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Chapter I

Introduction
Dramatic increases in the throughput of nucleotide sequencing machines yield

petabyte-scale data sets of biological sequences (Cochrane et al., 2009). The number
of gene sequences is being exponentially increased as well as the number of sequenced
genomes (Koonin and Wolf, 2008). As of this writing (November 2009), 1,015
prokaryotic genomes and 121 eukaryotic genomes have been sequenced according to
the GOLD database (Liolios et al., 2008). Current collection of sequenced genomes
provides us with new opportunities and challenges in comparative genomics and
evolutionary biology. Among the new challenges, we chose to focus our research
on the following theme: inference of evolutionary relationship among biological
sequences. In order to mine valuable insights from the rapidly growing repository
of biological sequences, determining evolutionary relationships is one of the most
fundamental prerequisites (Alexeyenko et al., 2006; Hulsen et al., 2006; Chen et al.,
2007).

Evolutionary relationships among biological sequences are divided into two classes:
orthology and paralogy (Fitch, 1970). A certain genomic region of a species begins
to take different evolutionary paths when the species is speciated or the genomic
region is duplicated. Orthology refers to evolutionary relationship between biological
sequences evolved by speciation, whilst paralogy refers to evolutionary relationship
between biological sequences evolved by duplication.

In this dissertation, we propose two statistical algorithms to infer orthologous re-
lationships among biological sequences based upon probabilistic models and a theory
named decision theory.

The first algorithm was designed to accurately infer orthologous relationship of
chromosomal segments among different genomes (Hachiya et al., 2009). Exponential
growth of sequenced genomes makes it possible to study chromosome-level mutations
such as genome rearrangements (Pevzner and Tesler, 2003a) and segmental dupli-
cations (Jiang et al., 2008) as well as nucleotide-level mutations such as insertions,
deletions, and substitutions. Accurate identification of orthologous chromosomal seg-
ments among different genomes is essential for the analyses of chromosome-level mu-
tations (Bourque et al., 2004, 2005).

The second algorithm was designed to reveal the relationship between the gene
order along chromosomes and the biological functions of the genes (Hachiya and
Sakakibara, 2009). It was revealed that, in mammals, 39 Hox genes are clustered
on four chromosomal loci, and their order along the chromosomes is correlated with
their spatial pattern of expression along the anterior-posterior and proximal-distal
axes (Chang, 2009). In prokaryotes, the proteins encoded by neighboring genes along
the chromosome are likely to physically interact with each other (Dandekar et al.,
1998). The rapid increase of the availability of sequenced genomes provides us with an
opportunity to explore the relationship between chromosomal position and biological
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function of genes by analyzing in a systematic and genome-scale manner rather than
by focusing on a few genes.

1 Inference, Probabilistic Models and Decision Theory
Inference is the process of drawing a conclusion by applying rules or theories to ob-

servations or hypotheses (MacKay, 2003). Statistical methodologies in bioinformatics
to make inferences have been applied to the observations obtained from biological
experiments. For example, gene prediction algorithms have been applied to genomic
sequences observed by using sequencing machines (Lowe and Eddy, 1999; Delcher
et al., 2007; Baten et al., 2008; Wang and Ruvinsky, 2009). It is noted that if a
conclusion drawn by an inference process can be easily observed from biological ex-
periments, the inference process does not play an important role in biology. Thus,
inference processes exert more beneficial impact on biology in the case where the con-
clusions drawn by the inference processes are intrinsically not observable, or difficult
to be observed. In evolutionary biology, there are many concepts that are inherently
not observable: evolutionary histories in the past, purifying selections to maintain
protein sequences, and the fitness of an organism to an environment (Pigliucci and
Kaplan, 2006). For this reason, statistical methodologies to make inferences play a
key role in evolutionary biology (Durbin et al., 1998; Nei and Kumar, 2000; Yang,
2006).

In this dissertation, we employ a statistical framework based upon probabilistic
models and the decision theory to make inferences. Probabilistic models describe the
probability density of a random variable of interest, or the joint probability density
of a set of random variables (Durbin et al., 1998; Bishop, 2006). In the case of
gene-finding algorithms, for example, joint probability densities of the occurrence of
a certain k-mer nucleotides in protein-coding regions and in non-coding regions are
respectively described by some probabilistic models such as Markov chain models and
interpolated Markov models (Delcher et al., 2007).

Let si be the DNA sequence of the ith open reading frame (ORF) candidate,
P (si|coding) be the occurrence probability of si in protein-coding regions, and
P (si|non-coding) be that in non-coding regions. Assume that P (si|coding) and
P (si|non-coding) are given for each possible DNA sequence si. Then, the decision
theory can be applied to the discrimination between protein-coding regions and
non-coding regions. For example, the logarithm of the ratio of the two occurrence
probabilities is useful to score the sequence of the ith ORF candidate:

score(si) = log
P (si|coding)

P (si|non-coding)
. (I.1)

When the base of logarithm is 2, the score given by Eq. (I.1) is in bit-scale. The
decision theory states that the following rule minimizes the expected number of mis-
classifications estimated based on the two occurrence probability densities (Bishop,
2006):
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� If score(si) ≥ 0, then the ith ORF candidate is a coding region.
� Otherwise, the ith ORF candidate is a non-coding region.

In addition, this framework enables to make inferences based on heterogeneous infor-
mation. For example, in the case of gene-finding algorithms, not only the sequence of
ORF candidates but also the sequence of ribosomal biding site (RBS) candidate are
useful to distinguish protein-coding regions from non-coding regions (Delcher et al.,
2007). Let ri be the sequence of the RBS candidate located on the up-stream of the
ith ORF candidate, P (ri|RBS) be the occurrence probability of ri in RBS regions,
and P (ri|non-RBH) be that in non-RBS regions. Then, the score of sequence of an
ORF candidate and the score of the sequence of the RBS candidate can be simply
added as shown in Eq. (I.2) because both scores are in bit-scale.

score(ith ORF) = score(si) + score(ri)

= log
P (si|coding)

P (si|non-coding)
+ log

P (ri|RBS)
P (ri|non-RBS)

.
(I.2)

In order to minimize the expected number of misclassifications, the decision theory
gives rise to the following rule:

� If score(ith ORF) ≥ 0, then the ith ORF candidate is a coding region.
� Otherwise, the ith ORF candidate is a non-coding region.

2 Probabilistic Models for Inferring Orthologous Segments
When comparing gene orders of two closely related genomes, GA and GB , genomic

segments, in which the gene order of GA is the same as that of GB , can be found. Let
G0 denote an ancestral genome of GA and GB . From the parsimonious viewpoint, it
is elucidated that the gene order of the corresponding genomic regions on G0 would be
identical to those of GA and GB , and that any genome rearrangement (e.g. inversion,
fusion, fission and translocation), gene duplication, and gene insertion/deletion would
not change the gene order of the genomic regions during the evolutionary histories
from G0 to GA and from G0 to GB .

The term orthologous segment is defined as a set of genomic segments in different
organisms descended from a common ancestor without any rearrangements (Dewey
et al., 2006): the genomic segments in which the gene order on the ancestral genome
has not been disrupted by any genome rearrangement during the evolutionary histories
from the ancestral genome to the descendant genomes under comparison. It is noted
that the evolutionary histories from an ancestral genome to descendant genomes are
intrinsically not observable. For this reason, in order to detect orthologous segments,
an inference process is required.

Accurate detection of orthologous segments among multiple genomes is essential for
the following subsequent analyses: inferring rearrangement-based phylogenies (Tesler,
2002; Bourque et al., 2004), reconstructing ancestral genomes (Bourque et al., 2005;
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Murphy et al., 2005; Ma et al., 2006), computing whole genome alignments (Dewey
et al., 2006; Gibbs et al., 2004; Waterston et al., 2002), identifying orthologous
genes (Hubbard et al., 2005; Zheng et al., 2005), and detecting non-coding functional
elements such as regulatory elements (Frazer et al., 2004). Thus, a number of algo-
rithms to detect orthologous segments have been proposed (Vandepoele et al., 2002;
Calabrese et al., 2003; Cannon et al., 2003; Kent et al., 2003; Pevzner and Tesler,
2003a; Haas et al., 2004; Soderlund et al., 2006; Sinha and Meller, 2007). A general
strategy that is common among almost the current algorithms is as follows.

Step 1 Take multiple genome sequences, G1, G2, . . . , Gn(n ≥ 2), as input.
Step 2 Detect short genomic regions with high similarity among all genomes,

G1, G2, . . . , Gn. These genomic regions are referred to as anchors.
Step 3 Detect genomic regions in which the order of anchors is well conserved among

all genomes, G1, G2, . . . , Gn.
Step 4 If the genomic regions detected in the Step 3 contain anchors more densely

than a certain threshold of anchor density, output the genomic segments as
orthologous segments.

A certain fraction of anchors are mapped on non-orthologous genomic regions be-
cause repeat and paralogous sequences also generate anchors as well as ortholo-
gous sequences do. In order to detect orthologous segments while filtering out non-
orthologous anchors, the above strategy implements an inference process based upon
the following two hypotheses.

The first hypothesis is the parsimonious hypothesis. This hypothesis assumes that if
the order of anchors in a certain genomic region is well conserved among all genomes,
G1, G2, . . . , Gn, the order of corresponding anchor sequences on the ancestral genome
is the same as the descendant genomes, and that any genome rearrangement has
not disrupted the order of anchors during evolutionary histories from the ancestral
genome to the descendant genomes under comparison. The second hypothesis is the
density hypothesis. The density hypothesis assumes that anchors are more densely
mapped on orthologous segments than on the other genomic regions. Based upon
these two hypotheses, the above strategy distinguishes orthologous segments from
the other genomic regions.

A drawback of all existing algorithms is that they do not equip with a framework to
computationally determine an appropriate threshold of the anchor density to distin-
guish orthologous segments from the other genomic regions; the threshold is required
to be given by users. In order to make accurate inference of orthologous segments, it
is needed to model two respective anchor densities for orthologous segments and for
other genomic regions, and to optimize the threshold of anchor density by making use
of the two models based on the decision theory. Another drawback of almost existing
programs is that they are implemented to compare pairwise genomes; they can not
be applied to the identification of orthologous segments among multiple genomes.

In Chapter II, we describe a novel algorithm named OSfinder (Orthologous Segment
finder) (Hachiya et al., 2009). OSfinder infers orthologous segments among multiple
genomes by modeling the respective anchor densities for orthologous segments and for
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other genomic regions based on probabilistic models, and determining the threshold
of anchor density based on the decision theory. Thus, OSfinder makes it possible to
automatically optimize the threshold of anchor density for each set of genomes. This
automation would improve the throughput of comparative genomic analyses because
manual optimization of the threshold value requires the computation of orthologous
segments multiple times while varying the threshold values. Moreover, our evaluation
tests using mammalian and bacterial genomes demonstrated that OSfinder shows
higher accuracy than existing algorithms. This result implies that it is difficult to
achieve a high accuracy based on manually-defined threshold of anchor density, and
that the use of probabilistic models and decision theory improves the accuracy of
the identification of orthologous segments. Furthermore, the accuracy of OSfinder in
multiple genome comparisons is greater than that in pairwise genome comparisons.
This result suggests that the accuracy of identifying orthologous segments would be
increased as the number of sequenced genomes increases.

3 Probabilistic Models for Inferring Positional Orthologs
It is widely accepted that orthologous genes (also referred to as orthologs) have

identical function to each other (Ohno, 1970; Remm et al., 2001; Chen et al., 2006),
whereas paralogous genes (also referred to as paralogs) have different biological func-
tions (Ohno, 1970; Zhang et al., 1998; Moore and Purugganan, 2003; Rodriguez-Trelles
et al., 2003; Thornton and Long, 2005; Han et al., 2009). Accordingly, identifying or-
thologs and paralogs is an effective way to predict gene functions and to understand
the radiation of gene families, respectively (Remm et al., 2001; Li et al., 2003; Hulsen
et al., 2006).

Positional orthologs are referred to as genes in different species that are orthologous
to each other and are located on corresponding chromosomal positions. Suppose
that two genomes, GA and GB , are speciated from a common ancestor G0, and the
gene order of three neighboring genes have not been disrupted during evolutionary
histories from G0 to GA and from G0 to GB . Let the descendant of the neighboring
gene cluster in GA and GB be {ai−1, ai, ai+1} and {bi−1, bi, bi+1}, respectively. In
addition, suppose that bi was duplicated after the speciation of GA and GB , and GB

comes to encode a new gene b′i as shown in Fig. I.1. In this case, there are three
positional orthologs: (ai−1, bi−1), (ai, bi), and (ai+1, bi+1). Although the gene pair
(ai, b

′
i) is an ortholog, it is not a positional ortholog because the two genes are not

located on corresponding chromosomal positions.
Although a number of algorithms have been proposed to identify orthologs (Tatusov

et al., 1997; Remm et al., 2001; Li et al., 2003; Tatusov et al., 2003; Dehal and
Boore, 2006; Vilella et al., 2009), there are a few algorithms to identify positional
orthologs (Fu et al., 2007; Rödelsperger and Dieterich, 2008). However, recent re-
searches on the relationship between gene order and gene function in prokaryotic
genomes reveal that positional orthologs tend to have identical function to each other,
and the other types of orthologs (e.g. in-paralogs) tend to have different biological
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Fig. I.1 An illustration of a genome evolution with a duplication event. We here
suppose that two genomes, GA and GB , are speciated from a common ancestor, and
the gene order of three neighboring genes have not been disrupted. The descendant
of the gene cluster in GA and GB are denoted as {ai−1, ai, ai+1} and {bi−1, bi, bi+1},
respectively. In addition, we suppose that bi is duplicated after the speciation of GA

and GB , and GB comes to encode a new gene b′i.

functions (Dandekar et al., 1998; Overbeek et al., 1999a,b; Snel et al., 2000; Note-
baart et al., 2005). Furthermore, the identification of positional orthologs is useful
to detect conserved gene clusters. A conserved gene cluster is defined as a cluster
of neighboring genes whose gene order is conserved across several species. Since the
proteins encoded by the genes in conserved gene clusters have shown to tend to physi-
cally interact with each other (Dandekar et al., 1998), the detection of conserved gene
clusters provides valuable information to predict protein-protein interactions (Huy-
nen et al., 2000; Wolf et al., 2001; Li et al., 2007). It is noted that the identification
of positional orthologs is useful to predict molecular functions of a protein, whereas
the detection of conserved gene clusters is useful to predict a higher order function of
genes (e.g. with which other protein it interacts) (Huynen et al., 2000).

In order to detect positional orthologs, it is needed to develop an algorithm which
takes into account not only the conservation of protein sequences but also gene or-
der conservation from the definition of positional orthologs. Existing algorithms to
identify positional orthologs (Fu et al., 2007; Rödelsperger and Dieterich, 2008) be-
gin with detecting homologous gene pairs (e.g. gene pairs whose bit score is greater
than 50 bits in BLASTP comparison (Altschul et al., 1990)). Next, they identify
positional orthologs based on the chromosomal positions of homologous gene pairs.
When comparing two genomes, GA and GB , the MSOAR algorithm (Fu et al., 2007)
assigns positional orthologs so as to minimize the number of genome rearrangement
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operations required to convert the order of orthologous genes on GA into that on GB .
The Syntenator algorithm (Rödelsperger and Dieterich, 2008) identifies positional
orthologs so as to maximize the size of each conserved gene clusters.

A drawback of those existing algorithms is that they employ a step-wise approach
to take into account the conservation of protein sequences and the gene order con-
servation; they take into account the conservation of protein sequences in the first
step, and make use of the gene order conservation in the second step. This step-wise
approach requires users to set the threshold of protein sequence conservation score,
which would largely affect the results of identification of positional orthologs. Thus,
it is desirable to develop a simultaneous approach, which simultaneously takes into
account the conservation of protein sequences and the gene order conservation.

In Chapter III, we describe a novel algorithm named OASYS (Orthology Assign-
ment based on SYnteny and Sequence information) (Hachiya and Sakakibara, 2009).
OASYS identifies positional orthologs by modeling the probability densities of pro-
tein sequence conservation score as well as those of gene order conservation score.
Probability densities are estimated for positional orthologs and for other homologous
gene pairs, respectively. By making use of these probability densities and applying
the decision theory, protein sequence conservation score and gene order conservation
score for a homologous gene pair are mapped to the scores in bit-scale. Thus, the
two heterogeneous conservation scores can be simply added, or added with weight for
each conservation information. Thus, OASYS realizes a simultaneous approach to the
identification of positional orthologs based on probabilistic models and the decision
theory. As expected, our evaluation tests using prokaryotic genomes demonstrated
that OASYS identifies positional orthologs more accurately than existing algorithms,
and that OASYS detects conserved gene clusters more sensitively than existing algo-
rithms.

In Chapter III, we also describe a study using OASYS on the relationship between
gene order and gene function. We focus on an interesting finding in previous research
that the degree of protein sequence conservation of genes in conserved gene clusters
is substantially higher than that of the other genes (Dandekar et al., 1998; Lemoine
et al., 2007). Although the previous studies do not conduct further analyses for dis-
cussing evolutionary forces behind the correlation between protein sequence homology
and gene order conservation, we pursue the problem of evolutionary forces by esti-
mating the rate of synonymous substitutions (KS) and the rate of nonsynonymous
substitutions (KA). The ratio between KA and KS (KA/KS) can be used to assess
how strong evolutionary pressures have enforced conservation of protein sequences
because KA/KS = 1 means neutral mutations, KA/KS < 1 purifying selections, and
KA/KS > 1 diversifying positive selections (Yang et al., 2000). We can also assess
how frequently the coding sequence of a gene has been substituted based on the value
of KS . In this research, we assume that higher degree of protein sequence conserva-
tion of genes in conserved gene clusters can be explained by either stronger purifying
pressures to maintain protein sequences (lower value of KA/KS ratio), lower substi-
tution rate in the coding sequences (lower value of KS), or both. Based upon this
assumption, we aim to unravel which of the three explanations is appropriate for each

8



taxonomic group. An efficient workflow using OASYS makes it possible to perform a
genome-scale systematic comparison of 101 prokaryotic genomes as well as that of 15
fungal genomes. This research gives rise to the following new findings:

� The correlation between protein sequence homology and gene order conserva-
tion was observed also in fungal genome comparisons. We firstly reported this
finding in our previous paper (Hachiya and Sakakibara, 2009). This finding is
important because it suggests that the methodologies to predict protein-protein
interactions used in prokaryotic genomes is also useful to predict protein-protein
interactions in eukaryotic genomes (or at least fungal genomes).

� Not only stronger purifying pressures to maintain protein sequences but also
lower substitution rate of coding sequences induce the correlation between pro-
tein sequence homology and gene order conservation. This finding give an
impact on the discussion in the previous studies (Dandekar et al., 1998; Huy-
nen et al., 2000; Wolf et al., 2001; Li et al., 2007) because previous studies only
proposed stronger purifying pressures.

4 Organization of this dissertation
The remainder of this dissertation is organized as follows:

� In Chapter II, the research on accurate identification of orthologous segments
is described.

� In Chapter III, the research on accurate identification of positional orthologs
and sensitive detection of conserved gene clusters is described.

� In Chapter IV, summary of this dissertation and further works are described.
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Chapter II

Accurate Identification of Orthologous

Segments among Multiple Genomes
The accurate detection of orthologous segments (also referred to as syntenic seg-

ments) plays a key role in comparative genomics, as it is useful for inferring genome
rearrangement scenarios and computing whole genome alignments. Although a num-
ber of algorithms for detecting orthologous segments have been proposed, none of
them contain a framework for optimizing their parameter values.

