphore object is normalized to 1. Values in parenthesis 

indicate the measured execution time with respect to each system call for the reference. 

This evaluation demonstrates that our System V μ-IPC achieved roughly 5.0 times 

faster normalized execution time (13.8 times faster measured execution time) than did 

SHOC. Thus, our System V μ-IPC is efficiently designed for AMP with shared memory.  
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FIGURE 3.16: SYSTEM V μ-IPC PERFORMANCE  

 

It should be noted that, in our System V μ-IPC, the absolute execution time of the 
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compared system calls is not necessarily slow although we used the normalized 

execution time for the comparison of different platforms. With respect to the execution 

time of a semop system call to a local semaphore object (i.e., the base-reference 

execution time on a single processor), our System V μ-IPC achieves the execution time 

of 21 μs on a 200-MHz processor while SHOC achieves the execution time of 59 μs on 

a 450-MHz processor.  

 

3.5.3 μ-UDS PERFORMANCE 

In order to study the performance effective of our μ-UDS, we measured the 

bandwidth of both our μ-UDS and Linux network sockets. FIGURE 3.17 shows the 

bandwidths of connection-less communication on two processors in the transfer of 1 

MB of data in fragment sizes of 1KB, 4 KB and 16 KB.  
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FIGURE 3.17: μ-UDS PERFORMANCE 
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In fragment sizes of 4KB and 16KB, our μ-UDS achieved roughly 1.5 times higher 

bandwidth than did kernel-based UDP/IP. This is because, instead of a complex protocol 

designed for the Internet, our μ-UDS internally uses a message queue object of System 

V IPC in order to transfer the data between two processors. 

 

3.5.4 LINES OF CODE FOR SEAMLESS COMMUNICATION 

In order to study the design effectiveness of both System V μ-IPC and μ-UDS, we 

counted their modified Lines of Code (LOC). First, we compared System V μ-IPC with 

two available references: a distributed OS, known as Distributed System V IPC in 

Locus [Fleisch 86], and a distributed middleware, known as DIPC [Sharif 99]. The 

modified LOC of System V μ-IPC was 3,853 LOC. Thus, System V μ-IPC is effectively 

implemented in the smallest size because the modified LOC of Locus was 5,559 LOC 

and the modified LOC of DIPC was 6,265 LOC. Next, we compared our μ-UDS with 

Internet domain sockets of Linux as a reference. It can be seen from the comparison that 

μ-UDS with 1,488 LOC is 13.7 times smaller than Internet domain sockets of Linux 

with 20,365 LOC. 

 

3.6 SUMMARY 
We have presented our seamless communication software, which enables legacy 

base applications designed for a single-core processor to be executed on AMP without 

any modifications of base applications and OSs. Its most important feature is the 

hooking and execution of OS system calls at the user level. In this way, the software 
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maintains the API compatibility of IPC system calls on multiple processors. We have 

reported the detailed design of both System V μ-IPC and μ-UDSs as two most 

important IPCs. Moreover, our evaluations with respect to System V μ-IPC and μ-UDS 

have shown its effectiveness, demonstrating three fundamental features: a successful 

example with actual mobile terminal software, high performance and small code size. 
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4.  
CHAPTER 4                         

SECURE PROCESSOR PARTITIONING 
 
This chapter presents a new hardware unit designed for secure processor partitioning, 

called a bus management unit. The unit enables OSs executed on separate processors to 

be mutually protected at the hardware level.  

 

4.1 MOTIVATION 
Current high-end embedded systems, such as mobile terminals, have already 

equipped with an execution environment designed for a closed class of open 

applications. For example, the approach of NTT DoCoMo enables applications written 

in Java to be executed on a Java VM [Gong 03]. The approach of KDDI enables 

pre-verified applications to be executed on a dedicated platform, called BREW 

[Qualcomm 04]. A similarity between both approaches is use of dedicated software 

platforms in order to form an execution environment. 

The open applications that we target include general user-level programs and 

device drivers. This means that such new groups of open applications need to be 

directly executed on native OSs instead of traditional non-native software platforms. 

Sharing a native OS between base and open applications shows potential vulnerability 

since bugs and viruses include in open applications are likely to cause critical 
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interference to base applications, such as unintentional access to prohibited areas, and 

loss of needed excess resource allocation. NTT DoCoMo, IBM, and Intel have, in fact, 

jointly announced specifications designed to encourage the development of mobile 

terminals having a security capability [NTT 04a] [NTT 04b]. 

Conventional secure techniques, which are implemented as software, help cover 

critical potential vulnerability. The secure techniques, however, cause additional 

potential vulnerability to systems in a vicious cycle since the software that implements 

the techniques itself might have new potential vulnerability. This means that one 

promising approach would seem to be the use of hardware.  

Thus, we introduce secure processor partitioning, which enables native OSs 

executed on separate processors to be mutually protected by means of a new hardware 

unit, called a bus management unit. This unit prohibits a native OS compromised by 

malicious open applications from accessing other memory and I/O areas managed by 

other native OSs since processors are allowed to access only specified address ranges of 

memories and I/Os.  

 

4.2 RELATED WORK 
Our research differs in a number of respects from the current body of research on 

program security. 

Major tool-level approaches include RATS [Fortify 09] and Splint [Evans 02]. 

While the approaches help find potential vulnerability by inspecting the source codes of 

open applications, the source codes of open applications are required before their 

execution.  

Major library-level approaches include StackGuard [Cowan 98] and Libsafe 
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[Baratloo 00]. The libraries help detect malicious attacks, such as buffer overflow 

attacks, at run-time. Unlike tool-level approaches, these approaches require no source 

codes of open applications. There is, however, no guarantee that library-level 

approaches make it possible to detect all malicious attacks. 

Major kernel-level domain approaches, such as SELinux [Loscocco 01] and 

Openwall [Openwall 01], allow both base and open applications to be run on a shared 

OS since a security module within the shared OS monitors system calls issued from all 

applications and imposes mandatory access control on all applications. It is, however, 

difficult to avoid security vulnerability in OSs and security modules. 

Major virtualized domain approaches include LPAR [Armstrong 05], Xen [Barham 

03], UML [Dike 00] and VMware [Sugerman 01]. Virtualized domains (i.e., virtualized 

native OSs) enhance system security since they allow base applications to be separated 

from open applications at the OS level. There is, however, a degree of security 

vulnerability in complex virtualization software [Hacker 07]. In accordance with the 

problem, recent work [Chen 08] [Seshadri 07] [Shinagawa 09] has proposed tiny 

virtualization software in order to reduce security vulnerability of virtualization 

software itself. 

It should be noted that similar hardware approaches, such as SECA [Coburn 05] 

and distributed filters on Network-on-Chips (NoCs) [Fiolin 07], were proposed around 

the same time as our bus management unit in order to block illegal accesses at the 

hardware level. While our bus management unit helps enhance system-level program 

security, the similar approaches focus on only communication-level security. 
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4.3 BUS MANAGEMENT UNIT 
FIGURE 4.1 outlines an example of AMP used for mobile terminals. In this figure, 

the AMP software structure equips with four domains: a base domain, an operator 

domain, a trusted domain, and an untrusted domain. Each domain has a native OS on a 

separate processor.  
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FIGURE 4.1: AMP FOR MOBILE TERMINALS 

 

A base domain contains the base applications of a mobile terminal, such as a mailer 

and a browser. Open applications are never executed on a base domain. While an 

operator domain executes applications validated by an operator, a trusted domain 

executes applications validated by third parties. The open applications executed in both 

an operator domain and a trusted domain are assumed to be sufficiently trustworthy 
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although they may include bugs. Finally, an untrusted domain executes all other open 

applications. The open applications might include viruses as well as bugs. In this way, 

users enable open applications to be installed to their corresponding classes of domains.  

