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Chapter 1

Introduction

This dissertation is concerned with mathematical analysis on motion of in-

homogeneous incompressible fluid-like bodies, which arises from a study of

continuum model for a flow of granular materials.

1.1 Background

1.1.1 Flows of granular materials

Granular materials can be found everywhere. For example, sand, powder,

grain and crop are quite familiar to us in our life. We can see enormously huge

amount of sand particles in deserts. We store the crops in silos, and mill them

for the better use as flour. We use powdery medicines and chemicals, too.

Thus granular materials indeed have the close relation to the lives of human

beings in the geographical, industrial, agricultural, pharmaceutical fields, etc.

The nomenclature of “granular materials” are collection of a lot of granules.

This concept implies the huge range of categories of materials. There are a lot

variety of problems caused by phenomena of granular materials, for example,

segregation, decomposition, fluidization, etc. Since each granular phenomenon

is quite complex to understand, a solution to such a problem is often considered

according to the situations. Thus, the universal theory for physics of granular
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materials has not been constructed so far.

In this study we are interested in the motion of granular materials. Of

course, we can not and do not intend to consider all kinds of such materials by

one model studied here. As the first step for observing the motion of them, we

restrict the conditions which are needed to discuss mathematically.

1.1.2 Theoretical Models

There have been many researchers who attempt to characterize interesting

granular phenomena. Since the particles of them have the visible-scale, at first

we would consider the n-particle system to determine the motion. If we can

precisely represent the interaction between the particles and also if we can solve

the system, it could be the best way to study the motion. But, unfortunately,

the n-particle system can not be solved mathematically in general by the work

of Poincaré. Furthermore, such n can be taken a huge number. For example,

the density of sugar is approximately 100g/cm3 and the particle size is 10−2cm.

Thus there are 1010 sugar particles in the 1kg bag. This indicates that numer-

ical analysis is still difficult to obtain good results for such n-body problems.

Thus we need the alternative procedure to characterize the motion of them.

In order to overcome such difficulties the kinetic theory and continuum me-

chanics have been applied to granular materials. It seems to be natural to use

the kinetic model because collision of particles could be the main factor for

motion like yellow dust. On the other hand, in the macro-scopic scale flows

of them can be modeled as non-linear continuum by the use of continuum ap-

proximation in the same way as in fluid-mechanics. In fact, when viewed from

far away, a flow of sands can be seen as if water flows. In such a case, the

appropriate constitutive equations for the stress are necessary to characterize

the motion of them. Not only this kind of observation, but also some scien-

tific evidence of fluidization of granular materials are also reported [32]. Thus

the continuum models for granular flows are worth investigating in physically

and even in mathematically. Certainly, the continuum approximation may be
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crude for the real granular motion, and it should be restricted for the flow

concerned with. Even though in this situation, it is still important to consider

the continuum model to make clear the mechanism of granular phenomena.

1.1.3 Transition of continuum models

The continuum models of granular materials were proposed by Goodman and

Cowin study in thier prominent works [9, 10]. There they took into account

the interstitial workings of the body. They used the conservation laws of mass,

linear momentum and energy, and they adopted the constitutive equations for

the stress T given by

T = T̄(ζ,∇ζ,D), (1.1.1)

where ζ denotes the volume fraction at each point and D the symmetric part of
the velocity gradient. Jenkins [16] and Savage [33] also considered this kind of

constitutive equations to explain the peculiar behaviour of them because the

normal stress difference occurs in their model. Of course, this model of the form

(1.1.1) has limited applicability to, for example, the dense slow but moderately

rapid flows of granular materials. However, it should be also emphasized that

the models from kinetic theoretic approaches are applicable only to very rapid

flows. Interestingly, the model (1.1.1) is similar to the one due to Korteweg

that describes the mechanism of capillarity [18], and the density plays the role

of volume fraction in this study. By requiring isotropic behaviour of the body,

the most general isotropic representation for the stress is given by (1.1.1) in

[23]. In 1990 Rajagopal and Massoudi [29] introduced a model as a subclass of

(1.1.1) given by

T = {β0(ζ) + β1(ζ)trM+ β2(ζ)trD}I+ β3(ζ)D+ β4(ζ)M, (1.1.2)

where

M = ∇ζ ⊗∇ζ, (1.1.3)
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trM =
P3

i=1Mii = |∇ζ|2, trD = divv and I the identity tensor. Furthermore,
Boyle and Massoudi [5] derived a model with precise structural coefficients in

(1.1.2) from the kinetic approach based on Enskog’s dense gas theory. We

should also remark that the stress depending on the density gradient was first

considered by Korteweg [18]. Thus, the materials whose stress is given by

the form (1.1.1) or (1.1.2) are called Korteweg type materials (see Hutter and

Rajagopal [13] for detail). The relation (1.1.2) has been used to study a variety

of problems (for example, [28, 43]), and its applicability to granular materials

was also explained [43].

1.2 A model of inhomogeneous incompressible

fluid-like bodies

1.2.1 Incompressible process

From a series of works of Rajagopal et al. (for example, [29, 43]) one can

conclude that a continuum model of a flow of granular materials (1.1.2) is

worth investigating. However, due to the complex structure of the stress, it

is quite difficult to proceed the qualitative analysis mathematically for this

model. Unfortunately, we have only a few mathematical works concerning

(1.1.2) so far; even for the shear flow down an inclined plane there has been no

complete result. The major difficulty might be the appearance of M, namely
the quadratic dependence on the density gradient in the stress. By substituting

the stress of the form (1.1.2) for the conservation law of linear momentum, the

quasi-linear partial differential equations whose principal terms include

divM = (∆ζI+H(ζ))∇ζ (1.2.1)

are deduced, where H(ζ) = ( ∂2ζ
∂xi∂xj

)i,j=1,2,3 is the Hessian matrix of ζ. Of

course, the term (1.2.1) may degenerate due to ∇ζ. Thus this degeneracy may
cause severe difficulties unlike the Navier—Stokes equations. The difficulties
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come from the substantial character of the form (1.1.2), and it is not generally

removable.

However, adding the limiting condition such as an incompressible con-

straint, we can make the problem somewhat easier. In this situation hyper-

bolicity caused by M can be weakened, and the effective linearized equations

can be also deduced. Thus we may analyse the non-linear problem by the

perturbation theory. Granular materials are substantially compressible due to

the interstices between particles. On the other hand, if the particles are very

fine so that the interlocking of the particles occurs, then they behave as if

they are incompressible bodies. Usually, the interlocking never lasts for a long

time when the body deforms, which is well-known as Reynold’s dilatancy [31].

Hence, incompressible constraint seems to be relatively crude approximation

of the real motion. But it can be applied to a slow and dense flow of granular

materials with moderate deformation.

Following the study of Málek and Rajagopal [21] we introduce the notion

of an incompressible body. We regard a material as incompressible when its

compressibility is insignificant and more importantly this compressibility has

insignificant consequences concerning the response of the body, namely the

work of a fluid in the interstices can be neglected. Even though the body under

consideration only undergoes the isochoric motion, the density distribution

can be inhomogenous. Consequently, it is natural that granular materials are

inhomogeneous incompressible fluid-like bodies (IIFB).

1.2.2 Constitutive equation for the Cauchy stress

Hereafter we concentrate our interest on the IIFB model. Following the pro-

cedure initiated in in Rajagopal [27], Rajagopal and Srinivasa [30], Málek and

Rajagopal [21] derived the following constitutive equation for the Cauchy stress

T = −pI+ 2νD(v)− %
µ
Ψ,z ⊗∇%−

1

3
(Ψ,z ·∇%)I

¶
. (1.2.2)
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Here, p = −1
3
trT is the mean normal stress (the pressure), % the density of the

body which plays the role of ζ in (1.1.2), D(v) = 1
2
(∇v+[∇v]T) the symmetric

part of the velocity gradient, ν = ν(p, %,D(v)) the viscosity, Ψ = Ψ(%,∇%) the
Helmholtz potential satisfying the symmetric condition

Ψ,z ⊗∇% = ∇%⊗Ψ,z, (1.2.3)

and Ψ,z(%, z) = ∇zΨ(%, z).
To derive the relation (1.2.2) they considered the body with the specific

Helmholtz potential depending on the density and the gradient of the density,

and took into accont the maximization of entropy production.

We should emphasize that if Ψ depends on |z|, the symmetric condition
(1.2.3) holds. Moreover, if

Ψ(%, z) = Ψ̄(%, |z|2), (1.2.4)

then Ψ satisfies (1.2.3), and

Ψ,z(%,∇%) = 2Ψ̄,z(%, |∇%|2)∇%,

where Ψ̄,z(%, z) =
∂Ψ̄
∂z
(%, z). In this case (1.2.2) becomes

T = −pI+ 2νD(v)− 2%Ψ̄,z(%, |∇%|2)
µ
M− trM

3
I
¶

(1.2.5)

withM = ∇%⊗∇%. Thus, the model (1.2.2) with (1.2.4) interestingly coincides
with the special form of the model (1.1.2) with the incompressible constraint.

From this point we infer that (1.2.2) (or (1.2.5)) is worth studying for incom-

pressible flows of granular materials.

This particular form of Helmholtz potential (1.2.4) is natural when one

takes into account the isotropic potential and the material objectivity [42].

The simplest form of the specific Helmholtz potential belonging to the sub-

class of (1.2.4) is

Ψ(%,∇%) = β∗(%) +
β

2%
|∇%|2 (1.2.6)
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with β∗ being a function of % and β a positive constant. For simplicity we

consider that the viscosity depends only on %, i.e., ν = ν(%). Consequently,

(1.2.5) becomes

T = −pI+ 2ν(%)D(v)− β

µ
M− trM

3
I
¶
. (1.2.7)

1.3 Initial-boundary value problem for IIFB

model

1.3.1 System of governing equations

Taking the form (1.2.7) in the continuum model of IIFB, we have the fol-

lowing system of partial differential equations for the velocity vector field

v = (v1, v2, v3)(X, t), the pressure p = p(X, t) and the density % = %(X, t)

in a bounded domain Ω (⊂ R3) for t > 0:⎧⎪⎪⎨⎪⎪⎩
D%

Dt
= 0, div v = 0 for X ∈ Ω, t > 0,

%
Dv

Dt
= divT+ %b for X ∈ Ω, t > 0.

(1.3.1)

Here D
Dt
= ∂

∂t
+ (v · ∇) is the material derivative, T the Cauchy stress tensor

given by (1.2.7), b = (b1, b2, b3)(X, t) the external body forces and (divT)i =P3
j=1

∂Tij
∂Xj
.

In this study we shall investigate the model equations (1.3.1) mathemati-

cally, viz. prove the existence of a solution of (1.3.1) with certain initial and

boundary conditions.

1.3.2 Initial and boundary conditions

We assign the initial conditions

(%,v)|t=0 = (%0,v0) for X ∈ Ω. (1.3.2)
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Concerning the boundary conditions, several types of them can be applied

to the motion of inhomogeneous incompressible fluid-like bodies in a fixed

container.

The simplest condition is the so-called adherence condition

v = 0 on Γ, (1.3.3)

where Γ is the boundary of Ω. It represents the situation that the bodies adhere

on the boundary.

The adherence condition is a standard condition for Newtonian fluids, how-

ever it seems to be less suitable for motion of granular materials. Not only for

granular materials and also for non-Newtonian fluids in a container like a pipe,

one should consider the slip phenomena on the wall of the container. One of

the reasonable conditions taking into account the slip effect is the generalized

Navier’s slip condition given by

v · n = 0, v +KΠTn = 0 on Γ. (1.3.4)

Here, n is the unit outward normal vector to Γ, Π the projection onto the

tangential plane given by Πf = f − (f · n)n and K = K(X, t)(≥ 0) the slip
rate. This condition means that the tangential velocity is in proportion to the

normal stress with the proportion coefficient K. In general K is likely to be a

function of the shear and the normal stresses, nevertheless we assume that it

is be predictable a priori for the sake of simplicity. The basic form of (1.3.4)

was first considered by Navier [26] at the dawn of fluid mechanics.

We should remark that when K ≡ 0, (1.3.4) obviously becomes (1.3.3).

Moreover, when K ≡ +∞, (1.3.4) becomes

v · n = 0, ΠTn = 0 on Γ,

which represents the perfect-slip case on the boundary. The general slip con-

dition (1.3.4) may formally connect the adherence to the perfect-slip cases

through K.

In this paper we shall consider the solvability of the initial-boundary value

problem (1.3.1)-(1.3.2)-(1.3.4).
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1.4 Reformulation in the Lagrangian coordi-

nate system

The problem formulated above is written in the Eulerian coordinates system

X. Now, we rewrite it in the Lagrangian coordinates system x. Let u(x, t)

and q(x, t) be the velocity vector field and pressure, respectively, expressed as

functions of the Lagrangian coordinates. The relationship between Lagrangian

and Eulerian coordinates is given by

X = x+

Z t

0

u(x, τ) dτ ≡ Xu(x, t), u(x, t) = v(Xu(x, t), t). (1.4.1)

From (1.3.1)1 it is easy to derive

∂%u
∂t
(x, t) = 0 (1.4.2)

for %u(x, t) := %(Xu(x, t), t). Integrating (1.4.2) over (0, t) yields

%u(x, t) = %u(x, 0) = %(Xu(x, 0), 0) = %(x, 0) = %0(x). (1.4.3)

This means that the density at each point in the Lagrangian coordinates does

not vary in time.

Moreover, we denote the Jacobian matrix of the transformation Xu by

A(x, t) = (aij(x, t))i,j=1,2,3 with elements aij(x, t) = δij +
R t
0
∂ui
∂xj
(x, τ) dτ and its

adjugate matrix by A = (Aij(x, t))i,j=1,2,3 = detA · A−1. Jacobian Ju(x, t) =
detA(x, t) satisfies the equality

∂Ju(x, t)

∂t
=

3X
i,j=1

∂aij
∂t
Aji =

3X
i,j=1

Aji
∂ui
∂xj

=

3X
i,j=1

Aji

3X
k=1

∂vi
∂Xk

(Xu(x, t), t)akj

= Ju(x, t)(divv)(Xu(x, t), t) = 0

according to (1.3.1)2. Since Ju(x, 0) = 1, we have Ju(x, t) ≡ 1. In general,

∇x{F (Xu(x, t), t)} = AT∇XF (X, t),
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so that

∇XF (X, t) = AT∇xFu(x, t) ≡ ∇uFu(x, t), Fu(x, t) := F (Xu(x, t), t),

since A−T = (A−1)T = AT.
In the same way as (1.4.3), we have u(x, 0) = v0(x). Thus the problem

(1.3.1)-(1.3.2)-(1.3.4) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
%0
∂u

∂t
= ∇u · Tu + %0bu, ∇u · u = 0 for x ∈ Ω, t > 0,

u|t=0= v0 for x ∈ Ω,

u · nu = 0, u+KuΠuTunu = 0 for x ∈ Γ, t > 0.