In the present study, we propose an algorithm, named OSfinder (Orthologous Seg-
ment finder), which uses a novel scoring scheme based on stochastic models (Hachiya
et al., 2009). OSfinder takes as input the positions of short homologous regions
(also referred to as anchors) and explicitly discriminates orthologous anchors from
non-orthologous anchors by using Markov chain models which represent respective
geometric distributions of lengths of orthologous and non-orthologous anchors. Such
stochastic modeling makes it possible to optimize parameter values by maximizing the
likelihood of the input dataset, and to automate the setting of the optimal parameter
values.

We validated the accuracies of orthology mapping algorithms on the basis of their
consistency with the orthology annotation of genes. Our evaluation tests using mam-
malian and bacterial genomes demonstrated that OSfinder shows higher accuracy
than previous algorithms.

The OSfinder software was implemented as a C++ program. The software is freely
available at http://osfinder.dna.bio.keio.ac.jp under the GNU General Public License.

1 Background
The term orthologous segment is defined as a set of genomic segments in different

organisms descended from a common ancestor without large rearrangements (Dewey
et al., 2006). The accurate detection of orthologous segments is essential for the
following: inferring rearrangement-based phylogenies (Tesler, 2002; Bourque et al.,
2004), reconstructing ancestral genomes (Bourque et al., 2005; Murphy et al., 2005;
Ma et al., 2006), computing whole genome alignments (Dewey et al., 2006; Gibbs et al.,
2004; Waterston et al., 2002), identifying orthologous genes (Hubbard et al., 2005;
Zheng et al., 2005), and detecting non-coding functional elements such as regulatory
elements (Frazer et al., 2004). The problem of identifying orthologous segments is
referred to as orthology mapping (Dewey et al., 2006).

The general strategy of orthology mapping is as follows: (i) Take as input the po-
sitions of short homologous regions (also referred to as anchors) detected among the
set of genomes under comparison. Homologous genes or bidirectional local sequence
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matches are commonly used as anchors. (ii) Detect collinear anchors which are dis-
tributed in the same order and have the same orientation. (iii) Connect closely located
collinear anchors. (iv) Output connected components as orthologous segments.

One difficulty in orthology mapping concerns the fact that a non-negligible frac-
tion of input anchors are non-orthologous rather than orthologous. In the case where
the anchors are homologous gene pairs, paralogous gene pairs can be detected as
non-orthologous anchors. In the case where the anchors are homologous sequence
matches, repeat sequences can be detected as non-orthologous anchors. Conservation
scores for anchors and distances between adjacent anchors constitute important fea-
tures for distinguishing between orthologous genomic regions, in which anchors are
distributed densely in off-diagonal positions, and non-orthologous genomic regions, in
which anchors are distributed randomly. Existing orthology mapping programs im-
plicitly filter out non-orthologous anchors in the process of identifying orthologous seg-
ments. Pevzner and Tesler (2003a) proposed the GRIMM-Synteny algorithm, which
chains every pair of anchors if the distance between the two anchors is less than a
certain distance threshold, removes chained components if the size of the components
is smaller than a certain size threshold, and reports the remaining components as
synteny blocks. In order to avoid detecting non-orthologous genomic regions as syn-
teny blocks, it is important to set these two threshold values appropriately. However,
GRIMM-Synteny does not provide a framework for determining optimal threshold
parameters.

ADHoRe (Vandepoele et al., 2002) and SyMAP (Soderlund et al., 2006) are tools for
detecting orthologous segments which are capable of automatically determining the
distance threshold value. These tools perform detection by starting with a small value
of the distance threshold and increasing it iteratively. This iteration process yields an
appropriate distance threshold value which maximizes the length of the orthologous
segments while retaining satisfactory quality (Soderlund et al., 2006). Both ADHoRe
and SyMAP define the quality of the orthologous segments on the basis of the diagonal
properties of the anchor positions. For a series of anchors, the anchor positions are
fitted with a linear regression model, and the quality is computed as the coefficient
of determination. Although these programs can determine the distance threshold
automatically, they require a quality threshold to be set manually.

In addition to the above programs, other orthology mapping algorithms, including
DAGChainer (Haas et al., 2004), AXTCHAIN (Kent et al., 2003), DiagHunter (Can-
non et al., 2003), FISH (Calabrese et al., 2003), and Cinteny (Sinha and Meller, 2007),
also require the manual setting of key threshold parameters. Since these thresholds
can affect the accuracy of orthology mapping programs and are difficult to set manu-
ally, a more sophisticated approach for determining their parameter values is needed.
Furthermore, the vast majority of existing orthology mapping programs are applica-
ble only in pairwise genome comparisons. Thus, the capability to compare multiple
genomes is also desired.

In the present study, we propose an orthology mapping algorithm, named OSfinder
(Orthologous Segment finder), which uses a novel scoring scheme based on stochastic
models. OSfinder explicitly discriminates orthologous anchors from non-orthologous
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anchors by using Markov chain models, which represent respective geometric distribu-
tions of lengths of orthologous and non-orthologous anchors. Such stochastic modeling
makes it possible to optimize parameter values by maximizing the likelihood of the
input dataset, and to automate the setting of the optimal parameter values. More-
over, OSfinder can be applied not only in pairwise genome comparisons, but also in
multiple genome comparisons. There is no limit to the number of genomes which can
be compared with our software.

2 Methods

2.1 Detecting anchors

The term anchor generally refers to well-conserved short regions between two or
multiple genomes, and is biologically defined as a group of homologous genes or a set
of homologous sequence matches. In our experiments, anchors were detected between
mammalian genomes and between bacterial genomes. Mammalian genomes included
those of human, chimpanzee, macaque, mouse, rat, dog, and opossum, and bacterial
genomes included those of M. tuberculosis (Mtu), M. bovis (Mbo), M. leprae (Mle),
and M. avium (Mpa). Since the method for detecting anchors can affect the accuracy
of orthology mapping programs, two methods for detecting anchors were taken into
account.

2.1.1 DNA sequence matches
Whole genome sequences of the seven mammals and the four bacteria were

taken from the Ensembl genome browser (Hubbard et al., 2007) and the RefSeq
database (Pruitt et al., 2007), respectively. When comparing two genomes x and x′,
the whole genome sequences of x and x′ were input into Murasaki (Popendorf et al.,
2007) with the repeat mask option. The genomic locations of the anchors were then
output by Murasaki. After appropriate format transformation, the Murasaki output
was used as input for the orthology mapping programs. Both pairwise and multiple
anchors can be computed by this work flow.

2.1.2 Homologous protein sequences
Protein sequences encoded in the seven mammalian genomes and the four bacteria

genomes were drawn from the Ensembl genome browser and the RefSeq database,
respectively. When comparing two genomes x and x′, all protein sequences encoded
in genome x were compared with all protein sequences encoded in genome x′ by using
the BLASTP program (Altschul et al., 1990), and protein pairs whose E-values were
less than 10−100 were regarded as anchors. Then, pairs of gene IDs were transformed
into pairs of genomic locations of the genes. The file containing the genomic positions
of the anchors were used as input for the orthology mapping programs. Only pairwise
anchors can be computed by this work flow.

The statistics for the anchors detected between mammalian genomes are summa-
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Table. II.1 Statistics for anchors in the pairwise comparison of mammalian genomes

Genomes Number Length
DNA sequence matches

human-chimpanzee 3,588,387 386
human-macaque 3,528,953 174
human-mouse 227,258 99
human-rat 205,271 98
human-dog 542,745 107
human-opossum 78,659 108

Homologous gene pairs
human-chimpanzee 97,865 37,389
human-macaque 93,346 38,288
human-mouse 90,088 39,702
human-rat 64,257 46,096
human-dog 41,020 62,429
human-opossum 104,093 35,024

We show the number and the average length (bp) of anchors detected in the pairwise comparison of

mammalian genomes. The lengths shown here were calculated along with the human genome.

rized in Table II.1.

2.2 Mathematical definitions

The OSfinder algorithm is based on the following mathematical definitions. Here,
we denote the set of genomes under comparison as G and the set of pre-computed
anchors as a.

2.2.1 Anchors
The genomic position of an anchor ai (∈ a) can be represented by four properties

for each genome x (∈ G): chromosome ID (ai.chromx), start position (ai.startx),
end position (ai.endx), and strand information (ai.signx) (Figs. II.1(a), II.1(b)). We
define that the values of ai.startx and ai.endx are positive integer, and represent
coordinates in terms of forward strand positions in the chromosome ai.chromx, where
the first base in a chromosome is numbered 1. That is, for an anchor ai on the
reverse strand, the start and end positions of ai are defined as the coordinates of the
complementary region of ai on the forward strand, and therefore these two values
satisfy the condition ai.startx < ai.endx regardless of the value of ai.signx. Further,
we assume that for the reference genome ẋ, the value of ai.signẋ is “1” ∀ai ∈ a. The
value of ai.signx is “1” if the anchor region from the genome x is not inverted relative
to the anchor region from the reference genome ẋ, and ai.signx = −1 if the anchor
region from the genome x is inverted relative to the anchor region from the reference
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Fig. II.1 These figures show a toy problem of detecting chains in which seven an-
chors are pre-computed between two genomes A and B. (a) shows the genomic
positions of the seven anchors, in which colored arrows represent the anchors (either
homologous genes or conserved sequences). In this figure, anchors located on the for-
ward strand are depicted as right arrows, and anchors located on the reverse strand
are depicted as left arrows. (b) represents the properties of the seven anchors, in
which genome A is used as the reference genome. (c) visualizes the anchor graph
by using a dot-plot, in which anchors are depicted by colored solid lines and edges
are depicted by black broken lines. (d) illustrates that chains (indicated by colored
blocks) correspond to non-intersecting paths in the anchor graph.

genome ẋ. Note that the choice of the reference genome does not affect the collinear
relation between the anchors.

2.2.2 Collinearity
In comparative genomics, conservations which are distributed in the same order

and have the same orientation are referred to as collinear conservations (Bennetzen
and Ramakrishna, 2002; Song et al., 2002). Two anchors, ai and ai′ , are collinear if
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the following conditions are satisfied:

ai.chromx = ai′ .chromx

ai.signx = ai′ .signx{
ai.endx < ai′ .startx when ai.signx = 1
ai′ .endx < ai.startx when ai.signx = −1,

(II.1)

∀x ∈ G. Let ai ≺ ai′ denote the case where ai and ai′ satisfy the conditions shown in
Eq. (II.1).

2.2.3 Anchor graph
The collinear relation defines a partial order between the anchors. Since a partial

order induces a directed acyclic graph (DAG), the collinear relations can be repre-
sented as a DAG (Fig. II.1(c)). OSfinder constructs a DAG in which a node is an
anchor and a directed edge is drawn from ai to ai′ if ai ≺ ai′ and there is no anchor
ai′′ satisfying ai ≺ ai′′ ≺ ai′ . We call this type of DAG an anchor graph.

2.2.4 Edges in an anchor graph
The start and end positions of an edge ej (∈ e) connecting two anchors (ai and ai′)

are defined as follows:

ej .startx ≡ min{ai.endx, ai′ .endx} + 1

ej .endx ≡ max{ai.startx, ai′ .startx} − 1.

2.2.5 Length of anchors and edges
The length of an anchor ai and the length of an edge ej are defined as follows:

ai.length ≡
∑
x∈G

(ai.endx − ai.startx + 1)

ej .length ≡
∑
x∈G

(ej .endx − ej .startx + 1).

2.2.6 Chains
Chains are genomic segments in which anchors are distributed densely in off-

diagonal positions. Chains correspond exactly to non-intersecting suboptimal paths
in the observed anchor graph, where two paths are intersecting if their coordinate
spans overlap with each other ∀x ∈ G (Fig. II.1(d)).

2.2.7 Orthologous segments
Orthologous segments are defined as genomic segments descended from a common

ancestor without large rearrangements. An orthologous segment corresponds to a
sequence of collinear chains, where the collinearity of chains is defined in a similar
manner to that of anchors (Fig. II.2).
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Fig. II.2 These figures show the algorithm which detects orthologous segments.
Here, we assume that five chains are detected between two genomes A and B. (a)
illustrates the genomic locations of the chains along with the two genomes, where the
chains are represented by colored arrows. (b) visualizes the collinear relation between
the chains by highlighting the genomic regions between collinear chains. (c) exhibits
the genomic locations of the orthologous segments, where orthologous segments are
represented by large colored arrows.

16



2.3 OSfinder algorithm

In order to identify orthologous segments accurately, orthology mapping algorithms
should be able to distinguish between orthologous and non-orthologous anchors. For
this purpose, OSfinder introduces a set of hidden variables named labels. A label is
assigned to an anchor or an edge, and its value is either “+” or “−”, where “+”
represents an orthologous anchor or edge and “−” represents a non-orthologous one.

The likelihood for the observed anchor graph is defined by two sets of variables,
namely a set of model parameters M and a set of labels L. By computing the maxi-
mum likelihood solution for M and L, the respective length distributions of ortholo-
gous and non-orthologous anchors (edges) are fitted to geometric distributions defined
by Markov chain models. The optimized model parameters not only determine the
optimal length threshold for anchors (edges) which is used to discriminate between or-
thologous and non-orthologous anchors (edges), but also provide the score for anchors
(edges) in the anchor graph. Based on the scores, non-intersecting suboptimal paths
are efficiently extracted from the anchor graph by using a dynamic programming tech-
nique, and a set of chains is detected. Finally, a sequence of collinear chains is merged
into an orthologous segment in order to fill large gap regions between collinear chains.

The overall algorithm of OSfinder is composed of the following steps. (i) Take
the genomic positions of the anchors as input. (ii) Construct an anchor graph. The
definition of the likelihood for an anchor graph is described in “2.3.1 Likelihood for
an anchor graph”. (iii) Compute the optimal values for labels and model parameters.
Two optimization algorithms are described in “2.3.2 Global maximization algorithm”
and “2.3.3 Local maximization algorithm”. (iv) Extract non-intersecting suboptimal
paths from the observed anchor graph and detect a set of chains. The description
of the extraction algorithm can be found in “2.3.4 Chain extraction algorithm”. (v)
Merge collinear chains and output the merged components as orthologous segments.
The merge algorithm is described in “2.3.5 Merge algorithm”.

2.3.1 Likelihood for an anchor graph
OSfinder models the respective length distributions of orthologous and non-

orthologous anchors (and edges) in the observed anchor graph by using Markov chain
models. These models have two states, the extend state (X) and the end state (N),
and two state transitions, X → X and X → N (Fig. II.3). We denote the transition
probability from state X to state X as P (X → X|M), and the transition probability
from state X to state N as P (X → N |M), where M denotes a model. Note that
P (X → X|M) + P (X → N |M) = 1. An anchor (or an edge) whose length is l
indicates the transition sequence (X → X)l−1 → N . Thus, the likelihood for an
anchor ai and the likelihood for an edge ej are defined by the following geometric
distributions:

P (ai|M) = P (X → X|M)(ai.length−1) × P (X → N |M)

P (ej |M) = P (X → X|M)(ej .length−1) × P (X → N |M).
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Fig. II.3 Markov chain models in OSfinder.

Next, we set up four Markov chain models, namely a model for representing orthol-
ogous anchors (M+

anchor), a model for representing non-orthologous anchors (M−
anchor),

a model for representing orthologous edges (M+
edge), and a model for representing non-

orthologous edges (M−
edge). OSfinder assumes that the average length of orthologous

anchors is greater than the average length of non-orthologous anchors. This assump-
tion is implemented in the constraint shown in Eq. (II.2). Similarly, it is assumed
that the average length of orthologous edges is shorter than the average length of
non-orthologous edges. This assumption is implemented in the constraint shown in
Eq. (II.3).

P (X → N |M+
anchor) < P (X → N |M−

anchor) (II.2)

P (X → N |M+
edge) > P (X → N |M−

edge). (II.3)

Given a set of model parameters M and a set of labels L, OSfinder defines the
likelihood for an anchor ai and the likelihood for an edge ej as follows:

P (ai|M,L) =

{
P (ai|M+

anchor) if ai.label is “+”,
P (ai|M−

anchor) if ai.label is “−”.

P (ej |M,L) =

{
P (ej |M+

edge) if ej .label is “+”,
P (ej |M−

edge) if ej .label is “−”.

(II.4)

Given a set of labels L, let a+ be a set of anchors labeled as “+” and a− be a set of
anchors labeled as “−” (a = a+ ∪ a−). Similarly, let e+ be a set of edges labeled as
“+” and e− be a set of edges labeled as “−” (e = e+ ∪ e−). Then, given M and
L, the likelihood for an anchor graph G = (a, e) is defined as follows:

P (a, e|M,L)

= Πai∈a+P (ai|M+
anchor) × Πai′∈a−P (ai′ |M−

anchor)

× Πej∈e+P (ej |M+
edge) × Πej′∈e−P (ej′ |M−

edge).

(II.5)
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2.3.2 Global maximization algorithm
The parameter values in our Markov chain models are optimized so as to maximize

the likelihood for the observed anchor graph. Let M̃ denote a set of optimal model
parameters and L̃ denote a set of optimal labels. M̃ and L̃ are defined by the following
equation:

(M̃, L̃) = argmax(M,L)P (G|M,L). (II.6)

Given a set of labels L, the conditionally optimal parameter set M̂L is defined as
follows:

M̂L = argmaxMP (G|M,L). (II.7)

The conditionally optimal model parameters can be calculated from the following
equations (see Proof 1 in the section 2.4.1):

P (X → N |M+
anchor) =

|a+|∑
ai∈a+ ai.length

P (X → N |M−
anchor) =

|a−|∑
ai′∈a− ai′ .length

P (X → N |M+
edge) =

|e+|∑
ej∈e+ ej .length

P (X → N |M−
edge) =

|e−|∑
ej′∈e− ej′ .length

.

(II.8)

Note that P (X → X|M) can be calculated from P (X → N |M) easily.
From Eq. (II.7), the maximization problem shown in Eq. (II.6) can be restated as

follows:

max
M,L

P (G|M,L) = max
L

max
M

P (G|M,L)

= max
L

P (G|M̂L, L).

Thus, a naive method to maximize the likelihood for an anchor graph is to enumerate
all possible label sets and to find the label set which maximizes P (G|M̂L, L). However,
the computation of the naive method is infeasible in terms of computational costs since
the number of all possible label sets is 2(|a|+|e|). Our global maximization algorithm
reduces the number of label sets for enumeration to (|a| + |e| − 2) without losing the
ability to find the global optimum. The total computational complexity of the global
maximization algorithm is O(|a|2 + |e|2).

Let Manchor = {M+
anchor, M

−
anchor}, Medge = {M+

edge,M
−
edge}, Lanchor be a set of la-

bels for anchors, and Ledge be a set of labels for edges. We define P (a|Manchor, Lanchor)
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and P (e|Medge, Ledge) as follows:

P (a|Manchor, Lanchor)

= Πai∈a+P (ai|M+
anchor) × Πai′∈a−P (ai′ |M−

anchor)

P (e|Medge, Ledge)

= Πej∈e+P (ej |M+
edge) × Πej′∈e−P (ej′ |M−

edge).

(II.9)

Then, Eq. (II.5) can be restated as Eq. (II.10).