The requirements of our bus management unit are the achievement of two major 

functions under an important specification. Here, the two major functions of our bus 

management unit are 1) checking all accesses issued from processors that belong to 

open domains, and 2) deciding whether or not the accesses are illegal. In addition, the 

important specification is that only processors that belong to a base domain are allowed 

to change the control of the unit. This means that it is impossible for even incredibly 

malicious open applications to escape access checking since processors compromised 

by the open applications have no rights to change the control of our bus management 

unit. In this way, our platform ensures hardware-level hardened protection among 

domains. It should be noted that secure processor partitioning allows our bus 

management unit to be variously designed and implemented as far as the unit equips 

with the two major functions under the important specification.  

FIGURE 4.2 describes an example of the design of our bus management unit. The 

unit contains two components: an access matrix and an access check component. 

An access matrix stores the information on the accessibility of all possible 

combinations between processors and bus slaves (e.g., memory or I/O). Then, only 

processors that belong to a base domain (i.e., CPU0) are allowed to modify this access 

matrix. 

An access check component checks the access information, such as processor ID, 

access type, and access address, of bus access issued from a processor to a bus slave. 

Then, the component determines whether the bus access should be granted, referring to 
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an access matrix. In this figure, we assume that a base domain uses Slave A and Address 

Range 0, and both an operator domain and a trusted domain use Slave B and Address 

Range 1. While processors (i.e., CPU1 and CPU2) executing in both an operator domain 

and a trusted domain are only allowed any access to resources used for both domains 

(i.e., Slave B and Address Range 1), they are prohibited write access to resources used 

for a base domain (i.e., Slave A and Address Range 0). Moreover, while processors (i.e., 

CPU3) executing in an untrusted domain are only allowed read-only access to resources 

used for the operator domain and the trusted domain (i.e., Slave B and Address Range 

1), they are prohibited any access to resources used for the base domain (i.e., Slave A 

and Address Range 0).  
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FIGURE 4.2: BUS MANAGEMENT UNIT 

 

FIGURE 4.3 depicts an example of the internal design of a system bus with our bus 
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management unit. Here, we assume that this system bus uses the AXI bus protocol 

[ARM 04].  
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FIGURE 4.3: INTERNAL DESIGN OF SYSTEM BUS 

 

As shown in this figure, only read address channels and write address channels are 

connected to an access check component while other channels (i.e., write data channels, 

read data channels and write reply channels) are directly connected between processors 

and bus slaves. This is because an access check component needs two important access 

information: 32-bit address information (i.e., ARADDR[31:0] and AWADDR[31:0]), 

and 4-bit ID information containing both processor ID and access type (i.e., ARID[3:0] 

and AWID[3:0]). An access matrix contains 24 address range entries, allocating eight 

address range entries to each of three processors. If an access address is included in one 

of the address ranges, an access check component simply changes the access address to 
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an invalid access address in order to cause a bus error on a system bus. Otherwise, the 

bus access directly passes the access component. 

 

4.4 EVALUATION 
Evaluations show that our bus management unit can be efficiently implemented 

(see Section 4.4.1), and the unit helps enhance system-level security (see Section 4.4.2). 

 

4.4.1 HARDWARE SPECIFICATIONS 

TABLE 4.1 summarizes hardware specifications of our bus management unit.  

 

TABLE 4.1: HARDWARE SPECIFICATIONS OF BUS MANAGEMENT UNIT 
Item Feature 

Bus protocol AXI 
The number of input / output channels 2 / 2 

The number of address ranges 24 
Technology node 130nm 

Gate size 53.4K gate 
Delay between input and output channels 1.28 ns 

 

FIGURE 4.4 shows its schematic block diagram. This unit is designed for ARM 

MPCore [ARM 06] with four processors. We synthesized this unit by Synopsys Design 

Compiler, minimizing the delay between input and output channels. These results 

indicate that the area and latency overhead of this unit is small enough to be 

incorporated into a system bus. In addition, FIGURE 4.5 describes the breakdown of the 

gate size of our bus management unit. An access matrix occupies 30% of the gate size 

since the access matrix is implemented as flip-flop arrays. Instead of flip-flops, use of 



CHAPTER 4: SECURE PROCESSOR PARTITIONING 

 

51

an SRAM array would be a promising option in order to reduce the total gate size. 
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FIGURE 4.4: SCHEMATIC BLOCK DIAGRAM OF BUS MANAGEMENT UNIT 
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FIGURE 4.5: BREAKDOWN OF GATE SIZE OF BUS MANAGEMENT UNIT 
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4.4.2 SUCCESSFUL EXAMPLE FOR SECURE PARTITIONING 

As a successful example of the application of our bus management unit, FIGURE 

4.6 demonstrates the device coordination between a mobile terminal and an external 

projector.  

 

Projector

User Interface
Application

Contents

PDF File

Device Driver
for Projector

Untrusted Domain

UI App.

Device Driver

Base Domain

Download
Client

OSOS

(a) Device Driver w/o Bugs (b) Device Driver w/ Bugs

Download
Manager

UI App.
Screen View

Mobile Terminal

 

FIGURE 4.6: DOWNLOADING PROJECTOR DEVICE DRIVER 

 

Here, a user displays a downloaded PDF file of his/her presentation through an 

external projector connected to a mobile terminal (see FIGURE 4.6 (a)). For the 

projector control, a projector device driver and a User Interface (UI) application are 

downloaded. A download client executed on a base domain manages the downloading 

of the projector device driver and the UI application. Then, a download manager 
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executed on an untrusted domain installs the projector device driver into the OS of the 

untrusted domain, executing the UI application on the OS. The UI application and the 

projector device driver, however, might have critical bugs or viruses. For example, 

memory leakage bugs of the projector device driver result in crashing the OS of the 

trusted domain (see FIGURE 4.6 (b)). Our bus management unit maintains the protection 

of the base domain even during the OS crash, preventing illegal access issued by the 

crashed OS. In order to recover the untrusted domain, the base domain simply reboots a 

processor executing the crashed OS. 

TABLE 4.2 summarizes the security level of secure platforms, reviewing the 

relationship between the execution of open applications and the protection of base 

domains. The underlined items indicate highly desirable characteristics. Our approach 

achieved the highest security level than did conventional approaches.  