(1.4.4)

Here,

Tu = −q I+ 2ν(%0)Du(u)− β
³
∇u%0 ⊗∇u%0 −

1

3
|∇u%0|2 I

´
,

Du(w) =
1

2
(∇uw + [∇uw]T), bu(x, t) = b(Xu(x, t), t),

nu(x, t) = n(Xu(x, t)), Ku(x, t) = K(Xu(x, t), t), Πuf = f − (f · nu)nu,
ΠuTunu = 2ν(%0)ΠuDu(u)nu − βΠu(∇u%0 ⊗∇u%0)nu.

It should be noted the following fact. This transformation into the La-

grangian coordinate system has been used for free boundary problems in or-

der to transform them into the fixed domain problems (for example [39, 40]).

Though problem (1.3.1)-(1.3.2)-(1.3.4) is posed in the fixed domain from the

beginning, we apply this transformation to our problem.

The most important advantage is to hold (1.4.3). Even for equations (1.3.1)

we still meet the difficulties similar to (1.2.1). Nevertheless, they can be re-

moved by the use of (1.4.3) by virtue of the incompressible constraint and the

Lagrangian coordinates system.

On the other hand, applying the transformation may cause some disadvan-

tages. The functions and spatial derivatives in the equations are all transformed

into non-linear terms, for example, ∇u, bu, etc. Moreover, the boundary con-
ditions also become quasi-linear unlike the original problem. These terms seem

to cause another difficulties, however (1.4.4) is much easier to handle when we
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proceed the “time-local” analysis. For any mathematical works like the time-

global solvability or stability, we must need the existence of the time-local

solution to the problem as the first step.

The aim of this dissertation is to prove a theorem on time-local solvability

of problem (1.4.4) in Sobolev—Slobodetskĭı spaces.

The plan of the rest of this paper is as follows. First, in Chapter 2 time-local

existence of a unique solution of problem (1.4.4) with the adherence boundary

condition (K ≡ 0) is proved. Then, in Chapter 3 the general slip case (infK >

0) is considered.
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Chapter 2

Initial-boundary value problem

under the adherence condition

2.1 Introduction

In this chapter we consider the initial-boundary value problem whose boundary

condition is the so-called adherence condition. This means that the velocity

vector field vanishes at the boundary, thus the particles of the continuum are

fixed at the wall of its container. Certainly it is an ideal situation for the model

problem of the flow of granular matter, however it is worth while considering

the problem with the stress of new type as the first step.

Here we have the initial-boundary value problem (1.4.4) with K ≡ 0 as

follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
%0
∂u

∂t
= ∇u · Tu + %0bu, ∇u · u = 0 for x ∈ Ω, t > 0,

u|t=0= v0 for x ∈ Ω,

u = 0 for x ∈ Γ, t > 0.

(2.1.1)

The aim of this chapter is to prove a theorem on local in time solvability of

problem (2.1.1) in Sobolev—Slobodetskĭı spaces. The author refers the readers

to Apendix for the definition and the properties of Sobolev—Slobodetskĭı spaces.
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Furthermore, we consider the following linear problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
%0
∂u

∂t
= −∇q + ν1(x)∆u+ %0f , ∇ · u = g for x ∈ Ω, t > 0,

u|t=0= v0 for x ∈ Ω,

u = d for x ∈ Γ, t > 0,

(2.1.2)

where ν1(x) is a given positive function defined in Ω, f and g given functions

defined for x ∈ Ω, t > 0 and d a given function for x ∈ Γ, t > 0.

2.2 Mathematical Results

Let us describe the results in this chapter. First of all, we consider the problem

(2.1.2) in the spaces H
2+l,1+l/2
h (QT ) and H

l,l/2
h (QT ) for QT = Ω × (0, T ). The

following lemma will be proved in §2.3.

Lemma 2.2.1 Let Ω be a bounded domain in R3 with a boundary Γ ∈ W 3/2+l
2 ,

l ∈ (1/2, 1), QT = Ω× (0, T ) and GT = Γ× (0, T ), 0 < T < +∞. Suppose that
v0 ≡ 0, %0 ∈ W 2+l

2 (Ω), %0(x) ≥ R0 > 0, ν1 ∈ W 2+l
2 (Ω), inf ν1 > 0. For arbi-

trary f ∈ H l,l/2
h (QT ), g = ∇ ·G, G ∈ H2+l,1+l/2

h (QT ), d ∈ H3/2+l,3/4+l/2
h (GT ),

G|Γ = d on Γ, the problem (2.1.2) has a unique solution u ∈ H2+l,1+l/2
h (QT ),

∇q ∈ H l,l/2
h (QT ), provided that h is sufficiently large. And the solution satisfies

the following estimate

kuk
H
2+l,1+l/2
h (QT )

+ k∇qk
H
l,l/2
h (QT )

≤ c
³
kfk

H
l,l/2
h (QT )

+ kgk
H
1+l,1/2+l/2
h (QT )

+kGk
H
0,1/2+l/2
h (QT )

+ kdk
H
3/2+l,3/4+l/2
h (GT )

´
(2.2.1)

for some constant c independent of T .

This lemma is proved in the same way as that in [38]. First, we consider the

problem with constant coefficients in the half-space and in the whole-space.

Using those results, we prove Lemma 2.2.1 in a bounded domain. In the

case of the half-space and the whole-space, we give an explicit formula for the
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solution, and in a bounded domain we prove a priori estimates and establish

the solvability of the problem (2.1.2) by the construction of a regularizer. This

method was used in the theory of general parabolic initial-boundary value

problems [36].

Next, the problem (2.1.2) is considered in the spaces W
2+l,1+l/2
2 (QT ) and

W
l,l/2
2 (QT ).

Lemma 2.2.2 Let Ω, Γ, l, T , %0, ν1, be the same as in Lemma 2.2.1. For

arbitrary v0 ∈ W 1+l
2 (Ω), f ∈ W l,l/2

2 (QT ), g = ∇ ·G, G ∈ W 2+l,1+l/2
2 (QT ) and

d ∈ W 3/2+l,3/4+l/2
2 (GT ) satisfying the compatibility conditions

∇ · v0 = g( · , 0) in Ω, v0 = d( ·, 0) on Γ, G|Γ = d on Γ,

problem (2.1.2) has a unique solution (u,∇q) in W 2+l,1+l/2
2 (QT ) ×W l,l/2

2 (QT )

and

kuk(2+l,1+l/2)QT
+ k∇qk(l,l/2)QT

≤ c(T )
³
kfk(l,l/2)QT

+ kv0kW 1+l
2 (Ω)

+kgk
W

1+l,1/2+l/2
2 (QT )

+ kGk(0,1+l/2)QT
+ kdk

W
3/2+l,3/4+l/2
2 (GT )

´
,

(2.2.2)

where c(T ) is a non-decreasing function of T .

Finally, we consider the problem (2.1.1), and the following theorem on

temporally local solvability is proved in § 2.5.

Theorem 2.2.1 Let Ω be a bounded domain with a boundary Γ ∈ W 3/2+l,

l ∈ (1/2, 1), %0 ∈ W 2+l
2 (Ω), %0(x) ≥ R0 > 0, ν ∈ C2(R+), ν > 0. Assume

that b has continuous derivatives up to order two and that b, ∇Xb satisfy the
Lipschitz condition in X and the Hölder condition with the exponent 1/2 in t,

and that v0 ∈ W 1+l
2 (Ω) satisfies the compatibility conditions

∇ · v0 = 0 in Ω, v0 = 0 on Γ.

Then the problem (2.1.1) has a unique solution (u,∇q) ∈ W 2+l,1+l/2
2 (QT 0 ) ×

W
l,l/2
2 (QT 0 ) on a finite interval (0, T

0
) whose magnitude T

0
depends on the

data, i.e., on the norms of b, v0 and %0 (see the condition (2.5.7) below).
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2.3 Proofs of Lemmata 2.2.1 and 2.2.2

2.3.1 Problem in the half-space

First of all, in order to discuss the problem (2.1.2) in the space H
l,l/2
h (QT ), let

%0 ≡ 1 and ν1 ≡ const > 0, and we consider the initial-boundary value problem
for the homogeneous Stokes system in the half-space D+∞ ≡ R3+ × (0,∞),
(x3 > 0, t > 0):

⎧⎪⎨⎪⎩
∂u

∂t
− ν1∆u+∇q = 0, ∇ · u = 0 in D+∞,

u|t=0= 0 on R3+, u|x3=0= (d1, d2, 0) on D∞ ≡ R2 × (0,∞).
(2.3.1)

Extend u = (u1, u2, u3), q, d
0 = (d1, d2) to the half-space t < 0 by zero and

make the Fourier transformation with respect to x0 = (x1, x2) and the Laplace

transformation with respect to t:

f̂(ξ0, x3, s) =

Z ∞
0

e−stdt

Z
R2
e−ix

0·ξ0f(x0, x3, t)dx
0.

Then we have the following system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1

µ
r2 − d2

dx23

¶
ûj + iξj q̂ = 0 (j = 1, 2),

ν1

µ
r2 − d2

dx23

¶
û3 +

dq̂

dx3
= 0,

iξ1û1 + iξ2û2 +
dû3
dx3

= 0,

û|x3=0= (d̂1, d̂2, 0), (û, q̂) −→ 0 (x3 → +∞),

(2.3.2)

where

r2 =
s

ν1
+ |ξ0|2, |ξ0|2 = ξ21 + ξ22 , arg r ∈

³
−π
4
,
π

4

´
.
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This problem is easily solved by the same way as in [38] as the second order

ordinary differential equation for ûj explicitly, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûj =
−iξje1(x3)

|ξ0|
2X
k=1

iξkd̂k + d̂je0(x3) (j = 1, 2),

û3 = e1(x3)

2X
k=1

iξkd̂k,

q̂ =
−ν1(r + |ξ0|)e2(x3)

|ξ0|
2X
k=1

iξkd̂k,

(2.3.3)

where

e0(x3) = e
−rx3 , e1(x3) =

e−rx3 − e−|ξ0|x3
r − |ξ0| , e2(x3) = e

−|ξ0|x3.

In estimating the solution, it is convinient to use the new norms k · k2γ,h,D∞ and
k · k2γ,h,D+∞ for γ≥0 (see Appendix A.2). They are equivalent to the norms in
H

γ,γ/2
h (D∞) and H

γ,γ/2
h (D+∞), respectively.

According to [38], for the functions ej(x3), j = 0, 1, we have

Lemma 2.3.1 Let s = h + iξ0, h > 0, j = 0, 1, 2, . . ., and α ∈ (0, 1). Then
there exists a positve constant c independent of r and |ξ0| such that

(i)

Z ∞
0

¯̄̄ µ d

dx3

¶j
e0(x3)

¯̄̄2
dx3 ≤ c|r|2j−1,

(ii)

Z ∞
0

Z ∞
0

¯̄̄ µ d

dx3

¶j
e0(x3 + z)−

µ
d

dx3

¶j
e0(x3)

¯̄̄2dx3dz
z1+2α

≤ c|r|2(j+α)−1,

(iii)

Z ∞
0

¯̄̄ µ d

dx3

¶j
e1(x3)

¯̄̄2
dx3 ≤ c

|r|2j−1 + |ξ0|2j−1
|r|2 ,

(iv)

Z ∞
0

Z ∞
0

¯̄̄ µ d

dx3

¶j
e1(x3 + z)−

µ
d

dx3

¶j
e1(x3)

¯̄̄2dx3dz
z1+2α

≤ c |r|
2(j+α)−1 + |ξ0|2(j+α)−1

|r|2 ,
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for all ξ0 ∈ R2.

Therefore, from (2.3.3) and Lemma 2.3.1 it follows that

Lemma 2.3.2 Let h > 0 and l ∈ (1/2, 1). Then the solution (u, q) of the
problem (2.3.1) satisfies the estimate

kuk22+l,h,D+∞ + k∇qk2l,h,D+∞ ≤ c kd0k23/2+l,h,D∞ , (2.3.4)

where c is a constant independent of h.

2.3.2 Non-homogeneous Stokes system in the half-space

and in the whole space

In this subsection we shall generalize Lemma 2.3.2 to that for the Stokes system

with the non-homogeneous terms:⎧⎪⎨⎪⎩
∂u

∂t
− ν1∆u+∇q = f , ∇ · u = g in D+T ,

u|t=0= 0 on R3+, u|x3=0= d = (d1, d2, d3) on DT ,

(2.3.5)

where D+T ≡ R3+ × (0, T ) and DT ≡ R2 × (0, T ). We prove

Lemma 2.3.3 Let h, l, ν, d1, d2 be as in Lemma 2.3.2 (D∞ should be replaced

by DT ). Suppose that f ∈ H l,l/2
h (D+T ), g ∈ H1+l,1/2+l/2

h (D+T ), g = ∇ · G
with G = (G1, G2, G3), G ∈ H0,1+l/2

h (D+T ), d3 ∈ H3/2+l,3/4+l/2
h (DT ) and the

condition G3|x3=0 = d3 is satisfied. Then there exists a unique solution (u,∇q)
of (2.3.5) such that u ∈ H

2+l,1+l/2
h (D+T ), ∇q ∈ H

l,l/2
h (D+T ) satisfying the

estimate

kuk
H
2+l,1+l/2
h (D+T )

+ k∇qk
H
l,l/2
h (D+T )

≤ c
³
kfk

H
l,l/2
h (D+T )

+ kgk
H
1+l,1/2+l/2
h (D+T )

+kGk
H
0,1+l/2
h (D+T )

+ kdk
H
3/2+l,3/4+l/2
h (DT )

´
. (2.3.6)
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Proof. We can assume T = ∞ after an appropriate extension of (f , g,G,d).

We seek a solution of (2.3.5) in the form

(u, q) = (w(1) +∇φ+w(2), π − φt + ν1g
0). (2.3.7)

Here w(1) is a solution of the Dirichlet problem for the heat equation:⎧⎪⎨⎪⎩
∂w(1)

∂t
− ν1∆w

(1) = f in D+∞,

w(1)|t=0= 0 on R3+, w(1)|x3=0= 0 on D∞.