P (a, e|M,L) = P (a|Manchor, Lanchor) × P (e|Medge, Ledge). (II.10)

From Eq. (II.10), (Manchor, Lanchor) and (Medge, Ledge) can be optimized separately.
Note that M = Manchor ∪ Medge and L = Lanchor ∪ Ledge.

Next, we show the algorithm used for the optimization of Lanchor and Manchor. We
can prove that there exists an optimal cutoff value for the anchor length such that
the optimal label of an anchor ai is “+” if the length of ai is longer than the optimal
cutoff length and “−” otherwise (see Proof 2 in the section 2.4.2). Then, the problem
of searching the optimal label set for anchors L̃anchor is reduced to the problem of
searching the optimal cutoff values for the anchor length. Our brute force algorithm
enumerates all possible cutoff values and finds the global optimum for Lanchor and
Manchor as follows:

1. Sort anchors in order of increasing length.
2. For each anchor ai in the sorted set, (1 ≤ i ≤ |a| − 1)
（a）Set cut length at ai.length+ai+1.length

2 .
（b）Calculate Lanchor on the basis of the current value of cut length.

ai.label = “+” if ai.length > cut length

ai.label = “−” otherwise.

（c）Calculate Manchor by substituting Lanchor into Eq. (II.8).
（d）Calculate P (a|Manchor, Lanchor) by substituting Manchor and Lanchor into

Eq. (II.9).
3. Report the global optimum solution for Manchor and Lanchor which show the

highest value of P (a|Manchor, Lanchor). .

The optimization of Ledge and Medge can be performed in a manner similar to the
optimization of Lanchor and Manchor.

2.3.3 Local maximization algorithm
The computation of the global maximization algorithm is also infeasible when the

number of anchors or the number of edges is extremely large (Table II.2). Thus, a fast
learning algorithm whose computational complexity is O(|a|+ |e|) is also implemented
in OSfinder.
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Table. II.2 Computational time of our local and global maximization algorithms

Genomes #Anchorsa #Edgesb Local Global
DNA sequence matches

human-chimpanzee 3,588,387 4,987,547 6,550 >10,000
human-macaque 3,528,953 3,963,964 8,787 >10,000
human-mouse 227,258 329,567 17 748
human-rat 205,271 290,624 17 565
human-dog 542,745 766,906 80 4137
human-opossum 78,659 91,006 5 70

Homologous gene pairs
human-chimpanzee 97,865 2,992,730 221 >10,000
human-macaque 93,346 2,600,844 159 >10,000
human-mouse 90,088 1,711,309 33 >10,000
human-rat 64,257 886,296 17 3,399
human-dog 41,020 206,393 2 200
human-opossum 104,093 2,627,033 74 >10,000

This figure shows the computational time (in min.) of our local and global maximization algorithms.
The CPU used in our experiment was 3.0GHz Xeons.
aNumber of anchors in the anchor graph.
bNumber of edges in the anchor graph.

Given a set of model parameters M , the conditionally optimal label set L̂M is
defined as follows:

L̂M = argmaxLP (G|M,L). (II.11)

The conditionally optimal labels are given by Eq. (II.12).

ai.label = argmaxlabel∈{+,−}P (ai|M label
anchor)

ej .label = argmaxlabel∈{+,−}P (ej |M label
edge )

(II.12)

The following algorithm is capable of finding a local optimum.

1. Set the initial model parameters M0 on the basis of Eq. (II.13)

P (X → N |M+
anchor) =

2
aveai∈a(ai.length) + maxai∈a(ai.length)

P (X → N |M−
anchor) =

2
aveai∈a(ai.length) + minai∈a(ai.length)

P (X → N |M+
edge) =

2
aveej∈e(ej .length) + minej∈e(ej .length)

P (X → N |M−
edge) =

2
aveej∈e(ej .length) + maxej∈e(ej .length)

.

(II.13)
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Table. II.3 Accuracy of our local and global maximization algorithms

Local Global
Genomes Sn Sp F Sn Sp F

DNA sequence matches
human-chimpanzee 98.98 98.38 98.68 - - -
human-macaque 97.93 96.86 97.40 - - -
human-mouse 93.46 95.18 94.31 93.46 95.18 94.31
human-rat 89.09 90.21 89.65 89.11 90.23 89.67
human-dog 95.70 95.98 95.84 95.70 95.98 95.84
human-opossum 76.43 83.09 79.62 76.43 83.09 79.62

Homologous gene pairs
human-chimpanzee 98.66 98.41 98.53 - - -
human-macaque 90.59 90.79 90.69 - - -
human-mouse 86.82 91.43 89.06 - - -
human-rat 85.77 87.59 86.67 85.77 87.59 86.67
human-dog 93.20 95.28 94.23 93.20 95.28 94.23
human-opossum 55.92 55.81 55.87 - - -

This figure shows the respective accuracies of our local and global maximization algorithms. “−”

indicates that OSfinder was unable to calculate orthologous segments within 10,000 minutes. If the

respective accuracies of the two methods were different, the values of the accuracies are shown as

bold letters.

Parameter values initialized by using Eq. (II.13) clearly satisfy the two condi-
tions shown in Eqs. (II.2) and (II.3).

2. For each step t (1 ≤ t ≤ tmax)
（a）Calculate the conditionally optimal labels by using the parameter values

calculated at step (t − 1). In other words, Lt = L̂M(t−1) .
（b）Calculate the conditionally optimal model parameters by using the labels

calculated at step t. In other words, M t = M̂Lt

（c）Stop the iteration if M (t−1) = M t.
3. Report the parameter values obtained at the end of the above iteration.

It can be proven that the parameters identified by the algorithm locally maximize
the likelihood for the observed anchor graph (see Proof 3 in the section 2.4.3). The
default value for tmax is set at 100 in the current version of OSfinder. Although
the fast algorithm calculates a local optimum rather than the global optimum, our
computational experiments using mammalian genomes show that the accuracy of the
local maximization algorithm is almost the same as that of the global maximization
algorithm (Table II.3).
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2.3.4 Chain extraction algorithm
Given a set of optimal model parameters M̃ , the score for an anchor ai and the

score for an edge ej are defined as log-odds of two likelihoods as follows:

ai.score = log
P (ai|M+

anchor)
P (ai|M−

anchor)
(II.14)

ej .score = log
P (ej |M+

edge)

P (ej |M−
edge)

. (II.15)

A path in an anchor graph corresponds exactly to a sequence of collinear anchors.
Let apk denote a set of anchors included in a path pk, and epk denote a set of edges
included in pk. In this case, the score for path pk is defined by the following equation:

pk.score =
∑

ai∈apk

ai.score +
∑

ej∈epk

ej .score.

The path with the highest score can be efficiently found by using a dynamic pro-
gramming technique with the following recursive formula for the best path ending at
anchor ai:

path score(ai)

= ai.score + max

{
maxai′≺ai{path score(ai′) + eai′→ai .score}
0 ,

(II.16)

where eai′→ai represents the edge drawn from anchor ai′ to anchor ai. After the opti-
mization of the model parameters, the chain extraction algorithm in OSfinder detects
non-intersecting suboptimal paths from the observed anchor graph. It recursively ex-
ecutes the following operations: (i) calculation of the list whose i-th element deposits
the value of path score(ai) defined by Eq. (II.16), (ii) detection of the highest-scoring
path by tracing back from the element which has the highest value of path score(ai),
and (iii) removal of the anchors and edges which are intersecting with the extracted
path, until there are no paths scoring higher than zero (Fig. II.4). The re-calculation
of the list is essential for the detection of the next highest-scoring path because the re-
moval of the anchors and edges changes the scores in the list. We call the suboptimal
paths chains.

2.3.5 Merge algorithm
Given a set of chains, the merge algorithm in OSfinder performs the following

operation on the basis of a user-defined parameter named minimum segment length:

1. Construct a DAG, where a node is a chain and a directed edge is drawn from a
chain cl to a chain cl′ if cl ≺ cl′ and there is no chain cl′′ satisfying cl ≺ cl′′ ≺ cl′ .
We call the DAG a chain graph.
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Fig. II.4 These figures show the algorithm which extracts chains. (a) shows the
observed anchor graph. Given the anchor graph, (b) illustrates the highest-scoring
path, where the anchors and edges included in the highest-scoring path are repre-
sented by bold lines. Furthermore, (c) shows the anchor graph after the removal
of the anchors and edges which are intersecting with the extracted path. Also, (d)
exhibits the next highest-scoring path, where the anchors and edges included in the
next highest-scoring path are represented by bold lines.

2. Sort the edges in the chain graph in order of increasing edge length.
3. For each edge ej in the sorted order (1 ≤ j ≤ |e|)
（a）Check whether there exists any merged component such that its coordinate
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span overlaps with the coordinate span of the edge ej for at least one
genome x (∈ G), and its length is greater than the minimum segment
length.

（b）If no such case exists, merge chains connected through the j-th edge.
4. Report merged components whose length is greater than the minimum segment

length as orthologous segments.

The minimum segment length controls the resolution of the orthology mapping. A
large value for this parameter is appropriate for analyzing macrorearrangements, and
a small value for the parameter is appropriate for drawing detailed dot-plots.

2.4 Proofs

In this section, we use the following representations.
G : an anchor graph.
a+ : a set of anchors labeled as “+”.
a− : a set of anchors labeled as “−”.
e+ : a set of edges labeled as “+”.
e− : a set of edges labeled as “−”.
M+

anchor : Markov chain model for orthologous anchors.
M−

anchor : Markov chain model for non-orthologous anchors.
M+

edge : Markov chain model for orthologous edges.
M−

edge : Markov chain model for non-orthologous edges.
M = { M+

anchor, M−
anchor, M+

edge, M−
edge }

L : a set of labels for anchors and edges.

2.4.1 Proof 1
Here, we demonstrate that the parameter values calculated by using Eq. (II.8) are

conditionally optimal.
Note that an anchor (or an edge) whose length is l implies the transition sequence

(X → X)l−1 → N . Let Nai(X → X) be the number of transitions from state X
to state X, which are observed in the transition sequence associated with an anchor
ai. We define Nai(X → N), Nej (X → X) and Nej (X → N) similarly, where
ej represents an edge. The numbers of transitions can be easily calculated by using
Eq. (II.17).

Nai(X → X) = ai.length − 1

Nai(X → N) = 1

Nej (X → X) = ej .length − 1

Nej (X → N) = 1.

(II.17)

Given a set of labels for anchors and edges, the maximum likelihood solution for
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model parameters is given by Eq. (II.18).

P (X → N |M+
anchor)

=

∑
ai∈a+ Nai(X → N)∑

ai∈a+ Nai(X → X) +
∑

ai∈a+ Nai(X → N)

P (X → N |M−
anchor)

=

∑
ai′∈a− Nai′ (X → N)∑

ai′∈a− Nai′ (X → X) +
∑

ai′∈a− Nai′ (X → N)

P (X → N |M+
edge)

=

∑
ej∈e+ Nej (X → N)∑

ej∈e+ Nej (X → X) +
∑

ej∈e+ Nej (X → N)

P (X → N |M−
edge)

=

∑
ej′∈e− Nej′ (X → N)∑

ej′∈e− Nej′ (X → X) +
∑

ej′∈e− Nej′ (X → N)
.

(II.18)

By substituting Eq. (II.17) into Eq. (II.18), Eq. (II.8) is obtained. Thus, the parameter
values calculated by using Eq. (II.8) are conditionally optimal.

¤

2.4.2 Proof 2
The two conditions shown in Eqs. (II.2) and (II.3) are always satisfied throughout

all procedures in OSfinder. Here, we demonstrate that under such conditions, there
exists an optimal cutoff value for the anchor length such that the optimal label of an
anchor ai is “+” if the length of ai is longer than the optimal cutoff length and “−”
otherwise.

We assume that the label of an anchor ai is “+” and the label of an anchor ai′ is
“−”. Then, from Eq. (II.12), Eqs. (II.19) and (II.20) must be satisfied.

P (ai|M+
anchor) > P (ai|M−

anchor) (II.19)

P (ai′ |M+
anchor) < P (ai′ |M−

anchor). (II.20)

Let ∆ l = ai′ .length − ai.length. Assuming ∆ l ≥ 0, the following inequality is
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obtained.

P (ai′ |M+
anchor)

= P (ai|M+
anchor) × P (X → X|M+

anchor)
∆l

> P (ai|M−
anchor) × P (X → X|M−

anchor)
∆l

(∵ Eqs. (II.19) and (II.2))

= P (ai′ |M−
anchor).

The above inequality conflicts with Eq. (II.20). Thus, ∆ l must be negative (∆ l < 0).
In other words, the length of ai must be greater than the length of ai′ . Therefore,
it is demonstrated that any anchor labeled as “+” is longer than any anchor labeled
as “−”. Thus, there exists an optimal cutoff value for the anchor length such that
the optimal label of an anchor ai is “+” if the length of ai is longer than the optimal
cut-off length and“−” otherwise.

¤

2.4.3 Proof 3
Here, we demonstrate that parameter values determined by applying our local max-

imization algorithm are a set of local optimum solution.
Let M t be model parameters at step t and Lt be labels at step t. Given M (t−1),

the labels at step t are calculated from Lt = L̂M(t−1) , where L̂M(t−1) is a set of
conditionally optimal labels. From Eq. (II.11), the following inequality is obtained:

P (G|M (t−1), Lt) ≥ P (G|M (t−1), L(t−1)), (II.21)

where the equality is satisfied if L(t−1) = Lt.
Given Lt, the model parameters at step t are calculated from M t = M̂Lt , where

M̂Lt is a set of conditionally optimal model parameters. From Eq. (II.7), the following
inequality is satisfied:

P (G|M t, Lt) ≥ P (G|M (t−1), Lt), (II.22)

where the equality is satisfied iff M (t−1) = M t.
By combining Eq. (II.21) and Eq. (II.22), Eq. (II.23) is obtained.

P (G|M t, Lt) ≥ P (G|M (t−1), L(t−1)), (II.23)

where the equality is satisfied if M (t−1) = M t and L(t−1) = Lt. Eq. (II.23) ensures
that the likelihood for an anchor graph increases together with the iteration steps
until M and L converge. Thus, parameter values determined by applying our local
maximization algorithm are a set of local optimum solution.

¤
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Fig. II.5 Consistency and inconsistency between orthologous gene groups and or-
thologous segments. This figure shows the respective genomic locations of six pairs of
orthologous genes (indicated by small arrows) and two pairs of orthologous segments
(indicated by large arrows). The color of the arrows represents the orthologous rela-
tionship where pairs of orthologous genes or segments have the same color. “◦” (“×”)
indicates that the gene pair is consistent (inconsistent) with a certain orthologous seg-
ment, and “−” indicates that the gene pair is neither consistent nor inconsistent with
any orthologous segment.

2.5 Evaluation criteria

Since it is impossible to observe the course of evolutionary history, the evaluation of
orthology mapping programs is restricted to simulation experiments (Calabrese et al.,
2003; Cannon et al., 2003; Hampson et al., 2003) or assessment on the basis of the
consistency of the target program with other orthology mapping programs (Cannon
et al., 2003). However, simulation experiments require the mutation models to gener-
ate virtual evolutionary histories, and therefore the evaluation results are inevitably
biased with respect to the mutation models used in the experiment. In addition,
examining the consistency with other programs is not an efficacious methodology for
estimating the accuracy if the compared programs are based on similar approaches.

In this chapter, we estimate the accuracy of orthology mapping programs on the
basis of their consistency with the orthology annotation of genes (Fig. II.5). Let G
be the set of genomes under comparison, s = {s1, s2, . . . , s|G|} be an orthologous
segment (a set of segments from different genomes), and g = {g1, g2, . . . , g|G|} be
an orthologous gene group (a set of genes from different genomes), where sx (gx) is
a segment (gene) from a genome x. Here, we assume that orthologous gene groups
do not contain in-paralogs (Remm et al., 2001; Koonin, 2005) and that orthologous
relationships are necessarily one-to-one. Then, we define that g is consistent with s
if, for all x ∈ G, the coding region of gx overlaps with the coordinate span of sx and
the orientation of gx is the same as that of sx. We also define that g is inconsistent
with s if g is not consistent with s and there exists a genome x in which the coding
region of gx overlaps with the coordinate span of sx.

Given a set of orthologous gene groups and a set of orthologous segments, let N be
the number of orthologous gene groups and NC be the number of orthologous gene
groups with which at least one orthologous segment is consistent. Let C(si) denote the
number of orthologous gene groups which are consistent with an orthologous segment
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si and I(si) denote the number of orthologous gene groups which are inconsistent
with an orthologous segment si. Then, the sensitivity and the specificity are defined
as follows:

sensitivity =
NC

N

specificity =
∑

i C(si)∑
i C(si) +

∑
i I(si)

The F-score is defined as 2pr
p+r , where p represents the specificity and r represents the

sensitivity. We use the F-score as an indicator of accuracy.
In this chapter, the mammalian orthologous gene database SPEED (Vallender

et al., 2006) was employed as a reliable source of orthology annotation data for mam-
malian genes. Regarding the evaluation of the results of bacterial genome compar-
isons, orthologous gene pairs were identified on the basis of BLAST reciprocal best
hits (Tatusov et al., 1997, 2003). Orthologous groups of bacterial genes were calcu-
lated by using the method described in (Vallender et al., 2006).

3 Results

3.1 Accuracy in pairwise genome comparisons

3.1.1 Comparison with DAGChainer and ADHoRe
Anchors detected between pairwise genomes were input into DAGChainer (Haas

et al., 2004), ADHoRe (Vandepoele et al., 2002), and OSfinder, where DAGChainer
and ADHoRe were executed not only with the default parameter values, but also with
optimized parameter values. The optimization for the DAGChainer and ADHoRe
parameters was performed on the basis of a grid search in order to maximize the
F-score. Two parameters in DAGChainer, the average expected distance between
two orthologous anchors (-g option) and the maximum allowed distance between two
anchors (-D option), were optimized. Two parameters in ADHoRe, the minimum r2

value (r2 cutoff option) and the maximum distance between the anchors (max dist
option) were optimized. Since OSfinder automatically optimizes its parameter values,
there was no need to perform grid searches.

Table II.4 shows the accuracy of the three programs in the pairwise comparison of
mammalian genomes. It is worth noting that OSfinder consistently achieved high F-
scores (>85% on average), regardless of the anchor type. DAGChainer exhibited low
F-scores when the anchors were homologous gene pairs (62.2% with a grid search),
while ADHoRe exhibited extremely low F-scores both when the anchors were homolo-
gous sequences (47.1% with the default parameters) and when they were homologous
gene pairs (39.3% with a grid search). We discuss the reason for the low F-scores
achieved by ADHoRe when comparing mammalian genomes in the section “Discus-
sion and Conclusion”. These results demonstrate that OSfinder has greater accuracy
than the other two programs. The average F-scores of OSfinder were notably higher
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than those of DAGChainer and ADHoRe, even though the latter two were executed
with optimized parameter values.

The high accuracy of OSfinder is supported further by the results in the pairwise
comparison of bacterial genomes (Table II.5). When the anchors were homologous
sequences, the average F-score of OSfinder was 85.3%, which was 14.2% higher than
that of DAGChainer with a grid search optimization and 20.8% higher than that of
ADHoRe with a grid search optimization. When the anchors were homologous gene
pairs, the average F-score of OSfinder was 92.2%, which was 7.5% higher than that of
DAGChainer with a grid search optimization and 56.2% higher than that of ADHoRe
with a grid search optimization.
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3.1.2 Comparison with syntenic nets
The UCSC genome browser provides a common repository for genomic annotation

data (Kuhn et al., 2007; Karolchik et al., 2008). Syntenic nets, which are unique
annotations in the UCSC genome browser, are genomic regions descended from a
single genomic segment in a common ancestor without macrorearrangements. In
Table II.6, we present the accuracy of syntenic nets together with the accuracy of
OSfinder. For the purpose of a fair comparison, Table II.6 displays the accuracy of
OSfinder when homologous sequences were used as anchors.