 

TABLE 4.2: SECURITY LEVEL COMPARISON 

Software Kernel-level 
domain 

Virtualized 
domain 

Our 
approach 

Bugs No crash No crash No crash 
Application 

Viruses Crash No crash No crash 
Bugs Crash No crash No crash 

Device driver 
Viruses Crash Crash No crash 

 

4.5 SUMMARY 
We have presented secure processor partitioning supported by our bus management 

unit. The unit enables OSs executed on separate processors to be mutually protected at 

the hardware level. Its most important feature is the prevention of illegal access on a 

system bus. We have designed our bus management unit, referring to the AXI bus 



CHAPTER 4: SECURE PROCESSOR PARTITIONING 

 

54

protocol. Evaluations have shown its effectiveness, demonstrating two fundamental 

features: excellent hardware specifications and a high security level. 
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5.  
CHAPTER 5                       

ASYMMETRIC VIRTUALIZATION 
 
This chapter presents fast, secure virtualization, called asymmetric virtualization, by 

which many OSs over the number of processors are securely executed under secure 

processor partitioning.  

 

5.1 MOTIVATION 
Mobile Information Device Platform (MIDP) specifications [Sun 06] request 

General System for Mobile communications (GSM) / Universal Mobile 

Telecommunications System (UMTS) compliant devices to provide at least five 

protection domains in order to install downloaded applications: a base domain, an 

identified third party domain, an unidentified third party domain, an operator domain, 

and a manufacturer domain. The number of protection domains would seem to increase 

for the secure execution of various groups of open applications.  

In order to cope with this issue, virtualization would seem to be one promising 

solution. Without virtualization, AMP needs to increase the number of processors in 

proportion to the number of required domains. Conventional virtualization technologies, 

however, have a degree of security vulnerability [Hacker 07]. In addition, the 

technologies unfit for embedded systems in terms of base features, such as performance 
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overhead and memory footprint, since traditional virtualization technologies have been 

originally developed for computing systems.  

We introduce a fast, secure virtualization technology, known as asymmetric 

virtualization, which utilizes secure processor partitioning (see Chapter 4). The most 

important feature of asymmetric virtualization is the achievement of both high 

performance and highly hardened security. In this way, open embedded systems enable 

any number of domains for the secure execution of many groups of open applications. It 

should be noted that Chapter 6 discusses the application of this asymmetric 

virtualization to SMP. 

 

5.2 RELATED WORK 
Our research differs in a number of respects from the current body of research on 

virtualization technologies. Virtualizing a processor needs to effectively trap sensitive 

instructions, which are defined as the instructions which would affect the allocation of 

system resources [Popek 74]. 

The major kernel-level Virtualization Machine Monitors (VMMs), known as type-I 

VMMs, include Xen [Barham 03], which employs para-virtualization [Whitaker 02] 

(i.e., OS modifications). The approaches use a separate, additional processor mode (e.g., 

a hypervisor mode) [Armstrong 05] [Neiger 06] in order to emulate sensitive 

instructions. They cause little performance degradation in many applications since the 

additional processor mode enables normal instructions to be directly executed. There 

remains, however, severe performance degradation in both the applications which use 

OS system calls and device drivers since sensitive instructions still need to be virtually 

emulated. 
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The major user-level VMMs, known as type-II VMMs, include User Mode Linux 

(UML) [Dike 00] (a port of Linux to run as a Linux process), and VMware [Sugerman 

01]. The approaches emulate sensitive instructions by software-only mechanisms. While 

they need no additional processor mode, their software-only emulations result in severe 

performance degradation in many applications. 

Further, the security level of both type-I and type-II VMMs depends on the 

implementation of VMM software since viruses make it possible to exploit security 

holes in the VMMs [Hacker 07]. FIGURE 5.1 describes the software structures of both 

type-I and type-II VMMs. Both VMMs have been widely accepted for use in computing 

systems with PCs and servers. This is because their high generality makes it possible to 

utilize conventional hardware. 
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FIGURE 5.1: RELATED WORK: TYPE-I AND TYPE-II VMM 
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5.3 DESIGN PRINCIPLES 
FIGURE 5.2 outlines an example of asymmetric virtualization on AMP used for 

mobile terminals. In this figure, the AMP software structure equips with five domains 

on three processors in accordance with MIDP specifications [Sun 06]: a base domain, an 

operator domain, a manufacturer domain, a trusted domain, and an untrusted domain. 

While a base domain executes base applications on a dedicated processor (i.e., CPU0), 

the other domains execute open applications on any processor of the two remaining 

processors. 
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FIGURE 5.2: VIRTUALIZED AMP FOR MOBILE TERMINALS 

 

Traditional VMMs deploy the architecture of parallel VMMs on a multi-core 

processor (i.e., symmetric virtualization) [Armstrong 05]. Such symmetric virtualization, 
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however, causes a deadlock problem which prevents non-compromised VMMs from 

accessing shared resources when a VMM compromised by open applications holds the 

shared resources [Coffman 71]. This results in separating the roles of virtualization 

software, called asymmetric virtualization. 

FIGURE 5.3 illustrates the design principles of asymmetric virtualization. A 

traditional VMM supports three basic functions in it: domain scheduling, which decides 

the next executed domain; domain setting, which saves and restores processor contexts; 

and domain separation, which blocks illegal accesses issued from a domain. In our 

design principles, the three functions are allocated to three separate components: a 

Master VMM, a Slave VMM, and our bus management unit. Here, the function of 

domain scheduling is allocated to a Master VMM included in a base domain since a 

base domain needs to control domains in response to the flexible execution of open 

applications. The function of domain separation is allocated to our bus management unit 

since speed overhead of this function degrades the performance of executed domains. 

Further, the function of domain setting is allocated to a Slave VMM included in an open 

domain since a processor allocated for open applications requires the flexible execution 

of multiple domains.  

Two most important factors of our design principles are both the allocation of a 

dedicated processor to a base domain (i.e., use of a multi-core processor) and the 

domain protection of our bus management unit. The allocation of a dedicated processor 

to a base domain guarantees the protection of processor resources, such as mode 

registers and system registers, since the processor resources are never shared with open 

domains. In addition, our bus management unit enables domain resources, such as 

memories and I/Os, to be protected among domains at the hardware level. Thus, our 
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asymmetric virtualization needs no emulation of sensitive instructions because the two 

factors avoid resource interference among virtualized domains, maintaining highly 

hardened security. 
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FIGURE 5.3: DESIGN PRINCIPLES OF ASYMMETRIC VIRTUALIZATION 

 

TABLE 5.1 compares our asymmetric virtualization with other approaches. In the 

table, the best characteristic is underlined for each item. Type-II VMMs have the 

advantage of high generality. Type-I VMMs have the advantage of higher performance 

and security than do type-II VMMs at the expense of a new processor mode. Our 

asymmetric virtualization has the advantages of highest performance and security at the 

sacrifice of generality (i.e., the fixed execution of a base domain on a dedicated 

processor). In other words, at the sacrifice of generality, the allocation of a dedicated 

processor to a base domain helps achieve the secure control of our bus management unit. 
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Then, our bus management unit provides highly hardened security with fast access 

checking at the hardware level. 

 

TABLE 5.1: COMPARISON WITH OTHER VIRTUALIZATION APPROACHES 
Item Type-I VMM Type-II VMM Our approach 

Security level Moderate Low High 
Performance Moderate Low High 

Scope of applications General General Specific 

 

It should be noted that virtualization-assist hardware, such as Intel VT [Neiger 06], 

has been proposed in order to efficiently support processor virtualization. Adams and 

Agesen [Adams 06], however, have shown that the hardware fails to provide an 

unambiguous performance advantage for two primary reasons: 1) no support for MMU 

virtualization, and 2) failure of co-existing with existing software techniques for MMU 

virtualization. By way of contrast, our bus management unit results in faster 

virtualization, eliminating MMU virtualization. 