(2.3.8)

Next, φ is a solution of the Neumann problem:

∆φ = g −∇ ·w(1) ≡ g0 in R3+,
∂φ

∂x3

¯̄̄
x3=0

= d3 on R2. (2.3.9)

Then (w(2), π) is a solution of the problem similar to (2.3.1):⎧⎪⎨⎪⎩
∂w(2)

∂t
− ν1∆w

(2) +∇π = 0, ∇ ·w(2) = 0 in D+∞,

w(2)|t=0= 0 on R3+, w(2)|x3=0= (ed1, ed2, 0) on D∞,

(2.3.10)

where edj = dj − ∂φ
∂xj
|x3=0 (j = 1, 2). It is well known that a solution of (2.3.8)

satisfies the estimate

kw(1)k
H
2+l,1+l/2
h (D+∞)

≤ ckfk
H
l,l/2
h (D+∞)

. (2.3.11)

Next, from the classical result of the Neumann problem [1], we have the

following estimate of the solution to (2.3.9):

k∇φkẆ 2+l
2 (R3+)

≤ c
³
kgkẆ 1+l

2 (R3+)
+ kw(1)kẆ 2+l

2 (R3+)
+ kd3kẆ 3/2+l

2 (R2)

´
. (2.3.12)

In order to estimate k∇φk
H
0,1+l/2
h (D+∞)

, we express the solution of (2.3.9) by

virtue of the Neumann function N (see [41]) as

φ =

Z
R3+
N(x, y)g0(y, t)dy +

Z
R2
N(x, y0)d3(y

0, t)dy0

= −
Z
R3+
∇yN(x, y) · (G−w(1))dy.
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Calderón-Zygmund theorem implies the estimate

k∇φk
H
0,1+l/2
h (D+∞)

≤ c
³
kGk

H
0,1+l/2
h (D+∞)

+ kw(1)k
H
0,1+l/2
h (D+∞)

´
. (2.3.13)

Finally, applying Lemma 2.3.2 to (w(2),π), one can obtain

kw(2)k
H
2+l,1+l/2
h (D+∞)

+ k∇πk
H
l,l/2
h (D+∞)

≤ c
2X
j=1

kedjkH3/2+l,3/4+l/2
h (D∞)

≤ c
Ã

2X
j=1

kdjkH3/2+l,3/4+l/2
h (D∞)

+ k∇φk
H
2+l,1+l/2
h (D+∞)

!
.

(2.3.14)

Combining (2.3.11)-(2.3.14), one can obtain the estimate (2.3.6).

Uniqueness of the solution follows from the standard energy method. In-

deed, let (u0, q0) and (u00, q00) be solutions of (2.3.5), then (u, q) := (u0−u00, q0−
q00) satisfies the same equations as (2.3.5) with f = 0, g = 0, d = 0, viz., (2.3.1)

with d0 = 0. Then, Lemma 2.3.2 leads to (u,∇q) = (0, 0). Consequently, the
solution of (2.3.5) is unique and given by (2.3.7).

We can prove a similar result for the Cauchy problem.

Lemma 2.3.4 Let h, l, ν1 be as in Lemma 2.3.2 (D∞ should be replaced by

DT ) and R3T ≡ R3 × (0, T ). Suppose that f ∈ H l,l/2
h (R3T ), g ∈ H1+l,1/2+l/2

h (R3T ),
g = ∇ ·G, G ∈ H0,1+l/2

h (R3T ). Then the Cauchy problem

∂u

∂t
− ν1∆u+∇q = f , ∇ · u = g in R3T , u|t=0= 0 on R3

has a unique solution (u,∇q) ∈ H2+l,1+l/2
h (R3T )×H l,l/2

h (R3T ), which satisfies the
estimate

kuk
H
2+l,1+l/2
h (R3T )

+ k∇qk
H
l,l/2
h (R3T )

≤ c
³
kfk

H
l,l/2
h (R3T )

+ kgk
H
1+l,1/2+l/2
h (R3T )

+ kGk
H
0,1+l/2
h (R3T )

´
. (2.3.15)
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2.3.3 Proof of Lemma 2.2.1

Proof of Lemma 2.2.1. Here, according to [40], we present some preliminaries.

Because of the condition of Ω and Γ, in the neighbourhood of an arbitrary

point ξ ∈ Γ, the surface Γ is determined by the equation

y3 = ϕ(y0), y0 = (y1, y2) ∈ Kd

in Cartesian coordinates system (y1, y2, y3) with the origin at ξ and with y3-

axis directed along −n(ξ), n being the outward normal to Γ. The function
ϕ is defined in a disc Kd : |y0| < d, and it satisfies the condition ϕ(0) = 0,

∇0ϕ(0) = 0 (∇0 is the gradient with respect to y0) and kϕkW 3/2+l(Kd) ≤ M .
The constants d and M are indepenent of ξ.

It can be assumed that ϕ is extended into R3+ (see [38, 40]), belongs to
W 2+l
2 (R3+), and satisfies ϕ(0) = 0, ∇ϕ(0) = 0,

sup
|y|≤λ

|ϕ(y)| ≤ cMλ, sup
|y|≤λ

|∇ϕ(y)| ≤ cMλ1/2. (2.3.16)

The transformation y = Y (z) :

y1 = z1, y2 = z2, y3 = z3 + ϕ(z) (2.3.17)

is invertible if |ϕz3| < 1 and maps R3+ onto the domain {y3 > ϕ(y0)}.
The solvability of (2.1.2) will be proved by the regularizerR (see for instance

[36]), which is a linear continuous operator from the data F = (f , g,d) ∈
Hh,l ≡ H l,l/2

h (QT ) × H1+l,1/2+l/2
h (QT ) × H3/2+l,3/4+l/2

h (GT ) to the solution (ω,

∇π) ∈ H2+l,1+l/2
h (QT )×H l,l/2

h (QT ) of⎧⎪⎨⎪⎩
∂ω

∂t
− ν1(x)

%0(x)
∆ω +

1

%0(x)
∇π = f +M1F, ∇ · ω = g +M2F in QT ,

ω|t=0= 0 in Ω, ω|Γ= d+M3F on GT ,

(2.3.18)

where MF = (M1F,M2F,M3F) is a contraction operator on Hh,l for suf-

ficiently large h. The solution of (2.1.2) can be expressed in terms of the

regularizer as (w, q) = R(I +M)−1(f , g,d).
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In order to establish the existence of a solution of (2.1.2), let {Ω(k)} and
{ω(k)} be the coverings of Ω̄ for an arbitrary small number λ, as follows:

Ω(k) = {|x− ξ(k)| ≤ βkλ}, ω(k) = {|x− ξ(k)| ≤ βkλ

2
}.

It is convenient to assume that ξ(k) ∈ Γ, βk = 2 for k = 1, 2, . . . ,Mλ, and

ξ(k) ∈ Ω, dist(ξ(k),Γ) ≥ 5λ
4
, βk = 1 for k = Mλ + 1,Mλ + 2, . . . , Nλ. Now we

take two families of smooth functions {ζ(k)(x)} and {η(k)(x)} associated with
the coverings {Ω(k)} and {ω(k)} satisfying ζ(k)(x) = 1 for x ∈ ω(k), ζ(k)(x) = 0
for x /∈ Ω(k), 0 ≤ ζ(k)(x) ≤ 1, |Dα

xζ
(k)(x)| ≤ cλ−|α|, η(k)(x) = ζ(k)(x)P

j(ζ
(j)(x))2

. Ob-

viously, {η(k)(x)} is a family of smooth functions satisfying η(k)(x) = 0 for

x /∈ Ω(k), Pk η
(k)(x)ζ(k)(x) = 1 and |Dα

xη
(k)(x)| ≤ cλ−|α|, where c is indepen-

dent of λ and k.

We define (w̄, π̄) = RF by the formula

(w̄, π̄)(x, t) =

NλX
k=1

η(k)(x)(w̄(k), π̄(k))(x, t),

where (w̄(k), π̄(k)) (k = 1, 2, . . . , Nλ) are given in the following way.

For k = 1, 2, . . . ,Mλ, let {y} be local Cartesian coordinates in the neigh-
bourhood of the point ξ(k) : y = Ck(x − ξ(k)) with Ck being an orthogonal
matrix satisfying Ckn(ξ(k)) = (0, 0,−1)T, ϕ(k)(y0) be the function defining Γ
in the neighbourhood of ξ(k) and let Yk be the corresponding transformation

(2.3.17). The transformation z = Zk(x) = Y
−1
k Ck(x − ξ(k)) maps the domain

Ω(k) ∩ Ω into the half space R3+,k = {z ∈ R3 |z3 > 0} and its Jacobian matrix
is the identity I at ξ(k). Set

f (k)(z, t) = ζ(k)(Z−1k (z))Ckf(Z−1k (z), t),
G(k)(z, t) = ζ(k)(Z−1k (z))CkG(Z−1k (z), t),
d(k)(z, t) = ζ(k)(Z−1k (z))Ckd(Z−1k (z), t),

and extend them to the domain R3+,k \ Z−1k (Ω(k) ∩ Ω) by 0, which are denoted
by the same symbols again.
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Now let (w(k), π(k))(z, t), k = 1, 2, . . . ,Mλ, be a solution of the half-space

problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂w(k)

∂t
(z, t)− ν1(ξ

(k))

%0(ξ(k))
∆zw

(k)(z, t) +
∇zπ(k)(z, t)
%0(ξ(k))

= f (k)(z, t) in D
(k)
+T ,

∇z ·w(k)(z, t) = ∇z ·G(k)(z, t) in D
(k)
+T ,

w(k)(z, t)|t=0= 0 in R3+,k, w(k)(z, t)|z3=0= d
(k)(z, t) on D

(k)
T ,

(2.3.19)

where D
(k)
+T ≡ R3+,k × (0, T ) and D

(k)
T ≡ ∂R3+,k × (0, T ). According to (2.3.6),

we have

kw(k)k
H
2+l,1+l/2
h (D

(k)
+T )
+ k∇π(k)k

H
l,l/2
h (D

(k)
+T )
≤ c

³
kf (k)k

H
l,l/2
h (D

(k)
+T )

+k∇ ·G(k)k
H
1+l,1/2+l/2
h (D

(k)
+T )
+ kG(k)k

H
0,1+l/2
h (D

(k)
+T )
+ kd(k)k

H
3/2+l,3/4+l/2
h (D

(k)
T )

´
.

(2.3.20)

Then we define for k = 1, 2, . . . ,Mλ

w̄(k)(x, t) = C−1k w(k)(Zk(x), t), π̄(k)(x, t) = π(k)(Zk(x), t). (2.3.21)

Next, (w(k), π(k))(x, t), k = Mλ + 1,Mλ + 2, . . . , Nλ, is a solution of the

Cauchy problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂w(k)

∂t
(x, t)− ν1(ξ

(k))

%0(ξ(k))
∆w(k)(x, t) +

1

%0(ξ(k))
∇π(k)(x, t) = ζ(k)f(x, t),

∇ ·w(k)(x, t) = ∇ · (ζ(k)G)(x, t),

w(k)(x, t)|t=0= 0.
(2.3.22)

Then we define

w̄(k)(x, t) = w(k)(x, t), π̄(k)(x, t) = π(k)(x, t) (2.3.23)

for k =Mλ + 1,Mλ + 2, . . . , Nλ.
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Finally, we restrict π̄(k) byZ
Ω(k)∩Ω

π̄(k)(x, t)dx = 0. (2.3.24)

For such π̄(k) we have

kπ̄(k)k
L2(Q

(k)
T )
≤ cλk∇π̄(k)k

L2(Q
(k)
T )
≤ cλk∇π(k)k

L2(D
(k)
+T )
, (2.3.25)

where Q
(k)
T = (Ω(k)∩Ω)× (0, T ). Consequently, η(k)π̄(k) is uniquely determined

in QT , and R is well-defined.

Clearly, R is a linear operator on Hh,l. To calculate the norm ofMF, we

rewrite the problem (2.3.19) in coordinates {x} in the neighbourhood Ω(k) ∩Ω
of ξ(k). Then,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂w̄(k)

∂t
(x, t)− ν1(ξ

(k))

%0(ξ(k))
∆̄(k)w̄(k)(x, t) +

1

%0(ξ(k))
∇̄(k)π̄(k)(x, t) = ζ(k)f(x, t),

∇̄(k) · w̄(k)(x, t) = ∇̄(k) · (ζ(k)G(x, t)) in Q
(k)
T ,

w̄(k)|t=0= 0 in Ω(k) ∩ Ω, w̄(k) = ζ(k)d(x, t) on G
(k)
T ,

(2.3.26)

where Q
(k)
T = (Ω(k) ∩Ω)× (0, T ), G(k)T = (Ω(k) ∩ Γ)× (0, T ), ∇̄(k) = C−1k Z−Tk ∇,

∆̄(k) = ∇̄(k) · ∇̄(k), and Zk is the Jacobian matrix of the transformation Zk.
Thus one can obtain

M1F =

NλX
k=Mλ+1

η(k)
µ
ν1(ξ

(k))

%0(ξ(k))
− ν1(x)

%0(x)

¶
∆w̄(k)

+

MλX
k=1

η(k)
µ
ν1(ξ

(k))

%0(ξ(k))
∆̄(k)w̄(k) − ν1(x)

%0(x)
∆w̄(k)

¶

+

NλX
k=1

ν1(x)

%0(x)

¡
η(k)∆w̄(k) −∆(η(k)w̄(k))

¢
−

NλX
k=Mλ+1

η(k)
µ

1

%0(ξ(k))
− 1

%0(x)

¶
∇π̄(k)

−
MλX
k=1

η(k)
µ

1

%0(ξ(k))
∇̄(k)π̄(k) − 1

%0(x)
∇π̄(k)

¶

28



−
NλX
k=1

1

%0(x)

¡
η(k)∇π̄(k) −∇(η(k)π̄(k))

¢
, (2.3.27)

M2F = −
MλX
k=1

©
η(k)∇ · w̄(k) −∇ · (η(k)w̄(k))

ª
−

NλX
k=Mλ+1

©
η(k)∇̄(k) · w̄(k) −∇ · (η(k)w̄(k))

ª
, (2.3.28)

M3F = 0.

In the same scheme as [40, 41], we can show that

kMFkHh,l
≤ (cλβ + c0(λ)h−1/2)kFkHh,l

(2.3.29)

with c independent of λ. Hence, for small λ and large h, M is a contraction

operator, so that the solvability of (2.1.2) is proved.

Furthermore, from the same way as that of (2.3.29) (see [40, 41]), it holds

that

kwk
H
2+l,1+l/2
h (QT )

+ k∇qk
H
l,l/2
h (QT )

≤ ckFkHh,l
. (2.3.30)

Thus the estimate (2.2.1) follows from (2.3.30).

2.3.4 Proof of Lemma 2.2.2

Proof of Lemma 2.2.2. The trace theorem implies that there exists the vector

field u∗ ∈ W 2+l,1+l/2
2 (QT ) satisfying the initial condition u

∗|t=0= v0 and the

inequality

ku∗k
W

2+l,1+l/2
2 (QT )

≤ ckv0kW 1+l
2 (Ω). (2.3.31)

For the difference U = u − u∗ we get the problem (2.1.2) with homogeneous

initial condition, i.e.,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂U

∂t
− ν1(y)

%0(y)
∆U+

1

%0(y)
∇q = f − ∂u∗

∂t
+
ν1(y)

%0(y)
∆u∗ =: f∗,

∇ ·U = ∇ ·G−∇ · u∗ =: ∇ ·G∗ =: g∗

U|t=0= 0, U|Γ= d− u∗|Γ= d∗,

(2.3.32)
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and the compatibility conditions reduce to

g∗( · , 0) = 0, d∗( ·, 0) = 0, G∗|Γ = d∗.