We can see in Table II.6 the trade-off between the sensitivity and the specificity.
OSfinder achieved a 25.6% higher average specificity than syntenic nets, while the
average sensitivity of syntenic nets was 3.0% higher than that of OSfinder. Regarding
the average F-score, OSfinder achieved a 14.0% higher value than syntenic nets.

Table. II.6 Accuracy of syntenic nets and OSfinder in the pairwise comparison
of mammalian genomes

Syntenic nets OSfinder
Genomes Sn Sp F Sn Sp F

human-chimpanzee 98.9 85.6 91.8 99.0 98.4 98.7
human-macaque 98.5 66.5 79.4 97.9 96.9 97.4
human-mouse 97.2 69.5 81.0 93.5 95.1 94.3
human-rat 97.1 66.3 78.8 89.1 90.2 89.6
human-dog 98.2 60.7 75.0 95.7 96.0 95.8
Average 98.0 69.7 81.2 95.0 95.3 95.2

3.2 Accuracy in multiple genome comparisons

The accuracy of OSfinder in multiple genome comparisons was compared with that
of the TBA program (Blanchette et al., 2004) and Mercator (Dewey et al., 2006;
Dewey, 2007). The respective accuracies of these programs were evaluated in compar-
isons of mammalian X chromosomes. For the generation of input for OSfinder, anchors
among multiple genomes were detected by using Murasaki (Popendorf et al., 2007).
For the generation of input for the TBA program, the BLASTZ alignments (Altschul
et al., 1997; Schwartz et al., 2003) between all pairs of genomes under comparison
were calculated. For the generation of input for Mercator, homologous gene pairs
were detected between all pairs of genomes under comparison by using BLASTP pro-
gram. Note that TBA and Mercator take as input sets of anchors detected between
all pairs of genomes under comparison, whereas OSfinder takes as input a set of an-
chors detected among multiple genomes. Thus, TBA and Mercator require the O(N2)
iterations of the calculation of anchors, where N represents the number of genomes
under comparison, whereas it is sufficient to perform the calculation of anchors among
multiple genomes only once for the input of OSfinder.
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3.2.1 Procedures for the execution of the TBA program
BLASTZ alignments (Altschul et al., 1997; Schwartz et al., 2003) were calculated

between all pairs of genomes under comparison. The parameter values were set at
“H=2000 Y=3400 B=2 C=0” (Margulies et al., 2007). After performing the appro-
priate post-processing, we executed the TBA program (Blanchette et al., 2004) with
the phylogenetic tree “((((human chimpanzee)macaque)mouse)dog)” (Nikolaev et al.,
2007; Lunter, 2007a).

3.2.2 Procedures for the execution of Mercator
Protein sequences of mammalian genes were drawn from the Ensembl genome

browser. For each genome under comparison, the genomic locations of protein-coding
genes were included in the anchors file. For each pair of genomes under comparison,
all pairs of homologous gene IDs detected by the BLASTP program were included
in the hit file together with bit scores and E-values. Then, Mercator (Dewey et al.,
2006; Dewey, 2007) was executed with the default parameters.

3.2.3 Comparison with TBA and Mercator
Table II.7 shows the accuracy in the comparison of multiple mammalian genomes.

The results contain two important points. The first is that the accuracy of OSfinder
was extremely high, with F-scores of over 95%. The average F-score of OSfinder was
96.9%, which was notably higher than that of TBA (64.2%) and Mercator (91.2%).
The second point is that the F-scores of OSfinder in multiple genome comparisons were
slightly higher than that in pairwise genome comparisons (Table II.6). For example,
the F-score in the human-chimpanzee-macaque-mouse comparison (97.5%) was higher
than that in the human-mouse comparison (95.8%). This tendency is also visible in
the results for the human-chimpanzee-macaque-dog comparison. These results imply
that the accuracy of OSfinder in pairwise comparisons can be improved by adding
closely related genome(s) and by comparing multiple genomes.

In Table II.8, we present the accuracy in the comparison of multiple bacterial
genomes. These results also demonstrate the high accuracy of OSfinder with F-scores
over 90%. Table II.5 and Table II.8 show that the average F-score in the Mtu-Mbo-
Mle (Mtu-Mbo-Mpa) comparison was higher than that in the Mtu-Mle (Mtu-Mbo)
comparison. The results were the same as the results obtained from the comparison
of multiple mammalian genomes.

4 Discussion and Conclusion
The results in this chapter have demonstrated the potential of stochastic models

and learning algorithms in OSfinder to improve the accuracy of orthology mapping
in both pairwise and multiple genome comparisons. We have shown that our novel
algorithm makes it possible to identify orthologous segments with accuracy which
is consistently higher than that of other algorithms, without any manual effort to
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Table. II.7 Accuracy in the comparison of multiple mammalian genomes

TBA Mercator OSfinder
Genomes Sn Sp F Sn Sp F Sn Sp F

Hsa-Ptr-Mula 96.7 82.7 89.1 97.6 97.6 97.6 97.6 97.6 97.6
Hsa-Ptr-Mul-Mmub 68.1 43.5 53.1 90.2 85.9 88.0 97.1 97.8 97.5
Hsa-Ptr-Mul-Cfac 96.5 55.0 70.1 95.8 96.9 96.3 96.9 96.9 96.9
Hsa-Ptr-Mul-Mmu-Cfad 66.8 33.1 44.3 85.0 81.2 83.0 94.0 97.5 95.7
Average 82.0 53.6 64.2 92.2 90.4 91.2 96.4 97.5 96.9

aComparison of human, chimpanzee, and macaque genomes.
bComparison of human, chimpanzee, macaque, and mouse genomes.
cComparison of human, chimpanzee, macaque, and dog genomes.
dComparison of human, chimpanzee, macaque, mouse, and dog genomes.

Table. II.8 Accuracy results in the comparison of multiple bacterial genomes

TBA OSfinder
Genomes Sn Sp F Sn Sp F

Mtu-Mbo-Mle 42.8 25.8 32.2 86.6 97.6 91.8
Mtu-Mbo-Mpa 71.9 54.3 61.9 90.6 89.5 90.1
Average 57.4 40.1 47.1 88.6 93.6 91.0

determine the parameter values.
Quality-based methods, such as ADHoRe (Vandepoele et al., 2002) and

SyMAP (Soderlund et al., 2006), estimate the quality by computing the coef-
ficient of determination. ADHoRe with a grid search optimization showed an
extremely high accuracy in the Mtu-Mbo comparison (98.0% in F-score when the
anchors were homologous gene pairs), although its accuracy in the Mtu-Mle and
Mtu-Mpa comparisons was profoundly low (5.1% and 4.9% in F-score, respectively).
Moreover, ADHoRe also showed low F-scores in mammalian genome comparisons
(47.1% in average F-score when the anchors were homologous sequences). These
results imply that although quality-based methods are excellent approaches when
comparing very closely related genomes, these methods are not adequate when
comparing distantly related genomes where the positions of the orthologous anchors
can not be fitted with linear regression models.

DAGChainer (Haas et al., 2004) measures the diagonal properties of the input
anchors by utilizing a scoring scheme which is more relaxed than linear regression
models. The scoring scheme makes it possible to compare distantly related genomes
while maintaining a relatively high F-score (about 80% when the anchors are homolo-
gous gene pairs in the pairwise comparison of bacterial genomes). The scoring scheme,
however, suffers from low specificity when a large fraction of the input anchors are
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non-orthologous (e.g., when the anchors are homologous sequences in the pairwise
comparison of bacterial genomes). Therefore, the accuracy of distinguishing between
orthologous anchors and non-orthologous anchors is the key to performing orthology
mapping with consistently high accuracy.

The scoring scheme of OSfinder takes into account the distance between collinear an-
chors instead of the coefficient of determination of the linear regression. Furthermore,
stochastic models are employed in OSfinder for accurately distinguishing between or-
thologous anchors and non-orthologous anchors. Thus, the OSfinder algorithm con-
sistently achieves high accuracy even when distantly related genomes are compared
and when a large fraction of the anchors are not orthologous.

With the rapidly increasing amount of sequence data, the automation of orthology
mapping and the ability to compare multiple genomes will continue to become ever
more important for high-throughput genome analysis. In addition to the seven mam-
malian genomic sequences used in our analysis, draft sequences for orangutan (Pongo
pygmaeus abelii), cow (Bos taurus), and horse (Equus caballus) have already been
made available in the Ensembl genome browser. Furthermore, it is expected that
over 20 mammalian genome sequences will become available in the near future. It is
expected that the calculation results of OSfinder can be further improved by using
the increasing number of closely related genome sequences.
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Chapter III

Correlation between Protein Sequence

Homology and Gene Order Conservation
A conserved gene cluster (also referred to as a conserved gene order) is defined as a

cluster of neighboring genes whose gene order is conserved across several species. In
the present study, we propose a novel workflow which enables sensitive detection of
conserved gene clusters by taking into account the information of gene order conserva-
tion in the step to identify orthologous genes (OGs) (Hachiya and Sakakibara, 2009).
Our workflow was applied to large-scale comparisons of 101 prokaryotic and 15 fun-
gal genomes. Thereafter, we examined the difference between OGs in conserved gene
clusters (clustered OGs) and OGs that are not the members of conserved gene clusters
(isolated OGs). Our analysis confirms the finding in previous studies that, in prokary-
otes, protein sequences of clustered OGs are more conserved than those of isolated
OGs. In addition, this interesting correlation between protein sequence homology and
gene order conservation was observed also in fungal genomes. To our knowledge, this
is the first report of a systematic survey of such correlation in eukaryotic genomes.
Furthermore, we analyzed evolutionary forces behind the correlation by estimating
the rate of synonymous substitutions (KS) and the rate of nonsynonymous substitu-
tions (KA). This detailed sequence analysis reveals that although the correlation is
consistently observed and seems to be a general trend among prokaryotic and fungal
genomes, the evolutionary forces behind the correlation are different among lineages,
suggesting that the joint effect of heterogeneous underlying mechanisms would result
in the correlation.

1 Background
The rapid increase of the availability of completely sequenced genomes provides

us with an opportunity to explore the underlying mechanisms for the evolution of
genome organizations. Especially in prokaryotes, the number of completely sequenced
genomes has been exponentially increased, with a doubling time of approximately 20
months for bacteria and approximately 34 months for archaea (Koonin and Wolf,
2008). As of this writing (9 May 2009), 812 bacterial and 58 archaeal genomes can be
downloaded from the NCBI ftp server (ftp://ftp.ncbi.nih.gov/genomes/). These col-
lections of prokaryotic genomes cover 21 bacterial and four archaeal phyla, indicating
that the current collections of bacterial and archaeal genomes provide a reasonable
approximation of the diversity of prokaryotic life forms on earth (Koonin and Wolf,
2008).

Structural changes in complete genome sequences have been extensively examined,
and it has been shown that large-scale gene orders (e.g. more than ten genes) are
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hardly conserved even between closely related prokaryotic genomes (Mushegian and
Koonin, 1996; Tatusov et al., 1996; Watanabe et al., 1997; Dandekar et al., 1998;
Koonin, 2009), suggesting that extensive gene shuffling has occurred during prokary-
otic genome evolution (Koonin et al., 1996). On the other hand, gene orders of a few
neighboring genes have been preserved even between distantly related prokaryotic
genomes, and physical interactions between the proteins encoded by genes in such
conserved gene clusters are apparent in most cases (Dandekar et al., 1998). Based
on this observation, the information of the gene order conservation has been used
to complement homology-based prediction of protein functions (Huynen et al., 2000;
Wolf et al., 2001; Li et al., 2007). Whereas the homology of protein sequences can
be used to predict the molecular function of a protein, the gene order conservation
can be used to predict a higher order function (e.g. in which process or pathway
a particular protein plays a role, or with which other protein it interacts) (Huynen
et al., 2000). Deepening the understanding of the evolutionary forces that preserve
gene orders would provide us with valuable biological insights, which can be used
to increase the accuracy of the protein function prediction based on the gene order
conservation.

Here, we are focusing on an interesting finding that links between the evolution of
protein sequences and the evolution of gene orders. Dandekar et al. (1998) performed
a systematic comparison of nine bacterial and archaeal genomes, and found that the
degree of protein sequence conservation of genes in conserved gene clusters is on av-
erage substantially higher than that of the other genes. More recently, Lemoine et al.
(2007) corroborated this finding by comparing 107 bacterial and archaeal genomes.
This finding would be an important clue toward unraveling the evolutionary forces
that preserve gene orders. However, the previous studies do not conduct further analy-
ses for discussing evolutionary forces behind the correlation between protein sequence
homology and gene order conservation.

In the present study, we shed light on the evolutionary forces by estimating the rate
of synonymous substitutions (KS) and the rate of nonsynonymous substitutions (KA).
The ratio between KA and KS (KA/KS) can be used to assess how strong evolution-
ary pressures have enforced conservation of protein sequences because KA/KS = 1
means neutral mutations, KA/KS < 1 purifying selections, and KA/KS > 1 diver-
sifying positive selections (Yang et al., 2000). We can also assess how frequently the
coding sequence of a gene has been substituted based on the value of KS . We here
assume that higher degree of protein sequence conservation of clustered OGs can be
explained by either stronger selective pressures to maintain protein sequences (lower
value of KA/KS ratio), lower substitution rate of coding sequences (lower value of
KS), or both. Based upon this assumption, we aim at unraveling which of the three
explanations is appropriate for each taxonomic group.

For this purpose, we propose a novel workflow which enables sensitive detection of
conserved gene clusters. Our workflow uses the OASYS program in order to identify
orthologous genes. OASYS can accurately detect one-to-one orthology relationships
of genes by taking into account the information of gene order conservation. This
makes it possible to avoid too stringent criteria for filtering out suspicious homologs,
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and to detect conserved gene clusters sensitively. The source code of OASYS is freely
available at http://oasys.dna.bio.keio.ac.jp under the GNU General Public License.

In addition, we included fungal genomes in our analyses, enabling us to discuss how
general the finding in Dandekar et al. (1998) is in a wide variety of species, including
not only prokaryotes but also eukaryotes. The correlation between protein sequence
homology and gene order conservation in eukaryotes has been less intensively surveyed
than in prokaryotes. Hillier et al. (2007) reports a slightly related finding that the
sequence conservation rate of syntenic OGs is higher than that of non-syntenic OGs
in the comparison of nematodes, where syntenic OGs are defined as the OGs located
on the corresponding chromosomes of different species. Note that our definition of
clustered OGs and their definition of syntenic OGs are substantially different. To
our knowledge, our analyses of fungi genomes are the first attempt to survey in a
systematic manner whether the finding in Dandekar et al. (1998) can be extended to
eukaryotes.

2 OASYS: Orthology Assignment based on Synteny and

Sequence Information
Bandyopadhyay et al. (2006) identifies functional orthologs, which are genes in

different species that play functionally equivalent roles, on the basis of the concept
that a protein and its functional ortholog are likely to interact with proteins in their
respective networks that are themselves functional orthologs. Analogously, OASYS
identifies positional orthologs, which are genes in different species that are located on
corresponding chromosomal positions, on the basis of the concept that a gene and its
positional ortholog are likely to be located on their respective chromosomal positions
that are diagonally proximate to themselves positional orthologs.

In order to identify positional orthologs based not only on the information of protein
sequence conservation but also on the information of gene order conservation, we
propose a novel algorithm named OASYS (Orthology Assignment based on SYnteny
and Sequence information). The OASYS algorithm executes the following procedures:

1. Detect homologous gene pairs by comparing all protein sequences encoded by
a genome GA and all protein sequences encoded by a genome GB . With the
default setting, gene pairs whose bit score is greater than 50 bits are detected
as homologous gene pairs.

2. Detect seed orthologs by applying the reciprocal best BLAST hit (RBH)
method.

3. Quantify the extent of gene order conservation by computing the weighted num-
ber of neighboring seed orthologs (WNNSO) value for each homologous gene
pair. The method to compute WNNSO values is described in the section 2.1.

4. Estimate probability densities of the bit scores and the WNNSO values. The
probability density functions used in OASYS are described in the section 2.2.
A method to fit the observed bit scores or WNNSO values to these probability
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density functions is described in the section 2.3.
5. Calculate the integrated conservation score, which takes into account the gene

order conservation as well as the protein sequence conservation, for each ho-
mologous gene pair. The scoring scheme used in OASYS is described in the
section 2.4.

6. Detect reciprocal best similarity pairs in terms of integrated conservation scores
as positional orthologs.

2.1 Weighted number of neighboring seed orthologs

OASYS quantifies the extent of gene order conservation by a novel measure named
weighted number of neighboring seed orthologs (WNNSO). Given a set of homologous
gene pairs and its bit scores, the calculation of the WNNSO values starts with the de-
tection of putative orthologs. Putative orthologs are simply detected by the reciprocal
best hit (RBH) method, that is, reciprocal best similarity pairs in terms of bit scores
are detected as putative orthologs (Rivera et al., 1998; Hirsh and Fraser, 2001; Jordan
et al., 2002). We call the putative orthologs ‘seed orthologs’, and the homologous gene
pairs that are not identified as putative orthologs ‘non-seed homologs’.

Second, the diagonal proximity between homologous gene pairs and the seed or-
thologs are computed on the basis of the matrix representation of gene positions.
Let A be a set of genes encoded by the genome GA, Ak be a set of genes located
on the k-th chromosome of the genome GA, and ak

i be the i-th gene located on the
k-th chromosome. We assume without loss of generality that the elements in Ak are
sorted in order of increasing start position along the k-th chromosome. Regarding
genome GB , B, Bl, and bl

j are similarly defined. Then, a homologous gene pair
(ak

i , bl
j) is represented as an element of a |Ak| × |Bl| matrix, in which a homologous

gene pair (ak
i , bl

j) corresponds to a point (i, j). If two gene pairs hm = (ak
i , bl

j) and
hm′ = (ak′

i′ , bl′

j′) are collinear, a special distance function named diagonal pseudo dis-
tance (DPD) (Vandepoele et al., 2002) is used to define the distance between the two
gene pairs:

DPD(hm, hm′) = 2max(|i − i′|, |j − j′|) − min(|i − i′|, |j − j′|). (III.1)

If two gene pairs are not collinear, the distance is defined as infinity. The definition
of the ‘collinearity’ can be found in the section 2.1.1.