 

5.3.1 MASTER VMM 

A Master VMM schedules domains on a base domain in response to two APIs: a 

context-setting API, which sets a domain context, and a context-switching API, which 

notifies a Master VMM of the execution of a specified domain. Here, a domain context 

is defined as a set of register values used to restore a processor. For example, a domain 

context of an ARM processor contains one register bank with eight registers, two 

register banks with five registers, six register banks with two registers, one current 

processor status register, one saved processor status register, and CP15 registers [ARM 
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05]. 

FIGURE 5.4 describes the design of a Master VMM. It consists of three 

components: 1) a domain context manager, 2) an inter-VMM communication handler, 

and 3) a domain scheduler.  
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FIGURE 5.4: DESIGN OF MASTER VMM 

 

A domain context manager governs domain contexts, which are connected to a 

double-linked list with a hash table. This domain context manager adds a new domain 

context given from a context-setting API to the double-linked list. In addition, the 

manager sends a domain context to a domain scheduler, and receives a domain context 

from a domain scheduler. 

An inter-VMM communication handler sends a domain context to a Slave VMM 

and receives a domain context from a Slave VMM via shared memory and an 
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inter-processor interrupt. The detailed design of this handler is described in FIGURE 5.7. 

A domain scheduler controls all domains in coordination with a domain manager 

and an inter-VMM communication handler. When a domain scheduler is invoked by a 

context-switching API, the domain scheduler decides to invoke a domain specified by 

the API. Then, the domain scheduler receives the context of the specified domain from a 

domain context manager, and sends the domain context to a Slave VMM via an 

inter-VMM communication handler. In addition, the domain scheduler changes an 

access matrix of our bus management unit, allowing a processor executing the specified 

domain to access its domain resources. Finally, the domain scheduler receives from the 

inter-VMM communication handler a domain context which the Slave VMM previously 

executed, giving the domain context to the domain context manager.  

 

5.3.2 SLAVE VMM 

A Slave VMM switches multiple domains on a processor in response to a request 

from a Master VMM. This Slave VMM emulates no sensitive instructions, unlike other 

VMM software.  

FIGURE 5.5 describes the design of a Slave VMM. It consists of two components: 

1) an inter-VMM communication handler, and 2) a domain switcher. An inter-VMM 

communication handler receives a domain context from a Master VMM, and sends a 

domain context to a Master VMM via shared memory and an inter-processor interrupt. 

The detailed design of this handler is described in FIGURE 5.7. A domain switcher 

controls both the domain context that was previously executed on a Slave VMM and the 

domain context that will be executed next on the Slave VMM. When a domain 

scheduler receives a new domain context from a Master VMM, it sends back an old 
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domain context executed on the domain scheduler via an inter-VMM communication 

handler. After that, the domain scheduler sets a new domain context to a processor on it. 
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FIGURE 5.5: DESIGN OF SLAVE VMM 

 

It should be noted that the execution of a Slave VMM is guaranteed. Typical RISC 

processors employ Harvard architecture [Hennessy 07], whose processors have 

separated caches for instructions and data. In order to modify any instructions of a Slave 

VMM, a processor must issue a data access to the text section of the Slave VMM. This 

means that the processor results in causing a write miss on the data cache even though 

instructions of the slave VMM have been already stored to the instruction cache. Since 

our bus management unit allows the processor only to fetch instructions through the 

instruction bus, it can block a cache-refill data access on the data bus. In this way, our 

bus management unit prevents instructions of Slave VMMs from being modified by 
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compromised OSs.  

 

5.3.3 INTER-VMM COMMUNICATION 

FIGURE 5.6 illustrates the design of inter-VMM communication between a Master 

VMM executed on processor 0 and a Slave VMM executed on processor K. Two buffers, 

called “previous”, and “next”, characterize this inter-VMM communication.  
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FIGURE 5.6: INTER-VMM COMMUNICATION 

 

First, a Master VMM puts a domain context into the “next” buffer allocated for 

processor K on shared memory. Second, the Master VMM sends a context switch 

request with an inter-processor interrupt to a Slave VMM executed on processor K. 

After that, the Slave VMM saves the old domain context executed on processor K to the 

“previous” buffer. Moreover, the Slave VMM replies an acknowledgment to the Master 
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VMM, switching to the requested domain context. Here, the Slave VMM disables any 

interrupts in order to maintain the atomicity between the acknowledgment and the 

context switch. Finally, the Master VMM gets the old domain context of processor K 

from the “previous” buffer. 

 

5.4 INTER-DOMAIN COMMUNICATION 
FIGURE 5.7 shows the design of Inter-Domain Communication (IDC), which helps 

achieve communication between an application on a running domain and an application 

on a dormant domain (i.e., a non-running domain), since the dormant domain must be 

activated on demand. Here, we assume that an application on domain 1 communicates 

with an application on domain 2. In the case that domain 2 has already run on a 

processor, a device driver included in domain 1 simply sends data to the corresponding 

device driver included in domain 2. Otherwise, a device driver included in domain 1 

sends a context switch request and data to the master device driver included in a base 

domain. A kernel thread of the master device driver invokes domain 2 through a Master 

VMM, retransferring the data to the device driver included in domain 2.  

It should be noted that these device drivers use inter-processor interrupts for IDC. 

A large number of interrupts from compromised OSs have the potential risk to cause 

Denial-of-Service (DoS) attacks to a base domain. Interrupt masking or an interrupt 

controller with a Quality-of-Service (QoS) mechanism, however, helps protect such 

DoS attacks. 
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FIGURE 5.7: INTER-DOMAIN COMMUNICATION 

 

5.5 EVALUATION 
We used the same MP211 evaluation environment as Section 3.5. In this section, a 

Master VMM and a Slave VMM are implemented as a kernel module and an interrupt 

handler, respectively. Evaluations show that our asymmetric virtualization actually 

worked on AMP (see Section 5.5.1). In addition, the virtualization achieved higher 

performance (see Section 5.5.2, and 5.5.3) and lower code size (see Section 5.5.4) than 

did other approaches.  

 

5.5.1 SUCCESSFUL EXAMPLE FOR VIRTUALIZATION 

As a successful example of the application of our asymmetric virtualization, 

FIGURE 5.8 demonstrates that five Linux OSs run on three ARM processors. Processor 
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1 has two domains 1 and 3, and processor 2 also has two domains 2 and 4. In the lower 

half of the figure, 3D graphic processes show the operating states of each domain. In the 

top half of the figure, a control board process on domain 0 manages running domains by 

IDC. In this figure, domains 3 and 4 are running, and domains 1 and 2 are dormant.  