Hence from the conditions above, we have f∗ ∈ H l,l/2
h (QT ), g

∗ ∈H1+l,1/2+l/2
h (QT ),

G∗ ∈ H2+l,1+l/2
h (QT ), d

∗ ∈ H3/2+l,3/4+l/2
h (GT ). By applying Lemma 2.2.1 to

(2.3.32) and taking into account (2.3.31) and Remark A.2.1, the assertion of

Lemma 2.2.2 immediately follows.

2.4 Auxiliary estimates

Before proving Theorem 2.2.1, we begin with auxiliary propositions.

In this section we assume that u ∈ W 2+l,1+l/2
2 (QT ) satisfies

T 1/2kuk(2+l,1+l/2)QT
≤ δ (2.4.1)

with sufficiently small δ > 0.

The problem (2.1.1) is rewritten in the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

%0
∂u

∂t
− ν(%0)∆u+∇q = l(u)1 (u, q) + 2ν 0(%0)Du(u)∇u%0

−β
3
(∇(j)u ∇(i)u %0)∇u%0 − β∆u%0∇u%0 + %0bu,

∇ · u = l(u)2 (u), u|t=0= v0, u|Γ= 0,

(2.4.2)

where (∇(j)u ∇(i)u %0) is a 3×3 matrix whose (i, j) element is given by ∇(j)u ∇(i)u %0,

l
(u)
1 (w, s) = ν(%0)(∆u −∆)w − (∇u −∇)s,

l
(u)
2 (w) = (∇−∇u) ·w = ∇ · L(u)(w).

(2.4.3)

Hereafter we estimate the right-hand side of (2.4.2), which is neccesary to

prove the solvability of the problem (2.1.1). Let us introduce the following

notation:

aij = δij + bij, bij =

Z t

0

∂ui
∂xj

dτ, Aij = δij + Bij,
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where A = (Aij) (see p. 14). For i 6= j, j 6= k, k 6= i from

Aii = ajjakk − ajkakj, Aij = akiajk − ajiakk

it follows that

Bii = bjj + bkk + bjjbkk − bjkbkj, Bij = −bji + bkibjk − bjibkk. (2.4.4)

Consequently, we have

l
(u)
2 (w) = −(BT∇) ·w = −

3X
i,j=1

Bji
∂wi
∂xj

= −∇ · (Bw),

since
P3

j=1
∂Bji
∂xj

= 0 for i = 1, 2, 3. This yields that

L(u)(w) = −Bw. (2.4.5)

We denote by a0ij, b
0
ij, A

0
ij, B

0
ij the same functions corresponding to another

vector field u0(x, t), and set b̃ij = bij − b0ij, eBij = Bij − B0ij, etc. We have
eBii = b̃jj(1 + bkk) + b̃kk(1 + b0jj)− bkj b̃jk − b0jkb̃kj,
eBij = −b̃ji(1 + bkk)− b̃kkb0ji + b̃jkbki + b0jkb̃ki. (2.4.6)

Finally, set

Du =

½
∂ui
∂xj

¾
i,j=1,2,3

, D2u =

½
∂2ui

∂xj∂xk

¾
i,j,k=1,2,3

, |Du|Ω = max
i,j
sup
x∈Ω

¯̄̄̄
∂ui
∂xj

¯̄̄̄
,

|D2u|Ω = max
i,j,k

sup
x∈Ω

¯̄̄̄
∂2ui

∂xj∂xk

¯̄̄̄
, kDukW r

2 (Ω)
=

Ã
3X
j=1

°°°° ∂u∂xj
°°°°2
W r
2 (Ω)

!1/2
, etc.

We proceed to estimates of the functions (2.4.4) and (2.4.6). All lemmata

stated below were proved mainly in [39].

Lemma 2.4.1 If u, u0 ∈ W 2+l,1+l/2
2 (QT ), then

| eBij(x, t)| ≤ 2 Z t

0

|D(u− u0)|dτ
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×
µ
1 +

Z t

0

|Du|Ωdτ +
Z t

0

|Du0|Ωdτ
¶
, (2.4.7)

k eBij(·, t)kW 1+l
2 (Ω) ≤ c

Z t

0

kD(u− u0)kW 1+l
2 (Ω)dτ

×
µ
1 +

Z t

0

kDukW 1+l
2 (Ω)dτ

Z t

0

kDu0kW 1+l
2 (Ω)dτ

¶
, (2.4.8)

k eBij(·, t)− eBij(·, t− τ)kLq(Ω)

≤ 2
Z t

t−τ
kD(u− u0)kLq(Ω)dτ 0

µ
1 +

Z t

0

|Du|Ωdτ 0 +
Z t

0

|Du0|Ωdτ 0
¶

+2

Z t

0

|D(u− u0)|Ωdτ 0
Z t

t−τ
(kDukLq(Ω) + kDu0kLq(Ω))dτ 0, (2.4.9)

k∇ eBij(·, t)−∇ eBij(·, t− τ)kL2(Ω)

≤ 2
Z t

t−τ
kD2(u− u0)kL2(Ω)dτ 0

µ
1 +

Z t

0

|Du|Ωdτ 0 +
Z t

0

|Du0|Ωdτ 0
¶

+2

Z t

0

kD2(u− u0)kL3(Ω)dτ 0
Z t

t−τ
(kDukL6(Ω) + kDu0kL6(Ω))dτ 0

+2

Z t

t−τ
kD(u− u0)kL6(Ω)dτ 0

Z t

0

(kD2ukL3(Ω) + kD2u0kL3(Ω))dτ 0

+2

Z t

0

|D(u− u0)|Ωdτ 0
Z t

t−τ
(kD2ukL2(Ω) + kD2u0kL2(Ω))dτ 0, (2.4.10)

where τ ∈ (0, t). Such estimates (with u0 = 0 on the right hand side) also hold
for the functions Bij.

Inequalities (2.4.7)—(2.4.10) can be obtained directly from formulae (2.4.6).

In the proof of (2.4.10) we used the Hölder inequality

kfgkL2(Ω) ≤ kfkL3(Ω)kgkL6(Ω).
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We note that

Z t

0

kDukW 1+l
2 (Ω)dτ ≤

√
t kukW 2+l,0

2 (QT )
≤ δ, (2.4.11)

Z t

0

kDu0kW 1+l
2 (Ω)dτ ≤

√
t ku0kW 2+l,0

2 (QT )
≤ δ, (2.4.12)

Z t

0

kDukW l
2(Ω)

dτ

(t− τ)1/2
≤ t

1/2−l/2
√
1− l

µZ t

0

kDukW l
2(Ω)
dτ

¶1/2

≤ T 1/2√
1− lkuk

(2+l,1+l/2)
QT

≤ δ√
1− l (2.4.13)

hold.

Lemma 2.4.2 If u, u0 ∈ W 2+l,1+l/2
2 (QT ) satisfy condition (2.4.1), then for

t ≤ T

k eBijkW 1+l
2 (Ω) ≤ c

Z t

0

kD(u− u0)kW 1+l
2 (Ω)dτ, (2.4.14)

µZ t

0

k eBij(·, t)− eBij(·, t− τ)k2W l
2(Ω)

dτ

τ 1+l

¶1/2

≤ c
ÃZ t

0

kD(u− u0)kW 1+l
2 (Ω)dτ +

Z t

0

kD(u− u0)kW l
2(Ω)

(t− τ)l/2
dτ

!
. (2.4.15)

Such inequalities (with u0 = 0 on the right side) hold also for Bij.

To derive (2.4.15) the fact that W 1+l
2 (Ω) is embedded in C(Ω) (and also in

L6(Ω)) and W
l
2(Ω) is embedded in L3(Ω) is used.

Lemma 2.4.3 If u, u0 ∈ W 2+l,1+l/2
2 (QT ) satisfy condition (2.4.1), then for any

f ∈ W l,l/2
2 (QT ) and h ∈ W 1+l,1/2+l/2

2 (QT )

°°° eBijf°°°(l,l/2)
QT

≤ c
√
Tku− u0k(2+l,1+l/2)QT

kfk(l,l/2)QT
, (2.4.16)
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k eBijhkW 1+l,1/2+l/2
2 (QT )

≤ c
√
Tku− u0k(2+l,1+l/2)QT

×(khk
W

1+l,1/2+l/2
2 (QT )

+ k∇hk(0,l/2)QT
+ khk(0,l/2)QT

). (2.4.17)

Setting u0 = 0 in (2.4.16) and (2.4.17) and noting (2.4.11) and (2.4.13), we

arrive at the following proposition.

Lemma 2.4.4 If u satisfies (2.4.1), then

kBijfk(l,l/2)QT
≤ cδ kfk(l,l/2)QT

, (2.4.18)

kBijhkW 1+l,1/2+l/2
2 (QT )

≤ cδ(khk
W

1+l,1/2+l/2
2 (QT )

+ k∇hk(0,l/2)QT
+ khk(0,l/2)QT

). (2.4.19)

Lemma 2.4.5 Let u ∈ W 2+l,1+l/2
2 (QT ), T0 > 0. It holds that

kDuk(l,l/2)QT
≤ c(T0)

³
T 1/2kuk(2+l,1+l/2)QT

+ T 1/2−l/2ku(·, 0)kW l
2(Ω)

´
(2.4.20)

for any T ≤ T0.

(2.4.20) is derived from the interpolation inequality

kDfkL2(Ω) ≤ c(εkD2fkL2(Ω) + ε−1kfkL2(Ω)).

We proceed to estimates of l
(u)
1 (w, s) − l(u

0)
1 (w, s), l

(u)
2 (w) − l(u0)2 (w) and

L(u)(w) − L(u0)(w), where l(u)1 , l(u
0)

1 , etc., are determined by formulae (2.4.3)

on the basis of the vector fields u and u0.

From (A.1.7) for %0 ∈ W 1+l
2 satisfying %0(x) ≥ R0 > 0 we have

kν(%0)fk(l,l/2)QT
≤ ckν(%0)kW 1+l

2 (Ω) kfk
(l,l/2)
QT

≤ c(%0) kfk(l,l/2)QT
, (2.4.21)

where

c(%0) = c

½
sup

R0≤%≤R1
|ν(%)||Ω| 12 +

µ
sup

R0≤%≤R1
|ν 0(%)|+ k∇%0kW l

2(Ω)

¶
k∇%0kW l

2(Ω)

¾
,

and R1 = supx∈Ω %0(x) ≤ ck%0kW 1+l
2 (Ω) < +∞.

Then we obtain the following estimates:
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Lemma 2.4.6 Let u and u0 satisfy condition (2.4.1). For arbitrary w ∈
W

2+l,1+l/2
2 it holds that (QT ), ∇s ∈ W l,l/2

2 (QT )°°°l(u)1 (w, s)− l(u0)1 (w, s)
°°°(l,l/2)
QT

≤ c
√
Tku− u0k(2+l,1+l/2)QT

(kwk(2+l,1+l/2)QT
+ k∇sk(l,l/2)QT

), (2.4.22)

kl(u)2 (w)− l(u0)2 (w)k
W

1+l,1/2+l/2
2 (QT )

≤ c
√
Tku− u0k(2+l,1+l/2)QT

kwk(2+l,1+l/2)QT
, (2.4.23)°°°° ∂∂t(L(u)(w)− L(u0)(w))

°°°°(0,l/2)
QT

≤ c
³√
Tku− u0k(2+l,1+l/2)QT

+T 1/2−l/2ku(·, 0)− u0(·, 0)kW l
2(Ω)

´
kwk(2+l,1+l/2)QT

. (2.4.24)

If w|t=0= 0, then (2.4.24) is valid also without the second term in the paren-

thesis of the right hand side.

Setting u0 = 0 in (2.4.22)—(2.4.24), we obtain that

Lemma 2.4.7 If u satisfies condition (2.4.1), then°°°l(u)1 (w, s)°°°(l,l/2)
QT

≤ c δ
³
kwk(2+l,1+l/2)QT

+ k∇sk(l,l/2)QT

´
, (2.4.25)

kl(u)2 (w)k
W

1+l,1/2+l/2
2 (QT )

≤ c δkwk(2+l,1+l/2)QT
, (2.4.26)°°°° ∂∂tL(u)(w)

°°°°(0,l/2)
QT

≤ c
³
δ + T 1/2−l/2ku(·, 0)kW l

2(Ω)

´
kwk(2+l,1+l/2)QT

. (2.4.27)

In the case w|t=0= 0 the second term in the parenthesis of the right hand side

of (2.4.27) can be dropped.

The next auxiliary proposition concerns the difference

bu(x, t)− bu0(x, t)=b(Xu, t)− b(Xu0 , t)

=
3X
k=1

Z 1

0

bXk(Xuθ , t)dθ

Z t

0

(uk − u0k)dτ, (2.4.28)
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where u−u0 = ũ, uθ = u0+θũ (θ ∈ (0, 1)), Xu = x+
R t
0
udτ , Xu0 = x+

R t
0
u0dτ

and Xuθ = x+
R t
0
uθdτ .

Lemma 2.4.8 If b satisfies the conditions of Theorem 2.2.1 and condition

(2.4.1) is satisfied, then

kbu − bu0k(l,l/2)QT
≤ c(T )

Z T

0

ku− u0kW l
2(Ω)
dt, (2.4.29)

where c(T ) is a nondecreasing (power) function of T .

Finally, we remark that by elementary calculation we have°°%−10 f°°(l,l/2)QT
≤ 1

R0
kfk(l,l/2)QT

+
c

R20
k%0kW 2+l

2 (Ω)kfkL2(Ω). (2.4.30)

2.5 Proof of Theorem 2.2.1

Proof of Theorem 2.2.1. We solve the problem (2.4.2) by the method of suc-

cessive approximations, setting u0 = 0, q0 = 0 and determining (um+1, qm+1)

(m = 0, 1, 2, . . .) as a solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

%0
∂um+1
∂t

− ν(%0)∆um+1 +∇qm+1

= l
(m)
1 (um, qm) + 2ν

0(%0)Dm(um)∇m%0

−β
3
(∇(j)m ∇(i)m %0)∇m%0 − β∆m%0∇m%0 + %0bm,

∇ · um+1 = l(m)2 (um), um+1|t=0= v0, um+1|Γ = 0.