Finally, the WNNSO value is computed for each homologous gene pair by counting
the number of the seed orthologs near the homologous gene pair with weights that
decrease with increasing the diagonal pseudo distance. Let S be a set of seed orthologs.
Then, the WNNSO value for a homologous gene pair hm is given by

WNNSO(hm|S) =
∑

hm′∈S

Weight(hm, hm′) (III.2)
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Fig. III.1 Graphical representation of the DPD, weight and WNNSO functions.
(A) DPD functions. Given a homologous gene pair hm = (xi, yj) (represented as
the central element colored by black), the color of an element hm′ = (i′, j′) in the
matrix represents the degree of the value of DPD(hm, hm′ ). Here, we assume that
hm.sign = 1 and hm′ .sign = 1. Positive integer shown in each element is the DPD
value. Gray-colored elements in the matrix correspond to the gene pairs that are not
collinear with the gene pair (xi, yj). The DPD value in these elements is defined as
infinity. (B) Weight function. The color of an element hm′ = (i′, j′) in the matrix
represents the degree of the value of Weight(hm, hm′ ). When computing the weight
values, the value of σ parameter was set at 2.0, and the value of cut dpd parameter
was set at 20. Regarding gray-colored elements, the value of Weight(hm, hm′ ) was
computed as zero. (C) WNNSO function. Given a set of seed orthologs S (represented
by elements colored by black), the color of each element hm′ represents the degree of
the value of WNNSO(hm′ |S).

with

Weight(hm, hm′)

=

{
1

σ
√

2π
exp(−DPD(hm,hm′ )

2σ2 ) when DPD(hm, hm′) ≤ cut dpd

0 otherwise ,

(III.3)

where σ and cut dpd are user-defined parameters. σ controls the degree of the de-
crease of the weight value with increasing DPD, and cut dpd represents the threshold
for DPD values. Note that the weight between non-collinear gene pairs becomes zero.
Fig. III.1 shows the result of applying the above DPD, weight and WNNSO functions
on a hypothetical example.

2.1.1 Collinearity
If a gene xk

i is located on the forward strand of the k-th chromosome, we denote
xk

i .strand = 1. If xk
i is located on the reverse strand, we denote xk

i .strand = −1. For
a gene yl

j , yl
j .strand is similarly defined. Then, the sign of a gene pair hm = (xi, yj)
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is defined as hm.sign = xi.strand × yj .strand. OASYS defines that two gene pairs
hm = (xk

i , yl
j) and hm′ = (xk′

i′ , yl′

j′) are collinear if the following conditions are satisfied:

k = k′, l = l′, i 6= i′, j 6= j′,

hm.sign = hm′ .sign,
j − j′

i − i′
× hm.sign > 0.

(III.4)

2.1.2 Effect of σ parameter
Fig. III.2 shows the result of applying the weight function on a hypothetical example

with varying the value of the σ parameter, in which we can observe the effect of the
σ parameter on the weight function. When the σ parameter takes a small value (e.g.
<= 1.0), the weight function decreases with increasing DPD value so rapidly that
the weight value becomes almost zero even in the points that are not so distant from
the center point. In other words, in the computation of the WNNSO value at the
point (i, j), only a few seed orthologs, which are located on very near the point (i, j),
is counted, and the information on the other seed orthologs will be discarded. The
loss of such information would make the WNNSO value less robust measure of the
gene order conservation to the method to detect seed orthologs. For example, in the
case where the genuine positional orthologs very near the point (i, j) is not detected
as seed orthologs, the WNNSO value at the point (i, j) would largely affected by the
miss of the method to detect seed orthologs.

On the other hand, when the σ parameter takes a large value (e.g. >= 4.0), weight
values are almost the same among all points shown in Fig. III.2 regardless of the
DPD value. In other words, seed orthologs that are located on collinear positions are
equally counted in the computation of the WNNSO value. The loss of information on
the diagonal proximity would make the WNNSO value less valuable measure of the
gene order conservation.

When σ parameter takes the value between 2.0 and 3.0, both information can be
taken into account; the weight value gradually decreases with increasing DPD value
so that the weight of closer points is larger than the weight of more distant points,
and the weight is not almost zero even in relatively distant points. Thus, the default
value of the σ is set at 2.0 in the current version of OASYS.

Within such appropriate range, the σ parameter controls the trade-off between the
importance of two sets of information: a small value of the σ parameter enhances
the degree of the decrease of weight value with increasing DPD value. Thus, the
information of seed orthologs located on very near positions is counted with a larger
weight. When comparing two genomes that are closely related, a small value of
σ parameter is expected to decrease the WNNSO value of gene pairs that are not
genuine positional ortholog. A large value of σ parameter weakens the degree of
the decrease of weight value with increasing DPD value. Thus, the information of
seed orthologs located on distant positions to somewhat is also counted. Thus, when
comparing two genomes that are distantly related, a large value of σ parameter is
expected to increase the sensitivity of the collinearity.
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Fig. III.2 Effect of the σ parameter on the weight function. These figures show the
matrices in which the color of each point (i′, j′) represents the degree of the value
of the weight function W (hm′ |hm), where hm = (xi, yj) corresponds to the point
(i, j), which is represented as the central point colored in black, and hm′ = (xi′ , yj′ )

corresponds to each point (i′, j′). Here, hm and hm′ are assumed to have a positive
orientation (hm.sign = 1 and hm′ .sign = 1). The points colored in gray are not
collinear points with the central point (i, j), and therefore, the weight value in these
points becomes zero regardless of the value of the σ parameter. The computation of
the weight function was performed with varying the value of the σ parameter: (A)
σ = 0.5, (B) σ = 1.0, (C) σ = 2.0, (D) σ = 3.0, (E) σ = 4.0, and (F) σ = 5.0.

2.2 Probability density functions

In order to distinguish between positional orthologs and other homologs, OASYS
takes advantage of the difference in the extent of the gene order conservation between
positional orthologs and other homologs. For this end, OASYS assumes that the
probability density of the WNNSO values for genuine positional orthologs can be
approximated by that for seed orthologs. It is also assumed that the probability
density of the WNNSO values for other homologs can be approximated by that for
non-seed homologs.
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In addition to the difference in the extent of gene order conservation, OASYS also
makes use of the difference in the extent of protein sequence conservation between
positional orthologs and other homologs. As in the case of the WNNSO values,
OASYS assumes that the probability density of the bit scores for positional orthologs
(for other homologs) can be approximated by that for seed orthologs (for non-seed
homologs).

Accordingly, OASYS models four probability densities; (i) the probability density
of the WNNSO values for positional orthologs, (ii) the probability density of the bit
scores for positional orthologs, (iii) the probability density of the WNNSO values for
other homologs, and (iv) the probability density of the bit scores for other homologs.
Each of the four probability densities is modeled by either of two probability den-
sity functions (pdfs), namely the one-sided generalized Gaussian (OGG) pdf and the
asymmetric generalized Gaussian (AGG) pdf. As shown later, the former can rep-
resent wide range of decreasing functions, and the later can represent wide range of
unimodal functions. The choice of the model is performed on the basis of the Akaike
information criteria (Akaike, 1974). Figs. III.3 and III.4 show that our model is well
fitted to each data set.
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Fig. III.3 Histograms of WNNSO values together with probability density func-
tions. Seed orthologs were detected by the traditional RBH method. Non-seed
homologs were defined as the homologous gene pairs that are not seed orthologs.
WNNSO values were calculated by setting the σ parameter at 2.0 and the cut dpd
parameter at 10. The model selection and the parameter optimization are performed
based on the Akaike information criteria and the conjugate gradient method, respec-
tively. 45



  

  

  

  

Fig. III.4 Histograms of bit scores together with probability density functions. Seed
orthologs were detected by the traditional RBH method. Non-seed homologs were
defined as the homologous gene pairs that are not seed orthologs. Bit scores were
calculated by the BLASTP program. The model selection and the parameter opti-
mization are performed based on the Akaike information criteria and the conjugate
gradient method, respectively.
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Fig. III.5 One-sided generalized Gaussian pdf. Three curves shown in this figure
have the following parameter values; (i) µ = 0, σ2 = 1, and p = 1.0, (ii) µ = 0,
σ2 = 1, and p = 2.0, (iii) µ = 0, σ2 = 1, and p = 3.0.

2.2.1 One-sided generalized Gaussian distribution
The generalized Gaussian (GG) distribution proposed in Miller and Thomas (1972)

is given by

Pgg(x; µ, σ, p) =


pγ

2Γ( 1
p )

exp(−γp(µ − x)p) when x < µ

pγ
2Γ( 1

p )
exp(−γp(x − µ)p) when x ≥ µ,

(III.5)

where γ = 1
σ

√
Γ( 3

p )

Γ( 1
p )

and Γ(•) is the gamma function. In this model, µ, σ2, and

p denote the mean, variance, and decay rate (also referred to as shape parameter)
of the pdf, respectively. We modify Eq. (III.5) and define the one-sided generalized
Gaussian (OGG) distribution, which is given by

Pogg(x; µ, σ, p) =

{
0 when x < µ

pγ
Γ( 1

p )
exp(−γp(x − µ)p) when x ≥ µ. (III.6)

Note that µ in Eq. (III.6) is not the mean of the OGG pdf but a location parameter.
For x ≥ µ, the pdf is a decreasing function of x. As shown in Fig. III.5, the OGG
family of distributions can represent wide range of decreasing functions by changing
the shape parameter p.

Suppose that we are given an observed data set of scalar values x = {x1, . . . , xN}
and that xi ≥ µ for 1 ≤ i ≤ N . Then, the log likelihood function of the OGG pdf is
given by

lnLogg = N ln

(
pγ

Γ( 1
p )

)
−

N∑
i=1

γp(xi − µ)p. (III.7)
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Fig. III.6 Asymmetric generalized Gaussian pdf. Three curves shown in this figure
have the following parameter values; (i) µ = 0, σ2

l = 1, σ2
r = 2 and p = 1.0, (ii)

µ = 0, σ2
l = 1, σ2

r = 2 and p = 2.0, (iii) µ = 0, σ2
l = 1, σ2

r = 2 and p = 3.0.

We can optimize the parameters in the OGG model so as to maximize Eq. (III.7).
For details, see the section 2.3.

2.2.2 Asymmetric generalized Gaussian distribution
The asymmetric generalized Gaussian (AGG) distribution proposed in Tesei and

Regazzoni (1998) is given by

Pagg(x; µ′, σl, σr, q) =


qγa

Γ( 1
q )

exp(−γq
l (−x + µ′)q) when x < µ′

qγa

Γ( 1
q )

exp(−γq
r (x − µ′)q) when x ≥ µ′,

(III.8)

where γa = 1
σl+σr

√
Γ( 3

q )

Γ( 1
q )

, γl = 1
σl

√
Γ( 3

q )

Γ( 1
q )

, and γr = 1
σr

√
Γ( 3

q )

Γ( 1
q )

. In this model, µ′ is

the mode, σ2
l and σ2

r are the variances of the left and right side respectively, and
q is the decay rate. It is noticed that if σ2

l = σ2
r then the pdf coincides with the

GG distribution, hence it is symmetric (Lee and Nandi, 1999). For the symmetric
cases, c = 2 represents the Gaussian distribution while c = 1 represents the Laplace
distribution. If σ2

l 6= σ2
r then the pdf represents an asymmetric model. As shown

in Fig. III.6, the AGG family of distributions can represent wide range of unimodal
probability density functions by changing the shape parameter q.

Suppose that we are given an observed data set of scalar values x = {x1, . . . , xN}.
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Then, the log likelihood function of the AGG pdf is given by

ln Lagg = N ln

(
qγa

Γ(1
q )

)
−

N∑
i=1,xi<µ′

γq
l (µ′ − xi)q

−
N∑

i=1,xi≥µ′

γq
r (xi − µ′)q.

(III.9)

We can optimize the parameters in the AGG model so as to maximize Eq. (III.9).
For details, see the section 2.3.

2.3 Parameter optimization and model selection

Suppose that we are given an observed data set of scalar values x = {x1, . . . , xN}
and we want to fit the observed data to the one-sided generalized Gaussian (OGG)
model or the asymmetric generalized Gaussian (AGG) model. Furthermore, suppose
that we want to know which model, either of the OGG model or the AGG model, is
more appropriate to represent the probability density of the observed data.

2.3.1 Fitting to an OGG distribution
Parameters in the OGG model can be optimized by maximizing the log likelihood

function shown in Eq. (III.7). At first, the location parameter µ is naturally defined
as the minimum value of the observed data because the OGG pdf is one-sided dis-
tribution. Secondly, the variance σ2 is defined as the second-order moment of the
observed scalar values around the location parameter µ. Thus, σ2 is given by

σ2 =
1

N − 1

N∑
i=1

(xi − µ)2. (III.10)

Finally, the shape parameter p is optimized by using a conjugate gradient method.
The derivative of Eq. (III.7) with respect to the shape parameter p is given by

∂

∂p
lnLogg = D1 −

N∑
i=1

γp(xi − µ)p[ln{γ(xi − µ)} + D2] (III.11)

with

D1 =
1
2
N

(
2
p
− 3

Ψ( 3
p )

p2
+ 3

Ψ( 1
p )

p2

)

D2 =
Ψ( 1

p ) − 3Ψ( 3
p )

2p
,

where Ψ(•) is the digamma function and defined as Ψ(•) = ∂ ln Γ(•)
∂(•) = ∂Γ(•)

Γ(•)∂(•) . Con-
jugate gradient methods can find a local optimum solution with the knowledge of
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Eq. (III.7) and Eq. (III.11). In our implementation of the OASYS algorithm, the
Fletcher-Reeves conjugate gradient algorithm (Fletcher and Reeves, 1964), which is
one of the most basic algorithm for non-quadratic optimization, is used to optimize
the shape parameter p.

2.3.2 Fitting to an AGG distribution
Parameters in the AGG model can be optimized by maximizing the log likelihood

function shown in Eq. (III.9). At first, the mode µ′ is estimated by using the histogram
method, which estimates the mode to be the value of the bin with the greatest number
of data points (Hedges and Shah, 2003). Secondly, the variance parameters σ2

l and
σ2

r are calculated by

σ2
l =

1
Nl − 1

N∑
i=1,xi<µ′

(xi − µ′)2 (III.12)

σ2
r =

1
Nr − 1

N∑
i=1,xi≥µ′

(xi − µ′)2, (III.13)

where Nl (or Nr) is the number of the observed data points having the values smaller
(or greater) than the mode parameter µ′. Thus, Nl and Nr are given by

Nl =
N∑

i=1,xi<µ′

1 (III.14)

Nr =
N∑

i=1,xi≥µ′

1. (III.15)

Finally, the shape parameter q is optimized by using a conjugate gradient method.
As shown in (Lee and Nandi, 1999), the derivative of Eq (III.9) with respect to the
shape parameter q is given by

∂

∂q
lnLagg = D′

1 −
N∑

i=1,xi<µ′

γq
l (µ′ − xi)q[ln{γl(µ′ − xi)} + D′

2]

−
N∑

i=1,xi≥µ′

γq
r (xi − µ′)q[ln{γr(xi − µ′)} + D′

2]

(III.16)

with

D′
1 =

1
2
N

(
2
q
− 3

Ψ( 3
q )

q2
+ 3

Ψ( 1
q )

q2

)

D′
2 =

Ψ( 1
q ) − 3Ψ( 3

q )

2q
.
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By using Eq. (III.9), Eq. (III.16), and the Fletcher-Reeves conjugate gradient algo-
rithm, our implementation of the OASYS algorithm finds a local optimum solution
for the shape parameter q.

2.3.3 Model selection
Let θ̃ogg be the optimal parameter set for the OGG model and θ̃agg be the optimal

parameter set for the AGG model. OASYS determines which model, either of the
OGG model or the AGG model, is more appropriate for representing the probability
density of the observed data based upon the Akaike information criteria (Akaike,
1974). If the following inequality is satisfied, the OGG model is selected:

ln Pogg(x|θ̃ogg) − Mogg > lnPagg(x|θ̃agg) − Magg, (III.17)

where Mogg and Magg are the number of adjustable parameters in the OGG model
and the AGG model, respectively. Thus, Mogg = 3 and Magg = 4. Note that
ln Pogg(x|θ̃ogg) and lnPagg(x|θ̃agg) can be evaluated based on Eqs. (III.7) and (III.9),
respectively. If the inequality shown in Eq. (III.17) is not satisfied, the AGG model
is selected.

2.4 Scoring scheme

Given the model for describing the probability density of the WNNSO values of
positional orthologs M+

wnnso and the model for describing the probability density of
the WNNSO values of other homologs M−

wnnso, the synteny score of a homologous
gene pair hm whose WNNSO value is x is defined by

Syn Score(hm) = ln
P (x|M+

wnnso)
P (x|M−

wnnso)
. (III.18)

As shown in Fig. III.7, the score function given by Eq. (III.18) is not necessary
monotonically increasing function of x, although the score function is desired to be
monotonically increasing function because it is considered that the homologous gene
pairs which have greater WNNSO value are more likely to be positional orthologs.
Thus, we modify Eq. (III.18) so that the score function be monotonically increasing.
The modified score function is given by

Modified Syn Score(hm)

=


ln P (x|M+

wnnso)

P (x|M−
wnnso)

for x ≤ x̂

ln P (x̂|M+
wnnso)

P (x̂|M−
wnnso)

+ δ(x − x̂) for x > x̂,

(III.19)

where x̂ is the WNNSO value at which the score function given by Eq. (III.18) takes
the maximum value, and δ is a extremely small value. Fig. III.7 demonstrates that the
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modified score function given by Eq. (III.19) is a monotonically increasing function
of x.

Analogously, given the model for describing the probability density of the bit scores
of positional orthologs M+

bit and the model for describing the probability density of
the bit scores of other homologs M−

bit, the sequence score of a homologous gene pair
hm whose bit score is x is defined by

Seq Score(hm) = ln
P (x|M+

bit)
P (x|M−

bit)
. (III.20)

As shown in Fig. III.8, the score function given by Eq. (III.20) is not necessary
monotonically increasing function of x. Thus, we modify Eq. (III.20) so that the
score function be monotonically increasing. The modified score function is given by

Modified Seq Score(hm) =


ln P (x|M+

bit)

P (x|M−
bit)

for x ≤ x̂

ln P (x̂|M+
bit)

P (x̂|M−
bit)

+ δ(x − x̂) for x > x̂

(III.21)

where x̂ denote the bit score at which the score function given by Eq. (III.20) takes
maximum value, and δ is a extremely small value. Fig.III.8 demonstrates that the
modified score function given by Eq. (III.21) is a monotonically increasing function
of x.

OASYS integrates the information about the extent of the gene order conservation
and the extent of the protein sequence conservation by taking the weighted sum of the
modified synteny score given by Eq. (III.19) and the modified sequence score given
by Eq. (III.21). The integrated score is given by

Integrated Score(hm)

= wsynModified Syn Score(hm) + wseqModified Seq Score(hm),
(III.22)

where wsyn and wseq denote the weight for the modified synteny score and the modified
sequence score, respectively. The OASYS program has the weight ratio option, which
can specify the weight ratio wsyn

wseq
. The default value for the weight ratio is set at 1.0.
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Fig. III.7 Plots of the synteny score function Syn Score and the modified syn-
teny score function Modified Syn Score. In these plots, horizontal axis shows the
WNNSO value and vertical axis shows the synteny score or modified synteny score.
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Fig. III.8 Plots of the sequence score function Seq Score, and the modified se-
quence score function Modified Seq Score. In these plots, horizontal axis shows
the bit score and vertical axis shows the sequence score or modified sequence score.
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3 Materials and Methods

3.1 Data resources

We downloaded complete sequences of bacterial, archaeal, and fungal genomes
in GenBank format from the NCBI ftp server (ftp://ftp.ncbi.nih.gov/genomes/).
The taxonomic classification of these genomes was taken from the NCBI Taxonomy
Browser (http://www.ncbi.nlm.nih.gov/Taxonomy/).