The time required for an OS switch was less than 0.5ms. This OS switch overhead 

is not a problem with Linux-based mobile terminals since the time quantum of a process 

on embedded Linux (e.g., 150ms) is much longer than the OS switch overhead. 
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FIGURE 5.8: VIRTUALIZING FIVE DOMAINS ON THREE PROCESSORS  

 

5.5.2 VIRTUALIZATION PERFORMANCE ON OPEN DOMAIN 

In order to prove that our approach achieved faster virtualization than did other 

approaches, we executed two micro-benchmarks of LMbench [Mcvoy 96] on an open 
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domain: processes and context switching micro-benchmarks. LMbench is a typical 

benchmark in order to measure single OS performance on PCs. While the processes 

micro-benchmarks are used to measure the basic process primitives, such as creating a 

new process and running a different program, the context switching micro-benchmarks 

are used to measure the time needed to save the state of one process and restore the state 

of another process. Here, we were unable to evaluate application-level benchmarks 

because of two primary reasons: 1) the small memory capacity of our evaluation board 

and 2) no standard application-level benchmarks for the measurement of virtualization 

overhead. 

FIGURE 5.9 and FIGURE 5.10 describes the evaluation results of two 

micro-benchmarks. We selected 13 items, which are especially important to measure the 

efficiency of processor virtualization itself (i.e., relatively less independent from I/Os 

and file systems), from 24 items shown in [Barham 03]. Further, in reference to 

[Barham 03], the results of other VMMs, Xen (a type-I VMM) and UML (a type-II 

VMM), are also shown in the figures. Here, respectively in two different evaluation 

environments, each performance of the micro-benchmarks executed on non-virtualized 

Linux is normalized to 1 for the sake of relative comparison. 

In process micro-benchmarks measuring system call performance, the average 

virtualization overhead of our approach was only 3.2%. For reference, our approach 

achieved 1.2 times higher average performance than did Xen and 58 times higher one 

than did UML. In particular, our approach improved “fork” and “exec” performance 

because an OS on a Slave VMM is able to update large numbers of a page table without 

any emulation. While Xen software needs to check whether the page table updates are 

illegal, a Slave VMM does not need to check the updates because of our bus 
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management unit. Here, one small anomaly seen here, “sh proc” in Xen, presumably 

occurred due to a fortuitous cache alignment [Barham 03] since “slct TCP” in Xen 

produces better performance than does non-virtualized Linux. 
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FIGURE 5.9: PROCESS MICRO-BENCHMARKS ON OPEN DOMAIN 

 

In context switching micro-benchmarks measuring context switching time between 

different numbers of processes with different working set sizes, the average 

virtualization overhead of our approach was only 2.1%. For reference, our approach 

achieved 2.1 times higher average performance than did Xen and 20 times higher one 

than did UML. In particular, our approach significantly improved the context switch 

time for smaller working set sizes. This is because an OS on a Slave VMM is able to 

change a page table base without any emulation. While Xen software needs to check 

whether the changed page table base is illegal, a Slave VMM does not need to perform 
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the checking because of our bus management unit. 
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FIGURE 5.10: CONTEXT SWITCHING MICRO-BENCHMARKS ON OPEN DOMAIN 

 

The above measurements in terms of OS-level virtualization overhead imply 

application-level virtualization overhead. In terms of benchmarks which use few system 

calls, such as SPEC INT [Henning 06], the virtualization overhead of our approach 

would be almost the same as that of Xen or UML. In open embedded systems, our target 

applications, however, would seem to use a lot of system calls in order to achieve new 

services, such as device coordination among appliances. This means that our approach 

would greatly improve the performance of such applications in open embedded systems. 
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5.5.3 INTER-DOMAIN COMMUNICATION BANDWIDTH 

In order to examine IDC bandwidth degradation, we evaluated TCP bandwidth 

between two domains by using the ttcp benchmark [Muuss 85]. Both sender (TX) and 

receiver (RX) applications were configured using a socket buffer size of 128KB with a 

Maximum Transfer Unit (MTU) of 1500 bytes to transfer 8 MB of data. In our approach, 

the virtualization overhead of network device drivers was less than 5%. Thus, the 

network device driver achieved almost the same bandwidth as the network device driver 

for non-virtualized Linux. It should be noted that we were not able to compare our 

approach with Xen and UML because the transferred data size configured in [Barham 

03] of 400MB was immeasurable in our evaluation environment. 

 

5.5.4 LINES OF CODE FOR VIRTUALIZATION  

In order to show the efficient implementation of our asymmetric virtualization, 

FIGURE 5.11 illustrates the Lines Of Code (LOC) of our approach, compared with those 

of other VMMs, Xen and UML. The modified LOC of virtualization software in our 

approach are 1.7 times smaller than that of Xen and 7.4 times smaller than that of UML. 

In addition, the modified LOC of network drivers in our approach are 2.0 times smaller 

than that of Xen and 3.7 times smaller than that of UML. This is because our bus 

management unit helps simplify virtualization software while other VMMs need extra 

functions, such as page table update, to handle multiple domains. 
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FIGURE 5.11: LINES OF CODE FOR VIRTUALIZATION 

 

5.6 SUMMARY 
We have presented our asymmetric virtualization, by which many OSs over the 

number of processors are securely executed under secure processor partitioning. Its 

most important feature is the achievement of both the allocation of a dedicated 

processor to a base domain and the domain protection of our bus management unit. In 

this way, asymmetric virtualization achieves fast, secure virtualization. We have 

designed asymmetric virtualization based on both ARM processors and Linux OSs. 

Moreover, our evaluations have shown its effectiveness, demonstrating three 

fundamental features: a successful example on three ARM processors, high performance 

and small code size. 
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6.  
CHAPTER 6                         

SECURE DYNAMIC PARTITIONING 
 
This chapter presents secure dynamic partitioning, by which the number of processors 

allocated to individual OSs makes it possible to be dynamically changed on SMP under 

secure processor partitioning. 

 

6.1 MOTIVATION 
Traditional SMP fails to execute multiple domains since they support only a single 

domain. Our secure dynamic partitioning helps support multiple domains required for 

open embedded systems on SMP. As mentioned in Chapter 5, conventional 

virtualization technologies, however, have a degree of security vulnerability [Hacker 

07]. In addition, the technologies unfit for embedded systems in terms of base features, 

such as performance overhead and memory footprint, since traditional virtualization 

technologies have been originally developed for computing systems. 

We introduce secure dynamic partitioning for SMP, which utilizes both secure 

processor partitioning (see Chapter 4) and asymmetric virtualization (see Chapter 5). 

The most important feature of secure dynamic partitioning is dynamic processor 

allocation, by which the number of processors allocated to individual OSs is 

dynamically changed under secure processor partitioning. In this way, open embedded 
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systems enable any number of domains to be securely executed even on SMP. It should 

be noted that asymmetric virtualization enables the number of processors to be 

dynamically changed by switching domains on individual processors of AMP. 

 

6.2 RELATED WORK 
Our research differs in a number of respects from the current body of research on 

dynamic partitioning. 

Major OS-level approaches include eSOL eT-Kernel [Gondo 07] and QNX BMP 

[Johnson 07]. Since these approaches use processor affinity settings to allow 

applications executed on an SMP OS to be run only on specified processors, they make 

it possible to change the number of processors assigned to an application. Thus, these 

approaches impose no performance overhead on applications. The execution of base and 

open applications on the same SMP OS, however, will result in critical security 

vulnerability.  