(2.5.1)

Here ∇m = ∇um , ∆m = ∆um , l
(m)
1 = l

(um)
1 , l

(m)
2 = l

(um)
2 , Dm(w) = Dum(w),

bm = bum . From Lemma 2.2.2 and the estimates in §§ 2.3 and 2.4 it follows
that (um+1,∇qm+1) is uniquely determined, and (u1, q1) is a solution of problem
(2.5.1), i.e.,⎧⎪⎨⎪⎩

∂u1
∂t
− ν(%0)

%0
∆u1 +

1

%0
∇q1 = −

β

3%0
(∇(j)∇(i)%0)∇%0 −

β

%0
∆%0∇%0 + b,

∇ · u1 = 0, u1|t=0= v0, u1|Γ= 0
(2.5.2)
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with the estimates

N [u1, q1]:= ku1k(2+l,1+l/2)QT
+ k∇q1k(l,l/2)QT

≤ c
Ã
β

3

°°°° 1%0 (∇(j)∇(i)%0)∇%0
°°°°(l,l/2)
QT

+ β

°°°° 1%0∆%0∇%0
°°°°(l,l/2)
QT

+ kbk(l,l/2)QT
+ kv0kW 1+l

2 (Ω)

!

≤ c1
³
(T 1/2 + T 1/2−l/2)k%0k3W 2+l

2 (Ω)
+ kbk(l,l/2)QT

+ kv0kW 1+l
2 (Ω)

´
, (2.5.3)

where c1 is a nondecreasing function of T .

For the differences Zm+1 := um+1−um, Pm+1 := qm+1−qm (m = 1, 2, 3 . . .),

we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

%0
∂Zm+1
∂t

− ν(%0)∆Zm+1 +∇Pm+1

= l
(m)
1 (Zm, Pm) + l

(m)
1 (um−1, qm−1)− l(m−1)1 (um−1, qm−1)

+2ν 0(%0) (Dm(um)∇m%0 − Dm−1(um−1)∇m−1%0)

−β
3

n
(∇(j)m ∇(i)m %0)∇m%0 − (∇(j)m−1∇(i)m−1%0)∇m−1%0

o
−β (∆m%0∇m%0 −∆m−1%0∇m−1%0) + %0(bm − bm−1),

∇ · Zm+1 = l(m)2 (Zm) + l
(m)
2 (um−1)− l(m−1)2 (um−1),

Zm+1|t=0= 0, Zm+1|Γ= 0.

We suppose that the condition (2.4.1) is satisfied for un (n ≤ m). Then the
lemmata in § 2.4 yield°°°l(m)1 (Zm, Pm)

°°°(l,l/2)
QT

+
°°°l(m)1 (um−1, qm−1)− l(m−1)1 (um−1, qm−1)

°°°(l,l/2)
QT

≤ cδ
³
kZmk(2+l,1+l/2)QT

+ k∇Pmk(l,l/2)QT

´
,

kDm(um)∇m%0 − Dm−1(um−1)∇m−1%0k(l,l/2)QT

≤ ck%0kW 2+l
2 (Ω)

³
1 + T 1/2−l/2kv0kW l

2(Ω)

´
T 1/2kZmk(2+l,1+l/2)QT

,
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°°°(∇(j)m ∇(i)m %0)∇m%0 − (∇(j)m−1∇(i)m−1%0)∇m−1%0°°°(l,l/2)
QT

≤ ck%0k2W 2+l
2 (Ω)

(T 1/2 + T 1/2−l/2)T 1/2kZmk(2+l,1+l/2)QT
,

k∆m%0∇m%0 −∆m−1%0∇m−1%0k(l,l/2)QT

≤ ck%0k2W 2+l
2 (Ω)

(T 1/2 + T 1/2−l/2)T 1/2kZmk(2+l,1+l/2)QT
,

kbm − bm−1k(l,l/2)QT
≤ c T 1/2kZmk(2+l,1+l/2)QT

,

kl(m)2 (Zm)kW 1+l,1/2+l/2
2 (QT )

+ kl(m)2 (um−1)− l(m−1)2 (um−1)kW 1+l,1/2+l/2
2 (QT )

≤ cδkZmk(2+l,1+l/2)QT
,°°°° ∂∂tL(m)(Zm)

°°°°(0,l/2)
QT

+

°°°° ∂∂t ¡L(m)(um−1)− L(m−1)(um−1)¢
°°°°(0,l/2)
QT

≤ cδkZmk(2+l,1+l/2)QT
.

Then, we obtain that

N [Zm+1, Pm+1] ≡ kZm+1k(2+l,1+l/2)QT
+ k∇Pm+1k(l,l/2)QT

≤ C
³
δN [Zm, Pm] + T

1/2kZmk(2+l,1+l/2)QT

´
, (2.5.4)

where C = C(T ;v0, %0) is a nondecreasing function with respect to T . Taking

into account the condition (2.4.1) for un (n ≤ m), we also have (2.5.4) for

m = 0, 1, . . . ,m− 1. If we choose δ satisfying Cδ < 1/4, we obtain

N [Zn+1, Pn+1] ≤
1

4
N [Zn, Pn] + CT

1/2kZnk(2+l,1+l/2)QT

≤
µ
1

4
+ CT 1/2

¶
N [Zn, Pn] ≤ . . . ≤

µ
1

4
+ CT 1/2

¶n
N [Z1, P1] (2.5.5)

for n = 0, 1, . . . ,m. We set Σm+1 =
Pm

n=0N [Zn+1, Pn+1]. SinceP
m+1 ≤ N [u1, q1]

mX
n=0

µ
1

4
+ CT 1/2

¶n
≤ c1

n
(T 1/2 + T 1/2−l/2)k%0k3W 2+l

2 (Ω)

+ kbk(l,l/2)QT
+ kv0kW 1+l

2 (Ω)

o mX
n=0

µ
1

4
+ CT 1/2

¶n
,
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we obtain

N [um+1, qm+1] ≤
P

m+1 +N [u1, q1] ≤ c1
n
(T 1/2 + T 1/2−l/2)k%0k3W 2+l

2 (Ω)

+ kbk(l,l/2)QT
+ kv0kW 1+l

2 (Ω)

o(
1 +

mX
n=0

µ
1

4
+ CT 1/2

¶n)
. (2.5.6)

Note that c1 and C are nondecreasing functions of T , then condition (2.4.1)

for um+1 is satisfied if CT
1/2 ≤ 1/4 and

3T 1/2c1

³
(T 1/2 + T 1/2−l/2)k%0k3W 2+l

2 (Ω)
+ kbk(l,l/2)QT

+ kv0kW 1+l
2 (Ω)

´
≤ δ. (2.5.7)

The left-hand side does not depend on m. Thus, N [um, qm] is uniformly

bounded, the sequence {um, qm} converges in the norm N [ · , · ], and the limit
is a solution of the problem (2.4.2).

The solution is unique, since the difference of two solutions w = u − u0,
s = q − q0 satisfies the relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

%0
∂w

∂t
− ν(%0)∆w +∇s

= l
(u)
1 (u, q)− l(u

0)
1 (u0, q0) + 2ν 0(%0) (Du(u)∇u%0 − Du0(u0)∇u0%0)

−β
3

n
(∇(j)u ∇(i)u %0)∇u%0 − (∇(j)u0 ∇

(i)
u0 %0)∇u0%0

o
−β (∆u%0∇u%0 −∆u0%0∇u0%0) + %0(bu − bu0),

∇ ·w = l(u)2 (w) + l
(u)
2 (u0)− l(u0)2 (u0),

Zm+1|t=0= 0, Zm+1|Γ= 0.

Applying to this problem the estimate (2.2.2) and repeating the arguments

carried out, we arrive at inequality

N [w, s] ≤ c(δ + T 1/2)N [w, s].

This implies (w,∇s) = (0,0), and Theorem 2.2.1 is proved.
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Chapter 3

Initial-boundary value problem

under the generalized Navier’s

slip condition

3.1 Introduction

The motion of inhomogeneous incompressible fluid-like bodies under the gen-

eralized Navier’s slip condition is studied in this chapter. We should pay atten-

tion to the slip phenomena of the granular body at the boundary. Unlike the

adhering behaviour of Newtonian fluids at the boundary, non-Newtonian fluids

including granular materials may slip in general at the surface of the solid in

contact with the fluids. Moreover, this slip effect may cause the significant

consequence for motion. Thus, taking into account this slip phenomena, we

analyse the motion of inhomogenous incompressible fluid-like bodies.

The system of equations of interest is (1.4.4), namely⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
%0
∂u

∂t
= ∇u · Tu + %0bu, ∇u · u = 0 for x ∈ Ω, t > 0,

u|t=0= v0 for x ∈ Ω,

u · nu = 0, u+KuΠuTunu = 0 for x ∈ Γ, t > 0.

(3.1.1)
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The aim of this chapter is to prove a theorem on local in time solvability of

problem (3.1.1) in Sobolev—Slobodetskĭı spaces.

Furthermore, we consider the following linear problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

%0(x)
∂u

∂t
= −∇q + ν1(x)∆u+ %0(x)f for x ∈ Ω, t > 0,

∇ · u = g for x ∈ Ω, t > 0,

u|t=0= v0 for x ∈ Ω, u · n = b · n for x ∈ Γ, t > 0,

Πu+ 2ν1(x)K(x, t)ΠD(u)n = K(x, t)d for x ∈ Γ, t > 0,

(3.1.2)

where ν1(x) is a given positive function defined in Ω, (f , g) and (b, d) are given

functions defined on Ω× (0,+∞) and on Γ× (0,+∞), respectively.

3.2 Mathematical Results

Let us describe the results in this chapter. First of all, we consider the problem

(3.1.2) in the spaces H
2+l,1+l/2
h (QT ) and H

l,l/2
h (QT ). The following lemma is

proved in § 3.3. Note that QT and GT are the same as those in Chapter 2,
respectively.

Lemma 3.2.1 Let Ω be a bounded domain in R3 with a boundary Γ ∈ W 5/2+l
2 ,

l ∈ (1/2, 1), 0 < T < +∞, v0 ≡ 0, %0 ∈ W 2+l
2 (Ω), %0(x) ≥ R0 > 0, ν1 ∈

W 2+l
2 (Ω), inf ν1(x) > 0, K ∈ W 3/2+l,3/4+l/2

2 (GT ) and infK > 0. For arbitrary

f ∈ H l,l/2
h (QT ), g = ∇ ·G, G ∈ H2+l,1+l/2

h (QT ), b ∈ H3/2+l,3/4+l
h (GT ), b = G|Γ,

d ∈ H1/2+l,1/4+l
h (GT ), and d · n = 0, problem (3.1.2) has a unique solution

u ∈ H2+l,1+l/2
h (QT ), ∇q ∈ H l,l/2

h (QT ), provided h is sufficiently large. And this

solution satisfies the following estimate:

kuk
H
2+l,1+l/2
h (QT )

+ k∇qk
H
l,l/2
h (QT )

≤ c(T )
³
kfk

H
l,l/2
h (QT )

+ kgk
H
1+l,1/2+l/2
h (QT )

+kGk
H
0,1+l/2
h (QT )

+ kbk
H
3/2+l,3/4+l/2
h (GT )

+ kdk
H
1/2+l,1/4+l/2
h (GT )

´
, (3.2.1)

where c(T ) is a non-decreasing function of T .
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This lemma is proved in the same way as that in Chapter 2; we first consider

the constant coefficient case in the half-space, then the function coefficient

case in a bounded domain. In the case of the half-space we give an explicit

formula for the solution, and in a bounded domain we prove a priori estimates

and establish the solvability of the problem (3.1.2) by the construction of a

regularizer (see, for example, [24, 36]).

Next, problem (3.1.2) is considered in the Sobolev—Slobodetskĭı spaces such

as W
2+l,1+l/2
2 (QT ) and W

l,l/2
2 (QT ).

Lemma 3.2.2 Let Ω, Γ, T , l, %0, R0, ν1 and K be the same as in Lemma 3.2.1.

For arbitrary v0 ∈ W 1+l
2 (Ω), f ∈ W l,l/2

2 (QT ), g = ∇ ·G, G ∈ W 2+l,1+l/2
2 (QT ),

d ∈ W
3/2+l,3/4+l/2
2 and d ∈ W

1/2+l,1/4+l/2
2 (GT ) satisfying the compatibility

conditions

∇ · v0 = ∇ ·G( · , 0) in Ω, b = G|Γ on Γ, d · n = 0 on Γ,

Πv0 + 2ν1K(·, 0)ΠD(v0)n = K(·, 0)d(·, 0) on Γ,

problem (3.1.2) has a unique solution (u,∇q) in W 2+l,1+l/2
2 (QT ) ×W l,l/2

2 (QT )

such that

kuk(2+l,1+l/2)QT
+ k∇qk(l,l/2)QT

≤ c(T )
³
kfk(l,l/2)QT

+ kgk
W

1+l,1/2+l/2
2 (QT )

+ kv0kW 1+l
2 (Ω)

+kGk(0,1+l/2)QT
+ kbk

W
3/2+l,3/4+l/2
2 (GT )

+ kdk
W

1/2+l,1/4+l/2
2 (GT )

´
, (3.2.2)

where c(T ) is a non-decreasing function of T .

Finally, we consider the quasi-linear problem (3.1.1), and the following the-

orem on time-local solvability is proved in § 3.5.

Theorem 3.2.1 Let Ω be a bounded domain in R3, Γ ∈ W 7/2+l
2 , l ∈ (1/2, 1),

%0 ∈ W 2+l
2 (Ω), %0(x) ≥ R0 > 0, ν ∈ C2(R+), ν > 0, 0 < T < +∞, b ∈

W
l,l/2
2 (QT ). Assume that b(X, t) has continuous derivatives with respect to x

and b, bXk satisfy the Lipschitz condition in x and the Hölder condition with

exponent 1/2 in t, that K(X, t) has continuous derivatives up to order 3 with
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respect to X, infK > 0 and Dα
XK (|α| ≤ 3) satisfy the Lipschitz condition in

x and t, and that v0 ∈ W 1+l
2 (Ω) satisfies the compatibility conditions

∇ · v0 = 0 in Ω, v0 · n = 0 on Γ,

v0 +K(·, 0)Π {2ν(%0)D(v0)n− β(∇%0 ⊗∇%0)n} = 0 on Γ.

Then problem (3.1.1) has a unique solution (u,∇q) ∈ W 2+l,1+l/2
2 (QT 0 )×W l,l/2

2

(QT 0 ) on some interval (0, T
0
) (0 < T 0 ≤ T ), whose magnitude T 0

depends on

the data (see condition (3.5.8) below).