3.1.1 Bacterial genomes
Of 812 currently available bacterial genomes, 83 bacterial genomes were collected

so as to cover all available bacterial orders (79 bacterial orders). These genomes cover
21 bacterial phyla, including two recently proposed bacterial phyla, Gemmatimon-
adetes (Zhang et al., 2003) and Elusimicrobia (Herlemann et al., 2009). A list of
bacterial genomes used in our analyses and its taxonomy are shown in Table III.1.
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Table. III.1 List of the bacterial genomes used in our analyses

Genome # of
Phylum Class Order Species Size (kb) Genes

Chloroflexi Chloroflexi Chloroflexales Chloroflexus aggregans 4,685 3,730
Herpetosiphonales Herpetosiphon aurantiacus 6,785 5,278

Dehalococcoidetes not defined Dehalococcoides ethenogenes 1,470 1,580
Thermomicrobia Thermomicrobiales Thermomicrobium roseum 2,921 2,854

Deinococcus Deinococci Deinococcales Deinococcus radiodurans 3,284 3,167
-Thermus Thermales Thermus thermophilus 2,116 2,238
Cyanobacteria Gloeobacteria Gloeobacterales Gloeobacter violaceus 4,659 4,430

not defined Chroococcales Cyanothece sp. ATCC 51142 5,460 5,304
Nostocales Nostoc punctiforme 9,059 6,690
Oscillatoriales Trichodesmium erythraeum 7,750 4,451
Prochlorales Prochlorococcus marinus 1,670 1,921
not defined Acaryochloris marina 8,362 8,383

Proteobacteria Alpha- Caulobacterales Caulobacter vibrioides 4,017 3,737
proteobacteria Rhizobiales Rhizobium etli 6,530 5,963

Rhodobacterales Dinoroseobacter shibae 4,418 4,187
Rhodospirillales Acidiphilium cryptum 3,963 3,559
Rickettsiales Rickettsia conorii 1,269 1,374
Sphingomonadales Sphingopyxis alaskensis 3,374 3,195

Beta- Burkholderiales Burkholderia mallei 5,232 5,189
proteobacteria Hydrogenophilales Thiobacillus denitrificans 2,910 2,827

Methylophilales Methylobacillus flagellatus 2,972 2,753
Neisseriales Neisseria meningitidis 2,272 2,063
Nitrosomonadales Nitrosomonas europaea 2,812 2,461
Rhodocyclales Aromatoleum aromaticum 4,727 4,590

Delta- Bdellovibrionales Bdellovibrio bacteriovorus 3,783 3,587
proteobacteria Desulfobacterales Desulfotalea psychrophila 3,660 3,234

Desulfovibrionales Desulfovibrio vulgaris 3,661 3,091
Desulfuromonadales Geobacter sulfurreducens 3,814 3,445
Myxococcales Myxococcus xanthus 9,140 7,331
Syntrophobacterales Syntrophobacter fumaroxidans 4,990 4,064

Epsilon- Campylobacterales Helicobacter pylori 1,663 1,504
proteobacteria Nautiliales Nautilia profundicola 1,676 1,730

not defined Nitratiruptor sp. SB155-2 1,878 1,843
Sulfurovum sp. NBC37-1 2,562 2,438

Gamma- Acidithiobacillales Acidithiobacillus ferrooxidans 2,982 3,147
proteobacteria Aeromonadales Aeromonas hydrophila 4,744 4,122

Alteromonadales Alteromonas macleodii 4,412 4,072
Cardiobacteriales Dichelobacter nodosus 1,389 1,280
Chromatiales Alkalilimnicola ehrlichei 3,276 2,865
Enterobacteriales Escherichia coli 4,640 4,149

Salmonella enterica 5,134 4,758
Yersinia pestis 4,702 4,202

Legionellales Legionella pneumophila 3,576 3,206
Methylococcales Methylococcus capsulatus 3,305 2,956
Oceanospirillales Chromohalobacter salexigens 3,697 3,298
Pasteurellales Pasteurella multocida 2,257 2,015
Pseudomonadales Pseudomonas aeruginosa 6,264 5,566
Thiotrichales Thiomicrospira crunogena 2,428 2,196
Vibrionales Vibrio cholerae 4,033 3,835
Xanthomonadales Xanthomonas campestris 5,079 4,467

not defined not defined Magnetococcus sp. MC-1 4,720 3,716
Aquificae Aquificae Aquificales Aquifex aeolicus 1,591 1,560
Chlamydiae Chlamydiae Chlamydiales Chlamydia muridarum 1,080 911
Verrucomicrobia Opitutae not defined Opitutus terrae 5,958 4,612

Verrucomicrobiae Verrucomicrobiales Akkermansia muciniphila 2,664 2,138
not defined not defined Methylacidiphilum infernorum 2,287 2,472

Planctomycetes Planctomycetacia Planctomycetales Rhodopirellula baltica 7,146 7,325
Spirochaetes Spirochaetes Spirochaetales Treponema pallidum 1,138 1,036
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Table. III.1 List of the bacterial genomes used in our analyses (continued)

Genome # of
Phylum Class Order Species Size (kb) Genes

Bacteroidetes Bacteroidia Bacteroidales Bacteroides fragilis 5,241 4,231
Flavobacteria Flavobacteriales Flavobacterium johnsoniae 6,097 5,017
Sphingobacteria Sphingobacteriales Cytophaga hutchinsonii 4,433 3,785

Chlorobi Chlorobia Chlorobiales Chlorobaculum tepidum 2,155 2,245
Fusobacteria Fusobacteria Fusobacteriales Fusobacterium nucleatum 2,175 2,067
Thermotogae Thermotogae Thermotogales Thermotoga maritima 1,861 1,858
Acidobacteria Acidobacteria Acidobacteriales Acidobacteria bacterium

Ellin345 5,650 4,777
Solibacteres Solibacterales Solibacter usitatus 9,966 7,826

Gemma- Gemma- Gemma-
timonadetes timonadetes timonadales Gemmatimonas aurantiaca 4,637 3,935
Nitrospirae Nitrospira Nitrospirales Thermodesulfovibrio

yellowstonii 2,004 2,033
Dictyoglomi Dictyoglomia Dictyoglomales Dictyoglomus thermophilum 1,960 1,912
Elusimicrobia Elusimicrobia Elusimicrobiales Elusimicrobium minutum 1,644 1,529
Actinobacteria Actinobacteria Actinomycetales Mycobacterium tuberculosis 4,412 3,989

Bifidobacteriales Bifidobacterium longum 2,260 1,729
Rubrobacterales Rubrobacter xylanophilus 3,226 3,140

Firmicutes Bacilli Bacillales Bacillus subtilis 4,215 4,105
Staphylococcus aureus 2,814 2,615

Lactobacillales Streptococcus pneumoniae 2,046 1,914
Clostridia Clostridiales Clostridium acetobutylicum 4,133 3,848

Halanaerobiales Halothermothrix orenii 2,578 2,342
Natranaerobiales Natranaerobius thermophilus 3,191 2,906
Thermoanaerobacterales Thermoanaerobacter

tengcongensis 2,689 2,588
Tenericutes Mollicutes Acholeplasmatales Acholeplasma laidlawii 1,497 1,380

Entomoplasmatales Mesoplasma florum 793 682
Mycoplasmatales Mycoplasma pneumoniae 816 689

3.1.2 Archaeal genomes
Of 58 currently available archaeal genomes, 18 archaeal genomes were collected

so as to cover all available archaeal orders (15 archaeal orders). These genomes
cover four archaeal phyla, including two major archaeal phyla, Crenarchaeota and
Euryarchaeota, as well as two minor archaeal phyla, Korarchaeota (Barns et al.,
1996) and Nanoarchaeota (Huber et al., 2002). A list of archaeal genomes used in our
analyses and its taxonomy are shown in Table III.2.

3.1.3 Fungal genomes
All currently available fungal genomes were collected (15 fungal genomes). These

genomes cover three fungal phyla, Ascomycota, Basidiomycota and Microsporidia,
and eight fungal orders. A list of fungal genomes used in our analyses and its taxonomy
are shown in Table III.3.

In order to survey how generally the correlation between protein sequence homology
and gene order conservation can be observed, we selected 101 prokaryotic species for
our analyses which cover all currently available prokaryotic orders. This is because
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Table. III.2 List of the archaeal genomes used in our analyses

Genome # of
Phylum Class Order Species Size (kb) Genes

Crenarchaeota Thermoprotei Desulfurococcales Aeropyrum pernix 1,670 1,700
Nitrosopumilales Nitrosopumilus maritimus 1,645 1,795
Sulfolobales Sulfolobus solfataricus 2,992 2,977
Thermoproteales Pyrobaculum aerophilum 2,222 2,605

Euryarchaeota Archaeoglobi Archaeoglobales Archaeoglobus fulgidus 2,178 2,420
Halobacteria Halobacteriales Haloarcula marismortui 4,275 4,240

Halobacterium salinarum 2,571 2,622
Methanobacteria Methanobacteriales Methanothermobacter

thermautotrophicus 1,751 1,873
Methanococci Methanococcales Methanocaldococcus

jannaschii 1,740 1,786
Methanomicrobia Methanomicrobiales Methanospirillum hungatei 3,545 3,139

Methanosarcinales Methanosarcina acetivorans 5,751 4,540
Methanopyri Methanopyrales Methanopyrus kandleri 1,695 1,687
Thermococci Thermococcales Pyrococcus abyssi 1,769 1,782

Thermococcus kodakarensis 2,089 2,306
Thermoplasmata Thermoplasmatales Picrophilus torridus 1,546 1,535

Thermoplasma acidophilum 1,565 1,482
Korarchaeota not defined not defined Candidatus

Korarchaeum cryptofilum 1,591 1,602
Nanoarchaeota not defined not defined Nanoarchaeum equitans 491 536

Table. III.3 List of the fungal genomes used in our analyses

Genome # of
Phylum Class Order Species Size (kb) Genes

Ascomycota Eurotiomycetes Eurotiales Aspergillus fumigatus 29,385 9,630
Emericella nidulans 29,699 9,410

Sordariomycetes Hypocreales Gibberella zeae 36,354 11,628
Sordariales Neurospora crassa 37,101 10,082

Saccharomycetes Saccharomycetales Yarrowia lipolytica 20,551 6,472
Debaryomyces hansenii 12,250 6,334
Eremothecium gossypii 8,766 4,722
Kluyveromyces lactis 10,729 5,336
Candida glabrata 12,300 5,192
Pichia stipitis 15,441 5,816
Saccharomyces cerevisiae 12,157 5,880

Schizo- Schizo- Schizosaccharomyces
saccharomycetes saccharomycetales pombe 12,591 5,003

Basidiomycota Tremellomycetes Tremellales Filobasidiella neoformans 19,052 6,475
Ustilaginomycetes Ustilaginales Ustilago maydis 19,695 6,548

Microsporidia not defined not defined Encephalitozoon cuniculi 2,498 1,996

the computation of reciprocal all-against-all BLAST searches for all pairs of the 870
currently available prokaryotic genomes is nearly infeasible even with a high perfor-
mance computing cluster system. Table III.4 shows that our collection of complete
genome sequences covers a wider taxonomic space of prokaryotic species compared
with the work of Lemoine et al. (2007).

More importantly, in order to investigate whether the finding in Dandekar et al.
(1998) can be extended to eukaryotes, we included fungal genomes in our analyses.
Although it is more desirable to include other eukaryotes such as animals and plants
as well as fungi, it requires a more complicated (or sophisticated) workflow to detect
conserved gene clusters because higher eukaryotic genomes have gone through nu-
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Table. III.4 Taxonomic space covered by our analyses and the work of
Lemoine et al. (2007)

Domain Rank Lemoine et al. (2007) Our analyses
Bacteria Phylum 14 21

Class 20 35
Order 43 79

Archea Phylum 3 4
Class 10 11
Order 12 15

Fungi Phylum 0 3
Class 0 7
Order 0 8

merous tandem duplication events. Thus we analyzed only fungal genomes regarding
eukaryotic genomes in the present study, although we have a plan to improve the
OASYS algorithm so as to be able to accurately identify OGs even when there exist
tandem duplications and to examine whether the correlation between protein sequence
homology and gene order conservation can be observed also in higher eukaryotes.

3.2 Workflow for detecting conserved gene clusters

A conserved gene cluster is defined as a cluster of neighboring genes whose gene
order is conserved across several species. Detecting conserved gene clusters between
pairwise genomes is one of the most important steps in our analyses. Our purpose
is to compare evolutionary distances separating orthologous genes (OGs) from two
organisms between OGs in conserved gene clusters (clustered OGs) and OGs that are
not the members of conserved gene clusters (isolated OGs). Thus, both accurate iden-
tification of orthology relationships and accurate detection of conserved gene clusters
are necessary to ensure that the differences between clustered OGs and isolated OGs
are not the artifacts caused by inaccurate workflow.

A difficulty in the identification of OGs is associated with the discrimination be-
tween orthologs, which are genes evolved by vertical descent from a single ancestral
gene, and paralogs, which are genes evolved by duplication (Fitch, 1970). Given a
timing of the speciation separating two genomes, paralogs that go through duplication
events after the speciation are referred to as in-paralogs, whereas paralogs that are
duplicated before the speciation are referred to as out-paralogs (Remm et al., 2001).
In many cases where in-paralogs exist, similarity of protein sequences is not sufficient
information to determine which of the in-paralogs is functionally equivalent to the or-
tholog in the other species. Due to this uncertainty of functional equivalence between
in-paralogs, the vast majority of recently proposed methods identify many-to-many
orthology relationships, i.e. all of in-paralogs are clustered together in an orthologous
group (Remm et al., 2001; Li et al., 2003; Tatusov et al., 2003; Dehal and Boore, 2006;
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Vilella et al., 2009).
However, in-paralogs could be under different evolutionary pressures. Evolution-

ary biologists consider that one of the in-paralogs have retained the ancestral func-
tion and the other in-paralogs have acquired new lineage-specific functions. Thus,
the one of in-paralogs would be under the evolutionary pressures to maintain pro-
tein sequences, whereas the others would not be (Ohno, 1970; Zhang et al., 1998;
Moore and Purugganan, 2003; Rodriguez-Trelles et al., 2003; Thornton and Long,
2005; Han et al., 2009). In order to focus on the correlation between protein se-
quence homology and gene order conservation, and to exclude the undesirable effects
of in-paralogs, our workflow identifies one-to-one orthology relationships rather than
many-to-many. Even when there exist in-paralogs, our workflow identifies one-to-one
orthology relationships by selecting the orthologous gene pairs that are located on
the corresponding chromosomal positions. Since such OGs tend to have retained the
ancestral function (Dandekar et al., 1998; Overbeek et al., 1999a,b; Snel et al., 2000;
Notebaart et al., 2005), the OGs identified by our workflow would be less affected by
in-paralogs.

Our workflow starts with parsing GenBank files. Subsequently, one-to-one orthology
relationships of genes are identified by the OASYS program. Thereafter, OGs that are
strictly adjacent in both genomes are clustered together in order to detect conserved
gene clusters, in which neither insertion/deletion of genes nor inversion is allowed.
This clustering criterion is the same as the work of Lemoine et al. (2007).

An originality of our workflow is to use the information of gene order conservation
in the step to identify OGs. Suppose that two genomes, GA and GB , have evolved
from a common ancestor, and the gene order of three neighboring genes have not been
disrupted. Let the descendant of the gene cluster in GA and GB be {ai−1, ai, ai+1}
and {bi−1, bi, bi+1}, respectively. In addition, suppose that bi is duplicated after
the speciation of GA and GB , and GB comes to encode a new gene b′i as shown in
Fig. III.9. In this case, a heuristic homology search tool like BLAST might yield
a smaller similarity score for the gene pair (ai, bi) than the gene pair (ai, b

′
i) even

though the gene pair (ai, bi) be truly orthologous. Then, the gene pair (ai, bi) would
not be identified as orthologous by the methods based only on protein sequences
and therefore the conserved gene cluster of {ai−1, ai, ai+1} and {bi−1, bi, bi+1} would
not be detected. On the other hand, the information of gene order conservation
enhances to identify three one-to-one orthology relationships, (ai−1, bi−1), (ai, bi), and
(ai+1, bi+1), which would yield the detection of the conserved gene cluster of the three
OGs. Accordingly, in order to sensitively detect conserved gene clusters even if there
exist in-paralogs, OGs are need to be identified based not only on the information of
protein sequences but also on the information of gene order conservation.

3.2.1 Parsing GenBank files
We used the Bio::SeqIO module in the BioPerl package (Stajich et al., 2002) to parse

GenBank files drawn from the NCBI FTP server. For each CDS feature in a GenBank
file, we extracted the locus tag, protein sequence, chromosomal positions of coding
sequences, and genetic code that is used to translate the coding sequences. The coding
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Fig. III.9 An illustration of a genome evolution with a duplication event. We here
suppose that two genomes, GA and GB , are speciated from a common ancestor, and
the gene order of three neighboring genes have not been disrupted. The descendant
of the gene cluster in GA and GB are denoted as {ai−1, ai, ai+1} and {bi−1, bi, bi+1},
respectively. In addition, we suppose that bi is duplicated after the speciation of GA

and GB , and GB comes to encode a new gene b′i.

sequence for the CDS feature was obtained by extracting the DNA sequences from
the whole genome sequence described in the GenBank file by using the chromosomal
positions of coding sequences. Then, we assigned our unique gene ID to the CDS, and
the DNA sequence, protein sequence, chromosomal position, and genetic code were
associated with the gene ID.

3.2.2 Identifying orthologous genes
A file containing all protein sequences was created for each organism. Subsequently,

we executed reciprocal all-against-all BLAST searches by using the BLASTP pro-
gram (Altschul et al., 1990) with default parameters. Suspicious BLAST hits were
filtered out by eliminating the BLAST hits whose bit score is lower than 50 bits and
the BLAST hits whose matching segment is shorter than the half length of the protein
sequences. Then, we used the OASYS program (version 0.2) with default parameters
to identify one-to-one orthology relationships of genes.

3.2.3 Detecting conserved gene clusters
In order to detect conserved gene clusters, we input the results of the OASYS

program into the dpd clustering program included in the OASYS distribution. In
this computation, the threshold of the distance between OGs to cluster together was
set at 1.0. By doing so, only the strictly adjacent OGs are clustered together.
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3.2.4 Computing PAM distance
Given two protein sequences, we computed the global alignment of the two se-

quences by using the needle program included in the EMBOSS package (version
6.0.1) (Rice et al., 2000). This computation was executed with default parameters.
Subsequently, the PAM distance separating the two protein sequences was computed
by using protdist program included in the Phylip package (version 3.68) (Felsenstein,
2005). This computation was executed with default parameters except for setting the
model at the Dayhoff PAM matrix. In this setting, the DCMut model (Kosiol and
Goldman, 2005) was used to compute PAM distances.

3.2.5 Estimating KA and KS values
In order to obtain the alignment of two coding sequences, we reused the align-

ment of two protein sequences, which had been calculated to compute PAM dis-
tances. The alignment of two DNA sequences were simply calculated by matching
protein sequences and DNA sequences. Thereafter, we used the yn00 program in-
cluded in the PAML package (version 4.2) (Yang, 1997) to estimate the KA and KS

values. The yn00 program is an implementation of the algorithm proposed by Yang
and Nielsen (2000), which takes into account transition/transversion rate bias and
base/codon frequency bias. In this computation, the yn00 program was executed
with default parameters except for setting the icode parameter at the genetic code of
the input coding sequences. Since several genetic codes cannot be analyzed by the
yn00 program, we modified the program so that all genetic codes accepted by NCBI
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) can be analyzed. To
our knowledge, there is no appropriate method to compute KA and KS values in the
case where the genetic codes of two coding sequences are different. Accordingly, we
could neither compute KA and KS values nor conduct further analyses in such cases.