The major VMM-level approaches, as described in Section 4.2, include Xen 

[Barham 03] and LPAR [Armstrong 05]. These approaches provide any number of 

processors to applications through processor virtualization features. In addition, the 

approaches help enhance system security since they allow base applications to be 

separated from open applications at the OS level. Virtualization, however, results in 

unignorable performance degradation [Adams 06] [Barham 03], and there is a degree of 

security vulnerability in complex virtualization software [Hacker 07]. In accordance 

with the problem, recent work [Chen 08] [Seshadri 07] [Shinagawa 09] has proposed 

tiny virtualization software in order to reduce security vulnerability of virtualization 

software itself. 
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6.3 DESIGN PRINCIPLES 
FIGURE 6.1 shows an example of SMP used for mobile terminals. This example 

has three domains, a base domain for the execution of base applications and two open 

domains (A/B) for the execution of open applications, such as an operator domain and a 

manufacturer domain [Sun 06]. The base domain maintains at least one processor for its 

executions.  
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FIGURE 6.1: SMP FOR MOBILE TERMINALS 

 

For the scalable extension of base applications, all four processors are allocated to 

the base domain on the SMP OS. Further, where coordination is required between base 

and open applications, a processor allocated to the base domain (e.g., CPU3) will be 
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yielded to an open domain. As shown on the right-hand side of the figure, base 

applications can, for example, be executed separately on an SMP OS with three 

processors, while open applications are executed with the remaining processor. 

The SMP software structure includes two components: a context manager and a 

context handler. Here, a context refers to the register values required to restore a 

processor state. It should be noted that a context manager and a context handler are 

respectively extensions of a Master VMM and a Slave VMM (see Section 5.3.1 and 

5.3.2) in order to control SMP. In addition, inter-VMM communication (see Section 

5.3.3) is used between a context manager and context handlers. 

A context manager is run only on the base domain, and it manages base domain 

contexts, which are required to restore to the base domain any processors previously 

allocated to domains. It also manages all open domain contexts. Further, it controls 

self-transition management (see Section 6.3.1). It also sends to a context handler the 

context of a domain in which an execution is to be performed, ordering that the 

execution be made.  

A context handler is run on each open domain, and it conducts domain switching, 

from a current domain to a domain specified by the context manager. 

In transitions from, for example, a state with only a base domain to one with both a 

base domain and an open domain (e.g., Domain A in state transition (1) in FIGURE 6.1), 

the context manager saves the SMP OS context of the processor (here, CPU3) allocated 

for the execution of Domain A. Moreover, it restores the context of Domain A to the 

processor. As a result, the number of processors allocated to the base domain is 

dynamically reduced from four to three. FIGURE 6.2 summarizes this separation 

transition with required OS contexts. 
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FIGURE 6.2: SEPARATION FROM BASE DOMAIN 

 

In state transition (2) in FIGURE 6.1, e.g., in switching from Domain A to Domain 

B, the context manager sends the Domain B context to the context handler of Domain A, 

using inter-VMM communication. Moreover, it receives from the context handler the 

Domain A context, which had previously been saved. FIGURE 6.3 summarizes this 

switching transition with required OS contexts. It should be noted that this OS 

switching is equivalent to the function of asymmetric virtualization designed for AMP, 

as described in Chapter 5. 
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FIGURE 6.3: DOMAIN SWITCHING 

 

Finally, in state transition (3) in FIGURE 6.1, e.g., in switching from a state with 

both a base domain and an open domain to one with only a base domain, the context 

manager sends the SMP OS context of the processor performing executions in Domain 

B (i.e., CPU3) to the context handler of Domain B. Moreover, it receives from the 

context handler the Domain B context, which had previously been saved. As a result, 

the processor allocated for executions in a domain (i.e., CPU3) is restored to the base 

domain, and the number of processors allocated to the base domain is dynamically 

increased from three to four. FIGURE 6.4 summarizes this merge transition with required 

OS contexts. 
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FIGURE 6.4: MERGE TO BASE DOMAIN 

 

6.3.1 SELF-TRANSITION MANAGEMENT 

For separating a processor from a base domain (state transition (1) in FIGURE 6.1) 

and merging a processor back to the base domain (state transition (3) in FIGURE 6.1), a 

new operational control of processors, called self-transition management, is newly 

required. Self-transition management utilizes CPU Hotplug technology [Mwaikambo 

04] in order to control a base domain. CPU Hotplug technology, originally developed by 

Russell et al., is used to remove faulty processors from a system and add new processor 

substitutes to that system without stopping on-line operations. In ARM MPCore Linux, 

this technology allows unused processors to be put into a low power mode in order to 

reduce power consumption, as outlined in FIGURE 6.5. In other words, it simply 

suspends use of the processors with clock gating.  
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FIGURE 6.5: CPU HOTPLUG TECHNOLOGY 

 

FIGURE 6.6 shows the relationship between our self-transition management and 

CPU Hotplug technology. While the white boxes indicate the conventional operations of 

CPU Hotplug technology, the gray boxes indicate newly-added operations for 

self-transition management. When a processor in an idle state is put into a low power 

mode, the CPU Hotplug technology (i.e., the white boxes) implemented on ARM 

MPCore Linux requests the execution of a “CPU Hot Remove” processing. The “CPU 

Hot Remove” processing might involve, for example, 1) the migration of processes 

previously executed on that processor to other live processors, 2) a change in interrupt 

distribution to the processor, 3) deactivation of cache coherence (setting to the AMP 

mode), or 4) a processor’s waiting for an interrupt while clock gating is being conducted. 

After the processor receives a wake-up interrupt, the technology requests the execution 
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of a “CPU Hot Add” processing, such as the re-activation of cache coherence (setting to 

the SMP mode) or the return of a processor to an idle state. 

 

 

Modified Flow of CPU Hotplug

Need for Domain
Transition ? 

Save this
Removed 

CPU Context

Switch to
a New Domain 

Context

Yes No

Wait for 
a Wake-Up
Interrupt

“CPU Hot Remove” Processing
for Entering Low Power Mode

“CPU Hot Add” Processing
for Leaving Low Power Mode

SMP OS

Base Domain

CPU3CPU2CPU1CPU0

SMP OS

Base Domain

CPU3CPU2CPU1CPU0

SMP OS

Base Domain

CPU3CPU2CPU1CPU0

AMP OS

Domain A

Task D

(1)

(3)

Task BTask A

(1) Separation from base domain

(3) Merge to base domain

Task BTask A

Task BTask A

 

FIGURE 6.6: SELF-TRANSITION MANAGEMENT 

 

Our self-transition management modifies the operational flow of CPU Hotplug 

technology instead of suspending processors. A context manager equips with three base 

domain context buffers in order to save the processor contexts corresponding to the 

three CPUs which make it possible to be separated from the base domain. In the case of 

separating a processor from the base domain and allocating it to an open domain (i.e., 

state transition (1) in FIGURE 6.6), it calls the cpu_down function (the API for a “CPU 

Hot Remove” processing) in order to request the processor to execute a “CPU Hotplug 

Remove” processing. Instead of making the processor wait for an interrupt, it saves the 

base domain context to the base domain context buffer corresponding to the processor. 
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In addition, it restores an open domain context to the processor in the platform_cpu_die 

function (the function that enters into a low power mode) called from the cpu_down 

function to the processor. In this way, our self-transition management enables 

processors which previously executed functions in the base domain to start to execute in 

domains. The key feature in our self-transition management is changing the value of the 

program counter saved in a base domain context to the program address which 

corresponds to the point at which waiting for an interrupt has been completed, i.e., the 

address that corresponds to the point just before “CPU Hot Add” processing 

commences. 