3.3 Proofs of Lemmata 3.2.1 and 3.2.2

3.3.1 Problem in the half-space

In this subsection we shall consider the initial-boundary value problem for the

homogeneous Stokes system in a half-space D+T ≡ R3+× (0, T ) = {x3 > 0, 0 <
t < T} (0 < T < +∞):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− ν0∆u+∇q = 0, ∇ · u = 0 in D+T ,

u|t=0= 0 on R3+, u3|x3=0= 0 on DT ≡ R2 × (0, T ),

uj − ν0K0

µ
∂uj
∂x3

+
∂u3
∂xj

¶¯̄̄̄
x3=0

= dj on DT (j = 1, 2),

(3.3.1)

where ν0 and K0 are positive constants, and dj ∈ H1/2+l,1/4+l/2
h (DT ) (j = 1, 2)

with l ∈ (1/2, 1).
In considering the problem (3.3.1), we extend dj from DT to D∞ such that

dj ∈ H1/2+l,1/4+l/2
h (D∞) (denoted by the same symbol) and

kdjkH1/2+l,1/4+l/2
h (D∞)

≤ ckdjkH1/2+l,1/4+l/2
h (DT )

, (3.3.2)

where c is independent of h and T (see [38], §2).
Next, extending u = (u1, u2, u3), q, d

0 = (d1, d2) to the half-space t < 0 by

0 and make the Fourier transformation with respect to x0 = (x1, x2) and the
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Laplace transformation with respect to t in the same way as in Chapter 2, we

have the following system of ordinary differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν0

µ
r2 − d2

dx23

¶
ûj + iξj q̂ = 0 (j = 1, 2),

ν0

µ
r2 − d2

dx23

¶
û3 +

dq̂

dx3
= 0, iξ1û1 + iξ2û2 +

dû3
dx3

= 0,

û3|x3=0= 0, ûj − ν0K0

µ
dûj
dx3

+ iξjû3

¶¯̄̄̄
x3=0

= d̂j,

(û, q̂) −→ (0, 0) (x3 → +∞),

(3.3.3)

where

r2 =
s

ν0
+ |ξ0|2, |ξ0|2 = ξ21 + ξ22 , arg r ∈

³
−π
4
,
π

4

´
.

This problem is easily solved by the same way as in Chapter 2, whose solution

is given explicitly by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûj =
d̂j

1 + ν0K0r
e0(x3) +

iξjν0K0

P2
k=1 iξkd̂k

|ξ0|(1 + ν0K0r){ν0K0(r + |ξ0|) + 1}
e0(x3)

+
−iξj

P2
k=1 iξkd̂k

|ξ0|{ν0K0(r + |ξ0|) + 1}
e1(x3) (j = 1, 2),

û3=

P2
k=1 iξkd̂k

ν0K0(r + |ξ0|) + 1
e1(x3),

q̂ =
−ν0(r + |ξ0|)

P2
k=1 iξkd̂k

|ξ0|{ν0K0(r + |ξ0|) + 1}
e2(x3),

(3.3.4)

where

e0(x3) = e
−rx3 , e1(x3) =

e−rx3 − e−|ξ0|x3
r − |ξ0| , e2(x3) = e

−|ξ0|x3.

In estimating this solution, it is also convinient to use the equivalent norms

k · kγ,h,D∞ and k · kγ,h,D+∞ in H
γ,γ/2
h (D∞) and H

γ,γ/2
h (D+∞), respectively for

γ ≥ 0. Then, the formula (3.3.4) and Lemma 2.3.1 in Chapter 2 yield that
for h > 0 the solution (u, q) of the problem (3.3.1) with T = ∞ satisfies the

estimate

kuk22+l,h,D+∞ + k∇qk2l,h,D+∞ ≤
c

K2
0

kd0k21/2+l,h,D∞, (3.3.5)
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where c is a constant independent of h and K0.

Consequently, taking into account (3.3.5) and restricting the domain of u

and q, we have

Lemma 3.3.1 Let h > 0 and l ∈ (1/2, 1). Then the solution (u, q) of the
problem (3.3.1) satisfies the estimate

kuk
H
2+l,1+l/2
h (D+T )

+ k∇qk
H
l,l/2
h (D+T )

≤ c

K0

kd0k
H
1/2+l,1/4+l/2
h (DT )

, (3.3.6)

where c is a constant independent of h and K0.

3.3.2 Proof of Lemma 3.2.1

We shall use the same framework as in Chapter 2. Because of the condition

of Ω and Γ, in the neighbourhood of an arbitrary point ξ ∈ Γ, the surface Γ is
represented by the equation

y3 = ϕ(y0), y0 = (y1, y2) ∈ Kd (Kd = {y0 : |y0| < d})

in a Cartesian local coordinates system (y1, y2, y3) with the origin at ξ and

with y3-axis directed along −n(ξ), n(ξ) being the unit outward normal vector
to Γ at ξ. The function ϕ may be considered to be defined on R2 such that its
support is included in a disc K2d and ϕ(0) = 0, ∇0ϕ(0) = 0 (∇0 is the gradient
with respect to y0) and kϕk

W
5/2+l
2 (R2) ≤M (M > 0) hold. It is to be noted that

the constants d and M are taken indepenently of ξ. Furthermore, ϕ can be

extended into R3+ (see [38, 40]) so that it belongs to W 3+l
2 (R3+), and ϕ(0) = 0,

∇ϕ(0) = 0 and

sup
|y|≤λ

|ϕ(y)| ≤ cMλ, sup
|y|≤λ

|∇ϕ(y)| ≤ cMλ.

Then the transformation y = Y (z) :

y1 = z1, y2 = z2, y3 = z3 + ϕ(z) (3.3.7)

is invertible if |ϕz3| < 1 and maps R3+ onto the domain {y3 > ϕ(y0)}.
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The solvability of (3.1.2) will be proved by using the regularizer R (see, for

instance, [36, 41]), which is a linear continuous operator from the data

F = (f , g,b,d) ∈ Hh,l = H
l,l/2
h (QT )×H1+l,1/2+l/2

h (QT )

×H3/2+l,3/4+l/2
h (GT )×H1/2+l,1/4+l/2

h (GT )

to the solution (w̄,∇π̄) ∈ H2+l,1+l/2
h (QT )×H l,l/2

h (QT ) of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w̄

∂t
− ν1(x)

%0(x)
∆w̄ +

1

%0(x)
∇π̄ = f +M1F in QT ,

∇ · w̄ = g +M2F in QT ,

w̄|t=0= 0 in Ω, w̄ · n = (b+M3F) · n on GT ,

Πw̄ + 2ν1(x)K(x, t)ΠD(w̄)n = K(x, t)(d+M4F) on GT

(3.3.8)

with MF = (M1F,M2F,M3F,M4F) being a contraction operator on Hh,l

for sufficiently large h and small T . The solution of (3.1.2) can be obtained

in terms of the regularizer as (w, π) = R(I +M)−1(f ,G,b,d). Note that

(I +M)−1 can be represented by the Neumann series if M is a contraction

operator, i.e., (I +M)−1 =
P∞

j=0(−M)j.

In order to establish the existence of a solution of problem (3.1.2), we use

the same coverings {Ω(k)} and {ω(k)}, and the same functions {ζ(k)(x)} and
{η(k)(x)} as in Chapter 2 (see §2.3.3).
We define (w̄, π̄) = RF by the formula

(w̄, π̄)(x, t) =

NλX
k=1

η(k)(x)(w̄(k), π̄(k))(x, t),

where (w̄(k), π̄(k)) (k = 1, 2, . . . ,Mλ) are given in the following way.

For k = 1, 2, . . . ,Mλ, let {y} be local Cartesian coordinates in the neigh-
bourhood of the point ξ(k) : y = Ck(x − ξ(k)) with Ck being an orthogonal
matrix satisfying Ckn(ξ(k)) = (0, 0,−1)T, ϕ(k)(y0) be the function defining Γ
in the neighbourhood of ξ(k) and let Yk be the corresponding transformation

(3.3.7). The transformation z = Zk(x) = Y −1k Ck(x − ξ(k)) maps the domain
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Ω(k) ∩ Ω into the half space R3+,k = {z ∈ R3 |z3 > 0} and its Jacobian matrix
is I at ξ(k). Set

b(k)(z, t) = ζ(k)(Z−1k (z))Ckb(Z−1k (z), t),
d(k)(z, t) = ζ(k)(Z−1k (z))K(Z

−1
k (z), t)Ckd(Z−1k (z), t),

and let f (k) and G(k) are the same as those in Chapter 2. Then extend them

to the domain R3+,k \ Z−1k (Ω(k) ∩ Ω) by zero, which are denoted by the same
symbols again.

Let (w(k),π(k))(z, t), k = 1, 2, . . . ,Mλ, be a solution of the half-space prob-

lem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w(k)

∂t
(z, t)− ν1(ξ

(k))

%0(ξ(k))
∆zw

(k)(z, t) +
1

%0(ξ(k))
∇zπ(k)(z, t) = f (k)(z, t),

∇z ·w(k)(z, t) = ∇z ·G(k)(z, t) in D
(k)
+T ,

w(k)(z, t)|t=0= 0 in R3+,k, w
(k)
3 (z, t)|z3=0= b

(k)
3 (z, t)|z3=0 on D

(k)
T ,

w
(k)
j − ν1(ξ

(k))K(ξ(k), 0)

Ã
∂w

(k)
j

∂z3
+
∂w

(k)
3

∂zj

!¯̄̄̄
¯
z3=0

= b
(k)
j + d

(k)
j

¯̄̄
z3=0

on D
(k)
T

(j = 1, 2),

(3.3.9)

where D
(k)
+T ≡ R3+,k × (0, T ) and D

(k)
T ≡ ∂R3+,k × (0, T ). According to (3.3.6)

and Lemma 2.3.3 in Chapter 2, we have

kw(k)k
H
2+l,1+l/2
h (D

(k)
+T )
+ k∇π(k)k

H
l,l/2
h (D

(k)
+T )

≤ c
µ
kf (k)k

H
l,l/2
h (D

(k)
+T )
+ k∇ ·G(k)k

H
1+l,1/2+l/2
h (D

(k)
+T )

+kG(k)k
H
0,1+l/2
h (D

(k)
+T )
+

1

infK
kd(k)k

H
1/2+l,1/4+l/2
h (D

(k)
T )

¶
(3.3.10)

with a constant c independent of h and K.

Then for k = 1, 2, . . . ,Mλ we define

w̄(k)(x, t) = C−1k w(k)(Zk(x), t), π̄(k)(x, t) = π(k)(Zk(x), t). (3.3.11)
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For k = Mλ + 1,Mλ + 2, . . . , Nλ (w
(k),π(k)) is a solution of the Cauchy

problem (2.3.22) in Chapter 2, and let (w̄(k), π̄(k)) = (w(k), π(k)).

Again we restrict π̄(k) byZ
Ω(k)∩Ω

π̄(k)(x, t)dx = 0. (3.3.12)

For such π̄(k) we have

kπ̄(k)k
L2(Q

(k)
T )
≤ cλk∇π̄(k)k

L2(Q
(k)
T )
≤ cλk∇π(k)k

L2(D
(k)
+T )
, (3.3.13)

where Q
(k)
T = (Ω(k)∩Ω)× (0, T ). Consequently, η(k)π̄(k) is uniquely determined

in QT , and R is well-defined.

Clearly, R is a linear operator on Hh,l. To calculate the norm ofMF, we

rewrite the problem (3.3.9) in coordinates {x} in the neighbourhood Ω(k) ∩ Ω
of ξ(k). Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w̄(k)

∂t
(x, t)− ν1(ξ

(k))

%0(ξ(k))
∆̄(k)w̄(k)(x, t) +

1

%0(ξ(k))
∇̄(k)π̄(k)(x, t) = ζ(k)f ,

∇̄(k) · w̄(k)(x, t) = ∇̄(k) · (ζ(k)G) in Q
(k)
T ,

w̄(k)|t=0= 0 in Ω(k) ∩ Ω, w̄(k) · n(ξ(k)) = ζ(k)b · n(ξ(k)) on G
(k)
T ,

Π̄(k)w̄(k) + 2ν1(ξ
(k))K(ξ(k), 0)Π̄(k)D̄(k)(w̄(k))n(ξ(k))

= ζ(k)(x)K(x, t)Π̄(k)d on G
(k)
T ,

(3.3.14)

where Q
(k)
T = (Ω(k) ∩ Ω) × (0, T ), G(k)T = (Ω(k) ∩ Γ) × (0, T ), Π̄(k)f = f −

(f · n(ξ(k)))n(ξ(k)), D̄(k)(f) = 1
2
(∇̄(k)f + [∇̄(k)f ]T), ∇̄(k) = C−1k Z−Tk ∇, ∆̄(k) =

∇̄(k) · ∇̄(k), and Zk is the Jacobian matrix of the transformation Zk.
Thus one can obtainMiF in problem (3.3.8) as follows:

M3F =

MλX
k=1

η(k)
©
w̄(k) ·

¡
n(x)− n(ξ(k))

¢ª
n,

M4F =

MλX
k=1

η(k)ζ(k)Π
¡
Π̄(k) − Π

¢
d
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−
MλX
k=1

2η(k)Π

µ
ν1(ξ

(k))
K(ξ(k), 0)

K(x, t)
Π̄(k)D̄(k)(w̄(k))n(ξ(k))

− ν1(x)ΠD(w̄(k))n(x)

¶
−

MλX
k=1

ν1(x)Π
¡
w̄(k) ⊗∇η(k) + η(k) ⊗ w̄(k)

¢
n(x),

andMiF (i = 1, 2) are the same as in (2.3.27) and (2.3.28).

In the same way as [24, 40, 41], we can show that

kMFkHh,l
≤
©
c(λ+ T 1/2) + c0(λ)h−l/2

ª
kFkHh,l

(3.3.15)

with a constant c independent of λ and T . Hence, for small λ, small T 0 and

large h,M becomes a contraction operator on Hl,T 0 , so that the solvability of

(3.1.2) is proved on the interval (0, T 0).

Furthermore, by the same way as that of (3.3.15) (see [40, 41]), it holds

that

kwk
H
2+l,1+l/2
h (QT 0 )

+ k∇πk
H
l,l/2
h (QT 0 )

≤ ckFkHh,l
. (3.3.16)

From this estimate and (3.3.10) the estimate (3.2.1) on (0, T 0) follows. Then

it is easy to prove the uniqueness of the solution of problem (3.1.2) on (0, T 0).

If T 0 < T , we next consider the similar problem to problem (3.1.2) on

(T 0/2, T ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u∗

∂t
− ν1(x)

%0(x)
∆u∗ +

1

%0(x)
∇q∗ = f in QT 0/2,3T 0/2,

∇ · u∗ = g in QT 0/2,3T 0/2,

u∗|t=T 0/2= u|t=T 0/2 in Ω, u∗ · n = b · n in GT 0/2,3T 0/2,

Πu∗ + 2ν1(x)K(x, t)ΠD(u∗)n = K(x, t)d in GT 0/2,3T 0/2,

(3.3.17)

where QT1,T2 = Ω× (T1, T2), GT1,T2 = Γ× (T1, T2). To establish the solvability
theorem of problem (3.3.17) we shall rewrite it.
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First, extend u ∈ H2+l,1+l/2
h (QT 0) to Q∞ so that u ∈ H2+l,1+l/2

h (Q∞) (de-

noted by the same letter) and

kuk
H
2+l,1+l/2
h (Q∞)

≤ ckuk
H
2+l,1+l/2
h (QT 0 )

, (3.3.18)

where c is independent of T 0.