4 Results and Discussion

4.1 Validation of our workflow

In order to validate the effectiveness of our workflow, we compared the results of
our workflow with three alternative approaches. The first alternative approach is the
method used in Lemoine et al. (2007). They applied the RSD (reciprocal smallest
distance) method (Wall et al., 2003) to the identification of putative OGs, and addi-
tional orthologs (in-paralogs) are detected by reconstructing a phylogenetic tree for
each gene family and by using an ad hoc algorithm to determine whether each internal
node of the phylogenetic tree corresponds to a speciation event, or a duplication event.
The union of the OGs obtained from the RSD method and the OGs obtained from the
ad hoc phylogenetic approach is used to detect conserved gene clusters. Accordingly,
the Lemoine’s method allows many-to-many orthology relationships and might detect
false positives. To avoid detecting false positives, they used very strict cutoff criteria
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Table. III.5 Number of orthologous gene pairs identified by four alternative
approaches (Number of clustered OGs / Total number of OGs)

E.coli proteome
compared with Lemoine et al. (2007) RBH Syntenator OASYS
S. enterica 700 / 2,592 (27%) 2,737 / 3,003 (91%) 2,378 / 2,511 ( 95%) 2,768 / 3,014 (92%)
B. subtilis 229 / 994 (23%) 225 / 1,090 (21%) 142 / 155 ( 92%) 272 / 1,100 (25%)
B. thetaiotaomicron 128 / 802 (16%) 124 / 893 (15%) 64 / 64 (100%) 152 / 898 (17%)
M. acetivorans 60 / 431 (14%) 48 / 518 ( 9%) 77 / 77 (100%) 65 / 537 (12%)

Table. III.6 Statistics of conserved gene clusters detected by four alternative approaches

Lemoine et al. (2007) RBH Syntenator OASYS
E.coli proteome No. of Max No. of Max No. of Max No. of Max

compared with Clustersa,c sizeb Clustersa sizeb Clustersa sizeb Clustersa sizeb

S. enterica - 20 431 39 346 44 429 44
V. cholerae - 10 318 22 107 22 330 22
P. aeruginosa - 12 250 22 94 22 267 22
M. loti - 9 112 9 102 8 141 9
B. subtilis - 9 92 10 40 10 110 10
M. tuberculosis - 6 52 9 10 5 62 9
C. tepidum - 9 54 10 8 22 59 10
M. acetivorans - 3 22 4 17 5 30 4
S. solfataricus - 3 12 3 7 4 14 3

aNumber of conserved gene clusters detected by each method.
bMaximum size of conserved gene clusters detected by each method.
cSince the detailed results of the work of Lemoine et al. (2007) are not available, the number of conserved
gene clusters cannot be examined.

to filter out homologous gene pairs. The second and third alternative approaches
use the RBH (reciprocal best hit) method (Tatusov et al., 1997) and the Syntenator
program (Rödelsperger and Dieterich, 2008) to identify OGs, respectively. The RBH
method is a well-known method to identify OGs and is based only on similarities of
protein sequences. Meanwhile, Syntenator identifies OGs by simultaneously finding
conserved gene orders, and therefore is based not only on the information of protein
sequence homology but also the information of gene order conservation. In our work-
flow and alternative approaches, the same algorithm is applied to the clustering of
adjacent OGs. Note that we applied our clustering algorithm also to the OGs identi-
fied by Syntenator even though Syntenator detects not only OGs but also conserved
gene orders because the definition of conserved gene orders in Syntenator allows inser-
tions/deletions of genes, and is slightly different from our definition of conserved gene
clusters. The differences in the results of conserved gene clusters among alternative
approaches directly reflect the differences in the algorithm to identify OGs.

Table III.5 shows the number of the OGs identified by the four alternative methods,
as well as the number of clustered OGs. Table III.6 summarizes the statistics of the
conserved gene clusters detected by the four alternative approaches. We can see in
Table III.6 that our workflow tends to detect a larger number of conserved gene clus-
ters compared with the RBH approach, and the maximum size of the conserved gene
clusters detected by our workflow was greater than the method used in Lemoine et al.
(2007). Moreover, the histograms of the size of conserved gene clusters show that
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Fig. III.10 Histogram of the size of conserved gene clusters. The sizes of the con-
served gene clusters detected by the RBH method and our workflow (OASYS) are
compared. (A) Histogram of the size of conserved gene clusters detected by com-
paring E. coli and V. cholerae. (B) Histogram of the size of conserved gene clusters
detected by comparing E. coli and M. tuberculosis.

the difference in the number of conserved gene clusters between the RBH method
and our workflow is mostly due to the difference in the number of conserved gene
clusters whose size is two (Fig. III.10), indicating that our workflow enables sensitive
detection of small conserved gene clusters. Thanks to this sensitiveness, our workflow
could detect a larger number of clustered OGs than the other three methods (Ta-
ble III.5). Table III.5 also shows that the number of OGs detected by our workflow is
a little greater than the RBH method and largely greater than the Lemoine’s method.
This result indicates that a number of bona fide OGs are missed by the Lemoine’s
method, possibly due to very strict cutoff criteria to filter out homologous gene pairs.
Our workflow avoids false positives of OGs by using the information of gene order
conservation in order to distinguish genuine orthologous gene pairs from the other
homologous gene pairs, and therefore, does not need to use such too stringent cutoff
criteria.

As an example of the differences between the RBH method and our workflow, we
here focus on a conserved gene cluster detected between E. coli and M. tuberculo-
sis, which is composed of sulfate and thiosulfate transport genes. As illustrated in
Fig. III.11, our workflow detects the conserved gene cluster composed of four OGs,
whereas the workflow based on the RBH method detects the conserved gene cluster
composed of three OGs. This is because our workflow identifies cysP as the ortholog
of subI, on the other hand, the RBH method identifies sbp. In E. coli, mutation ex-
periments and presumption based on sequence homology suggest that CysP, CysU,
CysW and CysA form a complex of sulfate/thiosulfate ABC transporter, and mR-
NAs of these subunits are cotranscribed (Hryniewicz et al., 1990; Sirko et al., 1990).
Also in M. tuberculosis, subI, cysT, cysW, and cysA1 are predicted to constitute an
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Fig. III.11 Conserved gene cluster of sulfate and thiosulfate transport genes. Col-
ored arrows represent genes, and homologous genes are depicted as the arrows having
the same color, e.g. both cysA in E. coli and cysA1 in M. tuberculosis are blue-
colored, representing that the two genes are homologous. Orthologous genes detected
by each method are connected by colored broken lines. Conserved gene clusters are
depicted as colored blocks. (A) A conserved gene cluster detected by our workflow
is illustrated. Four orthologous gene pairs, (cysA, cysA1 ), (cysW, cysW ), (cysU,
cysT ), and (cysP, subI ), were detected by our workflow. The clustering of neigh-
boring OGs results in a conserved gene cluster whose size is four. (B) A conserved
gene cluster detected by the RBH method is illustrated. Four orthologous gene pairs,
(cysA, cysA1 ), (cysW, cysW ), (cysU, cysT ), and (sbp, subI ), were detected by the
RBH method. The clustering of neighboring OGs yields a conserved gene cluster
whose size is three.

operon (Alm et al., 2005; Price et al., 2005). Taken together, subI in M. tuberculo-
sis seems to play an equivalent role as cysP in E. coli. This example indicates that
our workflow can correctly identify bone fide OGs by taking into account the infor-
mation of gene order conservation, and demonstrates that our workflow can avoid
underestimating the size of conserved gene clusters.

Compared with the Syntenator program, OASYS detects a larger number of con-
served gene clusters while the maximum size of conserved gene clusters tends to be
smaller in the comparisons of distantly related genomes (Table III.6). The num-
ber of OGs and clustered OGs detected by OASYS were consistently greater than
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Table. III.7 Results of our workflow in the comparison of prokaryotic genomes

No. of genome pairs
(No. of OGs ≥ 300)

Alla # of OGs ≥ 300b %Clustered ≥ 10%c AND (%Clustered ≥ 10%)d

bacteria-bacteria comparisons 3,403 3,204 (94.2%) 3,342 (98.2%) 3,143 (92.4%)
archaea-archaea comparisons 153 136 (88.9%) 135 (88.2%) 135 (88.2%)
bacteria-archaea comparisons 1,494 812 (54.4%) 722 (48.3%) 497 (33.3%)
Total 5,050 4,152 (82.2%) 4,199 (83.1%) 3,775 (74.8%)

aNumber of all pairwise combinations of genomes.
bNumber of genome pairs where more than 300 OGs were identified.
cNumber of genome pairs where the percentage of OGs in conserved gene clusters exceeded 10%.
dNumber of genome pairs where more than 300 OGs were identified and the percentage of OGs in
conserved gene clusters exceeded 10%.

Syntenator, although the percentages of OGs in conserved gene clusters detected by
Syntenator were greater than those of OASYS (Table III.5). These results indicate
that the advantage of OASYS over Syntenator lies in the sensitivity to identify both
clustered and isolated OGs, which can be accomplished by detecting small conserved
gene clusters sensitively, whereas Syntenator is suitable to detect large conserved gene
clusters especially in the comparisons of remotely related genomes. From the point of
view that OGs will be used to statistically test the differences between clustered and
isolated OGs in our analyses, it is needed to detect isolated OGs sensitively as well
as clustered OGs, and therefore, OASYS is more appropriate for our analyses than
Syntenator.

4.2 Results of comparing prokaryotic genomes

We applied our workflow to all pairwise combinations of the 101 prokaryotic (83
bacterial and 18 archaeal) genomes listed in Tables III.1 and III.2, and one-to-one
orthology relationships of genes and conserved gene clusters were computed for each
pair of genomes. The number of OGs and the percentage of OGs in conserved gene
clusters are visualized in Figs. III.12 and III.13, respectively, and these results are
summarized in Table III.7. We can see in Table III.7 that the percentage of OGs
in conserved gene clusters exceeded 10% in almost cases of bacteria-bacteria genome
comparisons (98.2%) and archaea-archaea genome comparisons (88.2%). Even when
comparing bacterial and archaeal genomes, for 722 of 1,494 genome pairs (48.3%),
the percentage of OGs in conserved gene clusters exceeded 10%, indicating that local
gene orders are substantially conserved even between bacterial and archaeal genomes.

Further sequence analyses were conducted for the genome pairs where more than
300 OGs were detected and the percentage of OGs in conserved gene clusters exceeded
10%. First, the PAM distance, which is the number of accepted point mutations per
100 residues, were computed for each orthologous gene pair. Then, we examined
whether the PAM distances of clustered OGs are significantly lower than those of
isolated OGs. In our statistical test, the null hypothesis (H0) assumes that the popu-
lation distribution of the PAM distances of clustered OGs is identical to the population
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Fig. III.12 Number of OGs identified in the comparisons of prokaryotic genomes.
A column or a row in this matrix corresponds to a prokaryotic organism, and the
result of comparing two prokaryotic organisms is shown in the corresponding cell.
The color of each cell represents the degree of the number of OGs identified by our
workflow. Analyses corresponding to black-colored cells were not conducted.
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Fig. III.13 Percentage of OGs in conserved gene clusters. A column or a row in
this matrix corresponds to a prokaryotic organism, and the result of comparing two
prokaryotic organisms is shown in the corresponding cell. The color of each cell
represents the degree of percentage of OGs in conserved gene clusters. Analyses
corresponding to black-colored cells were not conducted.
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Fig. III.14 p-value of the difference in PAM distance. A column or a row in this ma-
trix corresponds to a prokaryotic organism, and the result of comparing two prokary-
otic organisms is shown in the corresponding cell. The color of each cell represents
the degree of the logarithm (base 10) of the p-value of the difference in PAM distance.
Analyses corresponding to black-colored cells were not conducted.
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Fig. III.15 p-value of the difference in KA/KS ratio. A column or a row in this ma-
trix corresponds to a prokaryotic organism, and the result of comparing two prokary-
otic organisms is shown in the corresponding cell. The color of each cell represents
the degree of the logarithm (base 10) of the p-value of the difference in KA/KS ratio.
Analyses corresponding to black-colored cells were not conducted.
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Fig. III.16 p-value of the difference in KS value. A column or a row in this matrix
corresponds to a prokaryotic organism, and the result of comparing two prokaryotic
organisms is shown in the corresponding cell. The color of each cell represents the
degree of the logarithm (base 10) of the p-value of the difference in KS value. Analyses
corresponding to black-colored cells were not conducted.
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Table. III.8 Number of genome pairs that show significant difference

# of genome pairs

PAM distancea KA/KS and KS
b KA/KS

c KS
d no differencee

bacteria-bacteria
comparisons 3,137 856 (27.3%) 1,157 (36.9%) 883 (28.1%) 241 (7.7%)

archaea-archaea
comparisons 130 19 (14.6%) 51 (39.2%) 28 (21.5%) 32 (24.6%)

bacteria-archaea
comparisons 322 0 (0.0%) 109 (33.9%) 18 (5.6%) 195 (60.1%)

Total 3,589 875 (24.4%) 1,317 (37.0%) 929 (25.9%) 468 (13.0%)

aNumber of genome pairs that show a significant difference in PAM distance between clustered OGs and
isolated OGs.
bNumber of genome pairs that show a significant difference both in KA/KS ratio and in KS value.
cNumber of genome pairs where a significant difference in KA/KS ratio was detected but no significant
difference in KS value was observed.
dNumber of genome pairs where a significant difference in KS value was detected but no significant
difference in KA/KS ratio was observed.
eNumber of genome pairs that do not show any significant difference neither in KA/KS ratio nor KS

value.

distribution of the PAM distances of isolated OGs. The alternative hypothesis (H1)
assumes that the population distribution of the PAM distances of clustered OGs has a
smaller mean than that of isolated OGs. Since the population of PAM distances can-
not be assumed to be normally distributed, Mann-Whitney U-test (Wilcoxon, 1945;
Mann and Whitney, 1947) was employed to compute the p-values. Fig. III.14 visual-
izes the p-value computed for each pair of genomes, and the results are summarized in
Table III.8. Of 3,143 bacterial genome pairs analyzed, significant difference in PAM
distance was detected for 3,137 genome pairs (99.8%) with the p-value cutoff at 0.01.
Of 135 archaeal genome pairs analyzed, significant difference in PAM distance was
detected for 130 genome pairs (96.3%). These results confirm the previous finding in
Dandekar et al. (1998) that the degree of protein sequence conservation of clustered
OGs is substantially higher than that of isolated OGs. Moreover, the significant dif-
ference in PAM distance was observed for 322 genome pairs of bacterial and archaeal
genomes (64.8%), suggesting that the finding of Dandekar et al. (1998) is a general
trend among prokaryotic genomes.

In order to shed light on the evolutionary forces behind the correlation between
protein sequence homology and gene order conservation, we estimated the rate of
synonymous substitutions (KS) and the rate of nonsynonymous substitutions (KA)
for each orthologous gene pair. Subsequently, we conducted statistical tests to assess
whether the KA/KS ratio (or KS value) of clustered OGs is significantly lower than
that of isolated OGs. In these statistical tests, the null and alternative hypotheses
are assumed in a similar manner to the statistical tests for the difference in PAM
distance. Figs. III.15 and III.16 visualize the p-values computed for each pair of
genomes, and the results are summarized in Table III.8. We can see in Table III.8
that, of 3,589 prokaryotic genome pairs that show the significant difference in PAM
distance, significant difference was detected both in KA/KS ratio and in KS value
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for 875 genome pairs (24.4%). For 1,317 prokaryotic genome pairs (37.0%), there
were significant differences in KA/KS ratio, but no significant difference in KS value.
For 883 prokaryotic genome pairs (28.1%), significant differences in KS value were
observed, but no significant difference in KA/KS ratio was detected. These results
interestingly indicate that although the correlation between protein sequence homol-
ogy and gene order conservation is consistently observed and seems to be a general
trend among prokaryotic genomes, the underlying mechanisms behind the correlation
are different among lineages.

Dandekar et al. (1998) postulates a hypothesis for the underlying mechanism and
explains why the gene order conservation can be useful to predict gene functions from
the point of view of co-adaptation (Fisher, 1930; Wallace, 1991; Pazos and Valencia,
2008). Proteins that interact physically tend to be co-adapted, and co-adapted genes
would be under positive selection to form clusters of co-adapted genes and/or selective
pressures to maintain gene clusters in order to reduce the chance of genetic recombi-
nation perturbing co-adapted pairs of genes. Moreover, genes whose products interact
physically should exhibit a lower rate of mutation, because of the selective constraints
imposed by the interaction. Taken together, gene order conservation should correlate
with protein sequence homology and the interaction of proteins. Our results provide
an impact on the hypothesis because there are cases that higher degree of protein
sequence conservation would be caused by lower substitution rate of coding sequences
rather than stronger selective pressures to preserve protein sequences, which cannot
be explained by the hypothesis of Dandekar et al. (1998). Thus, our finding requires
another hypothesis for the underlying mechanisms that yield the correlation between
protein sequence homology and gene order conservation. For example, we can explain
the correlation from the point of view of regional variation in mutation rates (Wolfe
et al., 1989; Baer et al., 2007). Though neutral mutation rates were once considered
to be uniform along with chromosomes, it has been discovered in multicellular or-
ganisms that they can vary among segmental regions of a single chromosome (Baer
et al., 2007; Fox et al., 2008). Moreover, it has been reported that the rate of nu-
cleotide substitutions for each segmental region is correlated with the recombination
rate in eutherian genomes (Hardison et al., 2003). We postulate that the rate of
nucleotide substitutions might be correlated with the recombination rate and/or the
rearrangement rate (Sémon and Wolfe, 2007) also in prokaryotic genomes, and such
correlation could yield the correlation between protein sequence homology and gene
order conservation.

4.3 Results of comparing fungal genomes

We applied our workflow to all pairwise combinations of the 15 fungal genomes listed
in Table III.3, and one-to-one orthology relationships of genes and conserved gene clus-
ters were computed for each pair of genomes. The number of OGs and the percentage
of OGs in conserved gene clusters are visualized in Figs. III.17A and III.17B, respec-
tively. These figures show that more than 1,000 OGs were detected even between
distantly related fungal genomes (Fig. III.17A), whereas the percentage of OGs in
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conserved gene clusters did not exceed 10% when comparing fungal genomes across
classes (Fig. III.17B), suggesting that extensive gene shuffling has been occurred dur-
ing fungal genome evolution.

We conducted further sequence analyses for the genome pairs, where more than 500
OGs were identified and the percentage of OGs in conserved gene clusters exceeded
10%. Similar to the analyses of prokaryotic genomes, the difference in PAM distance
between clustered and isolated OGs was statistically tested for each pair of fungal
genomes, and the results are visualized in Fig. III.17C. To our surprise, the signifi-
cant differences were observed in more than half of fungal genome pairs. Especially
in the comparison of genomes in the subphylum Pezizomycotina, strongly significant
difference was observed. In order to demonstrate that the correlation between pro-
tein sequence homology and gene order conservation observed in fungal genomes is
independent of the algorithm of OASYS, we examined whether the correlation can be
detected by an alternative approach. We identified OGs between A. fumigatus and A.
nidulans by using the Syntenator program (Rödelsperger and Dieterich, 2008), and
the OGs identified were clustered by the dpd clustering program in the OASYS dis-
tribution. A Mann-Whitney U-test showed a significant difference in PAM distance
between clustered and isolated OGs (p-value ≤ 1.28× 10−20). We also computed the
p-value in the comparison of G. zeae and N. crassa, and a significant difference was
observed (p-value ≤ 6.77×10−3). These results indicate that the correlation between
protein sequence homology and gene order conservation observed in fungal genomes
is independent of our workflow and would be a genuine trend in fungal genomes.