In the case of merging a processor from a domain back into the base domain (i.e., 

state transition (3) in FIGURE 6.6), the self-transition management requests the context 

manager to perform a domain context switch. The context manager orders the 

processor’s context handler to perform a domain context switch, providing the base 

domain context buffer to the context handler. The context handler then conducts a 

domain switch from the current domain to the base domain. Here, as mentioned earlier, 

since the value of the program counter is changed to the address directly preceding a 

“CPU Hot Add” processing, the processor executes the “CPU Hot Add” processing in 

the platform_cpu_die function. After that, it returns to an idle state in the base domain 

as if it had received a wake-up interrupt. In this way, the self-transition management 

enables processors which previously executed functions in domains to resume making 

executions in the base domain. 

 

6.3.2 UNIFIED VIRTUAL ADDRESS MAPPING 

For a state transition between domains, all registers in a processor have to be set 
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with the register values of a new domain context. Traditional embedded processors, 

including ARM MPCores [ARM 06], generally do not allow mode registers or control 

registers, such as a pointer register for use with a page table, to be simultaneously 

restored. Here, the domain switching code achieves state transitions between domains 

by setting all processor registers required for an OS (i.e., the OS context) to a processor. 

Thus, the code requires the execution of a consistent program flow even if the domain 

switching code executed in an OS before a state transition uses virtual addresses 

different from those in an OS after the state transition. In other words, unlike AMP 

software structures, it is difficult for the domain switching code to share with the same 

virtual addresses between OSs since a base domain and an open domain use different 

OSs, such as an SMP OS and an AMP OS. 

FIGURE 6.7 explains the issue with the domain switching code to achieve state 

transitions between domains. For example, in switching from Domain A to the base 

domain, the domain switching code changes the memory map of Domain A to that of 

the base domain by using a system instruction (e.g. the instruction at 0xC0001008). 

Because the virtual addresses to which the domain switching code of Domain A refers 

are not always pointing to those used for the domain switching code of the base domain, 

the domain switching code starts to execute an unexpected program flow after the code 

has changed the memory map. This, thus, results in unstable state transitions caused by 

losing control of the processors. 
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FIGURE 6.7: ISSUE ON DOMAIN TRANSITION 

 

In order to avoid this situation and achieve stable state transitions, we employed 

unified virtual address mapping, a technology for matching virtual addresses in the 

domain switching code shared between an OS used before a state transition and an OS 

used after that state transition. It simply enforces each processor to set the memory map 

of the domain switching code to a specific address. FIGURE 6.8 shows the mapping 

between physical addresses and virtual addresses in terms of both the SMP OS of the 

base domain and AMP OSs of open domains (i.e., Domains A and B). Unified virtual 

address mapping arranges common instructions and data used for the domain switching 

code in an area of the physical memory (e.g., 0x0e001000 for the common instructions 

in FIGURE 6.8 and 0x0f000000 for the common data) that is separate from areas of the 

physical memory used by the SMP OS and AMP OSs. Further, it assigns the common 

instructions and data to virtual addresses that are the same in both the SMP OS and the 
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AMP OSs (e.g., 0x0ffb0000 in FIGURE 6.8). In this way, unified virtual address 

mapping achieves stable operations. For example, the mapping enables a processor 

executing the domain switching code to fetch correct instructions or read correct data 

even after the setting of a pointer register to a page table. This is because the 

instructions and data used for the domain switching code are assigned to the same 

virtual addresses as those in both the OS used before a state transition and the OS used 

after that state transition. 
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FIGURE 6.8: ADDRESS MAP FOR UNIFIED VIRTUAL ADDRESS MAPPING 

 

In addition, unified virtual address mapping is designed to prevent extra virtual 

addresses from being newly allocated to OSs. The key feature in unified virtual address 

mapping is the utilization of unused virtual addresses within the virtual address ranges 

allocated to I/O devices, which is possible because the size of common instructions and 
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data is a small number of kilobytes. Thus, no extra virtual addresses are required for 

mapping the domain switching code. 

It should be noted that the only security risk of our secure dynamic partitioning is 

the transition to merge from a domain to the base domain. If a malicious domain should 

compromise the domain switching code, the malicious domain would be merged to the 

trusted base domain. However, as illustrated in Section 4.3 and Section 5.3.2, our bus 

management unit enables malicious domains to be prevented from modifying the code 

through data cache and from changing restored OS contexts.  

 

6.4 EVALUATION 
TABLE 6.1 summarizes our SMP evaluation environment, called MPCore [ARM 

06]. MPCore is an embedded symmetric multi-core processor which equips with four 

ARM processors. FIGURE 6.9 shows our evaluation board with an MPCore processor. 

 

TABLE 6.1: SMP EVALUATION ENVIRONMENT 
Item Feature 
SoC MPCore (MP11 CPU x 4) @ 130nm 

Cache I$: 32KB, D$: 32KB per MP11 CPU 
Clock frequency ARM: 240MHz, Bus: 35MHz 

OS Linux 2.6.7 / SMP OS x 1, AMP OS x 2 
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FIGURE 6.9: MPCORE AS SMP EVALUATION ENVIRONMENT 

 

FIGURE 6.10 outlines the evaluation implementation of our secure dynamic 

partitioning, which supports one SMP Linux OS (i.e., the base domain for base 

applications) and two AMP Linux OSs (i.e., two open domains) on an MPCore. Thus, it 

enables two processors to be flexibly allocated from the SMP OS to AMP OSs or to be 

de-allocated from AMP OSs to the SMP OS. Evaluations show that our secure dynamic 

partitioning actually worked on SMP (see Section 6.4.1). In addition, the dynamic 

partitioning achieved higher performance (see Section 6.4.2, and 6.4.3), faster state 

transition time (Section 6.4.4), and lower code size (see Section 6.4.5) than did other 

approaches.  
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FIGURE 6.10: EVALUATION IMPLEMENTATION OF DYNAMIC PARTITIONING  

 

6.4.1 SUCCESSFUL EXAMPLE FOR DYNAMIC PARTITIONING 

FIGURE 6.11 demonstrates a successful example of the application of our secure 

dynamic partitioning. In normal operation, a large-screen video application (i.e., a base 

application) which requires the full performance of four CPUs runs on the base domain. 

In response to a user request for the execution of an open application, a control 

application removes a CPU from the base domain, allocating the CPU to an open 

domain. Then, the video application on the base domain is scaled to a medium-screen 

one which requires only the performance of three CPUs. On the other hand, the open 

domain to which the CPU is allocated executes the requested open application. 
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FIGURE 6.11: SECURE DYNAMIC PARTITIONING ON MPCORE 

 

6.4.2 SCALABLE EXTENSION OF BASE APPLICATIONS 

In order to study that a base domain has the ability on dynamically changing its 

performance for the scalable extension of base applications, FIGURE 6.12 shows 

allocation of MultiProcessor Dhrystone MIPS (MP DMIPS) to the base domain and an 

open domain. We used MP DMIPS in order to check whether our approach correctly 

allocates a CPU to an open domain or de-allocates a CPU from the domain because the 

MP DMIPS is simply proportional to the number of CPUs contained in an OS. As a 

result, we have confirmed that state transition (1) shown in FIGURE 6.1 reduces total 

performance in the base domain by an amount corresponding to that of a single 

processor while the amount of reduced performance is gained in the open domain. 