Let u#(x, t) = u∗(x, t+T 0/2)−u(x, t+T 0/2) and q#(x, t) = q(x, t+T 0/2),
then (u#, q#) satisfies the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u#

∂t
− ν1(x)

%0(x)
∆u# +

1

%0(x)
∇q# = f# in QT 0 ,

∇ · u# = g# in QT 0 ,

u#|t=0= 0 in Ω, u# · n = b# · n in GT 0 ,

Πu# + 2ν1(x)K
#(x, t)ΠD(u#)n = K#(x, t)d# in GT 0 ,

(3.3.19)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f#(x, t) = f(x, t+ T 0/2)− ∂u

∂t
(x, t+ T 0/2) +

ν1(x)

%0(x)
∆u(x, t+ T 0/2),

g#(x, t) = g(x, t+ T 0/2)−∇ · u(x, t+ T 0/2),

G#(x, t) = G(x, t+ T 0/2)− u(x, t+ T 0/2),

b#(x, t) = b(x, t+ T 0/2)− (u(x, t+ T 0/2) · n)n|Γ,

K#(x, t) = K(x, t+ T 0/2),

d#(x, t) = d(x, t+ T 0/2)− 1

K#(x, t)
Πu(x, t+ T 0/2)|Γ

−2ν1(x)ΠD(u(x, t+ T 0/2))n|Γ.

(3.3.20)

We can see that, for example,

g#|t=0 = (g −∇ · u)|t=T 0/2 = 0,

since u is a solution of problem (3.1.2) on (0, T 0), and also we have

G#|t=0 = 0, d#|t=0 = 0, b#|t=0 = 0.

Thus f#, g#, G#, b# and d# satisfy the same conditions as those of Lemma

3.2.1. Repeating the same argument carried out above, one can also obtain the
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solution (u#, q#) of problem (3.3.19) on the same interval (0, T 0) for the same

h and the estimate

ku#k
H
2+l,1+l/2
h (QT 0 )

+k∇q#k
H
l,l/2
h (QT 0 )

≤c
³
kf#k

H
l,l/2
h (QT 0 )

+kg#k
H
1+l,1/2+l/2
h (QT 0 )

+kG#k
H
0,1+l/2
h (QT 0 )

+kb#k
H
3/2+l,3/4+l/2
h (GT 0 )

+kd#k
H
1/2+l,1/4+l/2
h (GT 0 )

´
. (3.3.21)

Consequently, we obtain a unique solution (u∗,∇q∗) of problem (3.3.17) on

(T 0/2, 3T 0/2).

Due to the unique existence of the solution of problem (3.1.2) on (T 0/2, T 0),

u ≡ u∗, ∇q ≡ ∇q∗ on (T 0/2, T 0) (3.3.22)

holds. Thus, let

u∗∗ =

(
u on (0, T 0),

u∗ on (T 0, 3T 0/2),
∇q∗∗ =

(
∇q on (0, T 0),

∇q∗ on (T 0, 3T 0/2),

then it holds u∗∗ ∈ H2+l,1+l/2
h (Q3T 0/2) and ∇q∗∗ ∈ H l,l/2

h (Q3T 0/2) because of

(3.3.22). Moreover, it is obvious that (u∗∗, q∗∗) is a solution of problem (3.1.2)

on the extended interval (0, 3T 0/2) and satisfies the estimate (3.2.1) on (0, 3T 0/2)

by virtue of the estimates (3.3.18), (3.3.21).

This means that we can extend the length of the interval by T 0/2, on which

the solution of problem (3.1.2) exists. Repeating this argument up to T , we

can conclude that a unique solution (u, q) of problem (3.1.2) exists on (0, T )

and the estimate (3.2.1) holds.

3.3.3 Proof of Lemma 3.2.2

The trace theorem implies that for any v0 ∈ W 1+l
2 (Ω) there exists u• ∈

W
2+l,1+l/2
2 (Q∞) satisfying the initial condition u•|t=0= v0 and the inequal-

ity

ku•k
W

2+l,1+l/2
2 (Q∞)

≤ ckv0kW 1+l
2 (Ω). (3.3.23)
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The difference U = u − u• satisfies the following equations with the homoge-
neous initial data:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
− ν1(x)

%0(x)
∆U+

1

%0(x)
∇q = f − ∂u•

∂t
+
ν1(x)

%0(x)
∆u• =: f• in QT ,

∇ ·U = g −∇ · u• =: g• in QT ,

U|t=0= 0 in Ω, U · n = b · n− u• · n =: b• · n in GT ,

ΠU+ 2ν1(x)K(x, t)ΠD(U)n = K(x, t)d− Πu• − 2ν1(x)K(x, t)ΠD(u•)n

=: K(x, t)d• in GT ,

(3.3.24)

and the compatibility conditions reduce to

g•( · , 0) = 0, b•( · , 0) = d•( ·, 0) = 0, G•|Γ = b•, d• · n = 0,

where G• = G − u•. It is easily seen that the conditions above imply f• ∈
H
l,l/2
h (QT ), g

• ∈ H
1+l,1/2+l/2
h (QT ), g

• = ∇ · G•, G• ∈ H
0,1+l/2
h (QT ), b

• ∈
H
3/2+l,3/4+l/2
h (GT ), d

• ∈ H1/2+l,1/4+l/2
h (GT ). By applying Lemma 3.2.1 to prob-

lem (3.3.24) and taking into account the estimate (3.3.23) and Remark A.2.1,

the assertion of Lemma 3.2.2 immediately follows.

3.4 Auxiliary estimates

Before proving Theorem 3.2.1, we begin with auxiliary propositions.

We assume here and in what follows that u ∈ W 2+l,1+l/2
2 (QT ) satisfies

T 1/2kuk(2+l,1+l/2)QT
≤ δ (3.4.1)

with sufficiently small δ > 0.
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The problem (3.1.1) is rewritten in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

%0
∂u

∂t
− ν(%0)∆u+∇q = l(u)1 (u, q) + 2ν 0(%0)Du(u)∇u%0

−β
3
(∇(j)u ∇(i)u %0)∇u%0 − β∆u%0∇u%0 + %0bu,

∇ · u = l(u)2 (u), u|t=0= v0, u · n|Γ= l
(u)
3 (u)|Γ,

u+ 2ν(%0)KΠD(u)n|Γ= l
(u)
4 (u) + βKuΠu(∇u%0 ⊗∇u%0)nu|Γ,

(3.4.2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇u = (∇(1)u ,∇(2)u ,∇(3)u ), ∆u = ∇u ·∇u,

l
(u)
1 (w, s) = ν(%0)(∆u −∆)w − (∇u −∇)s,

l
(u)
2 (w) = (∇−∇u) ·w = ∇ · L(u)(w), l

(u)
3 (w) = w · (n− nu),

l
(u)
4 (w) = 2ν(%0) (KΠD(w)n−KuΠuDu(w)nu) .

(3.4.3)

In the rest of this section we estimate the right-hand side of (3.4.2), which is

neccesary to prove the solvability of problem (3.1.1).

We use the same notation as that in Chapter 2 §2.4:

aij = δij + bij, bij =

Z t

0

∂ui
∂xj

dτ, Aij = δij + Bij, A = I+ B,

where A = (Aij), B = (Bij),

Aii = ajjakk − ajkakj, Aij = akjaik − aijakk,

Bii = bjj + bkk + bjjbkk − bjkbkj, Bij = −bij + bkjbik − bijbkk

for i, j, k = 1, 2, 3, i 6= j, j 6= k, k 6= i, and L(u)(w) = −Bw.
We denote by a0ij, b

0
ij, A

0
ij, B

0
ij the corresponding functions to another vector

field u0(x, t), and set b̃ij = bij − b0ij, eBij = Bij − B0ij. Finally, set
Du =

½
∂ui
∂xj

¾
i,j=1,2,3

, D2u =

½
∂2ui

∂xj∂xk

¾
i,j,k=1,2,3

,
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|Du|Ω = max
i,j
sup
x∈Ω

¯̄̄̄
∂ui
∂xj

¯̄̄̄
, |D2u|Ω = max

i,j,k
sup
x∈Ω

¯̄̄̄
∂2ui

∂xj∂xk

¯̄̄̄
,

kDukW r
2 (Ω)

=

Ã
3X
j=1

°°°° ∂u∂xj
°°°°2
W r
2 (Ω)

!1/2
.

Since, l
(u)
1 and l

(u)
2 are the same as those in Chapter 2, we only proceed to

the estimates of l
(u)
3 (w)− l(u0)3 (w), l

(u)
4 (w)− l(u

0)
4 (w).

Due to Γ ∈ W 7/2+l
2 , we have n ∈ W 5/2+l

2 (Γ). It is well known thatW
5/2+l
2 (Γ)

is embedded in C2+l
0
(Γ) = {f ∈ C2(Γ) |Dαf (|α| = 2) is Hölder continuous

with exponent l0} for 0 < l0 < l − 1/2. Thus one can easily see that

Lemma 3.4.1 Let u and u0 satisfy condition (3.4.1), and let K satisfy the

conditions of Theorem 3.2.1. Then for arbitrary w ∈ W 2+l,1+l/2
2 (QT ) it holds

kKu −Ku0kW 3/2+l,3/4+l/2
2 (ΓT )

≤c
√
Tku− u0k(2+l,1+l/2)QT

,

kl(u)3 (w)− l(u0)3 (w)k
W

3/2+l,3/4+l/2
2 (ΓT )

≤c
√
Tku− u0k(2+l,1+l/2)QT

kwk(2+l,1+l/2)QT
,

kl(u)4 (w)− l(u
0)

4 (w)k
W

1/2+l,1/4+l/2
2 (GT )

≤c
√
Tku− u0k(2+l,1+l/2)QT

kwk(2+l,1+l/2)QT
.

3.5 Proof of Theorem 3.2.1

We shall solve the problem (3.4.2) by the method of successive approximations:

set (u0, q0) = (0, 0) and let (um+1, qm+1) (m = 0, 1, 2, . . .) be a solution of the

problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

%0
∂um+1
∂t

− ν(%0)∆um+1 +∇qm+1

= l
(m)
1 (um, qm) + 2ν

0(%0)Dm(um)∇m%0

−β
3
(∇(j)m ∇(i)m %0)∇m%0 − β∆m%0∇m%0 + %0bm,

∇ · um+1 = l(m)2 (um), um+1|t=0= v0, um+1 · n|Γ= l
(m)
3 (um)|Γ,

um+1 + 2ν(%0)KΠD(um+1)n|Γ= l
(m)
4 (um) + βKmΠm(∇m%0 ⊗∇m%0)nm|Γ,

(3.5.1)
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provided that (un, qn), n = 1, 2, . . . ,m, satisfy (un,∇qn) ∈ W 2+l,1+l/2
2 (QT ) ×

W
l,l/2
2 (QT ) and the condition (3.4.1). Here ∇m = ∇um , ∆m = ∇m · ∇m,

l
(m)
j = l

(um)
j (j = 1, 4), l

(m)
j = l

(um)
j (j = 2, 3), Dm = Dum , bm = bum ,

Km = Kum , Πm = Πum , nm = num . From Lemma 3.2.2 and the estimates

in § 3.4 it follows that (um+1,∇qm+1) is uniquely determined. In particular,
(u1, q1) is a solution of problem (3.5.1) with m = 0, i.e.,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u1
∂t
− ν(%0)

%0
∆u1 +

1

%0
∇q1 = −

β

3%0
(∇(j)∇(i)%0)∇%0 −

β

%0
∆%0∇%0 + b,

∇ · u1 = 0, u1|t=0= v0, u1 · n|Γ= 0,

u1 + 2ν(%0)KΠD(u1)n|Γ= βKΠ(∇%0 ⊗∇%0)n|Γ,
(3.5.2)

where ∇(i) = ∂
∂xi
, and the estimate

N [u1, q1] := ku1k(2+l,1+l/2)QT
+ k∇q1k(l,l/2)QT

≤ c

Ã
β

3

°°°° 1%0 (∇(j)∇(i)%0)∇%0
°°°°(l,l/2)
QT

+ β

°°°° 1%0∇2%0∇%0
°°°°(l,l/2)
QT

+ kbk(l,l/2)QT
+ kv0kW 1+l

2 (Ω) + βkKΠ(∇%0 ⊗∇%0)nkW 1/2+l,1/4+l/2
2 (GT )

¶
≤ c1(T )

³
1 + k%0k3W 2+l

2 (Ω)
+ kbk(l,l/2)QT

+ kv0kW 1+l
2 (Ω)

´
(3.5.3)

holds with c1(T ) being a non-decreasing function of T . Thus, if T1 (0 < T1 ≤ T )
satisfies

T
1/2
1 · 2c1(T )

³
1 + k%0k3W 2+l

2 (Ω)
+ kbk(l,l/2)QT

+ kv0kW 1+l
2 (Ω)

´
< δ, (3.5.4)

u1 satisfies the condition (3.4.1) on the interval (0, T1).

Next, suppose that the condition (3.4.1) is satisfied for un (n = 1, 2, . . . ,m).

Then the differences Zm+1 := um+1 − um, Pm+1 := qm+1 − qm (m = 1, 2, 3 . . .)
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satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

%0
∂Zm+1
∂t

− ν(%0)∆Zm+1 +∇Pm+1

= l
(m)
1 (Zm, Pm) +

³
l
(m)
1 (um−1, qm−1)− l(m−1)1 (um−1, qm−1)

´
+2ν 0(%0) (Dm(um)∇m%0 − Dm−1(um−1)∇m−1%0)

−β
3

n
(∇(j)m ∇(i)m %0)∇m%0 − (∇(j)m−1∇(i)m−1%0)∇m−1%0

o
−β (∆m%0∇m%0 −∆m−1%0∇m−1%0) + %0(bm − bm−1),

∇ · Zm+1 = l(m)2 (Zm) +
³
l
(m)
2 (um−1)− l(m−1)2 (um−1)

´
,

Zm+1|t=0= 0, Zm+1 · n|Γ= l
(m)
3 (Zm) +

³
l
(m)
3 (um−1)− l(m−1)3 (um−1)

´
|Γ,

Zm+1 + 2ν(%0)KΠD(Zm+1)n|Γ= l
(m)
4 (Zm) +

³
l
(m)
4 (um−1)− l(m−1)4 (um−1)

´
+β {KmΠm(∇m%0 ⊗∇m%0)nm−Km−1Πm−1(∇m−1%0 ⊗∇m−1%0)nm−1}|Γ.