In order to survey the evolutionary forces behind the correlation observed in fungal
genomes, the differences in KA/KS ratio and KS value between clustered and isolated
OGs were statistically tested (Figs. III.17D and III.17E). Fig. III.17D shows that
strong significant difference in KA/KS ratio was observed when comparing genomes in
the subphylum Pezizomycotina, whereas no significant difference in KA/KS ratio was
detected when comparing genomes in the class Saccharomycetes. On the other hand,
Fig. III.17E shows that significant difference in KS value was observed both in the
comparisons of Pezizomycotina genomes and in the comparisons of Saccharomycetes
genomes. From these results, regarding Saccharomycetes genomes, higher degree of
protein sequence conservation of clustered OGs would be caused by lower substitution
rate of coding sequences. Regarding Pezizomycotina genomes, the correlation between
protein sequence homology and gene order conservation would be mainly caused by
stronger selective pressures to preserve protein sequences, and lower substitution rate
of coding sequences also contribute to the correlation.

Based on our results of fungal genome comparisons, the finding of Dandekar et al.
(1998) that, in prokaryotes, protein sequence of clustered OGs are more conserved
than those of isolated OGs could be extended to eukaryotes. This extension would
imply the possibility to predict function of eukaryotic genes, or at least fungal genes,
based on gene order conservation because the approaches to predicting function of
prokaryotic genes are motivated by the finding in Dandekar et al. (1998). Since
the approaches to predicting gene function based on gene order conservation has
been believed to be limitedly useful for prokaryotic genes, further works remain to
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determine whether the function of eukaryotic genes can be predicted based on gene
order conservation. The correlation between protein sequence homology and gene
order conservation is very general trend in prokaryotes because such correlation was
observed even between bacterial and archaeal genomes. On the other hand, in fungi,
the correlation was observed only in the comparisons of closely related genomes, and
was not detected between remotely related genomes. Accordingly, the information
of gene order conservation obtained from the comparison of closely related genomes
would be more useful to predict function of fungal genes than that obtained from the
comparison of remotely related genomes.

5 Conclusion
We proposed a novel workflow that enables sensitive detection of conserved gene

clusters by utilizing not only the information of protein sequence similarities but also
the information of gene order conservation. Based on the workflow, we confirmed the
finding of Dandekar et al. (1998) that the degree of protein sequence conservation of
clustered OGs is substantially higher than that of isolated OGs in prokaryotes by a
large-scale comparison of 101 prokaryotic genomes, and extended to eukaryotes by
analyzing 15 fungal genomes. Detailed analyses based on the rate of synonymous
substitutions (KS) and the rate of nonsynonymous substitutions (KA) unravel that
heterogeneous mechanisms would underlie behind the correlation between protein
sequence homology and gene order conservation. It is expected that future works
will survey whether the finding of Dandekar et al. (1998) can be extended to higher
eukaryotes, and develop approaches to predicting function of eukaryotic genes based
on gene order conservation.
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Fig. III.17 Results of comparing fungal genomes. A column or a row in these
matrices corresponds to a fungal organism, and the result of comparing two fungal
organisms is shown in the corresponding cell. The color of each cell represents the
degree of (A) the number of OGs identified by our workflow, (B) the percentage
of OGs in conserved gene clusters, (C) the logarithm (base 10) of the p-value of the
difference in PAM distance, (D) the logarithm (base 10) of the p-value of the difference
in KA/KS ratio, and (E) the logarithm (base 10) of the p-value of the difference in
KS value. Analyses corresponding to black-colored cells were not conducted.
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Chapter IV

Concluding Remarks
In this dissertation, we embarked on the following theme: inference of evolutionary

relationship among biological sequences. Our researches described in Chapters II and
III demonstrate that probabilistic models and the decision theory provide powerful
frameworks for this direction. In Chapter II, we make use of probabilistic models
and the decision theory in order to computationally determine optimal threshold of
anchor density. This statistical framework makes it possible to automatically opti-
mize the threshold, and to accurately identify orthologous segments. In Chapter III,
we take advantage of probabilistic models and the decision theory so as to integrate
heterogeneous information: the information of protein sequence similarity and the
information of chromosomal proximity of genes. Thus, a statistical framework that
simultaneously takes into account the two types of information is realized, and ac-
curate identification of positional orthologs and sensitive detection of conserved gene
clusters are achieved.

The inference of evolutionary relationship among biological sequences is one of the
most fundamental problems in comparative genomics; therefore, OSfinder described in
Chapter II and OASYS described in Chapter III have much potential to contribute to
a wide range of fields in life sciences, including evolutionary biology (Nei and Kumar,
2000; Yang, 2006) and systems biology (Hartwell et al., 1999; Kitano, 2002; Oltvai
and Barabási, 2002; Kanehisa et al., 2008). However, since OSfinder and OASYS are
still basic softwares in comparative genomics, they are needed to be extended to fit
specific purposes in other fields of life sciences in order to make them more beneficial
to researchers in those fields. In the remainder of this chapter, further works that
would improve the value of our softwares are described from the viewpoints of systems
biology and evolutionary biology.

1 Further Works Needed in Systems Biology
In the era of high-throughput sequencing, it is difficult to experimentally deter-

mine molecular functions of genes encoded in each newly sequenced genome. Thus,
determining orthology relationships among biological sequences and transferring func-
tional annotations from well-studied genomes into newly sequenced genomes are
needed (Hulsen et al., 2006; Chen et al., 2006, 2007); the need is especially high
for prokaryotic genomes because the number of sequenced prokaryotic genomes have
been exponentially increased (Overbeek et al., 2005; Koonin and Wolf, 2008). In or-
der to obtain systems understandings of an organism whose genome has been newly
sequenced, knowledge of functions of genes encoded by the genome should be rep-
resented by networks (e.g. metabolic and signaling pathways and regulatory net-
works) (Kanehisa et al., 2006). Thus, accurate computational reconstruction of these
networks from genome sequences is the most important challenges to translate the
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accumulation of genome sequences into the comprehensive knowledge of biological
systems.

The KEGG databases (Kanehisa et al., 2006) provide an effective framework for
this direction. The KEGG GENES database employs an original categorization of
gene functions, named KEGG Orthology (KO) identifier, to standardize the descrip-
tion of gene functions in the KEGG system (Kanehisa et al., 2006; Moriya et al.,
2007). The KO identifiers are assigned to each gene, and their description of gene
function is defined based on the KEGG PATHWAY database. The KEGG PATH-
WAY database provides a reference pathway that contain almost all known biological
pathways collected from a number of organisms, and KO identifiers specify which
nodes in the reference pathways a gene is mapped onto. Thus, once the KO identi-
fiers are assigned to genes in a newly sequenced genome, organism-specific pathways
can be computationally generated by mapping genes in the genome onto the reference
pathways based on the KO identifiers (Moriya et al., 2007).

Currently, the KEGG system utilizes KAAS (KEGG Automatic Annotation
Server) (Moriya et al., 2007) in order to automatically assign KO identifiers to genes
in newly sequenced genomes. The results of KAAS largely depends on the step to
identify orthology relationships among genes. KAAS uses similar approaches to
reciprocal best hit (RBH) method; therefore, KAAS identifies orthology relationships
among genes based only on the information of protein sequence similarity. It has
been shown that the information of protein sequence similarity solely is insufficient
to accurately determine the orthology relationships (Remm et al., 2001; Mao et al.,
2006; Fu et al., 2007; Rödelsperger and Dieterich, 2008), and the information of
chromosomal proximity of genes can complement the insufficiency (Dandekar et al.,
1998; Overbeek et al., 1999a,b; Snel et al., 2000; Notebaart et al., 2005).

Accordingly, OASYS, which identifies orthology relationships among genes based
not only on the information of protein sequence similarity but also the information of
chromosomal proximity of genes, would be useful to accurately assign KO identifiers
to genes in newly sequenced genomes. In order to demonstrate this expectation, a
software that uses OASYS as a core engine to identify orthology relationships and
predicts KO identifiers based on the results of OASYS is needed to be developed.

2 Further Works Needed in Evolutionary Biology
Evolutionary processes including nucleotide-level mutations (e.g. base substitutions

and short insertions/deletions), gene-level mutations (e.g. lateral gene transfers, gene
insertions/deletions, gene duplications, gene fusions, exon shufflings, and intron losses
and gains), and chromosome-level mutations (e.g. inversions, transpositions, translo-
cations, chromosomal fusions and fissions, segmental duplications, and large segmental
insertions/deletions) are stochastic processes; the occurrence and fixation of these mu-
tations are not deterministic, and are based on certain probability distributions. Thus,
probabilistic models can be an effective tool to understand the nature of evolutionary
processes. Indeed, the approaches based on probabilistic models have been exten-
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sively used to estimate the occurrence probabilities of nucleotide-level mutations (Nei
and Kumar, 2000; Holmes, 2005; Yang, 2006; Lunter, 2007; Cartwright, 2009; Heger
et al., 2009). These estimates of mutation rates have potential to provide valuable
insights into the molecular mechanisms behind nucleotide-level mutations (Pigliucci
and Kaplan, 2006).

Although a number of algorithms to estimate the rate of nucleotide-level mutations
have been proposed, only a few ad hoc algorithms have been proposed to estimate
the rate of gene-level and chromosome-level mutations (Pevzner and Tesler, 2003a;
Sémon and Wolfe, 2007). It has been shown that, in mammals, the probability to
occur genome rearrangements is varied along chromosomes, and extensive reuse of
breakpoints from the same short fragile regions have been reported (Armengol et al.,
2003; Pevzner and Tesler, 2003b; Bailey et al., 2004). Furthermore, recent researches
have revealed that about 70% of genome rearrangements are associated with segmental
duplications in the comparison of human and grate apes (Cheng et al., 2005; Kehrer-
Sawatzki and Cooper, 2007, 2008), whereas only 40% of genome rearrangements
are associated with segmental duplications in the human-gibbon comparison (Bai-
ley and Eichler, 2006; Girirajan et al., 2009). These statistics suggest molecular
mechanisms behind genome rearrangements; the occurrence of segmental duplications
enhances the the occurrence of genome rearrangements mediated by a molecular mech-
anism named nonallelic homologous recombination (NAHR) in the evolutionary his-
tories between humans and great apes, whereas microhomology-mediated end-joining
(MMEJ) (Yan et al., 2007), fork stalling template switching (FoSTeS) (Lee et al.,
2007), or microhomology/microsatellite-induced replication (MMIR) (Payen et al.,
2008) would be major molecular mechanisms behind genome rearrangements in the
lineage from the common ancestor of primates to gibbons.

As seen in the above example, in order to deepen the understandings of gene- and
chromosome-level mutation processes, it is important to develop algorithms to accu-
rately estimate the occurrence probabilities of those mutations, and to unravel cor-
relations between various types of mutations (e.g. correlations between chromosome-
level and nucleotide-level mutations). Numerous successes of probabilistic approaches
that model nucleotide-level mutation processes suggest that probabilistic approaches
that model gene- and chromosome-level mutation processes would be useful for these
purposes.

OSfinder is the first algorithm that employs probabilistic models for the problem to
identify orthologous segments. As the aim of OSfinder is to accurately identify orthol-
ogous segments among multiple genomes, OSfinder uses anchor density as a feature
of orthologous segments and the algorithm does not model gene- and chromosome-
level mutation processes. Accordingly, although OSfinder provides accurate results
of orthologous segments as an input of ad hoc algorithms to estimate the occurrence
probabilities of gene- and chromosome-level mutations, OSfinder itself can not be ap-
plied to estimating those occurrence probabilities in a statistically rigorous manner.
Yet, a basic concept of OSfinder (i.e. applying an approach based on probabilistic
models to chromosome-level comparisons of genomes) and some mathematical tech-
niques used in OSfinder (e.g. optimization algorithms based on maximum likelihood
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approaches) can be a foundation of developing statistical algorithms to model gene-
and chromosome-level mutation processes. Indeed, we are now developing such an al-
gorithm based on the basic concept and mathematical techniques with the idea that
the problem to identify orthologous segments can be described as an alignment prob-
lem that aligns genomes by matching genes; conventional alignment algorithms align
genes by matching bases or residues. This idea induces a probabilistic approach that
models gene-level mutation processes including gene insertions/deletions and gene
duplications. Moreover, the probabilistic approach enables to unravel the correlation
between gene-level and nucleotide-level mutations by estimating conditional probabil-
ities to occur nucleotide-level mutations for each state associated with the occurrence
of gene-level mutations (details are not shown and will be published elsewhere).

In the era of high-throughput sequencing, genome-level analyses that mine biological
insights from rapidly growing repositories of biological sequences are needed, and
probabilistic approaches that model gene- and chromosome-level mutation processes
would provide effective tools to mine novel insights into evolutionary processes of
genomes.
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88



D. Haussler, Y. Hayashizaki, L. W. Hillier, A. Hinrichs, W. Hlavina, T. Holzer, F. Hsu, A. Hua,
T. Hubbard, A. Hunt, I. Jackson, D. B. Jaffe, L. S. Johnson, M. Jones, T. A. Jones, A. Joy,
M. Kamal, E. K. Karlsson, D. Karolchik, A. Kasprzyk, J. Kawai, E. Keibler, C. Kells, W. J. Kent,
A. Kirby, D. L. Kolbe, I. Korf, R. S. Kucherlapati, E. J. Kulbokas, D. Kulp, T. Landers, J. P. Leger,
S. Leonard, I. Letunic, R. Levine, J. Li, M. Li, C. Lloyd, S. Lucas, B. Ma, D. R. Maglott, E. R.
Mardis, L. Matthews, E. Mauceli, J. H. Mayer, M. McCarthy, W. R. McCombie, S. McLaren,
K. McLay, J. D. McPherson, J. Meldrim, B. Meredith, J. P. Mesirov, W. Miller, T. L. Miner,
E. Mongin, K. T. Montgomery, M. Morgan, R. Mott, J. C. Mullikin, D. M. Muzny, W. E. Nash,
J. O. Nelson, M. N. Nhan, R. Nicol, Z. Ning, C. Nusbaum, M. J. O’Connor, Y. Okazaki, K. Oliver,
E. Overton-Larty, L. Pachter, G. Parra, K. H. Pepin, J. Peterson, P. Pevzner, R. Plumb, C. S.
Pohl, A. Poliakov, T. C. Ponce, C. P. Ponting, S. Potter, M. Quail, A. Reymond, B. A. Roe, K. M.
Roskin, E. M. Rubin, A. G. Rust, R. Santos, V. Sapojnikov, B. Schultz, J. Schultz, M. S. Schwartz,
S. Schwartz, C. Scott, S. Seaman, S. Searle, T. Sharpe, A. Sheridan, R. Shownkeen, S. Sims,
J. B. Singer, G. Slater, A. Smit, D. R. Smith, B. Spencer, A. Stabenau, N. Stange-Thomann,
C. Sugnet, M. Suyama, G. Tesler, J. Thompson, D. Torrents, E. Trevaskis, J. Tromp, C. Ucla,
A. Ureta-Vidal, J. P. Vinson, A. C. Von Niederhausern, C. M. Wade, M. Wall, R. J. Weber,
R. B. Weiss, M. C. Wendl, A. P. West, K. Wetterstrand, R. Wheeler, S. Whelan, J. Wierzbowski,
D. Willey, S. Williams, R. K. Wilson, E. Winter, K. C. Worley, D. Wyman, S. Yang, S. P. Yang,
E. M. Zdobnov, M. C. Zody, and E. S. Lander. Initial sequencing and comparative analysis of the
mouse genome. Nature, 420:520–562, Dec 2002.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1:80–83, 1945.
Y. I. Wolf, I. B. Rogozin, A. S. Kondrashov, and E. V. Koonin. Genome alignment, evolution of

prokaryotic genome organization, and prediction of gene function using genomic context. Genome
Res., 11:356–372, Mar 2001.

K. H. Wolfe, P. M. Sharp, and W. H. Li. Mutation rates differ among regions of the mammalian
genome. Nature, 337:283–285, Jan 1989.

C. T. Yan, C. Boboila, E. K. Souza, S. Franco, T. R. Hickernell, M. Murphy, S. Gumaste, M. Geyer,
A. A. Zarrin, J. P. Manis, K. Rajewsky, and F. W. Alt. IgH class switching and translocations
use a robust non-classical end-joining pathway. Nature, 449:478–482, Sep 2007.

Z. Yang. Computational Molecular Evolution. Oxford University Press, Oxford, 2006.
Z. Yang. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput.

Appl. Biosci., 13:555–556, Oct 1997.
Z. Yang and R. Nielsen. Estimating synonymous and nonsynonymous substitution rates under

realistic evolutionary models. Mol. Biol. Evol., 17:32–43, Jan 2000.
Z. Yang, R. Nielsen, N. Goldman, and A. M. Pedersen. Codon-substitution models for heterogeneous

selection pressure at amino acid sites. Genetics, 155:431–449, May 2000.
H. Zhang, Y. Sekiguchi, S. Hanada, P. Hugenholtz, H. Kim, Y. Kamagata, and K. Nakamura. Gem-

matimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating
micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes
phyl. nov. Int. J. Syst. Evol. Microbiol., 53:1155–1163, Jul 2003.

J. Zhang, H. F. Rosenberg, and M. Nei. Positive Darwinian selection after gene duplication in
primate ribonuclease genes. Proc. Natl. Acad. Sci. U.S.A., 95:3708–3713, Mar 1998.

X. H. Zheng, F. Lu, Z. Y. Wang, F. Zhong, J. Hoover, and R. Mural. Using shared genomic
synteny and shared protein functions to enhance the identification of orthologous gene pairs.
Bioinformatics, 21:703–710, Mar 2005.

89



Appendix A

Software Web Sites

OSfinder – Orthologous Segment finder

The OSfinder software implemented as a C++ program is freely available at the following URL
under the GNU General Public License.

http://osfinder.dna.bio.keio.ac.jp

OASYS – Ortholog Assignment based on SYnteny and Sequence

information

The OASYS software implemented as a C++ program is freely available at the following URL
under the GNU General Public License.

http://oasys.dna.bio.keio.ac.jp
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Appendix B

List of Publications

Journal Papers
1. Hachiya, T., Osana Y., Popendorf, K. and Sakakibara, Y. Accurate identification of orthol-

ogous segments among multiple genomes. Bioinformatics 25, 853–860 (2009).
� The research described in Chapter II was reported in this paper.

2. Hachiya, T. and Sakakibara, Y. Sensitive detection of conserved gene clusters unravels the
evolutionary forces behind the correlation between protein sequence homology and gene order
conservation. Genes, Genomes and Genomics 3, 31–45 (2009).

� A part of the research described in Chapter III was reported in this paper.

Conference Proceedings (peer-reviewed full-length papers)
1. Hachiya, T. and Sakakibara, Y. Searching biologically plausible synteny blocks among multi-

ple genomes. Proceedings of the 2005 International Joint Conference of InCoB, AASBi and
KSBI, 113–117, Busan, Korea, September (2005).

International Conferences (poster presentation)
1. Hachiya, T. and Sakakibara, Y. Stochastic local genome alignment and comprehensive search
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