Further, with state transition (3) in FIGURE 6.1, performance in the base domain is 

increased back to the previous level. 
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FIGURE 6.12: SCALABLE EXTENSION OF BASE APPLICATIONS 

 

6.4.3 VIRTUALIZATION PERFORMANCE ON BASE DOMAIN 

In order to examine that secure dynamic partitioning affects the performance of a 

base domain, FIGURE 6.13 and FIGURE 6.14 show the evaluation results for LMbench 

[Mcvoy 96] processes and context switching micro-benchmarks executed in a base 

domain. The evaluation conditions are the same as Section 5.5.2. As shown in the 

figures, the base domain achieves nearly the same performance as does the 

base-reference SMP Linux. This cannot be said for conventional virtualization software.  

 



CHAPTER 6: SECURE DYNAMIC PARTITIONING 

 

92

0

0.2

0.4

0.6

0.8

1

null 
call

null 
I/O

stat open 
close

sig
inst

sig
hndl

fork
proc

exec
proc

sh
proc

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Our approach Xen UML 1.4

 

FIGURE 6.13: PROCESS MICRO-BENCHMARKS ON BASE DOMAIN 
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FIGURE 6.14: CONTEXT SWITCHING MICRO-BENCHMARKS ON BASE DOMAIN 
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Two small anomalies seen here, signal handling in Xen and two processes of 16KB 

array size each with our approach, presumably occurred due to a fortuitous cache 

alignment [Barham 03]. It should be noted that we have confirmed that the performance 

of an open domain on this SMP achieved the same performance as did asymmetric 

virtualization on AMP. 

 

6.4.4 DOMAIN TRANSITION TIME 

TABLE 6.2 shows times required for the state transitions shown in FIGURE 6.1, 

compared with that of CPU Hotplug technology.  

 

TABLE 6.2: STATE TRANSITION TIME OF DYNAMIC PARTITIONING 
Time 

Item 
Proposed CPU Hotplug 

Separation from the base domain 2.5ms 1.5ms 
Switching to an open domain 0.5ms N/A 

Merge to the base domain 4.5ms 2.5ms 

 

Here, “separation from the base domain,” “switching to an open domain,” and 

“merge to the base domain” correspond, respectively to state transitions (1), (2) and (3) 

in FIGURE 6.1. The time required for state transitions is quite low (of a 

single-millisecond order). Further, the greatest time difference with CPU Hotplug 

technology is only 2.0ms. This small transition time of the order of a millisecond helps 

execute soft real-time applications, such as video applications, continuously, as shown 

in FIGURE 6.11. 
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6.4.5 LINES OF CODE FOR DYNAMIC PARTITIONING 

TABLE 6.3 demonstrates that our secure dynamic partitioning is implemented with 

a small binary code size (i.e., less than 40KB). The binary code size for common text 

(instructions) and data is also small, being implemented in only 9.2KB. The increases in 

binary code size of SMP Linux and AMP Linux are only 1.5% and 1.3%, respectively, 

over that for un-modified OSs. In terms of Lines of Code (LOC), the modified LOC 

values of SMP Linux and AMP Linux are 1549 LOC and 1145 LOC, respectively. This 

means that their modified LOC are almost the same as or less than the modified LOC of 

virtualization software without any functions for changing the number of processors 

within a domain (e.g., it is almost the same as the LOC of Xen and 4 times smaller than 

that of UML). 

 

TABLE 6.3: LINES OF CODE FOR DYNAMIC PARTITIONING 

Linux Text Data BSS 
Common

text 
Common 

data 
Total 

SMP +11.2 +1.6 +16.2 +38.2 
AMP +6.6 +1.1 +16.1 

+0.3 +8.9 
+32.9 

 

6.5 SUMMARY 
We have presented our secure dynamic partitioning, by which the number of 

processors allocated to individual OSs makes it possible to be dynamically changed on 

SMP. Its most important feature is dynamic processor allocation utilizing secure 

processor partitioning. In this way, secure dynamic partitioning achieves fast, flexible 

secure partitioning even on SMP. We have designed secure dynamic partitioning based 

on both ARM symmetric multi-core processors and Linux OSs. Moreover, our 
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evaluations have shown its effectiveness, demonstrating three fundamental features: a 

successful example on ARM MPCore, high performance, low state transition time, and 

small code size. 
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7.  
CHAPTER 7                         

CONCLUSION 
 
This dissertation has presented a bold new paradigm, known as open embedded systems. 

While traditional embedded systems provide only closed base applications to users, 

open embedded systems allow the users to use open applications as well as base 

applications. Platforms used for open embedded systems require the achievement of two 

major design objectives: the scalable extension of base applications and the secure 

execution of open applications. 

The primary contributions of this dissertation are the attainment of a multi-core 

processor platform for open embedded systems. Four innovative techniques feature our 

multi-core platform: (1) seamless communication, by which legacy base applications 

designed for a single-core processor make it possible to be executed over multiple 

processors without any software modifications; (2) secure processor partitioning, by 

which OSs are mutually protected on separate processors; (3) asymmetric virtualization, 

by which many OSs over the number of processors are securely executed under secure 

processor partitioning; and (4) secure dynamic partitioning as an extension of secure 

processor partitioning, by which the number of processors allocated to individual OSs 

makes it possible to be dynamically changed on SMP under secure processor 

partitioning.  
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Evaluations show the effectiveness of the four innovative techniques. Seamless 

communication achieves a successful example with actual mobile terminal software, 

high performance and small code size. Secure processor partitioning provides excellent 

hardware specifications and a high security level. Asymmetric virtualization achieves a 

successful example on three ARM processors, high performance and small code size. 

Secure dynamic partitioning demonstrates a successful example on an MPCore, high 

performance, low state transition time, and small code size. As a result, our multi-core 

processor platform is ideally suited to open embedded systems since our platform 

satisfies two important requirements for open embedded systems. 

In future work, we would proceed with the research in three technology directions: 

the enhancement of data security, the support of many-core processors, and the 

application to reliable embedded systems. First, the secure integration of data security 

techniques, such as XOM [Lie 00], AEGIS [Suh 05], TPM [TCG 06], and SENSS 

[Zhang 05], with our platform would be a big challenge since keys need to be perfectly 

protected from open applications. Second, in many-core processors [Vangal 08], our 

centralized bus management unit needs to be extended to distributed network 

management units since each processor is connected with an inter-connection network 

in a chip. Specifically, the consistent setting of distributed network management units 

would be a difficult challenge since many processors that belong to open domains need 

to be independently checked. Finally, the concept of this work would seem to be 

extensible to reliable embedded systems, such as automotive systems In automotive 

systems enhancing real-time responses, however, would be an important challenge since 

open applications interfere with base applications through the shared bus [Abe 07]. 
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