We suppose that the condition (2.4.1) is satisfied for un (n ≤ m). Then the
lemmata in §§ 2.4 and 3.4 yield°°°l(m)1 (Zm, Pm)

°°°(l,l/2)
QT

≤ cδ
³
kZmk(2+l,1+l/2)QT

+ k∇Pmk(l,l/2)QT

´
,°°°l(m)1 (um−1, qm−1)− l(m−1)1 (um−1, qm−1)

°°°(l,l/2)
QT

≤ cδ
³
kZmk(2+l,1+l/2)QT

+ k∇Pmk(l,l/2)QT

´
,

kDm(um)∇m%0 − Dm−1(um−1)∇m−1%0k(l,l/2)QT

≤ ck%0kW 2+l
2 (Ω)

³
1 + T 1/2−l/2kv0kW l

2(Ω)

´
T 1/2kZmk(2+l,1+l/2)QT

,°°°(∇(j)m ∇(i)m %0)∇m%0 − (∇(j)m−1∇(i)m−1%0)∇m−1%0°°°(l,l/2)
QT

≤ ck%0k2W 2+l
2 (Ω)

(T 1/2 + T 1/2−l/2)T 1/2kZmk(2+l,1+l/2)QT
,°°∇2m%0∇m%0 −∇2m−1%0∇m−1%0°°(l,l/2)QT

≤ ck%0k2W 2+l
2 (Ω)

(T 1/2 + T 1/2−l/2)T 1/2kZmk(2+l,1+l/2)QT
,
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kbm − bm−1k(l,l/2)QT
≤ c T 1/2kZmk(2+l,1+l/2)QT

,

kl(m)2 (Zm)kW 1+l,1/2+l/2
2 (QT )

≤ cδkZmk(2+l,1+l/2)QT
,

kl(m)2 (um−1)− l(m−1)2 (um−1)kW 1+l,1/2+l/2
2 (QT )

≤ cδkZmk(2+l,1+l/2)QT
,°°°° ∂∂tL(m)(Zm)

°°°°(0,l/2)
QT

+

°°°° ∂∂t ¡L(m)(um−1)− L(m−1)(um−1)¢
°°°°(0,l/2)
QT

≤ cδkZmk(2+l,1+l/2)QT
,

kl(m)3 (Zm)kW 3/2+l,3/4+l/2
2 (ΓT )

≤ cδkZmk(2+l,1+l/2)QT
,

kl(m)3 (um−1)− l(m−1)3 (um−1)kW 3/2+l,3/4+l/2
2 (ΓT )

≤ cδkZmk(2+l,1+l/2)QT
,

kl(m)4 (Zm)kW 1/2+l,1/4+l/2
2 (GT )

≤ cδkZmk(2+l,1+l/2)QT
,

kl(m)4 (um−1)− l(m−1)4 (um−1)kW 1/2+l,1/4+l/2
2 (GT )

≤ cδkZmk(2+l,1+l/2)QT
,

kKmΠm(∇m%0⊗∇m%0)nm
−Km−1Πm−1(∇m−1%0⊗∇m−1%0)nm−1kW 1/2+l,1/4+l/2

2 (GT )

≤ c T 1/2k%0k2W 2+l
2 (Ω)

T 1/2kZmk(2+l,1+l/2)QT
.

Hence, we obtain

N [Zm+1, Pm+1] ≡ kZm+1k(2+l,1+l/2)QT
+ k∇Pm+1k(l,l/2)QT

≤ c2(T )
³
δN [Zm, Pm] + T

1/2kZmk(2+l,1+l/2)QT

´
, (3.5.5)

where c2(T ) is a non-decreasing function with respect to T . Taking into account

the condition (3.4.1) for un (n ≤ m), we also have (3.5.5) for m = 0, 1, . . . ,m−
1. Choosing δ in such a way that c2(T )δ < 1/4, we obtain

N [Zn+1, Pn+1] ≤
1

4
N [Zn, Pn] + c2(T )T

1/2kZnk(2+l,1+l/2)QT

≤
µ
1

4
+ c2(T )T

1/2

¶
N [Zn, Pn] ≤ . . . ≤

µ
1

4
+ c2(T )T

1/2

¶n
N [Z1, P1]. (3.5.6)
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Set Σm+1 =
Pm

n=0N [Zn+1, Pn+1]. Since

P
m+1≤N [u1, q1]

mX
n=0

µ
1

4
+ c2(T )T

1/2

¶n
≤ c1(T )

³
1 + k%0k3W 2+l

2 (Ω)

+ kbk(l,l/2)QT
+ kv0kW 1+l

2 (Ω)

´ mX
n=0

µ
1

4
+ c2(T )T

1/2

¶n
,

it is easy to see that

N [um+1, qm+1]≤
P

m+1 +N [u1, q1]

≤ c1(T )
³
1 + k%0k3W 2+l

2 (Ω)
+ kbk(l,l/2)QT

+ kv0kW 1+l
2 (Ω)

´
×
(
1 +

mX
n=0

µ
1

4
+ c2(T )T

1/2

¶n)
(3.5.7)

holds. Note that cj(T ) (j = 1, 2) are non-decreasing functions of T , and

hence the condition (3.4.1) with T 0 (0 < T 0 ≤ T ) for um+1 is satisfied if

c2(T )T
01/2 ≤ 1/4 and T 0 ≤ T1 (see (3.5.4) for T1), namely,

T 0
1/2 · 2c1(T )

³
1 + k%0k3W 2+l

2 (Ω)
+ kbk(l,l/2)QT

+ kv0kW 1+l
2 (Ω)

´
≤ δ. (3.5.8)

Since the left hand side of (3.5.8) does not depend on m, it follows from (3.5.6)

and (3.5.7) that N [um, qm] is uniformly bounded on (0, T
0). Therefore the

sequence {(um, qm)} converges to the limit function (u, q) in the norm N [ · , · ]
and this limit is a solution of the problem (3.4.2).

The solution is unique. Indeed, the difference of two solutions w = u− u0,
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π = q − q0 satisfies the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

%0
∂w

∂t
− ν(%0)∆w +∇π = l(u)1 (w,π) +

³
l
(u)
1 (u

0, q0)− l(u0)1 (u0, q0)
´

+2ν 0(%0) (Du(u)∇u%0 − Du0(u0)∇u0%0)

−β
3

n
(∇(i)u ∇(j)u %0)∇u%0 − (∇(i)u0∇

(j)
u0 %0)∇u0%0

o
−β (∆u%0∇u%0 −∆u0%0∇u0%0) + %0(bu − bu0),

∇ ·w = l(u)2 (w) +
³
l
(u)
2 (u0)− l(u0)2 (u0)

´
,

w|t=0= 0, w · n|Γ= l
(u)
3 (w) +

³
l
(u)
3 (u0)− l(u0)3 (u0)

´
|Γ,

w + 2ν(%0)KΠD(w)n|Γ= l
(u)
4 (w) +

³
l
(u)
4 (u

0)− l(u0)4 (u0)
´

+β {KuΠu(∇u%0 ⊗∇u%0)nu −Ku0Πu0(∇u0%0 ⊗∇u0%0)nu0} |Γ.

Applying to this problem the estimate (3.2.2) and repeating the arguments

carried out, we arrive at inequality

N [w,π] ≤ c(δ + T 01/2)N [w, π].

This implies (w,∇π) = (0,0), and the proof of Theorem 3.2.1 is completed.
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Appendix A

Function Spaces

A.1 Anisotropic Sobolev—Slobodetskĭı spaces

A.1.1 Definitions

We introduce the function spaces used in this paper. Let G be a domain in Rn
and γ is a non-negative number. By W γ

2 (G) we denote the space of functions
equipped with the standard norm

kuk2W γ
2 (G) =

X
|α|<γ

kDαuk2L2(G) + kuk2Ẇ γ
2 (G)

, (A.1.1)

where

kuk2
Ẇ γ
2 (G)

=
X
|α|=γ

kDαuk2L2(G)

if γ is an integer, and

kuk2
Ẇ γ
2 (G)

=
X
|α|=[γ]

Z
G

Z
G

|Dαu(x)−Dαu(y)|2
|x− y|n+2{γ} dxdy

if γ is not an integer. Here [γ] is the integral part and {γ} the fractional part of
r, respectively. The norm in L2(G) is denoted by kfkL2(G) = (

R
G |f(x)|2dx)1/2,

Dαf = ∂|α|f/∂xα11 ∂x
α2
2 . . . ∂xαnn is the generalized derivative of the function

f in the distribution sense of order |α| = α1 + α2 + . . . + αn, and α =
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(α1,α2, . . . ,αn) ∈ Zn+ is a multi-index.
The anisotropic spaceW

r,r/2
2 (GT ) in the cylindrical domainGT = G×(0, T )

is defined by L2(0, T ;W
r
2 (G)) ∩ L2(G;W r/2

2 (0, T )), whose norm is introduced

by the formula

kuk2
W

r,r/2
2 (GT )

=

Z T

0

kuk2W r
2 (G)dt+

Z
G
kuk2

W
r/2
2 (0,T )

dx

≡ kuk2
W r,0
2 (GT )

+ kuk2
W

0,r/2
2 (GT )

,

where W r,0
2 (GT ) = L2(0, T ;W

r
2 (G)) and W 0,r/2

2 (GT ) = L2(G;W r/2
2 (0, T )). Sim-

ilarly, the norm in W
r/2
2 (0, T ) (for non-integral r/2) is defined by

kuk2
W

r/2
2 (0,T )

=

[r/2]X
j=0

°°°°djudtj
°°°°2
L2(0,T )

+

Z T

0

dt

Z t

0

¯̄̄̄
d[r/2]u(t)

dt[r/2]
− d

[r/2]u(t− τ)

dt[r/2]

¯̄̄̄2
dτ

τ 1+2{r/2}
.

Other equivalent norms of this space are possible. For l ∈ (0, 1) we set

kfk(l,l/2)GT
=

½
kfk2

W
l,l/2
2 (GT )

+
1

T l
kfk2L2(GT )

¾1/2
,

kfk(2+l,1+l/2)GT
=

⎧⎨⎩kfk2W 2+l,1+l/2
2 (GT )

+
³
kftk(l,l/2)GT

´2

+
X
|α|=2

³
kDα

xfk(l,l/2)GT

´2
+ sup
t∈(0,T )

kfk2
W 1+l
2 (G)

⎫⎬⎭
1/2

.

For any finite T > 0 these norms are equivalent to the norms in the spaces

W
l,l/2
2 (GT ) and W

2+l,1+l/2
2 (GT ), respectively. Let also

kfk(0,l/2)GT
=

½
kfk2

W
0,l/2
2 (GT )

+
1

T l
kfk2L2(GT )

¾1/2
.

If G is a smooth manifold (in this paper the boundary of a domain in R3
may play this role), then the norm inW r

2 (G) is defined by means of local charts,
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i.e., a partition of G into subsets each of which is mapped into a domain of
Euclidean space where the norms of W r

2 are defined by formula (A.1.1). After

this the spaces W
r,r/2
2 (GT ) on GT = G × (0, T ) are introduced as indicated

above.

The same symbols W r
2 (G), W r,r/2

2 (GT ) are used for the spaces of vector

fields f = (f1, f2, . . . , fn), etc. Their norms are introduced in standard form;

for example,

kfk2W r
2 (G) =

nX
i=1

kfik2W r
2 (G).

A.1.2 Well-known properties

We describe the well-known inequalities of norms in Sobolev—Slobodetskĭı spaces

(see Lemma 4.1 of [38]).

Lemma A.1.1 For any f ∈ W l
2(Ω), g, h ∈ W 1+l

2 (Ω), Ω ⊂ R3, l ∈ (1/2, 1)

kfgkW l
2(G) ≤ ckfkW l

2(G)kgkW 1+l
2 (G), (A.1.2)

kghkW 1+l
2 (G) ≤ ckgkW 1+l

2 (G)khkW 1+l
2 (G). (A.1.3)

These estimates also hold in the case n = 2, when the index l may be replaced

by l − 1/2.
For functions f , g depending also on t ∈ (0, T ) we obtain the inequalities

kfgkW l,0
2 (GT )

≤ c sup
0≤t≤T

kgkW 1+l
2 (G)kfkW l,0

2 (GT )
, (A.1.4)

kfgkW l,0
2 (GT )

≤ c sup
0≤t≤T

kfkW l
2(G)kgkW 1+l,0

2 (GT )
, (A.1.5)

kghkW 1+l,0
2 (GT )

≤ c sup
0≤t≤T

kgkW 1+l
2 (G)khkW 1+l,0

2 (GT )
. (A.1.6)

And also for f ∈ W l,l/2
2 (GT ) and g ∈ W 1+l

2 (G)

kfgk(l,l/2)GT
≤ ckfk(l,l/2)GT

kgkW 1+l
2 (G) (A.1.7)

holds.
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A.2 Weighted Sobolev—Slobodetskĭı spaces

A.2.1 Definitions

We denote by H
r,r/2
h (GT ), h > 0, the space of functions u(x, t) with a finite

form

kuk2
H
r,r/2
h (GT )

= kuk2
Hr,0
h (GT )

+ kuk2
H
0,r/2
h (GT )

,

kuk2
Hr,0
h (GT )

=

Z T

0

e−2htkuk2
Ẇ r
2 (G)

dt,

kuk2
H
0,r/2
h (GT )

= hr
Z T

0

e−2htkuk2L2(G)dt

+

Z T

0

e−2htdt

Z ∞
0

°°°°∂[r/2]u0(·, t)∂t[r/2]
− ∂[r/2]u0(·, t− τ)

∂t[r/2]

°°°°2
L2(G)

dτ

τ 1+2{r}
,

if r/2 is not an integer. Here, u0(x, t) = u(x, t) for t > 0, u0(x, t) = 0 for t < 0.

Remark A.2.1 For T < ∞, the space Hr,r/2
h (GT ) can be identified with the

subspace of W
r,r/2
2 (GT ) consisting of functions u(x, t) that can be extended by

zero into the domain t < 0 without loss of smoothness. In the case r > 1 this

implies that u ∈ Hr,r/2
h (GT ) satisfies

∂iu

∂ti

¯̄̄̄
t=0

= 0, for i = 0, . . . ,

∙
r − 1
2

¸
.

Equivalent norms of these spaces are also possible. In the cases GT =

D+∞ ≡ R3+ × (0,∞) or GT = D∞ ≡ R2 × (0,∞), it is convenient to use the
following spaces: for γ > 0

kfk2γ,h,D∞ ≡
Z
R2
dξ0
Z +∞

−∞
|f̂(ξ0, h+ iξ0)|2|r|2γdξ0
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and

kfk2γ,h,D+∞ ≡
X
j<γ

Z
R2
dξ0
Z +∞

−∞

°°°µ d

dx3

¶j
f̂(ξ0, ·, h+ iξ0)

°°°2
L2(R+)

|r|2(γ−j)dξ0

+

Z
R2
dξ0
Z +∞

−∞

°°°f̂(ξ0, ·, h+ iξ0)°°°2
Ẇ γ
2 (R+)

dξ0.

These norms are equivalent to the norms in H
γ,γ/2
h (D∞) and H

γ,γ/2
h (D+∞)

defined above, respectively (see [38]).
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